WO2018047784A1 - Setter for firing - Google Patents

Setter for firing Download PDF

Info

Publication number
WO2018047784A1
WO2018047784A1 PCT/JP2017/031846 JP2017031846W WO2018047784A1 WO 2018047784 A1 WO2018047784 A1 WO 2018047784A1 JP 2017031846 W JP2017031846 W JP 2017031846W WO 2018047784 A1 WO2018047784 A1 WO 2018047784A1
Authority
WO
WIPO (PCT)
Prior art keywords
setter
surface layer
layer
thickness
less
Prior art date
Application number
PCT/JP2017/031846
Other languages
French (fr)
Japanese (ja)
Inventor
敬一郎 渡邊
浩臣 松葉
Original Assignee
日本碍子株式会社
エヌジーケイ・アドレック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社, エヌジーケイ・アドレック株式会社 filed Critical 日本碍子株式会社
Priority to CN201780049644.1A priority Critical patent/CN109716049A/en
Priority to JP2018500748A priority patent/JP6364570B1/en
Priority to KR1020197010290A priority patent/KR20190043629A/en
Publication of WO2018047784A1 publication Critical patent/WO2018047784A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0006Composite supporting structures
    • F27D5/0012Modules of the sagger or setter type; Supports built up from them

Definitions

  • This specification discloses the technique regarding the setter for baking.
  • a technique relating to a ceramic setter for firing is disclosed.
  • Patent Document 1 discloses a technique in which the setter has a honeycomb structure and the heat capacity of the setter is reduced. Patent Document 1 uses a honeycomb setter to suppress heating unevenness on the upper surface (the surface not in contact with the setter) and the lower surface (the surface in contact with the setter) of the object to be fired.
  • the setter when the setter has a honeycomb structure, the density of the setter is reduced, and the heat capacity of the setter can be reduced. However, typically, as the density decreases, the strength decreases. Therefore, the setter may be deformed or damaged by repeatedly using the setter. Simply setting the setter to a honeycomb structure reduces the durability of the setter. It can be said that a reduction in heat capacity and an improvement in durability are in a trade-off relationship. There is a need for a setter with a small heat capacity and high durability. The present specification provides a technique for realizing a setter having high durability while maintaining a small heat capacity.
  • the firing setter disclosed in the present specification is made of ceramics and includes a front surface layer, an intermediate layer, and a back surface layer.
  • the intermediate layer has a honeycomb structure and has a lower density than the front surface layer and the back surface layer.
  • the surface layer has a flat plate shape with a thickness of 50 ⁇ m to 2000 ⁇ m and an open porosity of 5% to 50%.
  • the “surface layer” is a layered portion including a surface on which the object to be fired is placed, adjacent to the intermediate layer, and formed at a higher density than the intermediate layer.
  • the “back surface layer” is a layered portion that is adjacent to the intermediate layer on the side opposite to the surface layer with respect to the intermediate layer and is formed at a higher density than the intermediate layer. Note that when the front and back surfaces of the setter for firing are used as the placement surface of the object to be fired, the expressions “surface layer” and “back surface layer” merely indicate the relative positions during firing. In this case, both the “surface layer” and the “back surface layer” have the same structural features as the “surface layer”.
  • the intermediate layer has a lower density than the front surface layer and the back surface layer.
  • the front surface layer and the back surface layer have a higher density than the intermediate layer.
  • the thickness of the surface layer is adjusted to 50 ⁇ m or more and 2000 ⁇ m or less, the strength of the surface layer is ensured and the weight of the object to be fired can be supported.
  • the strength of the surface layer it is possible to suppress cracking and chipping of the surface layer due to impact when loading and unloading the object to be fired, and to prevent deformation of the setter during the firing process. Is done.
  • the object to be fired is reliably held on the setter surface. For example, when firing a relatively small size object to be fired, cracking or chipping of the surface layer is suppressed, thereby preventing the object to be fired from being lost.
  • the porosity of the surface layer is lowered. If the porosity (especially the open porosity) of the surface layer decreases, the gas generated from the fired product will not easily escape at the contact portion between the fired product and the surface layer, and the furnace gas will not easily penetrate the surface layer.
  • the temperature difference between the fired product and the setter becomes large.
  • the open porosity of the surface layer 5% or more, it is possible to prevent the gas generated from the fired product from becoming difficult to escape, and the atmosphere gas in the furnace easily penetrates into the surface layer. The temperature difference between the furnace temperature and the setter can be reduced.
  • the “open porosity” is obtained by dividing pores (open holes) communicating with the outer space of the porous body by the volume of the porous body, among the pores of the porous body.
  • FIG. 2 shows a partially enlarged view of a cross section taken along line II-II in FIG.
  • the modification of the setter for baking of 1st Example is shown.
  • the modification of the setter for baking of 1st Example is shown.
  • the modification of the setter for baking of 1st Example is shown.
  • the modification of the setter for baking of 1st Example is shown.
  • the perspective view of the setter for baking of 2nd Example is shown.
  • FIG. 9 is a partially enlarged view of a cross section taken along line IX-IX in FIG. 8. The figure explaining the manufacturing process of the setter for baking of 2nd Example is shown.
  • the modification of the setter for baking of 2nd Example is shown.
  • the modification of the setter for baking of 2nd Example is shown.
  • the perspective view of the setter for baking of 3rd Example is shown.
  • the perspective view of the setter for baking of 4th Example is shown.
  • the elements on larger scale of the cross section of the setter for baking of 5th Example are shown.
  • the partial top view of the setter for baking of 5th Example is shown.
  • the relationship between the thickness of a coating layer and each characteristic is shown.
  • the setter disclosed in the present specification is used for placing the object to be fired when the object to be fired is fired.
  • the setter disclosed in this specification is made of ceramics.
  • the setter material may be cordierite, mullite, alumina, zirconia, silicon nitride, or silicon carbide. From the viewpoint of the material itself having a relatively low density and a low thermal expansion coefficient, the setter material is preferably cordierite.
  • the setter has a surface layer, an intermediate layer, and a back layer.
  • An object to be fired is placed on the surface layer.
  • the surface layer is flat. Specifically, the surface layer does not have an opening such as a mesh structure, a honeycomb structure, or the like, is solid, and the surface layer portion is flat.
  • the thickness of the surface layer is 50 ⁇ m or more and 2000 ⁇ m or less.
  • the thickness of the surface layer is 50 ⁇ m or more and 2000 ⁇ m or less.
  • the thickness of the surface layer is preferably 100 ⁇ m or more, and more preferably 150 ⁇ m or more.
  • the thickness of the surface layer is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 250 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the open porosity of the surface layer is 5% or more and 50% or less.
  • the open porosity of the surface layer is 5% or more and 50% or less.
  • the furnace atmosphere gas easily penetrates into the surface layer, and the temperature difference between the furnace temperature and the setter is reduced.
  • the temperature of the contact surface of the object to be fired with the setter closely follows the furnace temperature, and the whole object to be fired can be heated uniformly.
  • the open porosity of the surface layer is preferably 10% or more, more preferably 20% or more, and particularly preferably 30% or more.
  • the open porosity of the surface layer is preferably 45% or less, more preferably 40% or less, and particularly preferably 35% or less.
  • the back layer may be flat like the surface layer. Thereby, the surface of the back layer can also be used as a surface on which the object to be fired is placed.
  • the thickness of the back surface layer may be the same as the thickness of the surface layer. Further, the thickness of the back surface layer can be made larger than the thickness of the surface layer, and the back surface layer can be used as a layer for ensuring the strength of the setter. In this case, the thickness of the back layer may be 100 ⁇ m or more and 2000 ⁇ m or less. By setting the thickness to 100 ⁇ m or more, it is possible to prevent warping of the setter due to the load of the object to be fired and the setter itself. That is, a highly durable setter is obtained.
  • the thickness of the front surface layer and the back surface layer is 100 ⁇ m or more, the front surface layer and the back surface layer can be used as the placement surface of the object to be fired, and a highly durable setter can be realized.
  • the thickness of the back surface layer is preferably 200 ⁇ m or more, and more preferably 300 ⁇ m or more. Further, the thickness of the back surface layer is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 400 ⁇ m or less, and particularly preferably 350 ⁇ m or less.
  • the open porosity of the back surface layer may be 5% or more and 50% or less, similar to the surface layer.
  • the front surface layer and the back surface layer may be made of the same material.
  • strength of a back surface layer is securable by making open porosity into 50% or less.
  • the open porosity of the back layer is preferably 10% or more, more preferably 20% or more, and particularly preferably 30% or more. Further, the open porosity of the back layer is preferably 45% or less, more preferably 40% or less, and particularly preferably 35% or less.
  • the back layer When the back layer is used as a layer for ensuring the strength of the setter, the back layer is impregnated with finely pulverized cordierite cerven, fine mullite, fine alumina, fine zirconia, fine silicon nitride, fine silicon carbide, etc. By doing so, you may improve the intensity
  • the strength of the back surface layer can be secured without increasing the thickness of the back surface layer, and a lightweight and high strength setter can be obtained.
  • the intermediate layer has a lower density than the front surface layer and the back surface layer. Note that the front layer and the back layer may have the same density or different densities.
  • the intermediate layer has a honeycomb structure.
  • the aperture ratio of the honeycomb structure constituting the intermediate layer may be 50% or more and 95% or less. That is, in the cross section orthogonal to the direction in which the opening extends, the area of the partition wall defining the opening may be 5% or more and 50% or less, and the part (void) other than the partition wall may be 50% or more and 95% or less.
  • the open porosity of a partition may be 5% or more and 50% or less similarly to a surface layer and / or a back surface layer.
  • the open porosity of the partition wall is preferably 10% or more, more preferably 20% or more, and particularly preferably 30% or more. Further, the open porosity of the back layer is preferably 45% or less, more preferably 40% or less, and particularly preferably 35% or less.
  • the thickness of the partition wall defining the honeycomb structure opening may be 50 ⁇ m or more and 2000 ⁇ m or less.
  • the partition wall thickness is preferably 60 ⁇ m or more, and more preferably 80 ⁇ m or more.
  • the thickness of the partition wall is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 200 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the thickness of a partition may be the same as the thickness of a surface layer and / or a back surface layer. If the thickness of the partition wall is the same as that of the front surface layer and the back surface layer, all of the parts constituting the setter have the same thickness, which facilitates manufacture.
  • the hydraulic diameter of the opening defined by the partition wall may be not less than 0.3 mm and not more than 7 mm.
  • the hydraulic diameter is preferably 0.4 mm or more, more preferably 0.5 mm or more, and particularly preferably 0.6 mm or more.
  • the hydraulic diameter is preferably 3 mm or less, more preferably 2 mm or less, and particularly preferably 1.5 mm or less.
  • the intermediate layer is provided between the front surface layer and the back surface layer.
  • the front surface layer and the back surface layer are bonded via the intermediate layer.
  • the front surface layer, the intermediate layer, and the back surface layer may be integrally formed.
  • the partition wall of the surface layer and the intermediate layer may be continuous
  • the partition wall of the back surface layer and the intermediate layer may be continuous
  • the surface layer, the intermediate layer, and the back surface layer may be integrated.
  • the surface layer, the intermediate layer, and the back layer are made of the same material.
  • a setter having such a structure can be manufactured by, for example, extrusion molding.
  • the opening of the intermediate layer may extend in the direction connecting the front surface layer and the back surface layer (that is, the thickness direction).
  • the opening may extend in a direction orthogonal to the direction connecting the front surface layer and the back surface layer (that is, a direction parallel to the front surface or the back surface).
  • the thickness direction may be referred to as a first direction
  • the direction orthogonal to the first direction may be referred to as a second direction.
  • the form in which the opening extends in the first direction can increase the strength in the thickness direction (compressive strength) and is suitable as a setter for firing a heavy object to be fired. Further, the form in which the opening extends in the second direction is advantageous in that the integral molding is easy because the thickness of the front surface layer and the back surface layer can be easily controlled in the extrusion molding.
  • the opening may appear only once or in a plurality of times in the first direction. That is, one or more honeycomb cells (openings surrounded by partition walls) may appear between the front surface layer and the back surface layer. In this case, the honeycomb cells may be 1 cell or more and 6 cells or less. The number of honeycomb cells can be appropriately adjusted based on the desired setter thickness, hydraulic diameter, and the like.
  • the setter disclosed in the present specification may have a thermal expansion coefficient of 2.0 ppm / ° C. or less, preferably 1.5 ppm / ° C. or less, more preferably 1.0 ppm / ° C. or less.
  • the coefficient of thermal expansion of the setter means a surface layer, an intermediate layer (honeycomb structure layer), a back layer, and a sample in which the intermediate layer includes one or more honeycomb cells when measured from room temperature to 800 ° C. Value. Even if a bulk product formed by press molding or the like has a thermal expansion coefficient exceeding 2.0 ppm / ° C., a setter having a honeycomb structure layer (intermediate layer) is formed by extrusion molding. Thus, a setter having a thermal expansion coefficient of 2.0 ppm / ° C. or less can be obtained.
  • the setter disclosed in this specification may have a flat plate shape as a whole, or a rib may be provided at an in-plane end.
  • a flat setter can be easily manufactured.
  • the strength of the setter can be supplemented.
  • a spacer for securing a gap between the setters can be eliminated.
  • the setter disclosed in the present specification may be provided with a coating layer on the front surface and / or the back surface.
  • the coating layer can prevent a chemical reaction from occurring between the object to be fired and the setter.
  • the choice of the material of the setter or the type of the object to be fired can be increased.
  • the smoothness of the setter surface can be improved by applying a coating (the surface roughness can be reduced).
  • the coating layer preferably has open pores. It is prevented that the gas generated from the object to be fired is difficult to escape.
  • the open porosity of the coating layer may be 5% or more and 70% or less, preferably 20% or more, more Preferably it is 30% or more, and particularly preferably 40% or more.
  • the open porosity of the coating layer is preferably 50% or less, more preferably 45% or less, still more preferably 40% or less, and particularly preferably 35% or less.
  • the thickness of the coating layer may be 500 ⁇ m or less. If the coating layer is too thick, the coating layer may be peeled off by repeated firing. Moreover, when the coating layer is too thick, the cost of the setter increases. From the viewpoint of suppression of peeling and cost increase, the thickness of the coating layer may be 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, 250 ⁇ m or less, or 200 ⁇ m or less. It may be 150 ⁇ m or less, may be 100 ⁇ m or less, and may be 50 ⁇ m or less.
  • the thickness of the coating layer may be 5 ⁇ m or more from the viewpoint of effectively preventing a chemical reaction between the object to be fired and the setter.
  • the thickness of the coating layer is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and particularly preferably 50 ⁇ m or more from the viewpoint of preventing a chemical reaction between the object to be fired and the setter for a long period of time. is there.
  • the coating layer can be formed by, for example, gas plasma spraying, water plasma spraying, spray coating, casting, or the like. From the viewpoint that a good open porosity can be obtained, the coating layer is preferably formed by spray coating or pouring.
  • Various materials can be selected for the coating layer depending on the material of the setter and the method of forming the coating layer.
  • the material of the coating layer is mullite, alumina, alumina-zirconia, Y 2 O 3 stabilized zirconia, CaO stabilized zirconia, CaO / Y 2 O 3 stabilized zirconia, spinel . From the viewpoint of obtaining a good open porosity and suppressing a chemical reaction with the object to be fired, the material of the coating layer is preferably alumina or alumina-zirconia.
  • a ceramic setter for firing electronic components can be given.
  • the setter disclosed in this specification can be suitably used for firing an electronic component having a surface in contact with the setter having a size of about 0.1 mm ⁇ 0.2 mm.
  • the technique disclosed in this specification can be suitably applied to a ceramic setter having a width of 50 to 500 mm, a length of 50 to 250 mm, and a thickness of 0.5 to 10 mm, for example. .
  • the setter 10 will be described with reference to FIGS. 1 and 2.
  • the setter 10 includes a surface layer 2, an intermediate layer 4, and a back surface layer 6.
  • the intermediate layer 4 is provided between the front surface layer 2 and the back surface layer 6.
  • the material of the surface layer 2, the intermediate layer 4, and the back layer 6 is cordierite.
  • the surface of the surface layer 2 and the surface (back surface) of the back surface layer 6 are flat. That is, the front surface layer 2 and the back surface layer 6 are flat. Therefore, the setter 10 itself has a flat plate shape.
