WO2018047746A1 - Rotary machine - Google Patents

Rotary machine Download PDF

Info

Publication number
WO2018047746A1
WO2018047746A1 PCT/JP2017/031660 JP2017031660W WO2018047746A1 WO 2018047746 A1 WO2018047746 A1 WO 2018047746A1 JP 2017031660 W JP2017031660 W JP 2017031660W WO 2018047746 A1 WO2018047746 A1 WO 2018047746A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic sensor
magnetic
sensor
hall
teeth
Prior art date
Application number
PCT/JP2017/031660
Other languages
French (fr)
Japanese (ja)
Inventor
典樹 森本
萩村 将巳
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Publication of WO2018047746A1 publication Critical patent/WO2018047746A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a rotating electrical machine. This application claims priority on September 9, 2016 based on Japanese Patent Application No. 2016-176422 for which it applied to Japan, and uses the content for it here.
  • rotating electrical machine used for a motorcycle or the like, one having two functions of an engine start function and a regenerative power generation function using regenerative energy is known.
  • This type of rotating electrical machine includes a bottomed cylindrical rotor (rotor) fixed to a crankshaft and a stator (stator) fixed to an engine case. While a magnet is provided on the inner peripheral surface side of the rotor, teeth on which a plurality of coils are wound are provided radially on the stator.
  • the stator is provided with a position detection sensor that detects the rotational position of the rotor.
  • the commutation timing of the coil is controlled based on the detection signal detected by the position detection sensor.
  • the position detection sensor is housed in the sensor case (sensor holder), the sensor case, a plurality of Hall ICs that detect changes in the magnetic poles of the rotor, and housed in the sensor case. And a circuit board to be connected.
  • the sensor case is formed by integrally forming a box-shaped sensor case main body (case body) having an opening on one surface and a plurality of holder pieces suspended from the sensor case main body. Each holder piece is inserted one by one into a plurality of slots formed between adjacent teeth.
  • the circuit board is housed in the sensor case body, and the Hall IC is housed in the leg portion.
  • each Hall IC Since the position of each Hall IC differs depending on the specifications of the rotating electrical machine, depending on the specifications, if one Hall IC (leg part) is arranged in one slot, the position detection sensor (sensor case) becomes large. There is a possibility. For example, in a rotating electrical machine in which the number of coil phases is set to two, each Hall IC needs to be arranged with an electrical angle of 90 °.
  • the present invention provides a rotating electrical machine that can reduce the size of the position detection sensor and reduce the manufacturing cost.
  • the rotating electrical machine is wound around the stator in which a plurality of teeth are arranged in the circumferential direction and a slot is formed between the adjacent teeth, and the plurality of teeth.
  • At least one of the first magnetic sensor and the second magnetic sensor is disposed at a position shifted from the center in the circumferential direction of the slot, and at least one of the teeth A recess capable of receiving at least one of the first magnetic sensor and the second magnetic sensor is formed.
  • the mechanical angle between the first magnetic sensor and the second magnetic sensor can be set as small as possible. For this reason, even if it is a case where the sensor case holding a 1st magnetic sensor and a 2nd magnetic sensor is provided, this sensor case can be reduced in size. Moreover, the manufacturing cost of the position detection sensor comprised with a 1st magnetic sensor or a 2nd magnetic sensor can be reduced. Further, at least one of the first magnetic sensor and the second magnetic sensor is disposed at a position shifted from the center in the circumferential direction of the slot, and one of the first magnetic sensor and the second magnetic sensor is disposed on the corresponding tooth.
  • the two magnetic sensors By forming a recess capable of receiving the two, the two magnetic sensors can be respectively disposed in desired slots while suppressing the recess to the minimum necessary size. For this reason, a sensor case can be reduced in size, suppressing the characteristic deterioration of a rotary electric machine.
  • the first magnetic sensor and the second magnetic sensor are disposed in one of the slots, and the slot is The recess is formed in the two teeth to be formed.
  • This configuration makes it possible to minimize the sensor case and further reduce the manufacturing cost of the position detection sensor.
  • the rotating electrical machine includes a third magnetic sensor that detects a magnetic flux of the magnet
  • the rotating electric machine includes: One has a main magnetic pole portion having a different polarity from the magnetic pole of the adjacent magnet, and a sub magnetic pole portion having the same polarity as the magnetic pole of the adjacent magnet, and the main magnetic pole portion and the sub magnetic pole portion are
  • the first magnetic sensor and the second magnetic sensor are disposed at positions corresponding to the main magnetic pole portion and are disposed adjacent to each other in the rotation axis direction of the rotor, and at positions corresponding to the sub magnetic pole portion.
  • the third magnetic sensor is disposed.
  • the absolute position on the circumference of the rotor can be detected using the third magnetic sensor in addition to the first magnetic sensor and the second magnetic sensor. For this reason, for example, the ignition timing of the engine can be controlled by the rotating electrical machine.
  • the third magnetic sensor includes the slot in which the first magnetic sensor and the second magnetic sensor are disposed. Arranged in the same slot.
  • the position detection sensor including the three magnetic sensors can be reduced in size and the manufacturing cost can be reduced.
  • the rotating electrical machine is wound around the stator in which a plurality of teeth are arranged in the circumferential direction and a slot is formed between the adjacent teeth, and the plurality of teeth.
  • a coil having a number of phases set to three phases, a rotor provided rotatably with respect to the stator, and having a plurality of magnets arranged so that magnetic poles alternate along the circumferential direction, and a plurality of A first magnetic sensor, a second magnetic sensor, and a third magnetic sensor that are arranged in any one of the slots and detect magnetic flux of the magnet, and at least two adjacent teeth are set to in-phase teeth
  • B, C, M, N, and X are natural numbers
  • the number of slots is S
  • the number of magnetic poles of the magnet is P
  • X 120 M / ⁇ (360 / S) ⁇ (P / ) ⁇ Of M that satisfies, when a minimum value and A
  • the mechanical angle between the first magnetic sensor and the second magnetic sensor, and the second magnetic sensor and the first magnetic sensor can be set as small as possible. For this reason, even if it is a case where the sensor case holding a 1st magnetic sensor, a 2nd magnetic sensor, and a 3rd magnetic sensor is provided, this sensor case can be reduced in size. Moreover, the manufacturing cost of the position detection sensor comprised by a 1st magnetic sensor, a 2nd magnetic sensor, and a 3rd magnetic sensor can be reduced.
  • At least one of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor is disposed at a position shifted from the center in the circumferential direction of the slot, and the first magnetic sensor and the second magnetic sensor are disposed on the corresponding teeth.
  • At least two of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor are It is arrange
  • This configuration makes it possible to minimize the sensor case and further reduce the manufacturing cost of the position detection sensor.
  • the rotating electrical machine includes a fourth magnetic sensor that detects a magnetic flux of the magnet
  • the rotating electric machine includes: One has a main magnetic pole portion having a different polarity from the magnetic pole of the adjacent magnet, and a sub magnetic pole portion having the same polarity as the magnetic pole of the adjacent magnet, and the main magnetic pole portion and the sub magnetic pole portion are
  • the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor are disposed adjacent to each other in the rotational axis direction of the rotor, and correspond to the main magnetic pole portion, and the sub-magnetic pole
  • the fourth magnetic sensor is arranged at a position corresponding to the part.
  • the absolute position on the circumference of the rotor can be detected using the fourth magnetic sensor in addition to the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor. For this reason, for example, the ignition timing of the engine can be controlled by the rotating electrical machine.
  • the fourth magnetic sensor is any one of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor. It is arranged in the same slot as the slot in which is arranged.
  • the position detection sensor including the four magnetic sensors can be reduced in size and the manufacturing cost can be reduced.
  • the mechanical angle between the magnetic sensors can be set as small as possible even in a rotating electrical machine in which the number of coils is set to two or three phases. For this reason, even if it is a case where the sensor case holding each sensor is provided, this sensor case can be reduced in size. Moreover, the manufacturing cost of the position detection sensor comprised with each magnetic sensor can be reduced. Furthermore, by disposing at least one of each magnetic sensor at a position shifted from the center in the circumferential direction of the slot and forming a recess that can receive the magnetic sensor in the corresponding tooth, the recess is minimized. Each magnetic sensor can be arranged in a desired slot while suppressing the size. For this reason, a sensor case can be reduced in size, suppressing the characteristic deterioration of a rotary electric machine.
  • FIG. 1 is a cross-sectional view of the rotating electrical machine 1.
  • FIG. 2 is a schematic configuration diagram of the stator 3 and the rotor 5 constituting the rotating electrical machine 1 as seen from the axial direction.
  • the rotating electrical machine 1 is used as a starter generator for a vehicle engine such as a motorcycle.
  • the rotating electrical machine 1 is a two-phase brushless type rotating electrical machine.
  • the rotating electrical machine 1 is wound around the stator 3 fixed to the engine block 2, the rotor 5 fixed to the crankshaft 4 of the engine, the position detection sensor 6 that detects the rotational position of the rotor 5, and the stator 3.
  • the coil 7 is provided.
  • the rotational axis direction of the rotor 5 in the rotating electrical machine 1 is simply referred to as an axial direction
  • the rotational direction of the rotor 5 is referred to as a circumferential direction
  • the radial direction of the rotor 5 orthogonal to the axial direction and the circumferential direction is simply referred to as the axial direction. This will be described as a radial direction.
  • the rotor 5 includes a rotor yoke 8 formed into a substantially bottomed cylindrical shape by appropriately forming a metal plate made of a ferromagnetic member.
  • the rotor yoke 8 bends and extends in the same direction as the cylindrical portion 8b from the radial center of the bottom portion 8a, a cylindrical portion 8b that bends and extends from the outer periphery of the bottom portion 8a toward the engine block 2 side.
  • a boss cylinder portion 8c is a boss cylinder portion 8c.
  • crankshaft 4 The tip of the crankshaft 4 is inserted into the boss cylinder portion 8c. Further, the crankshaft 4 is fastened and fixed to the boss cylinder portion 8c by bolts 10. Thereby, the crankshaft 4 and the rotor 5 rotate integrally.
  • a plurality (14 in the first embodiment) of magnets 9 are arranged at equal intervals in the circumferential direction on the inner peripheral surface of the cylindrical portion 8b.
  • FIG. 3 is a development view of the inner peripheral surface side of the rotor yoke 8. As shown in the figure, with the exception of one magnet 9 except for one, all other magnets 9 have a surface (inner surface) facing the center of the rotation axis of the rotor 5 that is either N-pole or S-pole. Magnetized.
  • One magnet 9c is provided with a short sub-magnetic pole portion 129 whose inner surface is magnetized to N pole on one end side of the main magnetic pole portion 119 whose inner surface is magnetized to S pole.
  • the magnet 9 whose entire inner surface is magnetized to the N pole is the N pole magnet 9a
  • the magnet 9 whose entire inner surface is magnetized to the S pole is the S pole magnet 9b
  • the magnet 9 provided with the magnetic pole portion 119 and the sub magnetic pole portion 129 is referred to as a two-pole magnet 9c.
  • a two-pole magnet 9c is arranged between a specific pair of adjacent S-pole magnets 9b, and an N-pole magnet 9a is arranged between other adjacent S-pole magnets 9b. Therefore, the N pole and the S pole appear alternately on the inner peripheral side of the rotor 5 except for one end side in the axial direction (the upper end side in FIG. 3). On the other hand, on one end side in the axial direction, N poles appear continuously by the sub-magnetic pole portion 129 of the two-pole magnet 9c and three magnets before and after (the front and rear in the circumferential direction).
  • the region on one end side in the axial direction of the magnet 9 is used as a target for detecting the ignition timing of the engine, and the remaining region in the axial direction of the magnet 9 is mainly composed of the coil 7. Used as a target for detecting commutation timing.
  • FIG. 4 is a perspective view of the stator 3 and the position detection sensor 6.
  • the stator 3 includes a stator iron core 11 formed by laminating electromagnetic steel plates, for example, and a plurality of coils 7 wound around the stator iron core 11.
  • the stator iron core 11 includes a main body portion 12 formed in a substantially annular shape, and a plurality (12 in the first embodiment) of teeth portions 13 that protrude radially outward from the outer peripheral surface of the main body portion 12. And have.
  • the main body 12 is formed with a plurality of through holes 12a penetrating in the axial direction at equal intervals in the circumferential direction. Bolts 18 are inserted into the through holes 12 a, and the bolts 18 are screwed into the engine block 2. Thereby, the stator iron core 11 is fastened and fixed to the engine block 2.
  • a claw piece 14 is provided at the tip of each tooth portion 13 so as to project from the tip to both sides in the circumferential direction.
  • slots 15 are formed between adjacent tooth portions 13. That is, in the first embodiment, twelve slots 15 are formed.
  • a resin insulator 19 that covers the periphery of the teeth 13 is attached to each of the teeth 13. Then, the coil 7 is inserted into the slot 15, and the coil 7 is wound around each tooth portion 13 from above the insulator 19.
  • the teeth portion 13 is continuously assigned to the three teeth portions 13 adjacent to each other in the circumferential direction in the A phase of the two phases, and the B phase of the two phases is It is continuously assigned to three teeth 13 adjacent in the circumferential direction. Furthermore, the teeth part 13 is allocated so that the three A phases and the three B phases are alternately arranged in the circumferential direction. That is, the teeth portion 13 is assigned in the order of A phase, A phase, A phase, B phase, B phase, A phase, A phase, A phase, B phase, B phase, and B phase in the circumferential direction. Yes. And the terminal part of the coil 7 wound by each teeth part 13 is electrically connected to the control apparatus not shown.
  • the claw pieces 14 of two predetermined adjacent teeth 13 are attached to the two teeth 13 by the two teeth 13.
  • a notch 16 is formed in each part of the formed slot 15 side.
  • a notch 19 a is also formed in the insulator 19 so as to correspond to the notch 16.
  • the two notches 16 (notches 19a) are formed between the slightly outer side and the axially outer end of the claw piece 14 in the axial direction.
  • the two notches 16 form a substantially rectangular fitting groove 17 straddling two claw pieces 14 adjacent in the circumferential direction.
  • a part of the position detection sensor 6 is fitted into the fitting groove 17.
  • the two tooth portions 13 in which the notch portions 16 are formed in the claw piece 14 are referred to as specific tooth portions 13 ⁇ / b> A in order to distinguish them from the other tooth portions 13.
  • FIG. 5 is an exploded perspective view of the position detection sensor 6.
  • the position detection sensor 6 includes a resin sensor case 60 disposed on one end side in the axial direction of the stator core 11 and two circuit boards 55 ⁇ / b> A housed in the sensor case 60. , 55B (first circuit board 55A, second circuit board 55B).
  • the direction of the position detection sensor 6 is the direction in which the position detection sensor 6 is disposed on the stator core 11. That is, the axial direction, the circumferential direction, and the radial direction in the following description coincide with the axial direction, the circumferential direction, and the radial direction of the rotor 5 in the rotating electrical machine 1.
  • the circuit boards 55A and 55B are arranged so that their surface directions are along the circumferential direction.
  • Each of the circuit boards 55A and 55B is formed in a substantially T shape.
  • Each circuit board 55A, 55B is formed integrally with the insertion portion 56 formed to be elongated along the axial direction and the axially outer end of the insertion portion 56, and is formed to be elongated along the circumferential direction.
  • the sensor line connecting portion 57 is used.
  • the insertion portion 56 of the first circuit board 55A is surface-mounted on the radially outer surface (the surface facing the magnet 9 of the rotor 5) so that the first Hall IC 50a and the second Hall IC 50b are aligned in the axial direction. Yes.
  • a third Hall IC 50c is surface-mounted on the radially outer surface of the insertion portion 56 of the second circuit board 55B.
  • the second Hall IC 50b and the third Hall IC 50c are mounted so as to have the same height in the axial direction.
  • the first Hall IC 50a is disposed at a position M1 facing one end side in the axial direction on the inner circumferential surface of the rotor yoke 8, and the second Hall IC 50a to 50c.
  • the IC 50 b and the third Hall IC 50 c are disposed at a position M ⁇ b> 2 facing the substantially center in the axial direction on the inner peripheral surface of the rotor yoke 8.
  • the second Hall IC 50b and the third Hall IC 50c are arranged on the same line in the rotation direction (circumferential direction) of the rotor 5.
  • the first Hall IC 50a is arranged at a position shifted from the line on which the second Hall IC 50b and the third Hall IC 50c are arranged.
  • the first Hall IC 50a and the second Hall IC 50b are arranged so as to be located on the same line in the direction orthogonal to the rotation direction of the rotor 5, that is, in the axial direction.
  • the first Hall IC 50a detects the switching of the magnetic flux of each of the pole magnets 9a, 9b, 9c at a height passing through the sub magnetic pole portion 129 of the two-pole magnet 9c.
  • the second Hall IC 50b and the third Hall IC 50c detect the switching of the magnetic flux of each of the pole magnets 9a, 9b, 9c at a height passing through the main magnetic pole portion 119 of the two-pole magnet 9c.
  • two sensor line through holes 58 a are formed in the sensor line connecting portions 57 of the circuit boards 55 ⁇ / b> A and 55 ⁇ / b> B substantially at the center in the circumferential direction.
  • One end of a sensor wire (not shown) is inserted into the through hole 58a for the sensor wire and connected to each circuit board 55A, 55B by soldering or the like.
  • the other end of the sensor line is electrically connected to a control device (both not shown).
  • Two lead wire through holes 58b are formed on one side in the circumferential direction of the sensor line connecting portion 57, respectively. Terminals of lead wires (not shown) are connected to these lead wire through holes 58b so as to straddle the two circuit boards 55A and 55B.
  • the sensor case 60 is made of resin.
  • the sensor case 60 includes a sensor holder 70 in which the circuit boards 55A and 55B are accommodated, a sensor press 90 that is attached to the sensor holder 70 and prevents the circuit boards 55A and 55B from being detached from the sensor holder 70, and a sensor. And an outer frame member 20 into which the holder 70 is inserted.
  • the sensor holder 70 is formed by integrally molding a base portion 71 and a holder main body 72 protruding from the base portion 71 toward the other axial end side (the lower side in FIGS. 4 and 5).
  • the base portion 71 is formed to have an oval shape when viewed from the axial direction, and is slightly curved along the outer periphery of the stator core 11.
  • a peripheral wall 76 is provided on the outer peripheral edge of the base portion 71 so as to protrude toward the side opposite to the holder main body 72.
  • the peripheral wall 76 functions as an inlay portion 76 a when the sensor holder 70 is inserted into the outer frame member 20, and also functions as an inlay portion 76 b when the sensor presser 90 is attached to the sensor holder 70.
  • the base portion 71 is formed with two openings 73 through which the insertion portions 56 of the circuit boards 55A and 55B can be inserted.
  • a guide wall 74 is provided so as to project toward one axial direction (the upper side in FIGS. 4 and 5).
  • the guide wall 74 is for guiding a sensor wire (not shown) extending from the circuit boards 55A and 55B to the outside of the sensor case 60.
