WO2018047602A1 - Pump motor - Google Patents

Pump motor Download PDF

Info

Publication number
WO2018047602A1
WO2018047602A1 PCT/JP2017/029603 JP2017029603W WO2018047602A1 WO 2018047602 A1 WO2018047602 A1 WO 2018047602A1 JP 2017029603 W JP2017029603 W JP 2017029603W WO 2018047602 A1 WO2018047602 A1 WO 2018047602A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
pump motor
rotor
axial direction
rib
Prior art date
Application number
PCT/JP2017/029603
Other languages
French (fr)
Japanese (ja)
Inventor
友治 中村
雄一 山本
Original Assignee
日本電産テクノモータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産テクノモータ株式会社 filed Critical 日本電産テクノモータ株式会社
Publication of WO2018047602A1 publication Critical patent/WO2018047602A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs

Definitions

  • the present invention relates to a pump motor.
  • the conventional canned motor pump described in Patent Document 1 includes a substantially cylindrical stator can provided on the inner peripheral surface of the stator and a substantially cylindrical rotor can provided on the outer peripheral surface of the rotor.
  • the stator can surrounds the inner peripheral surface of the stator in a watertight manner.
  • the rotor can surrounds the outer peripheral surface of the rotor in a watertight manner.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a pump motor that can improve the strength of the stator can and can operate the pump stably.
  • An exemplary pump motor includes a rotor that rotates about a rotary shaft that extends in a vertical direction, a stator that is disposed radially outward of the rotor, and an inner circumferential side of the stator that is disposed on the rotor And a cylindrical stator can extending in the axial direction.
  • the stator can has a rib extending in the radial direction from the peripheral surface and extending in the axial direction.
  • the strength of the stator can is improved. As a result, even when a high pressure is generated in the gap between the rotor and the stator, the pump can be operated stably.
  • FIG. 1 is a vertical end view of a cutting part of a pump motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional perspective view of the pump motor according to the embodiment of the present invention.
  • FIG. 3 is an external perspective view of the stator can of the pump motor according to the embodiment of the present invention.
  • FIG. 4 is a partially enlarged plan view of the pump motor according to the embodiment of the present invention.
  • FIG. 5 is a partially enlarged external perspective view of the stator can of the pump motor according to the embodiment of the present invention.
  • FIG. 6 is a partially enlarged cross-sectional perspective view of the pump motor according to the embodiment of the present invention.
  • FIG. 7 is a vertical end view of a partially enlarged cut portion of the pump motor according to the embodiment of the present invention.
  • FIG. 8 is a partially enlarged external perspective view of the stator can of the pump motor according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional perspective view of a first modification of the pump motor according to the embodiment of the present invention.
  • FIG. 10 is an external perspective view of a stator can of a second modification of the pump motor according to the embodiment of the present invention.
  • FIG. 1 is a vertical end view of a cutting part of a pump motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional perspective view of the pump motor according to the embodiment of the present invention. In FIG. 2, drawing of the rotor is omitted. *
  • the pump motor 1 shown in FIGS. 1 and 2 includes a rotor 2, a stator 3, an upper bearing 11, a lower bearing 12, an upper bracket 13, a lower bracket 14, a thrust bearing 15, and a case member 16. And a resin portion 17. *
  • a lubricant is interposed in the gap between the rotor 2 and the stator 3.
  • This lubricant is water, for example, but may contain a preservative such as propylene glycol.
  • the rotor 2 has a cylindrical shape extending in the axial direction.
  • the rotor 2 is arranged with a predetermined gap on the radially inner side of the stator 3.
  • the rotor 2 includes a rotating shaft 21, a rotor core 22, a magnet 23, a base member 24, a rotor can 25, a cover member 26, and a resin portion 27.
  • the rotating shaft 21 is a rotating shaft of the pump motor 1.
  • the rotating shaft 21 has a cylindrical shape extending in the axial direction (vertical direction).
  • the rotating shaft 21 is inserted into the upper bearing 11 and the lower bearing 12 and is rotatably supported.
  • the upper bearing 11 is held by the upper bracket 13.
  • the lower bearing 12 is held by the lower bracket 14.
  • the rotor 2 rotates around a rotating shaft 21 extending in the axial direction (vertical direction). *
  • the rotor core 22 has a cylindrical shape extending in the axial direction.
  • the rotating shaft 21 is inserted into the central portion of the rotor core 22 in the radial direction.
  • the rotor core 22 is configured by, for example, laminating a plurality of magnetic steel plates in the axial direction.
  • the magnet 23 is disposed on the radially outer side of the rotor core 22. A plurality of magnets 23 are arranged side by side at predetermined angular intervals in the circumferential direction. The magnet 23 is supported by the rotor core 22. *
  • the base member 24 is disposed at the lower part of the rotor 2 in the axial direction (vertical direction).
  • the base member 24 has an annular shape.
  • the rotating shaft 21 is inserted into the central portion of the base member 24 in the radial direction.
  • the base member 24 supports the rotor core 22 and the magnet 23 at the lower portion in the axial direction of the rotor 2.
  • the base member 24 constitutes a thrust bearing 15 with the lower bracket 14. *
  • the rotor can 25 is disposed on the outer peripheral side of the rotor 2.
  • the rotor can 25 has a cylindrical shape extending in the axial direction.
  • the rotor can 25 is supported by the base member 24 at the lower part in the axial direction.
  • the rotor can 25 is supported by an annular cover member 26 at the upper part in the axial direction.
  • the rotor can 25 is arranged with a predetermined interval between the inner peripheral surface thereof and the outer peripheral surface of the magnet 23. *
  • the resin part 27 is provided inside the rotor can 25.
  • the resin portion 27 is surrounded by the inner peripheral surface of the rotor can 25, the outer peripheral surface of the rotating shaft 21, the end surface on the upper side in the axial direction of the base member 24, the end surface on the lower side in the axial direction of the cover member 26, and the outer surfaces of the rotor core 22 and magnet 23. Synthetic resin is poured into the space. *
  • the stator 3 has a cylindrical shape extending in the axial direction.
  • the stator 3 is arranged with a predetermined gap on the radially inner side of the rotor 2.
  • the stator 3 is held by the upper bracket 13 and the lower bracket 14.
  • the stator 3 is disposed inside a cylindrical case member 16 that is an exterior of the pump motor 1.
  • the resin portion 17 is provided by pouring synthetic resin into a space surrounded by the inner peripheral surface of the case member 16, the outer surface of the stator 3, the outer surface on the lower side in the axial direction of the upper bracket 13, and the outer surface on the upper side in the axial direction of the lower bracket 14. It is done. *
  • the stator 3 includes a stator core 31, an insulator 32, a coil 33, and a stator can 40. *
  • the stator core 31 has a cylindrical shape extending in the axial direction.
  • the stator core 31 is formed by laminating a plurality of magnetic steel plates in the axial direction.
  • the stator core 31 includes a core back 31a and teeth 31b (see FIG. 4).
  • the core back 31a has an annular shape.
  • the teeth 31b extend radially inward from the inner peripheral surface of the core back 31a.
  • a plurality of teeth 31b are provided side by side at predetermined angular intervals in the circumferential direction. *
  • the insulator 32 is provided so as to surround the outer surface of the tooth 31b.
  • the insulator 32 is disposed between the stator core 31 and the coil 33.