  • the intermediate layer 4 has a honeycomb structure and has a lower density than the front surface layer 2 and the back surface layer 6. Although details will be described later, the opening of the intermediate layer 4 extends in a direction orthogonal to the thickness direction (the direction of arrow 20 in FIG. 1). The opening of the intermediate layer 4 extends in the direction of arrow 20 from one end of the setter 10 to the other end.
  • a side wall 8 is provided on the side surface of the setter 10.
  • the side wall 8 is not provided in the direction in which the opening of the intermediate layer 4 extends. That is, the side walls 8 are provided on two surfaces orthogonal to the direction of the arrow 20 among the side surfaces of the setter 10.
  • the side wall 8 extends in the thickness direction of the setter 10 (perpendicular to the front surface layer 2 and the back surface layer 6).
  • the intermediate layer 4 includes a partition wall 14 and a space (opening) 12 surrounded by the partition wall 14. Therefore, the intermediate layer 4 has a lower density than the front surface layer 2 and the back surface layer 6.
  • the thickness t2 of the surface layer 2 is 100 ⁇ m
  • the thickness t4 of the intermediate layer 4 is 800 ⁇ m
  • the thickness t6 of the back layer 6 is 100 ⁇ m.
  • the setter 10 has a thickness t10 of 1 mm.
  • the truss structure 16 is constituted by the partition wall 14 in the intermediate layer 4.
  • the truss structure 16 is an example of a honeycomb structure.
  • a single-stage honeycomb cell is provided between the front surface layer 2 and the back surface layer 6.
  • the side length D16 of the opening 12 of the truss structure 16 is 0.92 mm.
  • the partition wall 14 has a thickness t14 of 100 ⁇ m. That is, in the setter 10, the thickness t2 of the front surface layer 2, the thickness t6 of the back surface layer 6, and the thickness t14 of the partition wall 14 are equal.
  • the setter 10 has an aperture ratio of 70% and a hydraulic diameter of 0.53 mm. Note that, at the end portion of the intermediate layer 4 (a portion where a part of the opening 12 is defined by the side wall 8), the area of the opening 12 is approximately half of the area of the other opening 12.
  • the partition wall 14 is continuous with the front surface layer 2, the back surface layer 6 and the side wall 8.
  • the surface layer 2, the intermediate layer 4, the back surface layer 6, and the side wall 8 are integrally formed of the same material (cordierite).
  • the surface layer 2, the intermediate layer 4, the back layer 6 and the side wall 8 have open pores, and the open porosity is 35%.
  • the thermal expansion coefficient of the setter 10 is 0.9 ppm / ° C. Note that the thermal expansion coefficient of cordierite in a bulk state (state in which the structure does not have orientation) is 2.2 to 2.8 ppm / ° C. Since the setter 10 has a honeycomb structure in which the intermediate layer 4 is formed by extrusion, the coefficient of thermal expansion can be significantly reduced as compared with a solid setter.
  • the setter 10 includes the planar surface layer 2 and the back surface layer 6 and the honeycomb-shaped intermediate layer 4 provided between the surface layer 2 and the back surface layer 6. Since the setter 10 has the honeycomb-like intermediate layer 4, the weight can be reduced compared to a solid setter.
  • the setter 10 can reduce the heat capacity, and can follow the change in the furnace temperature well.
  • the hydraulic diameter of the opening 12 of the intermediate layer 4 is 0.53 mm, and the gas in the furnace can move well in the intermediate layer 4.
  • the setter 10 is heated from the outside and the inside (in the intermediate layer 4), and can follow the change in the furnace temperature well.
  • the thickness of the front surface layer 2 and the back surface layer 6 is sufficiently secured (100 ⁇ m), and a sufficient strength can be exhibited despite having a honeycomb structure.
  • the thickness of the surface layer is increased, the movement of the gas generated from the material to be fired is prevented at the portion where the material to be fired and the surface layer are in contact.
  • the surface layer 2 has open pores, and the open porosity is adjusted to 35%. Therefore, even in the portion where the object to be fired and the setter 10 are in contact, the gas generated from the object to be fired moves reliably to the outside of the object to be fired, and the object to be fired can be fired satisfactorily.
  • the gas in the furnace permeates into the surface layer 2 from the outside of the setter 10 and the opening 12 (intermediate layer 4), and the temperature of the surface layer 2 follows the furnace temperature well. Furthermore, since the side wall 8 is orthogonal to the front surface layer 2 and the back surface layer 6, sufficient compressive strength can be secured at the end of the setter 10.
  • the setter 10 is an example that embodies the technology disclosed in the present specification, and can take various modifications. Hereinafter, some modified examples of the setter 10 will be described.
  • FIG. 3 is different from the setter 10 in the thickness t6a of the back surface layer 6a. See FIG. 1 for a rough appearance.
  • the description is abbreviate
  • FIG. 1 is abbreviate
  • the thickness t6a of the back surface layer 6a is 300 ⁇ m.
  • the setter 10 a can be stronger than the setter 10. In the setter 10, the strength can be increased even if the thickness of the surface layer 2 or the intermediate layer 4 is increased in addition to the back surface layer 6. Alternatively, the strength can be increased by increasing the thickness of the surface layer 2 or the intermediate layer 4 without increasing the thickness of the back surface layer 6. However, increasing the thickness of each layer 2, 4 and 6 increases the weight of the setter.
  • the setter 10a can increase the strength while suppressing an increase in weight by increasing only the thickness of the back surface layer that contributes most to the improvement in strength.
  • the structure of the setter 10a is the same as that of the setter 10 in the structure of the surface layer 2 and the partition wall 14 in contact with the object to be fired.
  • the heat capacity of the surface layer 2 and the intermediate layer 4 in the vicinity of the surface layer 2 does not increase with respect to the setter 10. Therefore, the setter 10a can reduce the heat capacity in the same manner as the setter 10 while improving the strength.
  • the thickness t14a of the partition wall 14a is 60 ⁇ m.
  • the setter 10b can be lighter than the setter 10. Further, by making the partition wall 14 thinner than the setter 10, the opening ratio of the intermediate layer 4 increases (the density of the intermediate layer 4 decreases), and the heat capacity is further reduced. As described above, the back layer contributes most to the strength of the setter. Therefore, even if the thickness of the partition wall is reduced, it does not greatly contribute to the strength reduction of the setter.
  • the setter 10b is lightweight while suppressing a decrease in strength, and can reduce the heat capacity.
  • the thickness of the back surface layer 6 may be the same as that of the setter 10a (FIG. 2). In other words, in the setter 10, the thickness of the back surface layer 6 may be made thicker than that of the surface layer 2, and the thickness of the partition wall 14 may be made thinner than that of the surface layer 2.
  • the setter 10c is different from the setter 10 in the shape of the side wall 8a. See FIG. 1 for a rough appearance.
  • the description is abbreviate
  • FIG. In the setter 10c the side wall 8a is inclined with respect to the thickness direction. Specifically, the size of the opening 12 is equal at the center portion and the end portion of the intermediate layer 4. As a result, the furnace gas can pass through the entire intermediate layer 4 evenly.
  • the setter 10c can suppress the occurrence of temperature unevenness in the surface.
  • the intermediate layer 4 includes truss structures (honeycomb cells) 16a and 16b having two stages. That is, the opening 12 appears twice in the direction connecting the front surface layer 2 and the back surface layer 6 (thickness direction).
  • the side wall 8 extends in the thickness direction of the setter 10d (perpendicular to the front surface layer 2 and the back surface layer 6).
  • the setter 10d can increase the thickness of the setter without increasing the size of each truss structure. If the size of the truss structure increases too much, the strength of the setter may decrease. By setting it as the truss structure of 2 steps
  • the number of stages of the truss structure may be two or more.
  • the number of stages of the truss structure may be 2 or more and 6 or less.
  • the thickness of the back surface layer 6 may be made larger than the thickness of the surface layer 2, and / or the thickness of the partition wall 14 may be made thinner than the surface layer 2.
  • the 7 can be said to be a modification of the setter 10d.
  • the setter 10e about the same structure as the setter 10d, description is abbreviate
  • the setter 10e is different from the setter 10d in the structure of the side wall 8b.
  • the outer surface of the side wall 8b has a curve. By having the side wall 8b, the end of the setter 10e can be made difficult to chip.
  • the setter 210 will be described with reference to FIGS. 8 and 9.
  • the setter 210 is a modification of the setter 10, and items that are common to the setter 10 may be denoted by the same reference numerals as the setter 10 and description thereof may be omitted.
  • the setter 210 is provided with a rib 30 at the end 34 on the surface layer 2 side. In other words, the central portion 32 of the setter 210 is thinner than the end portion 34.
  • the rib 30 extends along the arrow 20 in which the opening 12 extends (parallel to the direction in which the opening 12 extends).
  • the ribs 30 are provided at both ends of the surface layer 2 in a direction orthogonal to the direction in which the opening 12 extends.
  • the end 34 of the setter 210 includes four stages of truss structures 16a, 16b, 16c and 16d.
  • the central portion 32 includes two-stage truss structures 16c and 16d.
  • the setter 210 prepares the flat plate provided with the four-stage truss structures 16a, 16b, 16c and 16d shown in FIG. 10, and the truss structures 16a and 16b where the central portion 32 is formed along the broken line 36. It can be easily formed by removing. That is, in the setter 210, the central portion 32 and the rib 30 on which the object to be fired is placed have an integral structure.
  • FIG. 11 shows the setter 210a.
  • the setter 210a is a modification of the setter 210.
  • the coating layer 40 is provided in the center part 32 of the setter 210a.
  • the coating layer 40 is made of alumina and is formed on the surface of the surface layer 2 by spray coating.
  • the coating layer 40 has an open porosity of 30% and a thickness of 50 ⁇ m.
  • the coating layer 40a may be provided in the center part 32 and the wall surface 30a of the setter 210b like the setter 210b shown in FIG.
  • the coating layer 40 may be provided on the surface layer of a flat setter. That is, the coating layer 40 may be provided on the surface of the surface layer 2 of the setters 10, 10a, 10b, 10c, 10d and 10e.
  • the setter 310 will be described with reference to FIG.
  • the setter 310 is a modification of the setters 10 and 210, and the same reference numerals as those of the setters 10 and 210 may be used for the items common to the setters 10 and 210, and the description thereof may be omitted.
  • the setter 310 is provided with ribs 330 a at both ends of the surface layer 2 in the direction orthogonal to the direction in which the opening 12 extends (the direction of the arrow 20), like the setter 210. Further, the setter 310 is provided with a rib 330b at one end in the direction in which the opening 12 extends. The rib 330a and the rib 330b are integrated. Therefore, it can be said that the setter 310 has the ribs 330 (ribs 330 a and 330 b) provided on three sides of the end portion of the surface layer 2. Compared with the setter 210, the setter 310 is in contact with the setters 310 and 310 in three directions when the plurality of setters 310 are stacked. Therefore, the setters 310 and 310 can be loaded stably. Moreover, it can suppress that the surface of the setter 310 falls that to-be-fired material falls.
  • a coating layer may be provided on the surface layer 2 and / or the wall surface of the rib 330 (see also FIGS. 11 and 12).
  • the coating layer may be provided on the wall surface of the rib 330a and the coating layer may not be provided on the wall surface of the rib 330b. Or you may provide a coating layer in both the wall surface of the rib 330a, and the wall surface of the rib 330b.
  • the coating layer is provided on the end face of the partition wall 14 while ensuring the opening 12. By doing so, the gas in the furnace passes through the openings 14 of the ribs 330b while preventing the reaction between the object to be fired and the setter surface, so that the temperature of the surface layer 2 can follow the inner atmosphere well.
  • the setter 410 will be described with reference to FIG.
  • the setter 410 is a modification of the setters 10, 210, and 310, and items that are common to the setters 10, 210, and 310 may be omitted by giving the same reference numerals as the setters 10, 210, and 310. .
  • the rib 430 surrounds the entire periphery of the end portion of the surface layer 2.
  • the center part 32 of the setter 410 is recessed.
  • ribs 430a are provided at both ends of the surface layer 2 in a direction orthogonal to the direction in which the opening 12 extends (the direction of the arrow 20).
  • ribs 430b are provided at both ends in the direction in which the opening 12 extends.
  • the rib 430a and the rib 430b are integral.
  • a coating layer may be provided on the surface layer 2 and / or the wall surface of the rib 430.
  • the coating layer When the coating layer is provided on the rib 430, the coating layer may be provided only on the wall surface of the rib 430a, and the coating layer may not be provided on the wall surface of the rib 430b. Or you may provide a coating layer in both the wall surface of the rib 430a, and the wall surface of the rib 430b.
  • the coating layer When providing a coating layer on the wall surface of the rib 430b, the coating layer is provided on the end face of the partition wall 14 while ensuring the opening 12. By doing so, while the furnace gas passes through the openings 14 of the ribs 430b while preventing the reaction between the object to be fired and the setter surface, the temperature of the surface layer 2 can follow the furnace atmosphere well.
  • FIG. 15 shows a part of a cross section of the setter 310 and corresponds to the portion shown in FIG.
  • FIG. 16 shows a view of the setter 310 observed from the surface layer 2 side, and the shape of the intermediate layer is indicated by a broken line.
  • the opening 12 of the intermediate layer 4 extends in the direction connecting the surface layer 2 and the back surface layer 6 (in the direction of arrow 50). That is, in the setter 510, the partition wall 14 extends in parallel with the arrow 50 direction. Therefore, the setter 510 can increase the compressive strength in the thickness direction. Further, when the opening 12 extends in the direction of the arrow 20 as in the case of the setters 10, 210, etc. (see FIGS. 1 and 8), in order to ensure a large hydraulic diameter, the thickness of the intermediate layer 4 is increased. It is necessary. However, in the case of the setter 510, the hydraulic diameter of the opening 12 can be increased while reducing the thickness of the intermediate layer 4 (that is, reducing the thickness of the setter 510).
  • the setter 510 can be manufactured by forming the front surface layer 2, the intermediate layer 4 and the back surface layer 6 separately, bonding the layers 2, 4 and 6 with a ceramic paste and firing them at a predetermined temperature.
  • the intermediate layer 4 having a honeycomb structure and having openings 12 on the front and back surfaces is formed by, for example, extrusion molding.
  • the sheet-like surface layer 2 and the back surface layer 6 are formed by, for example, extrusion molding.
  • the setter 510 can be formed by bonding the front surface layer 2 and the back surface layer 6 to the intermediate layer 4 and baking.
  • the open porosity of the partition wall 14 of the intermediate layer 4 can be made smaller than the open porosity of the surface layer 2.
  • the strength of the intermediate layer 4 can be further improved while ensuring the open porosity of the surface layer 2.
  • a coating layer may be provided on the surface of the surface layer 2.
  • a coating layer was formed on the surface of the setter 10 (see FIG. 1), and a heat test of the setter 10 itself and a reactivity test with the object to be fired were performed. Note that cordierite was used as the material for the setter 10.
  • a coating material a mixture obtained by adding 0.5 part of a hydrophilic organic binder to 100 parts of granular ceramics having an average particle size of 20-100 ⁇ m and further adding 60 parts of ion exchange water is introduced into a container containing ceramic cobblestones. Then, the mixture was pulverized and mixed using a pot mill to prepare a slurry.
  • ion-exchange water is for adjusting the viscosity which is easy to apply the coating material (slurry).
  • alumina cobblestone can be used as the ceramic cobblestone.
  • a trommel can be used in place of the pot mill.
  • a coating material (raw material slurry) produced using a spray gun was applied to the surface of the setter 10 to form a coating layer. The coating time was adjusted, and a 5-600 ⁇ m coating layer was formed on the surface of the setter 10 (Sample 1-12).
  • granular ceramics having an average particle size of 20-100 ⁇ m were sprayed on the surface of the setter 10 using a plasma spraying machine, and a coating layer of 100 ⁇ m was formed on the surface of the setter 10 (Sample 13). Further, the coating material (raw material slurry) was poured onto the surface of the setter 10 to form a 100 ⁇ m coating layer on the surface of the setter 10 (Sample 14).
  • the above-mentioned granular ceramics for example, zirconia, mullite, alumina or the like can be used.
  • the setter 10 in which the coating layer was not provided was also subjected to a heating test and a reactivity test (Sample 15). The test conditions and results are shown in FIG.
  • the heating test was performed in a nitrogen atmosphere under atmospheric pressure without placing the member to be heated on the setter 10 (about the setter 10 itself).
  • the cycle was heated to 1350 ° C. at a rate of temperature increase of 100 ° C./hr, held at 1350 ° C. for 2 hours, and then naturally cooled to room temperature, and then 5 cycles were performed.
  • “A” was observed in the sample in which no abnormality was observed in the coating layer after each cycle, and “B” was observed in the sample in which alteration (such as blistering) was confirmed although no peeling occurred.
  • “C” is attached to the sample.
  • the thickness of the coating layer was 20 ⁇ m or more, it was confirmed that even if the number of cycles was increased, no uneven burning occurred in the heated member (all evaluated as “A”). In this test, even if the reactivity test was performed for 5 cycles, a sample having an evaluation of “C” was not confirmed. From the above results, it is preferable to adjust the thickness of the coating layer to 5 to 500 ⁇ m, and in particular, by adjusting the thickness to 20 to 250 ⁇ m, it is possible to prevent the coating layer from becoming abnormal, and to apply heat to the member to be heated. It was confirmed that firing unevenness can be prevented. In addition, in this test, the difference by the formation method of a coating layer was not confirmed (samples 5, 13, and 14).
  • a setter having a truss shape (triangular shape) as a honeycomb structure has been described.
  • the shape of the honeycomb structure may be a quadrangle (square, rectangle), a hexagon, or the like.

