WO2018047893A1 - Resin composition for shell molding and resin-coated sand obtained using same - Google Patents

Resin composition for shell molding and resin-coated sand obtained using same Download PDF

Info

Publication number
WO2018047893A1
WO2018047893A1 PCT/JP2017/032211 JP2017032211W WO2018047893A1 WO 2018047893 A1 WO2018047893 A1 WO 2018047893A1 JP 2017032211 W JP2017032211 W JP 2017032211W WO 2018047893 A1 WO2018047893 A1 WO 2018047893A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
parts
resin composition
phenol resin
phosphate
Prior art date
Application number
PCT/JP2017/032211
Other languages
French (fr)
Japanese (ja)
Inventor
鉄山
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to CN201780054798.XA priority Critical patent/CN109689245B/en
Priority to MX2019002523A priority patent/MX2019002523A/en
Priority to JP2018538459A priority patent/JP6945537B2/en
Publication of WO2018047893A1 publication Critical patent/WO2018047893A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings

Definitions

  • the present invention relates to a resin composition for a shell mold and a resin coated sand obtained using the same, and more particularly to a resin composition for a shell mold capable of improving the properties of a resin coated sand used for molding a mold.
  • the present invention relates to a resin-coated sand that can be advantageously produced by using a mold resin composition for shell molds and having excellent properties.
  • a phenol resin composition containing a phenol resin as a resin binder (binder component) is used as a binder and kneaded with refractory particles (aggregate / foundry sand).
  • a shell mold mold obtained by forming a resin-coated sand (RCS) formed by forming a binder layer on the surface of such a refractory particle and then molding it into a desired shape is generally used. It is coming.
  • RCS resin-coated sand
  • Patent Document 1 JP-A-11-244990 (Patent Document 1), a phenolic ester, an oxidizing agent, and an organic carboxylic acid metal are blended in a phenol resin.
  • An RCS for a mold obtained by coating the surface of sand grains with a binder prepared as described above has been clarified.
  • the target RCS for molds is produced by preparing a binder using tributyl phosphate as a phosphate ester.
  • the mold obtained using RCS has problems such as a low decay rate in a low temperature region lower than 350 ° C., a slow curing rate when molding the mold, and insufficient blocking resistance of RCS. is doing.
  • Patent Document 2 discloses a resin composition for a shell mold containing a phenol resin and an aromatic condensed phosphate, and is obtained using such a resin composition. It is said that the mold collapsed by RCS is improved in mold disintegration after casting. However, even in such a mold, there is a problem that the decay rate in a low temperature region lower than 350 ° C. is low, and since the fusion point of RCS is low, blocking of RCS is likely to be caused. In addition, the curing speed at the time of mold making is slow, and there is a risk of causing problems in molding workability.
  • the present invention has been made in the background of such circumstances, and the problem to be solved is to improve the mold disintegration property in a low temperature region and to fix the fusion point of RCS.
  • mold molding workability and casting of a casting The object is to provide an RCS with excellent workability.
  • the present inventor has found that the phenol resin does not contain a halogen in the molecule and has a specific content.
  • a P content and a non-halogen phosphate having a specific viscosity to constitute a resin composition for shell molds.
  • the melt of RCS obtained using such a resin composition as a binder is used. Since the landing point can be effectively increased and the disintegration property in the low temperature region of the mold obtained using such RCS can be advantageously increased, the present invention has been completed. is there.
  • the present invention has been completed based on the above-described knowledge, and the gist of the present invention is that in a resin composition for a shell mold containing a phenol resin as a resin caking component, halogen is contained in the molecule.
  • Non-halogen phosphates comprising one or more phosphate ester compounds that do not contain a bond, a P content of 14% or more, and a viscosity of 150 mPa ⁇ s / 25 ° C. or more
  • the resin composition for shell molds is characterized by being caulked.
  • the resin composition for a shell mold according to the present invention a configuration in which at least one of the phosphate ester compounds is an aliphatic condensed phosphate ester is adopted. Become.
  • the non-halogen phosphates are 80% by mass or more of aliphatic condensed phosphates and 20% by mass or less of aromatic phosphates and / or aromatics. Condensed phosphate ester.
  • the resin composition for a shell mold according to the present invention desirably contains the non-halogen phosphate in a proportion of 1 to 50 parts by mass with respect to 100 parts by mass of the phenol resin. .
  • a novolac type phenol resin and / or a resol type phenol resin is advantageously used, and there is a case where the novolac type phenol resin and the resol type phenol resin are used in combination.
  • the shell mold resin composition as described above is used as a binder, and the surface of the refractory aggregate is covered with the binder layer.
  • Resin coated sand (RCS) is also targeted.
  • the binder layer desirably contains a lubricant and / or a silane coupling agent.
  • the resin composition for a shell mold is composed of at least one of a halogen-free phosphate ester compound together with a predetermined phenol resin, and has a specific P content and a specific viscosity. Since the non-halogen phosphate ester is contained, when the RCS is produced using such a resin composition as a binder, the strength of the mold formed from the obtained RCS The RCS fusion point can be effectively increased without lowering the RCS, and the blocking resistance of the RCS can be advantageously improved. In addition, the RCS can be molded using the RCS. The improvement of the disintegration property in the low-temperature region of the mold obtained in this way can be advantageously achieved.
  • a coating of a binder made of the resin composition for a shell mold according to the present invention is applied.
  • a mold is used.
  • the curing rate of the mold to be molded can be effectively increased, so that the handling property can be effectively improved in the molding of a mold using such RCS. Since there is no need to change the molding temperature and molding time in order to obtain the desired mold characteristics, the molding workability can be advantageously improved.
  • the phenol resin to be contained as the resin caking component is, as is well known, an acidic catalyst or a basic compound of phenols and aldehydes.
  • Solid or liquid condensation products obtained by reacting in the presence of a catalyst (including those in the form of varnish and emulsion), novolak type or resole depending on the type of catalyst used It is called a mold, and is a phenol resin that exhibits thermosetting properties by heating in the presence or absence of a predetermined curing agent or curing catalyst.
  • the phenols used as raw materials for such phenol resins mean phenol and phenol derivatives.
  • alkylphenols such as cresol, xylenol, p-tert-butylphenol, nonylphenol, etc.
  • Resorcinol, bisphenol F, polyphenols such as bisphenol A and the like, and mixtures thereof can be mentioned, and one of them is used alone or in combination of two or more Will be.
  • aldehydes examples include formalin in the form of an aqueous formaldehyde solution, paraformaldehyde, trioxane, acetaldehyde, paraaldehyde, propionaldehyde, and other known aldehyde compounds as appropriate. Can be used. These aldehydes can be used alone or in combination of two or more.
  • the novolak-type phenol resin used in the present invention is, as is well known, using the above-described phenols and aldehydes, an acidic catalyst, for example, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, It is formed by a condensation reaction with an organic acid such as oxalic acid, paratoluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, or an acidic substance such as zinc oxide, zinc chloride, magnesium oxide, or zinc acetate.
  • an acidic catalyst for example, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, It is formed by a condensation reaction with an organic acid such as oxalic acid, paratoluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, or an acidic substance such as zinc oxide, zinc chloride, magnesium oxide, or zinc acetate.
  • the mixing molar ratio (F / P) of the aldehydes (F) and the phenols (P) is appropriately selected according to the type of the reaction catalyst used, but preferably It will be selected within the range of 0.55 to 0.80.
  • the resol type phenol resin is formed by subjecting the above phenols and aldehydes to a condensation reaction with a known basic catalyst in the same manner as before.
  • a known basic catalyst alkali metal or alkaline earth metal hydroxides such as sodium hydroxide and calcium hydroxide, alkaline earth metal oxides, dimethylamine, triethylamine, butylamine can be used.
  • amines such as dimethylbenzylamine and naphthalenediamine, ammonia, hexamethylenetetramine, and other divalent metal naphthenates and divalent metal hydroxides can be used.
  • the blending molar ratio (F / P) of aldehydes and phenols in such a condensation reaction is appropriately selected according to the type of reaction catalyst used therefor, but generally 1.1 to It will be selected within the range of 4.0.
  • both the novolac type phenol resin and the resol type phenol resin obtained as described above are advantageously used together,
  • a resol type phenolic resin can function as a curing agent for a novolac type phenolic resin, and can also function as a component capable of improving characteristics such as bending strength of a mold.
  • a use ratio within the range of A: B 30: 70 to 70:30, particularly 40:60 to 60:40, is advantageously employed.
  • the use ratio of the resol type phenol resin exceeds 95% by mass with respect to the total amount of the novolac type phenol resin and the resol type phenol resin, Accordingly, when the usage ratio of the novolac type phenol resin is less than 5% by mass, it is difficult to uniformly mix these two types of phenol resins, so that the resin composition for shell mold ( A problem that the strength of the mold as a whole is reduced.
  • the use rate of the resol type phenol resin is less than 5% by mass and the use rate of the novolac type phenol resin exceeds 95% by mass, the novolak cannot be cured with the resol type phenol resin.
  • the amount of phenolic resin increases, and the excess novolac phenolic resin remains uncured, making it difficult to achieve complete curing of the resin composition (binder) for shell molding. There is a risk of inviting.
  • a halogen-free non-halogen phosphate ester is contained together with the above-described phenol resin, where the non-halogen phosphate ester is , It is composed of one or more halogen-free phosphate ester compounds in which no halogen (atom) is bonded in the molecule.
  • a mold is molded using RCS using the resin composition for shell mold as a binder, or a molten metal is cast using the molded mold.
  • halogen compounds are not generated. For this reason, molds and peripheral devices may be corroded by halogen compounds generated by decomposition. Advantages such as not being triggered can be enjoyed.
  • the P (phosphorus element) content is 14% or more, preferably 15% or more, more preferably 18% or more and 30% or less, and
  • the viscosity is 150 mPa ⁇ s / 25 ° C. or higher, preferably 300 mPa ⁇ s / 25 ° C. or higher, more preferably 500 mPa ⁇ s / 25 ° C. or higher, more preferably 800 mPa ⁇ s / 25 ° C. or higher and 3000 mPa ⁇ s / 25 ° C. or lower.
  • P content (%) in the halogen-free phosphate compound is specifically calculated by the following formula.
  • P content (%) [(Atomic weight of phosphorus element in substance ⁇ number of phosphorus elements) / (Molecular weight of the substance)] ⁇ 100
  • non-halogen phosphates having a P content of less than 14% affects the disintegration of the template and causes problems such as an insufficient disintegration rate in the low temperature region. Become.
  • non-halogen phosphates having a viscosity of less than 150 mPa ⁇ s / 25 ° C. are used, the fusion point of RCS is lowered, and RCS blocking is likely to occur, and mold molding is performed. As the curing speed at the time decreases, problems such as deterioration in the workability of molding will be caused.
  • the at least one phosphate ester compound constituting the non-halogen phosphates used in the present invention is preferably an aliphatic condensed phosphate ester, in which an aliphatic condensed phosphate ester is used. Is preferably contained so as to be contained in an amount of 80% by mass or more, more preferably 90% by mass or more of the non-halogen phosphate.
  • the mechanism of the influence on the disintegration property of the template by constituting non-halogen phosphates with aliphatic condensed phosphates as the main component has not yet been elucidated. It has been found that the use of the condensed phosphate ester makes the template disintegration very high especially in the low temperature region (300 to 350 ° C.).
  • an aromatic phosphate ester and an aromatic condensed phosphate ester be used in combination with the aliphatic condensed phosphate ester.
  • the disintegration of the template in a high temperature region 400 ° C. or higher
  • the P content of the non-halogen phosphates is 14% or more and the viscosity is 150 mPa ⁇ s / 25 ° C.
  • the aromatic phosphate ester and the aromatic condensed phosphate ester are used.
  • it can be incorporated as a component of the non-halogen phosphate ester, and the aliphatic phosphate ester is added as a component of the non-halogen phosphate ester.
  • the aromatic phosphate esters, aromatic condensed phosphate esters and aliphatic phosphate esters contain a halogen (atom) in their molecules.
  • the P content (%) is the P content (%) of each phosphate ester compound.
  • Each is obtained as the sum of numerical values obtained by multiplying the blending ratio of each phosphate compound.
  • the viscosity (25 degreeC) of such non-halogen-type phosphate ester which consists of multiple types of phosphate ester compounds will be calculated
  • the aliphatic condensed phosphate ester suitably used in the present invention is an alkyl phosphate having an oligomer form, and specifically includes oligomer ethyl ethylene phosphate, modified oligomer ethyl ethylene phosphate, oligomer ethyl ethylene phosphate as a main component.
  • Such aliphatic condensed phosphate esters are also commercially available, for example, “Fyrol PNX” (manufactured by ICL JAPAN), “Fyrol PNX-LE” ( ICL JAPAN Co., Ltd.), “Fyrol HF-5” (ICL JAPAN Co., Ltd.), etc. will be obtained from the market and used.
  • Such an aliphatic condensed phosphate ester can be conceptually represented by the following formula 1. [Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms, and all R 1 may be the same or different. X represents an alkylene group having 1 to 3 carbon atoms, and n represents an integer of 1 to 10. ]
  • “DAIGUARD-880” manufactured by Daihachi Chemical Industry Co., Ltd.
  • DAIGUARD-880 can be used as aliphatic condensed phosphate esters obtained from the market.
  • aromatic phosphate used in combination with the above aliphatic condensed phosphate ester include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, 2- Ethylhexyl diphenyl phosphate, t-butylphenyl diphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butylphenyl) phosphate, isopropylphenyl diphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropyl Phenyl) phosphate and the like.
  • select commercially available products such as “CR-733S”, “CR-747”, “PX-200”, “CR-741” manufactured by Daihachi Chemical Industry Co., Ltd. Can be used.
  • aliphatic phosphate ester which is a component used together with the aliphatic condensed phosphate ester, specifically, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, methyl diethyl phosphate, methyl dibutyl phosphate, ethyl dibutyl Mention may be made of trialkyl phosphates such as phosphates.
  • the non-halogen phosphates as described above are generally in a ratio of 1 to 50 parts by mass, preferably 2 to 30 parts per 100 parts by mass of the phenol resin. It is used in a mass part, more preferably 3 to 20 parts by mass. If the amount of the non-halogen phosphates used is too small, the characteristic effect of the present invention, in particular, the effect of improving disintegration is not sufficiently obtained, and if the amount used is too large, There is a possibility that the curing speed at the time of mold making may be lowered, and there is a problem that the fusion point of RCS is lowered and blocking is easily caused, and the amount of smoke generated at the time of molding may be increased.
  • non-halogen phosphates can be added during the manufacture of phenolic resins, or non-halogen phosphates can be added after the manufacture of such phenolic resins for the intended shell mold.
  • a non-halogen phosphate ester is added separately from the phenolic resin (shell mold resin composition) to coat the surface of the refractory particles.
  • a method in which non-halogen phosphates are introduced into the binder layer can also be employed.
  • the resin composition for a shell mold according to the present invention may be appropriately blended with various conventionally used additives for the purpose of improving the physical properties of RCS and molds, if necessary.
  • various conventionally used additives for the purpose of improving the physical properties of RCS and molds, if necessary.
  • waxes such as paraffin wax, synthetic polyethylene wax, and montanic acid wax
  • fatty acid amides such as stearic acid amide, oleic acid amide, and erucic acid amide
  • Alkylene fatty acid amides such as acid amide and ethylene bis-stearic acid amide
  • stearic acid, stearyl alcohol, metal stearate, lead stearate, zinc stearate, calcium stearate, magnesium stearate, stearic acid monoglyceride, stearyl stearate, cured Oil or the like can be added.
  • a coupling agent that reinforces the bond between the refractory particles and the shell mold resin composition is also effective to include a coupling agent that reinforces the bond between the refractory particles and the shell mold resin composition.
  • a silane coupling agent, a zircon coupling agent, a titanium coupling agent, or the like is used. I can do it.
  • a release agent paraffin, wax, light oil, machine oil, spindle oil, insulating oil, waste oil, vegetable oil, fatty acid ester, organic acid, fine graphite particles, mica, meteorite, fluorine release agent, silicone release agent Molding agents and the like can also be used.
  • Each of these additives is used in a ratio of about 0.1 to 10 parts by mass, preferably about 0.5 to 5 parts by mass, with respect to 100 parts by mass of the phenol resin.
  • these additives may be added at the time of manufacture of the resin composition for shell molds, or may be added and blended separately from the resin composition for shell molds during the manufacture of RCS.
  • the amount of the resin composition for the shell mold according to the present invention is appropriately determined in consideration of the type of resin used and the required mold strength. In general, it is within the range of about 0.2 to 10 parts by weight, preferably 0.5 to 8 parts by weight, with respect to 100 parts by weight of the refractory particles. More preferably, it is within the range of 1 to 5 parts by mass.
  • refractory particles (aggregate) in which such a resin composition for a shell mold is kneaded conventionally known ones can be appropriately selected and used, and the kind thereof is defined in the present invention. In that case, there is no particular limitation. Since such a refractory particle is used as a base material for a mold, if it is an inorganic refractory particle having a particle size suitable for casting and mold formation (molding), it can be conventionally used. Any known inorganic particles that have been used for shell mold casting can be used.
  • refractory particles examples include olivine sand, zircon sand, chromite sand, alumina sand and other special sand, ferrochrome-based slag and ferronickel-based materials, in addition to commonly used dredged sand.
  • Slag-type particles such as slag and converter slag, mullite-type artificial particles such as Niiga Cera beads (product name: manufactured by ITOCHU CERATECH Co., Ltd.), or regenerated particles recovered and regenerated after casting, etc.
  • it will be used alone or in combination of two or more.
  • the manufacturing method is not particularly limited, and a dry hot coating method, a semi-hot coating method, a cold coating method, Conventionally known methods such as a powder solvent method can be employed.
  • a dry hot coating method such as a whirl mixer or a speed mixer.
  • an aqueous solution of a predetermined curing agent such as hexamethylenetetramine or a curing accelerator is added, and the bulk content is separated into particles by cooling with air, and then steered.
  • Adoption of a so-called dry hot coating method in which calcium phosphate (lubricant) is added is recommended.
  • the timing for kneading the resin binder (phenolic resin) and the curing agent / curing accelerator constituting the shell mold resin composition according to the present invention with the refractory particles is appropriately selected based on the knowledge of those skilled in the art. In addition to being kneaded sequentially, it can be kneaded in an appropriate combination.
  • the target mold is molded under heating in order to heat and cure the RCS.
  • the heating molding method is not particularly limited, and any conventionally known method can be advantageously used.
  • the RCS as described above is filled in a molding die heated to about 150 ° C. to 300 ° C. having a desired shape space for giving a target mold by a gravity dropping method, a blowing method, or the like, and cured. Thereafter, the target casting mold can be obtained by removing the cured mold from the mold. And in the casting_mold
  • each RCS is measured in accordance with JACT test method: C-1 (fusion point test method). That is, a RCS to be measured is quickly sprinkled on a metal rod having a temperature gradient, and a nozzle having a diameter of 1.0 mm that moves along the guide rod at a position 10 cm away from the metal rod 60 seconds later. Then, while air is blown at an air pressure of 0.1 MPa, the nozzle is reciprocated once from the low temperature portion to the high temperature portion of the metal rod to blow off the RCS on the metal rod.
  • JACT test method JACT test method
  • the fusion point (degreeC) of RCS made into the measurement object is calculated
  • a JIS test piece (width: 10 mm ⁇ thickness: 10 mm ⁇ length: 60 mm, firing time: 250 ° C. ⁇ 60 seconds) was prepared from each RCS, and the obtained JIS formula After wrapping the test pieces (5 pieces) in double aluminum foil, they are placed in a drying furnace at a predetermined temperature (300 ° C., 350 ° C. or 400 ° C.) and heated for 30 minutes. Thereafter, the test piece is taken out and cooled to room temperature, and then the bending strength is measured.
  • the collapse rate (%) for each RCS is calculated from the average value of each test piece according to the following formula.
  • Collapse rate (%) [ ⁇ Folding strength at normal temperature ⁇ Folding strength after 30 minutes treatment at a predetermined temperature (300 ° C., 350 ° C. or 400 ° C.) ⁇ ⁇ Bending strength at normal temperature] ⁇ 100
  • Condensed phosphoric acid ester [main component: phenylene bis (phenylcresol phosphate), trade name: CR-733S, manufactured by Daihachi Chemical Industry Co., Ltd.] (P content 10.9%, viscosity 600 mPa ⁇ s / 25 ° C.) was added to obtain 945 parts of a novolak type phenol resin A10.
  • BPDP t-butylphenyldiphenyl phosphate
  • -Resin production example 15- A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Thereafter, the reaction solution was heated to 90 ° C. and dehydrated under reduced pressure, and then 78 parts of an aliphatic condensed phosphate ester (trade name: Fyrol HF-5, manufactured by ICL JAPAN Co., Ltd.) was added to form a resol type phenol resin. 778 parts of B2 were obtained.
  • an aliphatic condensed phosphate ester trade name: Fyrol HF-5, manufactured by ICL JAPAN Co., Ltd.
  • -Resin production example 20- A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Thereafter, the reaction solution was heated to 90 ° C. and dehydrated under reduced pressure, and then an aromatic condensed phosphate ester [main component: phenylene bis (phenylcresol phosphenoate), trade name: CR-733S, Daihachi Chemical Industry, Ltd. 78 parts by product] was added to obtain 778 parts of resol type phenol resin B7.
  • main component phenylene bis (phenylcresol phosphenoate), trade name: CR-733S, Daihachi Chemical Industry, Ltd. 78 parts by product
  • -Resin production example 21- A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Thereafter, the reaction solution was dehydrated under reduced pressure while being heated to 90 ° C., and then 78 parts of aromatic phosphate t-butylphenyldiphenyl phosphate (BPDP) was added to obtain 778 parts of resol type phenol resin B8. It was.
  • BPDP aromatic phosphate t-butylphenyldiphenyl phosphate
  • Example 9 to Example 13- In the same manner as in Example 1, except that 52.5 parts of the novolak type phenolic resin A1 and 52.5 parts of each of the novolak type phenolic resins A2 to A6 were used, the RCS 9 to 13 were used. Respectively. The obtained RCSs 9 to 13 were used to measure the fusion point, the bend (300 gf) amount, and the disintegration rate, respectively. The results obtained are shown in Table 2 below.
  • Example 14 to Example 18 7000 parts of fresh sand (Australian natural cinnabar, trade name: Flattery) heated to 150 ° C., 52.5 parts of the above novolac type phenol resins A2 to A6 and 52.5 parts of the above resol type phenol resins B2 to B6 And knead until the sand is separated into individual particles with a speed mixer, add 7 parts of calcium stearate (manufactured by Nippon Oil & Fats Co., Ltd.) and mix for 15 seconds. By discharging, RCS14 to 18 were obtained. Then, using the obtained RCSs 14 to 18, measurement of the fusion point, measurement of the bend (300 gf) amount and measurement of the collapse rate were performed, and the obtained results are shown in Table 2 and Table 2 below. 3 shows.
  • Example 19 to Example 23- 26.25 parts of novolac type phenol resin A1, 26.25 parts of each of novolac type phenol resins A2 to A6, 26.25 parts of resol type phenol resin B1, and resol type phenol resin B2 RCS 19 to 23 were obtained in the same manner as in Example 14 except that 26.25 parts of each of B6 to B6 were used.
  • the obtained RCSs 19 to 23 were measured for the fusion point, the bend (300 gf) and the collapse rate, respectively, and the obtained results are shown in Table 3 below.
  • RCS 24 to 28 were obtained in the same manner as in Example 1 except that the novolak type phenol resin A2 was replaced with the novolak type phenol resins A1 and A10 to A13 in Example 1.
  • the obtained RCSs 24 to 28 were measured for the fusion point, the bend (300 gf) and the collapse rate, respectively, and the obtained results are shown in Table 4 below.
  • Example 14 Comparative Example 6 to Comparative Example 8-
  • Example 14 except that the novolak-type phenol resin A2 was replaced with the novolak-type phenol resin A1, A10, or A11 and the resol-type phenol resin B2 was replaced with the resol-type phenol resin B1, B7, or B8, and Example 14 Similarly, RCS29 to 31 were obtained. The obtained RCSs 29 to 31 were measured for the fusion point, the bend (300 gf) and the collapse rate, respectively, and the obtained results are shown in Table 4 below.