  • the insulator 32 is not particularly limited in material, but is made of, for example, an electrically insulating member made of synthetic resin.
  • the coil 33 is formed by winding an electric wire around the outer periphery of the insulator 32. *
  • the stator can 40 is disposed on the inner peripheral side of the stator 3.
  • the stator can 40 has a cylindrical shape that surrounds the rotor 2 and extends in the axial direction.
  • the stator can 40 is held by the upper bracket 13 at the upper part in the axial direction.
  • the stator can 40 is held by the lower bracket 14 at the lower part in the axial direction.
  • FIG. 3 is an external perspective view of the stator can 40 of the pump motor 1 according to the embodiment of the present invention.
  • FIG. 4 is a partially enlarged plan view of the pump motor 1 according to the embodiment of the present invention.
  • FIG. 5 is a partially enlarged external perspective view of the stator can 40 of the pump motor 1 according to the embodiment of the present invention.
  • FIG. 6 is a partially enlarged cross-sectional perspective view of the pump motor 1 according to the embodiment of the present invention.
  • FIG. 7 is a vertical end view of a partially enlarged cut portion of the pump motor 1 according to the embodiment of the present invention.
  • FIG. 8 is a partially enlarged external perspective view of the stator can 40 of the pump motor 1 according to the embodiment of the present invention. *
  • the stator can 40 includes a rib 41, a protrusion 42, a flange 43, an outer groove 44, and an inner groove 45.
  • the stator can 40 is not specifically limited in material, but is formed by, for example, pressing a metal member. *
  • the rib 41 shown in FIG. 3 protrudes radially outward from the outer peripheral surface of the stator can 40.
  • the rib 41 extends linearly in the axial direction.
  • a plurality of ribs 41 are arranged side by side at a predetermined angular interval in the circumferential direction, and each of them extends in parallel with the axial direction.
  • the rib 41 extends continuously from one end to the other end of the stator can 40 in the axial direction. That is, the rib 41 continuously extends from the upper end to the lower end in the axial direction of the stator can 40. According to this configuration, the strength of the stator can 40 can be further increased as compared with the case where the ribs extend intermittently in the axial direction. Furthermore, since the rib 41 can be molded using a simple axial upper and lower mold, the productivity of the pump motor 1 can be improved. *
  • the rib 41 is connected to the stator can 40. That is, the rib 41 is provided integrally with the stator can 40. According to this configuration, the strength of the stator can 40 can be further increased as compared with the case where the rib is provided as a separate part with respect to the stator can 40. Further, the rib 41 can be formed together with the stator can 40. Thereby, the number of parts and assembly man-hours of the pump motor 1 can be reduced, and the cost can be reduced. *
  • a plurality of ribs 41 are provided side by side at predetermined angular intervals in the circumferential direction.
  • the same number of the ribs 41 as the teeth 31b of the stator core 31 are provided.
  • the rib 41 shown in FIG. 4 is arrange
  • positioned between the teeth 31b adjacent to the circumferential direction is not necessarily limited to one like this embodiment. You may arrange
  • the protrusion 42 is provided at the lower portion of the stator can 40 in the axial direction (vertical direction).
  • the protrusion 42 protrudes radially outward from the outer peripheral surface of the stator can 40.
  • the protrusion 42 extends linearly in the axial direction from the lower end of the stator can 40 in the axial direction with a predetermined length that does not reach the central portion of the stator can 40 in the axial direction.
  • the protrusion 42 shown in FIG. 5 has an upper surface 42a facing the upper side in the axial direction at the end on the upper side in the axial direction.
  • a plurality of protrusions 42 are arranged side by side at a predetermined angular interval in the circumferential direction, and each of the protrusions 42 extends parallel to the axial direction. *
  • stator can 40 can be positioned in the stator 3.
  • the flange portion 43 is provided at the lower end in the axial direction (vertical direction) of the stator can 40.
  • the flange portion 43 has a disk shape extending radially outward from the inner peripheral side of the stator can 40.
  • the protrusion 42 is provided on the upper side in the axial direction than the flange 43.
  • the outer groove 44 is provided on the outer circumferential surface on the radially outer side of the flange portion 43.
  • the outer groove 44 is recessed from the outer peripheral surface of the flange portion 43 of the stator can 40 toward the radially inner side.
  • the outer groove 44 is continuous in the circumferential direction and is annular. *
  • the O-ring 18 is attached to the outer groove 44.
  • the O-ring 18 is a rubber seal material, for example.
  • the flange portion 43 of the stator can 40 is inserted inside the lower bracket 14 in the radial direction.
  • the O-ring 18 is compressed in the radial direction between the flange portion 43 and the lower bracket 14 and is in close contact with the flange portion 43 and the lower bracket 14. Since the O-ring 18 can be disposed in the outer groove 44 in this way, when the flange portion 43 is inserted into the lower bracket 14, the lubricant is applied to the region where the stator core 31 is provided in the region of the O-ring 18. It is possible to prevent leakage. *
  • the inner groove 45 shown in FIGS. 7 and 8 is provided in the upper part of the stator can 40 in the axial direction (vertical direction).
  • the inner groove 45 is recessed from the inner peripheral surface of the stator can 40 toward the radially outer side.
  • the inner groove 45 is continuous in the circumferential direction and has an annular shape.
  • the upper bracket 13 is provided with an O-ring 19 on the radially outer side of the lower portion thereof.
  • the O-ring 19 is, for example, a rubber seal material.
  • the lower portion of the upper bracket 13 is inserted inside the stator can 40 in the radial direction. At this time, a part on the outer side in the radial direction of the O-ring 19 enters the inner groove 45.
  • the O-ring 19 is compressed in the radial direction between the upper bracket 13 and the stator can 40 and is in close contact with the upper bracket 13 and the stator can 40.
  • the O-ring 19 can be disposed in the inner groove 45 in this way, when the upper bracket 13 is inserted into the stator can 40, the lubricant is applied to the region where the stator core 31 is provided in the region of the O-ring 19. It is possible to prevent leakage.
  • FIG. 9 is a cross-sectional perspective view of a first modification of the pump motor according to the embodiment of the present invention. *
  • the rib 41 protrudes radially inward from the inner peripheral surface of the stator can 40.
  • the rib 41 extends linearly in the axial direction.
  • a plurality of ribs 41 are arranged at predetermined angular intervals in the circumferential direction and extend parallel to the axial direction.
  • FIG. 10 is an external perspective view of a stator can of a second modification of the pump motor according to the embodiment of the present invention. *
  • the rib 41 protrudes radially inward from the inner peripheral surface of the stator can 40.
  • the rib 41 extends linearly in the axial direction.
  • a plurality of ribs 41 are arranged at predetermined angular intervals in the circumferential direction and extend parallel to the axial direction.
  • the rib 41 extends intermittently from one end of the stator can 40 in the axial direction to the other end.
  • each of the plurality of ribs 41 is interrupted in the axial direction may be the same location in the axial direction as shown in FIG. *
  • a circumferential rib extending in the circumferential direction may be provided in combination on the circumferential surface of the stator can 40.
  • the present invention can be used in, for example, a pump motor.