Abstract

This setter for firing is formed from a ceramic, and comprises a front surface layer, an intermediate layer and a back surface layer. The intermediate layer has a honeycomb structure; and the density of the intermediate layer is lower than those of the front surface layer and the back surface layer. Meanwhile, the front surface layer is in the form of a flat plate, and has a thickness of from 50 μm to 2,000 μm (inclusive). In addition, the front surface layer has an open porosity of from 5% to 50% (inclusive).

Description

焼成用セッターSetter for firing
 本明細書は、焼成用セッターに関する技術を開示する。特に、セラミックス製の焼成用セッターに関する技術を開示する。 This specification discloses the technique regarding the setter for baking. In particular, a technique relating to a ceramic setter for firing is disclosed.
 被焼成物を焼成する際、被焼成物をセラミックス製のセッター上に載置し、セッターを焼成炉内に配置する。セッターは、被焼成物とともに焼成炉内で加熱される。炉内温度の変化に良好に追従するために、熱容量が小さいセッターが必要とされる。実開平1-167600号公報(以下、特許文献1と称する)は、セッターをハニカム構造とし、セッターの熱容量を小さくする技術を開示している。特許文献1は、ハニカム構造のセッターを用いることにより、被焼成物の上面(セッターと接触しない面)と下面(セッターと接触する面)の加熱ムラを抑制している。 When firing the object to be fired, the object to be fired is placed on a ceramic setter and the setter is placed in a firing furnace. The setter is heated together with the object to be fired in a firing furnace. A setter with a small heat capacity is required to follow the changes in the furnace temperature well. Japanese Utility Model Laid-Open No. 1-167600 (hereinafter referred to as Patent Document 1) discloses a technique in which the setter has a honeycomb structure and the heat capacity of the setter is reduced. Patent Document 1 uses a honeycomb setter to suppress heating unevenness on the upper surface (the surface not in contact with the setter) and the lower surface (the surface in contact with the setter) of the object to be fired.
 上記したように、セッターをハニカム構造とすると、セッターの密度が小さくなり、セッターの熱容量を小さくすることができる。しかしながら、典型的に、密度が小さくなると、強度が低下する。そのため、セッターを繰り返し使用することにより、セッターが変形したり、破損することが起こり得る。単にセッターをハニカム構造としただけは、セッターの耐久性が低下する。熱容量の低減と耐久性の向上はトレードオフの関係にあると言える。熱容量が小さく耐久性が高いセッターが必要とされている。本明細書は、熱容量を小さく維持しながら、耐久性が高いセッターを実現する技術を提供する。 As described above, when the setter has a honeycomb structure, the density of the setter is reduced, and the heat capacity of the setter can be reduced. However, typically, as the density decreases, the strength decreases. Therefore, the setter may be deformed or damaged by repeatedly using the setter. Simply setting the setter to a honeycomb structure reduces the durability of the setter. It can be said that a reduction in heat capacity and an improvement in durability are in a trade-off relationship. There is a need for a setter with a small heat capacity and high durability. The present specification provides a technique for realizing a setter having high durability while maintaining a small heat capacity.
 本明細書で開示する焼成用セッターは、セラミックス製であり、表面層と中間層と裏面層を備えている。中間層は、ハニカム構造を有しており、表面層及び裏面層より低密度である。また、上記焼成用セッターでは、表面層は、平板状であり、厚みが50μm以上2000μm以下であるとともに開気孔率が5%以上50%以下である。 The firing setter disclosed in the present specification is made of ceramics and includes a front surface layer, an intermediate layer, and a back surface layer. The intermediate layer has a honeycomb structure and has a lower density than the front surface layer and the back surface layer. In the setter for firing, the surface layer has a flat plate shape with a thickness of 50 μm to 2000 μm and an open porosity of 5% to 50%.
 まず、本明細書でいう「表面層」及び「裏面層」について説明する。「表面層」とは、被焼成物が載置される面を含み、中間層に隣接し、中間層より高密度に形成されている層状部分のことである。「裏面層」とは、中間層に対して表面層とは反対側で中間層に隣接し、中間層より高密度に形成されている層状部分のことである。なお、焼成用セッターの表裏面を被焼成物の載置面として利用する場合、「表面層」,「裏面層」という表現は、焼成の際の相対的位置を示すにすぎない。この場合、「表面層」と「裏面層」の双方が、上記「表面層」と同様の構造的特徴を有する。 First, the “surface layer” and “back layer” in this specification will be described. The “surface layer” is a layered portion including a surface on which the object to be fired is placed, adjacent to the intermediate layer, and formed at a higher density than the intermediate layer. The “back surface layer” is a layered portion that is adjacent to the intermediate layer on the side opposite to the surface layer with respect to the intermediate layer and is formed at a higher density than the intermediate layer. Note that when the front and back surfaces of the setter for firing are used as the placement surface of the object to be fired, the expressions “surface layer” and “back surface layer” merely indicate the relative positions during firing. In this case, both the “surface layer” and the “back surface layer” have the same structural features as the “surface layer”.
 上記焼成用セッターでは、中間層が、表面層及び裏面層より低密度である。換言すると、表面層及び裏面層は、中間層より高密度である。低密度の中間層を設けることにより、焼成用セッター全体の熱容量は低下する。高密度の表面層及び裏面層を設けることにより、焼成用セッター全体の強度を維持することができる。 In the setter for firing, the intermediate layer has a lower density than the front surface layer and the back surface layer. In other words, the front surface layer and the back surface layer have a higher density than the intermediate layer. By providing a low-density intermediate layer, the heat capacity of the entire firing setter is reduced. By providing the high-density surface layer and the back surface layer, the strength of the entire setter for firing can be maintained.
 また、表面層の厚みを50μm以上2000μm以下に調整することにより、表面層の強度が確保され、被焼成物の重量を支えることが可能となる。また、表面層の強度を確保することにより、被焼成物を積載したり取り出したりするときの衝撃による表面層の割れや欠けを抑制することができるとともに、焼成工程においてセッターが変形することが抑制される。その結果、被焼成物がセッター表面に確実に保持される。例えば、比較的小サイズの被焼成物を焼成する場合、表面層の割れや欠けが抑制されることにより、被焼成物が遺失することが防止される。また、比較的大サイズの被焼成物を焼成する場合、セッターの変形が抑制されることにより、被焼成物が変形することが防止される。また、表面層を上記厚みに調整することにより、表面層の熱容量が過大になることが抑制され、昇降温の際のセッターと被焼成物との温度差を小さくすることができる。 Further, by adjusting the thickness of the surface layer to 50 μm or more and 2000 μm or less, the strength of the surface layer is ensured and the weight of the object to be fired can be supported. In addition, by ensuring the strength of the surface layer, it is possible to suppress cracking and chipping of the surface layer due to impact when loading and unloading the object to be fired, and to prevent deformation of the setter during the firing process. Is done. As a result, the object to be fired is reliably held on the setter surface. For example, when firing a relatively small size object to be fired, cracking or chipping of the surface layer is suppressed, thereby preventing the object to be fired from being lost. Moreover, when baking a comparatively large-sized to-be-fired thing, it is prevented that a to-be-fired thing deform | transforms by suppressing a deformation | transformation of a setter. Further, by adjusting the surface layer to the above thickness, it is possible to suppress the heat capacity of the surface layer from becoming excessive, and to reduce the temperature difference between the setter and the object to be fired when the temperature is raised or lowered.
 なお、一般的に、表面層の密度を高くすると、表面層の気孔率が低下する。表面層の気孔(特に開気孔率)が減少すると、被焼成物と表面層の接触部分において被焼成物から生じるガスが抜け難くなったり、炉内雰囲気ガスが表面層に浸透しにくくなって被焼成物とセッターの温度差が大きくなったりする。上記焼成用セッターでは、表面層の開気孔率を5%以上とすることにより、被焼成物から生じるガスが抜け難くなることを防止し、炉内雰囲気ガスが表面層に浸透し易くなることで炉内温度とセッターの温度差を小さくできる。また、開気孔率を50%以下とすることにより、表面層の強度が低下することも防止できる。なお、「開気孔率」とは、多孔質体が有する気孔のうち、多孔質体の外部空間に通じている気孔(開孔)を多孔質体の体積で除したものである。 In general, when the density of the surface layer is increased, the porosity of the surface layer is lowered. If the porosity (especially the open porosity) of the surface layer decreases, the gas generated from the fired product will not easily escape at the contact portion between the fired product and the surface layer, and the furnace gas will not easily penetrate the surface layer. The temperature difference between the fired product and the setter becomes large. In the above setter for firing, by making the open porosity of the surface layer 5% or more, it is possible to prevent the gas generated from the fired product from becoming difficult to escape, and the atmosphere gas in the furnace easily penetrates into the surface layer. The temperature difference between the furnace temperature and the setter can be reduced. Moreover, it can also prevent that the intensity | strength of a surface layer falls by making open porosity into 50% or less. The “open porosity” is obtained by dividing pores (open holes) communicating with the outer space of the porous body by the volume of the porous body, among the pores of the porous body.
第1実施例の焼成用セッターの斜視図を示す。The perspective view of the setter for baking of 1st Example is shown. 図1のII-II線に沿った断面の部分拡大図を示す。FIG. 2 shows a partially enlarged view of a cross section taken along line II-II in FIG. 第1実施例の焼成用セッターの変形例を示す。The modification of the setter for baking of 1st Example is shown. 第1実施例の焼成用セッターの変形例を示す。The modification of the setter for baking of 1st Example is shown. 第1実施例の焼成用セッターの変形例を示す。The modification of the setter for baking of 1st Example is shown. 第1実施例の焼成用セッターの変形例を示す。The modification of the setter for baking of 1st Example is shown. 第1実施例の焼成用セッターの変形例を示す。The modification of the setter for baking of 1st Example is shown. 第2実施例の焼成用セッターの斜視図を示す。The perspective view of the setter for baking of 2nd Example is shown. 図8のIX-IX線に沿った断面の部分拡大図を示す。FIG. 9 is a partially enlarged view of a cross section taken along line IX-IX in FIG. 8. 第2実施例の焼成用セッターの製造工程を説明する図を示す。The figure explaining the manufacturing process of the setter for baking of 2nd Example is shown. 第2実施例の焼成用セッターの変形例を示す。The modification of the setter for baking of 2nd Example is shown. 第2実施例の焼成用セッターの変形例を示す。The modification of the setter for baking of 2nd Example is shown. 第3実施例の焼成用セッターの斜視図を示す。The perspective view of the setter for baking of 3rd Example is shown. 第4実施例の焼成用セッターの斜視図を示す。The perspective view of the setter for baking of 4th Example is shown. 第5実施例の焼成用セッターの断面の部分拡大図を示す。The elements on larger scale of the cross section of the setter for baking of 5th Example are shown. 第5実施例の焼成用セッターの部分平面図を示す。The partial top view of the setter for baking of 5th Example is shown. コーティング層の厚みと各特性の関係を示す。The relationship between the thickness of a coating layer and each characteristic is shown.
 以下、本明細書で開示される技術の特徴を整理する。なお、以下に記す事項は、各々単独で技術的な有用性を有している。 The following summarizes the features of the technology disclosed in this specification. The items described below have technical usefulness independently.
 本明細書で開示するセッターは、被焼成物を焼成する際に、被焼成物を載置するために用いられる。本明細書で開示するセッターは、セラミックス製である。特に限定されるものではないが、セッターの材料は、コージュライト質、ムライト質、アルミナ質、ジルコニア質、窒化珪素質、炭化珪素質を用いることができる。材料自体が比較的低密度であり、熱膨張係数が低いという観点より、セッターの材料はコージュライト質であることが好ましい。 The setter disclosed in the present specification is used for placing the object to be fired when the object to be fired is fired. The setter disclosed in this specification is made of ceramics. Although not particularly limited, the setter material may be cordierite, mullite, alumina, zirconia, silicon nitride, or silicon carbide. From the viewpoint of the material itself having a relatively low density and a low thermal expansion coefficient, the setter material is preferably cordierite.
 セッターは、表面層と中間層と裏面層を備えている。表面層には、被焼成物が載置される。表面層は、平板状である。具体的には、表面層は、メッシュ構造、ハニカム構造等のような開口を備えておらず、ソリッドであり、表層部分が平面である。表面層を平板状とすることにより、比較的小さな被焼成物(例えば電子部品等)を確実にセッター上に載置することができる。 The setter has a surface layer, an intermediate layer, and a back layer. An object to be fired is placed on the surface layer. The surface layer is flat. Specifically, the surface layer does not have an opening such as a mesh structure, a honeycomb structure, or the like, is solid, and the surface layer portion is flat. By making the surface layer into a flat plate shape, a relatively small object to be fired (for example, an electronic component) can be reliably placed on the setter.
 表面層の厚みは、50μm以上2000μm以下である。表面層の厚みを50μm以上とすることにより、表面層の強度が確保され、被焼成物の重量を支えることが可能となる。表面層の強度を確保することにより、被焼成物を積載したり取り出したりするときの衝撃による表面層の割れや欠けを抑制することができる。また、表面層の強度を確保することにより、焼成工程においてセッターが変形することが抑制される。その結果、被焼成物がセッター表面に確実に保持される。例えば、比較的小サイズの被焼成物を焼成する場合、表面層の割れや欠けが抑制されることにより、被焼成物が遺失することが防止される。比較的大サイズの被焼成物を焼成する場合、セッターの変形が抑制されることにより、被焼成物が変形することが防止される。また、表面層の厚みを2000μm以下とすることにより、表面層の熱容量が過大になることが抑制され、中間層を流れる炉内雰囲気ガスの熱が表面層を介して被焼成物に伝わり易くなる。その結果、昇降温の際のセッターと被焼成物との温度差を小さくすることができる。特に限定されるものではないが、表面層の厚みは、好ましくは100μm以上であり、より好ましくは150μm以上である。また、表面層の厚みは、好ましくは1000μm以下であり、より好ましくは500μm以下であり、さらに好ましくは250μm以下であり、特に好ましくは200μm以下である。 The thickness of the surface layer is 50 μm or more and 2000 μm or less. By setting the thickness of the surface layer to 50 μm or more, the strength of the surface layer is ensured and the weight of the object to be fired can be supported. By ensuring the strength of the surface layer, it is possible to suppress cracking or chipping of the surface layer due to an impact when loading or unloading the object to be fired. Moreover, by ensuring the strength of the surface layer, the setter is prevented from being deformed in the firing step. As a result, the object to be fired is reliably held on the setter surface. For example, when firing a relatively small size object to be fired, cracking or chipping of the surface layer is suppressed, thereby preventing the object to be fired from being lost. When baking a comparatively large size object to be fired, deformation of the setter is suppressed, thereby preventing the object to be fired from being deformed. Further, by setting the thickness of the surface layer to 2000 μm or less, it is possible to prevent the heat capacity of the surface layer from becoming excessive, and the heat of the atmosphere gas in the furnace flowing through the intermediate layer is easily transmitted to the object to be fired through the surface layer. . As a result, the temperature difference between the setter and the object to be fired when raising and lowering the temperature can be reduced. Although not particularly limited, the thickness of the surface layer is preferably 100 μm or more, and more preferably 150 μm or more. The thickness of the surface layer is preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 250 μm or less, and particularly preferably 200 μm or less.