  • Each guide wall 74 is formed with two recesses 74a aligned in the circumferential direction.
  • the recess 74a is formed in a substantially semicircular shape, and a sensor line (not shown) passes through each recess 74a.
  • the holder main body 72 is formed in a substantially bottomed cylindrical shape through which the opening 73 of the base portion 71 communicates.
  • the holder main body 72 is formed so as to correspond to the fitting groove 17 formed in the tooth portion 13 of the stator 3. That is, the holder main body 72 is inserted into the fitting groove 17.
  • the radially outer surface of the holder main body 72 and the radially outer surface of the claw piece 14 of the tooth portion 13 are flush with each other.
  • the holder main body 72 has a partition wall (not shown) formed between the two openings 73 of the base portion 71, and can store the circuit boards 55 ⁇ / b> A and 55 ⁇ / b> B for each opening 73.
  • a holding portion 77 is formed extending along the axial direction.
  • the holding portion 77 is for suppressing backlash in the fitting groove 17 of the sensor holder 70 and increasing rigidity.
  • the holding portion 77 includes a base portion 77a extending from the radially inner surface of the holder main body 72 and a rib portion 77b formed to project from the radially outer surface of the base portion 77a.
  • Base portion 77a is in contact with the inner peripheral surface of claw piece 14 of specific tooth portion 13A.
  • the rib portion 77b is interposed between the claw pieces 14 of the specific tooth portions 13A adjacent in the circumferential direction and on the other side in the axial direction from the fitting groove 17 (notch portion 16).
  • the insertion portions 56 of the circuit boards 55A and 55B are inserted or press-fitted from the opening 73 side of the base portion 71.
  • the insertion portion 56 can be easily inserted into the opening 73 by being inserted along the guide wall 74 of the base portion 71.
  • the insertion portion 56 of each circuit board 55 ⁇ / b> A, 55 ⁇ / b> B is accommodated in the holder main body 72.
  • the sensor line connecting portion 57 of each circuit board 55A, 55B is disposed in contact with the base portion 71 and protruding on the base portion 71.
  • the holder main body 72 is inserted into the fitting groove 17 formed in the tooth portion 13 of the stator 3 as described above.
  • the holder main body 72 accommodates the insertion portions 56 of the two circuit boards 55A and 55B. For this reason, these two insertion parts 56 are located in the location which shifted
  • the second Hall IC 50b and the third Hall IC 50c that are surface-mounted on the circuit boards 55A and 55B are arranged at positions shifted from the circumferential center C1 of the slot 15, respectively. Details of the angle between the second Hall IC 50b and the third Hall IC 50c will be described later.
  • the sensor presser 90 has a presser body 91 placed on the base portion 71.
  • the presser body 91 is formed in a substantially arc shape so as to extend along the inner peripheral surface (inlay portion 76 b) of the peripheral wall 76 of the base portion 71 and to be long in the longitudinal direction of the base portion 71.
  • the presser main body 91 is inlay-fitted to the peripheral wall 76 of the base portion 71.
  • the presser body 91 is formed so that the width in the short direction is about half of the width in the short direction of the base portion 71, and is disposed near the guide wall 74 of the base portion 71.
  • two concave portions 92 are formed so as to avoid the opening 73 of the base portion 71.
  • An insertion recess 93 into which the guide wall 74 is inserted is formed on the bottom surface 92a of the recess 92 at the end on the base 71 side.
  • a slit 94 is formed in the bottom surface 93 a of the insertion recess 93. Through this slit 94, the other end of the sensor wire (not shown) whose one end is connected to each of the circuit boards 55A and 55B is drawn out radially inward.
  • presser plates 95 a, 95 b, and 95 c are extended outward in the radial direction at positions that avoid the concave portion 92 at the end opposite to the base portion 71 in the axial direction.
  • Each presser plate 95a, 95b, 95c is located on the sensor line connection part 57 of each circuit board 55A, 55B.
  • the retaining plates 95a, 95b, and 95c prevent the circuit boards 55A and 55B from being detached from the sensor holder 70.
  • the presser main body 91 has two engaging portions 96a and 96b projecting from the radially inner side surface. These engaging portions 96 are for engaging the sensor presser 90 with the outer frame member 20.
  • the engaging portion 96 is integrally formed with a support portion 97 that protrudes radially inward from the presser body 91 and a claw portion 98 that extends from the radially inner end (tip) of the support portion 97 along the circumferential direction. It becomes.
  • the outer frame member 20 is formed to have an oval shape when viewed from the axial direction so as to correspond to the shape of the base portion 71 of the sensor holder 70, and is formed to be slightly curved along the outer periphery of the stator core 11.
  • a cylindrical peripheral wall 23 is provided. More specifically, the peripheral wall 23 includes an outer peripheral wall portion 23a that constitutes a radially outer wall, an inner peripheral wall portion 23b that constitutes a radially inner wall, and the outer peripheral wall portion 23a and the inner peripheral wall portion 23b.
  • the side wall parts 23c and 23d to be connected are integrally formed.
  • the base portion 71 of the sensor holder 70 is inserted into the peripheral wall 23.
  • the peripheral wall 76 (inlay portion 76 a) of the base portion 71 is fitted into the peripheral wall 23 of the outer frame member 20.
  • a plurality of positioning projections 21 projecting toward the inner peripheral side are formed at predetermined intervals in the peripheral direction of the peripheral wall 23.
  • the positioning convex portion 21 has a role of positioning the sensor holder 70 with respect to the outer frame member 20. That is, when the base portion 71 is inserted into the outer frame member 20, the base portion 71 comes into contact with the positioning convex portion 21, and the position of the base portion 71 is determined.
  • a plurality of retaining claws 22 projecting toward the inner peripheral side are formed between the positioning convex portions 21.
  • the retaining claws 22 are for preventing the base portion 71 positioned on the outer frame member 20 from coming off from the outer frame member 20.
  • the outer frame member 20 and the sensor holder 70 are integrated.
  • the tongue piece 64 is for fastening and fixing the position detection sensor 6 to an engine block (not shown).
  • the tongue piece portion 64 is formed with a bolt insertion hole 64a through which a bolt (not shown) is inserted.
  • engagement concave portions 25a and 25b are formed at positions corresponding to the engagement portions 96a and 96b of the sensor presser 90.
  • the support portions 97 of the engaging portions 96a and 96b are inserted into the engaging concave portions 25a and 25b.
  • the inner peripheral wall portion 23b of the outer frame member 20 is sandwiched between the presser body 91 of the sensor presser 90 and the claw portions 98 of the engaging portions 96a and 96b.
  • the sensor presser 90 is engaged with the outer frame member 20.
  • a slit 24 a is formed in the bottom 24 of the engaging recesses 25 a and 25 b of the outer frame member 20.
  • the other end of the sensor wire (not shown) is drawn out radially inward of the outer frame member 20 through these slits 24a.
  • a wiring guide 68 extending inward in the radial direction is integrally formed at the center of the inner peripheral wall portion 23b.
  • the wiring guide 68 is for collecting sensor wires (not shown) drawn from the outer frame member 20 and drawing them to the side.
  • the wiring guide 68 is formed by integrally molding a base portion 68a and a tongue piece portion 68b provided to be spaced apart from the base portion 68a in the axial direction.
  • a sensor wire (not shown) is drawn and held between the base portion 68a and the tongue piece portion 68b.
  • a bolt seat 69 is formed integrally with the base portion 68a at the tip on the radially inner side.
  • the bolt seat 69 is for fixing the outer frame member 20 to the stator core 11.
  • the bolt seat 69 includes a vertical wall portion 69a that bends and extends from the tip of the base portion 68a toward the inner side in the axial direction, and a horizontal wall portion 69b that bends and extends from the vertical wall portion 69a toward the inner side in the radial direction. Yes.
  • the height of the vertical wall portion 69 a is set to a height at which the outer frame member 20 does not interfere with the inner peripheral wall 111 of the insulator 110 in a state where the bolt seat 69 is attached to the stator core 11.
  • a bolt insertion hole 67 is formed in the lateral wall portion 69 b of the bolt seat 69. Then, as shown in FIG. 1, the outer frame member 20 is fastened and fixed to the stator core 11 by inserting the bolt 30 from above the bolt seat 69 and screwing the bolt 30 into the stator core 11.
  • attached to the outer frame member 20 the inside of the surrounding wall 23 of the outer frame member 20 is sealed with a filler not shown. This prevents malfunction of the position detection sensor 6 caused by dust or water droplets.
  • the operation of the position detection sensor 6 and details of the arrangement angles of the Hall ICs 50a, 50b, and 50c will be described.
  • the second Hall IC 50b and the third Hall IC 50c are not shown as a rotational position signal of the rotor 5 with a signal detected at a position M2 (see FIG. 3) on the center side of the rotor 5.
  • the first Hall IC 50a outputs a signal detected at a position M1 (see FIG. 3) on one end side in the axial direction of the rotor 5 to a control device (not shown) as an absolute position information signal on the circumference of the rotor 5.
  • a control device receives the output signals of the second Hall IC 50b and the third Hall IC 50c, controls the commutation timing for the two-phase coil 7, and outputs the output signal of the first Hall IC 50a and the second Hall IC 50b.
  • the engine ignition timing and fuel injection timing are controlled.
  • a current is supplied to the predetermined coil 7 based on the commutation timing for the coil 7, the rotor 5 and the crankshaft 4 rotate. As a result, the engine is started. After the engine is started, the generated power accompanying the rotation of the rotor 5 is charged into a battery (not shown) or directly used.
  • B, L, M, N and X are natural numbers
  • the number of slots 15 is S
  • the number of magnets 9, that is, the number of magnetic poles is P
  • X 90 (2L ⁇ 1) / ⁇ (360 / S) ⁇ (P / 2) ⁇ (1)
  • S 2N
  • P S ⁇ 2
  • 90 (2B1-1)
  • N 2 is obtained by substituting “12” into the equation (2).
  • the formula (3) is satisfied.
  • B1 is set to “1” as the number of B1s satisfying the expressions (1) and (5), and the electric angle ⁇ is set to 90 ° by substituting this “1” into the expression (4).
  • the electrical angle ⁇ is set in this way, the commutation timing for the two-phase coil 7 can be controlled by the second Hall IC 50b and the third Hall IC 50c.
  • the electrical angle ⁇ is set.
  • the first Hall IC 50a, the second Hall IC 50b, and the third Hall IC 50c are arranged at positions shifted from the circumferential center C1 of the slot 15.
  • the two teeth 13 of the plurality of teeth 13 are designated as specific teeth 13A having notches 16 formed therein, and the first hole IC 50a and the second holes are inserted into the fitting grooves 17 of these specific teeth 13A.
  • An IC 50b and a third Hall IC 50c are arranged.
  • each Hall IC 50a to 50c can be accommodated in one slot 15, and as a result, the sensor case 60 that accommodates each Hall IC 50a to 50c can be downsized.
  • the manufacturing cost of the position detection sensor 6 can be reduced as much as the size can be reduced.
  • the Hall ICs 50a to 50c can be disposed opposite to the magnet 9 simply by forming the notches 16 in the two teeth 13, the deterioration of the characteristics of the teeth 13 (the rotating electrical machine 1) can be suppressed as much as possible. Can do.
  • one of the plurality of magnets 9 is a two-pole magnet 9c including a main magnetic pole portion 119 and a sub magnetic pole portion 129, and a first Hall IC 50a facing the sub magnetic pole portion 129 is provided. Therefore, the ignition timing and fuel injection timing of the engine can be controlled by receiving the output signal of the first Hall IC 50a and the output signals of the second Hall IC 50b and the third Hall IC 50c by a control device (not shown). .
  • first Hall IC 50a is arranged so as to be aligned with the second Hall IC 50b in the axial direction, and the two Hall ICs 50a and 50b are collectively mounted on the surface of one first circuit board 55A. For this reason, all three Hall ICs 50a to 50c can be arranged in one slot 15, and the position detection sensor 6 can be made compact while enabling control of commutation timing to the rotating electrical machine 1 and ignition timing to the engine. Can be
  • the first circuit board 55A on which the first Hall IC 50a and the second Hall IC 50b are surface-mounted and the second circuit board 55B on which the third Hall IC 50c is surface-mounted are separately provided.
  • the present invention is not limited to this, and the first circuit board 55A and the second circuit board 55B may be configured integrally.
  • the number S of slots 15 satisfying the above equations (1) to (5), the number P of magnetic poles, and the electrical angle ⁇ between the second Hall IC 50b and the third Hall IC 50c are used.
  • the number S of slots 15 is set to “12”
  • the number of magnetic poles P is set to “14”
  • the electrical angle ⁇ is set to 90 °.
  • the present invention is not limited to this, and can be arbitrarily set as long as the number S of slots 15, the number P of magnetic poles, and the electrical angle ⁇ satisfying the above formulas (1) to (5).
  • the electrical angle ⁇ may be an angle satisfying the expressions (1) to (5).
  • the second Hall IC 50b and the third Hall IC 50c may not be disposed in one slot 15.
  • at least one of the two Hall ICs 50b and 50c is arranged at a position shifted from the circumferential center C1 of the slot 15, and the position corresponding to the two Hall ICs 50b and 50c.
  • the notch portion 16 capable of receiving the Hall ICs 50b and 50c in the tooth portion 13, the notch portion 16 can be suppressed to the minimum necessary size. For this reason, the characteristic deterioration of the rotary electric machine 1 can be suppressed.
  • FIG. 6 is a schematic configuration diagram of the stator 203 and the rotor 205 constituting the rotary electric machine 201 in the second embodiment when viewed from the axial direction, and corresponds to FIG. 2 described above.
  • the rotating electrical machine 1 of the first embodiment described above is a two-phase brushless type rotating electrical machine
  • the rotating electrical machine 201 of the second embodiment is a three-phase brushless type rotating electrical machine. is there. This is the difference between the first embodiment and the second embodiment.
  • a plurality (14 in the second embodiment) of magnets 9 are arranged at equal intervals in the circumferential direction on the rotor yoke 208 constituting the rotor 205 of the rotating electrical machine 201.
  • the plurality of magnets 9 includes an N-pole magnet 9a in which the entire inner surface is magnetized to the N pole, an S-pole magnet 9b in which the entire inner surface is magnetized to the S pole, and the main magnetic pole portion 119 and the sub magnetic pole portion 129. Are constituted by one two-pole magnet 9c.
  • a two-pole magnet 9c is disposed between a specific pair of adjacent S-pole magnets 9b, and an N-pole magnet 9a is disposed between other adjacent S-pole magnets 9b. Therefore, the N pole and the S pole appear alternately on the inner peripheral side of the rotor 205 except at one end side in the axial direction. On the other hand, on one end side in the axial direction, N poles appear continuously by the sub-magnetic pole portion 129 of the two-pole magnet 9c and three magnets before and after (the front and rear in the circumferential direction).
  • the stator iron core 211 of the stator 203 has a plurality (12 pieces in the second embodiment) of teeth portions 213. A slot 215 is formed between adjacent teeth portions 213.
  • Each tooth part 213 is assigned to three phases (U phase, V phase, W phase). And let T be the number of teeth 213, [Condition 1] When n is an even number, m is a natural number of 1 or more, and when the number T of the teeth portions 213 and the number of magnetic poles P are both m times, three phases (U phase, V phase, W phase) Among them, n / 2 in-phase teeth portions 213 are arranged adjacent to each other in the circumferential direction so as to form 2 m in-phase teeth groups 286U, 286V, and 286W. The in-phase in-phase tooth groups 286U, 286V, and 286W are arranged to face each other about the rotation axis of the rotor 205. More preferably, [Condition 2] When n is an odd number, teeth portions 213 of three phases (U-phase, V-phase, W-phase) are all adjacently arranged (aligned) in the circumferential direction.
  • n 4. That is, the teeth portion 213 is assigned in the order of the U phase, U phase, V phase, V phase, W phase, W phase, U phase, U phase, V phase, V phase, W phase, and W phase in the circumferential direction. Yes.
  • a position detection sensor 206 that detects the rotational position of the rotor 205 is provided on one end side in the axial direction of the stator core 211.
  • FIG. 7 is a development view of the inner peripheral surface side of the rotor yoke 208 and corresponds to FIG. 3 described above.
  • the position detection sensor 206 has four Hall ICs 250a to 250d (first Hall IC 250a, second Hall IC 250b, third Hall IC 250c, and fourth Hall IC 250d).
  • the first Hall IC 250a and the second Hall IC 250b are surface-mounted on a circuit board (not shown) so as to be aligned in the axial direction.
  • the first Hall IC 250a is disposed at a position M1 facing the one end side in the axial direction on the inner circumferential surface of the rotor yoke 208.
  • the second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d are disposed at a position M2 facing the substantially center in the axial direction on the inner peripheral surface of the rotor yoke 208.
  • the second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d are arranged on the same line in the rotation direction (circumferential direction) of the rotor 5.
  • the first Hall IC 250a detects the switching of the magnetic flux of each of the pole magnets 9a, 9b, 9c at a height that passes through the auxiliary magnetic pole portion 129 of the dipole magnet 9c.
  • the second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d detect the switching of the magnetic flux of each pole magnet 9a, 9b, 9c at a height that passes through the main magnetic pole portion 119 of the two-pole magnet 9c.
  • the second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d output a signal detected at the position M2 on the center side of the rotor 205 to a control device (not shown) as a rotation position signal of the rotor 205.
  • the first Hall IC 250a outputs a signal detected at the position M1 on one end side in the axial direction of the rotor 205 to a control device (not shown) as an absolute position information signal on the circumference of the rotor 205.
  • B, C, M, N and X are natural numbers
  • the number of slots 215 is S
  • the number of magnetic poles is P
  • X 120 M / ⁇ (360 / S) ⁇ (P / 2) ⁇ (13)
  • P S ⁇ 2
  • ⁇ 2 120 + 360 (C ⁇ 1) (18) ⁇ 1 + ⁇ 2 ⁇ 240A2 (19) It is set to satisfy.
  • the commutation timing for the three-phase coil 7 can be controlled by the second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d.
  • the Hall ICs 250a to 250d are arranged at positions shifted from the circumferential center C2 of the slot 15, respectively.
  • the teeth 213 corresponding to the respective Hall ICs 250a to 250d are respectively formed with notches 16 (see FIG. 4 described above, not shown in FIG. 6 of the second embodiment). Yes.
  • the Hall ICs 250a to 250d are arranged in the notch 16 respectively. Therefore, according to the second embodiment described above, the same effects as those of the first embodiment described above can be obtained.
  • the present invention is not limited to this, and can be arbitrarily set as long as the number S of slots 215, the number P of magnetic poles, and the electrical angles ⁇ 1 and ⁇ 2 satisfying the above equations (13) to (19). .
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
  • the rotating electrical machines 1 and 201 are used as a starter generator for a vehicle engine such as a motorcycle.
  • the present invention is not limited to this, and the rotating electrical machines 1 and 201 can be applied to various uses.
  • the rotary electric machines 1 and 201 can be used simply as a generator or simply as an electric motor.
  • the plurality of magnets 9 provided in the rotor yokes 8 and 208 are the N-pole magnet 9a in which the entire inner surface is magnetized to the N pole, and the entire inner surface is magnetized to the S pole.
  • the case has been described in which the pole magnet 9b and one two-pole magnet 9c including the main magnetic pole portion 119 and the sub magnetic pole portion 129 are configured.
  • the dipole magnet 9c has a case where a short sub magnetic pole portion 129 whose inner side surface is magnetized to the N pole is provided on one end side of the main magnetic pole portion 119 whose inner side surface is magnetized to the S pole. explained.
  • the magnetization of the magnet 9 may be reversed between the N pole and the S pole. That is, in the two-pole magnet 9c, the main magnetic pole portion 119 may be magnetized to the N pole, and the sub magnetic pole portion 129 may be magnetized to the S pole.