Abstract

This pump motor is provided with: a rotor which rotates around a rotational axis that extends in the vertical direction; a stator which is provided outside the rotor in the radial direction; and a cylindrical stator can which is provided to the inner circumferential side of the stator, surrounds the rotor, and extends in the axial direction. The stator can is provided with ribs which protrude from the circumferential surface in the radial direction, and which extend in the axial direction.

Description

ポンプ用モータPump motor
本発明はポンプ用モータに関する。 The present invention relates to a pump motor.
従来、励磁コイルを有する環状のステータの径方向内側にマグネット及びシャフトを有するロータを配置したモータが広く知られている。さらに、ステータにステータキャンを設けたポンプ用モータが知られている。ポンプ用モータに係る技術が特許文献1に開示されている。  Conventionally, a motor in which a rotor having a magnet and a shaft is arranged radially inside an annular stator having an exciting coil is widely known. Furthermore, a pump motor in which a stator can is provided on a stator is known. A technique related to a pump motor is disclosed in Patent Document 1. *
特許文献1に記載された従来のキャンドモータポンプはステータの内周面に設けられた略円筒状のステータキャンと、ロータの外周面に設けられた略円筒状のロータキャンと、を備える。ステータキャンは水密的にステータの内周面を包囲する。ロータキャンは水密的にロータの外周面を包囲する。この構成により、ステータとロータとの間の隙間の領域からステータの内部及びロータの内部に液体が浸入することを抑制することができる。したがって、キャンドモータポンプを、ポンプとして適正に動作させることが可能である。 The conventional canned motor pump described in Patent Document 1 includes a substantially cylindrical stator can provided on the inner peripheral surface of the stator and a substantially cylindrical rotor can provided on the outer peripheral surface of the rotor. The stator can surrounds the inner peripheral surface of the stator in a watertight manner. The rotor can surrounds the outer peripheral surface of the rotor in a watertight manner. With this configuration, it is possible to prevent liquid from entering the stator and the rotor from the region of the gap between the stator and the rotor. Therefore, the canned motor pump can be properly operated as a pump.
特開2002-213385号公報JP 2002-213385 A
しかしながら、特許文献1に記載された従来のキャンドモータポンプはロータとステータとの間の隙間で生じる虞がある高圧について十分な配慮がなされていない。すなわち、この従来のキャンドモータポンプは、ステータキャンが十分な強度を保持していないことが懸念され、キャンドモータポンプを安定させて動作させることができない虞があるという課題があった。  However, the conventional canned motor pump described in Patent Document 1 does not give sufficient consideration to the high pressure that may occur in the gap between the rotor and the stator. In other words, this conventional canned motor pump has a problem that the stator can does not have sufficient strength, and the canned motor pump may not be stably operated. *
本発明は、上記の点に鑑みなされたものであり、ステータキャンの強度を向上させることができ、ポンプを安定させて動作させることが可能なポンプ用モータを提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a pump motor that can improve the strength of the stator can and can operate the pump stably.
本発明の例示的なポンプ用モータは、上下方向に延びる回転軸を中心に回転するロータと、前記ロータの径方向外側に配置されたステータと、前記ステータの内周側に配置されて前記ロータを囲み、軸方向に延びる筒状のステータキャンと、を有する。前記ステータキャンは、周面から径方向に突出して軸方向に延びるリブを有する。 An exemplary pump motor according to the present invention includes a rotor that rotates about a rotary shaft that extends in a vertical direction, a stator that is disposed radially outward of the rotor, and an inner circumferential side of the stator that is disposed on the rotor And a cylindrical stator can extending in the axial direction. The stator can has a rib extending in the radial direction from the peripheral surface and extending in the axial direction.
本発明の例示的なポンプ用モータによれば、ステータキャンの強度が向上する。これにより、ロータとステータとの間の隙間で高圧が生じた場合であっても、ポンプを安定させて動作させることが可能になる。 According to the exemplary pump motor of the present invention, the strength of the stator can is improved. As a result, even when a high pressure is generated in the gap between the rotor and the stator, the pump can be operated stably.
図1は、本発明の実施形態に係るポンプ用モータの切断部縦端面図である。FIG. 1 is a vertical end view of a cutting part of a pump motor according to an embodiment of the present invention. 図2は、本発明の実施形態に係るポンプ用モータの断面斜視図である。FIG. 2 is a cross-sectional perspective view of the pump motor according to the embodiment of the present invention. 図3は、本発明の実施形態に係るポンプ用モータのステータキャンの外観斜視図である。FIG. 3 is an external perspective view of the stator can of the pump motor according to the embodiment of the present invention. 図4は、本発明の実施形態に係るポンプ用モータの部分拡大平面図である。FIG. 4 is a partially enlarged plan view of the pump motor according to the embodiment of the present invention. 図5は、本発明の実施形態に係るポンプ用モータのステータキャンの部分拡大外観斜視図である。FIG. 5 is a partially enlarged external perspective view of the stator can of the pump motor according to the embodiment of the present invention. 図6は、本発明の実施形態に係るポンプ用モータの部分拡大断面斜視図である。FIG. 6 is a partially enlarged cross-sectional perspective view of the pump motor according to the embodiment of the present invention. 図7は、本発明の実施形態に係るポンプ用モータの部分拡大切断部縦端面図である。FIG. 7 is a vertical end view of a partially enlarged cut portion of the pump motor according to the embodiment of the present invention. 図8は、本発明の実施形態に係るポンプ用モータのステータキャンの部分拡大外観斜視図である。FIG. 8 is a partially enlarged external perspective view of the stator can of the pump motor according to the embodiment of the present invention. 図9は、本発明の実施形態に係るポンプ用モータの第1変形例の断面斜視図である。FIG. 9 is a cross-sectional perspective view of a first modification of the pump motor according to the embodiment of the present invention. 図10は、本発明の実施形態に係るポンプ用モータの第2変形例のステータキャンの外観斜視図である。FIG. 10 is an external perspective view of a stator can of a second modification of the pump motor according to the embodiment of the present invention.
以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。本書では、ポンプ用モータの回転軸が延びる方向を単に「軸方向」と呼び、ポンプ用モータの回転軸を中心として回転軸と直交する方向を単に「径方向」と呼び、ポンプ用モータの回転軸を中心とする円弧に沿う方向を単に「周方向」と呼ぶ。また、本書では、説明の便宜上、軸方向を上下方向とし、図1の上下方向をポンプ用モータの上下方向として各部の形状や位置関係を説明する。なお、この上下方向の定義がポンプ用モータの使用時の向きを限定するものではない。また、本書では、軸方向に平行な端面図を「縦端面図」と呼ぶ。また、本書で用いる「平行」は、厳密な意味で平行を表すものではなく、略平行を含む。  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In this document, the direction in which the rotating shaft of the pump motor extends is simply called the “axial direction”, and the direction perpendicular to the rotating shaft around the rotating shaft of the pump motor is simply called the “radial direction”. The direction along the arc centered on the axis is simply referred to as “circumferential direction”. Further, in this document, for convenience of explanation, the shape and positional relationship of each part will be described with the axial direction as the vertical direction and the vertical direction in FIG. 1 as the vertical direction of the pump motor. Note that the definition of the vertical direction does not limit the direction when the pump motor is used. Further, in this document, an end view parallel to the axial direction is referred to as a “vertical end view”. Further, “parallel” used in this document does not represent parallel in a strict sense, but includes substantially parallel. *