 表面層の開気孔率は、5%以上50%以下である。表面層の開気孔率を5%以上とすることにより、被焼成物から生じるガスが抜け難くなることが防止される。また、炉内雰囲気ガスが表面層に浸透し易くなって、炉内温度とセッターの温度差が小さくなる。被焼成物のセッターとの接触面の温度が炉内温度によく追従し、被焼成物全体を均一に加熱することができる。また、開気孔率を50%以下とすることにより、表面層の強度が低下することを防止できる。特に限定されるものではないが、表面層の開気孔率は、好ましくは10%以上であり、より好ましくは20%以上であり、特に好ましくは30%以上である。また、表面層の開気孔率は、好ましくは45%以下であり、より好ましくは40%以下であり、特に好ましくは35%以下である。 The open porosity of the surface layer is 5% or more and 50% or less. By setting the open porosity of the surface layer to 5% or more, it is possible to prevent the gas generated from the fired product from becoming difficult to escape. In addition, the furnace atmosphere gas easily penetrates into the surface layer, and the temperature difference between the furnace temperature and the setter is reduced. The temperature of the contact surface of the object to be fired with the setter closely follows the furnace temperature, and the whole object to be fired can be heated uniformly. Moreover, it can prevent that the intensity | strength of a surface layer falls by making open porosity into 50% or less. Although not particularly limited, the open porosity of the surface layer is preferably 10% or more, more preferably 20% or more, and particularly preferably 30% or more. Further, the open porosity of the surface layer is preferably 45% or less, more preferably 40% or less, and particularly preferably 35% or less.
 裏面層は、表面層と同様に、平板状であってよい。それにより、裏面層の表面も被焼成物を載置する面として利用することができる。この場合、裏面層の厚みは、表面層の厚みと同じであってよい。また、裏面層の厚みを表面層の厚みより厚くし、裏面層をセッターの強度を確保する層として利用することもできる。この場合、裏面層の厚みは、100μm以上2000μm以下であってよい。厚みを100μm以上とすることにより、被焼成物及びセッター自身の荷重でセッターに反りが生じることを防止することができる。すなわち、耐久性の高いセッターが得られる。表面層及び裏面層の厚みを100μm以上とすれば、表面層及び裏面層を被焼成物の載置面として利用できるとともに、耐久性の高いセッターを実現することができる。高い耐久性を実現するという観点より、裏面層の厚みは、好ましくは200μm以上であり、より好ましくは300μm以上である。また、裏面層の厚みは、好ましくは1000μm以下であり、より好ましくは500μm以下であり、さらに好ましくは400μm以下であり、特に好ましくは350μm以下である。 The back layer may be flat like the surface layer. Thereby, the surface of the back layer can also be used as a surface on which the object to be fired is placed. In this case, the thickness of the back surface layer may be the same as the thickness of the surface layer. Further, the thickness of the back surface layer can be made larger than the thickness of the surface layer, and the back surface layer can be used as a layer for ensuring the strength of the setter. In this case, the thickness of the back layer may be 100 μm or more and 2000 μm or less. By setting the thickness to 100 μm or more, it is possible to prevent warping of the setter due to the load of the object to be fired and the setter itself. That is, a highly durable setter is obtained. When the thickness of the front surface layer and the back surface layer is 100 μm or more, the front surface layer and the back surface layer can be used as the placement surface of the object to be fired, and a highly durable setter can be realized. From the viewpoint of realizing high durability, the thickness of the back surface layer is preferably 200 μm or more, and more preferably 300 μm or more. Further, the thickness of the back surface layer is preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 400 μm or less, and particularly preferably 350 μm or less.
 裏面層の開気孔率は、表面層と同様に、5%以上50%以下であってよい。表面層と裏面層は、同じ材料で構成されていてよい。裏面層の開気孔率を5%以上とすることにより、裏面層を被焼成物の載置面として利用する際、被焼成物から生じるガスが抜け難くなることが防止される。また、開気孔率を50%以下とすることにより、裏面層の強度を確保することができる。特に限定されるものではないが、裏面層の開気孔率は、好ましくは10%以上であり、より好ましくは20%以上であり、特に好ましくは30%以上である。また、裏面層の開気孔率は、好ましくは45%以下であり、より好ましくは40%以下であり、特に好ましくは35%以下である。 The open porosity of the back surface layer may be 5% or more and 50% or less, similar to the surface layer. The front surface layer and the back surface layer may be made of the same material. By setting the open porosity of the back surface layer to 5% or more, it is possible to prevent the gas generated from the fired product from becoming difficult to escape when the back surface layer is used as a mounting surface for the fired product. Moreover, the intensity | strength of a back surface layer is securable by making open porosity into 50% or less. Although not particularly limited, the open porosity of the back layer is preferably 10% or more, more preferably 20% or more, and particularly preferably 30% or more. Further, the open porosity of the back layer is preferably 45% or less, more preferably 40% or less, and particularly preferably 35% or less.
 また、裏面層をセッターの強度を確保する層として利用する場合、裏面層に微粉砕したコージェライトセルベン、微粒ムライト、微粒アルミナ、微粒ジルコニア、微粒窒化珪素、微粒炭化珪素等を含浸させて焼成することにより、裏面層の強度を向上させてもよい。裏面層の厚みを増加させずに裏面層の強度を確保することができ、軽量で高強度のセッターが得られる。 When the back layer is used as a layer for ensuring the strength of the setter, the back layer is impregnated with finely pulverized cordierite cerven, fine mullite, fine alumina, fine zirconia, fine silicon nitride, fine silicon carbide, etc. By doing so, you may improve the intensity | strength of a back surface layer. The strength of the back surface layer can be secured without increasing the thickness of the back surface layer, and a lightweight and high strength setter can be obtained.
 中間層は、表面層及び裏面層より低密度である。なお、表面層及び裏面層は、同じ密度であってもよいし、異なる密度であってもよい。中間層は、ハニカム構造を有している。中間層を構成しているハニカム構造の開口率は、50%以上95%以下であってよい。すなわち、開口が伸びる方向に直交する断面において、開口を画定している隔壁の面積が5%以上50%以下であり、隔壁以外の部分(空隙)が50%以上95%以下であってよい。なお、隔壁の開気孔率は、表面層及び/又は裏面層と同様に、5%以上50%以下であってよい。表面層及び/又は裏面層と同様の理由により、隔壁の開気孔率は、好ましくは10%以上であり、より好ましくは20%以上であり、特に好ましくは30%以上である。また、裏面層の開気孔率は、好ましくは45%以下であり、より好ましくは40%以下であり、特に好ましくは35%以下である。 The intermediate layer has a lower density than the front surface layer and the back surface layer. Note that the front layer and the back layer may have the same density or different densities. The intermediate layer has a honeycomb structure. The aperture ratio of the honeycomb structure constituting the intermediate layer may be 50% or more and 95% or less. That is, in the cross section orthogonal to the direction in which the opening extends, the area of the partition wall defining the opening may be 5% or more and 50% or less, and the part (void) other than the partition wall may be 50% or more and 95% or less. In addition, the open porosity of a partition may be 5% or more and 50% or less similarly to a surface layer and / or a back surface layer. For the same reason as the surface layer and / or the back layer, the open porosity of the partition wall is preferably 10% or more, more preferably 20% or more, and particularly preferably 30% or more. Further, the open porosity of the back layer is preferably 45% or less, more preferably 40% or less, and particularly preferably 35% or less.
 ハニカム構造の開口を画定している隔壁の厚みが、50μm以上2000μm以下であってよい。隔壁の厚みを50μm以上とすることにより、隔壁の強度が確保され、ハニカム構造体としての強度を確保することが可能となる。隔壁の厚みを2000μm以下とすることにより、セッターの熱容量が増加することを抑制することができる。ハニカム構造体の強度を確保しながら熱容量の増加を抑制するという観点より、隔壁の厚みは、好ましくは60μm以上であり、より好ましくは80μm以上である。また、隔壁の厚みは、好ましくは1000μm以下であり、より好ましくは500μm以下であり、さらに好ましくは200μm以下であり、特に好ましくは100μm以下である。なお、隔壁の厚みは、表面層及び/又は裏面層の厚みと同じであってもよい。隔壁の厚みが表面層及び裏面層と同一であれば、セッターを構成する部位の全てが同一厚みとなり、製造を容易とすることができる。 The thickness of the partition wall defining the honeycomb structure opening may be 50 μm or more and 2000 μm or less. By setting the partition wall thickness to 50 μm or more, the partition wall strength is secured, and the strength as the honeycomb structure can be secured. By setting the partition wall thickness to 2000 μm or less, an increase in the heat capacity of the setter can be suppressed. From the viewpoint of suppressing an increase in heat capacity while securing the strength of the honeycomb structure, the partition wall thickness is preferably 60 μm or more, and more preferably 80 μm or more. The thickness of the partition wall is preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 200 μm or less, and particularly preferably 100 μm or less. In addition, the thickness of a partition may be the same as the thickness of a surface layer and / or a back surface layer. If the thickness of the partition wall is the same as that of the front surface layer and the back surface layer, all of the parts constituting the setter have the same thickness, which facilitates manufacture.
 隔壁によって画定されている開口の水力直径は、0.3mm以上7mm以下であってよい。水力直径を0.3mm以上とすることにより、中間層の内部を雰囲気ガスが通過し易くなる。雰囲気ガスによって、セッターが内部から加熱又は冷却されるので、セッターの温度変化が炉内雰囲気の温度変化に追従し易くなり、焼成の際の昇降温速度を速く設定することができる。水力直径を7mm以下とすることにより中間層の構造体としての強度を高く維持することができる。水力直径は、好ましくは0.4mm以上であり、より好ましくは0.5mm以上であり、特に好ましくは0.6mm以上である。また、水力直径は、好ましくは3mm以下であり、より好ましくは2mm以下であり、特に好ましくは1.5mm以下である。 The hydraulic diameter of the opening defined by the partition wall may be not less than 0.3 mm and not more than 7 mm. By setting the hydraulic diameter to 0.3 mm or more, the atmospheric gas can easily pass through the intermediate layer. Since the setter is heated or cooled from the inside by the atmospheric gas, the temperature change of the setter can easily follow the temperature change of the atmosphere in the furnace, and the temperature raising / lowering rate during firing can be set fast. By setting the hydraulic diameter to 7 mm or less, the strength of the intermediate layer as a structure can be maintained high. The hydraulic diameter is preferably 0.4 mm or more, more preferably 0.5 mm or more, and particularly preferably 0.6 mm or more. The hydraulic diameter is preferably 3 mm or less, more preferably 2 mm or less, and particularly preferably 1.5 mm or less.
 中間層は、表面層と裏面層の間に設けられている。換言すると、中間層を介して、表面層と裏面層が接合されている。表面層、中間層及び裏面層は、一体に成形されたものであってよい。具体的には、表面層と中間層の隔壁が連続しており、裏面層と中間層の隔壁が連続しており、表面層と中間層と裏面層が一体であってよい。この場合、表面層と中間層と裏面層は、同じ材料で構成される。このような構造のセッターは、例えば押出成形により製造することができる。 The intermediate layer is provided between the front surface layer and the back surface layer. In other words, the front surface layer and the back surface layer are bonded via the intermediate layer. The front surface layer, the intermediate layer, and the back surface layer may be integrally formed. Specifically, the partition wall of the surface layer and the intermediate layer may be continuous, the partition wall of the back surface layer and the intermediate layer may be continuous, and the surface layer, the intermediate layer, and the back surface layer may be integrated. In this case, the surface layer, the intermediate layer, and the back layer are made of the same material. A setter having such a structure can be manufactured by, for example, extrusion molding.
 中間層の開口は、表面層と裏面層を結ぶ方向(すなわち、厚み方向)に伸びていてよい。あるいは、開口は、表面層と裏面層を結ぶ方向に直交する方向(すなわち、表面または裏面に平行な方向)に伸びていてよい。以下、厚み方向を第1方向と称し、第1方向に直交する方向を第2方向と称することがある。 The opening of the intermediate layer may extend in the direction connecting the front surface layer and the back surface layer (that is, the thickness direction). Alternatively, the opening may extend in a direction orthogonal to the direction connecting the front surface layer and the back surface layer (that is, a direction parallel to the front surface or the back surface). Hereinafter, the thickness direction may be referred to as a first direction, and the direction orthogonal to the first direction may be referred to as a second direction.
 開口が第1方向に伸びる形態は、厚み方向の強度(圧縮強度)を高くすることができ、重量の重い被焼成物を焼成するためのセッターとして好適である。また、開口が第2方向に伸びる形態は、押出成形において表面層及び裏面層の厚みを容易に制御できるので、一体成型が容易という点で有利である。なお、開口が第2方向に伸びる形態において、第1方向において、開口が1回だけ現れてもよいし、複数回現れてもよい。すなわち、表面層と裏面層の間に、ハニカムセル(隔壁で囲まれた開口)が1セル以上現れてよい。この場合、ハニカムセルは、1セル以上6セル以下であってよい。ハニカムセルの数は、所望するセッターの厚み、水力直径等に基づいて適宜調整することができる。 The form in which the opening extends in the first direction can increase the strength in the thickness direction (compressive strength) and is suitable as a setter for firing a heavy object to be fired. Further, the form in which the opening extends in the second direction is advantageous in that the integral molding is easy because the thickness of the front surface layer and the back surface layer can be easily controlled in the extrusion molding. In the form in which the opening extends in the second direction, the opening may appear only once or in a plurality of times in the first direction. That is, one or more honeycomb cells (openings surrounded by partition walls) may appear between the front surface layer and the back surface layer. In this case, the honeycomb cells may be 1 cell or more and 6 cells or less. The number of honeycomb cells can be appropriately adjusted based on the desired setter thickness, hydraulic diameter, and the like.
 本明細書が開示するセッターは、熱膨張係数が2.0ppm/℃以下であってよく、好ましくは1.5ppm/℃以下であり、より好ましくは1.0ppm/℃以下である。なお、「セッターの熱膨張係数」とは、表面層,中間層(ハニカム構造層),裏面層を含み、中間層がハニカムセルを1セル以上含む試料について、室温から800℃まで測定したときの値である。なお、プレス成型等で形成したバルク品の熱膨張係数が2.0ppm/℃を超える材料を用いた場合であっても、押出成形によってハニカム構造層(中間層)を備えたセッターを形成することによって、熱膨張係数が2.0ppm/℃以下のセッターを得ることができる。 The setter disclosed in the present specification may have a thermal expansion coefficient of 2.0 ppm / ° C. or less, preferably 1.5 ppm / ° C. or less, more preferably 1.0 ppm / ° C. or less. “The coefficient of thermal expansion of the setter” means a surface layer, an intermediate layer (honeycomb structure layer), a back layer, and a sample in which the intermediate layer includes one or more honeycomb cells when measured from room temperature to 800 ° C. Value. Even if a bulk product formed by press molding or the like has a thermal expansion coefficient exceeding 2.0 ppm / ° C., a setter having a honeycomb structure layer (intermediate layer) is formed by extrusion molding. Thus, a setter having a thermal expansion coefficient of 2.0 ppm / ° C. or less can be obtained.