Abstract

If B, L, M, N, and X denote natural numbers, S denotes the number of slots (15), P denotes the number of magnetic poles of a magnet (9), and A denotes the smallest value among values of L that satisfy X = 90(2L-1)/{(360/S)×(P/2)}, the number S of slots (15), the number P of magnetic poles, and an electrical angle θ between a second Hall IC (50b) and a third Hall IC (50c) are set such that S = 2N, P = S±2, θ = 90(2B-1), and B < A. At least one among the second Hall IC (50b) and the third Hall IC (50c) is disposed at a position offset from the circumferential center of the slots (15), and a notch part that is capable of receiving any one among the second Hall IC (50b) and the third Hall IC (50c) is formed in at least one tooth part (13).

Description

回転電機Rotating electric machine
 本発明は、回転電機に関するものである。
 本願は、2016年9月9日に、日本に出願された特願2016-176422号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a rotating electrical machine.
This application claims priority on September 9, 2016 based on Japanese Patent Application No. 2016-176422 for which it applied to Japan, and uses the content for it here.
 例えば、自動二輪車等に用いられる回転電機として、エンジン始動機能と回生エネルギーによる回生発電機能の2つの機能を備えたものが知られている。この種の回転電機は、クランク軸に固定された有底筒状のロータ(回転子)と、エンジンのケースに固定されたステータ(固定子)と、を備えている。ロータの内周面側にはマグネットが設けられる一方、ステータには複数のコイルが巻装されたティースが放射状に設けられている。 For example, as a rotating electrical machine used for a motorcycle or the like, one having two functions of an engine start function and a regenerative power generation function using regenerative energy is known. This type of rotating electrical machine includes a bottomed cylindrical rotor (rotor) fixed to a crankshaft and a stator (stator) fixed to an engine case. While a magnet is provided on the inner peripheral surface side of the rotor, teeth on which a plurality of coils are wound are provided radially on the stator.
 そして、ロータが回転することによりティースに流れる磁束が変化し、これが起電力となってコイルに電流が流れる。各コイルに流れる電流は、それぞれコイルと外部から延びるリード線とを接続することにより、このリード線を介してバッテリに蓄電されたり、付属電機機器に電力供給を行ったりする用途に用いられる。
 ステータには、ロータの回転位置を検出する位置検出センサが設けられている。この位置検出センサによって検出された検出信号に基づいて、コイルの転流タイミング等を制御する。
And the magnetic flux which flows into a tooth changes with rotation of a rotor, and this becomes an electromotive force and an electric current flows into a coil. The current flowing through each coil is stored in the battery via the lead wire and connected to the lead wire extending from the outside, or used for power supply to the attached electric equipment.
The stator is provided with a position detection sensor that detects the rotational position of the rotor. The commutation timing of the coil is controlled based on the detection signal detected by the position detection sensor.
 位置検出センサは、センサケース(センサホルダ)と、センサケースの内部に収納され、ロータの磁極の変化を検出する複数のホールICと、センサケースの内部に収納され、各ホールICと電気的に接続される回路基板と、を備えている。
 センサケースは、一面に開口部を有する箱状のセンサケース本体(ケース体)と、センサケース本体から垂設された複数のホルダ片と、が一体成形されたものである。各ホルダ片は、それぞれ隣接するティース間に形成される複数のスロットに1つずつ挿入される。そして、センサケース本体に回路基板が収納されると共に、脚部にホールICが収納される。
The position detection sensor is housed in the sensor case (sensor holder), the sensor case, a plurality of Hall ICs that detect changes in the magnetic poles of the rotor, and housed in the sensor case. And a circuit board to be connected.
The sensor case is formed by integrally forming a box-shaped sensor case main body (case body) having an opening on one surface and a plurality of holder pieces suspended from the sensor case main body. Each holder piece is inserted one by one into a plurality of slots formed between adjacent teeth. The circuit board is housed in the sensor case body, and the Hall IC is housed in the leg portion.
特開2009-89588号公報JP 2009-89588 A
 各ホールICの位置は回転電機の仕様に応じて異なるため、仕様によっては1つのスロットに1つのホールIC(脚部)を配置するように構成すると、位置検出センサ(センサケース)が大型化してしまう可能性がある。
 例えば、コイルの相数が2相に設定された回転電機では、各ホールICは、電気角で90°の間隔をあけて配置する必要がある。
Since the position of each Hall IC differs depending on the specifications of the rotating electrical machine, depending on the specifications, if one Hall IC (leg part) is arranged in one slot, the position detection sensor (sensor case) becomes large. There is a possibility.
For example, in a rotating electrical machine in which the number of coil phases is set to two, each Hall IC needs to be arranged with an electrical angle of 90 °.
 また、2相の回転電機において、マグネットの磁極数が14極に設定され、スロットの個数が12個に設定された回転電機の場合、各々スロットの中心に1つのホールICを配置しようとすると、ホールICの間の角度が機械角で90°になってしまう。このため、位置検出センサの占有スペース、センサケースが大型化するばかりか位置検出センサの製造コストが増大してしまう可能性があった。 In a two-phase rotating electrical machine, in the case of a rotating electrical machine in which the number of magnetic poles of the magnet is set to 14 and the number of slots is set to 12, when trying to place one Hall IC at the center of each slot, The angle between the Hall ICs is 90 ° in mechanical angle. For this reason, the space occupied by the position detection sensor and the sensor case may increase in size, and the manufacturing cost of the position detection sensor may increase.
 本発明は、位置検出センサを小型化できると共に製造コストも低減できる回転電機を提供する。 The present invention provides a rotating electrical machine that can reduce the size of the position detection sensor and reduce the manufacturing cost.
 本発明の第1の態様によれば、回転電機は、複数のティースが周方向に並んで配置され、隣接する前記ティース間にスロットが形成されているステータと、前記複数のティースに巻回され、相数が2相に設定されているコイルと、前記ステータに対して回転可能に設けられ、周方向に沿って磁極が交互となるように配置された複数のマグネットを有するロータと、複数の前記スロットのうちの何れかに配置され、前記マグネットの磁束を検出する第1磁気センサおよび第2磁気センサと、を備え、B、L、M、NおよびXを自然数とし、前記スロットの個数をSとし、前記マグネットの磁極数をPとし、X=90(2L-1)/{(360/S)×(P/2)}を満たすLのうち、最少の値をAとすると、前記スロットの個数S、前記磁極数P、および前記第1磁気センサと前記第2磁気センサとの間の電気角θは、
 S=2N
 P=S±2
 θ=90(2B-1)
 B<A
 を満たすように設定されており、前記第1磁気センサおよび前記第2磁気センサの少なくとも何れか一方が前記スロットの周方向の中心からずれた位置に配置されており、少なくとも1つの前記ティースには、前記第1磁気センサおよび前記第2磁気センサの少なくとも何れか一方を受け入れ可能な凹部が形成されている。
According to the first aspect of the present invention, the rotating electrical machine is wound around the stator in which a plurality of teeth are arranged in the circumferential direction and a slot is formed between the adjacent teeth, and the plurality of teeth. A coil having a number of phases set to two phases, a rotor provided rotatably with respect to the stator, and having a plurality of magnets arranged so that magnetic poles alternate along the circumferential direction, and a plurality of A first magnetic sensor and a second magnetic sensor which are arranged in any of the slots and detect a magnetic flux of the magnet, wherein B, L, M, N and X are natural numbers, and the number of the slots is S, where P is the number of magnetic poles of the magnet, and A is the minimum value of L satisfying X = 90 (2L−1) / {(360 / S) × (P / 2)}. Number S of magnetic poles , And the electrical angle θ between the first magnetic sensor and the second magnetic sensor,
S = 2N
P = S ± 2
θ = 90 (2B-1)
B <A
At least one of the first magnetic sensor and the second magnetic sensor is disposed at a position shifted from the center in the circumferential direction of the slot, and at least one of the teeth A recess capable of receiving at least one of the first magnetic sensor and the second magnetic sensor is formed.
 このように構成することで、コイルの相数が2相に設定されている回転電機であっても、第1磁気センサと第2磁気センサとの間の機械角をできる限り小さく設定できる。このため、第1磁気センサや第2磁気センサを保持するセンサケースを設けた場合であっても、このセンサケースを小型化できる。また、第1磁気センサや第2磁気センサで構成される位置検出センサの製造コストを低減できる。
 さらに、第1磁気センサおよび第2磁気センサの少なくとも何れか一方を、スロットの周方向の中心からずれた位置に配置しつつ、対応するティースに第1磁気センサおよび第2磁気センサの何れか一方を受け入れ可能な凹部を形成することにより、凹部を必要最小限の大きさに抑えつつ、2つの磁気センサをそれぞれ所望のスロットに配置することができる。このため、回転電機の特性悪化を抑制しつつ、センサケースを小型化できる。
With this configuration, even in a rotating electrical machine in which the number of phases of the coil is set to two phases, the mechanical angle between the first magnetic sensor and the second magnetic sensor can be set as small as possible. For this reason, even if it is a case where the sensor case holding a 1st magnetic sensor and a 2nd magnetic sensor is provided, this sensor case can be reduced in size. Moreover, the manufacturing cost of the position detection sensor comprised with a 1st magnetic sensor or a 2nd magnetic sensor can be reduced.
Further, at least one of the first magnetic sensor and the second magnetic sensor is disposed at a position shifted from the center in the circumferential direction of the slot, and one of the first magnetic sensor and the second magnetic sensor is disposed on the corresponding tooth. By forming a recess capable of receiving the two, the two magnetic sensors can be respectively disposed in desired slots while suppressing the recess to the minimum necessary size. For this reason, a sensor case can be reduced in size, suppressing the characteristic deterioration of a rotary electric machine.
 本発明の第2の態様によれば、本発明の第1の態様に係る回転電機において、前記第1磁気センサおよび前記第2磁気センサは、1つの前記スロットに配置されており、該スロットを形成する2つの前記ティースに、前記凹部が形成されている。 According to a second aspect of the present invention, in the rotating electrical machine according to the first aspect of the present invention, the first magnetic sensor and the second magnetic sensor are disposed in one of the slots, and the slot is The recess is formed in the two teeth to be formed.
 このように構成することで、センサケースを最小限にでき、位置検出センサの製造コストをさらに低減できる。 This configuration makes it possible to minimize the sensor case and further reduce the manufacturing cost of the position detection sensor.
 本発明の第3の態様によれば、本発明の第1の態様または第2の態様に係る回転電機は、前記マグネットの磁束を検出する第3磁気センサを備え、前記複数のマグネットのうちの1つは、隣接する前記マグネットの磁極とは異極の主磁極部と、隣接する前記マグネットの磁極と同極の副磁極部と、を有し、前記主磁極部と前記副磁極部とが前記ロータの回転軸線方向に隣接配置されており、前記主磁極部に対応する位置に、前記第1磁気センサおよび前記第2磁気センサが配置されていると共に、前記副磁極部に対応する位置に、前記第3磁気センサが配置されている。 According to a third aspect of the present invention, the rotating electrical machine according to the first aspect or the second aspect of the present invention includes a third magnetic sensor that detects a magnetic flux of the magnet, and the rotating electric machine includes: One has a main magnetic pole portion having a different polarity from the magnetic pole of the adjacent magnet, and a sub magnetic pole portion having the same polarity as the magnetic pole of the adjacent magnet, and the main magnetic pole portion and the sub magnetic pole portion are The first magnetic sensor and the second magnetic sensor are disposed at positions corresponding to the main magnetic pole portion and are disposed adjacent to each other in the rotation axis direction of the rotor, and at positions corresponding to the sub magnetic pole portion. The third magnetic sensor is disposed.
 このように構成することで、第1磁気センサおよび第2磁気センサに加え、第3磁気センサを用いてロータの円周上の絶対位置を検出することが可能になる。このため、例えば、回転電機によってエンジンの点火タイミングを制御することが可能になる。 With this configuration, the absolute position on the circumference of the rotor can be detected using the third magnetic sensor in addition to the first magnetic sensor and the second magnetic sensor. For this reason, for example, the ignition timing of the engine can be controlled by the rotating electrical machine.
 本発明の第4の態様によれば、本発明の第3の態様に係る回転電機において、前記第3磁気センサは、前記第1磁気センサおよび前記第2磁気センサが配置されている前記スロットと同一のスロットに配置されている。 According to a fourth aspect of the present invention, in the rotating electrical machine according to the third aspect of the present invention, the third magnetic sensor includes the slot in which the first magnetic sensor and the second magnetic sensor are disposed. Arranged in the same slot.
 このように構成することで、3つの磁気センサを備えた位置検出センサを小型化できると共に、製造コストを低減できる。 By configuring in this way, the position detection sensor including the three magnetic sensors can be reduced in size and the manufacturing cost can be reduced.
 本発明の第5の態様によれば、回転電機は、複数のティースが周方向に並んで配置され、隣接する前記ティース間にスロットが形成されているステータと、前記複数のティースに巻回され、相数が3相に設定されているコイルと、前記ステータに対して回転可能に設けられ、周方向に沿って磁極が交互となるように配置された複数のマグネットを有するロータと、複数の前記スロットのうちの何れかに配置され、前記マグネットの磁束を検出する第1磁気センサ、第2磁気センサおよび第3磁気センサと、を備え、隣接する少なくとも2つの前記ティースが同相のティースに設定されており、B、C、M、NおよびXを自然数とし、前記スロットの個数をSとし、前記マグネットの磁極数をPとし、X=120M/{(360/S)×(P/2)}を満たすMのうち、最少の値をAとすると、
 前記スロットの個数S、前記磁極数P、前記第1磁気センサと前記第2磁気センサとの間の電気角θ1、および前記第2磁気センサと前記第3磁気センサとの間の電気角θ2は、
 S=3N
 Sが偶数のとき、P=S±2
 Sが奇数のとき、P=S±1
 θ1=120+360(B-1)
 θ2=120+360(C-1)
 θ1+θ2<240A
 を満たすように設定されており、前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサの少なくとも何れか1つが前記スロットの周方向の中心からずれた位置に配置されており、少なくとも1つの前記ティースには、前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサの何れかを受け入れ可能な凹部が形成されている。
According to the fifth aspect of the present invention, the rotating electrical machine is wound around the stator in which a plurality of teeth are arranged in the circumferential direction and a slot is formed between the adjacent teeth, and the plurality of teeth. A coil having a number of phases set to three phases, a rotor provided rotatably with respect to the stator, and having a plurality of magnets arranged so that magnetic poles alternate along the circumferential direction, and a plurality of A first magnetic sensor, a second magnetic sensor, and a third magnetic sensor that are arranged in any one of the slots and detect magnetic flux of the magnet, and at least two adjacent teeth are set to in-phase teeth Where B, C, M, N, and X are natural numbers, the number of slots is S, the number of magnetic poles of the magnet is P, and X = 120 M / {(360 / S) × (P / )} Of M that satisfies, when a minimum value and A,
The number of slots S, the number of magnetic poles P, the electrical angle θ1 between the first magnetic sensor and the second magnetic sensor, and the electrical angle θ2 between the second magnetic sensor and the third magnetic sensor are: ,
S = 3N
When S is an even number, P = S ± 2
When S is an odd number, P = S ± 1
θ1 = 120 + 360 (B−1)
θ2 = 120 + 360 (C−1)
θ1 + θ2 <240A
And at least one of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor is disposed at a position shifted from the circumferential center of the slot, and at least One tooth has a recess that can receive any of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor.
 このように構成することで、コイルの相数が3相に設定されている回転電機であっても、第1磁気センサと第2磁気センサとの間の機械角、および第2磁気センサと第3磁気センサとの間の機械角をできる限り小さく設定できる。このため、第1磁気センサ、第2磁気センサおよび第3磁気センサを保持するセンサケースを設けた場合であっても、このセンサケースを小型化できる。また、第1磁気センサ、第2磁気センサおよび第3磁気センサで構成される位置検出センサの製造コストを低減できる。
 さらに、第1磁気センサ、第2磁気センサおよび第3磁気センサの少なくとも何れかを、スロットの周方向の中心からずれた位置に配置しつつ、対応するティースに第1磁気センサ、第2磁気センサおよび第3磁気センサの何れかを受け入れ可能な凹部を形成することにより、凹部を必要最小限の大きさに抑えつつ、3つの磁気センサをそれぞれ所望のスロットに配置することができる。このため、回転電機の特性悪化を抑制しつつ、センサケースを小型化できる。
With this configuration, even in a rotating electrical machine in which the number of phases of the coil is set to three phases, the mechanical angle between the first magnetic sensor and the second magnetic sensor, and the second magnetic sensor and the first magnetic sensor The mechanical angle between the three magnetic sensors can be set as small as possible. For this reason, even if it is a case where the sensor case holding a 1st magnetic sensor, a 2nd magnetic sensor, and a 3rd magnetic sensor is provided, this sensor case can be reduced in size. Moreover, the manufacturing cost of the position detection sensor comprised by a 1st magnetic sensor, a 2nd magnetic sensor, and a 3rd magnetic sensor can be reduced.
Further, at least one of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor is disposed at a position shifted from the center in the circumferential direction of the slot, and the first magnetic sensor and the second magnetic sensor are disposed on the corresponding teeth. By forming a recess that can accept either of the third magnetic sensor and the third magnetic sensor, the three magnetic sensors can be respectively disposed in desired slots while suppressing the recess to the minimum required size. For this reason, a sensor case can be reduced in size, suppressing the characteristic deterioration of a rotary electric machine.
 本発明の第6の態様によれば、本発明の第5の態様に係る回転電機において、前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサのうち、少なくとも2つの磁気センサは、1つの前記スロットに配置されており、該スロットを形成する2つの前記ティースに、前記凹部が形成されている。 According to a sixth aspect of the present invention, in the rotating electrical machine according to the fifth aspect of the present invention, at least two of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor are It is arrange | positioned at one said slot, and the said recessed part is formed in the two said teeth which form this slot.
 このように構成することで、センサケースを最小限にでき、位置検出センサの製造コストをさらに低減できる。 This configuration makes it possible to minimize the sensor case and further reduce the manufacturing cost of the position detection sensor.
 本発明の第7の態様によれば、本発明の第5の態様または第6の態様に係る回転電機は、前記マグネットの磁束を検出する第4磁気センサを備え、前記複数のマグネットのうちの1つは、隣接する前記マグネットの磁極とは異極の主磁極部と、隣接する前記マグネットの磁極と同極の副磁極部と、を有し、前記主磁極部と前記副磁極部とが前記ロータの回転軸線方向に隣接配置されており、前記主磁極部に対応する位置に、前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサが配置されていると共に、前記副磁極部に対応する位置に、前記第4磁気センサが配置されている。 According to a seventh aspect of the present invention, the rotating electrical machine according to the fifth aspect or the sixth aspect of the present invention includes a fourth magnetic sensor that detects a magnetic flux of the magnet, and the rotating electric machine includes: One has a main magnetic pole portion having a different polarity from the magnetic pole of the adjacent magnet, and a sub magnetic pole portion having the same polarity as the magnetic pole of the adjacent magnet, and the main magnetic pole portion and the sub magnetic pole portion are The first magnetic sensor, the second magnetic sensor, and the third magnetic sensor are disposed adjacent to each other in the rotational axis direction of the rotor, and correspond to the main magnetic pole portion, and the sub-magnetic pole The fourth magnetic sensor is arranged at a position corresponding to the part.
 このように構成することで、第1磁気センサ、第2磁気センサおよび第3磁気センサに加え、第4磁気センサを用いてロータの円周上の絶対位置を検出することが可能になる。このため、例えば、回転電機によってエンジンの点火タイミングを制御することが可能になる。 With this configuration, the absolute position on the circumference of the rotor can be detected using the fourth magnetic sensor in addition to the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor. For this reason, for example, the ignition timing of the engine can be controlled by the rotating electrical machine.
 本発明の第8の態様によれば、本発明の第7の態様に係る回転電機において、前記第4磁気センサは、前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサの何れかが配置されている前記スロットと同一のスロットに配置されている。 According to an eighth aspect of the present invention, in the rotating electric machine according to the seventh aspect of the present invention, the fourth magnetic sensor is any one of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor. It is arranged in the same slot as the slot in which is arranged.
 このように構成することで、4つの磁気センサを備えた位置検出センサを小型化できると共に、製造コストを低減できる。 With this configuration, the position detection sensor including the four magnetic sensors can be reduced in size and the manufacturing cost can be reduced.
 上記の回転電機によれば、コイルの相数が2相や3相に設定されている回転電機であっても、各磁気センサの間の機械角をできる限り小さく設定できる。このため、各センサを保持するセンサケースを設けた場合であっても、このセンサケースを小型化できる。また、各磁気センサで構成される位置検出センサの製造コストを低減できる。
 さらに、各磁気センサの少なくとも何れかを、スロットの周方向の中心からずれた位置に配置しつつ、対応するティースにその磁気センサを受け入れ可能な凹部を形成することにより、凹部を必要最小限の大きさに抑えつつ、各磁気センサをそれぞれ所望のスロットに配置することができる。このため、回転電機の特性悪化を抑制しつつ、センサケースを小型化できる。
According to the above rotating electrical machine, the mechanical angle between the magnetic sensors can be set as small as possible even in a rotating electrical machine in which the number of coils is set to two or three phases. For this reason, even if it is a case where the sensor case holding each sensor is provided, this sensor case can be reduced in size. Moreover, the manufacturing cost of the position detection sensor comprised with each magnetic sensor can be reduced.
