WO2018047716A1 - 量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、および量子鍵配送プログラム - Google Patents

量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、および量子鍵配送プログラム Download PDF

Info

Publication number
WO2018047716A1
WO2018047716A1 PCT/JP2017/031456 JP2017031456W WO2018047716A1 WO 2018047716 A1 WO2018047716 A1 WO 2018047716A1 JP 2017031456 W JP2017031456 W JP 2017031456W WO 2018047716 A1 WO2018047716 A1 WO 2018047716A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical pulse
data
key
pulse train
quantum
Prior art date
Application number
PCT/JP2017/031456
Other languages
English (en)
French (fr)
Inventor
健一郎 吉野
藤原 幹生
佐々木 雅英
富田 章久
Original Assignee
日本電気株式会社
国立研究開発法人情報通信研究機構
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, 国立研究開発法人情報通信研究機構, 国立大学法人北海道大学 filed Critical 日本電気株式会社
Priority to CN201780055436.2A priority Critical patent/CN109691011B/zh
Priority to EP17848656.9A priority patent/EP3512158B1/en
Priority to JP2018538385A priority patent/JP7002713B2/ja
Priority to US16/331,685 priority patent/US11502831B2/en
Publication of WO2018047716A1 publication Critical patent/WO2018047716A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/508Pulse generation, e.g. generation of solitons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J7/00Multiplex systems in which the amplitudes or durations of the signals in individual channels are characteristic of those channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1475Passive attacks, e.g. eavesdropping or listening without modification of the traffic monitored
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/12Transmitting and receiving encryption devices synchronised or initially set up in a particular manner