<1.ポンプ用モータの全体構成> 本発明の例示的な実施形態に係るポンプ用モータの全体構成について説明する。図1は、本発明の実施形態に係るポンプ用モータの切断部縦端面図である。図2は、本発明の実施形態に係るポンプ用モータの断面斜視図である。なお、図2ではロータの描画を省略した。  <1. Overall Configuration of Pump Motor> The overall configuration of the pump motor according to an exemplary embodiment of the present invention will be described. FIG. 1 is a vertical end view of a cutting part of a pump motor according to an embodiment of the present invention. FIG. 2 is a cross-sectional perspective view of the pump motor according to the embodiment of the present invention. In FIG. 2, drawing of the rotor is omitted. *
図1及び図2に示すポンプ用モータ1は、ロータ2と、ステータ3と、上軸受11と、下軸受12と、上ブラケット13と、下ブラケット14と、スラストベアリング15と、ケース部材16と、樹脂部17と、を備える。  The pump motor 1 shown in FIGS. 1 and 2 includes a rotor 2, a stator 3, an upper bearing 11, a lower bearing 12, an upper bracket 13, a lower bracket 14, a thrust bearing 15, and a case member 16. And a resin portion 17. *
なお、ロータ2とステータ3との間の隙間には潤滑剤が介在する。この潤滑剤は、例えば水であるが、プロピレングリコールなどの防腐剤等を含有させても良い。  Note that a lubricant is interposed in the gap between the rotor 2 and the stator 3. This lubricant is water, for example, but may contain a preservative such as propylene glycol. *
ロータ2は、軸方向に延びる円筒形状である。ロータ2は、ステータ3の径方向内側に所定の隙間を設けて配置される。ロータ2は、回転軸21と、ロータコア22と、マグネット23と、ベース部材24と、ロータキャン25と、カバー部材26と、樹脂部27と、を備える。  The rotor 2 has a cylindrical shape extending in the axial direction. The rotor 2 is arranged with a predetermined gap on the radially inner side of the stator 3. The rotor 2 includes a rotating shaft 21, a rotor core 22, a magnet 23, a base member 24, a rotor can 25, a cover member 26, and a resin portion 27. *
回転軸21は、ポンプ用モータ1の回転軸である。回転軸21は、軸方向(上下方向)に延びる円柱形状を有する。回転軸21は、上軸受11及び下軸受12に挿入されて回転可能に支持される。上軸受11は、上ブラケット13に保持される。下軸受12は、下ブラケット14に保持される。ロータ2は、軸方向(上下方向)に延びる回転軸21を中心に回転する。  The rotating shaft 21 is a rotating shaft of the pump motor 1. The rotating shaft 21 has a cylindrical shape extending in the axial direction (vertical direction). The rotating shaft 21 is inserted into the upper bearing 11 and the lower bearing 12 and is rotatably supported. The upper bearing 11 is held by the upper bracket 13. The lower bearing 12 is held by the lower bracket 14. The rotor 2 rotates around a rotating shaft 21 extending in the axial direction (vertical direction). *
ロータコア22は、軸方向に延びる筒形状である。ロータコア22の径方向中心部に、回転軸21が挿入される。ロータコア22は、例えば複数枚の磁性鋼板を軸方向に積層して構成される。マグネット23は、ロータコア22の径方向外側に配置される。マグネット23は、複数が周方向に所定の角度間隔で並べて配置される。マグネット23は、ロータコア22によって支持される。  The rotor core 22 has a cylindrical shape extending in the axial direction. The rotating shaft 21 is inserted into the central portion of the rotor core 22 in the radial direction. The rotor core 22 is configured by, for example, laminating a plurality of magnetic steel plates in the axial direction. The magnet 23 is disposed on the radially outer side of the rotor core 22. A plurality of magnets 23 are arranged side by side at predetermined angular intervals in the circumferential direction. The magnet 23 is supported by the rotor core 22. *
ベース部材24は、ロータ2の軸方向(上下方向)の下部に配置される。ベース部材24は、円環形状である。ベース部材24の径方向中心部に、回転軸21が挿入される。ベース部材24は、ロータ2の軸方向の下部でロータコア22及びマグネット23を支持する。ベース部材24は、下ブラケット14との間でスラストベアリング15を構成する。  The base member 24 is disposed at the lower part of the rotor 2 in the axial direction (vertical direction). The base member 24 has an annular shape. The rotating shaft 21 is inserted into the central portion of the base member 24 in the radial direction. The base member 24 supports the rotor core 22 and the magnet 23 at the lower portion in the axial direction of the rotor 2. The base member 24 constitutes a thrust bearing 15 with the lower bracket 14. *
ロータキャン25は、ロータ2の外周側に配置される。ロータキャン25は、軸方向に延びる筒形状である。ロータキャン25は、軸方向の下部でベース部材24に支持される。ロータキャン25は、軸方向の上部で円環状のカバー部材26に支持される。ロータキャン25は、その内周面がマグネット23の外周面との間で所定の間隔を設けて配置される。  The rotor can 25 is disposed on the outer peripheral side of the rotor 2. The rotor can 25 has a cylindrical shape extending in the axial direction. The rotor can 25 is supported by the base member 24 at the lower part in the axial direction. The rotor can 25 is supported by an annular cover member 26 at the upper part in the axial direction. The rotor can 25 is arranged with a predetermined interval between the inner peripheral surface thereof and the outer peripheral surface of the magnet 23. *
樹脂部27は、ロータキャン25の内側に設けられる。樹脂部27は、ロータキャン25の内周面、回転軸21の外周面、ベース部材24の軸方向上側の端面、カバー部材26の軸方向下側の端面並びにロータコア22及びマグネット23の外面で囲まれた空間に合成樹脂を流し込んで設けられる。  The resin part 27 is provided inside the rotor can 25. The resin portion 27 is surrounded by the inner peripheral surface of the rotor can 25, the outer peripheral surface of the rotating shaft 21, the end surface on the upper side in the axial direction of the base member 24, the end surface on the lower side in the axial direction of the cover member 26, and the outer surfaces of the rotor core 22 and magnet 23. Synthetic resin is poured into the space. *
ステータ3は、軸方向に延びる円筒形状である。ステータ3は、ロータ2の径方向内側に所定の隙間を設けて配置される。ステータ3は、上ブラケット13及び下ブラケット14に保持される。ステータ3は、ポンプ用モータ1の外装である円筒状のケース部材16の内側に配置される。樹脂部17が、ケース部材16の内周面、ステータ3の外面、上ブラケット13の軸方向下側の外面及び下ブラケット14の軸方向上側の外面で囲まれた空間に合成樹脂を流し込んで設けられる。  The stator 3 has a cylindrical shape extending in the axial direction. The stator 3 is arranged with a predetermined gap on the radially inner side of the rotor 2. The stator 3 is held by the upper bracket 13 and the lower bracket 14. The stator 3 is disposed inside a cylindrical case member 16 that is an exterior of the pump motor 1. The resin portion 17 is provided by pouring synthetic resin into a space surrounded by the inner peripheral surface of the case member 16, the outer surface of the stator 3, the outer surface on the lower side in the axial direction of the upper bracket 13, and the outer surface on the upper side in the axial direction of the lower bracket 14. It is done. *