 本明細書で開示するセッターは、全体として平板状であってよいし、面内端部にリブが設けられていてもよい。平板状のセッターは、製造を容易とすることができる。セッターにリブを設けることにより、セッターの強度を補うことができる。また、リブを設けることにより、焼成炉内に複数のセッターを積載するときに、各セッター間に隙間を確保するためのスペーサを不要とすることができる。 The setter disclosed in this specification may have a flat plate shape as a whole, or a rib may be provided at an in-plane end. A flat setter can be easily manufactured. By providing ribs on the setter, the strength of the setter can be supplemented. Further, by providing ribs, when a plurality of setters are loaded in the firing furnace, a spacer for securing a gap between the setters can be eliminated.
 また、本明細書で開示するセッターは、表面及び/又は裏面に、コーティング層が設けられていてもよい。コーティング層により、被焼成物とセッターの間で化学反応が生じることを防止することができる。コーティングを施すことにより、セッターの材質、あるいは、被焼成物の種類の選択肢を増加させることができる。また、コーティングを施すことにより、セッター表面の平滑性を向上させることもできる(表面粗さを小さくすることができる)。 Further, the setter disclosed in the present specification may be provided with a coating layer on the front surface and / or the back surface. The coating layer can prevent a chemical reaction from occurring between the object to be fired and the setter. By applying the coating, the choice of the material of the setter or the type of the object to be fired can be increased. Moreover, the smoothness of the setter surface can be improved by applying a coating (the surface roughness can be reduced).
 なお、コーティング層は、開気孔を有していることが好ましい。被焼成物から生じるガスが抜け難くなることが防止される。特に限定されるものではないが、上記した表面層及び裏面層と同様の理由により、コーティング層の開気孔率は、5%以上70%以下であってよく、好ましくは20%以上であり、より好ましくは30%以上であり、特に好ましくは40%以上である。また、コーティング層の開気孔率は、好ましくは50%以下であり、より好ましくは45%以下であり、さらに好ましくは40%以下であり、特に好ましくは35%以下である。 Note that the coating layer preferably has open pores. It is prevented that the gas generated from the object to be fired is difficult to escape. Although not particularly limited, for the same reason as the surface layer and the back layer described above, the open porosity of the coating layer may be 5% or more and 70% or less, preferably 20% or more, more Preferably it is 30% or more, and particularly preferably 40% or more. The open porosity of the coating layer is preferably 50% or less, more preferably 45% or less, still more preferably 40% or less, and particularly preferably 35% or less.
 コーティング層を設ける場合、コーティング層の厚みは、500μm以下であってよい。コーティング層が厚すぎると、繰り返し焼成することによって、コーティング層が剥離することが起こり得る。また、コーティング層が厚すぎると、セッターのコストが増大する。剥離の抑制,高コスト化の抑制という観点より、コーティング層の厚みは、500μm以下であってよく、400μm以下であってよく、300μm以下であってよく、250μm以下であってよく、200μm以下であってよく、150μm以下であってよく、100μm以下であってよく、50μm以下であってよい。 When providing a coating layer, the thickness of the coating layer may be 500 μm or less. If the coating layer is too thick, the coating layer may be peeled off by repeated firing. Moreover, when the coating layer is too thick, the cost of the setter increases. From the viewpoint of suppression of peeling and cost increase, the thickness of the coating layer may be 500 μm or less, 400 μm or less, 300 μm or less, 250 μm or less, or 200 μm or less. It may be 150 μm or less, may be 100 μm or less, and may be 50 μm or less.
 また、コーティング層を設ける場合、被焼成物とセッターの間の化学反応を効果的に防止するという観点より、コーティング層の厚みは、5μm以上であってよい。なお、被焼成物とセッターの間の化学反応を長期間に亘り防止するという観点より、コーティング層の厚みは、好ましくは10μm以上であり、より好ましくは20μm以上であり、特に好ましくは50μm以上である。 Further, when providing the coating layer, the thickness of the coating layer may be 5 μm or more from the viewpoint of effectively preventing a chemical reaction between the object to be fired and the setter. The thickness of the coating layer is preferably 10 μm or more, more preferably 20 μm or more, and particularly preferably 50 μm or more from the viewpoint of preventing a chemical reaction between the object to be fired and the setter for a long period of time. is there.
 コーティング層は、例えば、ガスプラズマ溶射、水プラズマ溶射、スプレーコート、流し込み等により形成することができる。良好な開気孔率が得られるという観点より、コーティング層は、スプレーコート又は流し込みにより形成することが好ましい。コーティング層は、セッターの材料、コーティング層の形成方法により、種々の材料を選択することができる。一例として、コーティング層の材料は、ムライト質、アルミナ質、アルミナ-ジルコニア質、Y安定化ジルコニア質、CaO安定化ジルコニア質、CaO/Y安定化ジルコニア質、スピネル質である。良好な開気孔率が得られ、被焼成物との化学反応を抑制するという観点より、コーティング層の材料は、アルミナ質、又は、アルミナ-ジルコニア質であることが好ましい。 The coating layer can be formed by, for example, gas plasma spraying, water plasma spraying, spray coating, casting, or the like. From the viewpoint that a good open porosity can be obtained, the coating layer is preferably formed by spray coating or pouring. Various materials can be selected for the coating layer depending on the material of the setter and the method of forming the coating layer. As an example, the material of the coating layer is mullite, alumina, alumina-zirconia, Y 2 O 3 stabilized zirconia, CaO stabilized zirconia, CaO / Y 2 O 3 stabilized zirconia, spinel . From the viewpoint of obtaining a good open porosity and suppressing a chemical reaction with the object to be fired, the material of the coating layer is preferably alumina or alumina-zirconia.
 本明細書で開示するセッターの一例として、電子部品を焼成するためのセラミックスセッターが挙げられる。本明細書で開示するセッターは、セッターと接する面が0.1mm×0.2mm程度のサイズの電子部品の焼成に好適に用いることができる。特に限定されるものではないが、本明細書で開示する技術は、一例として、幅50~500mm、長さ50~250mm、厚さ0.5~10mmのセラミックスセッターに好適に適用することができる。 As an example of the setter disclosed in this specification, a ceramic setter for firing electronic components can be given. The setter disclosed in this specification can be suitably used for firing an electronic component having a surface in contact with the setter having a size of about 0.1 mm × 0.2 mm. Although not particularly limited, the technique disclosed in this specification can be suitably applied to a ceramic setter having a width of 50 to 500 mm, a length of 50 to 250 mm, and a thickness of 0.5 to 10 mm, for example. .
(第1実施例)
 図1及び図2を参照し、セッター10について説明する。図1に示すように、セッター10は、表面層2と中間層4と裏面層6を備えている。中間層4は、表面層2と裏面層6の間に設けられている。表面層2と中間層4と裏面層6の材料は、コージェライトである。表面層2の表面及び裏面層6の表面(裏面)は平坦である。すなわち、表面層2及び裏面層6は平板状である。そのため、セッター10自身が平板状である。
(First embodiment)
The setter 10 will be described with reference to FIGS. 1 and 2. As shown in FIG. 1, the setter 10 includes a surface layer 2, an intermediate layer 4, and a back surface layer 6. The intermediate layer 4 is provided between the front surface layer 2 and the back surface layer 6. The material of the surface layer 2, the intermediate layer 4, and the back layer 6 is cordierite. The surface of the surface layer 2 and the surface (back surface) of the back surface layer 6 are flat. That is, the front surface layer 2 and the back surface layer 6 are flat. Therefore, the setter 10 itself has a flat plate shape.
 中間層4はハニカム構造を有しており、表面層2及び裏面層6より低密度である。詳細は後述するが、中間層4の開口は、厚み方向に直交する方向(図1の矢印20方向)に伸びている。中間層4の開口は、矢印20方向に、セッター10の一端から他端まで連通して伸びている。セッター10の側面には、側壁8が設けられている。側壁8は、中間層4の開口が伸びる方向には設けられていない。すなわち、側壁8は、セッター10の側面のうち、矢印20方向に直交する2面に設けられている。側壁8は、セッター10の厚み方向に伸びている(表面層2及び裏面層6に直交している)。 The intermediate layer 4 has a honeycomb structure and has a lower density than the front surface layer 2 and the back surface layer 6. Although details will be described later, the opening of the intermediate layer 4 extends in a direction orthogonal to the thickness direction (the direction of arrow 20 in FIG. 1). The opening of the intermediate layer 4 extends in the direction of arrow 20 from one end of the setter 10 to the other end. A side wall 8 is provided on the side surface of the setter 10. The side wall 8 is not provided in the direction in which the opening of the intermediate layer 4 extends. That is, the side walls 8 are provided on two surfaces orthogonal to the direction of the arrow 20 among the side surfaces of the setter 10. The side wall 8 extends in the thickness direction of the setter 10 (perpendicular to the front surface layer 2 and the back surface layer 6).
 図2に示すように、中間層4は、隔壁14と、隔壁14によって囲まれた空間(開口部)12を備えている。そのために、中間層4は、表面層2及び裏面層6より低密度である。表面層2の厚みt2は100μmであり、中間層4の厚みt4は800μmであり、裏面層6の厚みt6は100μmである。セッター10の厚みt10は1mmである。 As shown in FIG. 2, the intermediate layer 4 includes a partition wall 14 and a space (opening) 12 surrounded by the partition wall 14. Therefore, the intermediate layer 4 has a lower density than the front surface layer 2 and the back surface layer 6. The thickness t2 of the surface layer 2 is 100 μm, the thickness t4 of the intermediate layer 4 is 800 μm, and the thickness t6 of the back layer 6 is 100 μm. The setter 10 has a thickness t10 of 1 mm.
 中間層4には、隔壁14によって、トラス構造16が構成されている。トラス構造16は、ハニカム構造の一例である。セッター10では、表面層2と裏面層6の間に1段のハニカムセルが設けられている。トラス構造16の開口12の―辺の長さD16は0.92mmである。隔壁14の厚みt14は100μmである。すなわち、セッター10では、表面層2の厚みt2、裏面層6の厚みt6及び隔壁14の厚みt14が等しい。セッター10は、開口率が70%であり、水力直径が0.53mmである。なお、中間層4の端部(開口12の一部が側壁8によって画定されている部分)では、開口12の面積が他の開口12の面積のおよそ半分である。 The truss structure 16 is constituted by the partition wall 14 in the intermediate layer 4. The truss structure 16 is an example of a honeycomb structure. In the setter 10, a single-stage honeycomb cell is provided between the front surface layer 2 and the back surface layer 6. The side length D16 of the opening 12 of the truss structure 16 is 0.92 mm. The partition wall 14 has a thickness t14 of 100 μm. That is, in the setter 10, the thickness t2 of the front surface layer 2, the thickness t6 of the back surface layer 6, and the thickness t14 of the partition wall 14 are equal. The setter 10 has an aperture ratio of 70% and a hydraulic diameter of 0.53 mm. Note that, at the end portion of the intermediate layer 4 (a portion where a part of the opening 12 is defined by the side wall 8), the area of the opening 12 is approximately half of the area of the other opening 12.
 隔壁14は、表面層2、裏面層6及び側壁8と連続している。セッター10では、表面層2、中間層4、裏面層6及び側壁8は、同一の材料(コージェライト)で、一体に形成されている。表面層2、中間層4、裏面層6及び側壁8は、開気孔を有しており、開気孔率は35%である。また、セッター10の熱膨張係数は、0.9ppm/℃である。なお、バルク(組織が配向性を有していない状態)のコージェライトの熱膨張係数は、2.2~2.8ppm/℃である。セッター10は、中間層4が押出成形によるハニカム構造を有しているので、ソリッドなセッターと比較して、熱膨張係数を大幅に小さくすることができる。 The partition wall 14 is continuous with the front surface layer 2, the back surface layer 6 and the side wall 8. In the setter 10, the surface layer 2, the intermediate layer 4, the back surface layer 6, and the side wall 8 are integrally formed of the same material (cordierite). The surface layer 2, the intermediate layer 4, the back layer 6 and the side wall 8 have open pores, and the open porosity is 35%. Further, the thermal expansion coefficient of the setter 10 is 0.9 ppm / ° C. Note that the thermal expansion coefficient of cordierite in a bulk state (state in which the structure does not have orientation) is 2.2 to 2.8 ppm / ° C. Since the setter 10 has a honeycomb structure in which the intermediate layer 4 is formed by extrusion, the coefficient of thermal expansion can be significantly reduced as compared with a solid setter.
 上記したように、セッター10は、平面状の表面層2及び裏面層6と、表面層2及び裏面層6の間に設けられたハニカム状の中間層4を備えている。セッター10は、ハニカム状の中間層4を有することにより、ソリッドなセッターと比較して重量を低減することができる。セッター10は、熱容量を低減することができ、炉内温度の変化に良好に追従することができる。また、中間層4の開口12の水力直径が0.53mmであり、中間層4内を炉内ガスが良好に移動することができる。セッター10は、外部及び内部(中間層4内)から加熱され、さらに炉内温度の変化に良好に追従することができる。 As described above, the setter 10 includes the planar surface layer 2 and the back surface layer 6 and the honeycomb-shaped intermediate layer 4 provided between the surface layer 2 and the back surface layer 6. Since the setter 10 has the honeycomb-like intermediate layer 4, the weight can be reduced compared to a solid setter. The setter 10 can reduce the heat capacity, and can follow the change in the furnace temperature well. Moreover, the hydraulic diameter of the opening 12 of the intermediate layer 4 is 0.53 mm, and the gas in the furnace can move well in the intermediate layer 4. The setter 10 is heated from the outside and the inside (in the intermediate layer 4), and can follow the change in the furnace temperature well.
 また、表面層2及び裏面層6の厚みが十分に確保されており(100μm)、ハニカム構造を有しているにも関わらず、十分な強度を発揮することができる。典型的に、表面層の厚みを厚くすると、被焼成物と表面層が接触する部分において、被焼成物から発生するガスの移動が妨げられる。しかしながら、セッター10では、表面層2が開気孔を有しており、開気孔率が35%に調整されている。そのため、被焼成物とセッター10が接触する部分においても、被焼成物から発生するガスが被焼成物の外部に確実に移動し、被焼成物を良好に焼成することができる。また、炉内ガスが、セッター10の外部及び開口12(中間層4)から表面層2に浸透し、表面層2の温度が炉内温度に良好に追従する。さらに、側壁8が表面層2及び裏面層6に直交しているので、セッター10の端部において十分な圧縮強度を確保することができる。 Further, the thickness of the front surface layer 2 and the back surface layer 6 is sufficiently secured (100 μm), and a sufficient strength can be exhibited despite having a honeycomb structure. Typically, when the thickness of the surface layer is increased, the movement of the gas generated from the material to be fired is prevented at the portion where the material to be fired and the surface layer are in contact. However, in the setter 10, the surface layer 2 has open pores, and the open porosity is adjusted to 35%. Therefore, even in the portion where the object to be fired and the setter 10 are in contact, the gas generated from the object to be fired moves reliably to the outside of the object to be fired, and the object to be fired can be fired satisfactorily. Moreover, the gas in the furnace permeates into the surface layer 2 from the outside of the setter 10 and the opening 12 (intermediate layer 4), and the temperature of the surface layer 2 follows the furnace temperature well. Furthermore, since the side wall 8 is orthogonal to the front surface layer 2 and the back surface layer 6, sufficient compressive strength can be secured at the end of the setter 10.
 セッター10は、本明細書で開示する技術を具現化した一例であり、種々の変形例を取り得る。以下、セッター10の変形例の幾つかを説明する。 The setter 10 is an example that embodies the technology disclosed in the present specification, and can take various modifications. Hereinafter, some modified examples of the setter 10 will be described.