Abstract

Provided is a resin composition for shell molding, which is capable of advantageously improving the blocking resistance of RCS by heightening the fusing point of the RCS, while improving the disintegratability of a mold in a low temperature range. Also provided is RCS which is obtained using this resin composition for shell molding and has excellent mold formability and casting workability. A resin composition for shell molding, which contains a phenolic resin as a resin binder component, and which additionally contains a non-halogen phosphoric acid ester that is composed of one or more phosphoric acid ester compounds wherein no halogen atom is bonded in each molecule, while having a P content of 14% or more and a viscosity of 150 mPa·s/25°C or more.

Description

シェルモールド用樹脂組成物及びそれを用いて得られるレジンコーテッドサンドResin composition for shell mold and resin-coated sand obtained using the same
 本発明は、シェルモールド用樹脂組成物及びそれを用いて得られるレジンコーテッドサンドに係り、特に、鋳型の造型に用いられるレジンコーテッドサンドの特性を向上せしめ得るシェルモールド用樹脂組成物と、そのようなシェルモールド用樹脂組成物を用いて得られる、優れた特性を有する鋳型を有利に製造することの出来るレジンコーテッドサンドに関するものである。 The present invention relates to a resin composition for a shell mold and a resin coated sand obtained using the same, and more particularly to a resin composition for a shell mold capable of improving the properties of a resin coated sand used for molding a mold. The present invention relates to a resin-coated sand that can be advantageously produced by using a mold resin composition for shell molds and having excellent properties.
 従来から、シェルモールド法においては、フェノール樹脂を樹脂粘結成分(バインダ成分)として含有するフェノール樹脂組成物を、粘結剤として用いて、それと耐火性粒子(骨材/鋳物砂)とを混練せしめることにより、かかる耐火性粒子の表面に粘結剤層を形成してなるレジンコーテッドサンド(RCS)を得た後、所望の形状に造型してなるシェルモールド鋳型が、一般的に使用されて来ている。 Conventionally, in the shell mold method, a phenol resin composition containing a phenol resin as a resin binder (binder component) is used as a binder and kneaded with refractory particles (aggregate / foundry sand). In general, a shell mold mold obtained by forming a resin-coated sand (RCS) formed by forming a binder layer on the surface of such a refractory particle and then molding it into a desired shape is generally used. It is coming.
 そして、この種の鋳型においては、金属溶湯を鋳込んだ後、鋳造された鋳物を鋳型から取り出し易くする等のために、そのような鋳造作業の後の鋳型の崩壊が容易に為され得るように、従来から各種の対策が講じられてきており、例えば、特開平11-244990号公報(特許文献1)においては、フェノール樹脂に、リン酸エステル類、酸化剤及び有機カルボン酸金属類を配合して調製される粘結剤にて、砂粒の表面を被覆して得られる鋳型用RCSが、明らかにされている。そして、そこでは、リン酸エステル類として、トリブチルフォスフェートを用いて、粘結剤を調製して、目的とする鋳型用RCSが製造されることが明らかにされているのであるが、そのようなRCSを用いて得られた鋳型には、350℃よりも低い低温領域での崩壊率が低く、また鋳型の造型に際しての硬化速度が遅く、更にRCSの耐ブロッキング性が充分でない等という問題が内在している。 In this type of mold, after casting the molten metal, the mold can be easily collapsed after such a casting operation in order to facilitate removal of the cast product from the mold. In addition, various countermeasures have been conventionally taken. For example, in JP-A-11-244990 (Patent Document 1), a phenolic ester, an oxidizing agent, and an organic carboxylic acid metal are blended in a phenol resin. An RCS for a mold obtained by coating the surface of sand grains with a binder prepared as described above has been clarified. And it is clarified that the target RCS for molds is produced by preparing a binder using tributyl phosphate as a phosphate ester. The mold obtained using RCS has problems such as a low decay rate in a low temperature region lower than 350 ° C., a slow curing rate when molding the mold, and insufficient blocking resistance of RCS. is doing.
 また、特開2007-275988号公報(特許文献2)においては、フェノール樹脂及び芳香族縮合リン酸エステルを含むシェルモールド用樹脂組成物が明らかにされ、そのような樹脂組成物を用いて得られたRCSにて造型された鋳型は、鋳込み後の鋳型の崩壊性が改善されるとされている。しかしながら、そのような鋳型にあっても、350℃よりも低い低温領域での崩壊率が低いという問題があり、またRCSの融着点が低いために、RCSのブロッキングが惹起され易くなる問題があり、更に鋳型造型時の硬化速度が遅く、造型作業性に問題を生じる恐れを内在するものであった。 Japanese Patent Application Laid-Open No. 2007-275988 (Patent Document 2) discloses a resin composition for a shell mold containing a phenol resin and an aromatic condensed phosphate, and is obtained using such a resin composition. It is said that the mold collapsed by RCS is improved in mold disintegration after casting. However, even in such a mold, there is a problem that the decay rate in a low temperature region lower than 350 ° C. is low, and since the fusion point of RCS is low, blocking of RCS is likely to be caused. In addition, the curing speed at the time of mold making is slow, and there is a risk of causing problems in molding workability.
特開平11-244990号公報Japanese Patent Laid-Open No. 11-244990 特開2007-275988号公報JP 2007-275988 A
 ここにおいて、本発明は、かくの如き事情を背景にして為されたものであって、その解決課題とするところは、低温領域での鋳型の崩壊性の向上を図りつつ、RCSの融着点を高めて、耐ブロッキング性を有利に改善し得るシェルモールド用樹脂組成物を提供することにあり、また、そのようなシェルモールド用樹脂組成物を用いて、鋳型の造型作業性や鋳物の鋳造作業性に優れたRCSを提供することにある。 Here, the present invention has been made in the background of such circumstances, and the problem to be solved is to improve the mold disintegration property in a low temperature region and to fix the fusion point of RCS. Is to provide a resin composition for a shell mold that can advantageously improve the blocking resistance. Also, by using such a resin composition for a shell mold, mold molding workability and casting of a casting The object is to provide an RCS with excellent workability.
 そして、本発明者が、上述せる如き課題の解決を図るべく、シェルモールド用樹脂組成物について鋭意検討を重ねた結果、フェノール樹脂に対して、分子中にハロゲンを結合含有せず、且つ特定のP含有量と特定の粘度を有する非ハロゲン系リン酸エステル類を組み合わせて、シェルモールド用樹脂組成物を構成することにより、そのような樹脂組成物を粘結剤として用いて得られるRCSの融着点が、効果的に高められ得ると共に、そのようなRCSを用いて得られた鋳型の低温領域での崩壊性が、有利に高められ得ることを見出し、本発明を完成するに至ったのである。 And as a result of intensive studies on the resin composition for shell mold in order to solve the problems as described above, the present inventor has found that the phenol resin does not contain a halogen in the molecule and has a specific content. By combining a P content and a non-halogen phosphate having a specific viscosity to constitute a resin composition for shell molds, the melt of RCS obtained using such a resin composition as a binder is used. Since the landing point can be effectively increased and the disintegration property in the low temperature region of the mold obtained using such RCS can be advantageously increased, the present invention has been completed. is there.
 すなわち、本発明は、上記した知見に基づいて完成されたものであって、その要旨とするところは、フェノール樹脂を樹脂粘結成分として含有するシェルモールド用樹脂組成物において、分子中にハロゲンを結合含有しないリン酸エステル化合物の1種又は2種以上からなり、且つP含有量が14%以上であり、粘度が150mPa・s/25℃以上である非ハロゲン系リン酸エステル類を、更に含有せしめてなることを特徴とするシェルモールド用樹脂組成物にある。 That is, the present invention has been completed based on the above-described knowledge, and the gist of the present invention is that in a resin composition for a shell mold containing a phenol resin as a resin caking component, halogen is contained in the molecule. Non-halogen phosphates comprising one or more phosphate ester compounds that do not contain a bond, a P content of 14% or more, and a viscosity of 150 mPa · s / 25 ° C. or more The resin composition for shell molds is characterized by being caulked.
 なお、このような本発明に従うシェルモールド用樹脂組成物の望ましい態様の一つによれば、前記リン酸エステル化合物の少なくとも1種が、脂肪族縮合リン酸エステルである構成が採用されることとなる。 In addition, according to one of the desirable embodiments of the resin composition for a shell mold according to the present invention, a configuration in which at least one of the phosphate ester compounds is an aliphatic condensed phosphate ester is adopted. Become.
 また、本発明の他の望ましい態様によれば、前記非ハロゲン系リン酸エステル類が、80質量%以上の脂肪族縮合リン酸エステルと20質量%以下の芳香族リン酸エステル及び/又は芳香族縮合リン酸エステルとから構成されている。 Further, according to another desirable aspect of the present invention, the non-halogen phosphates are 80% by mass or more of aliphatic condensed phosphates and 20% by mass or less of aromatic phosphates and / or aromatics. Condensed phosphate ester.
 さらに、本発明に従うシェルモールド用樹脂組成物は、望ましくは、前記フェノール樹脂の100質量部に対して、前記非ハロゲン系リン酸エステル類が、1~50質量部の割合で含有せしめられている。 Furthermore, the resin composition for a shell mold according to the present invention desirably contains the non-halogen phosphate in a proportion of 1 to 50 parts by mass with respect to 100 parts by mass of the phenol resin. .
 そして、本発明にあっては、前記フェノール樹脂として、ノボラック型フェノール樹脂及び/又はレゾール型フェノール樹脂が有利に用いられ、またそこで、ノボラック型フェノール樹脂とレゾール型フェノール樹脂とが併用される場合においては、ノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)との使用比率が、質量基準にて、A:B=95:5~5:95となるように構成されることとなる。 In the present invention, as the phenol resin, a novolac type phenol resin and / or a resol type phenol resin is advantageously used, and there is a case where the novolac type phenol resin and the resol type phenol resin are used in combination. Is configured such that the use ratio of the novolac type phenol resin (A) to the resol type phenol resin (B) is A: B = 95: 5 to 5:95 on a mass basis.
 なお、本発明にあっては、上述せる如きシェルモールド用樹脂組成物を粘結剤として用いて、耐火性骨材の表面を、かかる粘結剤の層にて被覆せしめてなることを特徴とするレジンコーテッドサンド(RCS)をも、その対象としている。 In the present invention, the shell mold resin composition as described above is used as a binder, and the surface of the refractory aggregate is covered with the binder layer. Resin coated sand (RCS) is also targeted.
 また、そのようなRCSにおいては、その粘結剤層に、望ましくは、滑剤が含有せしめられ、及び/又は、シランカップリング剤が含有せしめられることとなる。 Further, in such RCS, the binder layer desirably contains a lubricant and / or a silane coupling agent.
 このように、本発明に従うシェルモールド用樹脂組成物にあっては、所定のフェノール樹脂と共に、ハロゲン不含のリン酸エステル化合物の少なくとも1種からなり、且つ特定のP含有量と特定の粘度を有する非ハロゲン系リン酸エステル類が、含有せしめられていることにより、そのような樹脂組成物を粘結剤として用いて、RCSを製造する際に、その得られるRCSから造型される鋳型の強度を低下させることなく、かかるRCSの融着点を効果的に高め得て、そのようなRCSの耐ブロッキング性を有利に向上せしめ得たのであり、加えて、そのようなRCSを用いて造型して得られた鋳型の低温領域での崩壊性の向上をも、有利に図り得ることとなったのである。 Thus, in the resin composition for a shell mold according to the present invention, it is composed of at least one of a halogen-free phosphate ester compound together with a predetermined phenol resin, and has a specific P content and a specific viscosity. Since the non-halogen phosphate ester is contained, when the RCS is produced using such a resin composition as a binder, the strength of the mold formed from the obtained RCS The RCS fusion point can be effectively increased without lowering the RCS, and the blocking resistance of the RCS can be advantageously improved. In addition, the RCS can be molded using the RCS. The improvement of the disintegration property in the low-temperature region of the mold obtained in this way can be advantageously achieved.
 しかも、本発明に従うシェルモールド用樹脂組成物からなる粘結剤の被覆が施されてなる、換言すれば、かかる粘結剤層が耐火性粒子の表面に形成されてなるRCSを用いて、鋳型を造型するに際して、その造型される鋳型の硬化速度も効果的に高められ得ることとなるところから、そのようなRCSを用いた鋳型の造型においてハンドリング性が効果的に向上せしめられ、従って鋳型の造型温度や造型時間を、目的とする鋳型特性を得るべく種々変化させる必要もないところから、造型の作業性も有利に高められ得ることとなるのである。 Moreover, a coating of a binder made of the resin composition for a shell mold according to the present invention is applied. In other words, using RCS in which such a binder layer is formed on the surface of the refractory particles, a mold is used. When molding a mold, the curing rate of the mold to be molded can be effectively increased, so that the handling property can be effectively improved in the molding of a mold using such RCS. Since there is no need to change the molding temperature and molding time in order to obtain the desired mold characteristics, the molding workability can be advantageously improved.
 ところで、本発明に従うシェルモールド用樹脂組成物において、その樹脂粘結成分(バインダ成分)として含有せしめられるフェノール樹脂は、よく知られているように、フェノール類とアルデヒド類とを酸性触媒又は塩基性触媒の存在下において反応させることにより得られる固体状乃至は液体状(ワニス形態のものやエマルジョン形態のものを含む)の縮合生成物であって、そこで用いられる触媒の種類によって、ノボラック型又はレゾール型と称されるものであり、所定の硬化剤乃至は硬化触媒の存在下又は非存在下において加熱することにより、熱硬化性を発現するフェノール樹脂である。 By the way, in the resin composition for a shell mold according to the present invention, the phenol resin to be contained as the resin caking component (binder component) is, as is well known, an acidic catalyst or a basic compound of phenols and aldehydes. Solid or liquid condensation products obtained by reacting in the presence of a catalyst (including those in the form of varnish and emulsion), novolak type or resole depending on the type of catalyst used It is called a mold, and is a phenol resin that exhibits thermosetting properties by heating in the presence or absence of a predetermined curing agent or curing catalyst.
 なお、そのようなフェノール樹脂の原料として用いられるフェノール類は、フェノール及びフェノールの誘導体を意味するものであって、例えば、フェノールの他に、クレゾール、キシレノール、p-tert-ブチルフェノール、ノニルフェノール等のアルキルフェノール、レゾルシノール、ビスフェノールF、ビスフェノールA等の多価フェノール及びそれらの混合物等の公知のものを挙げることが出来、そして、それらの内の1種が単独で、或いは2種以上が組み合わされて、用いられることとなる。 The phenols used as raw materials for such phenol resins mean phenol and phenol derivatives. For example, in addition to phenol, alkylphenols such as cresol, xylenol, p-tert-butylphenol, nonylphenol, etc. , Resorcinol, bisphenol F, polyphenols such as bisphenol A and the like, and mixtures thereof can be mentioned, and one of them is used alone or in combination of two or more Will be.