Furthermore, by disposing at least one of each magnetic sensor at a position shifted from the center in the circumferential direction of the slot and forming a recess that can receive the magnetic sensor in the corresponding tooth, the recess is minimized. Each magnetic sensor can be arranged in a desired slot while suppressing the size. For this reason, a sensor case can be reduced in size, suppressing the characteristic deterioration of a rotary electric machine.
本発明の第1実施形態における回転電機の断面図である。It is sectional drawing of the rotary electric machine in 1st Embodiment of this invention. 本発明の第1実施形態におけるステータとロータとを軸方向からみた概略構成図である。It is the schematic block diagram which looked at the stator and rotor in 1st Embodiment of this invention from the axial direction. 本発明の第1実施形態におけるロータヨークの内周面側の展開図である。It is an expanded view by the side of the internal peripheral surface of the rotor yoke in 1st Embodiment of this invention. 本発明の第1実施形態におけるステータおよび位置検出センサの斜視図である。It is a perspective view of the stator and position detection sensor in 1st Embodiment of this invention. 本発明の第1実施形態における位置検出センサの分解斜視図である。It is a disassembled perspective view of the position detection sensor in 1st Embodiment of this invention. 本発明の第2実施形態におけるステータとロータとを軸方向からみた概略構成図である。It is the schematic block diagram which looked at the stator and rotor in 2nd Embodiment of this invention from the axial direction. 本発明の第2実施形態におけるロータヨークの内周面側の展開図である。It is an expanded view of the inner peripheral surface side of the rotor yoke in 2nd Embodiment of this invention.
 次に、本発明の実施形態を図面に基づいて説明する。 Next, an embodiment of the present invention will be described based on the drawings.
(第1実施形態)
(回転電機)
 図1は、回転電機1の断面図である。図2は、回転電機1を構成するステータ3とロータ5とを軸方向からみた概略構成図である。
 図1、図2に示すように、回転電機1は、自動二輪車等の車両用エンジンの始動発電機として用いられるものである。回転電機1は、2相ブラシレス型の回転電機である。回転電機1は、エンジンブロック2に固定されるステータ3と、エンジンのクランクシャフト4に固定されるロータ5と、ロータ5の回転位置を検出する位置検出センサ6と、ステータ3に巻回されているコイル7と、を備えている。
 なお、以下の説明において、回転電機1におけるロータ5の回転軸方向を単に軸方向と称し、ロータ5の回転方向を周方向と称し、軸方向および周方向に直交するロータ5の径方向を単に径方向と称して説明する。
(First embodiment)
(Rotating electric machine)
FIG. 1 is a cross-sectional view of the rotating electrical machine 1. FIG. 2 is a schematic configuration diagram of the stator 3 and the rotor 5 constituting the rotating electrical machine 1 as seen from the axial direction.
As shown in FIGS. 1 and 2, the rotating electrical machine 1 is used as a starter generator for a vehicle engine such as a motorcycle. The rotating electrical machine 1 is a two-phase brushless type rotating electrical machine. The rotating electrical machine 1 is wound around the stator 3 fixed to the engine block 2, the rotor 5 fixed to the crankshaft 4 of the engine, the position detection sensor 6 that detects the rotational position of the rotor 5, and the stator 3. The coil 7 is provided.
In the following description, the rotational axis direction of the rotor 5 in the rotating electrical machine 1 is simply referred to as an axial direction, the rotational direction of the rotor 5 is referred to as a circumferential direction, and the radial direction of the rotor 5 orthogonal to the axial direction and the circumferential direction is simply referred to as the axial direction. This will be described as a radial direction.
(ロータ)
 ロータ5は、強磁性部材からなる金属製プレートを適宜成形加工することにより略有底筒状に形成されたロータヨーク8を備えている。ロータヨーク8は、底部8aと、底部8aの外周縁からエンジンブロック2側に向かって屈曲延出する円筒部8bと、底部8aの径方向中央から円筒部8bと同一方向に向かって屈曲延出するボス筒部8cと、を備えている。
(Rotor)
The rotor 5 includes a rotor yoke 8 formed into a substantially bottomed cylindrical shape by appropriately forming a metal plate made of a ferromagnetic member. The rotor yoke 8 bends and extends in the same direction as the cylindrical portion 8b from the radial center of the bottom portion 8a, a cylindrical portion 8b that bends and extends from the outer periphery of the bottom portion 8a toward the engine block 2 side. A boss cylinder portion 8c.
 ボス筒部8cには、クランクシャフト4の先端が挿入されている。さらに、このクランクシャフト4がボルト10によってボス筒部8cに締結固定されている。これにより、クランクシャフト4とロータ5とが一体となって回転する。
 円筒部8bの内周面には、複数(本第1実施形態では14個)のマグネット9が周方向に等間隔で配置されている。
The tip of the crankshaft 4 is inserted into the boss cylinder portion 8c. Further, the crankshaft 4 is fastened and fixed to the boss cylinder portion 8c by bolts 10. Thereby, the crankshaft 4 and the rotor 5 rotate integrally.
A plurality (14 in the first embodiment) of magnets 9 are arranged at equal intervals in the circumferential direction on the inner peripheral surface of the cylindrical portion 8b.
 図3は、ロータヨーク8の内周面側の展開図である。
 同図に示すように、複数のマグネット9は、1つを除き他の全てのマグネット9は、ロータ5の回転軸中心に向く側の面(内側面)がN極とS極の何れかに着磁されている。そして、1つのマグネット9cは、内側面がS極に着磁された主磁極部119の一端側に、内側面がN極に着磁された短尺な副磁極部129が設けられている。
 以下の説明では、図3中、内側面全域がN極に着磁されているマグネット9をN極マグネット9a、内側面全域がS極に着磁されているマグネット9をS極マグネット9b、主磁極部119と副磁極部129とを備えたマグネット9を2極マグネット9cと称する。
FIG. 3 is a development view of the inner peripheral surface side of the rotor yoke 8.
As shown in the figure, with the exception of one magnet 9 except for one, all other magnets 9 have a surface (inner surface) facing the center of the rotation axis of the rotor 5 that is either N-pole or S-pole. Magnetized. One magnet 9c is provided with a short sub-magnetic pole portion 129 whose inner surface is magnetized to N pole on one end side of the main magnetic pole portion 119 whose inner surface is magnetized to S pole.
In the following description, in FIG. 3, the magnet 9 whose entire inner surface is magnetized to the N pole is the N pole magnet 9a, the magnet 9 whose entire inner surface is magnetized to the S pole is the S pole magnet 9b, The magnet 9 provided with the magnetic pole portion 119 and the sub magnetic pole portion 129 is referred to as a two-pole magnet 9c.
 ロータ5は、隣接する特定の一組のS極マグネット9bの間に2極マグネット9cが配置され、他の隣接するS極マグネット9b間にN極マグネット9aが配置されている。
 したがって、ロータ5の内周側は、軸方向一端側(図3中上端側)以外では、N極とS極が交互に現れる。一方、軸方向一端側では、2極マグネット9cの副磁極部129および、その前後(周方向の前後)のマグネット3個分だけN極が連続して現れる。
 後に詳述するように、マグネット9の軸方向の一端側の領域は、エンジンの点火タイミングを検出するためのターゲットとして用いられ、マグネット9の軸方向の残余の領域は、主に、コイル7の転流タイミングを検出するためのターゲットとして用いられる。
In the rotor 5, a two-pole magnet 9c is arranged between a specific pair of adjacent S-pole magnets 9b, and an N-pole magnet 9a is arranged between other adjacent S-pole magnets 9b.
Therefore, the N pole and the S pole appear alternately on the inner peripheral side of the rotor 5 except for one end side in the axial direction (the upper end side in FIG. 3). On the other hand, on one end side in the axial direction, N poles appear continuously by the sub-magnetic pole portion 129 of the two-pole magnet 9c and three magnets before and after (the front and rear in the circumferential direction).
As will be described in detail later, the region on one end side in the axial direction of the magnet 9 is used as a target for detecting the ignition timing of the engine, and the remaining region in the axial direction of the magnet 9 is mainly composed of the coil 7. Used as a target for detecting commutation timing.
(ステータ)
 図4は、ステータ3および位置検出センサ6の斜視図である。
 図1、図2、図4に示すように、ステータ3は、例えば電磁鋼板を積層してなるステータ鉄心11と、ステータ鉄心11に巻回される複数のコイル7とを備えている。ステータ鉄心11は、略円環状に形成された本体部12と、この本体部12の外周面から径方向外側に向かって放射状に突出する複数(本第1実施形態では12個)のティース部13と、を有している。
 本体部12には、周方向に等間隔で軸方向に貫通する複数の貫通孔12aが形成されている。この貫通孔12aにボルト18が挿入され、さらにこのボルト18がエンジンブロック2に螺入される。これにより、エンジンブロック2にステータ鉄心11が締結固定される。
(Stator)
FIG. 4 is a perspective view of the stator 3 and the position detection sensor 6.
As shown in FIGS. 1, 2, and 4, the stator 3 includes a stator iron core 11 formed by laminating electromagnetic steel plates, for example, and a plurality of coils 7 wound around the stator iron core 11. The stator iron core 11 includes a main body portion 12 formed in a substantially annular shape, and a plurality (12 in the first embodiment) of teeth portions 13 that protrude radially outward from the outer peripheral surface of the main body portion 12. And have.
The main body 12 is formed with a plurality of through holes 12a penetrating in the axial direction at equal intervals in the circumferential direction. Bolts 18 are inserted into the through holes 12 a, and the bolts 18 are screwed into the engine block 2. Thereby, the stator iron core 11 is fastened and fixed to the engine block 2.
 各ティース部13の先端部には、この先端部から周方向両側に張り出す爪片14が設けられている。また、隣接するティース部13間に、それぞれスロット15が形成される。すなわち、本第1実施形態では、スロット15が12個形成されている。
 各ティース部13には、これらティース部13の周囲を覆う樹脂製のインシュレータ19が装着されている。そして、スロット15内にコイル7が挿入され、インシュレータ19の上から各ティース部13にコイル7が巻回される。
A claw piece 14 is provided at the tip of each tooth portion 13 so as to project from the tip to both sides in the circumferential direction. In addition, slots 15 are formed between adjacent tooth portions 13. That is, in the first embodiment, twelve slots 15 are formed.
A resin insulator 19 that covers the periphery of the teeth 13 is attached to each of the teeth 13. Then, the coil 7 is inserted into the slot 15, and the coil 7 is wound around each tooth portion 13 from above the insulator 19.
 図2に詳示するように、ティース部13は、2相のうちのA相が周方向に隣接する3つのティース部13に連続して割り当てられていると共に、2相のうちのB相が周方向に隣接する3つのティース部13に連続して割り当てられている。さらに、ティース部13は、3つのA相と3つのB相とが周方向に交互に配置されるように割り当てられている。すなわち、ティース部13は、周方向にA相、A相、A相、B相、B相、B相、A相、A相、A相、B相、B相、B相の順に割り当てられている。そして、各ティース部13に巻回されたコイル7の端末部は、不図示の制御機器に電気的に接続される。 As shown in detail in FIG. 2, the teeth portion 13 is continuously assigned to the three teeth portions 13 adjacent to each other in the circumferential direction in the A phase of the two phases, and the B phase of the two phases is It is continuously assigned to three teeth 13 adjacent in the circumferential direction. Furthermore, the teeth part 13 is allocated so that the three A phases and the three B phases are alternately arranged in the circumferential direction. That is, the teeth portion 13 is assigned in the order of A phase, A phase, A phase, B phase, B phase, B phase, A phase, A phase, A phase, B phase, B phase, and B phase in the circumferential direction. Yes. And the terminal part of the coil 7 wound by each teeth part 13 is electrically connected to the control apparatus not shown.
 複数のティース部13のうち、所定の隣接する2つのティース部13(本第1実施形態では、隣接する2つのA相のティース部13)の爪片14には、これら2つのティース部13によって形成されるスロット15側の一部に、それぞれ切欠き部16が形成されている。この切欠き部16に対応するように、インシュレータ19にも切欠き部19aが形成されている。2つの切欠き部16(切欠き部19a)は、爪片14の軸方向中央よりもやや外側から軸方向外側端に至る間に形成されている。2つの切欠き部16によって、周方向で隣接する2つの爪片14に跨る略長方形状の嵌合溝17が形成される。この嵌合溝17に、位置検出センサ6の一部が嵌合される。
 以下の説明では、爪片14に切欠き部16が形成される2つのティース部13を他のティース部13と区別するために特定ティース部13Aと称する。
Among the plurality of teeth 13, the claw pieces 14 of two predetermined adjacent teeth 13 (in the first embodiment, two adjacent A-phase teeth 13) are attached to the two teeth 13 by the two teeth 13. A notch 16 is formed in each part of the formed slot 15 side. A notch 19 a is also formed in the insulator 19 so as to correspond to the notch 16. The two notches 16 (notches 19a) are formed between the slightly outer side and the axially outer end of the claw piece 14 in the axial direction. The two notches 16 form a substantially rectangular fitting groove 17 straddling two claw pieces 14 adjacent in the circumferential direction. A part of the position detection sensor 6 is fitted into the fitting groove 17.
In the following description, the two tooth portions 13 in which the notch portions 16 are formed in the claw piece 14 are referred to as specific tooth portions 13 </ b> A in order to distinguish them from the other tooth portions 13.
(位置検出センサ)
 図5は、位置検出センサ6の分解斜視図である。
 図4、図5に示すように、位置検出センサ6は、ステータ鉄心11の軸方向一端側に配置される樹脂製のセンサケース60と、このセンサケース60内に収納される2つの回路基板55A,55B(第1回路基板55A、第2回路基板55B)とにより構成されている。
 以下の説明では、位置検出センサ6の向きは、この位置検出センサ6をステータ鉄心11に配置した状態での向きとする。つまり、以下の説明でいう軸方向、周方向、径方向は、回転電機1におけるロータ5の軸方向、周方向、径方向と一致する。
(Position detection sensor)
FIG. 5 is an exploded perspective view of the position detection sensor 6.
As shown in FIGS. 4 and 5, the position detection sensor 6 includes a resin sensor case 60 disposed on one end side in the axial direction of the stator core 11 and two circuit boards 55 </ b> A housed in the sensor case 60. , 55B (first circuit board 55A, second circuit board 55B).
In the following description, the direction of the position detection sensor 6 is the direction in which the position detection sensor 6 is disposed on the stator core 11. That is, the axial direction, the circumferential direction, and the radial direction in the following description coincide with the axial direction, the circumferential direction, and the radial direction of the rotor 5 in the rotating electrical machine 1.
 各回路基板55A,55Bは、その面方向が周方向に沿うように配置される。各回路基板55A,55Bは、それぞれ略T字状に形成されている。各回路基板55A,55Bは、軸方向に沿って長くなるように形成された挿入部56と、挿入部56の軸方向外側端に一体成形され、周方向に沿って長くなるように形成されたセンサ線接続部57とにより構成されている。 The circuit boards 55A and 55B are arranged so that their surface directions are along the circumferential direction. Each of the circuit boards 55A and 55B is formed in a substantially T shape. Each circuit board 55A, 55B is formed integrally with the insertion portion 56 formed to be elongated along the axial direction and the axially outer end of the insertion portion 56, and is formed to be elongated along the circumferential direction. The sensor line connecting portion 57 is used.
 第1回路基板55Aの挿入部56には、径方向外側の面(ロータ5のマグネット9と対向する面)に、第1ホールIC50aおよび第2ホールIC50bが軸方向に並ぶように表面実装されている。第2回路基板55Bの挿入部56には、径方向外側の面に、第3ホールIC50cが表面実装されている。第2ホールIC50bと第3ホールIC50cは、軸方向で同一高さとなるように実装されている。 The insertion portion 56 of the first circuit board 55A is surface-mounted on the radially outer surface (the surface facing the magnet 9 of the rotor 5) so that the first Hall IC 50a and the second Hall IC 50b are aligned in the axial direction. Yes. A third Hall IC 50c is surface-mounted on the radially outer surface of the insertion portion 56 of the second circuit board 55B. The second Hall IC 50b and the third Hall IC 50c are mounted so as to have the same height in the axial direction.
 より具体的には、図3に示すように、各ホールIC50a~50cのうち、第1ホールIC50aは、ロータヨーク8の内周面における軸方向一端側に対峙する位置M1に配置され、第2ホールIC50bおよび第3ホールIC50cは、ロータヨーク8の内周面における軸方向略中央に対峙する位置M2に配置されている。 More specifically, as shown in FIG. 3, among the Hall ICs 50a to 50c, the first Hall IC 50a is disposed at a position M1 facing one end side in the axial direction on the inner circumferential surface of the rotor yoke 8, and the second Hall IC 50a to 50c. The IC 50 b and the third Hall IC 50 c are disposed at a position M <b> 2 facing the substantially center in the axial direction on the inner peripheral surface of the rotor yoke 8.
 換言すれば、第2ホールIC50b、および第3ホールIC50cは、ロータ5の回転方向(周方向)で同一線上に配置されている。一方、第1ホールIC50aは、第2ホールIC50b、および第3ホールIC50cが配置されている線上からずれた位置に配置されている。第1のホールIC50aと第2のホールIC50bは、互いにロータ5の回転方向と直交する方向、つまり、軸方向で同一線上に位置するように配置されている。 In other words, the second Hall IC 50b and the third Hall IC 50c are arranged on the same line in the rotation direction (circumferential direction) of the rotor 5. On the other hand, the first Hall IC 50a is arranged at a position shifted from the line on which the second Hall IC 50b and the third Hall IC 50c are arranged. The first Hall IC 50a and the second Hall IC 50b are arranged so as to be located on the same line in the direction orthogonal to the rotation direction of the rotor 5, that is, in the axial direction.
 これにより、第1のホールIC50aは、2極マグネット9cの副磁極部129を通る高さで各極マグネット9a,9b,9cの磁束の切り替わりを検出する。一方、第2ホールIC50b、および第3ホールIC50cは、2極マグネット9cの主磁極部119を通る高さで各極マグネット9a,9b,9cの磁束の切り替わりを検出する。 Thereby, the first Hall IC 50a detects the switching of the magnetic flux of each of the pole magnets 9a, 9b, 9c at a height passing through the sub magnetic pole portion 129 of the two-pole magnet 9c. On the other hand, the second Hall IC 50b and the third Hall IC 50c detect the switching of the magnetic flux of each of the pole magnets 9a, 9b, 9c at a height passing through the main magnetic pole portion 119 of the two-pole magnet 9c.
 図4、図5に戻り、各回路基板55A,55Bのセンサ線接続部57には、周方向略中央に、それぞれ2つのセンサ線用スルーホール58aが形成されている。これらセンサ線用スルーホール58aに、不図示のセンサ線の一端が挿入され、はんだ付け等により各回路基板55A,55Bに接続される。センサ線の他端は、制御機器(何れも不図示)に電気的に接続される。
 センサ線接続部57の周方向一側には、それぞれ2つのリード線用スルーホール58bが形成されている。これらリード線用スルーホール58bに、不図示のリード線の端末が2つの回路基板55A,55Bを跨るように接続される。
Returning to FIG. 4 and FIG. 5, two sensor line through holes 58 a are formed in the sensor line connecting portions 57 of the circuit boards 55 </ b> A and 55 </ b> B substantially at the center in the circumferential direction. One end of a sensor wire (not shown) is inserted into the through hole 58a for the sensor wire and connected to each circuit board 55A, 55B by soldering or the like. The other end of the sensor line is electrically connected to a control device (both not shown).
Two lead wire through holes 58b are formed on one side in the circumferential direction of the sensor line connecting portion 57, respectively. Terminals of lead wires (not shown) are connected to these lead wire through holes 58b so as to straddle the two circuit boards 55A and 55B.
 センサケース60は樹脂により形成されている。センサケース60は、各回路基板55A,55Bが収納されるセンサホルダ70と、センサホルダ70に取り付けられ、このセンサホルダ70からの各回路基板55A,55Bの抜けを防止するセンサ押え90と、センサホルダ70が挿入される外枠部材20と、により構成されている。
 センサホルダ70は、ベース部71と、このベース部71から軸方向他端側(図4、図5における下側)に向かって突設されたホルダ本体72とが一体成形されたものである。
The sensor case 60 is made of resin. The sensor case 60 includes a sensor holder 70 in which the circuit boards 55A and 55B are accommodated, a sensor press 90 that is attached to the sensor holder 70 and prevents the circuit boards 55A and 55B from being detached from the sensor holder 70, and a sensor. And an outer frame member 20 into which the holder 70 is inserted.
The sensor holder 70 is formed by integrally molding a base portion 71 and a holder main body 72 protruding from the base portion 71 toward the other axial end side (the lower side in FIGS. 4 and 5).
 ベース部71は、軸方向からみて長円形状となるように形成され、且つステータ鉄心11の外周に沿うように僅かに湾曲形成されている。ベース部71の外周縁には、ホルダ本体72とは反対側に向かって突出する周壁76が立設されている。この周壁76は、外枠部材20にセンサホルダ70を挿入する際のインロー部76aとして機能すると共に、センサホルダ70にセンサ押え90を取り付ける際のインロー部76bとして機能する。 The base portion 71 is formed to have an oval shape when viewed from the axial direction, and is slightly curved along the outer periphery of the stator core 11. A peripheral wall 76 is provided on the outer peripheral edge of the base portion 71 so as to protrude toward the side opposite to the holder main body 72. The peripheral wall 76 functions as an inlay portion 76 a when the sensor holder 70 is inserted into the outer frame member 20, and also functions as an inlay portion 76 b when the sensor presser 90 is attached to the sensor holder 70.
 ベース部71には、各回路基板55A,55Bの挿入部56を挿通可能な2つの開口部73が形成されている。各開口部73の径方向内側には、それぞれガイド壁74が軸方向一方(図4、図5における上側)に向かって突設されている。このガイド壁74は、各回路基板55A,55Bから延びる不図示のセンサ線をセンサケース60の外部へと導くためのものである。各ガイド壁74には、それぞれ2つの凹部74aが周方向に並んで形成されている。凹部74aは、略半円状に形成されており、各凹部74a上を不図示のセンサ線が通る。 The base portion 71 is formed with two openings 73 through which the insertion portions 56 of the circuit boards 55A and 55B can be inserted. On the radially inner side of each opening 73, a guide wall 74 is provided so as to project toward one axial direction (the upper side in FIGS. 4 and 5). The guide wall 74 is for guiding a sensor wire (not shown) extending from the circuit boards 55A and 55B to the outside of the sensor case 60. Each guide wall 74 is formed with two recesses 74a aligned in the circumferential direction. The recess 74a is formed in a substantially semicircular shape, and a sensor line (not shown) passes through each recess 74a.
 ホルダ本体72は、ベース部71の開口部73が連通する略有底筒状に形成されている。また、ホルダ本体72は、ステータ3のティース部13に形成されている嵌合溝17に対応するように形成されている。すなわち、嵌合溝17にホルダ本体72が挿入される。嵌合溝17にホルダ本体72を挿入した状態では、このホルダ本体72の径方向外側の面と、ティース部13の爪片14の径方向外側の面とが面一になる。