 図3に示すセッター10aは、裏面層6aの厚みt6aがセッター10と異なる。大まかな外観は、図1を参照されたい。セッター10aについて、セッター10と同じ構造については、セッター10と同じ参照番号を付すことにより、説明を省略する。 3 is different from the setter 10 in the thickness t6a of the back surface layer 6a. See FIG. 1 for a rough appearance. About the setter 10a, about the same structure as the setter 10, the description is abbreviate | omitted by attaching | subjecting the same reference number as the setter 10. FIG.
 セッター10aでは、裏面層6aの厚みt6aが300μmである。セッター10aは、セッター10よりも強度を高くすることができる。なお、セッター10において、裏面層6に加え、表面層2又は中間層4の厚みを増加させても強度を高くすることができる。あるいは、裏面層6の厚みは増加させず、表面層2又は中間層4の厚みを増加させても強度を高くすることができる。しかしながら、各層2,4及び6の厚みを増加させると、セッターの重量が増加する。セッター10aは、強度の向上に最も寄与する裏面層の厚みだけを増加させることにより、重量の増加を抑制しつつ、強度を高くすることができる。 In the setter 10a, the thickness t6a of the back surface layer 6a is 300 μm. The setter 10 a can be stronger than the setter 10. In the setter 10, the strength can be increased even if the thickness of the surface layer 2 or the intermediate layer 4 is increased in addition to the back surface layer 6. Alternatively, the strength can be increased by increasing the thickness of the surface layer 2 or the intermediate layer 4 without increasing the thickness of the back surface layer 6. However, increasing the thickness of each layer 2, 4 and 6 increases the weight of the setter. The setter 10a can increase the strength while suppressing an increase in weight by increasing only the thickness of the back surface layer that contributes most to the improvement in strength.
 セッター10aは、被焼成物に接触する表面層2、及び、隔壁14の構造がセッター10と同じである。セッター10aは、表面層2及び表面層2近傍の中間層4の熱容量が、セッター10に対して増加しない。そのため、セッター10aは、強度を向上させながら、セッター10と同様に熱容量を小さくすることができる。 The structure of the setter 10a is the same as that of the setter 10 in the structure of the surface layer 2 and the partition wall 14 in contact with the object to be fired. In the setter 10 a, the heat capacity of the surface layer 2 and the intermediate layer 4 in the vicinity of the surface layer 2 does not increase with respect to the setter 10. Therefore, the setter 10a can reduce the heat capacity in the same manner as the setter 10 while improving the strength.
 図4に示すセッター10bは、隔壁14aの厚みt14aがセッター10と異なる。大まかな外観は、図1を参照されたい。セッター10bについて、セッター10と同じ構造については、セッター10と同じ参照番号を付すことにより、説明を省略する。 4 is different from the setter 10 in the thickness t14a of the partition wall 14a. See FIG. 1 for a rough appearance. About the setter 10b, about the same structure as the setter 10, the description is abbreviate | omitted by attaching | subjecting the same reference number as the setter 10. FIG.
 セッター10bでは、隔壁14aの厚みt14aが60μmである。セッター10bは、セッター10よりも軽量にすることができる。また、隔壁14の厚みをセッター10より薄くすることにより、中間層4の開口率が増加し(中間層4の密度が低下し)、熱容量がさらに低減する。上記したように、セッターの強度に最も寄与するのは裏面層である。そのため、隔壁の厚みを薄くしても、セッターの強度低下には大きく寄与しない。セッター10bは、強度低下を抑制しつつ、軽量であり、熱容量を低減させることができる。 In the setter 10b, the thickness t14a of the partition wall 14a is 60 μm. The setter 10b can be lighter than the setter 10. Further, by making the partition wall 14 thinner than the setter 10, the opening ratio of the intermediate layer 4 increases (the density of the intermediate layer 4 decreases), and the heat capacity is further reduced. As described above, the back layer contributes most to the strength of the setter. Therefore, even if the thickness of the partition wall is reduced, it does not greatly contribute to the strength reduction of the setter. The setter 10b is lightweight while suppressing a decrease in strength, and can reduce the heat capacity.
 なお、セッター10bにおいて、裏面層6の厚みをセッター10a(図2)と同一にしてもよい。換言すると、セッター10において、裏面層6の厚みを表面層2の厚みより厚くし、隔壁14の厚みを表面層2より薄くしてもよい。 In the setter 10b, the thickness of the back surface layer 6 may be the same as that of the setter 10a (FIG. 2). In other words, in the setter 10, the thickness of the back surface layer 6 may be made thicker than that of the surface layer 2, and the thickness of the partition wall 14 may be made thinner than that of the surface layer 2.
 図5に示すセッター10cは、側壁8aの形状がセッター10と異なる。大まかな外観は、図1を参照されたい。セッター10cについて、セッター10と同じ構造については、セッター10と同じ参照番号を付すことにより、説明を省略する。セッター10cでは、側壁8aが、厚み方向に対して傾斜している。具体的には、開口12のサイズが、中間層4の中央部と端部で等しい。その結果、中間層4の全体を、炉内ガスが均等に通過することができる。セッター10cは、面内に温度ムラが生じることを抑制することができる。 5 is different from the setter 10 in the shape of the side wall 8a. See FIG. 1 for a rough appearance. About the setter 10c, about the same structure as the setter 10, the description is abbreviate | omitted by attaching | subjecting the same reference number as the setter 10. FIG. In the setter 10c, the side wall 8a is inclined with respect to the thickness direction. Specifically, the size of the opening 12 is equal at the center portion and the end portion of the intermediate layer 4. As a result, the furnace gas can pass through the entire intermediate layer 4 evenly. The setter 10c can suppress the occurrence of temperature unevenness in the surface.
 なお、側壁を傾斜させて開口12サイズを中間層4の中央部と端部で等しくするという特徴は、上記したセッター10a及び10bに適用することもできる。 The feature that the side wall is inclined so that the size of the opening 12 is equal at the center and the end of the intermediate layer 4 can also be applied to the setters 10a and 10b described above.
 図6に示すセッター10dは、中間層4の構造がセッター10と異なる。セッター10dについて、セッター10と同じ構造については、セッター10と同じ参照番号を付すことにより、説明を省略する。セッター10dは、中間層4が2段のトラス構造(ハニカムセル)16a,16bを備えている。すなわち、表面層2と裏面層6を結ぶ方向(厚さ方向)において、開口12が2回現れている。なお、側壁8は、セッター10dの厚み方向に伸びている(表面層2及び裏面層6に直交している)。 6 is different from the setter 10 in the structure of the intermediate layer 4. About the setter 10d, about the same structure as the setter 10, the description is abbreviate | omitted by attaching | subjecting the same reference number as the setter 10. FIG. In the setter 10d, the intermediate layer 4 includes truss structures (honeycomb cells) 16a and 16b having two stages. That is, the opening 12 appears twice in the direction connecting the front surface layer 2 and the back surface layer 6 (thickness direction). The side wall 8 extends in the thickness direction of the setter 10d (perpendicular to the front surface layer 2 and the back surface layer 6).
 セッター10dは、各々のトラス構造のサイズを大きくすることなく、セッターの厚みを厚くすることができる。トラス構造のサイズが増大しすぎると、セッターの強度が低下することがある。2段のトラス構造とすることにより、強度低下を抑制しつつ、セッターの厚みを確保することができる。あるいは、セッター10dは、表面層2及び裏面層6の厚みを厚くすることなく、セッターの厚みを確保していると表現することもできる。すなわち、セッター10dは、重量増加を抑制しつつ、厚みを確保することができる。 The setter 10d can increase the thickness of the setter without increasing the size of each truss structure. If the size of the truss structure increases too much, the strength of the setter may decrease. By setting it as the truss structure of 2 steps | paragraphs, the thickness of a setter can be ensured, suppressing a strength fall. Or the setter 10d can also be expressed as ensuring the thickness of the setter without increasing the thickness of the front surface layer 2 and the back surface layer 6. That is, the setter 10d can secure a thickness while suppressing an increase in weight.
 なお、図6は2段のトラス構造16a,16bを備えるセッター10dを示しているが、トラス構造の段数は、2段以上であってもよい。トラス構造の段数は、2段以上6段以下であってよい。また、セッター10dにおいて、裏面層6の厚みを表面層2の厚みより厚くし、及び/又は、隔壁14の厚みを表面層2より薄くしてもよい。 6 shows the setter 10d having the two- stage truss structures 16a and 16b, the number of stages of the truss structure may be two or more. The number of stages of the truss structure may be 2 or more and 6 or less. Further, in the setter 10d, the thickness of the back surface layer 6 may be made larger than the thickness of the surface layer 2, and / or the thickness of the partition wall 14 may be made thinner than the surface layer 2.
 図7に示すセッター10eは、セッター10dの変形例ということができる。セッター10eについて、セッター10dと同じ構造については、セッター10dと同じ参照番号を付すことにより、説明を省略する。セッター10eは、側壁8bの構造がセッター10dと相違する。側壁8bの外面は、曲線を有している。側壁8bを有することにより、セッター10eの端部を欠け難くすることができる。 7 can be said to be a modification of the setter 10d. About the setter 10e, about the same structure as the setter 10d, description is abbreviate | omitted by attaching | subjecting the same reference number as the setter 10d. The setter 10e is different from the setter 10d in the structure of the side wall 8b. The outer surface of the side wall 8b has a curve. By having the side wall 8b, the end of the setter 10e can be made difficult to chip.
(第2実施例)
 図8及び図9を参照し、セッター210について説明する。セッター210は、セッター10の変形例であり、セッター10と共通する事項については、セッター10と同じ参照番号を付すことにより説明を省略することがある。
(Second embodiment)
The setter 210 will be described with reference to FIGS. 8 and 9. The setter 210 is a modification of the setter 10, and items that are common to the setter 10 may be denoted by the same reference numerals as the setter 10 and description thereof may be omitted.
 セッター210は、表面層2側の端部34に、リブ30が設けられている。換言すると、セッター210の中央部32は、端部34より厚みが薄い。リブ30は、開口12が伸びる矢印20に沿って(開口12が伸びる方向と平行に)伸びている。リブ30は、開口12が伸びる方向に直交する方向において、表面層2の両端に設けられている。リブ30を設けることにより、被焼成物を焼成する際、複数のセッター210を重ねて焼成することができる。被焼成物は、リブ30によって形成された空間(積載されたセッター210,210間に形成される空間)に配置される。 The setter 210 is provided with a rib 30 at the end 34 on the surface layer 2 side. In other words, the central portion 32 of the setter 210 is thinner than the end portion 34. The rib 30 extends along the arrow 20 in which the opening 12 extends (parallel to the direction in which the opening 12 extends). The ribs 30 are provided at both ends of the surface layer 2 in a direction orthogonal to the direction in which the opening 12 extends. By providing the ribs 30, a plurality of setters 210 can be stacked and fired when the object to be fired is fired. The object to be fired is disposed in a space formed by the ribs 30 (a space formed between the loaded setters 210 and 210).
 図9に示すように、セッター210の端部34は、4段のトラス構造16a,16b,16c及び16dを備えている。それに対して、中央部32は、2段のトラス構造16c及び16dを備えている。このように、トラス構造によってリブ30を構成することにより、セッター210の重量が増加することが抑制される。また、端部34と中央部32を結ぶ壁面30aは、厚み方向に対して傾斜している。リブ30の全体を、炉内ガスが均等に通過することができる。 As shown in FIG. 9, the end 34 of the setter 210 includes four stages of truss structures 16a, 16b, 16c and 16d. On the other hand, the central portion 32 includes two- stage truss structures 16c and 16d. Thus, by configuring the rib 30 with the truss structure, an increase in the weight of the setter 210 is suppressed. The wall surface 30a connecting the end portion 34 and the central portion 32 is inclined with respect to the thickness direction. The furnace gas can pass through the entire rib 30 evenly.
 なお、セッター210は、図10に示す4段のトラス構造16a,16b,16c及び16dを備える平板を用意し、破線36に沿って、中央部32が形成される部分のトラス構造16a,16bを除去することによって容易に形成することができる。すなわち、セッター210は、被焼成物を載置する中央部32とリブ30が一体構造である。 In addition, the setter 210 prepares the flat plate provided with the four- stage truss structures 16a, 16b, 16c and 16d shown in FIG. 10, and the truss structures 16a and 16b where the central portion 32 is formed along the broken line 36. It can be easily formed by removing. That is, in the setter 210, the central portion 32 and the rib 30 on which the object to be fired is placed have an integral structure.
 図11は、セッター210aを示している。セッター210aは、セッター210の変形例である。セッター210aについて、セッター210と同じ構造については、セッター210と同じ参照番号を付すことにより、説明を省略する。セッター210aの中央部32には、コーティング層40が設けられている。コーティング層40は、アルミナ質であり、スプレーコートにより表面層2の表面に形成されている。コーティング層40の開気孔率は30%であり、厚みは50μmである。 FIG. 11 shows the setter 210a. The setter 210a is a modification of the setter 210. About the setter 210a, about the same structure as the setter 210, the same reference number as the setter 210 is attached | subjected and description is abbreviate | omitted. The coating layer 40 is provided in the center part 32 of the setter 210a. The coating layer 40 is made of alumina and is formed on the surface of the surface layer 2 by spray coating. The coating layer 40 has an open porosity of 30% and a thickness of 50 μm.
 なお、図12に示すセッター210bのように、コーティング層40aをセッター210bの中央部32及び壁面30aに設けてもよい。また、コーティング層40は、平板状のセッターの表層に設けもよい。すなわち、上記したセッター10,10a,10b,10c,10d及び10eの表面層2の表面にコーティング層40を設けてもよい。 In addition, you may provide the coating layer 40a in the center part 32 and the wall surface 30a of the setter 210b like the setter 210b shown in FIG. The coating layer 40 may be provided on the surface layer of a flat setter. That is, the coating layer 40 may be provided on the surface of the surface layer 2 of the setters 10, 10a, 10b, 10c, 10d and 10e.
(第3実施例)
 図13を参照し、セッター310について説明する。セッター310は、セッター10及び210の変形例であり、セッター10及び210と共通する事項については、セッター10及び210と同じ参照番号を付すことにより説明を省略することがある。
(Third embodiment)
The setter 310 will be described with reference to FIG. The setter 310 is a modification of the setters 10 and 210, and the same reference numerals as those of the setters 10 and 210 may be used for the items common to the setters 10 and 210, and the description thereof may be omitted.
 セッター310は、セッター210と同様に、開口12が伸びる方向(矢印20方向)に直交する方向において、表面層2の両端にリブ330aが設けられている。さらに、セッター310は、開口12が伸びる方向の一端に、リブ330bが設けられている。リブ330aとリブ330bは一体である。そのため、セッター310は、リブ330(リブ330a,330b)が、表面層2の端部の三方に設けられているといえる。セッター310は、セッター210と比較して、複数のセッター310を重ねる際に、セッター310,310同士が三方で接触する。そのため、セッター310,310同士を安定して積載することができる。また、被焼成物が、セッター310の表面が落下することも抑制することができる。 The setter 310 is provided with ribs 330 a at both ends of the surface layer 2 in the direction orthogonal to the direction in which the opening 12 extends (the direction of the arrow 20), like the setter 210. Further, the setter 310 is provided with a rib 330b at one end in the direction in which the opening 12 extends. The rib 330a and the rib 330b are integrated. Therefore, it can be said that the setter 310 has the ribs 330 ( ribs 330 a and 330 b) provided on three sides of the end portion of the surface layer 2. Compared with the setter 210, the setter 310 is in contact with the setters 310 and 310 in three directions when the plurality of setters 310 are stacked. Therefore, the setters 310 and 310 can be loaded stably. Moreover, it can suppress that the surface of the setter 310 falls that to-be-fired material falls.