 また、アルデヒド類としては、例えば、ホルムアルデヒドの水溶液の形態であるホルマリンの他、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、パラアルデヒド、プロピオンアルデヒド等を挙げることが出来、更にそれら以外の公知のアルデヒド化合物も適宜に用いることが出来る。そして、それらアルデヒド類は、単独で用いられても、2種以上を組み合わせて用いられても、何等差支えない。 Examples of aldehydes include formalin in the form of an aqueous formaldehyde solution, paraformaldehyde, trioxane, acetaldehyde, paraaldehyde, propionaldehyde, and other known aldehyde compounds as appropriate. Can be used. These aldehydes can be used alone or in combination of two or more.
 ここで、本発明において用いられるノボラック型フェノール樹脂は、上記したフェノール類とアルデヒド類とを用いて、よく知られているように、酸性触媒、例えば塩酸、硫酸、リン酸等の無機酸や、シュウ酸、パラトルエンスルホン酸、ベンゼンスルホン酸、キシレンスルホン酸等の有機酸、更には、酸化亜鉛、塩化亜鉛、酸化マグネシウム、酢酸亜鉛等の酸性物質にて縮合反応させて形成されるものである。なお、その際、アルデヒド類(F)とフェノール類(P)の配合モル比(F/P)としては、用いられる反応触媒の種類等に応じて、適宜に選定されるところであるが、好ましくは0.55~0.80の範囲内において選定されることとなる。 Here, the novolak-type phenol resin used in the present invention is, as is well known, using the above-described phenols and aldehydes, an acidic catalyst, for example, an inorganic acid such as hydrochloric acid, sulfuric acid, phosphoric acid, It is formed by a condensation reaction with an organic acid such as oxalic acid, paratoluenesulfonic acid, benzenesulfonic acid, xylenesulfonic acid, or an acidic substance such as zinc oxide, zinc chloride, magnesium oxide, or zinc acetate. . In this case, the mixing molar ratio (F / P) of the aldehydes (F) and the phenols (P) is appropriately selected according to the type of the reaction catalyst used, but preferably It will be selected within the range of 0.55 to 0.80.
 一方、レゾール型フェノール樹脂は、上記のフェノール類とアルデヒド類とを用いて、従来と同様にして、公知の塩基性触媒にて縮合反応せしめることにより、形成されることとなる。なお、塩基性触媒としては、水酸化ナトリウムや水酸化カルシウム等のアルカリ金属又はアルカリ土類金属の水酸化物や、アルカリ土類金属の酸化物を用いることが出来る他、ジメチルアミン、トリエチルアミン、ブチルアミン、ジメチルベンジルアミン、ナフタレンジアミン等のアミン類、アンモニア、ヘキサメチレンテトラミンや、その他2価金属のナフテン酸塩や2価金属の水酸化物等を用いることが出来る。また、そのような縮合反応におけるアルデヒド類とフェノール類の配合モル比(F/P)は、そこで用いられる反応触媒の種類等に応じて、適宜に選定されるところであるが、一般に1.1~4.0の範囲内において選定されることとなる。 On the other hand, the resol type phenol resin is formed by subjecting the above phenols and aldehydes to a condensation reaction with a known basic catalyst in the same manner as before. As the basic catalyst, alkali metal or alkaline earth metal hydroxides such as sodium hydroxide and calcium hydroxide, alkaline earth metal oxides, dimethylamine, triethylamine, butylamine can be used. Further, amines such as dimethylbenzylamine and naphthalenediamine, ammonia, hexamethylenetetramine, and other divalent metal naphthenates and divalent metal hydroxides can be used. Further, the blending molar ratio (F / P) of aldehydes and phenols in such a condensation reaction is appropriately selected according to the type of reaction catalyst used therefor, but generally 1.1 to It will be selected within the range of 4.0.
 そして、本発明に従うシェルモールド用樹脂組成物においては、その樹脂粘結成分として、有利には、上述の如くして得られるノボラック型フェノール樹脂とレゾール型フェノール樹脂の両者が、共に用いられて、そこでは、かかるレゾール型フェノール樹脂が、ノボラック型フェノール樹脂の硬化剤として機能せしめられると共に、鋳型の曲げ強度等の特性を向上せしめ得る成分としても、機能せしめられるようになっている。また、それらノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)との併用に際しては、それらの使用比率が、質量基準にて、A:B=95:5~5:95となるようにすることが望ましく、特にA:B=30:70~70:30、中でも40:60~60:40となる範囲内の使用比率が、有利に採用されることとなる。 And in the resin composition for shell molds according to the present invention, as the resin caking component, both the novolac type phenol resin and the resol type phenol resin obtained as described above are advantageously used together, In this case, such a resol type phenolic resin can function as a curing agent for a novolac type phenolic resin, and can also function as a component capable of improving characteristics such as bending strength of a mold. Further, when the novolac type phenol resin (A) and the resol type phenol resin (B) are used in combination, the use ratio thereof is A: B = 95: 5 to 5:95 on a mass basis. In particular, a use ratio within the range of A: B = 30: 70 to 70:30, particularly 40:60 to 60:40, is advantageously employed.
 なお、それらノボラック型フェノール樹脂とレゾール型フェノール樹脂とを併用する場合において、レゾール型フェノール樹脂の使用比率が、ノボラック型フェノール樹脂とレゾール型フェノール樹脂との合計量に対して95質量%を超え、従ってノボラック型フェノール樹脂の使用比率が5質量%未満となると、それら2種のフェノール樹脂を混合して用いる場合に、それらを均一に混合することが困難となるので、シェルモールド用樹脂組成物(粘結剤)全体としての鋳型の強度が低下する問題が惹起される。また、それとは逆に、レゾール型フェノール樹脂の使用割合が5質量%未満で、ノボラック型フェノール樹脂の使用比率が95質量%を超えるようになると、レゾール型フェノール樹脂にて硬化せしめられ得ないノボラック型フェノール樹脂が多くなり、その余剰のノボラック型フェノール樹脂が硬化せずに残って、シェルモールド用樹脂組成物(粘結剤)の完全な硬化が実現され難くなることによって、硬化速度の不足を招く恐れがある。 In addition, in the case of using these novolac type phenol resin and resol type phenol resin in combination, the use ratio of the resol type phenol resin exceeds 95% by mass with respect to the total amount of the novolac type phenol resin and the resol type phenol resin, Accordingly, when the usage ratio of the novolac type phenol resin is less than 5% by mass, it is difficult to uniformly mix these two types of phenol resins, so that the resin composition for shell mold ( A problem that the strength of the mold as a whole is reduced. On the other hand, if the use rate of the resol type phenol resin is less than 5% by mass and the use rate of the novolac type phenol resin exceeds 95% by mass, the novolak cannot be cured with the resol type phenol resin. The amount of phenolic resin increases, and the excess novolac phenolic resin remains uncured, making it difficult to achieve complete curing of the resin composition (binder) for shell molding. There is a risk of inviting.
 また、本発明に従うシェルモールド用樹脂組成物においては、上記したフェノール樹脂と共に、ハロゲン不含の非ハロゲン系リン酸エステル類が含有せしめられるのであるが、そこにおいて、非ハロゲン系リン酸エステル類は、分子中にハロゲン(原子)が結合含有せしめられていないハロゲン不含のリン酸エステル化合物の1種又は2種以上から構成されることとなる。このような非ハロゲン系リン酸エステル類の採用によって、シェルモールド用樹脂組成物を粘結剤としてなるRCSを用いて鋳型を造型したり、その造型された鋳型を用いて、金属溶湯を鋳込む際に、かかる非ハロゲン系リン酸エステル類が分解されても、ハロゲン化合物を発生することがなく、そのために、分解により発生したハロゲン化合物にて、金型や周辺装置が、腐食される恐れも惹起されることがない等の利点を享受し得るのである。 Moreover, in the resin composition for a shell mold according to the present invention, a halogen-free non-halogen phosphate ester is contained together with the above-described phenol resin, where the non-halogen phosphate ester is , It is composed of one or more halogen-free phosphate ester compounds in which no halogen (atom) is bonded in the molecule. By adopting such non-halogen phosphates, a mold is molded using RCS using the resin composition for shell mold as a binder, or a molten metal is cast using the molded mold. However, even when such non-halogen phosphates are decomposed, halogen compounds are not generated. For this reason, molds and peripheral devices may be corroded by halogen compounds generated by decomposition. Advantages such as not being triggered can be enjoyed.
 そして、本発明にあっては、かかる非ハロゲン系リン酸エステル類の中でも、P(リン元素)含有量が14%以上、好ましくは15%以上、より好ましくは18%以上、30%以下、且つ粘度が150mPa・s/25℃以上、好ましくは300mPa・s/25℃以上、より好ましくは500mPa・s/25℃以上、更に好ましくは800mPa・s/25℃以上、3000mPa・s/25℃以下であるものを用いることが必要である。ここで、ハロゲン不含のリン酸エステル化合物におけるP含有量(%)は、具体的には、下記式により、算出される。
 P含有量(%)=[(物質中のリン元素の原子量×リン元素の個数)
          /(物質の分子量)]×100
In the present invention, among these non-halogen phosphates, the P (phosphorus element) content is 14% or more, preferably 15% or more, more preferably 18% or more and 30% or less, and The viscosity is 150 mPa · s / 25 ° C. or higher, preferably 300 mPa · s / 25 ° C. or higher, more preferably 500 mPa · s / 25 ° C. or higher, more preferably 800 mPa · s / 25 ° C. or higher and 3000 mPa · s / 25 ° C. or lower. It is necessary to use something. Here, the P content (%) in the halogen-free phosphate compound is specifically calculated by the following formula.
P content (%) = [(Atomic weight of phosphorus element in substance × number of phosphorus elements)
/ (Molecular weight of the substance)] × 100
 なお、P含有量が14%未満の非ハロゲン系リン酸エステル類を用いると、鋳型の崩壊性に影響をもたらし、低温領域での崩壊率が不充分となる等の問題が惹起されるようになる。また、粘度が150mPa・s/25℃未満の非ハロゲン系リン酸エステル類を用いた場合にあっては、RCSの融着点が低下して、RCSのブロッキングが惹起され易くなると共に、鋳型造型時の硬化速度が低下するようになって、造型の作業性が悪化する等の問題が惹起されることになる。 It should be noted that the use of non-halogen phosphates having a P content of less than 14% affects the disintegration of the template and causes problems such as an insufficient disintegration rate in the low temperature region. Become. In addition, when non-halogen phosphates having a viscosity of less than 150 mPa · s / 25 ° C. are used, the fusion point of RCS is lowered, and RCS blocking is likely to occur, and mold molding is performed. As the curing speed at the time decreases, problems such as deterioration in the workability of molding will be caused.
 また、かかる本発明において用いられる非ハロゲン系リン酸エステル類を構成する、少なくとも1種のリン酸エステル化合物は、脂肪族縮合リン酸エステルであることが望ましく、そこにおいて、脂肪族縮合リン酸エステルは、好ましくは非ハロゲン系リン酸エステル類の80質量%以上、より好ましくは90質量%以上含まれるように構成されることが望ましい。このように、脂肪族縮合リン酸エステルを主成分として、非ハロゲン系リン酸エステル類を構成することによる、鋳型の崩壊性への影響のメカニズムについては、未だ解明されていないが、かかる脂肪族縮合リン酸エステルを用いることにより、特に、低温領域(300~350℃)での鋳型の崩壊性が非常に高くなることが判明している。 The at least one phosphate ester compound constituting the non-halogen phosphates used in the present invention is preferably an aliphatic condensed phosphate ester, in which an aliphatic condensed phosphate ester is used. Is preferably contained so as to be contained in an amount of 80% by mass or more, more preferably 90% by mass or more of the non-halogen phosphate. As described above, the mechanism of the influence on the disintegration property of the template by constituting non-halogen phosphates with aliphatic condensed phosphates as the main component has not yet been elucidated. It has been found that the use of the condensed phosphate ester makes the template disintegration very high especially in the low temperature region (300 to 350 ° C.).
 しかも、本発明にあっては、上記の脂肪族縮合リン酸エステルと共に、更に、芳香族リン酸エステル及び芳香族縮合リン酸エステルのうちの少なくとも1つを併用することが推奨される。このように、芳香族リン酸エステル及び/又は芳香族縮合リン酸エステルを、脂肪族縮合リン酸エステルと共に含有せしめることによって、高温領域(400℃以上)での鋳型の崩壊性をも有利に高めることが出来るのである。なお、非ハロゲン系リン酸エステル類のP含有量が14%以上であり、且つ粘度が150mPa・s/25℃以上となる特性を有する限りにおいて、芳香族リン酸エステルと芳香族縮合リン酸エステルとを併用して、非ハロゲン系リン酸エステル類の一成分として含有せしめても、何等差し支えなく、更に、脂肪族リン酸エステルを非ハロゲン系リン酸エステル類の一成分として配合、含有せしめることも可能である。ここで、それら芳香族リン酸エステル、芳香族縮合リン酸エステル及び脂肪族リン酸エステルが、何れも、それらの分子中にハロゲン(原子)を結合含有するものでないことは、言うまでもないところである。 In addition, in the present invention, it is recommended that at least one of an aromatic phosphate ester and an aromatic condensed phosphate ester be used in combination with the aliphatic condensed phosphate ester. As described above, by incorporating the aromatic phosphate ester and / or the aromatic condensed phosphate ester together with the aliphatic condensed phosphate ester, the disintegration of the template in a high temperature region (400 ° C. or higher) is also advantageously enhanced. It can be done. As long as the P content of the non-halogen phosphates is 14% or more and the viscosity is 150 mPa · s / 25 ° C. or more, the aromatic phosphate ester and the aromatic condensed phosphate ester are used. In combination with the non-halogen phosphates, it can be incorporated as a component of the non-halogen phosphate ester, and the aliphatic phosphate ester is added as a component of the non-halogen phosphate ester. Is also possible. Here, it goes without saying that none of these aromatic phosphate esters, aromatic condensed phosphate esters and aliphatic phosphate esters contain a halogen (atom) in their molecules.
 このように、非ハロゲン系リン酸エステル類が複数種のリン酸エステル化合物にて構成される場合において、そのP含有量(%)は、各リン酸エステル化合物のP含有量(%)に、それぞれ、各リン酸エステル化合物の配合割合を乗じて得られる数値の和として、求められることとなる。また、そのような複数種のリン酸エステル化合物からなる非ハロゲン系リン酸エステル類の粘度(25℃)は、実際に測定して、求められることとなる。 Thus, in the case where the non-halogen phosphate ester is composed of a plurality of types of phosphate ester compounds, the P content (%) is the P content (%) of each phosphate ester compound. Each is obtained as the sum of numerical values obtained by multiplying the blending ratio of each phosphate compound. Moreover, the viscosity (25 degreeC) of such non-halogen-type phosphate ester which consists of multiple types of phosphate ester compounds will be calculated | required by actually measuring.
 ところで、本発明において好適に用いられる脂肪族縮合リン酸エステルは、オリゴマー形態を呈するアルキルホスフェートであって、具体的には、オリゴマーエチルエチレンホスフェート、変性オリゴマーエチルエチレンホスフェート、オリゴマーエチルエチレンホスフェートを主成分とする配合物等を挙げることが出来、また、そのような脂肪族縮合リン酸エステルは市販もされており、例えば、「Fyrol PNX」(ICL JAPAN株式会社製)、「Fyrol PNX-LE」(ICL JAPAN株式会社製)、「Fyrol HF-5」(ICL JAPAN株式会社製)等が、市場から入手されて、用いられることとなる。なお、そのような脂肪族縮合リン酸エステルを、下記式1にて概念的に示すことも可能である。
Figure JPOXMLDOC01-appb-C000001
[但し、式中、R1 は、炭素数が1~4のアルキル基を示し、全てのR1 が同一であっても、異なっていてもよい。Xは、炭素数が1~3のアルキレン基を示し、nは、1~10の整数を表す。]
 また、その他、市場から入手されて、脂肪族縮合リン酸エステルとして用いられ得るものとして、「DAIGUARD-880」(大八化学工業株式会社製)等を挙げることが出来る。
By the way, the aliphatic condensed phosphate ester suitably used in the present invention is an alkyl phosphate having an oligomer form, and specifically includes oligomer ethyl ethylene phosphate, modified oligomer ethyl ethylene phosphate, oligomer ethyl ethylene phosphate as a main component. Such aliphatic condensed phosphate esters are also commercially available, for example, “Fyrol PNX” (manufactured by ICL JAPAN), “Fyrol PNX-LE” ( ICL JAPAN Co., Ltd.), “Fyrol HF-5” (ICL JAPAN Co., Ltd.), etc. will be obtained from the market and used. Such an aliphatic condensed phosphate ester can be conceptually represented by the following formula 1.