ステータ3は、ステータコア31と、インシュレータ32と、コイル33と、ステータキャン40と、を備える。  The stator 3 includes a stator core 31, an insulator 32, a coil 33, and a stator can 40. *
ステータコア31は、軸方向に延びる筒形状である。ステータコア31は、複数枚の磁性鋼板を軸方向に積層して形成される。ステータコア31は、コアバック31aと、ティース31bと、を備える(図4参照)。コアバック31aは、円環状を有する。ティース31bは、コアバック31aの内周面から径方向内側に延びる。ティース31bは、複数が周方向に所定の角度間隔で並べて設けられる。  The stator core 31 has a cylindrical shape extending in the axial direction. The stator core 31 is formed by laminating a plurality of magnetic steel plates in the axial direction. The stator core 31 includes a core back 31a and teeth 31b (see FIG. 4). The core back 31a has an annular shape. The teeth 31b extend radially inward from the inner peripheral surface of the core back 31a. A plurality of teeth 31b are provided side by side at predetermined angular intervals in the circumferential direction. *
インシュレータ32は、ティース31bの外面を囲んで設けられる。インシュレータ32は、ステータコア31とコイル33との間に配置される。インシュレータ32は、材料を特に限定する趣旨ではないが、例えば合成樹脂の電気絶縁部材で構成される。コイル33は、インシュレータ32の外周に電線が巻き掛けられて形成される。  The insulator 32 is provided so as to surround the outer surface of the tooth 31b. The insulator 32 is disposed between the stator core 31 and the coil 33. The insulator 32 is not particularly limited in material, but is made of, for example, an electrically insulating member made of synthetic resin. The coil 33 is formed by winding an electric wire around the outer periphery of the insulator 32. *
ステータキャン40は、ステータ3の内周側に配置される。ステータキャン40は、ロータ2を囲み、軸方向に延びる筒形状である。ステータキャン40は、軸方向の上部で上ブラケット13に保持される。ステータキャン40は、軸方向の下部で下ブラケット14に保持される。  The stator can 40 is disposed on the inner peripheral side of the stator 3. The stator can 40 has a cylindrical shape that surrounds the rotor 2 and extends in the axial direction. The stator can 40 is held by the upper bracket 13 at the upper part in the axial direction. The stator can 40 is held by the lower bracket 14 at the lower part in the axial direction. *
<2.ステータキャンの詳細な構成> 続いて、ステータキャン40の詳細な構成について説明する。図3は、本発明の実施形態に係るポンプ用モータ1のステータキャン40の外観斜視図である。図4は、本発明の実施形態に係るポンプ用モータ1の部分拡大平面図である。図5は、本発明の実施形態に係るポンプ用モータ1のステータキャン40の部分拡大外観斜視図である。図6は、本発明の実施形態に係るポンプ用モータ1の部分拡大断面斜視図である。図7は、本発明の実施形態に係るポンプ用モータ1の部分拡大切断部縦端面図である。図8は、本発明の実施形態に係るポンプ用モータ1のステータキャン40の部分拡大外観斜視図である。  <2. Detailed Configuration of Stator Can> Next, a detailed configuration of the stator can 40 will be described. FIG. 3 is an external perspective view of the stator can 40 of the pump motor 1 according to the embodiment of the present invention. FIG. 4 is a partially enlarged plan view of the pump motor 1 according to the embodiment of the present invention. FIG. 5 is a partially enlarged external perspective view of the stator can 40 of the pump motor 1 according to the embodiment of the present invention. FIG. 6 is a partially enlarged cross-sectional perspective view of the pump motor 1 according to the embodiment of the present invention. FIG. 7 is a vertical end view of a partially enlarged cut portion of the pump motor 1 according to the embodiment of the present invention. FIG. 8 is a partially enlarged external perspective view of the stator can 40 of the pump motor 1 according to the embodiment of the present invention. *
ステータキャン40は、リブ41と、突起部42と、フランジ部43と、外溝44と、内溝45と、を備える。ステータキャン40は、材料を特に限定する趣旨ではないが、例えば金属部材をプレス加工することによって成形される。  The stator can 40 includes a rib 41, a protrusion 42, a flange 43, an outer groove 44, and an inner groove 45. The stator can 40 is not specifically limited in material, but is formed by, for example, pressing a metal member. *
図3に示すリブ41は、ステータキャン40の外周面から径方向外側に突出する。リブ41は、軸方向に直線状に延びる。リブ41は、複数が周方向に所定の角度間隔で並べて配置され、各々が軸方向に平行に延びる。ステータキャン40にリブ41を設けることで、ステータキャン40の強度が向上する。したがって、ロータ2とステータ3との間の隙間で高圧が生じた場合であっても、ポンプを安定させて動作させることが可能である。  The rib 41 shown in FIG. 3 protrudes radially outward from the outer peripheral surface of the stator can 40. The rib 41 extends linearly in the axial direction. A plurality of ribs 41 are arranged side by side at a predetermined angular interval in the circumferential direction, and each of them extends in parallel with the axial direction. By providing the rib 41 on the stator can 40, the strength of the stator can 40 is improved. Therefore, even when a high pressure is generated in the gap between the rotor 2 and the stator 3, the pump can be operated stably. *
また、リブ41が、ステータキャン40の外周面から径方向外側に突出するので、ロータ2とステータ3との接触を回避することができる。さらに、ロータ2とステータ3との間の隙間で、ロータ2の回転に伴って潤滑剤(水)が円滑に流れるので、ロータ2の好適な回転性能を得ることが可能である。  Moreover, since the rib 41 protrudes radially outward from the outer peripheral surface of the stator can 40, contact between the rotor 2 and the stator 3 can be avoided. Furthermore, since the lubricant (water) flows smoothly with the rotation of the rotor 2 in the gap between the rotor 2 and the stator 3, it is possible to obtain a suitable rotational performance of the rotor 2. *
リブ41は、ステータキャン40の軸方向の一端から他端まで連続して延びる。すなわち、リブ41は、ステータキャン40の軸方向の上端から下端まで連続して延びる。この構成によれば、リブが軸方向に断続的に延びる場合と比較して、ステータキャン40の強度をより一層高めることができる。さらに、リブ41は簡便な軸方向上下の金型を用いて成型できるので、ポンプ用モータ1の生産性を向上させることが可能である。  The rib 41 extends continuously from one end to the other end of the stator can 40 in the axial direction. That is, the rib 41 continuously extends from the upper end to the lower end in the axial direction of the stator can 40. According to this configuration, the strength of the stator can 40 can be further increased as compared with the case where the ribs extend intermittently in the axial direction. Furthermore, since the rib 41 can be molded using a simple axial upper and lower mold, the productivity of the pump motor 1 can be improved. *
リブ41は、ステータキャン40と一つながりに構成される。すなわち、リブ41は、ステータキャン40と一体として設けられる。この構成によれば、リブがステータキャン40に対して別部品として設けられる場合と比較して、ステータキャン40の強度をより一層高めることができる。また、リブ41をステータキャン40と一緒に形成することができる。これにより、ポンプ用モータ1の部品点数及び組み立て工数が低減し、低コスト化を図ることが可能である。  The rib 41 is connected to the stator can 40. That is, the rib 41 is provided integrally with the stator can 40. According to this configuration, the strength of the stator can 40 can be further increased as compared with the case where the rib is provided as a separate part with respect to the stator can 40. Further, the rib 41 can be formed together with the stator can 40. Thereby, the number of parts and assembly man-hours of the pump motor 1 can be reduced, and the cost can be reduced. *