 ホルダ本体72は、ベース部71の2つの開口部73の間に、不図示の仕切り壁が形成されており、開口部73毎に回路基板55A,55Bを収納できる。
The holder main body 72 is formed in a substantially bottomed cylindrical shape through which the opening 73 of the base portion 71 communicates. The holder main body 72 is formed so as to correspond to the fitting groove 17 formed in the tooth portion 13 of the stator 3. That is, the holder main body 72 is inserted into the fitting groove 17. In a state in which the holder main body 72 is inserted into the fitting groove 17, the radially outer surface of the holder main body 72 and the radially outer surface of the claw piece 14 of the tooth portion 13 are flush with each other.
The holder main body 72 has a partition wall (not shown) formed between the two openings 73 of the base portion 71, and can store the circuit boards 55 </ b> A and 55 </ b> B for each opening 73.
 ホルダ本体72のベース部71とは反対側端(先端)には、保持部77が軸方向に沿って延出形成されている。保持部77は、センサホルダ70の嵌合溝17内でのガタツキを抑制すると共に、剛性を高めるためのものである。保持部77は、ホルダ本体72の径方向内側の面から延出するベース部77aと、ベース部77aの径方向外側の面に突出形成されたリブ部77bとにより構成されている。
 ベース部77aは、特定ティース部13Aの爪片14の内周面に当接される。リブ部77bは、周方向で隣接する特定ティース部13Aの爪片14の間で、且つ嵌合溝17(切欠き部16)よりも軸方向他方側に介装される。
At the end (tip) opposite to the base portion 71 of the holder main body 72, a holding portion 77 is formed extending along the axial direction. The holding portion 77 is for suppressing backlash in the fitting groove 17 of the sensor holder 70 and increasing rigidity. The holding portion 77 includes a base portion 77a extending from the radially inner surface of the holder main body 72 and a rib portion 77b formed to project from the radially outer surface of the base portion 77a.
Base portion 77a is in contact with the inner peripheral surface of claw piece 14 of specific tooth portion 13A. The rib portion 77b is interposed between the claw pieces 14 of the specific tooth portions 13A adjacent in the circumferential direction and on the other side in the axial direction from the fitting groove 17 (notch portion 16).
 このような構成のもと、ベース部71の開口部73側から各回路基板55A,55Bの挿入部56を挿入、または圧入する。この際、ベース部71のガイド壁74に沿って挿入することにより、開口部73に挿入部56を容易に挿入できる。そして、開口部73に挿入部56を挿入することにより、ホルダ本体72に各回路基板55A,55Bの挿入部56が収納される。一方、各回路基板55A,55Bのセンサ線接続部57は、ベース部71に当接し、このベース部71上に突出した状態で配置される。 With this configuration, the insertion portions 56 of the circuit boards 55A and 55B are inserted or press-fitted from the opening 73 side of the base portion 71. At this time, the insertion portion 56 can be easily inserted into the opening 73 by being inserted along the guide wall 74 of the base portion 71. Then, by inserting the insertion portion 56 into the opening 73, the insertion portion 56 of each circuit board 55 </ b> A, 55 </ b> B is accommodated in the holder main body 72. On the other hand, the sensor line connecting portion 57 of each circuit board 55A, 55B is disposed in contact with the base portion 71 and protruding on the base portion 71.
 ホルダ本体72は、前述したようにステータ3のティース部13に形成されている嵌合溝17に挿入されている。ホルダ本体72には、2つの回路基板55A,55Bの挿入部56が収納されている。このため、これら2つの挿入部56は、それぞれ嵌合溝17が形成されているスロット15の周方向の中心C1からずれた箇所に位置していることになる。換言すれば、各回路基板55A,55Bに表面実装されている第2ホールIC50bおよび第3ホールIC50cは、それぞれスロット15の周方向の中心C1からずれた位置に配置されている。第2ホールIC50bと第3ホールIC50cとの間の角度についての詳細は、後述する。 The holder main body 72 is inserted into the fitting groove 17 formed in the tooth portion 13 of the stator 3 as described above. The holder main body 72 accommodates the insertion portions 56 of the two circuit boards 55A and 55B. For this reason, these two insertion parts 56 are located in the location which shifted | deviated from the center C1 of the circumferential direction of the slot 15 in which the fitting groove | channel 17 is each formed. In other words, the second Hall IC 50b and the third Hall IC 50c that are surface-mounted on the circuit boards 55A and 55B are arranged at positions shifted from the circumferential center C1 of the slot 15, respectively. Details of the angle between the second Hall IC 50b and the third Hall IC 50c will be described later.
 センサ押え90は、ベース部71上載置される押え本体91を有している。押え本体91は、ベース部71の周壁76の内周面(インロー部76b)に沿うように、且つベース部71の長手方向に長くなるように、略円弧状に形成されている。これにより、ベース部71の周壁76に押え本体91がインロー嵌合される。
 押え本体91は、その短手方向の幅が、ベース部71の短手方向の幅の約半分となるように形成されており、ベース部71のガイド壁74寄りに配置されている。
The sensor presser 90 has a presser body 91 placed on the base portion 71. The presser body 91 is formed in a substantially arc shape so as to extend along the inner peripheral surface (inlay portion 76 b) of the peripheral wall 76 of the base portion 71 and to be long in the longitudinal direction of the base portion 71. As a result, the presser main body 91 is inlay-fitted to the peripheral wall 76 of the base portion 71.
The presser body 91 is formed so that the width in the short direction is about half of the width in the short direction of the base portion 71, and is disposed near the guide wall 74 of the base portion 71.
 押え本体91には、ベース部71の開口部73を避けるように、2つの凹部92が形成されている。凹部92の底面92aには、ベース部71側の端部に、ガイド壁74が挿入される挿入凹部93が形成されている。挿入凹部93の底面93aに、スリット94が形成されている。このスリット94を介し、一端が各回路基板55A,55Bに接続された不図示のセンサ線の他端が、径方向内側へと引き出される。 In the presser body 91, two concave portions 92 are formed so as to avoid the opening 73 of the base portion 71. An insertion recess 93 into which the guide wall 74 is inserted is formed on the bottom surface 92a of the recess 92 at the end on the base 71 side. A slit 94 is formed in the bottom surface 93 a of the insertion recess 93. Through this slit 94, the other end of the sensor wire (not shown) whose one end is connected to each of the circuit boards 55A and 55B is drawn out radially inward.
 押え本体91には、軸方向でベース部71とは反対側の端部の凹部92を避けた位置に、3つの押え板95a,95b,95cが径方向外側に向かって延出されている。
 各押え板95a,95b,95cは、各回路基板55A,55Bのセンサ線接続部57上に位置する。すなわち、各押え板95a,95b,95cによって、各回路基板55A,55Bのセンサホルダ70からの抜けが防止される。
In the presser body 91, three presser plates 95 a, 95 b, and 95 c are extended outward in the radial direction at positions that avoid the concave portion 92 at the end opposite to the base portion 71 in the axial direction.
Each presser plate 95a, 95b, 95c is located on the sensor line connection part 57 of each circuit board 55A, 55B. In other words, the retaining plates 95a, 95b, and 95c prevent the circuit boards 55A and 55B from being detached from the sensor holder 70.
 押え本体91には、径方向内側の側面に2つの係合部96a,96bが突設されている。これら係合部96は、外枠部材20にセンサ押え90を係合させるためのものである。係合部96は、押え本体91から径方向内側に向かって突出する支持部97と、支持部97の径方向内側端(先端)から周方向に沿って延びる爪部98と、が一体成形されてなる。 The presser main body 91 has two engaging portions 96a and 96b projecting from the radially inner side surface. These engaging portions 96 are for engaging the sensor presser 90 with the outer frame member 20. The engaging portion 96 is integrally formed with a support portion 97 that protrudes radially inward from the presser body 91 and a claw portion 98 that extends from the radially inner end (tip) of the support portion 97 along the circumferential direction. It becomes.
 外枠部材20は、センサホルダ70のベース部71の形状に対応するように、軸方向からみて長円形状となるように形成され、且つステータ鉄心11の外周に沿うように僅かに湾曲形成された筒状の周壁23を有している。より具体的には、周壁23は、径方向外側の壁を構成する外周壁部23aと、径方向内側の壁を構成する内周壁部23bと、これら外周壁部23aと内周壁部23bとを連結する側壁部23c,23dとが一体成形されたものである。 The outer frame member 20 is formed to have an oval shape when viewed from the axial direction so as to correspond to the shape of the base portion 71 of the sensor holder 70, and is formed to be slightly curved along the outer periphery of the stator core 11. A cylindrical peripheral wall 23 is provided. More specifically, the peripheral wall 23 includes an outer peripheral wall portion 23a that constitutes a radially outer wall, an inner peripheral wall portion 23b that constitutes a radially inner wall, and the outer peripheral wall portion 23a and the inner peripheral wall portion 23b. The side wall parts 23c and 23d to be connected are integrally formed.
 そして、周壁23に、センサホルダ70のベース部71が挿入される。このとき、ベース部71の周壁76(インロー部76a)が、外枠部材20の周壁23に内嵌される形になる。
 周壁23の内周面には、その内周側に突出する位置決め凸部21が、周壁23の周方向に所定間隔をあけて複数形成されている。位置決め凸部21は、外枠部材20に対するセンサホルダ70の位置決めの役割を有している。すなわち、外枠部材20にベース部71を挿入した際、位置決め凸部21にベース部71が当接し、このベース部71の位置が決まる。
Then, the base portion 71 of the sensor holder 70 is inserted into the peripheral wall 23. At this time, the peripheral wall 76 (inlay portion 76 a) of the base portion 71 is fitted into the peripheral wall 23 of the outer frame member 20.
On the inner peripheral surface of the peripheral wall 23, a plurality of positioning projections 21 projecting toward the inner peripheral side are formed at predetermined intervals in the peripheral direction of the peripheral wall 23. The positioning convex portion 21 has a role of positioning the sensor holder 70 with respect to the outer frame member 20. That is, when the base portion 71 is inserted into the outer frame member 20, the base portion 71 comes into contact with the positioning convex portion 21, and the position of the base portion 71 is determined.
 周壁23の内周面には、各位置決め凸部21の間に、その内周側に突出する抜け止め爪22が複数形成されている。抜け止め爪22は、外枠部材20に位置決めされたベース部71の外枠部材20からの抜けを防止するためのものである。これにより、外枠部材20とセンサホルダ70とが一体化される。
 外枠部材20の外周壁部23aには、周方向略中央よりも周方向端部寄りに、厚肉の板状の舌片部64が径方向外側に向かって突設されている。この舌片部64は、位置検出センサ6を不図示のエンジンブロックに締結固定するためのものである。舌片部64は、その大部分に不図示のボルトが挿通されるボルト挿通孔64aが形成されている。
On the inner peripheral surface of the peripheral wall 23, a plurality of retaining claws 22 projecting toward the inner peripheral side are formed between the positioning convex portions 21. The retaining claws 22 are for preventing the base portion 71 positioned on the outer frame member 20 from coming off from the outer frame member 20. Thereby, the outer frame member 20 and the sensor holder 70 are integrated.
On the outer peripheral wall portion 23a of the outer frame member 20, a thick plate-like tongue piece portion 64 is provided so as to protrude outward in the radial direction closer to the circumferential end than the substantially central portion in the circumferential direction. The tongue piece 64 is for fastening and fixing the position detection sensor 6 to an engine block (not shown). The tongue piece portion 64 is formed with a bolt insertion hole 64a through which a bolt (not shown) is inserted.
 外枠部材20の内周壁部23bには、センサ押え90の係合部96a,96bに対応する位置に、係合凹部25a,25bが形成されている。これら係合凹部25a,25bに係合部96a,96bの支持部97が挿入される。そして、センサ押え90の押え本体91と係合部96a,96bの爪部98とにより外枠部材20の内周壁部23bを挟持する。これにより、外枠部材20にセンサ押え90が係合される。外枠部材20の係合凹部25a,25bには、底部24にスリット24aが形成されている。これらスリット24aを介し、不図示のセンサ線の他端が外枠部材20の径方向内側に引き出される。 In the inner peripheral wall portion 23b of the outer frame member 20, engagement concave portions 25a and 25b are formed at positions corresponding to the engagement portions 96a and 96b of the sensor presser 90. The support portions 97 of the engaging portions 96a and 96b are inserted into the engaging concave portions 25a and 25b. Then, the inner peripheral wall portion 23b of the outer frame member 20 is sandwiched between the presser body 91 of the sensor presser 90 and the claw portions 98 of the engaging portions 96a and 96b. Thereby, the sensor presser 90 is engaged with the outer frame member 20. A slit 24 a is formed in the bottom 24 of the engaging recesses 25 a and 25 b of the outer frame member 20. The other end of the sensor wire (not shown) is drawn out radially inward of the outer frame member 20 through these slits 24a.
 内周壁部23bの中央には、径方向内側に向かって延出する配線ガイド68が一体成形されている。この配線ガイド68は、外枠部材20から引き出された不図示のセンサ線を集合させて側方への引き出すためのものである。
 配線ガイド68は、ベース部68aと、このベース部68aから軸方向外側に離間して設けられた舌片部68bとが一体成形されてなる。そして、ベース部68aと舌片部68bとの間に、不図示のセンサ線が引き回されて保持される。
A wiring guide 68 extending inward in the radial direction is integrally formed at the center of the inner peripheral wall portion 23b. The wiring guide 68 is for collecting sensor wires (not shown) drawn from the outer frame member 20 and drawing them to the side.
The wiring guide 68 is formed by integrally molding a base portion 68a and a tongue piece portion 68b provided to be spaced apart from the base portion 68a in the axial direction. A sensor wire (not shown) is drawn and held between the base portion 68a and the tongue piece portion 68b.
 ベース部68aには、径方向内側の先端にボルト座69が一体成形されている。
 ボルト座69は、外枠部材20をステータ鉄心11に固定するためのものである。ボルト座69は、ベース部68aの先端から軸方向内側に向かって屈曲延出する縦壁部69aと、縦壁部69aから径方向内側に向かって屈曲延出する横壁部69bとにより構成されている。縦壁部69aの高さは、ステータ鉄心11にボルト座69を取り付けた状態で、インシュレータ110の内周壁111に外枠部材20が干渉しない高さに設定されている。
A bolt seat 69 is formed integrally with the base portion 68a at the tip on the radially inner side.
The bolt seat 69 is for fixing the outer frame member 20 to the stator core 11. The bolt seat 69 includes a vertical wall portion 69a that bends and extends from the tip of the base portion 68a toward the inner side in the axial direction, and a horizontal wall portion 69b that bends and extends from the vertical wall portion 69a toward the inner side in the radial direction. Yes. The height of the vertical wall portion 69 a is set to a height at which the outer frame member 20 does not interfere with the inner peripheral wall 111 of the insulator 110 in a state where the bolt seat 69 is attached to the stator core 11.
 ボルト座69の横壁部69bには、ボルト挿通孔67が形成されている。そして、図1に示すように、ボルト座69の上からボルト30を挿通し、このボルト30をステータ鉄心11に螺入することにより、ステータ鉄心11に外枠部材20が締結固定される。
 なお、外枠部材20にセンサホルダ70、各ホールIC50a,50b,50c、およびセンサ押え90を組み付けた後、外枠部材20の周壁23内が不図示の充填剤で封止される。これにより、塵埃や水滴によって位置検出センサ6の動作不良が生じてしまうことを防止している。
A bolt insertion hole 67 is formed in the lateral wall portion 69 b of the bolt seat 69. Then, as shown in FIG. 1, the outer frame member 20 is fastened and fixed to the stator core 11 by inserting the bolt 30 from above the bolt seat 69 and screwing the bolt 30 into the stator core 11.
In addition, after the sensor holder 70, each Hall IC 50a, 50b, 50c, and the sensor presser 90 are assembled | attached to the outer frame member 20, the inside of the surrounding wall 23 of the outer frame member 20 is sealed with a filler not shown. This prevents malfunction of the position detection sensor 6 caused by dust or water droplets.
(位置検出センサの作用と各ホールICの配置角度の詳細)
 次に、位置検出センサ6の作用と、各ホールIC50a,50b,50cの配置角度の詳細について説明する。
 各ホールIC50a,50b,50cのうち、第2ホールIC50bおよび第3ホールIC50cは、ロータ5の中央側の位置M2(図3参照)で検出した信号を、ロータ5の回転位置信号として不図示の制御装置に出力する。一方、第1ホールIC50aは、ロータ5の軸方向一端側の位置M1(図3参照)で検出した信号を、ロータ5の円周上の絶対位置情報信号として不図示の制御装置に出力する。
(Details of action of position detection sensor and arrangement angle of each Hall IC)
Next, the operation of the position detection sensor 6 and details of the arrangement angles of the Hall ICs 50a, 50b, and 50c will be described.
Of each of the Hall ICs 50a, 50b, 50c, the second Hall IC 50b and the third Hall IC 50c are not shown as a rotational position signal of the rotor 5 with a signal detected at a position M2 (see FIG. 3) on the center side of the rotor 5. Output to the control unit. On the other hand, the first Hall IC 50a outputs a signal detected at a position M1 (see FIG. 3) on one end side in the axial direction of the rotor 5 to a control device (not shown) as an absolute position information signal on the circumference of the rotor 5.
 不図示の制御装置では、第2ホールIC50bおよび第3ホールIC50cの出力信号を受けて、2相のコイル7に対する転流タイミングを制御すると共に、第1ホールIC50aの出力信号と、第2ホールIC50bおよび第3ホールIC50cの出力信号と、を受けてエンジンの点火タイミングおよび燃料噴射タイミングを制御する。
 コイル7に対する転流タイミングに基づいて所定のコイル7に電流を供給すると、ロータ5およびクランクシャフト4が回転する。これにより、エンジンが始動される。エンジンの始動後には、ロータ5の回転に伴う発電電力を、不図示のバッテリに充電し、若しくは、直接使用に供する。
A control device (not shown) receives the output signals of the second Hall IC 50b and the third Hall IC 50c, controls the commutation timing for the two-phase coil 7, and outputs the output signal of the first Hall IC 50a and the second Hall IC 50b. In response to the output signal of the third Hall IC 50c, the engine ignition timing and fuel injection timing are controlled.
When a current is supplied to the predetermined coil 7 based on the commutation timing for the coil 7, the rotor 5 and the crankshaft 4 rotate. As a result, the engine is started. After the engine is started, the generated power accompanying the rotation of the rotor 5 is charged into a battery (not shown) or directly used.
 ここで、B、L、M、NおよびXを自然数とし、スロット15の個数をSとし、マグネット9の個数、つまり磁極数をPとし、
 X=90(2L-1)/{(360/S)×(P/2)}・・・(1)
 を満たすLのうち、最少の値をA1とすると、
 回転電機1のスロット15の個数S、磁極数P、および第2ホールIC50bと第3ホールIC50cとの間の電気角θは、
 S=2N       ・・・(2)
 P=S±2      ・・・(3)
 θ=90(2B1-1)・・・(4)
 B1<A1      ・・・(5)
 を満たすように設定されている。
Here, B, L, M, N and X are natural numbers, the number of slots 15 is S, the number of magnets 9, that is, the number of magnetic poles is P,
X = 90 (2L−1) / {(360 / S) × (P / 2)} (1)
If the minimum value of L satisfying A is A1,
The number S of slots 15 of the rotating electrical machine 1, the number P of magnetic poles, and the electrical angle θ between the second Hall IC 50b and the third Hall IC 50c are:
S = 2N (2)
P = S ± 2 (3)
θ = 90 (2B1-1) (4)
B1 <A1 (5)
It is set to satisfy.
 本第1実施形態では、スロット15の個数Sが「12」であるので、この「12」を式(2)に代入するとN=2となる。また、本第1実施形態では、磁極数Pが14極であるので、式(3)を満たす。
 さらに、式(1),(5)を満たすB1の数として、B1を「1」とし、この「1」を式(4)に代入して電気角θを90°に設定している。このように電気角θを設定することにより、第2ホールIC50bと第3ホールIC50cとにより、2相のコイル7に対する転流タイミングを制御することができる。本第1実施形態では、磁極数Pが14極であるので、電気角θ=90°を機械角θmに引き直すと、θm≒12.85°となる。
In the first embodiment, since the number S of the slots 15 is “12”, N = 2 is obtained by substituting “12” into the equation (2). In the first embodiment, since the number of magnetic poles P is 14, the formula (3) is satisfied.
Further, B1 is set to “1” as the number of B1s satisfying the expressions (1) and (5), and the electric angle θ is set to 90 ° by substituting this “1” into the expression (4). By setting the electrical angle θ in this way, the commutation timing for the two-phase coil 7 can be controlled by the second Hall IC 50b and the third Hall IC 50c. In the first embodiment, since the number P of the magnetic poles is 14, when the electrical angle θ = 90 ° is reduced to the mechanical angle θm, θm≈12.85 °.
 上述の第1実施形態では、上記式(1)~式(5)を満たすように、回転電機1のスロット15の個数S、磁極数P、および第2ホールIC50bと第3ホールIC50cとの間の電気角θを設定している。また、スロット15の周方向の中心C1からずれた位置に第1ホールIC50a、第2ホールIC50b、および第3ホールIC50cを配置している。さらに、複数のティース部13のうちの2つのティース部13を、切欠き部16を形成した特定ティース部13Aとし、これら特定ティース部13Aの嵌合溝17内に第1ホールIC50a、第2ホールIC50b、および第3ホールIC50cを配置している。このため、コイル7の相数が2相に設定されている回転電機1であっても、第2ホールIC50bと第3ホールIC50cとの間の機械角θmをできる限り小さく設定できる。したがって、1つのスロット15内に各ホールIC50a~50cを収めることができ、この結果、各ホールIC50a~50cを収納するセンサケース60も小型化できる。また、小型化できる分、位置検出センサ6の製造コストを低減できる。さらに、2つのティース部13に切欠き部16を形成するだけでマグネット9に各ホールIC50a~50cを対向配置させることができるので、ティース部13(回転電機1)の特性悪化をできる限り抑えることができる。 In the first embodiment described above, the number S of slots 15 and the number of magnetic poles P of the rotating electrical machine 1 and the distance between the second Hall IC 50b and the third Hall IC 50c so as to satisfy the above formulas (1) to (5). The electrical angle θ is set. In addition, the first Hall IC 50a, the second Hall IC 50b, and the third Hall IC 50c are arranged at positions shifted from the circumferential center C1 of the slot 15. Furthermore, the two teeth 13 of the plurality of teeth 13 are designated as specific teeth 13A having notches 16 formed therein, and the first hole IC 50a and the second holes are inserted into the fitting grooves 17 of these specific teeth 13A. An IC 50b and a third Hall IC 50c are arranged. For this reason, even in the rotating electrical machine 1 in which the number of phases of the coil 7 is set to two phases, the mechanical angle θm between the second Hall IC 50b and the third Hall IC 50c can be set as small as possible. Therefore, each Hall IC 50a to 50c can be accommodated in one slot 15, and as a result, the sensor case 60 that accommodates each Hall IC 50a to 50c can be downsized. In addition, the manufacturing cost of the position detection sensor 6 can be reduced as much as the size can be reduced. Furthermore, since the Hall ICs 50a to 50c can be disposed opposite to the magnet 9 simply by forming the notches 16 in the two teeth 13, the deterioration of the characteristics of the teeth 13 (the rotating electrical machine 1) can be suppressed as much as possible. Can do.