Figure JPOXMLDOC01-appb-C000001
[Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms, and all R 1 may be the same or different. X represents an alkylene group having 1 to 3 carbon atoms, and n represents an integer of 1 to 10. ]
In addition, “DAIGUARD-880” (manufactured by Daihachi Chemical Industry Co., Ltd.) and the like can be used as aliphatic condensed phosphate esters obtained from the market.
 また、上述の如き脂肪族縮合リン酸エステルと組み合わせて用いられる芳香族リン酸エステルとしては、具体的には、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート等を挙げることが出来る。更に、芳香族縮合リン酸エステルとしては、具体的には、フェニレンビス(フェニルクレゾールホスフェノート)、2,2-ビス{4-[ビス((モノ又はジ)メチルフェノキシ)ホスホリルオキシ]フェニル}プロパン、1,3-フェニレンビス(ジキシレニル)ホスフェート、α-ジフェノキシホスホリル-ω-フェノキシポリ(n=1~3)[オキシ-1,4-フェニレンイソプロピリデン-1,4-フェニレンオキシ(フェノキシホスホリル)]等を挙げることが出来、市場においては、大八化学工業株式会社製の「CR-733S」、「CR-747」、「PX-200」、「CR-741」等の市販品を選択して用いることが出来る。 Specific examples of the aromatic phosphate used in combination with the above aliphatic condensed phosphate ester include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, 2- Ethylhexyl diphenyl phosphate, t-butylphenyl diphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butylphenyl) phosphate, isopropylphenyl diphenyl phosphate, bis- (isopropylphenyl) diphenyl phosphate, tris- (isopropyl Phenyl) phosphate and the like. Further, as the aromatic condensed phosphate ester, specifically, phenylene bis (phenylcresol phosphenato), 2,2-bis {4- [bis ((mono or di) methylphenoxy) phosphoryloxy] phenyl} Propane, 1,3-phenylenebis (dixylenyl) phosphate, α-diphenoxyphosphoryl-ω-phenoxypoly (n = 1-3) [oxy-1,4-phenyleneisopropylidene-1,4-phenyleneoxy (phenoxyphosphoryl) In the market, select commercially available products such as “CR-733S”, “CR-747”, “PX-200”, “CR-741” manufactured by Daihachi Chemical Industry Co., Ltd. Can be used.
 さらに、脂肪族縮合リン酸エステルと併用される成分たる脂肪族リン酸エステルとしては、具体的には、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、メチルジエチルホスフェート、メチルジブチルホスフェート、エチルジブチルホスフェート等のトリアルキルホスフェートを挙げることが出来る。 Furthermore, as the aliphatic phosphate ester which is a component used together with the aliphatic condensed phosphate ester, specifically, trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, methyl diethyl phosphate, methyl dibutyl phosphate, ethyl dibutyl Mention may be made of trialkyl phosphates such as phosphates.
 そして、本発明に従うシェルモールド用樹脂組成物において、上述の如き非ハロゲン系リン酸エステル類は、フェノール樹脂の100質量部に対して、一般に1~50質量部の割合において、好ましくは2~30質量部、より好ましくは3~20質量部の割合において用いられることとなる。なお、この非ハロゲン系リン酸エステル類の使用量が少なくなり過ぎると、本発明の特徴的な効果、特に崩壊性の向上効果が充分に得られ難く、またその使用量が多くなり過ぎると、鋳型造型時の硬化速度が低下する恐れがある他、RCSの融着点が低下して、ブロッキングが惹起され易くなる問題があり、また造型時に発生する煙量が増える恐れも生じるようになる。 In the resin composition for a shell mold according to the present invention, the non-halogen phosphates as described above are generally in a ratio of 1 to 50 parts by mass, preferably 2 to 30 parts per 100 parts by mass of the phenol resin. It is used in a mass part, more preferably 3 to 20 parts by mass. If the amount of the non-halogen phosphates used is too small, the characteristic effect of the present invention, in particular, the effect of improving disintegration is not sufficiently obtained, and if the amount used is too large, There is a possibility that the curing speed at the time of mold making may be lowered, and there is a problem that the fusion point of RCS is lowered and blocking is easily caused, and the amount of smoke generated at the time of molding may be increased.
 なお、本発明に従うシェルモールド用樹脂組成物を得るために、上記した非ハロゲン系リン酸エステル類をフェノール樹脂に対して添加する方法としては、当業者の知識に基づいて、各種の添加方式が採用され得るところであり、例えばフェノール樹脂の製造時に、非ハロゲン系リン酸エステル類を添加したり、かかるフェノール樹脂の製造後に、非ハロゲン系リン酸エステル類を添加して、目的とするシェルモールド用樹脂組成物とする方式の他、RCSの製造時において、フェノール樹脂(シェルモールド用樹脂組成物)とは別個に、非ハロゲン系リン酸エステル類を添加して、耐火性粒子表面を被覆する粘結剤層中に非ハロゲン系リン酸エステル類を導入せしめるようにした方式も、採用可能である。 In addition, in order to obtain the resin composition for a shell mold according to the present invention, as a method of adding the above-mentioned non-halogen phosphates to a phenol resin, there are various addition methods based on the knowledge of those skilled in the art. For example, non-halogen phosphates can be added during the manufacture of phenolic resins, or non-halogen phosphates can be added after the manufacture of such phenolic resins for the intended shell mold. In addition to the method of using a resin composition, during the production of RCS, a non-halogen phosphate ester is added separately from the phenolic resin (shell mold resin composition) to coat the surface of the refractory particles. A method in which non-halogen phosphates are introduced into the binder layer can also be employed.
 さらに、本発明に従うシェルモールド用樹脂組成物には、必要に応じて、RCSや鋳型の物性改善等を目的として、従来より一般的に用いられている各種の添加剤も、適宜に配合せしめることが可能である。例えば、RCSの流動性の向上等に寄与する滑剤として、パラフィンワックス、合成ポリエチレンワックス、モンタン酸ワックス等のワックス類;ステアリン酸アマイド、オレイン酸アマイド、エルカ酸アマイド等の脂肪酸アマイド類;メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等のアルキレン脂肪酸アマイド類;ステアリン酸、ステアリルアルコール、ステアリン酸金属塩、ステアリン酸鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等を添加することが可能である。また、耐火性粒子とシェルモールド用樹脂組成物との結合を強化するカップリング剤を含有せしめることも有効であり、例えば、シランカップリング剤、ジルコンカップリング剤、チタンカップリング剤等を用いることが出来る。加えて、離型剤として、パラフィン、ワックス、軽油、マシン油、スピンドル油、絶縁油、廃油、植物油、脂肪酸エステル、有機酸、黒鉛微粒子、雲母、蛭石、フッ素系離型剤、シリコーン系離型剤等も使用可能である。そして、これらの添加剤は、それぞれ、フェノール樹脂の100質量部に対して、0.1~10質量部程度、好ましくは0.5~5質量部程度の割合において用いられることとなる。なお、これらの添加剤は、シェルモールド用樹脂組成物の製造時に添加されてもよく、またRCSの製造時に、シェルモールド用樹脂組成物とは別個に添加配合されても、何等差し支えない。 Furthermore, the resin composition for a shell mold according to the present invention may be appropriately blended with various conventionally used additives for the purpose of improving the physical properties of RCS and molds, if necessary. Is possible. For example, as lubricants that contribute to improving the fluidity of RCS, waxes such as paraffin wax, synthetic polyethylene wax, and montanic acid wax; fatty acid amides such as stearic acid amide, oleic acid amide, and erucic acid amide; Alkylene fatty acid amides such as acid amide and ethylene bis-stearic acid amide; stearic acid, stearyl alcohol, metal stearate, lead stearate, zinc stearate, calcium stearate, magnesium stearate, stearic acid monoglyceride, stearyl stearate, cured Oil or the like can be added. It is also effective to include a coupling agent that reinforces the bond between the refractory particles and the shell mold resin composition. For example, a silane coupling agent, a zircon coupling agent, a titanium coupling agent, or the like is used. I can do it. In addition, as a release agent, paraffin, wax, light oil, machine oil, spindle oil, insulating oil, waste oil, vegetable oil, fatty acid ester, organic acid, fine graphite particles, mica, meteorite, fluorine release agent, silicone release agent Molding agents and the like can also be used. Each of these additives is used in a ratio of about 0.1 to 10 parts by mass, preferably about 0.5 to 5 parts by mass, with respect to 100 parts by mass of the phenol resin. In addition, these additives may be added at the time of manufacture of the resin composition for shell molds, or may be added and blended separately from the resin composition for shell molds during the manufacture of RCS.
 ところで、上述せる如きシェルモールド用樹脂組成物を用いて、シェルモールド用RCSを製造するに際しては、所定の耐火性粒子(骨材)に対して、かかるシェルモールド用樹脂組成物が、常法に従って混練せしめられることとなる。なお、そこにおいて、本発明に従うシェルモールド用樹脂組成物の配合量としては、使用する樹脂の種類や要求される鋳型の強度等を考慮して、適宜に決定されるものであるところから、一義的に規定され得るものではないが、一般的には、耐火性粒子の100質量部に対して、0.2~10質量部程度の範囲内であり、好ましくは0.5~8質量部、更に好ましくは1~5質量部の範囲内とされることとなる。 By the way, when manufacturing RCS for shell molds using the resin composition for shell molds as described above, such a resin composition for shell molds is applied to a predetermined refractory particle (aggregate) according to a conventional method. It will be kneaded. It should be noted that the amount of the resin composition for the shell mold according to the present invention is appropriately determined in consideration of the type of resin used and the required mold strength. In general, it is within the range of about 0.2 to 10 parts by weight, preferably 0.5 to 8 parts by weight, with respect to 100 parts by weight of the refractory particles. More preferably, it is within the range of 1 to 5 parts by mass.
 また、そのようなシェルモールド用樹脂組成物が混練せしめられる耐火性粒子(骨材)としては、従来から公知のものが適宜に選択されて用いられ得るところであって、その種類は、本発明にあっては、特に限定されるものではない。そのような耐火性粒子は、鋳型の基材を為すものであるところから、鋳造に耐え得る耐火性と鋳型形成(造型)に適した粒径を有する無機の耐火性粒子であれば、従来からシェルモールド鋳造に用いられてきた公知の無機粒子が、何れも用いられ得るものである。そして、そのような耐火性粒子としては、例えば、一般的によく用いられている硅砂の他にも、オリビンサンドやジルコンサンド、クロマイトサンド、アルミナサンド等の特殊砂、フェロクロム系スラグやフェロニッケル系スラグ、転炉スラグ等のスラグ系粒子、ナイガイセラビーズ(商品名:伊藤忠セラテック株式会社製)のようなムライト系人工粒子、或いは、これらを鋳造後に回収・再生した再生粒子等が挙げられ、これらが、単独で、或いは2種以上が組み合わされて、用いられることとなる。 In addition, as the refractory particles (aggregate) in which such a resin composition for a shell mold is kneaded, conventionally known ones can be appropriately selected and used, and the kind thereof is defined in the present invention. In that case, there is no particular limitation. Since such a refractory particle is used as a base material for a mold, if it is an inorganic refractory particle having a particle size suitable for casting and mold formation (molding), it can be conventionally used. Any known inorganic particles that have been used for shell mold casting can be used. Examples of such refractory particles include olivine sand, zircon sand, chromite sand, alumina sand and other special sand, ferrochrome-based slag and ferronickel-based materials, in addition to commonly used dredged sand. Slag-type particles such as slag and converter slag, mullite-type artificial particles such as Niiga Cera beads (product name: manufactured by ITOCHU CERATECH Co., Ltd.), or regenerated particles recovered and regenerated after casting, etc. However, it will be used alone or in combination of two or more.
 そして、本発明に従うシェルモールド用樹脂組成物を用いて、目的とするRCSを製造するに際して、その製造方法は、特に限定されるものではなく、ドライホットコート法やセミホットコート法、コールドコート法、粉末溶剤法等の、従来から公知の方法が、何れも採用され得るところであるが、本発明にあっては、特に、ワールミキサやスピードミキサ等の混練機内で、予熱された耐火性粒子とシェルモールド用樹脂組成物(樹脂粘結成分)とを混練した後、ヘキサメチレンテトラミン等の所定の硬化剤や硬化促進剤の水溶液を加えると共に、送風冷却によって塊状内容物を粒状に分離させ、次いで、ステアリン酸カルシウム(滑剤)を加える、所謂ドライホットコート法の採用が、推奨される。なお、本発明に従うシェルモールド用樹脂組成物を構成する樹脂粘結成分(フェノール樹脂)や硬化剤/硬化促進剤を、耐火性粒子と混練せしめるタイミングは、当業者の知識に基づいて適宜に選定され得るところであって、単独に、順次混練せしめられる他、適宜に組み合わせて、混練することも可能である。 And when manufacturing the target RCS using the resin composition for a shell mold according to the present invention, the manufacturing method is not particularly limited, and a dry hot coating method, a semi-hot coating method, a cold coating method, Conventionally known methods such as a powder solvent method can be employed. In the present invention, in particular, preheated refractory particles and shell molds in a kneader such as a whirl mixer or a speed mixer. After kneading the resin composition for resin (resin binding component), an aqueous solution of a predetermined curing agent such as hexamethylenetetramine or a curing accelerator is added, and the bulk content is separated into particles by cooling with air, and then steered. Adoption of a so-called dry hot coating method in which calcium phosphate (lubricant) is added is recommended. The timing for kneading the resin binder (phenolic resin) and the curing agent / curing accelerator constituting the shell mold resin composition according to the present invention with the refractory particles is appropriately selected based on the knowledge of those skilled in the art. In addition to being kneaded sequentially, it can be kneaded in an appropriate combination.
 さらに、上述の如くして得られるRCSを用いて、シェルモールド鋳型の如き所定の鋳型を造型するに際しては、かかるRCSの加熱硬化を図るべく、加熱下において、目的とする鋳型の造型が行われることとなるが、そのような加熱造型方法としては、特に限定されるものではなく、従来から公知の手法が、何れも有利に用いられ得ることとなる。例えば、上述せる如きRCSを、目的とする鋳型を与える所望の形状空間を有する、150℃~300℃程度に加熱された成形型内に、重力落下方式や吹込方式等によって充填し、硬化させた後、かかる成形型から硬化した鋳型を抜型することにより、目的とする鋳造用鋳型を得ることが出来る。そして、そのようにして得られた鋳型にあっては、前述したような優れた特徴が、有利に付与せしめられ得ることとなるのである。 Further, when forming a predetermined mold such as a shell mold mold using the RCS obtained as described above, the target mold is molded under heating in order to heat and cure the RCS. However, the heating molding method is not particularly limited, and any conventionally known method can be advantageously used. For example, the RCS as described above is filled in a molding die heated to about 150 ° C. to 300 ° C. having a desired shape space for giving a target mold by a gravity dropping method, a blowing method, or the like, and cured. Thereafter, the target casting mold can be obtained by removing the cured mold from the mold. And in the casting_mold | template obtained in that way, the outstanding characteristics as mentioned above can be given advantageously.