Definitions

  • the present invention relates to a transmission device, a reception device, a quantum key distribution method, and a quantum key distribution program for a quantum key distribution system.
  • QKD quantum key distribution
  • Non-Patent Document 1 proposes to use a single photon light source as a QKD light source.
  • single photon light sources are still under development and have not reached the practical level. Therefore, as a substitute for a single photon light source, a method of using a laser light source with a weakened intensity as a pseudo single photon light source by extremely weakening the intensity of a normal laser light source has become the mainstream.
  • Non-patent Document 2 a laser light source, unlike an ideal single photon light source, two or more photons are generated with a certain probability in one pulse. For this reason, there is a possibility of receiving an eavesdropping attack called Photon Number Splitting attack ( ⁇ ⁇ PNS attack) for eavesdropping information of one photon from two or more photons. For this reason, it has been pointed out that when a laser light source is used, the safety of QKD is greatly impaired (Non-patent Document 2).
  • the decoy method has been proposed as a means for avoiding the PNS attack (Non-patent Document 3).
  • the decoy means “ ⁇ ”, and the decoy method is a method that can detect the presence or absence of a PNS attack by occasionally changing the intensity of an optical pulse used for QKD.
  • the implementation of the decoy method is considered important in recent practical QKD development.
  • the average number of photons contained in one pulse of light pulses of three types of light intensity is represented by s, d, and v, respectively.
  • s is about 0.5 [photon / pulse] in a typical QKD system of 50 km transmission.
  • an optical pulse with an average photon number s is used as signal light, and information obtained from the signal light is used as a quantum encryption key.
  • the light pulses having the average number of photons d and v are used as decoy light (hereinafter also referred to as decoy pulses) for detecting eavesdropping.
  • the light pulse having the highest intensity among the three types of light pulses is used as the signal light.
  • the “light pulse with an average number of photons s (d or v)” is simply expressed as S (D or V).
  • S the “light pulse with an average number of photons s (d or v)”
  • D or V the “light pulse with an average number of photons s (d or v)”
  • S of transmission pulses is 90%
  • D is 5%
  • V is about 5%.
  • FIG. 1 is a schematic diagram showing an example of an optical pulse train transmitted by the decoy method.
  • the optical pulse train is composed of S, which is a large number of signal lights, and V and D, which are a small number of decoy pulses.
  • the decoy method When the decoy method is used in quantum key distribution, it is known that the amount of information leakage to an eavesdropper increases when the intensity of the light pulse fluctuates, and the generation efficiency of the encryption key is greatly reduced. Specifically, when the intensity of the decoy pulse D varies by 5%, the encryption key generation efficiency decreases to about 50% compared to the case where the decoy pulse D does not vary.
  • the pattern effect is a phenomenon in which the modulation signal for a certain pulse changes depending on the previous modulation pattern.
  • FIG. 2A and 2B are conceptual diagrams for explaining the pattern effect.
  • FIG. 2A shows a modulation signal in an ideal electronic circuit having no pattern effect
  • FIG. 2B shows a modulation in a realistic electronic circuit having the pattern effect.
  • the signal is shown. 2A and 2B, the horizontal axis indicates time, and the vertical axis indicates voltage.
  • FIG. 2A shows a modulation signal 201a, a first optical pulse 202a and a second optical pulse 203a that are optical pulses to be modulated, a first modulation signal 204a for the first optical pulse 202a, The second modulation signal 205a for the second optical pulse 203a is shown.
  • the first modulation signal 204a and the second modulation signal 205a have the same waveform.
  • FIG. 2B shows a modulated signal 201b, a first optical pulse 202b and a second optical pulse 203b, which are optical pulses to be modulated, a first modulated signal 204b for the first optical pulse 202b, The second modulation signal 205b for the second optical pulse 203b is shown.
  • the modulation signal 201b is distorted in a practical electronic circuit due to, for example, a wiring band limitation. Due to this distortion, when the first optical pulse 202b and the second optical pulse 203b that are the same optical pulse are modulated, the first modulated signal 204b and the second modulated signal 205b that are the respective modulated signals. Have different waveforms.
  • FIG. 2B shows a modulated signal 201b, a first optical pulse 202b and a second optical pulse 203b, which are optical pulses to be modulated, a first modulated signal 204b for the first optical pulse 202b, The second modulation signal 205b for the second optical pulse 203b is shown.
  • the modulation signal changes depending on the previous modulation pattern.
  • Such a phenomenon is called a pattern effect.
  • the intensity may fluctuate depending on which of the three previous pulse intensities.
  • the variation of the light pulse intensity due to the pattern effect may be as much as 20%. Thereby, there is a possibility that the generation efficiency of the encryption key is greatly lowered.
  • An object of the present invention is to provide a transmission device, a reception device, a quantum key distribution method, and a quantum key distribution program for a quantum key distribution system that can suppress a decrease in encryption key generation efficiency when the decoy method is used. It is in.
  • the transmission device for a quantum key distribution system includes an encoding unit that encodes an optical pulse train, and N types of different intensities at different timings with respect to the encoded optical pulse train ( N is an integer greater than or equal to 3) intensity modulation unit, and from the encoding unit and the data sequence used when encoding and intensity modulation by the intensity modulation unit, from an optical pulse of a specific modulation pattern
  • a first key distillation processing unit that generates an encryption key based on the data string from which the obtained data is removed.
  • the receiving device for the quantum key distribution device system performs N kinds of intensity modulation (N is an integer of 3 or more) encoded from the transmitting device and having different intensities at different timings.
  • a decoding unit that receives the generated optical pulse train and outputs a data sequence obtained by decoding the optical pulse sequence, and a data sequence obtained by removing data obtained from the optical pulse having a specific modulation pattern from the decoded data sequence
  • a second key distillation processing unit for generating an encryption key based on the above.
  • the quantum key distribution method specifies an optical pulse sequence from a data sequence used when encoding and performing N types of intensity modulation (N is an integer of 3 or more) with different intensities.
  • An encryption key is generated based on a data string excluding data obtained from the optical pulse of the modulation pattern.
  • the quantum key distribution method is an optical pulse train encoded by a transmission apparatus and subjected to N types (N is an integer of 3 or more) of intensity modulation with different intensities at different timings. Then, a data sequence obtained by decrypting the optical pulse train is output, and an encryption key is generated based on the data sequence obtained by removing the data obtained from the optical pulse having a specific modulation pattern from the decrypted data sequence.
  • the quantum key distribution program is a data sequence used when a computer encodes an optical pulse train and performs N types of intensity modulation (N is an integer of 3 or more) having different intensities.
  • N is an integer of 3 or more
  • a quantum key distribution program for encoding an optical pulse train that has been encoded and subjected to N types of intensity modulation (N is an integer of 3 or more) with different intensities at different timings.
  • the decrypted data string is caused to function as means for generating an encryption key based on the data string obtained by removing the data obtained from the optical pulse having a specific modulation pattern from the output.
  • the key distillation process part provided is shown. It is a flow which shows the flow of a process until it produces
  • FIG. 3 is a block diagram showing the configuration of the transmission apparatus 10 in the quantum key distribution system for explaining the concept of the present invention.
  • the transmission device 10 includes an encoding unit 11, an intensity modulation unit 12, and a key distillation processing unit 13.
  • the encoding unit 11 encodes the optical pulse according to a quantum key distribution protocol, for example, BB84.
  • the intensity modulation unit 12 performs N types of intensity modulation (N is an integer of 3 or more) with different intensity on the optical pulse train encoded by the encoding unit 11 and outputs the result to the key distillation processing unit 13. .
  • the intensity modulation unit 12 performs intensity modulation on the optical pulse according to the decoy method.
  • the key distillation processing unit 13 removes the data obtained from the light pulse of a specific modulation pattern from the data sequence used when encoding by the encoding unit 11 and the data sequence used by the intensity modulation unit 12.
  • An encryption key is generated based on the obtained data string. Thereby, the transmission apparatus 10 can suppress the fall of the encryption key generation efficiency at the time of using a decoy method in a quantum key distribution system.
  • FIG. 4 is a block diagram showing the configuration of the quantum key distribution system 30 for explaining the concept of the present invention.
  • the quantum key distribution system 30 includes a transmission device 10A and a reception device 20.
  • the transmission device 10A includes an encoding unit 11, an intensity modulation unit 12, and a first key distillation processing unit 13A.
  • the transmission device 10A performs the same process on the optical pulse as the transmission device 10 described above.
  • the receiving device 20 includes a decryption unit 21 and a second key distillation processing unit 22.
  • the decoding unit 21 and the intensity modulation unit 12 are connected by an optical network 40.
  • Such an optical network 40 can be composed of an optical fiber or the like.
  • the decoding unit 21 receives the encoded optical pulse train subjected to the intensity modulation via the optical network 40, and decodes the optical pulse train.
  • the second key distillation processing unit 22 and the first key distillation processing unit 13A are connected by a communication network 50.
  • Such a communication network 50 can be configured by a normal Internet network or the like.
  • the first key distillation processing unit 13 ⁇ / b> A and the second key distillation processing unit 22 perform transmission / reception of information necessary for generating an encryption key via the communication network 50.
  • the information necessary for generating the encryption key includes information on random number data used when encoding and intensity modulation are performed on the optical pulse train, information on the basis used for measuring the optical pulse train, and the like. Therefore, the second key distillation processing unit 22 receives information necessary for generating the encryption key from the first key distillation processing unit 13A. Then, the second key distillation processing unit 22 uses the information received from the decryption unit 21 and the information received from the first key distillation processing unit 13A to store the optical pulse train data decrypted by the decryption unit 21. An encryption key is generated based on a data string obtained by removing data obtained from an optical pulse string having a specific modulation pattern from the string.
  • FIG. 5 is a block diagram showing the configuration of the quantum key distribution system according to the embodiment of the present invention.
  • the quantum key distribution system 100 includes a transmission device 110 and a reception device 120. Note that the unidirectional arrows in FIG. 5 simply indicate the direction of flow of a certain signal (data) and do not exclude bidirectionality.
  • the transmission device 110 includes a light source unit 111, an encoding unit 112, a decoy modulation unit 113, a light attenuation unit 114, and a first key distillation processing unit 115.
  • the light source unit 111 is composed of, for example, a semiconductor laser, and outputs an optical pulse having an arbitrary wavelength and intensity to the encoding unit 112.
  • the encoding unit 112 encodes the light pulse received from the light source unit 111 according to the quantum key distribution protocol.
  • the quantum key distribution protocol is, for example, the BB84 protocol.
  • the encoding unit 112 can be configured by, for example, a Mach-Zehnder interferometer and a phase modulator.
  • the decoy modulation unit 113 performs a plurality of types of intensity modulation of the signal light S, the decoy pulse D, and the decoy pulse V, respectively, on the optical pulse received from the encoding unit 112, thereby performing a plurality of intensity modulations.
  • An optical pulse train consisting of optical pulses is output.
  • a decoy modulator 113 for example, an LN (Lithium Niobate) intensity modulator combining a Mach-Zehnder interferometer and a phase modulator can be used.
  • FIG. 6 is a table showing an example of the respective strengths, strength ratios, and mixing ratios of S, D, and V according to the present embodiment.
  • the intensity of S is 1, the intensity of D and V are 0.4 and 0, respectively.
  • the optical pulse train includes S at a rate of 90%, D at a rate of 5%, and V at a rate of 5%. That is, in this embodiment, 90% of the optical pulse train is used as signal light, and the remaining 10% is used as decoy pulses.
  • strength ratio, and mixing ratio of S, D, and V shown in FIG. 6 are examples, and this invention is not limited to this.
  • the optical attenuator 114 attenuates the optical pulse train received from the decoy modulator 113 to an appropriate light intensity in order to transmit the optical pulse train to the receiver 120.
  • Such an optical attenuator 114 can be constituted by a variable optical attenuator, for example.
  • the attenuation amount of the optical attenuating unit 114 is set in advance according to the design of the quantum key distribution system 100, but may be adjusted as appropriate.
  • the light attenuating unit 114 may include, for example, a light detecting unit. In this case, the light attenuation unit 114 may adjust the attenuation amount according to the intensity of the pulse detected by the light detection unit.
  • the first key distillation processing unit 115 generates a first encryption key 150a that is an encryption key in the transmission device 110.
  • the first key distillation processing unit 115 receives information (random number data or the like) used for encoding and intensity modulation from the encoding unit 112 and the decoy modulation unit 113, respectively.
  • information random number data or the like
  • the details of the configuration of the first key distillation processing unit 115 and the processing for generating the first encryption key 150a will be described later.
  • the receiving device 120 includes a decryption unit 121, a light detection unit 122, and a second key distillation processing unit 123.
  • the decoding unit 121 and the optical attenuation unit 114 of the transmission apparatus 110 are connected by an optical network 130 made of an optical fiber or the like.
  • the second key distillation processing unit 123 and the first key distillation processing unit 115 of the transmission device 110 are connected by a communication network 140 such as a normal Internet network.
  • the decoding unit 121 receives an optical pulse train from the transmission device 110 via the optical network 130, and decodes the optical pulse train by a process reverse to the method encoded by the encoding unit 112.
  • the photodetection unit 122 When the photodetection unit 122 receives the decoded optical pulse train, the photodetection unit 122 measures the information on the number of photons with respect to the received optical pulse train, and outputs the measurement data to the second key distillation processing unit 123.
  • the second key distillation processing unit 123 generates a second encryption key 150b that is an encryption key in the receiving device 120.
  • the second encryption key 150 b is the same encryption key as the first encryption key 150 a generated by the first key distillation processing unit 115 in the transmission device 110.
  • the configuration of the second key distillation processing unit 123 and the process of generating the second encryption key 150b will be described later.
  • the first key distillation processing unit 115 generates a shift key based on random number data used when encoding and decoy-modulating an optical pulse.