 また、複数のマグネット9のうち、1つを主磁極部119と副磁極部129とを備えた2極マグネット9cとし、副磁極部129に対向する第1ホールIC50aを設けた。このため、不図示の制御装置によって、第1ホールIC50aの出力信号と、第2ホールIC50bおよび第3ホールIC50cの出力信号と、を受けてエンジンの点火タイミングおよび燃料噴射タイミングを制御することができる。 Also, one of the plurality of magnets 9 is a two-pole magnet 9c including a main magnetic pole portion 119 and a sub magnetic pole portion 129, and a first Hall IC 50a facing the sub magnetic pole portion 129 is provided. Therefore, the ignition timing and fuel injection timing of the engine can be controlled by receiving the output signal of the first Hall IC 50a and the output signals of the second Hall IC 50b and the third Hall IC 50c by a control device (not shown). .
 さらに、第1ホールIC50aを、第2ホールIC50bと軸方向で並ぶように配置し、この2つのホールIC50a,50bを纏めて1つの第1回路基板55Aに表面実装している。このため、3つのホールIC50a~50cを全て1つのスロット15内に配置することができ、回転電機1への転流タイミングやエンジンへの点火タイミングの制御を可能としつつ、位置検出センサ6を小型化できる。 Further, the first Hall IC 50a is arranged so as to be aligned with the second Hall IC 50b in the axial direction, and the two Hall ICs 50a and 50b are collectively mounted on the surface of one first circuit board 55A. For this reason, all three Hall ICs 50a to 50c can be arranged in one slot 15, and the position detection sensor 6 can be made compact while enabling control of commutation timing to the rotating electrical machine 1 and ignition timing to the engine. Can be
 なお、上述の第1実施形態では、第1ホールIC50aおよび第2ホールIC50bが表面実装された第1回路基板55Aと、第3ホールIC50cが表面実装された第2回路基板55Bとを、それぞれ別々にセンサケース60のホルダ本体72に収納する場合について説明した。しかしながら、これに限られるものではなく、第1回路基板55Aと第2回路基板55Bとを一体に構成してもよい。 In the first embodiment described above, the first circuit board 55A on which the first Hall IC 50a and the second Hall IC 50b are surface-mounted and the second circuit board 55B on which the third Hall IC 50c is surface-mounted are separately provided. The case where the sensor case 60 is housed in the holder main body 72 has been described. However, the present invention is not limited to this, and the first circuit board 55A and the second circuit board 55B may be configured integrally.
 また、上述の第1実施形態では、上記式(1)~式(5)を満たすスロット15の個数S、磁極数P、および第2ホールIC50bと第3ホールIC50cとの間の電気角θとして、スロット15の個数Sを「12」、磁極数Pを「14」、電気角θを90°に設定した場合について説明した。しかしながら、これに限られるものではなく、上記式(1)~式(5)を満たすスロット15の個数S、磁極数P、電気角θであれば、任意に設定することが可能である。 In the first embodiment described above, the number S of slots 15 satisfying the above equations (1) to (5), the number P of magnetic poles, and the electrical angle θ between the second Hall IC 50b and the third Hall IC 50c are used. In the above description, the number S of slots 15 is set to “12”, the number of magnetic poles P is set to “14”, and the electrical angle θ is set to 90 °. However, the present invention is not limited to this, and can be arbitrarily set as long as the number S of slots 15, the number P of magnetic poles, and the electrical angle θ satisfying the above formulas (1) to (5).
 例えば、電気角θは、式(1)~式(5)を満たす角度であればよく、場合によっては1つのスロット15内に第2ホールIC50bおよび第3ホールIC50cを配置できない場合もある。しかしながら、このような場合であっても、2つのホールIC50b,50cの少なくとも何れか一方を、スロット15の周方向の中心C1からずれた位置に配置し、2つのホールIC50b,50cに対応する位置のティース部13にホールIC50b,50cを受け入れ可能な切欠き部16を形成することにより、この切欠き部16を必要最小限の大きさに抑えることができる。このため、回転電機1の特性悪化を抑制できる。 For example, the electrical angle θ may be an angle satisfying the expressions (1) to (5). In some cases, the second Hall IC 50b and the third Hall IC 50c may not be disposed in one slot 15. However, even in such a case, at least one of the two Hall ICs 50b and 50c is arranged at a position shifted from the circumferential center C1 of the slot 15, and the position corresponding to the two Hall ICs 50b and 50c. By forming the notch portion 16 capable of receiving the Hall ICs 50b and 50c in the tooth portion 13, the notch portion 16 can be suppressed to the minimum necessary size. For this reason, the characteristic deterioration of the rotary electric machine 1 can be suppressed.
(第2実施形態)
 次に、図6に基づいて、本発明の第2実施形態について説明する。なお、第1実施形態と同一態様には、同一符号を付して説明する。
 図6は、第2実施形態における回転電機201を構成するステータ203とロータ205とを軸方向からみた概略構成図であって、前述の図2に対応している。
 同図に示すように、前述の第1実施形態の回転電機1は2相ブラシレス型の回転電機であるのに対し、本第2実施形態の回転電機201は、3相ブラシレス型の回転電機である。この点、前述の第1実施形態と本第2実施形態との相違点である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described based on FIG. In addition, the same code | symbol is attached | subjected and demonstrated to the same aspect as 1st Embodiment.
FIG. 6 is a schematic configuration diagram of the stator 203 and the rotor 205 constituting the rotary electric machine 201 in the second embodiment when viewed from the axial direction, and corresponds to FIG. 2 described above.
As shown in the figure, the rotating electrical machine 1 of the first embodiment described above is a two-phase brushless type rotating electrical machine, whereas the rotating electrical machine 201 of the second embodiment is a three-phase brushless type rotating electrical machine. is there. This is the difference between the first embodiment and the second embodiment.
(回転電機)
 より具体的には、回転電機201のロータ205を構成するロータヨーク208には、複数(本第2実施形態では14個)のマグネット9が周方向に等間隔で配置されている。
 複数のマグネット9は、内側面全域がN極に着磁されているN極マグネット9a、内側面全域がS極に着磁されているS極マグネット9b、および主磁極部119と副磁極部129とを備えた1つの2極マグネット9cにより構成されている。
(Rotating electric machine)
More specifically, a plurality (14 in the second embodiment) of magnets 9 are arranged at equal intervals in the circumferential direction on the rotor yoke 208 constituting the rotor 205 of the rotating electrical machine 201.
The plurality of magnets 9 includes an N-pole magnet 9a in which the entire inner surface is magnetized to the N pole, an S-pole magnet 9b in which the entire inner surface is magnetized to the S pole, and the main magnetic pole portion 119 and the sub magnetic pole portion 129. Are constituted by one two-pole magnet 9c.
 隣接する特定の一組のS極マグネット9bの間に2極マグネット9cが配置され、他の隣接するS極マグネット9b間にN極マグネット9aが配置されている。したがって、ロータ205の内周側は、軸方向一端側以外では、N極とS極が交互に現れる。一方、軸方向一端側では、2極マグネット9cの副磁極部129および、その前後(周方向の前後)のマグネット3個分だけN極が連続して現れる。
 ステータ203のステータ鉄心211は、複数(本第2実施形態では12個)のティース部213を有している。隣接するティース部213間には、スロット215が形成される。
A two-pole magnet 9c is disposed between a specific pair of adjacent S-pole magnets 9b, and an N-pole magnet 9a is disposed between other adjacent S-pole magnets 9b. Therefore, the N pole and the S pole appear alternately on the inner peripheral side of the rotor 205 except at one end side in the axial direction. On the other hand, on one end side in the axial direction, N poles appear continuously by the sub-magnetic pole portion 129 of the two-pole magnet 9c and three magnets before and after (the front and rear in the circumferential direction).
The stator iron core 211 of the stator 203 has a plurality (12 pieces in the second embodiment) of teeth portions 213. A slot 215 is formed between adjacent teeth portions 213.
 ここで、回転電機201は、nを3以上の自然数としたとき、スロット15の個数S、磁極数Pは、
 nが奇数のとき、
 P:S=3n±1:3n   ・・・(11)
を満たすように設定され、
 nが偶数のとき、
 P:S=3n±2:3n   ・・・(12)
を満たすように設定されている。
 本第2実施形態の相回転電機201は、スロット15の個数Sが「12」、磁極数Pが「14」であるので、n=4(偶数)に設定すると、式(12)を満たす。
Here, in the rotating electrical machine 201, when n is a natural number of 3 or more, the number S of slots 15 and the number P of magnetic poles are:
When n is an odd number
P: S = 3n ± 1: 3n (11)
Set to meet
When n is an even number
P: S = 3n ± 2: 3n (12)
It is set to satisfy.
In the phase rotating electrical machine 201 of the second embodiment, since the number S of slots 15 is “12” and the number of magnetic poles P is “14”, the equation (12) is satisfied when n = 4 (even).
 各ティース部213は、それぞれ3相(U相、V相、W相)に割り当てられる。
 そして、ティース部213の数をTとし、
[条件1]nが偶数のとき、mを1以上の自然数とし、ティース部213の数Tと、磁極数Pとが共にm倍であるとき、3相(U相、V相、W相)のうち、n/2個の同相のティース部213が周方向に隣接して(並ぶように)配置され、同相ティース群286U,286V,286Wを2m個形成する。同相の同相ティース群286U,286V,286Wは、それぞれロータ205の回転軸線を中心にして対向配置されている。
 より好ましくは、
[条件2]ティース部213は、nが奇数のとき、3相(U相、V相、W相)のうち、同相のティース部213が全て周方向に隣接して(並ぶように)配置される。
Each tooth part 213 is assigned to three phases (U phase, V phase, W phase).
And let T be the number of teeth 213,
[Condition 1] When n is an even number, m is a natural number of 1 or more, and when the number T of the teeth portions 213 and the number of magnetic poles P are both m times, three phases (U phase, V phase, W phase) Among them, n / 2 in-phase teeth portions 213 are arranged adjacent to each other in the circumferential direction so as to form 2 m in- phase teeth groups 286U, 286V, and 286W. The in-phase in- phase tooth groups 286U, 286V, and 286W are arranged to face each other about the rotation axis of the rotor 205.
More preferably,
[Condition 2] When n is an odd number, teeth portions 213 of three phases (U-phase, V-phase, W-phase) are all adjacently arranged (aligned) in the circumferential direction. The
 本実施形態では、n=4である。すなわち、ティース部213は、周方向にU相、U相、V相、V相、W相、W相、U相、U相、V相、V相、W相、W相の順に割り当てられている。
 ステータ鉄心211の軸方向一端側には、ロータ205の回転位置を検出する位置検出センサ206が設けられている。
In this embodiment, n = 4. That is, the teeth portion 213 is assigned in the order of the U phase, U phase, V phase, V phase, W phase, W phase, U phase, U phase, V phase, V phase, W phase, and W phase in the circumferential direction. Yes.
A position detection sensor 206 that detects the rotational position of the rotor 205 is provided on one end side in the axial direction of the stator core 211.
 図7は、ロータヨーク208の内周面側の展開図であって、前述の図3に対応している。
 同図に示すように、位置検出センサ206は、4つのホールIC250a~250d(第1ホールIC250a、第2ホールIC250b、第3ホールIC250c、第4ホールIC250d)を有している。第1ホールIC250aおよび第2ホールIC250bは、軸方向に並ぶように不図示の回路基板に表面実装されている。
FIG. 7 is a development view of the inner peripheral surface side of the rotor yoke 208 and corresponds to FIG. 3 described above.
As shown in the figure, the position detection sensor 206 has four Hall ICs 250a to 250d (first Hall IC 250a, second Hall IC 250b, third Hall IC 250c, and fourth Hall IC 250d). The first Hall IC 250a and the second Hall IC 250b are surface-mounted on a circuit board (not shown) so as to be aligned in the axial direction.
 第1ホールIC250aは、ロータヨーク208の内周面における軸方向一端側に対峙する位置M1に配置されている。
 第2ホールIC250b、第3ホールIC250c、および第4ホールIC250dは、ロータヨーク208の内周面における軸方向略中央に対峙する位置M2に配置されている。換言すれば、第2ホールIC250b、第3ホールIC250c、および第4ホールIC250dは、ロータ5の回転方向(周方向)で同一線上に配置されている。
The first Hall IC 250a is disposed at a position M1 facing the one end side in the axial direction on the inner circumferential surface of the rotor yoke 208.
The second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d are disposed at a position M2 facing the substantially center in the axial direction on the inner peripheral surface of the rotor yoke 208. In other words, the second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d are arranged on the same line in the rotation direction (circumferential direction) of the rotor 5.
 これにより、第1のホールIC250aは、2極マグネット9cの副磁極部129を通る高さで各極マグネット9a,9b,9cの磁束の切り替わりを検出する。一方、第2ホールIC250b、第3ホールIC250c、および第4ホールIC250dは、2極マグネット9cの主磁極部119を通る高さで各極マグネット9a,9b,9cの磁束の切り替わりを検出する。
 第2ホールIC250b、第3ホールIC250c、および第4ホールIC250dは、ロータ205の中央側の位置M2で検出した信号を、ロータ205の回転位置信号として不図示の制御装置に出力する。一方、第1ホールIC250aは、ロータ205の軸方向一端側の位置M1で検出した信号を、ロータ205の円周上の絶対位置情報信号として不図示の制御装置に出力する。
Thus, the first Hall IC 250a detects the switching of the magnetic flux of each of the pole magnets 9a, 9b, 9c at a height that passes through the auxiliary magnetic pole portion 129 of the dipole magnet 9c. On the other hand, the second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d detect the switching of the magnetic flux of each pole magnet 9a, 9b, 9c at a height that passes through the main magnetic pole portion 119 of the two-pole magnet 9c.
The second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d output a signal detected at the position M2 on the center side of the rotor 205 to a control device (not shown) as a rotation position signal of the rotor 205. On the other hand, the first Hall IC 250a outputs a signal detected at the position M1 on one end side in the axial direction of the rotor 205 to a control device (not shown) as an absolute position information signal on the circumference of the rotor 205.
 ここで、B、C、M、NおよびXを自然数とし、スロット215の個数をSとし、磁極数をPとし、
 X=120M/{(360/S)×(P/2)}・・・(13)
 を満たすMのうち、最少の値をA2とすると、
 回転電機1のスロット15の個数S、磁極数P、第2ホールIC250bと第3ホールIC250cとの間の電気角θ1、および第3ホールIC250cと第4ホールIC250dとの間の電気角θ2は、
 S=3N            ・・・(14)
 Sが偶数のとき、P=S±2   ・・・(15)
 Sが奇数のとき、P=S±1   ・・・(16)
 θ1=120+360(B2-1)・・・(17)
 θ2=120+360(C-1) ・・・(18)
 θ1+θ2<240A2     ・・・(19)
 を満たすように設定されている。
Here, B, C, M, N and X are natural numbers, the number of slots 215 is S, the number of magnetic poles is P,
X = 120 M / {(360 / S) × (P / 2)} (13)
If the minimum value of M satisfying A is A2,
The number S of slots 15 of the rotating electrical machine 1, the number of magnetic poles P, the electrical angle θ1 between the second Hall IC 250b and the third Hall IC 250c, and the electrical angle θ2 between the third Hall IC 250c and the fourth Hall IC 250d are:
S = 3N (14)
When S is an even number, P = S ± 2 (15)
When S is an odd number, P = S ± 1 (16)
θ1 = 120 + 360 (B2-1) (17)
θ2 = 120 + 360 (C−1) (18)
θ1 + θ2 <240A2 (19)
It is set to satisfy.
 本第2実施形態では、スロット15の個数Sが「12」であるので、この「12」を式(14)に代入するとN=2となる。また、本第2実施形態では、スロット15の個数Sが偶数で、且つ磁極数Pが14極であるので、式(15)を満たす。
 さらに、式(13),(19)を満たすB2の数として、B2を「1」とし、この「1」を式(17)に代入し、さらに、式(18),(19)を満たすようにθ2およびCを設定する。ここでは、Cを「1」とし、電気角θ1,θ2をそれぞれ120°に設定している。このように電気角θ1,θ2を設定することにより、第2ホールIC250b、第3ホールIC250c、および第4ホールIC250dにより、3相のコイル7に対する転流タイミングを制御することができる。ここで、本第2実施形態では、磁極数Pが14極であるので、電気角θ1=θ2=120°を機械角θ1m,θ2mに引き直すと、θ1m=θ2m≒17.14°となる。
In the second embodiment, since the number S of the slots 15 is “12”, N = 2 when this “12” is substituted into the equation (14). In the second embodiment, since the number S of slots 15 is an even number and the number of magnetic poles P is 14, the equation (15) is satisfied.
Further, B2 is set to “1” as the number of B2 satisfying Expressions (13) and (19), and this “1” is substituted into Expression (17), and further, Expressions (18) and (19) are satisfied. Is set to θ2 and C. Here, C is set to “1”, and the electrical angles θ1 and θ2 are each set to 120 °. By setting the electrical angles θ1 and θ2 in this way, the commutation timing for the three-phase coil 7 can be controlled by the second Hall IC 250b, the third Hall IC 250c, and the fourth Hall IC 250d. Here, in the second embodiment, since the number P of the magnetic poles is 14, when the electrical angle θ1 = θ2 = 120 ° is redrawn to the mechanical angles θ1m and θ2m, θ1m = θ2m≈17.14 °.
 各ホールIC250a~250dは、それぞれスロット15の周方向の中心C2からずれた位置に配置されている。
 複数のティース部213のうち、各ホールIC250a~250dに対応するティース部213には、それぞれ切欠き部16(前述の図4参照、本第2実施形態の図6では不図示)が形成されている。そして、切欠き部16にそれぞれ各ホールIC250a~250dを配置している。
 したがって、上述の第2実施形態によれば、前述の第1実施形態と同様の効果を奏する。
The Hall ICs 250a to 250d are arranged at positions shifted from the circumferential center C2 of the slot 15, respectively.
Of the plurality of teeth 213, the teeth 213 corresponding to the respective Hall ICs 250a to 250d are respectively formed with notches 16 (see FIG. 4 described above, not shown in FIG. 6 of the second embodiment). Yes. The Hall ICs 250a to 250d are arranged in the notch 16 respectively.
Therefore, according to the second embodiment described above, the same effects as those of the first embodiment described above can be obtained.
 なお、上述の第2実施形態では、上記式(13)~式(19)を満たすスロット215の個数S、磁極数P、第2ホールIC250bと第3ホールIC250cとの間の電気角θ1、および第3ホールIC250cと第4ホールIC250dとの間の電気角θ2として、スロット215の個数Sを「12」、磁極数Pを「14」、電気角θ1,θ2を120°に設定した場合について説明した。しかしながら、これに限られるものではなく、上記式(13)~式(19)を満たすスロット215の個数S、磁極数P、電気角θ1,θ2であれば、任意に設定することが可能である。 In the second embodiment described above, the number S of slots 215 satisfying the above equations (13) to (19), the number of magnetic poles P, the electrical angle θ1 between the second Hall IC 250b and the third Hall IC 250c, and As an electrical angle θ2 between the third Hall IC 250c and the fourth Hall IC 250d, the case where the number S of slots 215 is set to “12”, the number of magnetic poles P is set to “14”, and the electrical angles θ1 and θ2 are set to 120 ° is described. did. However, the present invention is not limited to this, and can be arbitrarily set as long as the number S of slots 215, the number P of magnetic poles, and the electrical angles θ1 and θ2 satisfying the above equations (13) to (19). .
 本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述の実施形態では、回転電機1,201は、自動二輪車等の車両用エンジンの始動発電機として用いられるものである場合について説明した。しかしながら、これに限られるものではなく、さまざまな用途に回転電機1,201を適用することが可能である。例えば、回転電機1,201を単に発電機として用いたり、単に電動モータとして用いたりすることも可能である。
The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
For example, in the above-described embodiment, the case where the rotating electrical machines 1 and 201 are used as a starter generator for a vehicle engine such as a motorcycle has been described. However, the present invention is not limited to this, and the rotating electrical machines 1 and 201 can be applied to various uses. For example, the rotary electric machines 1 and 201 can be used simply as a generator or simply as an electric motor.
 上述の実施形態では、ロータヨーク8,208に設けられた複数のマグネット9は、内側面全域がN極に着磁されているN極マグネット9a、内側面全域がS極に着磁されているS極マグネット9b、および主磁極部119と副磁極部129とを備えた1つの2極マグネット9cにより構成されている場合について説明した。そして、2極マグネット9cは、内側面がS極に着磁された主磁極部119の一端側に、内側面がN極に着磁された短尺な副磁極部129が設けられている場合について説明した。しかしながら、マグネット9の着磁はN極とS極とが逆でもよい。つまり、2極マグネット9cにあっては、主磁極部119がN極に着磁され、副磁極部129がS極に着磁されていてもよい。 In the above-described embodiment, the plurality of magnets 9 provided in the rotor yokes 8 and 208 are the N-pole magnet 9a in which the entire inner surface is magnetized to the N pole, and the entire inner surface is magnetized to the S pole. The case has been described in which the pole magnet 9b and one two-pole magnet 9c including the main magnetic pole portion 119 and the sub magnetic pole portion 129 are configured. The dipole magnet 9c has a case where a short sub magnetic pole portion 129 whose inner side surface is magnetized to the N pole is provided on one end side of the main magnetic pole portion 119 whose inner side surface is magnetized to the S pole. explained. However, the magnetization of the magnet 9 may be reversed between the N pole and the S pole. That is, in the two-pole magnet 9c, the main magnetic pole portion 119 may be magnetized to the N pole, and the sub magnetic pole portion 129 may be magnetized to the S pole.
1,201…回転電機
3,203…ステータ
5,205…ロータ
6,206…位置検出センサ
7…コイル
9…マグネット
9a…N極マグネット
9b…S極マグネット
9c…2極マグネット
11,211…ステータ鉄心
13,213…ティース部(ティース)
15,215…スロット
16…切欠き部(凹部)
17…嵌合溝(凹部)
50a…第1ホールIC(第3磁気センサ)
50b,250b…第2ホールIC(第1磁気センサ)
50c,250c…第3ホールIC(第2磁気センサ)
60…センサケース
119…主磁極部
129…副磁極部
250a…第1ホールIC(第4磁気センサ)
250d…第4ホールIC(第3磁気センサ)
θ,θ1,θ2…電気角
DESCRIPTION OF SYMBOLS 1,201 ... Rotary electric machine 3,203 ... Stator 5,205 ... Rotor 6,206 ... Position detection sensor 7 ... Coil 9 ... Magnet 9a ... N pole magnet 9b ... S pole magnet 9c ... Two pole magnets 11, 211 ... Stator iron core 13,213 ... Teeth part (teeth)
15, 215 ... Slot 16 ... Notch (recess)
17 ... Fitting groove (recess)
50a ... 1st Hall IC (3rd magnetic sensor)
50b, 250b ... 2nd Hall IC (1st magnetic sensor)
50c, 250c ... 3rd Hall IC (2nd magnetic sensor)
60 ... Sensor case 119 ... Main magnetic pole part 129 ... Sub magnetic pole part 250a ... 1st Hall IC (4th magnetic sensor)
250d ... 4th Hall IC (3rd magnetic sensor)
θ, θ1, θ2 ... electrical angle