 以下に、本発明の実施例を幾つか示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等が加え得るものであることが、理解されるべきである。なお、以下の実施例や比較例における部及び百分率は何れも質量基準にて示されるものであり、またRCSの融着点、ベンド(300gf)量及び崩壊率の測定は、それぞれ、以下のようにして行った。 Some examples of the present invention will be shown below to clarify the present invention more specifically. However, the present invention is not limited by the description of such examples. Needless to say. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the specific description described above. It should be understood that improvements and the like can be added. The parts and percentages in the following examples and comparative examples are all shown on a mass basis, and the RCS fusion point, bend (300 gf) amount and decay rate are measured as follows. I went there.
-RCS融着点の測定-
 それぞれのRCSの融着温度について、JACT試験法:C-1(融着点試験法)に準拠して、測定する。すなわち、温度勾配をもたせた金属棒の上に、測定しようとするRCSを手早く散布し、その60秒後に、かかる金属棒から10cm離れた位置で案内棒に沿って移動する口径1.0mmのノズルから、空気圧0.1MPaで空気を吹き付ける一方、かかるノズルを該金属棒の低温部から高温部に向けて往復1回動かして、金属棒上のRCSを吹き飛ばすようにする。そして、このような空気の吹付けによって、吹き飛ばされたRCSと吹き飛ばされなかったRCSの境界線の温度を1℃まで読み取ることにより、測定対象としたRCSの融着点(℃)を求める。この測定された融着温度が高い程、RCSの耐ブロッキング性が優れていることとなる。
-Measurement of RCS fusion point-
The fusion temperature of each RCS is measured in accordance with JACT test method: C-1 (fusion point test method). That is, a RCS to be measured is quickly sprinkled on a metal rod having a temperature gradient, and a nozzle having a diameter of 1.0 mm that moves along the guide rod at a position 10 cm away from the metal rod 60 seconds later. Then, while air is blown at an air pressure of 0.1 MPa, the nozzle is reciprocated once from the low temperature portion to the high temperature portion of the metal rod to blow off the RCS on the metal rod. And the fusion point (degreeC) of RCS made into the measurement object is calculated | required by reading the temperature of the boundary line of RCS blown away and RCS not blown away to 1 degreeC by such air blowing. The higher the measured fusion temperature, the better the blocking resistance of the RCS.
-ベンド(300gf)量の測定-
 それぞれのRCSから得られた各試験片(180mm×40mm×5mm、焼成条件:250℃×40秒間)を用いた。試験片の寸法以外はJACT試験法:SM-3の撓み試験法の手順に準拠して、その中央部に300gfの荷重を加えて、3分間放置した後の、試験片中央部の歪み量(mm)をダイヤルゲージで読み取り、その値を、ベンド(300gf)量とする。このベンド量(撓み量)は、鋳型造型直後のハンドリング性及び鋳型硬化速度を示す目安指標であり、このベンド量が小さい程、鋳型の硬化速度が速く、ハンドリング性が良くなることを意味している。
-Measurement of bend (300gf)-
Each test piece (180 mm × 40 mm × 5 mm, firing conditions: 250 ° C. × 40 seconds) obtained from each RCS was used. Except for the dimensions of the test piece, in accordance with the procedure of JACT test method: SM-3 deflection test method, a 300 gf load was applied to the central part, and the specimen was allowed to stand for 3 minutes. mm) is read with a dial gauge, and the value is defined as the bend (300 gf) amount. This bend amount (deflection amount) is a guideline index indicating the handling property and mold curing rate immediately after mold making. The smaller the bend amount, the faster the mold curing rate and the better the handling property. Yes.
-崩壊率の測定-
 JIS-K-6910に準じて、各RCSからJIS式テストピース(幅:10mm×厚さ:10mm×長さ:60mm、焼成時間:250℃×60秒間)を作製し、その得られたJIS式テストピース(5本)を二重のアルミホイルに包んだ後、所定温度(300℃、350℃又は400℃)の乾燥炉に入れて、30分間加熱する。その後、テストピースを取り出して室温まで冷やした後、抗折強度を測定する。この測定値と、テストピース(5本)の常温下での抗折強度の測定値とを用い、それぞれの平均値から、下記式により、各RCSについての崩壊率(%)を算出する。
 崩壊率(%)=[{常温での抗折強度-所定温度(300℃、350℃又
 は400℃)で30分処理後の抗折強度}÷常温での抗折強度]×100
-Measurement of decay rate-
According to JIS-K-6910, a JIS test piece (width: 10 mm × thickness: 10 mm × length: 60 mm, firing time: 250 ° C. × 60 seconds) was prepared from each RCS, and the obtained JIS formula After wrapping the test pieces (5 pieces) in double aluminum foil, they are placed in a drying furnace at a predetermined temperature (300 ° C., 350 ° C. or 400 ° C.) and heated for 30 minutes. Thereafter, the test piece is taken out and cooled to room temperature, and then the bending strength is measured. Using this measured value and the measured value of the bending strength of the test pieces (5 pieces) at room temperature, the collapse rate (%) for each RCS is calculated from the average value of each test piece according to the following formula.
Collapse rate (%) = [{Folding strength at normal temperature−Folding strength after 30 minutes treatment at a predetermined temperature (300 ° C., 350 ° C. or 400 ° C.)} ÷ Bending strength at normal temperature] × 100
<ノボラック型フェノール樹脂の製造>
-樹脂製造例1-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮することにより、ノボラック型フェノール樹脂A1を850部得た。
<Manufacture of novolac-type phenolic resin>
-Resin production example 1
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes to react, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 850 parts of type phenol resin A1 was obtained.
-樹脂製造例2-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族縮合リン酸エステル(商品名:Fyrol HF-5、ICL JAPAN株式会社製)(P含有量14%、粘度900mPa・s/25℃)を95部加えて、ノボラック型フェノール樹脂A2を945部得た。
-Resin production example 2-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 95 parts of a condensed phosphate ester (trade name: Fyrol HF-5, manufactured by ICL JAPAN Co., Ltd.) (P content: 14%, viscosity: 900 mPa · s / 25 ° C.) was added to obtain 945 parts of a novolac type phenolic resin A2. .
-樹脂製造例3-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族縮合リン酸エステル(主成分:オリゴマーエチルエチレンホスフェート、商品名:Fyrol PNX、ICL JAPAN株式会社製)(P含有量19%、粘度1000mPa・s/25℃)を95部加えて、ノボラック型フェノール樹脂A3を945部得た。
-Resin production example 3-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 95 parts of condensed phosphate ester (main component: oligomeric ethyl ethylene phosphate, trade name: Fyrol PNX, manufactured by ICL JAPAN Co., Ltd.) (P content 19%, viscosity 1000 mPa · s / 25 ° C.) was added to add a novolac type phenol resin. 945 parts of A3 were obtained.
-樹脂製造例4-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族縮合リン酸エステル(商品名:Fyrol PNX-LE、ICL JAPAN株式会社製)(P含有量19%、粘度2250mPa・s/25℃)を95部加えて、ノボラック型フェノール樹脂A4を945部得た。
-Resin production example 4-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 95 parts of a condensed phosphate ester (trade name: Fyrol PNX-LE, manufactured by ICL JAPAN Co., Ltd.) (P content 19%, viscosity 2250 mPa · s / 25 ° C.) was added to obtain 945 parts of a novolak type phenolic resin A4. .
-樹脂製造例5-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族縮合リン酸エステル(商品名:DAIGUARD-880、大八化学工業株式会社製)(P含有量15.5%、粘度150~350mPa・s/25℃)を95部加えて、ノボラック型フェノール樹脂A5を945部得た。
-Resin production example 5-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 95 parts of condensed phosphoric acid ester (trade name: DAIGUARD-880, manufactured by Daihachi Chemical Industry Co., Ltd.) (P content: 15.5%, viscosity: 150 to 350 mPa · s / 25 ° C.) was added, and the novolac type phenol resin A5 945 parts of was obtained.
-樹脂製造例6-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族縮合リン酸エステル(主成分:オリゴマーエチルエチレンホスフェート、商品名:Fyrol PNX、ICL JAPAN株式会社製)を76部、及び芳香族リン酸エステルであるt-ブチルフェニルジフェニルホスフェート(BPDP)(P含有量8.1%、粘度65~75mPa・s/25℃)を19部加えて、ノボラック型フェノール樹脂A6を945部得た。なお、ここで用いられた2種類のリン酸エステルにて構成される非ハロゲン系リン酸エステル類のP含有量は16.82%であり、またその粘度の実測値(25℃)は、820mPa・sであった。
-Resin production example 6-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 76 parts of condensed phosphate ester (main component: oligomeric ethyl ethylene phosphate, trade name: Fyrol PNX, manufactured by ICL JAPAN Co., Ltd.) and t-butylphenyl diphenyl phosphate (BPDP) which is an aromatic phosphate ester (P content) 19 parts of 8.1%, viscosity 65-75 mPa · s / 25 ° C.) was added to obtain 945 parts of a novolac type phenolic resin A6. The P content of the non-halogen phosphates composed of the two types of phosphate esters used here is 16.82%, and the measured value (25 ° C.) of the viscosity is 820 mPas.・ It was s.
-樹脂製造例7-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族縮合リン酸エステル(主成分:オリゴマーエチルエチレンホスフェート、商品名:Fyrol PNX、ICL JAPAN株式会社製)を76部、及び芳香族リン酸エステルであるトリフェニルホスフェート(TPP)(P含有量9.5%、固形)を19部加えて、ノボラック型フェノール樹脂A7を945部得た。なお、ここで用いられた2種類のリン酸エステルにて構成される非ハロゲン系リン酸エステル類のP含有量は17.1%であり、またその粘度の実測値(25℃)は、約1000mPa・sであった。
-Resin production example 7-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 76 parts of condensed phosphate ester (main component: oligomeric ethyl ethylene phosphate, trade name: Fyrol PNX, manufactured by ICL JAPAN), and triphenyl phosphate (TPP) which is an aromatic phosphate ester (P content 9.5) %, Solid) was added in an amount of 19 parts to obtain 945 parts of a novolak type phenol resin A7. The P content of the non-halogen phosphates composed of the two types of phosphate esters used here is 17.1%, and the measured value of the viscosity (25 ° C.) is about It was 1000 mPa · s.
-樹脂製造例8-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族縮合リン酸エステル(主成分:オリゴマーエチルエチレンホスフェート、商品名:Fyrol PNX、ICL JAPAN株式会社製)を76部、及び芳香族縮合リン酸エステル[主成分:フェニレンビス(フェニルクレゾールホスフェノート)、商品名:CR-733S、大八化学工業株式会社製](P含有量10.9%、粘度600mPa・s/25℃)を19部加えて、ノボラック型フェノール樹脂A8を945部得た。なお、ここで用いられた2種類のリン酸エステルにて構成される非ハロゲン系リン酸エステル類のP含有量は17.38%であり、またその粘度の実測値(25℃)は、860mPa・sであった。
-Resin production example 8-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 76 parts of condensed phosphate ester (main component: oligomeric ethylethylene phosphate, trade name: Fyrol PNX, manufactured by ICL JAPAN Co., Ltd.), and aromatic condensed phosphate ester (main component: phenylene bis (phenylcresol phosphate) Trade name: CR-733S, manufactured by Daihachi Chemical Industry Co., Ltd.] (P content: 10.9%, viscosity: 600 mPa · s / 25 ° C.) was added in an amount of 19 parts to obtain 945 parts of a novolac type phenolic resin A8. The P content of the non-halogen phosphates composed of the two types of phosphate esters used here is 17.38%, and the measured value (25 ° C.) of the viscosity is 860 mPas.・ It was s.
-樹脂製造例9-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族縮合リン酸エステル(主成分:オリゴマーエチルエチレンホスフェート、商品名:Fyrol PNX、ICL JAPAN株式会社製)を76部、及び脂肪族リン酸エステル(トリエチルホスフェート、商品名:TEP、大八化学工業株式会社製)(P含有量17%、粘度1.6mPa・s/25℃)を19部加えて、ノボラック型フェノール樹脂A9を945部得た。なお、ここで用いられた2種類のリン酸エステルにて構成される非ハロゲン系リン酸エステル類のP含有量は18.6%であり、またその粘度の実測値(25℃)は、790mPa・sであった。
-Resin production example 9-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 76 parts of condensed phosphate ester (main component: oligomeric ethyl ethylene phosphate, trade name: Fyrol PNX, manufactured by ICL JAPAN), and aliphatic phosphate ester (triethyl phosphate, trade name: TEP, Daihachi Chemical Industry Co., Ltd.) 19 parts) (P content 17%, viscosity 1.6 mPa · s / 25 ° C.) was added to obtain 945 parts of a novolac type phenolic resin A9. The P content of the non-halogen phosphates composed of the two types of phosphate esters used here is 18.6%, and the actual viscosity value (25 ° C.) is 790 mPas.・ It was s.
-樹脂製造例10-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、芳香族縮合リン酸エステル[主成分:フェニレンビス(フェニルクレゾールホスフェノート)、商品名:CR-733S、大八化学工業株式会社製](P含有量10.9%、粘度600mPa・s/25℃)を95部加えて、ノボラック型フェノール樹脂A10を945部得た。
-Resin production example 10-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. Condensed phosphoric acid ester [main component: phenylene bis (phenylcresol phosphate), trade name: CR-733S, manufactured by Daihachi Chemical Industry Co., Ltd.] (P content 10.9%, viscosity 600 mPa · s / 25 ° C.) Was added to obtain 945 parts of a novolak type phenol resin A10.
-樹脂製造例11-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、芳香族リン酸エステルであるt-ブチルフェニルジフェニルホスフェート(BPDP)(P含有量8.1%、粘度65~75mPa・s/25℃)を95部加えて、ノボラック型フェノール樹脂A11を945部得た。
-Resin production example 11-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture was refluxed for 90 minutes for reaction, and further concentrated under reduced pressure while heating until the reaction solution temperature reached 170 ° C. 95 parts of t-butylphenyldiphenyl phosphate (BPDP) (P content 8.1%, viscosity 65 to 75 mPa · s / 25 ° C.), which is a phosphate ester, was added to obtain 945 parts of a novolak type phenol resin A11.
-樹脂製造例12-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達の後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、芳香族リン酸エステルであるトリフェニルホスフェート(TPP)(P含有量9.5%、固形)を95部加えて、ノボラック型フェノール樹脂A12を945部得た。
-Resin production example 12-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, the temperature of the reaction vessel is gradually raised, and after reaching the reflux temperature, the reaction is performed by refluxing for 90 minutes. Further, the reaction solution is concentrated under reduced pressure while being heated until the reaction solution temperature reaches 170 ° C. 95 parts of acid ester triphenyl phosphate (TPP) (P content: 9.5%, solid) was added to obtain 945 parts of novolac-type phenol resin A12.
-樹脂製造例13-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの428部、及びシュウ酸の2.8部をそれぞれ投入した。次いで、反応容器を徐々に昇温して、還流温度に到達の後、90分間還流して反応させ、更に、反応液温度が170℃になるまで、加熱しつつ減圧濃縮した後、脂肪族リン酸エステル(トリエチルホスフェート、商品名:TEP、大八化学工業株式会社製)(P含有量17%、粘度1.6mPa・s/25℃)を95部加えて、ノボラック型フェノール樹脂A13を945部得た。
-Resin production example 13-
Into a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 428 parts of 47% formalin, and 2.8 parts of oxalic acid were charged. Next, after gradually raising the temperature of the reaction vessel to reach the reflux temperature, the mixture is refluxed for 90 minutes to react, and further concentrated under reduced pressure while heating until the reaction solution temperature reaches 170 ° C. 95 parts of acid ester (triethyl phosphate, trade name: TEP, manufactured by Daihachi Chemical Industry Co., Ltd.) (P content 17%, viscosity 1.6 mPa · s / 25 ° C.) was added, and 945 parts of novolak type phenol resin A13 was added. Obtained.
<レゾール型フェノール樹脂の製造>
-樹脂製造例14-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの680部、47%ホルマリンの535部、及びヘキサメチレンテトラミンの101部をそれぞれ仕込み、約60分を要して70℃まで昇温させ、そのまま5時間反応させた。その後、その反応液を90℃になるまで加熱しつつ減圧脱水することにより、レゾール型フェノール樹脂B1を700部得た。
<Manufacture of resol type phenolic resin>
-Resin production example 14-
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Then, 700 parts of resol type phenol resin B1 was obtained by dehydrating under reduced pressure, heating the reaction liquid to 90 degreeC.
-樹脂製造例15-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの680部、47%ホルマリンの535部、及びヘキサメチレンテトラミンの101部をそれぞれ仕込み、約60分を要して70℃まで昇温させ、そのまま5時間反応させた。その後、その反応液を90℃になるまで加熱しつつ減圧脱水した後、脂肪族縮合リン酸エステル(商品名:Fyrol HF-5、ICL JAPAN株式会社製)を78部加えて、レゾール型フェノール樹脂B2を778部得た。
-Resin production example 15-
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Thereafter, the reaction solution was heated to 90 ° C. and dehydrated under reduced pressure, and then 78 parts of an aliphatic condensed phosphate ester (trade name: Fyrol HF-5, manufactured by ICL JAPAN Co., Ltd.) was added to form a resol type phenol resin. 778 parts of B2 were obtained.
-樹脂製造例16-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの680部、47%ホルマリンの535部、及びヘキサメチレンテトラミンの101部をそれぞれ仕込み、約60分を要して70℃まで昇温させ、そのまま5時間反応させた。その後、その反応液を90℃になるまで加熱しつつ減圧脱水した後、脂肪族縮合リン酸エステル(商品名:Fyrol PNX、ICL JAPAN株式会社製)を78部加えて、レゾール型フェノール樹脂B3を778部得た。
-Resin production example 16-
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Then, after dehydrating under reduced pressure while heating the reaction solution to 90 ° C., 78 parts of aliphatic condensed phosphate ester (trade name: Fyrol PNX, manufactured by ICL JAPAN Co., Ltd.) was added, and resol type phenol resin B3 was added. 778 parts were obtained.
-樹脂製造例17-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの680部、47%ホルマリンの535部、及びヘキサメチレンテトラミンの101部をそれぞれ仕込み、約60分を要して70℃まで昇温させ、そのまま5時間反応させた。その後、その反応液を90℃になるまで加熱しつつ減圧脱水した後、脂肪族縮合リン酸エステル(商品名:Fyrol PNX-LE、ICL JAPAN株式会社製)を78部加えて、レゾール型フェノール樹脂B4を778部得た。
-Resin production example 17-
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Thereafter, the reaction solution was heated to 90 ° C. and dehydrated under reduced pressure, and then 78 parts of aliphatic condensed phosphate ester (trade name: Fyrol PNX-LE, manufactured by ICL JAPAN Co., Ltd.) was added to form a resol type phenol resin. 778 parts of B4 were obtained.
-樹脂製造例18-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの680部、47%ホルマリンの535部、及びヘキサメチレンテトラミンの101部をそれぞれ仕込み、約60分を要して70℃まで昇温させ、そのまま5時間反応させた。その後、その反応液を90℃になるまで加熱しつつ減圧脱水した後、脂肪族縮合リン酸エステル(商品名:DAIGUARD-880、大八化学工業株式会社製)を78部加えて、レゾール型フェノール樹脂B5を778部得た。
-Resin production example 18-
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Thereafter, the reaction solution was heated to 90 ° C. and dehydrated under reduced pressure, and then 78 parts of an aliphatic condensed phosphate ester (trade name: DAIGUARD-880, manufactured by Daihachi Chemical Industry Co., Ltd.) was added to form a resole phenol. 778 parts of resin B5 was obtained.
-樹脂製造例19-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの680部、47%ホルマリンの535部、及びヘキサメチレンテトラミンの101部をそれぞれ仕込み、約60分を要して70℃まで昇温させ、そのまま5時間反応させた。その後、その反応液を90℃になるまで加熱しつつ減圧脱水した後、脂肪族縮合リン酸エステル(商品名:Fyrol PNX、ICL JAPAN株式会社製)を62.4部、及び芳香族リン酸エステルであるt-ブチルフェニルジフェニルホスフェート(BPDP)を15.6部加えて、レゾール型フェノール樹脂B6を778部得た。なお、ここで用いられた2種類のリン酸エステルにて構成される非ハロゲン系リン酸エステル類のP含有量は16.82%であり、またその粘度の実測値(25℃)は、820mPa・sであった。
-Resin production example 19-
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Then, after dehydrating under reduced pressure while heating the reaction solution to 90 ° C., 62.4 parts of aliphatic condensed phosphate ester (trade name: Fyrol PNX, manufactured by ICL JAPAN Co., Ltd.), and aromatic phosphate ester 15.6 parts of t-butylphenyl diphenyl phosphate (BPDP) was added to obtain 778 parts of a resole type phenol resin B6. The P content of the non-halogen phosphates composed of the two types of phosphate esters used here is 16.82%, and the measured value (25 ° C.) of the viscosity is 820 mPas.・ It was s.
-樹脂製造例20-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの680部、47%ホルマリンの535部、及びヘキサメチレンテトラミンの101部をそれぞれ仕込み、約60分を要して70℃まで昇温させ、そのまま5時間反応させた。その後、その反応液を90℃になるまで加熱しつつ減圧脱水した後、芳香族縮合リン酸エステル[主成分:フェニレンビス(フェニルクレゾールホスフェノート)、商品名:CR-733S、大八化学工業株式会社製]を78部加えて、レゾール型フェノール樹脂B7を778部得た。
-Resin production example 20-
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Thereafter, the reaction solution was heated to 90 ° C. and dehydrated under reduced pressure, and then an aromatic condensed phosphate ester [main component: phenylene bis (phenylcresol phosphenoate), trade name: CR-733S, Daihachi Chemical Industry, Ltd. 78 parts by product] was added to obtain 778 parts of resol type phenol resin B7.
-樹脂製造例21-
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの680部、47%ホルマリンの535部、及びヘキサメチレンテトラミンの101部をそれぞれ仕込み、約60分を要して70℃まで昇温させ、そのまま5時間反応させた。その後、その反応液を90℃になるまで加熱しつつ減圧脱水した後、芳香族リン酸エステルであるt-ブチルフェニルジフェニルホスフェート(BPDP)を78部加えて、レゾール型フェノール樹脂B8を778部得た。
-Resin production example 21-
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 680 parts of phenol, 535 parts of 47% formalin, and 101 parts of hexamethylenetetramine, and the temperature was raised to 70 ° C. in about 60 minutes. The reaction was continued for 5 hours. Thereafter, the reaction solution was dehydrated under reduced pressure while being heated to 90 ° C., and then 78 parts of aromatic phosphate t-butylphenyldiphenyl phosphate (BPDP) was added to obtain 778 parts of resol type phenol resin B8. It was.
<RCSの製造>
-実施例1~実施例8-
 150℃に加熱した新砂(オーストラリア産の天然硅砂、商品名:フラタリー)7000部に、上記ノボラック型フェノール樹脂A2~A9の何れかの105部を加えて、スピードミキサで、50秒間混練した後、ヘキサメチレンテトラミン15.75部を水105部に溶解してなる溶液を添加して、砂が個々の粒子に分離するようになるまで混練し、更にステアリン酸カルシウム(日本油脂株式会社製)7部を添加して、15秒間混合した後、ミキサから排出することにより、RCS1~8をそれぞれ得た。そして、この得られたRCS1~8について、それぞれ、融着点の測定、ベンド(300gf)量の測定及び崩壊率の測定を実施し、それらの試験結果を、下記表1に示す。
<Manufacturing RCS>
-Example 1 to Example 8-
After adding 105 parts of any of the above-mentioned novolac type phenol resins A2 to A9 to 7000 parts of fresh sand (Australian natural cinnabar, trade name: Flattery) heated to 150 ° C., kneading with a speed mixer for 50 seconds, Add a solution prepared by dissolving 15.75 parts of hexamethylenetetramine in 105 parts of water, knead until the sand is separated into individual particles, and further add 7 parts of calcium stearate (manufactured by NOF Corporation). After adding, mixing for 15 seconds, and discharging from the mixer, RCS 1 to 8 were obtained, respectively. The obtained RCSs 1 to 8 were measured for the fusion point, the bend (300 gf) and the disintegration rate, respectively, and the test results are shown in Table 1 below.
-実施例9~実施例13-
 実施例1において、ノボラック型フェノール樹脂A1の52.5部と、ノボラック型フェノール樹脂A2~A6のそれぞれの52.5部とを用いたこと以外は、実施例1と同様にして、RCS9~13をそれぞれ得た。そして、その得られたRCS9~13を用いて、それぞれ、融着点の測定、ベンド(300gf)量の測定及び崩壊率の測定を実施して、その得られた結果を下記表2に示す。
-Example 9 to Example 13-
In the same manner as in Example 1, except that 52.5 parts of the novolak type phenolic resin A1 and 52.5 parts of each of the novolak type phenolic resins A2 to A6 were used, the RCS 9 to 13 were used. Respectively. The obtained RCSs 9 to 13 were used to measure the fusion point, the bend (300 gf) amount, and the disintegration rate, respectively. The results obtained are shown in Table 2 below.
-実施例14~実施例18-
 150℃に加熱した新砂(オーストラリア産の天然硅砂、商品名:フラタリー)7000部に、上記ノボラック型フェノール樹脂A2~A6の52.5部と、上記レゾール型フェノール樹脂B2~B6の52.5部とをそれぞれ配合して、スピードミキサで砂が個々の粒子に分離するようになるまで混練せしめ、更にステアリン酸カルシウム(日本油脂株式会社製)7部を添加して、15秒間混合した後、ミキサから排出することにより、RCS14~18をそれぞれ得た。そして、その得られたRCS14~18を用いて、それぞれ、融着点の測定、ベンド(300gf)量の測定及び崩壊率の測定を実施して、その得られた結果を、下記表2及び表3に示す。
-Example 14 to Example 18-
7000 parts of fresh sand (Australian natural cinnabar, trade name: Flattery) heated to 150 ° C., 52.5 parts of the above novolac type phenol resins A2 to A6 and 52.5 parts of the above resol type phenol resins B2 to B6 And knead until the sand is separated into individual particles with a speed mixer, add 7 parts of calcium stearate (manufactured by Nippon Oil & Fats Co., Ltd.) and mix for 15 seconds. By discharging, RCS14 to 18 were obtained. Then, using the obtained RCSs 14 to 18, measurement of the fusion point, measurement of the bend (300 gf) amount and measurement of the collapse rate were performed, and the obtained results are shown in Table 2 and Table 2 below. 3 shows.
-実施例19~実施例23-
 実施例14において、ノボラック型フェノール樹脂A1の26.25部と、ノボラック型フェノール樹脂A2~A6のそれぞれの26.25部と、レゾール型フェノール樹脂B1の26.25部と、レゾール型フェノール樹脂B2~B6のそれぞれの26.25部とを用いることとしたこと以外は、実施例14と同様にして、RCS19~23をそれぞれ得た。そして、その得られたRCS19~23について、それぞれ、融着点の測定、ベンド(300gf)量の測定及び崩壊率の測定を実施して、その得られた結果を、下記表3に示す。
-Example 19 to Example 23-
In Example 14, 26.25 parts of novolac type phenol resin A1, 26.25 parts of each of novolac type phenol resins A2 to A6, 26.25 parts of resol type phenol resin B1, and resol type phenol resin B2 RCS 19 to 23 were obtained in the same manner as in Example 14 except that 26.25 parts of each of B6 to B6 were used. The obtained RCSs 19 to 23 were measured for the fusion point, the bend (300 gf) and the collapse rate, respectively, and the obtained results are shown in Table 3 below.
-比較例1~比較例5-
 実施例1において、ノボラック型フェノール樹脂A2を、ノボラック型フェノール樹脂A1、A10~A13に代えたこと以外は、実施例1と同様にして、RCS24~28をそれぞれ得た。そして、この得られたRCS24~28について、それぞれ、融着点の測定、ベンド(300gf)量の測定及び崩壊率の測定を行い、その得られた結果を、下記表4に示す。
-Comparative Example 1 to Comparative Example 5-
RCS 24 to 28 were obtained in the same manner as in Example 1 except that the novolak type phenol resin A2 was replaced with the novolak type phenol resins A1 and A10 to A13 in Example 1. The obtained RCSs 24 to 28 were measured for the fusion point, the bend (300 gf) and the collapse rate, respectively, and the obtained results are shown in Table 4 below.
-比較例6~比較例8-
 実施例14において、ノボラック型フェノール樹脂A2をノボラック型フェノール樹脂A1、A10又はA11に代えると共に、レゾール型フェノール樹脂B2をレゾール型フェノール樹脂B1、B7又はB8に代えたこと以外は、実施例14と同様にして、RCS29~31をそれぞれ得た。そして、この得られたRCS29~31について、それぞれ、融着点の測定、ベンド(300gf)量の測定及び崩壊率の測定を行い、その得られた結果を、下記表4に示す。
-Comparative Example 6 to Comparative Example 8-
In Example 14, except that the novolak-type phenol resin A2 was replaced with the novolak-type phenol resin A1, A10, or A11 and the resol-type phenol resin B2 was replaced with the resol-type phenol resin B1, B7, or B8, and Example 14 Similarly, RCS29 to 31 were obtained. The obtained RCSs 29 to 31 were measured for the fusion point, the bend (300 gf) and the collapse rate, respectively, and the obtained results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 かかる表1~4の結果から明らかな如く、実施例1~23において得られたRCS1~23は、何れも、融着点が高く、またベンド量が小さいため、鋳型の硬化速度が速く、ハンドリング性がよいことを示していると共に、低温領域での崩壊率において優れた結果を示すものであった。これに対して、比較例1及び6の如く、添加剤としてのリン酸エステルを配合しない場合にあっては、崩壊性が悪く、また比較例2~5及び7~8の如く、本発明で規定するP含有量や粘度の範囲外となる脂肪族リン酸エステルや芳香族リン酸エステルのみを配合した場合においては、崩壊性は向上するものの、本発明に係る実施例程の効果はなく、ベンド量が大きくなるために、鋳型の硬化速度が遅く、ハンドリング性が悪くなる問題があり、更にRCSの融着点が低下するために、RCSの耐ブロッキング性が悪くなる問題を有していることが認められる。 As is apparent from the results of Tables 1 to 4, RCS 1 to 23 obtained in Examples 1 to 23 all have a high fusion point and a small bend amount. In addition to showing good properties, the results showed excellent results in the decay rate in the low temperature region. On the other hand, in the case where the phosphate ester as an additive is not blended as in Comparative Examples 1 and 6, the disintegration is poor, and in Comparative Examples 2 to 5 and 7 to 8, in the present invention. In the case of blending only an aliphatic phosphate ester or an aromatic phosphate ester that is outside the range of the specified P content and viscosity, although disintegration is improved, there is no effect as in the examples according to the present invention, Since the amount of bend increases, the mold curing speed is slow and handling properties are deteriorated. Further, since the fusion point of RCS is lowered, the blocking resistance of RCS is deteriorated. It is recognized that

Claims (11)

  1.  フェノール樹脂を樹脂粘結成分として含有するシェルモールド用樹脂組成物において、分子中にハロゲンを結合含有しないリン酸エステル化合物の1種又は2種以上からなり、且つP含有量が14%以上であり、粘度が150mPa・s/25℃以上である非ハロゲン系リン酸エステル類を、更に含有せしめてなることを特徴とするシェルモールド用樹脂組成物。 In the resin composition for shell mold containing a phenol resin as a resin binder component, it is composed of one or more of phosphoric acid ester compounds that do not contain a halogen in the molecule, and the P content is 14% or more. A resin composition for a shell mold, further comprising a non-halogen phosphate ester having a viscosity of 150 mPa · s / 25 ° C. or higher.
  2.  前記リン酸エステル化合物の少なくとも1種が、脂肪族縮合リン酸エステルである請求項1に記載のシェルモールド用樹脂組成物。 The resin composition for a shell mold according to claim 1, wherein at least one of the phosphate ester compounds is an aliphatic condensed phosphate ester.
  3.  前記非ハロゲン系リン酸エステル類が、80質量%以上の脂肪族縮合リン酸エステルと20質量%以下の芳香族リン酸エステル及び/又は芳香族縮合リン酸エステルとから構成されている請求項1又は請求項2に記載のシェルモールド用樹脂組成物。 The non-halogen phosphate is composed of 80% by mass or more of an aliphatic condensed phosphate and 20% by mass or less of an aromatic phosphate and / or an aromatic condensed phosphate. Or the resin composition for shell molds of Claim 2.
  4.  前記フェノール樹脂の100質量部に対して、前記非ハロゲン系リン酸エステル類が、1~50質量部の割合で含有せしめられていることを特徴とする請求項1乃至請求項3の何れか1項に記載のシェルモールド用樹脂組成物。 The non-halogen phosphate ester is contained in a proportion of 1 to 50 parts by mass with respect to 100 parts by mass of the phenol resin. Item 2. A resin composition for a shell mold described in the item.
  5.  前記フェノール樹脂として、ノボラック型フェノール樹脂及び/又はレゾール型フェノール樹脂が用いられていることを特徴とする請求項1乃至請求項4の何れか1項に記載のシェルモールド用樹脂組成物。 The resin composition for a shell mold according to any one of claims 1 to 4, wherein a novolac type phenol resin and / or a resol type phenol resin is used as the phenol resin.
  6.  前記フェノール樹脂として、ノボラック型フェノール樹脂とレゾール型フェノール樹脂とが併用され、且つノボラック型フェノール樹脂(A)とレゾール型フェノール樹脂(B)との使用比率が、質量基準にて、A:B=95:5~5:95であることを特徴とする請求項5に記載のシェルモールド用樹脂組成物。 As the phenol resin, a novolac type phenol resin and a resol type phenol resin are used in combination, and the use ratio of the novolac type phenol resin (A) to the resol type phenol resin (B) is A: B = The resin composition for a shell mold according to claim 5, wherein the ratio is 95: 5 to 5:95.
  7.  請求項1乃至請求項6の何れか1項に記載のシェルモールド用樹脂組成物を粘結剤として用いて、耐火性骨材の表面を、かかる粘結剤の層にて被覆せしめてなることを特徴とするレジンコーテッドサンド。 Using the resin composition for shell molds according to any one of claims 1 to 6 as a binder, the surface of the refractory aggregate is covered with the layer of the binder. Resin coated sand characterized by
  8.  前記粘結剤層に、滑剤が含有されていることを特徴とする請求項7に記載のレジンコーテッドサンド。 The resin-coated sand according to claim 7, wherein the binder layer contains a lubricant.
  9.  前記粘結剤層に、更に、シランカップリング剤が含有せしめられていることを特徴とする請求項7又は請求項8に記載のレジンコーテッドサンド。 The resin-coated sand according to claim 7 or 8, wherein the binder layer further contains a silane coupling agent.
  10.  請求項1乃至請求項6の何れか1項に記載のシェルモールド用樹脂組成物と耐火性骨材とを混練せしめて、かかる耐火性骨材の表面に、該樹脂組成物からなる被覆層を形成することを特徴とするレジンコーテッドサンドの製造方法。 The resin composition for a shell mold according to any one of claims 1 to 6 and a refractory aggregate are kneaded, and a coating layer made of the resin composition is formed on the surface of the refractory aggregate. A method for producing a resin-coated sand, characterized in that it is formed.
  11.  請求項7乃至請求項9の何れか1項に記載のレジンコーテッドサンドを成形し、硬化せしめてなることを特徴とするシェルモールド用鋳型。 A mold for shell molding, wherein the resin-coated sand according to any one of claims 7 to 9 is molded and cured.
PCT/JP2017/032211 2016-09-08 2017-09-07 Resin composition for shell molding and resin-coated sand obtained using same WO2018047893A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780054798.XA CN109689245B (en) 2016-09-08 2017-09-07 Resin composition for shell mold and resin-coated sand obtained using same
MX2019002523A MX2019002523A (en) 2016-09-08 2017-09-07 Resin composition for shell molding and resin-coated sand obtained using same.
JP2018538459A JP6945537B2 (en) 2016-09-08 2017-09-07 Resin composition for shell molding and resin coated sand obtained by using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016175214 2016-09-08
JP2016-175214 2016-09-08

Publications (1)

Publication Number Publication Date
WO2018047893A1 true WO2018047893A1 (en) 2018-03-15

Family

ID=61562462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032211 WO2018047893A1 (en) 2016-09-08 2017-09-07 Resin composition for shell molding and resin-coated sand obtained using same

Country Status (4)

Country Link
JP (1) JP6945537B2 (en)
CN (1) CN109689245B (en)
MX (1) MX2019002523A (en)
WO (1) WO2018047893A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360199A (en) * 2020-04-08 2020-07-03 安徽羿维表面工程技术有限公司 Alloy composition of alloy casting side guide plate
WO2022220133A1 (en) * 2021-04-15 2022-10-20 旭有機材株式会社 Resin composition for molds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352735A (en) * 1986-08-20 1988-03-05 Hitachi Chem Co Ltd Resin binder for shell mold
JPH06179040A (en) * 1992-12-14 1994-06-28 Kao Corp Resin coated sand for shell mold
JPH11244990A (en) * 1998-03-05 1999-09-14 Lignyte Co Ltd Resin coated sand for mold

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177938A (en) * 1987-01-20 1988-07-22 Hitachi Chem Co Ltd Production of resin coated sand for casting
JP2826588B2 (en) * 1993-12-27 1998-11-18 花王株式会社 Binder-curing agent composition for mold molding
ES2134729B1 (en) * 1996-07-18 2000-05-16 Kemen Recupac Sa IMPROVEMENTS INTRODUCED IN OBJECT APPLICATION FOR A SPANISH INVENTION PATENT N. 9601607 FOR "PROCEDURE FOR THE MANUFACTURE OF EXACT SLEEVES AND OTHER ELEMENTS OF MAZAROTAJE AND FEEDING FOR CAST MOLDS.
JP4681850B2 (en) * 2004-10-26 2011-05-11 セメダイン株式会社 Mold model manufacturing action two-component acrylic adhesive and bonding method using the adhesive
JP5125061B2 (en) * 2006-03-14 2013-01-23 日立化成工業株式会社 Resin composition for shell mold and resin coated sand
CN101927319A (en) * 2010-04-29 2010-12-29 苏州市兴业铸造材料有限公司 Adhesive applicable for manufacturing casting mold and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352735A (en) * 1986-08-20 1988-03-05 Hitachi Chem Co Ltd Resin binder for shell mold
JPH06179040A (en) * 1992-12-14 1994-06-28 Kao Corp Resin coated sand for shell mold
JPH11244990A (en) * 1998-03-05 1999-09-14 Lignyte Co Ltd Resin coated sand for mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111360199A (en) * 2020-04-08 2020-07-03 安徽羿维表面工程技术有限公司 Alloy composition of alloy casting side guide plate
WO2022220133A1 (en) * 2021-04-15 2022-10-20 旭有機材株式会社 Resin composition for molds
JPWO2022220133A1 (en) * 2021-04-15 2022-10-20
JP7247427B2 (en) 2021-04-15 2023-03-28 旭有機材株式会社 Mold resin composition

Also Published As

Publication number Publication date
JP6945537B2 (en) 2021-10-06
JPWO2018047893A1 (en) 2019-06-24
CN109689245B (en) 2020-09-25
MX2019002523A (en) 2019-06-06
CN109689245A (en) 2019-04-26

Similar Documents

Publication Publication Date Title
JP5125061B2 (en) Resin composition for shell mold and resin coated sand
JP6945537B2 (en) Resin composition for shell molding and resin coated sand obtained by using it
JP5897161B2 (en) Binder coated refractory manufacturing method, mold manufacturing method
JP6685685B2 (en) Phenolic resin composition for shell mold, resin coated sand for shell mold, and mold for shell mold
JP6019046B2 (en) Organic binder for mold, foundry sand composition obtained using the same, and mold
JP5764490B2 (en) Resin coated sand for shell mold, and mold for shell mold obtained using the same
JP7247427B2 (en) Mold resin composition
JP5429545B2 (en) Resin composition for shell mold and resin coated sand
JP5486510B2 (en) Resin coated sand for shell mold and mold obtained using the same
JPS5978745A (en) Resin coated sand for casting
JP7225477B1 (en) Mold making material with excellent seizure resistance
WO2021200950A1 (en) Mold material for shell mold
JP5876737B2 (en) Organic binder for mold, method for producing casting sand composition using the same, and method for producing mold
JP2022081962A (en) Resin-coated sand having improved mold collapsibility
WO2024071282A1 (en) Mold organic binder, and molding sand composition and mold obtained using same
JP5491382B2 (en) Phenolic resin composition for shell mold, resin coated sand for shell mold, and mold obtained by using the same
JP2005095933A (en) Novolak type phenolic resin for shell mold
JP2003164943A (en) Novolac type phenolic resin composition for shell mold and resin-coated sand
JPS6352735A (en) Resin binder for shell mold

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538459

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848831

Country of ref document: EP

Kind code of ref document: A1