  • the second key distillation processing unit 123 generates a shift key based on the detection data after decryption detected by the light detection unit 122. Then, each of the first key distillation processing unit 115 and the second key distillation processing unit 123 performs an error correction and a confidentiality enhancement process on the shift key, respectively, so that the first secure key 150a is finally secure. And the 2nd encryption key 150b is produced
  • the encryption key is generated based on the shift key generated according to the result of collating the bases selected on the transmission side and the reception side.
  • the data obtained from the optical pulse having the specific modulation pattern is discarded from the shift key without being used for generating the encryption key ( It is characterized by performing pattern discard processing.
  • FIG. 7 is a block diagram illustrating the configuration of the key distillation processing unit according to the present embodiment, where (a) illustrates the configuration of the first key distillation processing unit 115, and (b) illustrates the second key distillation processing unit.
  • the structure of 123 is shown. Note that the unidirectional arrows in FIG. 7 simply indicate the direction of flow of a certain signal (data) and do not exclude bidirectionality.
  • the first key distillation processing unit 115 includes a first base matching unit 115a, a first pattern discard processing unit 115b, and a first encryption key generation unit 115c.
  • the second key distillation processing unit 123 includes a second base matching unit 123a, a second pattern discard processing unit 123b, and a second encryption key generation unit 123c. Prepare.
  • FIG. 8 is a flowchart showing a flow of processing in which the first key distillation processing unit 115 and the second key distillation processing unit 123 according to the embodiment generate an encryption key.
  • the first base collation unit 115a and the second base collation unit 123a transmit and receive information on the bases used by each. Then, each of the first base collation unit 115a and the second base collation unit 123a generates a first shift key according to the result of base collation (step S101).
  • the first pattern discard processing unit 115b and the second pattern discard processing unit 123b generate a second shift key by performing pattern discard processing on the first shift key (step S102).
  • the second key distillation processing unit 123 receives decoy information (random number data) used when the decoy modulation unit 113 performs intensity modulation from the first key distillation processing unit 115 via the communication network 140.
  • the second pattern discard processing unit 123b can perform the same process as the first pattern discard processing unit 115b on the first shift key, and can generate the second shift key. it can.
  • FIG. 9 is a table showing an example of an optical pulse subjected to pattern discard processing.
  • D ⁇ S means that the signal light S is transmitted immediately after the decoy pulse D. That is, in the example shown in FIG. 9, among the decoy pulses D, the decoy pulse D (S ⁇ D) transmitted immediately after the signal light S is used, but the decoy pulse D transmitted immediately after the decoy pulse D and the decoy pulse V is used. (D ⁇ D and V ⁇ D) are discarded without being used.
  • the first encryption key generation unit 115c calculates an error rate (QBER: Quantum Bit Error Rate) included in the second shift key (step S103). Specifically, the first encryption key generation unit 115c receives at least part of the information of the second shift key generated by the second pattern discard processing unit 123b via the communication network 140. Accordingly, the first encryption key generation unit 115c calculates the error rate by comparing the second shift key generated on the transmission side and the reception side.
  • QBER Quantum Bit Error Rate
  • the first encryption key generation unit 115c and the second encryption key generation unit 123c perform secure error encryption and confidentiality enhancement processing on the second shift key based on the error rate. Is generated (step S104).
  • the pattern discarding process is performed after collating the bases, but the present invention is not limited to this.
  • the base may be collated to generate the encryption key.
  • the pattern discard processing unit discards some pulses, the number of acquired data is reduced.
  • the present invention is not limited to the decoy method using three types of strength, and can be applied to the case where four or more types of strength are used. Further, the present invention is not limited to only the pattern effect by the previous modulation, and can be applied to the case where there is a pattern effect by two or more previous modulations or one or more subsequent modulations. That is, the present invention is also applicable to the case where there is a pattern effect due to modulation in the current optical pulse and optical pulses M (M is an integer equal to or greater than 1) before or after the current optical pulse.
  • the first key distillation processing unit 115 and the second key distillation processing unit 123 may be realized by hardware or may be realized by software.
  • the first key distillation processing unit 115 and the second key distillation processing unit 123 may be realized by a combination of hardware and software.
  • FIG. 10 is an example of an information processing apparatus (computer) that constitutes the first key distillation processing unit 115 and the second key distillation processing unit 123.
  • the information processing apparatus 300 includes a control unit 310, a storage device 320, a ROM (Read Only Memory) 330, a RAM (Random Access Memory) 340, and a communication interface 350. .
  • the control unit 310 can be configured by an arithmetic processing device such as a CPU (Central Processing Unit).
  • the control unit 310 develops the program readable by the control unit 310 held in the storage device 320 or the ROM 330 in the RAM 340 and executes the program so that the first key distillation processing unit 115 and the second key distillation processing unit 123 are executed. Each part which comprises can be realized.
  • the control unit 310 may include an internal buffer that can temporarily store data and the like.
  • the storage device 320 is a large-capacity storage medium that can hold various types of data, and can be realized by a storage medium such as a magneto-optical disk, an HDD (Hard Disk Drive), and an SSD (Solid State Drive). Further, the storage device 320 may be a cloud storage that exists on the communication network when the information processing device 300 is connected to the communication network via the communication interface 350. The storage device 320 may hold a program that can be read by the control unit 310.
  • the ROM 330 is a non-volatile storage device that can be configured with a flash memory or the like having a smaller capacity than the storage device 320.
  • the ROM 330 may hold a program that can be read by the control unit 310. Note that the program readable by the control unit 310 only needs to be held by at least one of the storage device 320 and the ROM 330.
  • the RAM 340 is a semiconductor memory such as DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory), and can be used as an internal buffer for temporarily storing data and the like.
  • DRAM Dynamic Random Access Memory
  • SRAM Static Random Access Memory
  • the communication interface 350 is an interface that connects the information processing apparatus 300 and a communication network via a wired or wireless connection.
  • An encoding unit for encoding an optical pulse train An intensity modulation unit that performs N types of intensity modulation (N is an integer of 3 or more) with different intensity at different timings on the encoded optical pulse train;
  • N is an integer of 3 or more
  • an encryption key is generated based on a data string obtained by removing data obtained from an optical pulse having a specific modulation pattern from a data string used for encoding and intensity modulation by the encoding unit and the intensity modulation unit.
  • a transmission apparatus for a quantum key distribution system An intensity modulation unit that performs N types of intensity modulation (N is an integer of 3 or more) with different intensity at different timings on the encoded optical pulse train.
  • the first key distillation processing unit includes, from the optical pulse train, data obtained from a current optical pulse, and M (M is an integer of 1 or more) or M optical pulses before or after the current optical pulse.
  • M is an integer of 1 or more
  • M optical pulses before or after the current optical pulse.
  • the transmission device according to attachment 1, wherein data to be removed is determined based on the obtained data.
  • Appendix 3 The transmission apparatus according to appendix 1 or 2, wherein the first key distillation processing unit discards data including a decoy pulse and a large intensity fluctuation as the modulation pattern.
  • Appendix 4 The transmission device according to any one of appendices 1 to 3, wherein the first key distillation processing unit discards at least data having the largest intensity fluctuation due to a pattern effect.
  • the first key distillation processing unit includes a first base matching processing unit, a first pattern discard processing unit, and a first encryption key generation unit
  • the first basis matching processing unit generates a first shift key based on a basis given to the data sequence of the optical pulse train
  • the first pattern discard processing unit obtains a second shift key based on a data sequence obtained by removing data obtained from the optical pulse train of a specific modulation pattern from the data sequence of the optical pulse train from the first shift key.
  • Generate The first encryption key generation unit calculates an error rate (QBER: Quantum Bit Error Rate) included in the second shift key, and based on the error rate, an error occurs with respect to the second shift key. 5.
  • QBER Quantum Bit Error Rate
  • a quantum key distribution system comprising: a second key distillation processing unit that generates an encryption key based on a data sequence obtained by removing data obtained from an optical pulse having a specific modulation pattern from the decrypted data sequence Receiver.
  • the second key distillation processing unit includes, from the optical pulse train, data obtained from a current optical pulse and M (M is an integer of 1 or more) or M optical pulses before or after the current optical pulse.
  • M is an integer of 1 or more
  • M optical pulses before or after the current optical pulse.
  • the receiving device according to appendix 6, wherein data to be removed is determined based on the obtained data.
  • Appendix 8 The receiving apparatus according to appendix 6 or 7, wherein the second key distillation processing unit discards data including a decoy pulse as the modulation pattern and having a large intensity fluctuation.
  • Appendix 9 The receiving device according to any one of appendices 6 to 8, wherein the second key distillation processing unit discards at least data having the largest intensity fluctuation due to a pattern effect.
  • the second key distillation processing unit includes a second basis matching processing unit, a second pattern discard processing unit, and a second encryption key generation unit
  • the second basis matching processing unit generates a first shift key by randomly selecting a basis given to the data sequence of the optical pulse sequence
  • the second pattern discard processing unit generates a second shift key based on a data sequence obtained by removing data obtained from an optical pulse train having a specific modulation pattern from the first shift key
  • the second encryption key generation unit receives an error rate (QBER: Quantum Bit Error Rate) included in the second shift key from the transmission device, and determines the second shift key based on the error rate.
  • QBER Quantum Bit Error Rate
  • Appendix 11 Data obtained by encoding the optical pulse train and excluding the data obtained from the optical pulse of the specific modulation pattern from the data train used when N types (N is an integer of 3 or more) having different intensities are applied.
  • Appendix 12 Data to be removed based on data obtained from the current optical pulse in the optical pulse train and data obtained from M (M is an integer equal to or greater than 1) optical pulses before or after the current optical pulse.
  • M is an integer equal to or greater than 1 optical pulses before or after the current optical pulse.
  • Appendix 13 The quantum key distribution method according to appendix 11 or 12, wherein data including a decoy pulse and having a large intensity fluctuation is discarded as the modulation pattern.
  • Appendix 14 14. The quantum key distribution method according to any one of appendices 11 to 13, wherein at least data having the largest intensity fluctuation due to a pattern effect is discarded.
  • Appendix 16 Receiving an optical pulse train that is encoded from a transmission device and subjected to N kinds of intensity modulations (N is an integer of 3 or more) with different intensities at different timings, and outputs a data sequence obtained by decoding the optical pulse train; A quantum key distribution method for generating an encryption key based on a data string obtained by removing data obtained from an optical pulse having a specific modulation pattern from the decrypted data string.
  • Appendix 18 18. The quantum key distribution method according to appendix 16 or 17, wherein data including a decoy pulse and having a large intensity fluctuation is discarded as the modulation pattern.
  • Appendix 19 19. The quantum key distribution method according to any one of appendices 16 to 18, wherein at least data having the largest intensity fluctuation due to the pattern effect is discarded.
  • [Appendix 20] Generating a first shift key by randomly selecting a basis given to the data sequence of the optical pulse train; Generating a second shift key based on a data sequence obtained by removing data obtained from the optical pulse train of a specific modulation pattern from the first shift key; An error rate (QBER: Quantum Bit Error Rate) included in the second shift key is received from the transmission device, and error correction and confidentiality enhancement processing are performed on the second shift key based on the error rate 20.
  • QBER Quantum Bit Error Rate
  • Appendix 21 Computer Data obtained by encoding the optical pulse train and excluding the data obtained from the optical pulse of the specific modulation pattern from the data train used when N types (N is an integer of 3 or more) having different intensities are applied.
  • a quantum key distribution program that functions as a means for generating an encryption key based on a sequence.
  • Appendix 22 The computer, Data to be removed based on data obtained from the current optical pulse in the optical pulse train and data obtained from M (M is an integer equal to or greater than 1) optical pulses before or after the current optical pulse.
  • M is an integer equal to or greater than 1
  • Appendix 23 The computer, 23.
  • Appendix 24 The computer, 24.
  • Appendix 25 The computer, Means for generating a first shift key based on a basis assigned to the data sequence of the optical pulse train; Means for generating a second shift key based on a data sequence obtained by excluding data obtained from the optical pulse train of a specific modulation pattern from the data sequence of the optical pulse train from the first shift key; An error rate (QBER: Quantum Bit Error Rate) included in the second shift key is calculated, and error correction and confidentiality enhancement processing are performed on the second shift key based on the error rate. 25.
  • QBER Quantum Bit Error Rate
  • Appendix 26 Computer A data sequence obtained by decoding an optical pulse sequence that has been encoded and subjected to N kinds of intensity modulations (N is an integer of 3 or more) with different intensities at different timings is obtained from the output, and from the optical pulse of a specific modulation pattern A quantum key distribution program that functions as a means for generating an encryption key based on a data string from which received data is removed.
  • Appendix 27 The computer, Data to be removed based on data obtained from the current optical pulse in the optical pulse train and data obtained from M (M is an integer equal to or greater than 1) optical pulses before or after the current optical pulse. 27.
  • Appendix 28 The computer, 28.
  • Appendix 29 The computer, 29.
  • Appendix 30 The computer, Means for generating a first shift key by randomly selecting a basis assigned to a data sequence of the optical pulse sequence; Means for generating a second shift key based on a data sequence obtained by removing data obtained from an optical pulse train having a specific modulation pattern from the first shift key; An error rate (QBER: Quantum Bit Error Rate) included in the second shift key is received from the transmission device, and error correction and confidentiality enhancement processing are performed on the second shift key based on the error rate 30.
  • QBER Quantum Bit Error Rate
  • a quantum key distribution system comprising: a reception device for the quantum key distribution system according to any one of appendices 6 to 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Communication System (AREA)