ブ41は、複数が周方向に所定の角度間隔で並べて設けられる。リブ41は、例えばステータコア31のティース31bと同数が設けられる。例えば、ティース31bが9個である場合、リブ41も9本である。そして、図4に示すリブ41は、周方向に隣り合うティース31bの間に1本ずつ配置される。この構成によれば、ステータキャン40とステータコア31とを接近させることができる。これにより、ポンプ用モータ1の小型化を図ることが可能である。 
A plurality of ribs 41 are provided side by side at predetermined angular intervals in the circumferential direction. For example, the same number of the ribs 41 as the teeth 31b of the stator core 31 are provided. For example, when there are nine teeth 31b, there are nine ribs 41. And the rib 41 shown in FIG. 4 is arrange | positioned 1 each between the teeth 31b adjacent to the circumferential direction. According to this configuration, the stator can 40 and the stator core 31 can be brought close to each other. Thereby, it is possible to reduce the size of the pump motor 1.
なお、周方向に隣り合うティース31bの間に配置されるリブ41は、本実施形態のように1本に限定されるわけではない。複数のリブ41を、周方向に隣り合うティース31bの間に配置しても良い。  In addition, the rib 41 arrange | positioned between the teeth 31b adjacent to the circumferential direction is not necessarily limited to one like this embodiment. You may arrange | position the some rib 41 between the teeth 31b adjacent to the circumferential direction. *
突起部42は、ステータキャン40の軸方向(上下方向)の下部に設けられる。突起部42は、ステータキャン40の外周面から径方向外側に突出する。突起部42は、ステータキャン40の軸方向下側の端部から、ステータキャン40の軸方向中央部に達しない所定長さで軸方向に直線状に延びる。図5に示す突起部42は、軸方向上側の端部に軸方向上側を向く上面42aを有する。突起部42は、複数が周方向に所定の角度間隔で並べて配置され、各々が軸方向に平行に延びる。  The protrusion 42 is provided at the lower portion of the stator can 40 in the axial direction (vertical direction). The protrusion 42 protrudes radially outward from the outer peripheral surface of the stator can 40. The protrusion 42 extends linearly in the axial direction from the lower end of the stator can 40 in the axial direction with a predetermined length that does not reach the central portion of the stator can 40 in the axial direction. The protrusion 42 shown in FIG. 5 has an upper surface 42a facing the upper side in the axial direction at the end on the upper side in the axial direction. A plurality of protrusions 42 are arranged side by side at a predetermined angular interval in the circumferential direction, and each of the protrusions 42 extends parallel to the axial direction. *
図6に示す突起部42は、その上面42aに軸方向においてインシュレータ32に接触する。この構成によれば、軸方向におけるステータキャン40とインシュレータ32との相対位置が決定される。これにより、ステータ3におけるステータキャン40の位置決めを行うことが可能である。  6 is in contact with the insulator 32 in the axial direction on the upper surface 42a. According to this configuration, the relative position between the stator can 40 and the insulator 32 in the axial direction is determined. As a result, the stator can 40 can be positioned in the stator 3. *
フランジ部43は、ステータキャン40の軸方向(上下方向)の下端に設けられる。フランジ部43は、ステータキャン40の内周側から径方向外側に延びる円板状を有する。突起部42は、フランジ部43よりも軸方向上側に設けられる。  The flange portion 43 is provided at the lower end in the axial direction (vertical direction) of the stator can 40. The flange portion 43 has a disk shape extending radially outward from the inner peripheral side of the stator can 40. The protrusion 42 is provided on the upper side in the axial direction than the flange 43. *
外溝44は、フランジ部43の径方向外側の外周面に設けられる。外溝44は、ステータキャン40のフランジ部43の外周面から径方向内側に向かって窪む。外溝44は、周方向に連続し、環状である。  The outer groove 44 is provided on the outer circumferential surface on the radially outer side of the flange portion 43. The outer groove 44 is recessed from the outer peripheral surface of the flange portion 43 of the stator can 40 toward the radially inner side. The outer groove 44 is continuous in the circumferential direction and is annular. *
外溝44には、Oリング18が装着される。Oリング18は、例えばゴム製のシール材である。ステータキャン40のフランジ部43が下ブラケット14の径方向内側に挿入される。Oリング18は、フランジ部43と下ブラケット14との間で径方向に圧縮され、フランジ部43及び下ブラケット14に密着する。このように外溝44にOリング18を配置することができるので、フランジ部43を下ブラケット14に挿入した場合に、Oリング18の領域で、ステータコア31が設けられた領域への潤滑剤の漏洩を防止することが可能である。  An O-ring 18 is attached to the outer groove 44. The O-ring 18 is a rubber seal material, for example. The flange portion 43 of the stator can 40 is inserted inside the lower bracket 14 in the radial direction. The O-ring 18 is compressed in the radial direction between the flange portion 43 and the lower bracket 14 and is in close contact with the flange portion 43 and the lower bracket 14. Since the O-ring 18 can be disposed in the outer groove 44 in this way, when the flange portion 43 is inserted into the lower bracket 14, the lubricant is applied to the region where the stator core 31 is provided in the region of the O-ring 18. It is possible to prevent leakage. *
図7及び図8に示す内溝45は、ステータキャン40の軸方向(上下方向)の上部に設けられる。内溝45は、ステータキャン40の内周面から径方向外側に向かって窪む。内溝45は、周方向に連続し、環状である。  The inner groove 45 shown in FIGS. 7 and 8 is provided in the upper part of the stator can 40 in the axial direction (vertical direction). The inner groove 45 is recessed from the inner peripheral surface of the stator can 40 toward the radially outer side. The inner groove 45 is continuous in the circumferential direction and has an annular shape. *
上ブラケット13は、その下部の径方向外側にOリング19が装着される。Oリング19は、例えばゴム製のシール材である。上ブラケット13の下部は、ステータキャン40の径方向内側に挿入される。このとき、Oリング19の径方向外側の一部が内溝45に入り込む。Oリング19は、上ブラケット13とステータキャン40との間で径方向に圧縮され、上ブラケット13及びステータキャン40に密着する。このように内溝45にOリング19を配置することができるので、上ブラケット13をステータキャン40に挿入した場合に、Oリング19の領域で、ステータコア31が設けられた領域への潤滑剤の漏洩を防止することが可能である。  The upper bracket 13 is provided with an O-ring 19 on the radially outer side of the lower portion thereof. The O-ring 19 is, for example, a rubber seal material. The lower portion of the upper bracket 13 is inserted inside the stator can 40 in the radial direction. At this time, a part on the outer side in the radial direction of the O-ring 19 enters the inner groove 45. The O-ring 19 is compressed in the radial direction between the upper bracket 13 and the stator can 40 and is in close contact with the upper bracket 13 and the stator can 40. Since the O-ring 19 can be disposed in the inner groove 45 in this way, when the upper bracket 13 is inserted into the stator can 40, the lubricant is applied to the region where the stator core 31 is provided in the region of the O-ring 19. It is possible to prevent leakage. *
<3.実施形態のポンプ用モータの第1変形例> 続いて、実施形態のポンプ用モータ1の第1変形例について説明する。図9は、本発明の実施形態に係るポンプ用モータの第1変形例の断面斜視図である。  <3. First Modification of Pump Motor According to Embodiment> Next, a first modification of the pump motor 1 according to the embodiment will be described. FIG. 9 is a cross-sectional perspective view of a first modification of the pump motor according to the embodiment of the present invention. *
実施形態のポンプ用モータ1の第1変形例は、リブ41が、ステータキャン40の内周面から径方向内側に突出する。リブ41は、軸方向に直線状に延びる。リブ41は、複数が周方向に所定の角度間隔で配置され、軸方向に平行に延びる。  In the first modification of the pump motor 1 according to the embodiment, the rib 41 protrudes radially inward from the inner peripheral surface of the stator can 40. The rib 41 extends linearly in the axial direction. A plurality of ribs 41 are arranged at predetermined angular intervals in the circumferential direction and extend parallel to the axial direction. *
ステータキャン40の内周面にリブ41を設けた場合でも、ステータキャン40の強度が向上する。したがって、ロータ2とステータ3との間の隙間で高圧が生じた場合であっても、ポンプを安定させて動作させることが可能である。  Even when the rib 41 is provided on the inner peripheral surface of the stator can 40, the strength of the stator can 40 is improved. Therefore, even when a high pressure is generated in the gap between the rotor 2 and the stator 3, the pump can be operated stably. *
<4.実施形態のポンプ用モータの第2変形例> 続いて、実施形態のポンプ用モータ1の第2変形例について説明する。図10は、本発明の実施形態に係るポンプ用モータの第2変形例のステータキャンの外観斜視図である。  <4. Second Modification of Pump Motor of Embodiment> Next, a second modification of the pump motor 1 of the embodiment will be described. FIG. 10 is an external perspective view of a stator can of a second modification of the pump motor according to the embodiment of the present invention. *
実施形態のポンプ用モータ1の第2変形例は、リブ41が、ステータキャン40の内周面から径方向内側に突出する。リブ41は、軸方向に直線状に延びる。リブ41は、複数が周方向に所定の角度間隔で配置され、軸方向に平行に延びる。リブ41は、ステータキャン40の軸方向の一端から他端まで断続的に延びる。  In the second modification of the pump motor 1 of the embodiment, the rib 41 protrudes radially inward from the inner peripheral surface of the stator can 40. The rib 41 extends linearly in the axial direction. A plurality of ribs 41 are arranged at predetermined angular intervals in the circumferential direction and extend parallel to the axial direction. The rib 41 extends intermittently from one end of the stator can 40 in the axial direction to the other end. *
リブ41をステータキャン40の軸方向に断続的に延びる構成で設けた場合であっても、ステータキャン40の強度が向上する。したがって、ロータ2とステータ3との間の隙間で高圧が生じた場合であっても、ポンプを安定させて動作させることが可能である。  Even when the rib 41 is provided so as to extend intermittently in the axial direction of the stator can 40, the strength of the stator can 40 is improved. Therefore, even when a high pressure is generated in the gap between the rotor 2 and the stator 3, the pump can be operated stably. *
なお、複数のリブ41各々が軸方向において途切れる箇所は、図10に示すように軸方向の同じ箇所でも良いし、軸方向の異なる箇所でも良い。  Note that the location where each of the plurality of ribs 41 is interrupted in the axial direction may be the same location in the axial direction as shown in FIG. *
<5.その他> 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。また、上記実施形態やその変形例は適宜任意に組み合わせることができる。  <5. Others> Although the embodiment of the present invention has been described above, the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. Moreover, the said embodiment and its modification can be combined arbitrarily arbitrarily. *
例えば、ステータキャン40の周面に、軸方向に延びるリブ41に加えて、周方向に延びる環状のリブを組み合わせて設けても良い。 For example, in addition to the rib 41 extending in the axial direction, a circumferential rib extending in the circumferential direction may be provided in combination on the circumferential surface of the stator can 40.
本発明は、例えばポンプ用モータにおいて利用可能である。 The present invention can be used in, for example, a pump motor.
1・・・ポンプ用モータ、2・・・ロータ、3・・・ステータ、11・・・上軸受、12・・・下軸受、13・・・上ブラケット、14・・・下ブラケット、15・・・スラストベアリング、16・・・ケース部材、17・・・樹脂部、18、19・・・Oリング、21・・・回転軸、22・・・ロータコア、23・・・マグネット、24・・・ベース部材、25・・・ロータキャン、26・・・カバー部材、27・・・樹脂部、31・・・ステータコア、31a・・・コアバック、31b・・・ティース、32・・・インシュレータ、33・・・コイル、40・・・ステータキャン、41・・・リブ、42・・・突起部、42a・・・上面、43・・・フランジ部、44・・・外溝、45・・・内溝 DESCRIPTION OF SYMBOLS 1 ... Pump motor, 2 ... Rotor, 3 ... Stator, 11 ... Upper bearing, 12 ... Lower bearing, 13 ... Upper bracket, 14 ... Lower bracket, 15. .... Thrust bearing, 16 ... Case member, 17 ... Resin part, 18, 19 ... O-ring, 21 ... Rotating shaft, 22 ... Rotor core, 23 ... Magnet, 24 ... -Base member, 25 ... rotor can, 26 ... cover member, 27 ... resin part, 31 ... stator core, 31a ... core back, 31b ... teeth, 32 ... insulator, 33 ... Coil, 40 ... Stator can, 41 ... Rib, 42 ... Projection, 42a ... Upper surface, 43 ... Flange, 44 ... Outer groove, 45 ... Inside groove