 なお、セッター310において、表面層2、及び/又は、リブ330の壁面に、コーティング層を設けてもよい(図11及び12も参照)。リブ330にコーティング層を設ける場合、リブ330aの壁面にコーティング層を設け、リブ330bの壁面にコーティング層を設けなくてもよい。あるいは、リブ330aの壁面とリブ330bの壁面の双方にコーティング層を設けてもよい。リブ330bの壁面にコーティング層を設ける場合、開口12を確保しつつ、隔壁14の端面にコーティング層を設ける。こうすることにより、被焼成物とセッター表面との反応を防止しつつ、炉内ガスがリブ330bの開口14を通過するので表面層2の温度を内雰囲気によく追従させることができる。 In the setter 310, a coating layer may be provided on the surface layer 2 and / or the wall surface of the rib 330 (see also FIGS. 11 and 12). When the coating layer is provided on the rib 330, the coating layer may be provided on the wall surface of the rib 330a and the coating layer may not be provided on the wall surface of the rib 330b. Or you may provide a coating layer in both the wall surface of the rib 330a, and the wall surface of the rib 330b. When a coating layer is provided on the wall surface of the rib 330b, the coating layer is provided on the end face of the partition wall 14 while ensuring the opening 12. By doing so, the gas in the furnace passes through the openings 14 of the ribs 330b while preventing the reaction between the object to be fired and the setter surface, so that the temperature of the surface layer 2 can follow the inner atmosphere well.
(第4実施例)
 図14を参照し、セッター410について説明する。セッター410は、セッター10、210及び310の変形例であり、セッター10、210及び310と共通する事項については、セッター10、210及び310と同じ参照番号を付すことにより説明を省略することがある。
(Fourth embodiment)
The setter 410 will be described with reference to FIG. The setter 410 is a modification of the setters 10, 210, and 310, and items that are common to the setters 10, 210, and 310 may be omitted by giving the same reference numerals as the setters 10, 210, and 310. .
 セッター410では、表面層2の端部の全周をリブ430が囲っている。換言すると、セッター410は、中央部32が窪んでいる。詳細には、開口12が伸びる方向(矢印20方向)に直交する方向において、表面層2の両端にリブ430aが設けられている。また、開口12が伸びる方向の両端に、リブ430bが設けられている。リブ430aとリブ430bは一体である。セッター410においても、表面層2、及び/又は、リブ430の壁面に、コーティング層を設けてもよい。リブ430にコーティング層を設ける場合、リブ430aの壁面にのみコーティング層を設け、リブ430bの壁面にはコーティング層を設けなくてもよい。あるいは、リブ430aの壁面とリブ430bの壁面の双方にコーティング層を設けてもよい。リブ430bの壁面にコーティング層を設ける場合、開口12を確保しつつ、隔壁14の端面にコーティング層を設ける。こうすることにより被焼成物とセッター表面との反応を防止しつつ、炉内ガスがリブ430bの開口14を通過するので表面層2の温度を炉内雰囲気によく追従させることができる。 In the setter 410, the rib 430 surrounds the entire periphery of the end portion of the surface layer 2. In other words, the center part 32 of the setter 410 is recessed. Specifically, ribs 430a are provided at both ends of the surface layer 2 in a direction orthogonal to the direction in which the opening 12 extends (the direction of the arrow 20). In addition, ribs 430b are provided at both ends in the direction in which the opening 12 extends. The rib 430a and the rib 430b are integral. Also in the setter 410, a coating layer may be provided on the surface layer 2 and / or the wall surface of the rib 430. When the coating layer is provided on the rib 430, the coating layer may be provided only on the wall surface of the rib 430a, and the coating layer may not be provided on the wall surface of the rib 430b. Or you may provide a coating layer in both the wall surface of the rib 430a, and the wall surface of the rib 430b. When providing a coating layer on the wall surface of the rib 430b, the coating layer is provided on the end face of the partition wall 14 while ensuring the opening 12. By doing so, while the furnace gas passes through the openings 14 of the ribs 430b while preventing the reaction between the object to be fired and the setter surface, the temperature of the surface layer 2 can follow the furnace atmosphere well.
(第5実施例)
 図15及び図16を参照し、セッター510について説明する。図15は、セッター310の断面の一部を示しており、セッター10において図2に示した部分に相当する。また、図16は、セッター310を表面層2側から観察した図を、中間層の形状を破線で示している。
(5th Example)
The setter 510 will be described with reference to FIGS. 15 and 16. FIG. 15 shows a part of a cross section of the setter 310 and corresponds to the portion shown in FIG. FIG. 16 shows a view of the setter 310 observed from the surface layer 2 side, and the shape of the intermediate layer is indicated by a broken line.
 セッター510は、中間層4(トラス構造)の開口12が、表面層2と裏面層6を結ぶ方向(矢印50方向)に伸びている。すなわち、セッター510では、隔壁14が、矢印50方向に平行に伸びている。そのため、セッター510は、厚さ方向の圧縮強度を増加させることができる。また、セッター10,210等のように開口12が矢印20方向に伸びる場合(図1及び図8を参照)、開口12が大きな水力直径を確保するためには、中間層4の厚みを厚くすることが必要である。しかしながら、セッター510の場合、中間層4の厚みを薄く(すなわち、セッター510の厚みを薄く)しながら、開口12の水力直径を大きくすることができる。 In the setter 510, the opening 12 of the intermediate layer 4 (truss structure) extends in the direction connecting the surface layer 2 and the back surface layer 6 (in the direction of arrow 50). That is, in the setter 510, the partition wall 14 extends in parallel with the arrow 50 direction. Therefore, the setter 510 can increase the compressive strength in the thickness direction. Further, when the opening 12 extends in the direction of the arrow 20 as in the case of the setters 10, 210, etc. (see FIGS. 1 and 8), in order to ensure a large hydraulic diameter, the thickness of the intermediate layer 4 is increased. It is necessary. However, in the case of the setter 510, the hydraulic diameter of the opening 12 can be increased while reducing the thickness of the intermediate layer 4 (that is, reducing the thickness of the setter 510).
 セッター510は、表面層2と中間層4と裏面層6を各々別個に形成し、各層2,4,6をセラミックペーストで貼り合わせ、所定温度で焼成することにより製造することができる。具体的には、例えば押出成形により、ハニカム構造を備え、表裏面に開口12が現れる中間層4を形成する。また、中間層4とは別に、例えば押出成形により、シート状の表面層2,裏面層6を形成する。その後、表面層2及び裏面層6を、中間層4に貼り合わせ、焼成することによりセッター510を形成することができる。表面層2と中間層4と裏面層6を各々別個に形成することにより、各層2,4,6の材料、及び/又は、開気孔率を異ならせることができる。例えば、中間層4の隔壁14の開気孔率を、表面層2の開気孔率より小さくすることができる。表面層2の開気孔率を確保したまま、中間層4の強度をさらに向上させることができる。なお、セッター510においても、表面層2の表面にコーティング層を設けてもよい。 The setter 510 can be manufactured by forming the front surface layer 2, the intermediate layer 4 and the back surface layer 6 separately, bonding the layers 2, 4 and 6 with a ceramic paste and firing them at a predetermined temperature. Specifically, the intermediate layer 4 having a honeycomb structure and having openings 12 on the front and back surfaces is formed by, for example, extrusion molding. In addition to the intermediate layer 4, the sheet-like surface layer 2 and the back surface layer 6 are formed by, for example, extrusion molding. Thereafter, the setter 510 can be formed by bonding the front surface layer 2 and the back surface layer 6 to the intermediate layer 4 and baking. By forming the surface layer 2, the intermediate layer 4, and the back layer 6 separately, the materials and / or open porosity of the layers 2, 4, and 6 can be made different. For example, the open porosity of the partition wall 14 of the intermediate layer 4 can be made smaller than the open porosity of the surface layer 2. The strength of the intermediate layer 4 can be further improved while ensuring the open porosity of the surface layer 2. Also in the setter 510, a coating layer may be provided on the surface of the surface layer 2.
(コーティング層の厚みの検討)
 セッター10(図1を参照)の表面にコーティング層を形成し、セッター10自体の加熱試験、及び、被焼成物との反応性試験を行った。なお、セッター10の材料として、コージュライトを用いた。コーティング材料は、平均粒子20-100μmの粒状セラミックス100部に親水性の有機バインダーを0.5部添加し、さらにイオン交換水を60部添加した混合物を、セラミック玉石を入れた容器内に導入し、ポットミルを用いて粉砕,混合し、スラリーを作製した。なお、イオン交換水は、コーティング材料(スラリー)を塗布し易い粘度に調整するためのものである。また、セラミック玉石として、例えば、アルミナ玉石を用いることができる。ポットミルに代えて、トロンメルを用いることもできる。スプレーガンを用いて作製したコーティング材料(原料スラリー)をセッター10の表面に塗布し、コーティング層を形成した。なお、コーティング時間を調整し、セッター10の表面に5~600μmのコーティング層を形成した(試料1-12)。また、プラズマ溶射機を用いて平均粒径20-100μmの粒状セラミックスをセッター10の表面に溶射し、セッター10の表面に100μmのコーティング層を形成した(試料13)。さらに、上記コーティング材料(原料スラリー)をセッター10の表面に流し込み、セッター10の表面に100μmのコーティング層を形成した(試料14)。上記した粒状セラミックスとして、例えば、ジルコニア、ムライト、アルミナ等を用いることができる。なお、コーティング層が設けられていないセッター10についても、加熱試験、及び、反応性試験を行った(試料15)。試験条件及び結果を図17に示す。
(Examination of coating layer thickness)
A coating layer was formed on the surface of the setter 10 (see FIG. 1), and a heat test of the setter 10 itself and a reactivity test with the object to be fired were performed. Note that cordierite was used as the material for the setter 10. As a coating material, a mixture obtained by adding 0.5 part of a hydrophilic organic binder to 100 parts of granular ceramics having an average particle size of 20-100 μm and further adding 60 parts of ion exchange water is introduced into a container containing ceramic cobblestones. Then, the mixture was pulverized and mixed using a pot mill to prepare a slurry. In addition, ion-exchange water is for adjusting the viscosity which is easy to apply the coating material (slurry). Further, for example, alumina cobblestone can be used as the ceramic cobblestone. A trommel can be used in place of the pot mill. A coating material (raw material slurry) produced using a spray gun was applied to the surface of the setter 10 to form a coating layer. The coating time was adjusted, and a 5-600 μm coating layer was formed on the surface of the setter 10 (Sample 1-12). Further, granular ceramics having an average particle size of 20-100 μm were sprayed on the surface of the setter 10 using a plasma spraying machine, and a coating layer of 100 μm was formed on the surface of the setter 10 (Sample 13). Further, the coating material (raw material slurry) was poured onto the surface of the setter 10 to form a 100 μm coating layer on the surface of the setter 10 (Sample 14). As the above-mentioned granular ceramics, for example, zirconia, mullite, alumina or the like can be used. In addition, the setter 10 in which the coating layer was not provided was also subjected to a heating test and a reactivity test (Sample 15). The test conditions and results are shown in FIG.
 加熱試験は、大気圧下、窒素雰囲気で、セッター10に被加熱部材を載置しないで(セッター10自体について)行った。加熱試験は、昇温速度100℃/hrで1350℃まで加熱し、1350℃で2時間保持し、その後室温まで自然冷却するサイクルを1サイクルとし、5サイクル実施した。図17に、各サイクル後にコーティング層に全く異常が確認されなかった試料に「A」、剥離は発生していないものの変質(ふくれ等)が確認された試料に「B」、剥離が確認された試料に「C」を付している。 The heating test was performed in a nitrogen atmosphere under atmospheric pressure without placing the member to be heated on the setter 10 (about the setter 10 itself). In the heating test, the cycle was heated to 1350 ° C. at a rate of temperature increase of 100 ° C./hr, held at 1350 ° C. for 2 hours, and then naturally cooled to room temperature, and then 5 cycles were performed. In FIG. 17, “A” was observed in the sample in which no abnormality was observed in the coating layer after each cycle, and “B” was observed in the sample in which alteration (such as blistering) was confirmed although no peeling occurred. “C” is attached to the sample.
 反応性試験は、大気圧下、窒素雰囲気で、セッター10に被加熱部材(セラミックス製コンデンサ)を100個載置し、昇温速度100℃/hrで1200℃まで加熱し、1200℃で10分間保持し、その後室温まで自然冷却するサイクルを1サイクルとし、5サイクル実施した。図17に、各サイクル後に、焼ムラが生じた被加熱部材が0-2個の試料に「A」、焼ムラが生じた被加熱部材が3-4個の試料に「B」、焼ムラが生じた被加熱部材が5個以上の試料に「C」を付している。 In the reactivity test, 100 heated members (ceramic capacitors) were placed on the setter 10 under atmospheric pressure and in a nitrogen atmosphere, heated to 1200 ° C. at a heating rate of 100 ° C./hr, and then at 1200 ° C. for 10 minutes. The cycle of holding and then naturally cooling to room temperature was taken as 1 cycle, and 5 cycles were performed. FIG. 17 shows that after each cycle, the heated member with uneven firing was “A” on 0-2 samples, and the heated member with uneven firing was “B” on 3-4 samples. A member to be heated is marked with “C” on five or more samples.
 図17に示すように、加熱試験においては、コーティング層の厚みが500μm以下であれば、コーティング層の異常(剥離、ふくれ)を抑制できることが確認された。但し、コーティング層の厚みが250μmを超えると、加熱試験のサイクル数が増えるに従って、コーティング層に異常が生じる試料が確認された。しかしながら、コーティング層の厚みが250μm以下であれば、繰り返し加熱試験を実施してもコーティング層に異常が生じないことが確認された。また、反応性試験においては、コーティング層を設けることにより、セッターと非加熱部材の反応に伴う焼成ムラの発生が改善されることが確認された(試料1,15)。特に、コーティング層の厚みが20μm以上であれば、サイクル数を増やしても、被加熱部材に焼ムラが生じないことが確認された(全て評価「A」であった)。なお、今回の試験では、反応性試験を5サイクル実施しても、評価が「C」となる試料は確認されなかった。以上の結果より、コーティング層の厚みは5~500μmに調整することが好ましく、特に、20~250μmに調整することにより、コーティング層に異常が生じることを防止することができるとともに、被加熱部材に焼ムラが生じることを防止することができることが確認された。なお、今回の試験では、コーティング層の形成方法による差異は確認されなかった(試料5,13及び14)。 As shown in FIG. 17, in the heating test, it was confirmed that when the thickness of the coating layer was 500 μm or less, abnormality (peeling, blistering) of the coating layer could be suppressed. However, when the thickness of the coating layer exceeded 250 μm, a sample in which an abnormality occurred in the coating layer was confirmed as the number of heating test cycles increased. However, when the thickness of the coating layer is 250 μm or less, it was confirmed that no abnormality occurred in the coating layer even when the repeated heating test was performed. Further, in the reactivity test, it was confirmed that the occurrence of uneven firing due to the reaction between the setter and the non-heated member was improved by providing the coating layer (Samples 1 and 15). In particular, if the thickness of the coating layer was 20 μm or more, it was confirmed that even if the number of cycles was increased, no uneven burning occurred in the heated member (all evaluated as “A”). In this test, even if the reactivity test was performed for 5 cycles, a sample having an evaluation of “C” was not confirmed. From the above results, it is preferable to adjust the thickness of the coating layer to 5 to 500 μm, and in particular, by adjusting the thickness to 20 to 250 μm, it is possible to prevent the coating layer from becoming abnormal, and to apply heat to the member to be heated. It was confirmed that firing unevenness can be prevented. In addition, in this test, the difference by the formation method of a coating layer was not confirmed (samples 5, 13, and 14).
 上記実施例では、ハニカム構造として、トラス形状(三角形形状)を備えるセッターについて説明した。しかしながら、ハニカム構造の形状は、四角形(正方形、長方形)、六角形等であってもよい。 In the above embodiment, a setter having a truss shape (triangular shape) as a honeycomb structure has been described. However, the shape of the honeycomb structure may be a quadrangle (square, rectangle), a hexagon, or the like.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
 