Abstract

量子鍵配送装置は、光パルス列を符号化する符号化部と、符号化された光パルス列に対して、異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施す強度変調部と、前記符号化部および前記強度変調部で使用したデータ列から、特定の変調パターンの光パルスから得られるデータを除去したデータ列に基づいて暗号鍵を生成する第1の鍵蒸留処理部と、を備える。

Description

量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、および量子鍵配送プログラム
 本発明は、量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、および量子鍵配送プログラムに関する。
 近年、盗聴行為に対する絶対安全性を持つ暗号化通信を実現する方法として量子鍵配送(Quantum Key Distribution, QKD)(非特許文献1)が盛んに研究され、実用化開発が進んでいる。
 非特許文献1は、QKDの光源として単一光子光源を用いることを提案している。しかしながら、現段階では単一光子光源は開発途上であり、実用レベルには到達していない。そのため、単一光子光源の代用として、通常のレーザ光源の強度を極度に弱めることによって、強度を弱めたレーザ光源を擬似的な単一光子光源として利用する方式が主流となっている。
 しかしながら、レーザ光源の場合、理想的な単一光子光源とは異なり1パルス中に一定の確率で2つ以上の光子が発生する。そのため、2つ以上の光子から1光子分の情報を盗聴する光子数分割攻撃(Photon Number Splitting attack, PNS攻撃)という盗聴攻撃を受ける可能性がある。そのため、レーザ光源を使用した場合、QKDの安全性が大きく損なわれることが指摘されている(非特許文献2)。
 そこで、PNS攻撃を回避する手段としてデコイ法が提案されている(非特許文献3)。デコイとは「囮」の意味であり、デコイ法とはQKDに用いる光パルスの強度を時折変化させることにより、PNS攻撃の有無を検知することができる方法である。デコイ法の実装は、近年の実用的なQKD開発においては重要であると考えられている。
 QKDにデコイ法を実装するためには、3種類以上の光強度を用いる必要がある。デコイ法では、多数の種類の強度を用いる程、QKDの安全性を向上できることが知られている。しかしながら、実装の難易度からデコイ法においては一般的に3種類の光強度を使用することが多い。そのため、以下では3種類の光強度を使用したデコイ法について説明する。
 まず、3種類の光強度の光パルスが1パルス中に含む平均光子数をそれぞれs,d,vで表すとする。ここで、sは、50km伝送の典型的なQKDシステムの場合、0.5[光子/パルス]程度である。dはsの40%程度、すなわちd=0.2程度であり、vは0(真空状態:vacuum)である。この場合、平均光子数sの光パルスを信号(signal)光として用い、信号光から得た情報を量子暗号鍵として利用する。そして、平均光子数d,vの光パルスを、盗聴を検知するための囮(decoy)光(以下、デコイパルスとも呼ぶ)として用いる。すなわち、デコイ法では3種類の光パルスのうち、最も強度の大きい光パルスが信号光として用いている。以降、「平均光子数s(dまたはv)の光パルス」を単にS(DまたはV)と表す。デコイ法を用いたQKDシステムでは送信パルスのほとんどをSとし、一部にDやVを混入させて盗聴を検知する。典型的な例としては、送信パルスの内Sが90%、Dが5%、Vが5%程度である。
 図1は、デコイ法で送信される光パルス列の一例を示す模式図である。図1に示すように、光パルス列は、多数の信号光であるSと、少数のデコイパルスであるVおよびDからなる。
ベネット(Bennett)、ブラサール(Brassard)著 IEEEコンピュータ、システム、信号処理国際会議(IEEE Int. Conf. on Computers, Systems, and Signal Processing, Bangalore, India, p. 175, 1984) N. Lutkenhaus, Physical Review A, Vol. 61, 052304 (2000). W. Y. Hwang, Physical Review Letters, Vol. 91, 057901 (2003).
 量子鍵配送においてデコイ法を使用した場合、光パルスの強度が変動すると盗聴者への情報漏洩量が増大し、暗号鍵の生成効率が大きく低下することが知られている。具体的には、デコイパルスDの強度に5%の変動があった場合、暗号鍵生成効率はデコイパルスDに変動がない場合と比較して50%程度に低下する。
 一方、近年の量子鍵配送システムには、クロック周波数が1GHzを超える高速な電子回路を使用している。そのため、変調信号の波形には歪みが生じるので、パターン効果と呼ばれる現象が発生する。パターン効果とは、あるパルスに対する変調信号がそれ以前の変調パターンに依存して変化する現象である。
 図2は、パターン効果を説明するための概念図であり、(a)はパターン効果がない理想的な電子回路における変調信号を示し、(b)はパターン効果がある現実的な電子回路における変調信号を示している。図2(a)および図2(b)において、横軸は時間を示し、縦軸は電圧を示している。
 図2(a)は、変調信号201aと、変調の対象の光パルスである第1の光パルス202aおよび第2の光パルス203aと、第1の光パルス202aに対する第1の変調信号204aと、第2の光パルス203aに対する第2の変調信号205aと、を示している。図2(a)に示すように、第1の変調信号204aおよび第2の変調信号205aは、互いに同一形状の波形を有している。
 図2(b)は、変調信号201bと、変調の対象の光パルスである第1の光パルス202bおよび第2の光パルス203bと、第1の光パルス202bに対する第1の変調信号204bと、第2の光パルス203bに対する第2の変調信号205bと、を示している。図2(b)に示すように、現実的な電子回路には配線の帯域制限などにより変調信号201bには歪みが生じている。この歪みにより、同一の光パルスである第1の光パルス202bおよび第2の光パルス203bに変調を施した際に、それぞれの変調信号である第1の変調信号204bおよび第2の変調信号205bは互いに異なる波形を持つ。図2(b)において、変調信号は1つ前の変調パターンに依存して変化する。このような現象をパターン効果と呼ぶ。このため、デコイ法においては光パルスに対して同じ強度変調を施したとしても、1つ前のパルス強度が3種類のうちのいずれかであったかによって強度が変動してしまうことがある。パターン効果による光パルス強度の変動は20%程度にも及ぶ場合がある。これにより、暗号鍵の生成効率が大幅に低下してしまう可能性がある。
 本発明の目的は、デコイ法を使用した場合の暗号鍵生成効率の低下を抑制することができる量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、量子鍵配送プログラムを提供することにある。
 本発明の第1の態様に係る量子鍵配送システム用の送信装置は、光パルス列を符号化する符号化部と、符号化された光パルス列に対して、異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施す強度変調部と、前記符号化部および前記強度変調部で符号化および強度変調をする際に使用したデータ列から、特定の変調パターンの光パルスから得られるデータを除去したデータ列に基づいて暗号鍵を生成する第1の鍵蒸留処理部と、を備える。
 本発明の第2の態様に係る量子鍵配送装置システム用の受信装置は、送信装置から符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を受け、該光パルス列を復号化したデータ列を出力する復号化部と、前記復号化されたデータ列から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する第2の鍵蒸留処理部と、を備える。
 本発明の第3の態様に係る量子鍵配送方法は、光パルス列を符号化およびそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施した際に使用したデータ列から、特定の変調パターンの光パルスから得られたデータを除いたデータ列に基づいて暗号鍵を生成する。
 本発明の第4の態様に係る量子鍵配送方法は、送信装置から符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を受け、該光パルス列を復号化したデータ列を出力し、前記復号化されたデータ列から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する。
 本発明の第5の態様に係る量子鍵配送プログラムは、コンピュータを、光パルス列を符号化およびそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施した際に使用したデータ列から、特定の変調パターンの光パルスから得られたデータを除いたデータ列に基づいて暗号鍵を生成する手段として機能させる。
 本発明の第6の態様に係る量子鍵配送プログラムは、コンピュータを、符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を復号化したデータ列を出力から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する手段として機能させる。
 本発明によれば、デコイ法を使用した場合の暗号鍵生成効率の低下を抑制することができる。
デコイ法で送信される光パルス列の一例を示す模式図である。 パターン効果を説明するための模式図であり、(a)は理想的な電子回路の変調信号を示し、(b)は現実的な電子回路の変調信号を示している。 本発明の量子鍵配送装置の概念を説明するためのブロック図である。 本発明の量子鍵配送システムの概念を説明するためのブロック図である。 本発明の実施形態に係る量子鍵配送システムの構成を示すブロック図である。 本発明の実施形態に係る信号光とデコイパルスの強度、強度比、および混合割合を示す表である。 本発明の実施形態に係る鍵蒸留処理部の構成を示すブロック図であり、(a)は送信側量子鍵配送装置が備える鍵蒸留処理部を示し、(b)は受信側量子鍵配送装置が備える鍵蒸留処理部を示している。 本発明の実施形態に係る暗号鍵を生成するまでの処理の流れを示すフローである。 本発明の実施形態に係るパターン廃棄処理方法に一例を示す表である。 本発明の実施形態に係る鍵蒸留処理部を構成する情報処理装置の構成を示すブロック図である。
[発明の概念]
(量子鍵配送装置)
 まず、本発明の実施形態を説明する前に、本発明の概念について説明する。図3は、本発明の概念を説明するための量子鍵配送システムにおける送信装置10の構成を示すブロック図である。
 送信装置10は、符号化部11と、強度変調部12と、鍵蒸留処理部13と、を備えている。符号化部11は、光パルスに対して量子鍵配送プロトコル、例えばBB84にしたがって符号化する。強度変調部12は、符号化部11で符号化された光パルス列に対して、それぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施して、鍵蒸留処理部13へ出力する。具体的には、強度変調部12は、光パルスに対してデコイ法にしたがって強度変調を施す。鍵蒸留処理部13は、符号化部11で符号化する際に使用されたデータ列および強度変調部12で使用されたデータ列の中から特定の変調パターンの光パルスから得られたデータを除いたデータ列に基づいて暗号鍵を生成する。これにより、送信装置10は、量子鍵配送システムにおいてデコイ法を使用した場合の暗号鍵生成効率の低下を抑制することができる。
(量子鍵配送システム)
 次に、本発明に係る量子鍵配送システムの概念について説明する。図4は、本発明の概念を説明するための量子鍵配送システム30の構成を示すブロック図である。
 量子鍵配送システム30は、送信装置10Aと、受信装置20と、を備える。
 送信装置10Aは、符号化部11と、強度変調部12と、第1の鍵蒸留処理部13Aと、を有する。送信装置10Aは、上述した送信装置10と同様の処理を光パルスに施す。
 受信装置20は、復号化部21と、第2の鍵蒸留処理部22と、を有する。復号化部21と、強度変調部12との間は光ネットワーク40によって接続されている。このような、光ネットワーク40は、光ファイバ等で構成することができる。この場合、復号化部21は、符号化され、かつ強度変調が施された光パルス列を、光ネットワーク40を介して受け、その光パルス列を復号化する。第2の鍵蒸留処理部22と、第1の鍵蒸留処理部13Aとの間は、通信ネットワーク50によって接続されている。このような、通信ネットワーク50は、通常のインターネット網等で構成することができる。第1の鍵蒸留処理部13Aおよび第2の鍵蒸留処理部22は、通信ネットワーク50を介して暗号鍵を生成するために必要な情報の送受信を行う。暗号鍵を生成するために必要な情報とは、光パルス列に対して符号化および強度変調を施す際に使用した乱数データに関する情報や、光パルス列の測定に使用した基底に関する情報等である。そのため、第2の鍵蒸留処理部22は、暗号鍵を生成するために必要な情報を第1の鍵蒸留処理部13Aから受ける。そして、第2の鍵蒸留処理部22は、復号化部21から受けた情報および第1の鍵蒸留処理部13Aから受けた情報に基づいて、復号化部21で復号化された光パルス列のデータ列から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて暗号鍵を生成する。
[実施形態]
 以下、図面を用いて本発明の実施形態について詳細に説明する。なお、本発明と関連の薄い構成および動作については、適宜説明を簡略化または省略する。
 図5は、本発明の実施形態に係る量子鍵配送システムの構成を示すブロック図である。図5に示すように、量子鍵配送システム100は、送信装置110と、受信装置120と、を含む。なお、図5における一方向性の矢印は、ある信号(データ)の流れの方向を端的に示したもので、双方向性を排除するものではない。
 まず、送信装置110について説明する。送信装置110は、光源部111と、符号化部112と、デコイ用変調部113と、光減衰部114と、第1の鍵蒸留処理部115と、を備える。
 光源部111は、例えば半導体レーザから構成されており、任意の波長および強度を有する光パルスを符号化部112に対して出力する。
 符号化部112は、光源部111から受けた光パルスを量子鍵配送プロトコルにしたがって符号化する。ここで、量子鍵配送プロトコルは、例えばBB84プロトコルである。本実施形態において、符号化部112は、例えばマッハツェンダ干渉計および位相変調器から構成することができる。
 デコイ用変調部113は、信号光S、デコイパルスDおよびデコイパルスVの計3種類のそれぞれ異なる強度の強度変調を符号化部112から受けた光パルスに施すことによって、強度変調が施された複数の光パルスからなる光パルス列を出力する。このようなデコイ用変調部113として、例えばマッハツェンダ干渉計と位相変調器とを組み合わせたLN(Lithium Niobate)強度変調器を用いることができる。
 ここで、図6を参照して、本実施形態に係るS、D、Vのそれぞれの強度、強度比、および混合割合について説明する。図6は、本実施形態に係るS、D、Vのそれぞれの強度、強度比、混合割合の一例を示す表である。
 本実施形態において、Sの強度を1とすると、DおよびVの強度は、それぞれ、0.4および0である。また、光パルス列は、Sを90%の割合で含み、Dを5%の割合で含み、Vを5%の割合で含んでいる。すなわち、本実施形態においては、光パルス列のうち90%を信号光として用い、残りの10%をデコイパルスとして用いる。なお、図6に示すS、D、Vのそれぞれの強度、強度比、および混合割合は一例であり、本発明はこれに限定されない。
 再び図5を参照する。光減衰部114は、光パルス列を受信装置120に送信するために、デコイ用変調部113から受けた光パルス列を適切な光強度に減衰する。このような光減衰部114は、例えば可変光減衰器から構成することができる。光減衰部114が持つ減衰量は、量子鍵配送システム100の設計に応じて予め設定しているが、適宜調整することもできる。また、光減衰部114は、例えば光検出部を有していてもよい。この場合、光減衰部114は、光検出部が検出したパルスの強度に応じて減衰量を調整してもよい。
 第1の鍵蒸留処理部115は、送信装置110における暗号鍵である第1の暗号鍵150aを生成する。また、第1の鍵蒸留処理部115は、符号化部112およびデコイ用変調部113から、それぞれ、符号化および強度変調に使用した情報(乱数データ等)を受ける。なお、第1の鍵蒸留処理部115の構成および第1の暗号鍵150aを生成する処理の詳細については後述する。
 次に、受信装置120について説明する。受信装置120は、復号化部121と、光検出部122と、第2の鍵蒸留処理部123と、を備えている。復号化部121と、送信装置110の光減衰部114との間は、光ファイバ等からなる光ネットワーク130によって接続されている。また、第2の鍵蒸留処理部123と、送信装置110の第1の鍵蒸留処理部115との間は、通常のインターネット網等の通信ネットワーク140によって接続されている。
 復号化部121は、光ネットワーク130を介して送信装置110から光パルス列を受け、その光パルス列を符号化部112が符号化した方法と逆の過程によって復号化する。
 光検出部122は、復号化された光パルス列を受けると、受けた光パルス列に関して光子数の情報を測定し、測定データを第2の鍵蒸留処理部123へと出力する。
 第2の鍵蒸留処理部123は、受信装置120における暗号鍵である第2の暗号鍵150bを生成する。ここで、第2の暗号鍵150bは、送信装置110において第1の鍵蒸留処理部115が生成した第1の暗号鍵150aと同じ暗号鍵である。なお、第2の鍵蒸留処理部123の構成および第2の暗号鍵150bを生成する処理については後述する。
 次に、第1の鍵蒸留処理部115および第2の鍵蒸留処理部123のそれぞれの構成および暗号鍵を生成する処理について詳細に説明する。
 第1の鍵蒸留処理部115は、光パルスを符号化およびデコイ変調を施す際に使用した乱数データに基づいてシフト鍵を生成する。第2の鍵蒸留処理部123は、光検出部122が検出した復号化した後の検出データに基づいてシフト鍵を生成する。そして、第1の鍵蒸留処理部115および第2の鍵蒸留処理部123は、それぞれ、シフト鍵に対して誤り訂正や秘匿増強処理を施すことによって、最終的に安全な第1の暗号鍵150aおよび第2の暗号鍵150bを生成する。なお、第1の鍵蒸留処理部115および第2の鍵蒸留処理部123は、それぞれが持つ暗号鍵を生成するために必要な情報を、通信ネットワーク140を介して互いに送受信している。ここで、通常、量子鍵配送システムにおいては、送信側と受信側とで選択した基底を照合した結果にしたがって生成したシフト鍵に基づいて暗号鍵を生成する。しかしながら、本実施形態は、基底を照合した結果にしたがってシフト鍵を生成した後、さらに特定の変調パターンの光パルスから得られるデータを暗号鍵の生成に使用せずにシフト鍵から廃棄する処理(パターン廃棄処理)を施すことが特徴である。
 図7は、本実施形態に係る鍵蒸留処理部の構成を示すブロック図であり、(a)は第1の鍵蒸留処理部115の構成を示し、(b)は第2の鍵蒸留処理部123の構成を示している。なお、図7における一方向性の矢印は、ある信号(データ)の流れの方向を端的に示したもので、双方向性を排除するものではない。
 図7(a)に示すように、第1の鍵蒸留処理部115は、第1の基底照合部115aと、第1のパターン廃棄処理部115bと、第1の暗号鍵生成部115cと、を備える。図7(b)に示すように、第2の鍵蒸留処理部123は、第2の基底照合部123aと、第2のパターン廃棄処理部123bと、第2の暗号鍵生成部123cと、を備える。
 図8は、実施形態に係る第1の鍵蒸留処理部115および第2の鍵蒸留処理部123が暗号鍵を生成する処理の流れを示すフローである。
 以下、図7および図8を参照して、第1の鍵蒸留処理部115および第2の鍵蒸留処理部123が暗号鍵を生成する処理について詳細に説明する。
 まず、第1の基底照合部115aおよび第2の基底照合部123aは、それぞれが使用した基底の情報について送受信する。そして、第1の基底照合部115aおよび第2の基底照合部123aは、それぞれ、基底の照合の結果に応じて第1のシフト鍵を生成する(ステップS101)。
 次に、第1のパターン廃棄処理部115bおよび第2のパターン廃棄処理部123bは、第1のシフト鍵に対してパターン廃棄処理を施すことによって第2のシフト鍵を生成する(ステップS102)。この時、第2の鍵蒸留処理部123は、通信ネットワーク140を介して第1の鍵蒸留処理部115からデコイ用変調部113が強度変調する際に使用したデコイ情報(乱数データ)を受ける。これにより、第2のパターン廃棄処理部123bは、第1のシフト鍵に対して第1のパターン廃棄処理部115bと同様の処理を施すことが可能となり、第2のシフト鍵を生成することができる。
 ここで、図9を参照して、本実施形態に係るパターン廃棄処理の一例として、デコイパルスDのパターン効果の強度変動が大きい場合に、この影響を排除する例について説明する。図9は、パターン廃棄処理をする光パルスの一例を示す表である。図9において、例えばD→SとはデコイパルスDの直後に送信された信号光Sであることを意味する。すなわち、図9に示した例においては、デコイパルスDのうち、信号光Sの直後に送信されたデコイパルスD(S→D)は使用するが、デコイパルスDおよびデコイパルスVの直後に送信されたデコイパルスD(D→DおよびV→D)は使用しないで破棄する。これにより、デコイパルスDの直前の信号は信号光Sに固定されるので、デコイパルスDのパターン効果が大きかったとしても、実質的にパターン効果の影響を排除することができる。これは、上述したように、パターン効果により、変調信号は1つ前の変調パターンに依存して変化するためである。
 再び図7および図8を参照する。第1の暗号鍵生成部115cは、第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を算出する(ステップS103)。具体的には、第1の暗号鍵生成部115cは、通信ネットワーク140を介して第2のパターン廃棄処理部123bが生成した第2のシフト鍵の少なくとも一部の情報を受ける。これにより、第1の暗号鍵生成部115cは、送信側および受信側で生成された第2のシフト鍵を比較することによって、誤り率を算出する。
 最後に、第1の暗号鍵生成部115cおよび第2の暗号鍵生成部123cは、誤り率に基づいて、第2のシフト鍵に対して誤り訂正や秘匿増強処理を施すことによって安全な暗号鍵を生成する(ステップS104)。
 なお、本発明の実施形態において、基底を照合した後にパターン廃棄処理を行っているが、本発明はこれに限定されない。本発明は、パターン廃棄処理を行った後に基底を照合して暗号鍵を生成してもよい。
 本発明の実施形態において、パターン廃棄処理部は一部のパルスを廃棄するため、取得データ数が減少する。しかしながら、上述の例で廃棄するD→DおよびV→Dのパターンの送信パルスに対する割合は、図6に示した送信割合から算出すると5%×5%+5%×5%=0.5%である。そのため、D→DおよびV→Dのパターンを廃棄しても、データ数全体に与える影響は小さい。したがって、以上の方法により、パターン効果を実質的に排除することができ、暗号鍵生成効率の低下を回避できる。
 なお、本発明は、3種類の強度を用いたデコイ法に限定されるものではなく、4種類以上の強度を用いた場合にも適用可能である。また、1つ前の変調によるパターン効果のみに限定されるものではなく、2つ以上前の変調や、1つ以上後の変調によるパターン効果が存在する場合にも適用可能である。すなわち、本発明は現光パルスと、現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスに変調によるパターン効果が存在する場合にも適用可能である。
[その他の実施形態]
 量子鍵配送システムにおいて第1の鍵蒸留処理部115および第2の鍵蒸留処理部123は、ハードウエアによって実現してもよいし、ソフトウエアによって実現してもよい。また、第1の鍵蒸留処理部115および第2の鍵蒸留処理部123は、ハードウエアとソフトウエアの組み合わせによって実現してもよい。
 図10は、第1の鍵蒸留処理部115および第2の鍵蒸留処理部123を構成する情報処理装置(コンピュータ)の一例である。
 図10に示すように、情報処理装置300は、制御部310と、記憶装置320と、ROM(Read Only Memory)330と、RAM(Random Access Memory)340と、通信インターフェース350と、を備えている。
 制御部310は、CPU(Central Processing Unit)等の演算処理装置で構成することができる。制御部310は、記憶装置320またはROM330が保持する制御部310が読み取り可能なプログラムをRAM340に展開して実行することで、第1の鍵蒸留処理部115および第2の鍵蒸留処理部123を構成する各部を実現することができる。また、制御部310は、データ等を一時的に格納できる内部バッファを備えていてもよい。
 記憶装置320は、各種のデータを保持できる大容量の記憶媒体であって、光磁気ディスク、HDD(Hard Disk Drive)、およびSSD(Solid State Drive)等の記憶媒体で実現することができる。また、記憶装置320は、情報処理装置300が通信インターフェース350を介して通信ネットワークと接続されている場合には、通信ネットワーク上に存在するクラウドストレージであってもよい。また、記憶装置320は、制御部310が読み取り可能なプログラムを保持していてもよい。
 ROM330は、記憶装置320と比べると小容量なフラッシュメモリ等で構成できる不揮発性の記憶装置である。また、ROM330は、制御部310が読み取り可能なプログラムを保持していてもよい。なお、制御部310が読み取り可能なプログラムは、記憶装置320およびROM330の少なくとも一方が保持していればよい。
 RAM340は、DRAM(Dynamic Random Access Memory)およびSRAM(Static Random Access Memory)等の半導体メモリであり、データ等を一時的に格納する内部バッファとして用いることができる。
 通信インターフェース350は、有線または無線を介して、情報処理装置300と、通信ネットワークとを接続するインターフェースである。
 上記の各実施形態の一部または全部は、以下の付記のようにも記載されうる。なお、以下の付記は本発明をなんら限定するものではない。
[付記1]
 光パルス列を符号化する符号化部と、
 符号化された光パルス列に対して、異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施す強度変調部と、
 前記符号化部および前記強度変調部で符号化および強度変調をする際に使用したデータ列から、特定の変調パターンの光パルスから得られるデータを除去したデータ列に基づいて暗号鍵を生成する第1の鍵蒸留処理部と、を備える、量子鍵配送システム用の送信装置。
[付記2]
 前記第1の鍵蒸留処理部は、前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する、付記1に記載の送信装置。
[付記3]
 前記第1の鍵蒸留処理部は、前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する、付記1または2に記載の送信装置。
[付記4]
 前記第1の鍵蒸留処理部は、パターン効果による強度変動が最も大きいデータを少なくとも破棄する、付記1~3のいずれか1つに記載の送信装置。
[付記5]
 前記第1の鍵蒸留処理部は、第1の基底照合処理部と、第1のパターン廃棄処理部と、第1の暗号鍵生成部と、を有し、
 前記第1の基底照合処理部は、前記光パルス列のデータ列に付与された基底に基づいて第1のシフト鍵を生成し、
 前記第1のパターン廃棄処理部は、前記第1のシフト鍵から前記光パルス列のデータ列から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成し、
 前記第1の暗号鍵生成部は、前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を算出し、前記誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する、付記1~4のいずれか1つに記載の送信装置。
[付記6]
 送信装置から符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を受け、該光パルス列を復号化したデータ列を出力する復号化部と、
 前記復号化されたデータ列から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する第2の鍵蒸留処理部と、を備える、量子鍵配送システム用の受信装置。
[付記7]
 前記第2の鍵蒸留処理部は、前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する、付記6に記載の受信装置。
[付記8]
 前記第2の鍵蒸留処理部は、前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する、付記6または7に記載の受信装置。
[付記9]
 前記第2の鍵蒸留処理部は、パターン効果による強度変動が最も大きいデータを少なくとも破棄する、付記6~8のいずれか1つに記載の受信装置。
[付記10]
 前記第2の鍵蒸留処理部は、第2の基底照合処理部と、第2のパターン廃棄処理部と、第2の暗号鍵生成部と、を有し、
 前記第2の基底照合処理部は、前記光パルス列のデータ列に付与された基底をランダムに選択することによって第1のシフト鍵を生成し、
 前記第2のパターン廃棄処理部は、前記第1のシフト鍵から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成し、
 前記第2の暗号鍵生成部は、前記送信装置から前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を受け、該誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する、付記6~9のいずれか1つに記載の受信装置。
[付記11]
 光パルス列を符号化およびそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施した際に使用したデータ列から、特定の変調パターンの光パルスから得られたデータを除いたデータ列に基づいて暗号鍵を生成する、量子鍵配送方法。
[付記12]
 前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する、付記11に記載の量子鍵配送方法。
[付記13]
 前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する、付記11または12に記載の量子鍵配送方法。
[付記14]
 パターン効果による強度変動が最も大きいデータを少なくとも破棄する、付記11~13のいずれか1つに記載の量子鍵配送方法。
[付記15]
 前記光パルス列のデータ列に付与された基底に基づいて第1のシフト鍵を生成し、
 前記第1のシフト鍵から前記光パルス列のデータ列から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成し、
 前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を算出し、前記誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する、付記11~14のいずれか1つに記載の量子鍵配送方法。
[付記16]
 送信装置から符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を受け、該光パルス列を復号化したデータ列を出力し、
 前記復号化されたデータ列から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する、量子鍵配送方法。
[付記17]
 前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する、付記16に記載の量子鍵配送方法。
[付記18]
 前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する、付記16または17に記載の量子鍵配送方法。
[付記19]
 パターン効果による強度変動が最も大きいデータを少なくとも破棄する、付記16~18のいずれか1つに記載の量子鍵配送方法。
[付記20]
 前記光パルス列のデータ列に付与された基底をランダムに選択することによって第1のシフト鍵を生成し、
 前記第1のシフト鍵から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成し、
 前記送信装置から前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を受け、該誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する、付記16~19のいずれか1つに記載の量子鍵配送方法。
[付記21]
 コンピュータを、
 光パルス列を符号化およびそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施した際に使用したデータ列から、特定の変調パターンの光パルスから得られたデータを除いたデータ列に基づいて暗号鍵を生成する手段として機能させる、量子鍵配送プログラム。
[付記22]
 前記コンピュータを、
 前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する手段としてさらに機能させる、付記21に記載の量子鍵配送プログラム。
[付記23]
 前記コンピュータを、
 前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する手段としてさらに機能させる、付記21または22に記載の量子鍵配送プログラム。
[付記24]
 前記コンピュータを、
 パターン効果による強度変動が最も大きいデータを少なくとも破棄する手段としてさらに機能させる、付記21~23のいずれか1つに記載の量子鍵配送プログラム。
[付記25]
 前記コンピュータを、
 前記光パルス列のデータ列に付与された基底に基づいて第1のシフト鍵を生成する手段と、
 前記第1のシフト鍵から前記光パルス列のデータ列から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成する手段と、
 前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を算出し、前記誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する手段としてさらに機能させる、付記21~24のいずれか1つに記載の量子鍵配送プログラム。
[付記26]
 コンピュータを、
 符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を復号化したデータ列を出力から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する手段として機能させる、量子鍵配送プログラム。
[付記27]
 前記コンピュータを、
 前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する手段としてさらに機能させる、付記26に記載の量子鍵配送プログラム。
[付記28]
 前記コンピュータを、
 前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する手段としてさらに機能させる、付記26または27に記載の量子鍵配送プログラム。
[付記29]
 前記コンピュータを、
 パターン効果による強度変動が最も大きいデータを少なくとも破棄する手段としてさらに機能させる、付記26~28のいずれか1つに記載の量子鍵配送プログラム。
[付記30]
 前記コンピュータを、
 前記光パルス列のデータ列に付与された基底をランダムに選択することによって第1のシフト鍵を生成する手段と、
 前記第1のシフト鍵から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成する手段と、
 前記送信装置から前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を受け、該誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する手段としてさらに機能させる、付記26~29のいずれか1つに記載の量子鍵配送プログラム。
[付記31]
 付記1~5のいずれか1つに記載の量子鍵配送システム用の送信装置と、
 付記6~10のいずれか1つに記載の量子鍵配送システム用の受信装置と、を含む、量子鍵配送システム。
 この出願は、2016年9月9日に出願された日本出願特願2016-176364号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10,10A,110・・・送信装置
 11・・・符号化部
 12・・・強度変調部
 13・・・鍵蒸留処理部
 13A・・・第1の鍵蒸留処理部
 20,120・・・受信装置
 21・・・復号化部
 22・・・第2の鍵蒸留処理部
 30,100・・・量子鍵配送システム
 40・・・光ネットワーク
 50・・・通信ネットワーク
 111・・・光源部
 112・・・符号化部
 113・・・デコイ用変調部
 114・・・光減衰部
 115・・・第1の鍵蒸留処理部
 115a・・・第1の基底照合部
 115b・・・第1のパターン廃棄処理部
 115c・・・第1の暗号鍵生成部
 121・・・復号化部
 122・・・光検出部
 123・・・第2の鍵蒸留処理部
 123a・・・第2の基底照合部
 123b・・・第2のパターン廃棄処理部
 123c・・・第2の暗号鍵生成部
 130・・・光ネットワーク
 140・・・通信ネットワーク
 150a・・・第1の暗号鍵
 150b・・・第2の暗号鍵
 201a,201b・・・変調信号
 202a,202b・・・第1の光パルス
 203a,203b・・・第2の光パルス
 204a,204b・・・第1の変調信号
 205a,205b・・・第2の変調信号
 300・・・情報処理装置
 310・・・制御部
 320・・・記憶装置
 330・・・ROM(Read Only Memory)
 340・・・RAM(Random Access Memory)
 350・・・通信インターフェース

Claims (31)

  1.  光パルス列を符号化する符号化部と、
     符号化された光パルス列に対して、異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施す強度変調部と、
     前記符号化部および前記強度変調部で符号化および強度変調をする際に使用したデータ列から、特定の変調パターンの光パルスから得られるデータを除去したデータ列に基づいて暗号鍵を生成する第1の鍵蒸留処理部と、を備える、量子鍵配送システム用の送信装置。
  2.  前記第1の鍵蒸留処理部は、前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する、請求項1に記載の送信装置。
  3.  前記第1の鍵蒸留処理部は、前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する、請求項1または2に記載の送信装置。
  4.  前記第1の鍵蒸留処理部は、パターン効果による強度変動が最も大きいデータを少なくとも破棄する、請求項1~3のいずれか1項に記載の送信装置。
  5.  前記第1の鍵蒸留処理部は、第1の基底照合処理部と、第1のパターン廃棄処理部と、第1の暗号鍵生成部と、を有し、
     前記第1の基底照合処理部は、前記光パルス列のデータ列に付与された基底に基づいて第1のシフト鍵を生成し、
     前記第1のパターン廃棄処理部は、前記第1のシフト鍵から前記光パルス列のデータ列から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成し、
     前記第1の暗号鍵生成部は、前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を算出し、前記誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する、請求項1~4のいずれか1項に記載の送信装置。
  6.  送信装置から符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を受け、該光パルス列を復号化したデータ列を出力する復号化部と、
     前記復号化されたデータ列から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する第2の鍵蒸留処理部と、を備える、量子鍵配送システム用の受信装置。
  7.  前記第2の鍵蒸留処理部は、前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する、請求項6に記載の受信装置。
  8.  前記第2の鍵蒸留処理部は、前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する、請求項6または7に記載の受信装置。
  9.  前記第2の鍵蒸留処理部は、パターン効果による強度変動が最も大きいデータを少なくとも破棄する、請求項6~8のいずれか1項に記載の受信装置。
  10.  前記第2の鍵蒸留処理部は、第2の基底照合処理部と、第2のパターン廃棄処理部と、第2の暗号鍵生成部と、を有し、
     前記第2の基底照合処理部は、前記光パルス列のデータ列に付与された基底をランダムに選択することによって第1のシフト鍵を生成し、
     前記第2のパターン廃棄処理部は、前記第1のシフト鍵から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成し、
     前記第2の暗号鍵生成部は、前記送信装置から前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を受け、該誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する、請求項6~9のいずれか1項に記載の受信装置。
  11.  光パルス列を符号化およびそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施した際に使用したデータ列から、特定の変調パターンの光パルスから得られたデータを除いたデータ列に基づいて暗号鍵を生成する、量子鍵配送方法。
  12.  前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する、請求項11に記載の量子鍵配送方法。
  13.  前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する、請求項11または12に記載の量子鍵配送方法。
  14.  パターン効果による強度変動が最も大きいデータを少なくとも破棄する、請求項11~13のいずれか1項に記載の量子鍵配送方法。
  15.  前記光パルス列のデータ列に付与された基底に基づいて第1のシフト鍵を生成し、
     前記第1のシフト鍵から前記光パルス列のデータ列から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成し、
     前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を算出し、前記誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する、請求項11~14のいずれか1項に記載の量子鍵配送方法。
  16.  送信装置から符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を受け、該光パルス列を復号化したデータ列を出力し、
     前記復号化されたデータ列から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する、量子鍵配送方法。
  17.  前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する、請求項16に記載の量子鍵配送方法。
  18.  前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する、請求項16または17に記載の量子鍵配送方法。
  19.  パターン効果による強度変動が最も大きいデータを少なくとも破棄する、請求項16~18のいずれか1項に記載の量子鍵配送方法。
  20.  前記光パルス列のデータ列に付与された基底をランダムに選択することによって第1のシフト鍵を生成し、
     前記第1のシフト鍵から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成し、
     前記送信装置から前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を受け、該誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する、請求項16~19のいずれか1項に記載の量子鍵配送方法。
  21.  コンピュータを、
     光パルス列を符号化およびそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調を施した際に使用したデータ列から、特定の変調パターンの光パルスから得られたデータを除いたデータ列に基づいて暗号鍵を生成する手段として機能させる、量子鍵配送プログラム。
  22.  前記コンピュータを、
     前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する手段としてさらに機能させる、請求項21に記載の量子鍵配送プログラム。
  23.  前記コンピュータを、
     前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する手段としてさらに機能させる、請求項21または22に記載の量子鍵配送プログラム。
  24.  前記コンピュータを、
     パターン効果による強度変動が最も大きいデータを少なくとも破棄する手段としてさらに機能させる、請求項21~23のいずれか1項に記載の量子鍵配送プログラム。
  25.  前記コンピュータを、
     前記光パルス列のデータ列に付与された基底に基づいて第1のシフト鍵を生成する手段と、
     前記第1のシフト鍵から前記光パルス列のデータ列から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成する手段と、
     前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を算出し、前記誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する手段としてさらに機能させる、請求項21~24のいずれか1項に記載の量子鍵配送プログラム。
  26.  コンピュータを、
     符号化され、かつ異なるタイミングでそれぞれ強度が異なるN種類(Nは3以上の整数)の強度変調が施された光パルス列を復号化したデータ列を出力から、特定の変調パターンの光パルスから得られたデータを除去したデータ列に基づいて暗号鍵を生成する手段として機能させる、量子鍵配送プログラム。
  27.  前記コンピュータを、
     前記光パルス列のうち、現光パルスから得られたデータと、前記現光パルスのM個(Mは1以上の整数)前またはM個後の光パルスから得られたデータに基づいて除去するデータを決定する手段としてさらに機能させる、請求項26に記載の量子鍵配送プログラム。
  28.  前記コンピュータを、
     前記変調パターンとして、デコイパルスを含み、かつ強度変動が大きいデータを破棄する手段としてさらに機能させる、請求項26または27に記載の量子鍵配送プログラム。
  29.  前記コンピュータを、
     パターン効果による強度変動が最も大きいデータを少なくとも破棄する手段としてさらに機能させる、請求項26~28のいずれか1項に記載の量子鍵配送プログラム。
  30.  前記コンピュータを、
     前記光パルス列のデータ列に付与された基底をランダムに選択することによって第1のシフト鍵を生成する手段と、
     前記第1のシフト鍵から特定の変調パターンの光パルス列から得られたデータを除いたデータ列に基づいて第2のシフト鍵を生成する手段と、
     前記送信装置から前記第2のシフト鍵に含まれる誤り率(QBER: Quantum Bit Error Rate)を受け、該誤り率に基づいて、前記第2のシフト鍵に対して誤り訂正および秘匿性増強の処理を施すことで前記暗号鍵を生成する手段としてさらに機能させる、請求項26~29のいずれか1項に記載の量子鍵配送プログラム。
  31.  請求項1~5のいずれか1項に記載の量子鍵配送システム用の送信装置と、
     請求項6~10のいずれか1項に記載の量子鍵配送システム用の受信装置と、を含む、量子鍵配送システム。
PCT/JP2017/031456 2016-09-09 2017-08-31 量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、および量子鍵配送プログラム WO2018047716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780055436.2A CN109691011B (zh) 2016-09-09 2017-08-31 发送装置、接收装置、量子密钥分发方法和介质
EP17848656.9A EP3512158B1 (en) 2016-09-09 2017-08-31 Transmitting device, receiving device, quantum key distribution method, and quantum key distribution program for quantum key distribution system
JP2018538385A JP7002713B2 (ja) 2016-09-09 2017-08-31 量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、および量子鍵配送プログラム
US16/331,685 US11502831B2 (en) 2016-09-09 2017-08-31 Transmitting device, receiving device, quantum key distribution method, and quantum key distribution program for quantum key distribution system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176364 2016-09-09
JP2016-176364 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047716A1 true WO2018047716A1 (ja) 2018-03-15

Family

ID=61561801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031456 WO2018047716A1 (ja) 2016-09-09 2017-08-31 量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、および量子鍵配送プログラム

Country Status (5)

Country Link
US (1) US11502831B2 (ja)
EP (1) EP3512158B1 (ja)
JP (1) JP7002713B2 (ja)
CN (1) CN109691011B (ja)
WO (1) WO2018047716A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109687964A (zh) * 2019-02-19 2019-04-26 中国电子科技集团公司第三十研究所 一种用于连续变量量子密钥分发的新型数据协调方法
US10392415B2 (en) 2015-10-02 2019-08-27 Metro International Biotech, Llc Crystal forms of β-nicotinamide mononucleotide
US10548913B2 (en) 2015-08-05 2020-02-04 Metro International Biotech, Llc Nicotinamide mononucleotide derivatives and their uses
US10618927B1 (en) 2019-03-22 2020-04-14 Metro International Biotech, Llc Compositions and methods for modulation of nicotinamide adenine dinucleotide
US11180521B2 (en) 2018-01-30 2021-11-23 Metro International Biotech, Llc Nicotinamide riboside analogs, pharmaceutical compositions, and uses thereof
WO2021250829A1 (ja) * 2020-06-10 2021-12-16 日本電気株式会社 光送信機および変調タイミング正誤判定方法
US11787830B2 (en) 2021-05-27 2023-10-17 Metro International Biotech, Llc Crystalline solids of nicotinic acid mononucleotide and esters thereof and methods of making and use
JP7388700B2 (ja) 2019-12-25 2023-11-29 国立研究開発法人情報通信研究機構 秘密鍵共有方法及びシステム
US11939348B2 (en) 2019-03-22 2024-03-26 Metro International Biotech, Llc Compositions comprising a phosphorus derivative of nicotinamide riboside and methods for modulation of nicotinamide adenine dinucleotide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064613A1 (en) * 2009-11-25 2011-06-03 Serela Card sharing countermeasures
CN108737082B (zh) * 2017-04-24 2020-11-17 华为技术有限公司 信号的接收装置和接收方法
CN110704823A (zh) * 2019-09-10 2020-01-17 平安科技(深圳)有限公司 数据请求方法、装置、存储介质及电子设备
CN117879818B (zh) * 2024-03-12 2024-05-10 正则量子(北京)技术有限公司 一种基于模式配对的量子密钥分发方法及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131259A (ja) * 2012-10-12 2014-07-10 Toshiba Corp 強度モニタリングのためのシステム及び方法
JP2015122675A (ja) * 2013-12-25 2015-07-02 日本電気株式会社 変調装置および変調方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718485B2 (en) 2007-07-13 2014-05-06 Nec Corporation Quantum key distribution system, optical transmitter, optical modulation control circuit, and optical modulation control method
JP5115450B2 (ja) 2008-11-04 2013-01-09 沖電気工業株式会社 光符号分割多重信号生成装置
WO2014068959A1 (ja) * 2012-11-01 2014-05-08 日本電気株式会社 光通信システムにおける光受信装置、光子検出器の制御方法および装置、並びに光子検出器の暗計数評価方法
CN104468097B (zh) * 2015-01-13 2018-01-09 中国人民解放军理工大学 一种基于量子密钥分发的安全数据通信实现方法
JP6678614B2 (ja) * 2017-03-17 2020-04-08 株式会社東芝 送信装置、多重量子通信システム及び多重量子通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131259A (ja) * 2012-10-12 2014-07-10 Toshiba Corp 強度モニタリングのためのシステム及び方法
JP2015122675A (ja) * 2013-12-25 2015-07-02 日本電気株式会社 変調装置および変調方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512158A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11464796B2 (en) 2015-08-05 2022-10-11 Metro International Biotech, Llc Nicotinamide mononucleotide derivatives and their uses
US10548913B2 (en) 2015-08-05 2020-02-04 Metro International Biotech, Llc Nicotinamide mononucleotide derivatives and their uses
US11878027B2 (en) 2015-08-05 2024-01-23 Metro International Biotech, Llc Nicotinamide mononucleotide derivatives and their uses
US10392415B2 (en) 2015-10-02 2019-08-27 Metro International Biotech, Llc Crystal forms of β-nicotinamide mononucleotide
US10392416B2 (en) 2015-10-02 2019-08-27 Metro International Biotech, Llc Crystal forms of beta-nicotinamide mononucleotide
US11059847B2 (en) 2015-10-02 2021-07-13 Metro International Biotech, Llc Crystal forms of β-nicotinamide mononucleotide
US11180521B2 (en) 2018-01-30 2021-11-23 Metro International Biotech, Llc Nicotinamide riboside analogs, pharmaceutical compositions, and uses thereof
CN109687964A (zh) * 2019-02-19 2019-04-26 中国电子科技集团公司第三十研究所 一种用于连续变量量子密钥分发的新型数据协调方法
CN109687964B (zh) * 2019-02-19 2021-06-04 中国电子科技集团公司第三十研究所 一种用于连续变量量子密钥分发的新型数据协调方法
US10618927B1 (en) 2019-03-22 2020-04-14 Metro International Biotech, Llc Compositions and methods for modulation of nicotinamide adenine dinucleotide
US11939348B2 (en) 2019-03-22 2024-03-26 Metro International Biotech, Llc Compositions comprising a phosphorus derivative of nicotinamide riboside and methods for modulation of nicotinamide adenine dinucleotide
JP7388700B2 (ja) 2019-12-25 2023-11-29 国立研究開発法人情報通信研究機構 秘密鍵共有方法及びシステム
WO2021250829A1 (ja) * 2020-06-10 2021-12-16 日本電気株式会社 光送信機および変調タイミング正誤判定方法
JP7435770B2 (ja) 2020-06-10 2024-02-21 日本電気株式会社 光送信機および変調タイミング正誤判定方法
US11787830B2 (en) 2021-05-27 2023-10-17 Metro International Biotech, Llc Crystalline solids of nicotinic acid mononucleotide and esters thereof and methods of making and use
US11952396B1 (en) 2021-05-27 2024-04-09 Metro International Biotech, Llc Crystalline solids of nicotinic acid mononucleotide and esters thereof and methods of making and use

Also Published As

Publication number Publication date
US11502831B2 (en) 2022-11-15
JP7002713B2 (ja) 2022-01-20
EP3512158A4 (en) 2020-04-29
EP3512158B1 (en) 2021-08-18
JPWO2018047716A1 (ja) 2019-09-05
CN109691011A (zh) 2019-04-26
CN109691011B (zh) 2022-06-14
EP3512158A1 (en) 2019-07-17
US20190245685A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
WO2018047716A1 (ja) 量子鍵配送システム用の送信装置、受信装置、量子鍵配送方法、および量子鍵配送プログラム
CN107113169B (zh) 来自于短期安全加密量子通信的具有永久安全性的通信
JP6602410B2 (ja) 光量子通信システム
JP6681081B2 (ja) 乱数列生成装置、量子暗号送信機及び量子暗号通信システム
EP2533459B1 (en) Optical transmission device and receiving device for yuen encryption, optical transmission method and receiving method for yuen encryption, and encrypted communication system
CN106254072B (zh) 一种量子密钥分发方法
US20110167299A1 (en) Communication system and method for controlling the same
JP5377934B2 (ja) 光送信装置
WO2018043742A1 (ja) 量子暗号鍵出力装置、量子暗号鍵通信システム及び量子暗号鍵出力方法
JP4777069B2 (ja) 量子暗号通信システム及び方法、偏波/位相変調変換器並びに位相/偏波変調変換器
WO2010103628A1 (ja) 暗号通信システム
KR20140054647A (ko) 양자 키 분배 시스템에서 생성된 비밀키의 안전성을 높이는 방법
CN113645038A (zh) 一种测量设备无关的量子数字签名系统及方法
US20080181329A1 (en) Data transmitting apparatus and data receiving apparatus
US20100158249A1 (en) Data transmitting apparatus and data receiving apparatus
JP6237217B2 (ja) 変調装置および変調方法
JP2007511178A (ja) 光増幅を行う波長分割多重通信ネットワークを介した、コヒーレント状態に基づく量子暗号
US7907670B2 (en) Data transmitting apparatus and data receiving apparatus
JP5062642B2 (ja) 暗号光送信装置及び受信装置、暗号光送信方法及び受信方法、並びに暗号通信システム
JP2011166292A (ja) 信号処理システム、量子暗号システム、信号処理方法、及び量子暗号方法
JP2008079297A (ja) データ送信装置及びデータ受信装置
Corndorf Quantum cryptography using coherent states: randomized encryption and key generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017848656

Country of ref document: EP

Effective date: 20190409