Claims (8)

  1.  複数のティースが周方向に並んで配置され、隣接する前記ティース間にスロットが形成されているステータと、
     前記複数のティースに巻回され、相数が2相に設定されているコイルと、
     前記ステータに対して回転可能に設けられ、周方向に沿って磁極が交互となるように配置された複数のマグネットを有するロータと、
     複数の前記スロットのうちの何れかに配置され、前記マグネットの磁束を検出する第1磁気センサおよび第2磁気センサと、
    を備え、
     B、L、M、NおよびXを自然数とし、前記スロットの個数をSとし、前記マグネットの磁極数をPとし、
     X=90(2L-1)/{(360/S)×(P/2)}
     を満たすLのうち、最少の値をAとすると、
     前記スロットの個数S、前記磁極数P、および前記第1磁気センサと前記第2磁気センサとの間の電気角θは、
     S=2N
     P=S±2
     θ=90(2B-1)
     B<A
     を満たすように設定されており、
     前記第1磁気センサおよび前記第2磁気センサの少なくとも何れか一方が前記スロットの周方向の中心からずれた位置に配置されており、
     少なくとも1つの前記ティースには、前記第1磁気センサおよび前記第2磁気センサの少なくとも何れか一方を受け入れ可能な凹部が形成されている回転電機。
    A stator in which a plurality of teeth are arranged side by side in the circumferential direction and a slot is formed between the adjacent teeth;
    A coil wound around the plurality of teeth and having a number of phases set to two phases;
    A rotor having a plurality of magnets provided so as to be rotatable with respect to the stator and arranged so that magnetic poles are alternately arranged along a circumferential direction;
    A first magnetic sensor and a second magnetic sensor which are arranged in any of the plurality of slots and detect the magnetic flux of the magnet;
    With
    B, L, M, N and X are natural numbers, the number of slots is S, the number of magnetic poles of the magnet is P,
    X = 90 (2L−1) / {(360 / S) × (P / 2)}
    If the minimum value of A satisfying L is A,
    The number S of slots, the number P of magnetic poles, and the electrical angle θ between the first magnetic sensor and the second magnetic sensor are:
    S = 2N
    P = S ± 2
    θ = 90 (2B-1)
    B <A
    Is set to meet
    At least one of the first magnetic sensor and the second magnetic sensor is disposed at a position shifted from a circumferential center of the slot;
    A rotating electrical machine in which at least one of the teeth is formed with a recess capable of receiving at least one of the first magnetic sensor and the second magnetic sensor.
  2.  前記第1磁気センサおよび前記第2磁気センサは、1つの前記スロットに配置されており、該スロットを形成する2つの前記ティースに、前記凹部が形成されている請求項1に記載の回転電機。 The rotating electrical machine according to claim 1, wherein the first magnetic sensor and the second magnetic sensor are arranged in one of the slots, and the recess is formed in two teeth forming the slot.
  3.  前記マグネットの磁束を検出する第3磁気センサを備え、
     前記複数のマグネットのうちの1つは、
      隣接する前記マグネットの磁極とは異極の主磁極部と、
      隣接する前記マグネットの磁極と同極の副磁極部と、
      を有し、
      前記主磁極部と前記副磁極部とが前記ロータの回転軸線方向に隣接配置されており、
     前記主磁極部に対応する位置に、前記第1磁気センサおよび前記第2磁気センサが配置されていると共に、前記副磁極部に対応する位置に、前記第3磁気センサが配置されている請求項1または請求項2に記載の回転電機。
    A third magnetic sensor for detecting the magnetic flux of the magnet;
    One of the plurality of magnets is
    A main magnetic pole portion having a different polarity from the magnetic pole of the adjacent magnet;
    A sub magnetic pole part having the same polarity as the magnetic pole of the adjacent magnet,
    Have
    The main magnetic pole part and the sub magnetic pole part are arranged adjacent to each other in the rotation axis direction of the rotor,
    The first magnetic sensor and the second magnetic sensor are arranged at a position corresponding to the main magnetic pole part, and the third magnetic sensor is arranged at a position corresponding to the sub magnetic pole part. The rotating electrical machine according to claim 1 or 2.
  4.  前記第3磁気センサは、前記第1磁気センサおよび前記第2磁気センサが配置されている前記スロットと同一のスロットに配置されている請求項3に記載の回転電機。 The rotating electrical machine according to claim 3, wherein the third magnetic sensor is disposed in the same slot as the slot in which the first magnetic sensor and the second magnetic sensor are disposed.
  5.  複数のティースが周方向に並んで配置され、隣接する前記ティース間にスロットが形成されているステータと、
     前記複数のティースに巻回され、相数が3相に設定されているコイルと、
     前記ステータに対して回転可能に設けられ、周方向に沿って磁極が交互となるように配置された複数のマグネットを有するロータと、
     複数の前記スロットのうちの何れかに配置され、前記マグネットの磁束を検出する第1磁気センサ、第2磁気センサおよび第3磁気センサと、
    を備え、
     隣接する少なくとも2つの前記ティースが同相のティースに設定されており、
     B、C、M、NおよびXを自然数とし、前記スロットの個数をSとし、前記マグネットの磁極数をPとし、
     X=120M/{(360/S)×(P/2)}
     を満たすMのうち、最少の値をAとすると、
     前記スロットの個数S、前記磁極数P、前記第1磁気センサと前記第2磁気センサとの間の電気角θ1、および前記第2磁気センサと前記第3磁気センサとの間の電気角θ2は、
     S=3N
     Sが偶数のとき、P=S±2
     Sが奇数のとき、P=S±1
     θ1=120+360(B-1)
     θ2=120+360(C-1)
     θ1+θ2<240A
     を満たすように設定されており、
     前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサの少なくとも何れか1つが前記スロットの周方向の中心からずれた位置に配置されており、
     少なくとも1つの前記ティースには、前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサの何れかを受け入れ可能な凹部が形成されている回転電機。
    A stator in which a plurality of teeth are arranged side by side in the circumferential direction and a slot is formed between the adjacent teeth;
    A coil wound around the plurality of teeth and having a number of phases set to three phases;
    A rotor having a plurality of magnets provided so as to be rotatable with respect to the stator and arranged so that magnetic poles are alternately arranged along a circumferential direction;
    A first magnetic sensor, a second magnetic sensor and a third magnetic sensor which are arranged in any of the plurality of slots and detect magnetic flux of the magnet;
    With
    At least two adjacent teeth are set as in-phase teeth,
    B, C, M, N and X are natural numbers, the number of slots is S, the number of magnetic poles of the magnet is P,
    X = 120 M / {(360 / S) × (P / 2)}
    If the minimum value of A satisfying M is A,
    The number of slots S, the number of magnetic poles P, the electrical angle θ1 between the first magnetic sensor and the second magnetic sensor, and the electrical angle θ2 between the second magnetic sensor and the third magnetic sensor are: ,
    S = 3N
    When S is an even number, P = S ± 2
    When S is an odd number, P = S ± 1
    θ1 = 120 + 360 (B−1)
    θ2 = 120 + 360 (C−1)
    θ1 + θ2 <240A
    Is set to meet
    At least one of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor is disposed at a position shifted from a circumferential center of the slot;
    A rotating electrical machine in which a recess capable of receiving any of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor is formed in at least one of the teeth.
  6.  前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサのうち、少なくとも2つの磁気センサは、1つの前記スロットに配置されており、該スロットを形成する2つの前記ティースに、前記凹部が形成されている請求項5に記載の回転電機。 Of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor, at least two magnetic sensors are disposed in one of the slots, and the recesses are formed in the two teeth forming the slot. The rotating electrical machine according to claim 5, wherein:
  7.  前記マグネットの磁束を検出する第4磁気センサを備え、
     前記複数のマグネットのうちの1つは、
      隣接する前記マグネットの磁極とは異極の主磁極部と、
      隣接する前記マグネットの磁極と同極の副磁極部と、
      を有し、
      前記主磁極部と前記副磁極部とが前記ロータの回転軸線方向に隣接配置されており、
     前記主磁極部に対応する位置に、前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサが配置されていると共に、前記副磁極部に対応する位置に、前記第4磁気センサが配置されている請求項5または請求項6に記載の回転電機。
    A fourth magnetic sensor for detecting the magnetic flux of the magnet;
    One of the plurality of magnets is
    A main magnetic pole portion having a different polarity from the magnetic pole of the adjacent magnet;
    A sub magnetic pole part having the same polarity as the magnetic pole of the adjacent magnet,
    Have
    The main magnetic pole part and the sub magnetic pole part are arranged adjacent to each other in the rotation axis direction of the rotor,
    The first magnetic sensor, the second magnetic sensor, and the third magnetic sensor are disposed at a position corresponding to the main magnetic pole portion, and the fourth magnetic sensor is disposed at a position corresponding to the sub magnetic pole portion. The rotating electrical machine according to claim 5 or 6, wherein the rotating electrical machine is arranged.
  8.  前記第4磁気センサは、前記第1磁気センサ、前記第2磁気センサおよび前記第3磁気センサの何れかが配置されている前記スロットと同一のスロットに配置されている
    請求項7に記載の回転電機。
    The rotation according to claim 7, wherein the fourth magnetic sensor is disposed in the same slot as the slot in which any one of the first magnetic sensor, the second magnetic sensor, and the third magnetic sensor is disposed. Electric.
PCT/JP2017/031660 2016-09-09 2017-09-01 Rotary machine WO2018047746A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176422A JP6720032B2 (en) 2016-09-09 2016-09-09 Rotating electric machine
JP2016-176422 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047746A1 true WO2018047746A1 (en) 2018-03-15

Family

ID=61561818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031660 WO2018047746A1 (en) 2016-09-09 2017-09-01 Rotary machine

Country Status (2)

Country Link
JP (1) JP6720032B2 (en)
WO (1) WO2018047746A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012679A1 (en) * 2018-07-11 2020-01-16 株式会社ミツバ Drive device for three-phase rotating electric machine and three-phase rotating electric machine unit
WO2020261476A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261477A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261475A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261478A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261474A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113924720B (en) 2019-05-27 2023-10-27 株式会社电装 Motor with a motor housing having a motor housing with a motor housing
JP7323388B2 (en) * 2019-08-29 2023-08-08 株式会社ミツバ POSITION DETECTION SENSOR UNIT AND METHOD FOR MANUFACTURING POSITION DETECTION SENSOR UNIT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029020A (en) * 2008-07-23 2010-02-04 Seiko Epson Corp Brushless electric machine and device using it
JP2014087097A (en) * 2012-10-19 2014-05-12 Mitsuba Corp Two-phase rotary electric machine
JP2016077081A (en) * 2014-10-06 2016-05-12 株式会社ミツバ Rotary electric machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220791A (en) * 1987-03-09 1988-09-14 Secoh Giken Inc High speed motor
JP2010220472A (en) * 2010-05-31 2010-09-30 Hitachi Automotive Systems Ltd Synchronous motor drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029020A (en) * 2008-07-23 2010-02-04 Seiko Epson Corp Brushless electric machine and device using it
JP2014087097A (en) * 2012-10-19 2014-05-12 Mitsuba Corp Two-phase rotary electric machine
JP2016077081A (en) * 2014-10-06 2016-05-12 株式会社ミツバ Rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012679A1 (en) * 2018-07-11 2020-01-16 株式会社ミツバ Drive device for three-phase rotating electric machine and three-phase rotating electric machine unit
WO2020261476A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261477A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261475A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261478A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle
WO2020261474A1 (en) * 2019-06-27 2020-12-30 ヤマハ発動機株式会社 Leaning vehicle

Also Published As

Publication number Publication date
JP6720032B2 (en) 2020-07-08
JP2018042421A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
WO2018047746A1 (en) Rotary machine
JP3665737B2 (en) nX Reluctance Resolver
US20150200576A1 (en) Brushless motor
JP5064279B2 (en) Rotating electric machine
US7157820B2 (en) Resolver
JP5668182B1 (en) Sensor and rotating electric machine using the same
US9929629B2 (en) Rotating electrical machine
JP2013027252A (en) Starter generator
US20130049515A1 (en) Stator for rotary electric machine, and rotary electric machine
JP2013233030A (en) Starter generator
JP2016077074A (en) Position detection sensor and rotary electric machine
JP5827034B2 (en) Starting generator
JP6032340B2 (en) Rotating electric machine for internal combustion engine
JP2007189841A (en) Brushless motor
JP2016077081A (en) Rotary electric machine
JP5523058B2 (en) Insulator for stator and rotating electric machine using the same
JP6058725B2 (en) Starting generator
JP6847021B2 (en) Brushless motor
JP5952709B2 (en) Two-phase rotating electric machine
JP7395571B2 (en) motor
JP6199717B2 (en) Stator and motor
CN113273054A (en) Motor
JP2017070072A (en) Outer rotor type rotary electric machine
WO2021095353A1 (en) Dynamo-electric machine and dynamo-electric machine system
US20230036262A1 (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848686

Country of ref document: EP

Kind code of ref document: A1