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

Claims (11)

  1.  セラミックス製の焼成用セッターであり、
     表面層と中間層と裏面層を備えており、
     中間層は、ハニカム構造を有しており、表面層及び裏面層より低密度であり、
     表面層は、平板状であり、厚みが50μm以上2000μm以下であるとともに開気孔率が5%以上50%以下である、焼成用セッター。
    Ceramic setter for firing,
    It has a surface layer, an intermediate layer, and a back layer,
    The intermediate layer has a honeycomb structure and has a lower density than the front surface layer and the back surface layer,
    The surface layer has a flat plate shape, has a thickness of 50 μm or more and 2000 μm or less, and an open porosity of 5% or more and 50% or less.
  2.  裏面層は、平板状であり、厚みが100μm以上2000μm以下である請求項1に記載の焼成用セッター。 The setter for firing according to claim 1, wherein the back surface layer is flat and has a thickness of 100 µm or more and 2000 µm or less.
  3.  中間層のハニカム構造の開口を画定している隔壁の厚みが、50μm以上2000μm以下である請求項1又は2に記載の焼成用セッター。 The firing setter according to claim 1 or 2, wherein the partition wall defining the opening of the honeycomb structure of the intermediate layer has a thickness of 50 µm or more and 2000 µm or less.
  4.  前記開口の水力直径が0.3mm以上7mm以下である請求項3に記載の焼成用セッター。 The firing setter according to claim 3, wherein the hydraulic diameter of the opening is 0.3 mm or more and 7 mm or less.
  5.  前記開口の開口率が50%以上95%以下である請求項3又は4に記載の焼成用セッター。 The firing setter according to claim 3 or 4, wherein the opening ratio of the opening is 50% or more and 95% or less.
  6.  前記開口が、表面層と裏面層を結ぶ第1方向に直交する第2方向に向けて開口している請求項1から5のいずれか一項に記載の焼成用セッター。 The firing setter according to any one of claims 1 to 5, wherein the opening is opened in a second direction orthogonal to the first direction connecting the front surface layer and the back surface layer.
  7.  裏面層の強度が、表面層及び中間層より高い請求項1から6のいずれか一項に記載の焼成用セッター。 The setter for firing according to any one of claims 1 to 6, wherein the strength of the back surface layer is higher than that of the front surface layer and the intermediate layer.
  8.  熱膨張係数が、2.0ppm/℃以下である請求項1から7のいずれか一項に記載の焼成用セッター。 The setter for firing according to any one of claims 1 to 7, wherein a thermal expansion coefficient is 2.0 ppm / ° C or less.
  9.  表面層と中間層の隔壁が連続しており、
     裏面層と中間層の隔壁が連続しており、
     表面層と中間層と裏面層が一体である請求項1から8のいずれか一項に記載の焼成用セッター。
    The partition of the surface layer and the intermediate layer is continuous,
    The partition walls of the back layer and the intermediate layer are continuous.
    The setter for firing according to any one of claims 1 to 8, wherein the surface layer, the intermediate layer, and the back layer are integrated.
  10.  表面層に、コーティング層が設けられている請求項1から9のいずれか一項に記載の焼成用セッター。 The setter for firing according to any one of claims 1 to 9, wherein a coating layer is provided on the surface layer.
  11.  コーティング層の厚みが、5μm以上500μm以下である請求項10に記載の焼成用セッター。
     
    The firing setter according to claim 10, wherein the coating layer has a thickness of 5 μm or more and 500 μm or less.
PCT/JP2017/031846 2016-09-12 2017-09-04 Setter for firing WO2018047784A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780049644.1A CN109716049A (en) 2016-09-12 2017-09-04 Carrier for baking
JP2018500748A JP6364570B1 (en) 2016-09-12 2017-09-04 Setter for firing
KR1020197010290A KR20190043629A (en) 2016-09-12 2017-09-04 Firing setter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016177960 2016-09-12
JP2016-177960 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018047784A1 true WO2018047784A1 (en) 2018-03-15

Family

ID=61561806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031846 WO2018047784A1 (en) 2016-09-12 2017-09-04 Setter for firing

Country Status (5)

Country Link
JP (1) JP6364570B1 (en)
KR (1) KR20190043629A (en)
CN (1) CN109716049A (en)
TW (1) TWI719252B (en)
WO (1) WO2018047784A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174102A (en) * 2018-03-28 2019-10-10 日本碍子株式会社 heating furnace
DE112020006457T5 (en) 2020-01-06 2022-11-03 Ngk Adrec Co., Ltd. ceramic structure
WO2023127515A1 (en) * 2021-12-27 2023-07-06 株式会社エフ・シー・シー Setter for baking ceramic and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298549B1 (en) 2021-03-08 2021-09-03 마홍설 Sequential transfer type heat treatment automation device through the jig part and automation control part for smart ceramic setter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167600U (en) * 1988-05-16 1989-11-24
JPH0286187A (en) * 1988-09-22 1990-03-27 Ngk Insulators Ltd Method of baking ceramic substrate
JPH05231782A (en) * 1992-02-18 1993-09-07 Ngk Insulators Ltd Method for baking small-sized parts and its setting device
JP2003165775A (en) * 2001-09-20 2003-06-10 Sumitomo Metal Electronics Devices Inc Ceramic setter and method for manufacturing the same
JP2004150661A (en) * 2002-10-29 2004-05-27 Hitachi Metals Ltd Setter for baking
JP2004262712A (en) * 2003-02-28 2004-09-24 Toshiba Ceramics Co Ltd Burning tool
JP2010116291A (en) * 2008-11-12 2010-05-27 Tdk Corp Method for manufacturing ceramic substrate and electronic component
JP2015074573A (en) * 2013-10-08 2015-04-20 株式会社村田製作所 Sagger for firing and method for producing electronic component

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517261A (en) * 1991-07-05 1993-01-26 Kikusui Kagaku Kogyo Kk Laminated porous ceramic calcined body
JPH1054672A (en) * 1996-08-09 1998-02-24 Sumitomo Metal Ind Ltd Setter for burning ceramics
KR100314726B1 (en) * 1999-11-08 2001-11-17 신현준 A Method For Fabricating Zirconia Coated Alumina Sagger
JP2002114579A (en) * 2000-10-03 2002-04-16 Hitachi Metals Ltd Sintering setter
JP2003306386A (en) * 2002-04-09 2003-10-28 Mino Ceramic Co Ltd Alumina ceramic setter and method for manufacturing the same
EP1555252A4 (en) * 2002-08-30 2007-10-24 Mitsui Mining & Smelting Co Electronic component burning jig
JP2005321161A (en) * 2004-05-11 2005-11-17 Mitsui Mining & Smelting Co Ltd Kiln tool for baking
ZA200703380B (en) * 2004-09-27 2008-09-25 Ngk Insulators Ltd Setter used in firing and method for firing of formed honeycomb body using the setter
JP2006183972A (en) * 2004-12-28 2006-07-13 Ngk Insulators Ltd Baking fixture for electronic component
JP5231782B2 (en) 2007-10-26 2013-07-10 学校法人常翔学園 Device having solid-liquid separation function and method for manufacturing the same
CN101429046B (en) * 2008-12-12 2011-09-14 北京创导工业陶瓷有限公司 Sandwich refractory slab and method for producing the same
WO2016117207A1 (en) * 2015-01-19 2016-07-28 三井金属鉱業株式会社 Ceramic lattice

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167600U (en) * 1988-05-16 1989-11-24
JPH0286187A (en) * 1988-09-22 1990-03-27 Ngk Insulators Ltd Method of baking ceramic substrate
JPH05231782A (en) * 1992-02-18 1993-09-07 Ngk Insulators Ltd Method for baking small-sized parts and its setting device
JP2003165775A (en) * 2001-09-20 2003-06-10 Sumitomo Metal Electronics Devices Inc Ceramic setter and method for manufacturing the same
JP2004150661A (en) * 2002-10-29 2004-05-27 Hitachi Metals Ltd Setter for baking
JP2004262712A (en) * 2003-02-28 2004-09-24 Toshiba Ceramics Co Ltd Burning tool
JP2010116291A (en) * 2008-11-12 2010-05-27 Tdk Corp Method for manufacturing ceramic substrate and electronic component
JP2015074573A (en) * 2013-10-08 2015-04-20 株式会社村田製作所 Sagger for firing and method for producing electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019174102A (en) * 2018-03-28 2019-10-10 日本碍子株式会社 heating furnace
DE112020006457T5 (en) 2020-01-06 2022-11-03 Ngk Adrec Co., Ltd. ceramic structure
WO2023127515A1 (en) * 2021-12-27 2023-07-06 株式会社エフ・シー・シー Setter for baking ceramic and method for producing same

Also Published As

Publication number Publication date
TW201826877A (en) 2018-07-16
TWI719252B (en) 2021-02-21
CN109716049A (en) 2019-05-03
JP6364570B1 (en) 2018-07-25
JPWO2018047784A1 (en) 2018-09-06
KR20190043629A (en) 2019-04-26

Similar Documents

Publication Publication Date Title
JP6364570B1 (en) Setter for firing
EP1679120B1 (en) Honeycomb structure and method of producing the same
US8039086B2 (en) Bonding material, process for producing the same, and honeycomb structure made with the same
KR20050109449A (en) Honeycomb structure and method of manufacturing the same
US8128395B2 (en) Honeycomb segment-forming die and method for manufacturing honeycomb structure
WO2012014835A1 (en) Rack for firing
EP2374775B1 (en) Method for manufacturing honeycomb structure
JP2011052909A (en) Kiln tool plate for ceramic firing
US6705860B2 (en) Setter for burning
EP1359990B1 (en) Filter element and method for the manufacture
JP2007205696A (en) Baking setter
JP4181809B2 (en) Setter for firing
WO2009093691A1 (en) Sintering method for honeycomb compact
US20150252702A1 (en) Honeycomb structure
US20090220699A1 (en) Method for manufacturing ceramic honeycomb structure and coating material used for the method
EP2233871B1 (en) Method for firing Si-bonded SiC ceramics
WO2009093690A1 (en) Sintering method for honeycomb compact
JP2004281392A (en) High melting point metal material with oxide coated layer, its manufacturing method, and board for sintering by using it
DE102014004138B4 (en) Process for the highly productive production of flow-through structures low component density of metallic, ceramic or metal-ceramic materials
JP7307578B2 (en) Firing jig
EP2649395A1 (en) Ceramic plate for kiln car bodies and fireproof linings
EP2362175B1 (en) Housing for heating and use method of the same, heating jig and use method of the same, and operation method of heating device
US11135739B2 (en) Manufacturing method of honeycomb structure
WO2017038700A1 (en) Flow path member
KR20130102232A (en) Multi holes type of ceramics setter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018500748

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010290

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17848724

Country of ref document: EP

Kind code of ref document: A1