Claims (8)

  1.  上下方向に延びる回転軸を中心に回転するロータと、
     前記ロータの径方向外側に配置されたステータと、
     前記ステータの内周側に配置されて前記ロータを囲み、軸方向に延びる筒状のステータキャンと、
    を有し、
     前記ステータキャンは、周面から径方向に突出して軸方向に延びるリブを有することを特徴とするポンプ用モータ。
    A rotor that rotates about a rotation axis extending in the vertical direction;
    A stator disposed radially outside the rotor;
    A cylindrical stator can that is arranged on the inner peripheral side of the stator and surrounds the rotor and extends in the axial direction;
    Have
    The stator can has a rib protruding in a radial direction from a peripheral surface and extending in an axial direction.
  2.  前記リブは、前記ステータキャンの軸方向の一端から他端まで連続して延びることを特徴とする請求項1に記載のポンプ用モータ。 2. The pump motor according to claim 1, wherein the rib extends continuously from one end to the other end in the axial direction of the stator can.
  3.  前記リブは、前記ステータキャンの外周面から径方向外側に突出することを特徴とする請求項1または請求項2に記載のポンプ用モータ。 3. The pump motor according to claim 1, wherein the rib protrudes radially outward from an outer peripheral surface of the stator can.
  4.  前記リブは、前記ステータキャンと一つながりに構成されることを特徴とする請求項1~請求項3のいずれかに記載のポンプ用モータ。 4. The pump motor according to claim 1, wherein the rib is connected to the stator can.
  5.  前記ステータは、ステータコアを有し、
     前記ステータコアは、
     環状のコアバックと、
     前記コアバックの内周面から径方向内側に延びる複数のティースと、
    を備え、
     前記リブは、周方向に隣り合う前記ティースの間に配置されることを特徴とする請求項1~請求項4のいずれかに記載のポンプ用モータ。
    The stator has a stator core;
    The stator core is
    An annular core back,
    A plurality of teeth extending radially inward from the inner peripheral surface of the core back;
    With
    The pump motor according to any one of claims 1 to 4, wherein the rib is disposed between the teeth adjacent in the circumferential direction.
  6.  前記ステータは、コイルと、前記コイルが巻き掛けられたインシュレータと、を有し、
     前記ステータキャンは、前記ステータキャンの外周面から径方向外側に突出する突起部
    を有し、
     前記突起部は、軸方向において前記インシュレータに接触することを特徴とする請求項1~請求項5のいずれかに記載のポンプ用モータ。
    The stator includes a coil and an insulator around which the coil is wound.
    The stator can has a protrusion protruding radially outward from the outer peripheral surface of the stator can,
    The pump motor according to any one of claims 1 to 5, wherein the protrusion is in contact with the insulator in an axial direction.
  7.  前記ステータキャンは、前記ステータキャンの内周面から径方向外側に向かって窪み、
    周方向に連続する内溝を備えることを特徴とする請求項1~請求項6のいずれかに記載のポンプ用モータ。
    The stator can is recessed radially outward from the inner peripheral surface of the stator can,
    The pump motor according to any one of claims 1 to 6, further comprising an inner groove continuous in the circumferential direction.
  8.  前記ステータキャンは、前記ステータキャンの外周面から径方向内側に向かって窪み、
    周方向に連続する外溝を備えることを特徴とする請求項1~請求項7のいずれかに記載のポンプ用モータ。
    The stator can is recessed from the outer peripheral surface of the stator can toward the radially inner side,
    The pump motor according to any one of claims 1 to 7, further comprising an outer groove continuous in a circumferential direction.
PCT/JP2017/029603 2016-09-09 2017-08-18 Pump motor WO2018047602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176754A JP2019198131A (en) 2016-09-09 2016-09-09 Motor for pump
JP2016-176754 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047602A1 true WO2018047602A1 (en) 2018-03-15

Family

ID=61561542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029603 WO2018047602A1 (en) 2016-09-09 2017-08-18 Pump motor

Country Status (2)

Country Link
JP (1) JP2019198131A (en)
WO (1) WO2018047602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007707A1 (en) * 2018-07-02 2020-01-09 Ebm-Papst St. Georgen Gmbh & Co. Kg Motor assembly with a separating can

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020126408A1 (en) 2020-10-08 2022-04-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Process for producing a can for sealing a rotor space from a stator space of an electrical machine, can, electrical machine, process for producing an electrical machine, motor vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086905A (en) * 2003-09-08 2005-03-31 Mayekawa Mfg Co Ltd Can for electromagnetic rotating equipment, and generator equipped with the can
JP2008193858A (en) * 2007-02-07 2008-08-21 Mitsuba Corp Canned motor
JP2013208013A (en) * 2012-03-29 2013-10-07 Ebara Corp Canned motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086905A (en) * 2003-09-08 2005-03-31 Mayekawa Mfg Co Ltd Can for electromagnetic rotating equipment, and generator equipped with the can
JP2008193858A (en) * 2007-02-07 2008-08-21 Mitsuba Corp Canned motor
JP2013208013A (en) * 2012-03-29 2013-10-07 Ebara Corp Canned motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007707A1 (en) * 2018-07-02 2020-01-09 Ebm-Papst St. Georgen Gmbh & Co. Kg Motor assembly with a separating can
US11581777B2 (en) 2018-07-02 2023-02-14 Ebm-Papst St. Georgen Gmbh & Co. Kg Motor assembly with a separating can

Also Published As

Publication number Publication date
JP2019198131A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
US9369010B2 (en) Stator of electric motor including resin injected by injection molding
JP6343127B2 (en) motor
US10079519B2 (en) Motor
US10003243B2 (en) Rotor, method of manufacturing the rotor, and rotary electric machine having the rotor
JP5705259B2 (en) Stator core fixing structure of rotating electric machine
US10622855B2 (en) Permanent magnet electric motor
JP6353722B2 (en) Bus bar unit and rotating electric machine equipped with the same
WO2018047602A1 (en) Pump motor
JP6484824B2 (en) Electric motor
US11050316B2 (en) Axial gap type rotating electric machine
JP5173636B2 (en) Rotating electric machine
US11552533B2 (en) Stator assembly, motor, and fan motor
JP2014073030A (en) Armature and motor
WO2018142463A1 (en) Axial gap-type rotary electrical machine
US8823240B2 (en) Stator and rotating electrical machine
JP2017022869A (en) Stator, motor and pump device
US11005333B2 (en) Electric motor having a stator with a radially outside rotor with the rotor having a fan mounting portion comprising a noncontact region and a contract region configured to contact a mouting surface of a fan
CN212063691U (en) Motor and axial flow fan
JP2019062608A (en) Stator
JP2019180136A (en) motor
CN215267805U (en) Stator unit, motor, and blower
JP2013099161A (en) Stator fixing structure
JP2022073343A (en) Motor, blower and range hood
KR20230008492A (en) Rotor for outer rotary type bldc motor and bldc motor with the same
WO2019064747A1 (en) Rotor and motor comprising rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP