WO2019064747A1 - Rotor and motor comprising rotor - Google Patents

Rotor and motor comprising rotor Download PDF

Info

Publication number
WO2019064747A1
WO2019064747A1 PCT/JP2018/023720 JP2018023720W WO2019064747A1 WO 2019064747 A1 WO2019064747 A1 WO 2019064747A1 JP 2018023720 W JP2018023720 W JP 2018023720W WO 2019064747 A1 WO2019064747 A1 WO 2019064747A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
rotor core
extending
axial direction
Prior art date
Application number
PCT/JP2018/023720
Other languages
French (fr)
Japanese (ja)
Inventor
古舘 栄次
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201890001084.2U priority Critical patent/CN212462909U/en
Publication of WO2019064747A1 publication Critical patent/WO2019064747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotor and a motor provided with the rotor.
  • the rotor in the conventional electric motor includes a rotor core provided on a rotating shaft, a plurality of magnet insertion holes formed circumferentially in the rotor core, a permanent magnet inserted and embedded in the magnet insertion hole, and a magnet insertion on the surface of the permanent magnet And a resin member that covers an outer peripheral surface facing the inner peripheral surface of the hole (e.g., Patent Document 1).
  • a protrusion for preventing the permanent magnet from falling is formed on one side of the radially inner peripheral surface of the magnet insertion hole.
  • a permanent magnet on which a coating of a resin member is formed is pressed into and fixed to the magnet insertion hole.
  • the magnet before the press-fitting of the magnet into the magnet insertion hole, the magnet is coated with the resin member in advance and the projection is arranged in advance in the magnet insertion hole. For this reason, variation may occur in the thickness of the resin member or the protrusion amount of the protrusion. In this case, if the thickness of the resin member or the amount of protrusion of the protrusion is insufficient, there is a problem that rattling of the magnet accommodated in the magnet insertion hole occurs. On the other hand, when the thickness of the resin member or the protrusion amount of the protrusion is increased, it takes time and effort to press the magnet into the magnet insertion hole, which causes problems such as breakage of the magnet and an increase in the number of manufacturing steps.
  • An embodiment of the present invention provides a rotor that can suppress an increase in the number of manufacturing steps while suppressing rattling of the magnet in the magnet housing portion, and a motor including the rotor.
  • An exemplary rotor of the present invention comprises a rotor core disposed along a vertically extending central axis, and a plurality of magnets circumferentially arranged on the rotor core, wherein the rotor core is at least one of the magnets. It has a plurality of magnet housing parts which accommodate a part and are arranged in the circumferential direction, and a peripheral wall which constitutes at least a part of the inner side wall of each of the magnet housing parts, and is adjacent to the circumferential direction A recess is provided between the magnet housings and recessed radially inward from the outer peripheral surface of the rotor core, and a pressing member for pressing the peripheral wall toward the magnet is disposed in the recess.
  • An exemplary motor of the present invention comprises the rotor of the above configuration and a stator.
  • the exemplary rotor and motor of the present invention it is possible to suppress the increase in the number of manufacturing processes while suppressing the rattling of the magnet in the magnet housing portion.
  • FIG. 1 is a plan view of a motor provided with a rotor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached.
  • FIG. 3 is a plan view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached.
  • FIG. 4 is a side view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached.
  • FIG. 5 is a perspective view showing a state before the pressing member of the rotor according to the embodiment of the present invention is disposed in the recess.
  • FIG. 1 is a plan view of a motor provided with a rotor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached.
  • FIG. 3 is a plan view showing
  • FIG. 6 is a plan view showing a state before the pressing member of the rotor according to the embodiment of the present invention is disposed in the recess.
  • FIG. 7 is a perspective view of a pressing member of a rotor according to an embodiment of the present invention.
  • FIG. 8 is a plan view of a pressing member of a rotor according to an embodiment of the present invention.
  • FIG. 9 is a perspective view showing a state in which a shaft of a rotor according to a first modification of the embodiment of the present invention is attached.
  • FIG. 10 is a side view showing a state in which a shaft of a rotor according to a first modification of the embodiment of the present invention is attached.
  • FIG. 11 is a side view showing a state in which a shaft of a rotor according to a second modification of the embodiment of the present invention is attached.
  • FIG. 12 is a perspective view showing a state in which a shaft of a rotor according to a third modification of the embodiment of the present invention is attached.
  • FIG. 13 is a perspective view showing a state in which a shaft of a rotor according to a fourth modification of the embodiment of the present invention is attached.
  • FIG. 14 is a perspective view of a rotor according to a fifth modification of the embodiment of the present invention.
  • FIG. 15 is a plan view of a rotor according to a fifth modification of the embodiment of the present invention.
  • FIG. 16 is an enlarged plan view of a part of the peripheral portion of a rotor according to a sixth modification of the embodiment of the present invention.
  • FIG. 17 is an enlarged plan view enlarging a part of a peripheral portion of a rotor according to a seventh modified example of the embodiment of the present invention.
  • FIG. 18 is an enlarged plan view enlarging a part of a peripheral portion of a rotor according to an eighth modified embodiment of the embodiment of the present invention.
  • FIG. 19 is an enlarged plan view enlarging a part of a peripheral portion of a rotor according to a ninth modified embodiment of the embodiment of the present invention.
  • the direction in which the central axis of the motor extends is simply referred to as “axial direction”, and the direction orthogonal to the central axis (direction perpendicular to the axial direction) centered on the central axis of the motor is simply referred to as “radial direction”.
  • a direction along an arc centering on the central axis of the motor is simply referred to as "circumferential direction”.
  • the central axis of the rotor core coincides with the central axis of the motor.
  • FIG. 1 is a plan view of a motor according to an embodiment of the present invention.
  • the motor 1 is a so-called inner rotor type motor and has a stator 2 and a rotor 3.
  • the motor 1 further has a cylindrical housing (not shown) that encloses the stator 2 and the rotor 3.
  • the stator 2 is fixed to the housing by, for example, press fitting or shrink fitting.
  • the motor 1 may further include a control board (not shown) connected to the stator 2.
  • the stator 2 has, for example, an axially extending cylindrical shape.
  • the stator 2 is disposed radially outside the rotor 3 with a predetermined gap.
  • the stator 2 has a stator core 21, an insulator 22, and a coil 23.
  • the stator core 21 has a cylindrical shape extending in the axial direction.
  • the stator core 21 is formed by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the stator core 21 may be a dust core.
  • the stator core 21 has a core back 21 a and a plurality of teeth (not shown).
  • the core back 21a has an annular shape.
  • the teeth extend radially inward from the inner peripheral surface of the core back 21a.
  • the plurality of teeth are arranged in the circumferential direction at predetermined intervals.
  • the number of teeth is twelve.
  • the number of teeth is not particularly limited, and may be arbitrarily changed in accordance with a desired specification.
  • the stator core 21 is a so-called round core.
  • the stator core 21 may be a split core or a straight core formed by connecting a plurality of T-shaped core back pieces having teeth in a strip shape.
  • the insulator 22 covers the outer surface of the teeth.
  • the insulator 22 is disposed between the stator core 21 and the coil 23.
  • the insulator 22 is made of, for example, an insulating material such as a synthetic resin.
  • the coil 23 is configured by winding a conducting wire around the teeth via the insulator 22.
  • FIG. 2 is a perspective view of the rotor 3 to which the shaft 4 is attached.
  • FIG. 3 is a plan view of the rotor 3 to which the shaft 4 is attached.
  • FIG. 4 is a side view of the rotor 3 to which the shaft 4 is attached.
  • FIG. 5 is a perspective view showing a state before the pressing member 34 of the rotor 3 to which the shaft 4 is attached is disposed in the recess 33.
  • FIG. FIG. 6 is a plan view showing a state before the pressing member 34 of the rotor 3 to which the shaft 4 is attached is disposed in the recess 33.
  • the rotor 3 has an axially extending cylindrical shape.
  • the rotor 3 is disposed radially inward of the stator 2 with a predetermined gap.
  • the rotor 3 is an IPM (Interior Permanent Magnet) type rotor, and includes a rotor core 30 and a plurality of magnets 31.
  • the rotor core 30 is disposed along a central axis C extending up and down and has an electromagnetic steel plate 30b.
  • the electromagnetic steel plate 30 b extends radially outward with respect to the central axis C of the rotor core 30.
  • the rotor core 30 is a laminated steel plate in which a plurality of electromagnetic steel plates 30 b are laminated in the axial direction.
  • the plurality of electromagnetic steel plates 30b are fixed to each other by, for example, caulking or welding.
  • the rotor core 30 is not limited to a laminated steel plate, and may be, for example, a dust core.
  • the rotor core 30 has a substantially cylindrical shape extending in the axial direction.
  • a hole 30 a penetrating in the axial direction is disposed at the center of the rotor core 30.
  • a portion of the shaft 4 is press-fitted into the hole 30a.
  • the shaft 4 is a rotating shaft of the motor 1.
  • the shaft 4 has a cylindrical shape extending in the vertical direction.
  • the shaft 4 may be a hollow member.
  • a member such as a resin member or a metal member may be attached in the hole 30a, and a part of the shaft 4 may be fixed to the hole 30a via the member. That is, the shaft 4 is fixed to the rotor core 30 directly or indirectly.
  • the upper end side and the lower end side of the shaft 4 are rotatably supported by upper and lower bearings (both not shown) provided above and below the rotor 3.
  • the rotor 3 can rotate around the central axis C together with the shaft 4 extending in the vertical direction.
  • the central axis of the rotor core 30 coincides with the shaft 4 of the motor 1.
  • the bearing may be a ball bearing or the like, and the type is not particularly limited.
  • the rotor core 30 has a plurality of magnet housing portions 32 and a plurality of peripheral wall portions 35.
  • the magnet housing portion 32 is a through hole which penetrates the rotor core 30 in the axial direction.
  • the plurality of magnet housing portions 32 are arranged side by side in the circumferential direction.
  • the shape of the cross section perpendicular to the axial direction in the inner side surface of the magnet housing portion 32 is a rectangular shape extending in the circumferential direction.
  • the magnet housing portion 32 houses at least a part of the magnet 31.
  • the plurality of magnets 31 are arranged in the circumferential direction on the rotor core 30.
  • the shape of the cross section perpendicular to the axial direction of the magnet 31 is a rectangular shape extending in the circumferential direction.
  • the shape of the magnet 31 is a plate extending in the axial direction.
  • eight magnet housing portions 32 and eight magnets 31 are provided.
  • the axial length of the magnet 31 substantially coincides with the axial length of the magnet housing portion 32.
  • the axial length of the magnet 31 may be shorter than the axial length of the magnet housing portion 32.
  • the number of magnet housing portions 32 and the number of magnets 31 are not particularly limited, and may be arbitrarily changed in accordance with desired specifications.
  • the shape of the magnet 31 is not limited to the above-described shape.
  • the shape of the magnet 31 may be any shape as long as it can be accommodated in the magnet accommodating portion 32, and may be a shape in which the side surface in the radial direction is a curved surface or the like, and is not particularly limited.
  • the type of the magnet 31 may be a neodymium sintered magnet, a neodymium bond magnet, a ferrite magnet or the like, and is not particularly limited.
  • the circumferential wall portion 35 is disposed radially outside the magnet housing portion 32 and constitutes at least a part of the inner side wall 32 a of each magnet housing portion 32.
  • the inner side wall 32 a of the magnet housing portion 32 is disposed on both sides in the circumferential direction and both sides in the radial direction of the magnet housing portion 32.
  • the inner side wall 32a includes a circumferential end 32b (see FIG. 6) disposed on at least one circumferential side of the magnet housing 32 and a plurality of bridge portions 36 connecting the circumferential end 32b and the circumferential wall 35. And.
  • the bridge portion 36 has an outer portion 36a and an inner portion 36b.
  • the outer side portion 36 a extends in the direction (one side or the other side in the circumferential direction) away from the magnet 31 as it goes radially inward from the peripheral wall 35.
  • the inner portion 36b extends in the direction approaching the magnet 31 (the other side or one side in the circumferential direction) as it goes radially inward from the tip of the outer portion 36a. That is, when viewed in the axial direction, the bridge portions 36 adjacent in the circumferential direction are bent in directions approaching each other.
  • the bridge portion 36 located on one side in the circumferential direction protrudes toward the bridge portion 36 located on the other side in the circumferential direction, and the bridge portion 36 located on the other side in the circumferential direction It protrudes toward the bridge part 36 located in circumferential direction one side.
  • the rotor core 30 in the present embodiment is configured by alternately laminating an electromagnetic steel plate 30 b having a bridge portion 36 and an electromagnetic steel plate 30 b having no bridge portion 36 in the axial direction. Therefore, the space portion 37 is formed between the bridge portions 36 adjacent in the axial direction.
  • the electromagnetic steel plates 30 b having the bridge portions 36 and the electromagnetic steel plates 30 b not having the bridge portions 36 need not necessarily be alternately arranged.
  • the rotor core 30 may have at least one or more electromagnetic steel plates 30 b having no bridge portion 36.
  • the rotor core 30 may not include the electromagnetic steel plate 30 b having no bridge portion 36, and may be configured only of the electromagnetic steel plate having the bridge portion 36. In this case, the rotor core 30 does not have the space 37.
  • a recessed part 33 recessed inward in the radial direction from the outer peripheral surface of the rotor core 30 is provided.
  • the recess 33 extends from one axial end to the lower axial end of the rotor core 30.
  • the inner side wall of the recess 33 includes a bridge portion 36.
  • the recess 33 has a narrow portion 331, an inner wide portion 332, and an outer wide portion 333.
  • An inner wide portion 332, a narrow portion 331, and an outer wide portion 333 are arranged in order from the inner side in the radial direction to the outer side in the radial direction.
  • the inner wide portion 332, the narrow portion 331, and the outer wide portion 333 communicate with each other in the radial direction.
  • the shape of the opening of the inner wide portion 332 is substantially C-shaped.
  • the narrow portions 331 are a pair of linear shapes extending in the radial direction from the inner wide portion 332.
  • the circumferential width of the outer wide portion 333 generally increases toward the radially outer side.
  • the longest width W2 in the circumferential direction of the inner wide portion 332 is larger than the width W1 in the circumferential direction of the narrow portion 331, and the shortest width W3 in the circumferential direction of the outer wide portion 333 is at least the circumferential width W1 of the narrow portion 331 is there. That is, the inner wide portion 332 is disposed radially inward of the narrow portion 331, and the width in the circumferential direction is larger than that of the narrow portion 331.
  • the outer wide portion 333 is disposed radially outward of the narrow portion 331 and has a circumferential width greater than that of the narrow portion 331. Then, in the recess 33, a first extending portion 341 (pressing member 34) described later is disposed.
  • FIG. 7 is a perspective view of the pressing member 34.
  • FIG. 8 is a plan view of the pressing member 34.
  • the pressing member 34 has a first reinforcing portion 343 and a plurality of first extending portions 341.
  • the pressing member 34 is preferably made of, for example, a nonmagnetic material such as resin, nonmagnetic stainless steel, or aluminum. Although eight first extending portions 341 are arranged in the present embodiment, the number of first extending portions 341 is not limited thereto. That is, the number of first extending portions 341 may be equal to or less than the number of recesses 33.
  • the first reinforcing portion 343 is annular, and is located on the axially lower side (axially one side) of the rotor core 30.
  • the first extending portion 341 extends axially upward from the first reinforcing portion 343 (the other side in the axial direction).
  • the axial length of the first extending portion 341 is approximately half of the axial length of the rotor core 30, but may be the same as the axial length of the rotor core 30.
  • the first reinforcing portion 343 connects the plurality of first extending portions 341.
  • the first extending portion 341 is a member integral with the first reinforcing portion 343.
  • the first extending portion 341 may be a member separate from the first reinforcing portion 343. In this case, it is desirable that the first reinforcing portion 343 be connected to the first extending portion 341 by, for example, welding or welding.
  • the circumferential width L1 (see FIG. 8) of the pressing member 34 in the inner wide portion 332 is larger than the narrow portion 331 and smaller than the circumferential maximum width W2 (see FIG. 6) of the inner wide portion 332.
  • the cross-sectional shape perpendicular to the axial direction of the first extending portion 341 is substantially the same as the cross-sectional shape perpendicular to the axial direction of the recess 33.
  • the area of the cross section perpendicular to the axial direction of the first extending portion 341 is larger than the area of the cross section perpendicular to the axial direction of the recess 33.
  • the magnet 31 is inserted into the magnet housing portion 32 in the axial direction.
  • the radial length of the magnet housing portion 32 is larger than the radial length of the magnet 31, and the circumferential length of the magnet housing portion 32 is Greater than the circumferential length. Therefore, when the magnet 31 is inserted into the magnet housing portion 32 in the axial direction, excessive stress is not applied to the magnet 31 from the electromagnetic steel plate 30 b. Therefore, the magnet 31 can be easily housed in the magnet housing portion 32. Further, when the magnet 31 is housed in the magnet housing portion 32, damage such as cracking of the magnet 31 can be prevented.
  • the first extending portion 341 is inserted into the recess 33 in the axial direction.
  • the first extending portion 341 is disposed in the recess 33.
  • the upper surface (the surface on the other side in the axial direction) of the first reinforcing portion 343 contacts the lower surface (the surface on the one side in the axial direction) of the rotor core 30.
  • the first reinforcing portion 343 covers at least a part of the opening at the lower end of the magnet housing portion 32.
  • the first reinforcing portion 343 may not necessarily cover the opening at the lower end of the magnet housing portion 32.
  • the area of the cross section perpendicular to the axial direction of the first extending portion 341 is larger than the area of the cross section perpendicular to the axial direction of the recess 33 . Therefore, when the first extending portion 341 is disposed in the recess 33, the radially outer end portion of the first extending portion 341 presses the outer portion 36a of the bridge portion 36 radially inward, and the bridge portion 36 is elastically deformed. Do. At this time, since the peripheral wall portion 35 is connected to the bridge portion 36, the peripheral wall portion 35 also moves radially inward. That is, the first extending portion 341 of the pressing member 34 presses the peripheral wall 35 toward the magnet 31.
  • the gap in the radial direction between the peripheral wall portion 35 and the magnet 31 and the gap in the radial direction between the inner side wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 can be reduced.
  • the magnet 31 when the magnet 31 is housed in the magnet housing portion 32, excessive stress is not received from the inner side wall 32 a of the magnet housing portion 32. For this reason, accommodation of the magnet 31 in the magnet accommodation part 32 can be performed smoothly. Therefore, it is possible to suppress an increase in the number of manufacturing steps of the rotor 3 and the motor 1 while suppressing the rattling of the magnet 31 housed in the magnet housing portion 32.
  • the bridge portion 36 includes the inner side wall of the recess 33, and the pressing member 34 presses the bridge portion 36 at least radially inward.
  • the pressing member 34 can press the peripheral wall 35 toward the magnet 31 via the bridge portion 36 without contacting the pressing member 34 with the radially outer surface of the peripheral wall 35. Therefore, the increase in the radial length of the rotor 3 can be suppressed.
  • the circumferential width of the pressing member 34 in the inner wide portion 332 is larger than the narrow portion 331 and smaller than the circumferential maximum width of the inner wide portion 332.
  • the width of the outer wide portion 333 in the circumferential direction is made wider than the narrow portion 331, and magnetic flux leakage in the circumferential direction of the magnet 31 can be reduced when the motor 1 rotates as described later.
  • the first extending portion 341 can be reinforced by the first reinforcing portion 343. Moreover, the workability at the time of insertion to the recessed part 33 of several 1st extending
  • stretching part 341 can be improved by the 1st reinforcement part 343.
  • the radial gap between the peripheral wall portion 35 and the magnet 31 by the pressing member 34 and the radial direction of the magnet 31 and the inner side wall 32a on the inner peripheral side of the magnet housing portion 32. Can be reduced. Therefore, the magnetic resistance of the motor 1 in the magnet housing portion 32 is reduced, and the magnetic flux flows smoothly between the stator 2 and the rotor 3. Therefore, the rotation efficiency of the motor 1 can be improved.
  • the pressing member 34 is a nonmagnetic material
  • the leakage of the magnetic flux from the stator 2 to the pressing member 34 is suppressed, and the decrease in the rotation efficiency of the motor 1 is suppressed.
  • an adhesive, a resin material, or the like may be further disposed.
  • the clearance in the radial direction between the peripheral wall portion 35 and the magnet 31 and the clearance in the radial direction between the inner side wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 are further reduced.
  • FIG. 9 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the first modified example of the present embodiment is attached.
  • FIG. 10 is a side view showing a state in which the shaft 4 of the rotor 3 of the first modification is attached. 9 and 10 show a state in which the second extending portion 342 of the pressing member 34 is being inserted into the recess 33.
  • the pressing member 34 has a second reinforcing portion 344 and a plurality of second extending portions 342 in addition to the first reinforcing portion 343 and the first extending portion 341.
  • the second reinforcing portion 344 is annular, and is located on the other axial side (axially upper side) of the rotor core 30.
  • the second extending portion 342 extends from the second reinforcing portion 344 in the axial direction to one side (axially lower side), and at least a part of the second extending portion 342 is accommodated in the recess 33.
  • the second reinforcing portion 344 connects the plurality of second extending portions 342. In the present modification, the second reinforcing portion 344 is integrally formed with the second extending portion 342.
  • the second reinforcing portion 344 may be configured separately from the second extending portion 342. In this case, it is desirable that the second reinforcing portion 344 be connected to the second extending portion 342 by, for example, welding or welding.
  • the number of second extending portions 342 is eight in the present embodiment, the present invention is not limited to this. That is, the number of second extending portions 342 may be equal to or less than the number of concave portions 33.
  • the number of first extending portions 341 is the same as the number of second extending portions 342. The number of first extending portions 341 may be different from the number of second extending portions 342.
  • the second reinforcing portion 344 is configured in the same manner as the first reinforcing portion 343.
  • the shape of the second reinforcing portion 344 does not have to be the same as the shape of the first reinforcing portion 343 and may be different from each other.
  • the second extending portion 342 is configured in the same manner as the first extending portion 341.
  • the shape of the second extending portion 342 does not have to be the same as the shape of the first extending portion 341, and may be different from each other.
  • the axial length of the first extending portion 341 and the axial length of the second extending portion 342 are substantially the same, and are approximately half of the axial length of the rotor core 30.
  • the axial length of the first extending portion 341 does not have to be the same as the axial length of the second extending portion 342, and the lengths may be different from each other.
  • the axial length of the first extending portion 341 may be longer than the axial length of the second extending portion 342, or the axial length of the second extending portion 342 is greater than the axial length of the first extending portion 341 It may also be long. Even in this case, it is desirable that the sum of the axial length of the first extending portion 341 and the axial length of the second extending portion 342 be the axial length of the rotor core 30.
  • the tip of the first extending portion 341 on the upper side in the axial direction contacts or opposes the tip on the lower side (the one side in the axial direction) of the second extending portion 342 in the axial direction.
  • the second extending portion 342 presses the peripheral wall portion 35 to the magnet 31 side.
  • the gap in the radial direction between the peripheral wall portion 35 and the magnet 31 and the gap in the radial direction between the inner side wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 can be reduced. . Therefore, rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
  • the second extending portion 342 can be reinforced by the second reinforcing portion 344. The second reinforcing portion 344 can improve the workability at the time of inserting the plurality of second extending portions 342 into the concave portion 33.
  • FIG. 11 is a side view showing a state in which the shaft 4 of the rotor 3 of the second modified example of the present embodiment is attached.
  • the rotor core 30 may be divided into a plurality of stages in the axial direction. More preferably, the rotor core 30 has a skew structure axially divided into a plurality of stages.
  • the rotor core 30 includes, for example, a first rotor core 301 and a second rotor core 302.
  • the first rotor core 301 and the second rotor core 302 are configured by laminating a plurality of electromagnetic steel plates 30 b in the axial direction, as in the above-described embodiment.
  • the second rotor core 302 is located on the axially upper side (the other axial side) of the first rotor core 301.
  • Each of the first rotor core 301 and the second rotor core 302 has the recess 33, the bridge portion 36, the magnet housing portion 32, and the magnet 31 as in the above-described embodiment.
  • the axial height of the first rotor core 301 is the same as the axial height of the second rotor core 302.
  • the axial height of the first rotor core 301 may be different from the axial height of the second rotor core 302.
  • the first rotor core 301 is arranged to be offset from the second rotor core 302 by a predetermined angle in the circumferential direction around the central axis C.
  • the rotor core 30 may be axially divided into three or more stages instead of two stages.
  • the first reinforcing portion 343 is disposed on the axially lower side (one side in the axial direction) of the first rotor core 301.
  • the first reinforcing portion 343 axially faces or contacts the surface on one axial side of the first rotor core 301. More preferably, the first reinforcing portion 343 covers at least a part of the opening at the lower end of the magnet housing portion 32 of the first rotor core 301.
  • the magnet 31 is prevented from coming off the magnet housing portion 32 in the axial direction.
  • At least a portion of the first extending portion 341 is accommodated in the recess 33 of the first rotor core 301. Thereby, in the first rotor core 301, the first extending portion 341 can press the bridge portion 36, and rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
  • the second reinforcing portion 344 is disposed on the other axial side of the second rotor core 302.
  • the second reinforcing portion 344 faces or contacts the other surface of the second rotor core 302 in the axial direction.
  • the second reinforcing portion 344 covers at least a part of the opening at the upper end of the magnet housing portion 32 of the second rotor core 302.
  • the magnet 31 is prevented from coming off the magnet housing portion 32 in the axial direction.
  • At least a portion of the second extending portion 342 is accommodated in the recess 33 of the second rotor core 302.
  • the second extending portion 342 can press the bridge portion 36, and rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
  • the first rotor core 301 and the second rotor core 302 are arranged to be offset in the circumferential direction. Therefore, in the circumferential direction, the position of the first extending portion 341 is different from the position of the second extending portion 342. In other words, the first extending portion 341 does not face or contact the second extending portion 342 in the axial direction. Note that, even when the first rotor core 301 and the second rotor core 302 are offset in the circumferential direction, at least a portion of the end of the first extending portion 341 is at least a portion of the end of the second extending portion 342; It may be opposed or in contact.
  • the length of the first extending portion 341 is the same as the axial length of the first rotor core 301 or shorter than the axial length of the first rotor core 301.
  • the length of the second extending portion 342 is the same as the axial length of the second rotor core 302 or shorter than the axial length of the second rotor core 302.
  • the axial length of the first extending portion 341 is longer than the axial length of the first rotor core 301 and the axial length of the second extending portion 342 is shorter than the axial length of the second rotor core 302 Good.
  • the axial length of the second extending portion 342 is short by the dimension between the end of the first extending portion 341 and the other surface of the first rotor core 301 in the axial direction.
  • the axial length of the first extending portion 341 is longer than the axial length of the first rotor core 301
  • the axial length of the second extending portion 342 is longer than the axial length of the second rotor core 302. Good.
  • at least a part of the tip on the other side in the axial direction of the first extension part 341 radially overlaps with at least a part of the tip on the one side in the axial direction of the second extension part 342.
  • the rotor core 30 may have a skew structure in which the electromagnetic steel plates 30b are stacked with a predetermined angle in the circumferential direction with the central axis C as a center.
  • the first extending portion 341 extend in the circumferential direction at a predetermined angle with respect to the central axis C.
  • FIG. 12 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the third modified example of the present embodiment is attached.
  • the first reinforcing portion 343 and the second reinforcing portion 344 are omitted from the pressing member 34, and the pressing member 34 is configured by the first extending portion 341.
  • the axial length of the first extending portion 341 (the pressing member 34) is substantially the same as the axial length of the rotor core 30.
  • the axial length of the first extending portion 341 may be different from the axial length of the rotor core 30.
  • the axial length of the first extending portion 341 (the pressing member 34) may be shorter than the axial length of the rotor core 30.
  • at least one of the axial direction one side and the axial direction other side end face of the first extending portion 341 is positioned in the recess 33.
  • the end surface on the one axial direction side and the other axial direction side of the first extending portion 341 may be flush with the end surface on the axial direction one side and the other axial direction side of the rotor core 30, respectively. Only the end surface on the one axial direction side or the other axial direction side of the first extending portion 341 may be flush with the end surface on the axial direction one side or the other axial direction side of the rotor core 30.
  • the rotor 3 further includes a cylindrical holding member 38 covering the outer peripheral surface of the rotor core 30 and pressing at least the peripheral wall portion 35 radially inward.
  • the holding member 38 is made of, for example, a nonmagnetic material such as resin or aluminum.
  • the axial length of the holding member 38 is substantially the same as the axial length of the rotor core 30.
  • the holding member 38 can prevent the first extending portion 341 from moving radially outward. As a result, the first extending portion 341 can press the bridge portion 16 more, and rattling of the magnet 31 positioned in the magnet housing portion 32 can be further suppressed.
  • the shape of the holding member 38 is not limited to a cylindrical shape, and may be, for example, a band-like ring shape as shown in FIG. In FIG. 13, the ring-shaped holding member 38 is disposed at the axially upper portion and the axially lower portion. Thereby, the peripheral wall portion 35 can be easily tightened toward the magnet 31 side, and rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.
  • the ring-shaped holding member 38 may be disposed only at the axial center, or may be disposed at the axial upper portion, the axial lower portion, and the axial center.
  • the number of ring-shaped holding members 38 attached to the rotor core 30 may be one or two or more.
  • the rotor 3 may have both a cylindrical holding member 38 and a ring-shaped holding member 38.
  • the shape of the holding member 38 is not limited to a circular shape, and may be, for example, a polygonal shape.
  • the holding member 38 may be configured by a heat-shrinkable tube that shrinks by heating.
  • FIG. 14 is a perspective view of a rotor 3 according to a fifth modification of the present embodiment.
  • FIG. 15 is a plan view of a rotor 3 according to a fifth modification.
  • the rotor core 30 is formed only of the electromagnetic steel plate 30 b having the bridge portion 36. That is, the rotor core 30 of the present modification does not have the space 37.
  • the pressing member 34 of this modification is a round bar-like member extending in the axial direction. That is, the shape of the cross section perpendicular to the axial direction of the pressing member 34 is circular.
  • the rod-shaped pressing member 34 is not limited to a round rod.
  • the shape of the cross section perpendicular to the axial direction of the rod-like pressing member 34 may be, for example, an elliptical shape or a polygonal shape including a rectangle, and is not particularly limited.
  • the pressing member 34 presses the peripheral wall 35 toward the magnet 31 via the pressing of the bridge 36.
  • the bridge portion 36 constituting each magnet housing portion 32 is pressed toward the magnet 31 located inside the magnet housing portion 32.
  • the bridge portions 36 adjacent in the circumferential direction deform in directions away from each other.
  • the holding member 38 may be attached to the rotor 3.
  • the pressing member 34 presses the bridge portion 36, the gap between the inner wall of the magnet housing portion 32 and the outer surface of the magnet 31 can be reduced. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.
  • FIG. 16 is an enlarged plan view of a part of the peripheral portion of the rotor 3 according to a sixth modification of the present embodiment.
  • the magnet housing portion 32 of the present modification is a through hole having an opening 39 on one circumferential side and penetrating the rotor core 30 in the axial direction.
  • the opening 39 penetrates to one side in the circumferential direction, and extends from one axial end of the rotor core 30 to the other axial end.
  • the bridge portion 36 is not disposed on the opening 39 side of the magnet housing portion 32.
  • the recess 33 communicates with the magnet housing portion 32 through the opening 39.
  • the pressing member 34 contacts or opposes the magnet 31 through the opening 39. Further, the end portion on the opening 39 side of the pressing member 34 contacts the radially outer surface of the peripheral wall 35 and presses radially inward. Since the magnet housing portion 32 has the opening 39, the magnet 31 can be easily stored in the magnet housing portion 32 via the opening 39.
  • the pressing member 34 can restrict circumferential movement of the magnet 31 through the opening 39.
  • FIG. 17 is an enlarged plan view of a part of the peripheral portion of the rotor 3 according to a seventh modification of the present embodiment.
  • the bridge portion 36 of the rotor 3 of the present modification has a first extending portion 36 c, a second extending portion 36 d, and a third extending portion 36 e.
  • the first extending portion 36 c extends radially inward from the peripheral wall 35.
  • the second extending portion 36 d extends from the radially inner end of the first extending portion 36 c to the side away from the magnet 31 in the circumferential direction (the side on which the adjacent bridge portion 36 is located).
  • the third extending portion 36 e extends radially inward from the tip of the second extending portion 36 d.
  • the bridge portion 36 extends inward in the radial direction from the peripheral wall portion 35, and is bent in the circumferential direction away from the magnet 31 and then extends inward in the radial direction.
  • the bridge portions 36 adjacent in the circumferential direction are bent in directions approaching each other.
  • the pressing member 34 disposed in the recess 33 presses the circumferential wall 35 to the magnet 31 side by pressing radially inward at least one of the first extending portion 36 c, the second extending portion 36 d, and the third extending portion 36 e. Press to.
  • the pressing member 34 can easily press the bridge portion 36 and the peripheral wall portion 35 radially inward.
  • the gap between the inner wall of the magnet housing portion 32 and the outer surface of the magnet 31 can be reduced. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.
  • FIG. 18 is an enlarged plan view of a part of the peripheral portion of the rotor 3 according to an eighth modification of the present embodiment.
  • the two outer side portions 36a adjacent in the circumferential direction are connected to the radially outer end of one inner side portion 36b. That is, the bridge portions 36 adjacent in the circumferential direction are connected to each other.
  • the pressing member 34 disposed in the recess 33 presses the outer side portion 36 a radially inward. Therefore, the gap between the inner wall of the magnet housing portion 32 and the outer surface of the magnet 31 can be reduced. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.
  • FIG. 19 is an enlarged plan view of a part of the peripheral edge portion of a rotor 3 according to a ninth modified example of the present embodiment.
  • the bridge portion 36 is omitted.
  • the pressing member 34 can be easily disposed in the recess 33.
  • the pressing member 34 presses the radially outer surface of the peripheral wall 35 radially inward.
  • the gap between the inner wall of the magnet housing portion 32 and the outer surface of the magnet 31 can be reduced.
  • rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.
  • Embodiments of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a sealing fan, a washing machine, a refrigerator, an electric power steering apparatus, an electric oil pump, and an electric brake.
  • various motors such as a vacuum cleaner, a dryer, a sealing fan, a washing machine, a refrigerator, an electric power steering apparatus, an electric oil pump, and an electric brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

A rotor that comprises: a rotor core that is arranged along a vertical center axis; and a plurality of magnets that are arranged on the rotor core side-by-side in the circumferential direction. The rotor core has: a plurality of magnet housing parts that are arranged side-by-side in the circumferential direction and house at least parts of the magnets; and circumferential wall parts that constitute at least parts of inside walls of the magnet housing parts. Recesses that are recessed from an outer circumferential surface of the rotor core toward the radial direction inside are provided between magnet housing parts that are adjacent in the circumferential direction. Pressing members that press the circumferential wall parts toward the magnets are arranged in the recesses.

Description

ロータ及びそのロータを備えたモータRotor and motor provided with the rotor
本発明は、ロータ及びそのロータを備えたモータに関する。 The present invention relates to a rotor and a motor provided with the rotor.
従来の電動モータにおけるロータは、回転軸に設けられたロータコアと、ロータコアに周方向に複数形成された磁石挿入孔と、磁石挿入孔に挿入され埋め込まれる永久磁石と、永久磁石の表面の磁石挿入孔の内周面と対向する外周面を被覆する樹脂部材と、を備える(例えば、特許文献1)。
The rotor in the conventional electric motor includes a rotor core provided on a rotating shaft, a plurality of magnet insertion holes formed circumferentially in the rotor core, a permanent magnet inserted and embedded in the magnet insertion hole, and a magnet insertion on the surface of the permanent magnet And a resin member that covers an outer peripheral surface facing the inner peripheral surface of the hole (e.g., Patent Document 1).
磁石挿入孔の径方向内周面の一方の側には、永久磁石の抜け防止用の突起部が形成されている。樹脂部材の被覆が形成された永久磁石が磁石挿入孔に圧入され固定されている。
On one side of the radially inner peripheral surface of the magnet insertion hole, a protrusion for preventing the permanent magnet from falling is formed. A permanent magnet on which a coating of a resin member is formed is pressed into and fixed to the magnet insertion hole.
特開2013-219948号公報JP, 2013-219948, A
しかしながら、上記従来のロータによると、マグネットの磁石挿入孔への圧入前に、マグネットを樹脂部材で予め被覆するとともに磁石挿入孔内に突起部を予め配置している。このため、樹脂部材の厚み又は突起部の突出量にバラツキが生じる場合がある。この場合に、樹脂部材の厚みまたは突起部の突出量が不十分であると、磁石挿入孔に収容されたマグネットのガタツキが発生する問題があった。一方、樹脂部材の厚みまたは突起部の突出量を大きくすると、マグネットの磁石挿入孔への圧入に手間がかかり、マグネットの破損や製造工数が増大するなどの問題があった。  However, according to the above-mentioned conventional rotor, before the press-fitting of the magnet into the magnet insertion hole, the magnet is coated with the resin member in advance and the projection is arranged in advance in the magnet insertion hole. For this reason, variation may occur in the thickness of the resin member or the protrusion amount of the protrusion. In this case, if the thickness of the resin member or the amount of protrusion of the protrusion is insufficient, there is a problem that rattling of the magnet accommodated in the magnet insertion hole occurs. On the other hand, when the thickness of the resin member or the protrusion amount of the protrusion is increased, it takes time and effort to press the magnet into the magnet insertion hole, which causes problems such as breakage of the magnet and an increase in the number of manufacturing steps.
本発明の一実施形態では、マグネット収容部内のマグネットのガタツキを抑制しながら製造工数の増大を抑制できるロータ及びそのロータを備えるモータを提供する。 An embodiment of the present invention provides a rotor that can suppress an increase in the number of manufacturing steps while suppressing rattling of the magnet in the magnet housing portion, and a motor including the rotor.
本発明の例示的なロータは、上下に延びる中心軸に沿って配置されるロータコアと、前記ロータコアに周方向に並んで配置された複数のマグネットと、を備え、前記ロータコアは、前記マグネットの少なくとも一部を収容して周方向に並んで配置される複数のマグネット収容部と、各前記マグネット収容部の内側壁の少なくとも一部を構成する周壁部と、を有し、周方向に隣り合う前記マグネット収容部間には、前記ロータコアの外周面から径方向内方に凹む凹部が設けられ、前記凹部には前記周壁部を前記マグネット側に押圧する押圧部材が配置される。  An exemplary rotor of the present invention comprises a rotor core disposed along a vertically extending central axis, and a plurality of magnets circumferentially arranged on the rotor core, wherein the rotor core is at least one of the magnets. It has a plurality of magnet housing parts which accommodate a part and are arranged in the circumferential direction, and a peripheral wall which constitutes at least a part of the inner side wall of each of the magnet housing parts, and is adjacent to the circumferential direction A recess is provided between the magnet housings and recessed radially inward from the outer peripheral surface of the rotor core, and a pressing member for pressing the peripheral wall toward the magnet is disposed in the recess.
本発明の例示的なモータは、上記構成のロータと、ステータと、を備える。 An exemplary motor of the present invention comprises the rotor of the above configuration and a stator.
本発明の例示的なロータ及びモータによれば、マグネット収容部内におけるマグネットのガタツキを抑制しながら製造工数の増大を抑制することができる。 According to the exemplary rotor and motor of the present invention, it is possible to suppress the increase in the number of manufacturing processes while suppressing the rattling of the magnet in the magnet housing portion.
図1は、本発明の一実施形態に係るロータを備えるモータの平面図である。FIG. 1 is a plan view of a motor provided with a rotor according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るロータのシャフトを取り付けた状態を示す斜視図である。FIG. 2 is a perspective view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached. 図3は、本発明の一実施形態に係るロータのシャフトを取り付けた状態を示す平面図である。FIG. 3 is a plan view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached. 図4は、本発明の一実施形態に係るロータのシャフトを取り付けた状態を示す側面図である。FIG. 4 is a side view showing a state in which a shaft of a rotor according to an embodiment of the present invention is attached. 図5は、本発明の一実施形態に係るロータの押圧部材を凹部に配置する前の状態を示す斜視図である。FIG. 5 is a perspective view showing a state before the pressing member of the rotor according to the embodiment of the present invention is disposed in the recess. 図6は、本発明の一実施形態に係るロータの押圧部材を凹部に配置する前の状態を示す平面図である。FIG. 6 is a plan view showing a state before the pressing member of the rotor according to the embodiment of the present invention is disposed in the recess. 図7は、本発明の一実施形態に係るロータの押圧部材の斜視図である。FIG. 7 is a perspective view of a pressing member of a rotor according to an embodiment of the present invention. 図8は、本発明の一実施形態に係るロータの押圧部材の平面図である。FIG. 8 is a plan view of a pressing member of a rotor according to an embodiment of the present invention. 図9は、本発明の一実施形態の第1変形例に係るロータのシャフトを取り付けた状態を示す斜視図である。FIG. 9 is a perspective view showing a state in which a shaft of a rotor according to a first modification of the embodiment of the present invention is attached. 図10は、本発明の一実施形態の第1変形例に係るロータのシャフトを取り付けた状態を示す側面図である。FIG. 10 is a side view showing a state in which a shaft of a rotor according to a first modification of the embodiment of the present invention is attached. 図11は、本発明の一実施形態の第2変形例に係るロータのシャフトを取り付けた状態を示す側面図である。FIG. 11 is a side view showing a state in which a shaft of a rotor according to a second modification of the embodiment of the present invention is attached. 図12は、本発明の一実施形態の第3変形例に係るロータのシャフトを取り付けた状態を示す斜視図である。FIG. 12 is a perspective view showing a state in which a shaft of a rotor according to a third modification of the embodiment of the present invention is attached. 図13は、本発明の一実施形態の第4変形例に係るロータのシャフトを取り付けた状態を示す斜視図である。FIG. 13 is a perspective view showing a state in which a shaft of a rotor according to a fourth modification of the embodiment of the present invention is attached. 図14は、本発明の一実施形態の第5変形例に係るロータの斜視図である。FIG. 14 is a perspective view of a rotor according to a fifth modification of the embodiment of the present invention. 図15は、本発明の一実施形態の第5変形例に係るロータの平面図である。FIG. 15 is a plan view of a rotor according to a fifth modification of the embodiment of the present invention. 図16は、本発明の一実施形態の第6変形例に係るロータの周縁部の一部を拡大した拡大平面図である。FIG. 16 is an enlarged plan view of a part of the peripheral portion of a rotor according to a sixth modification of the embodiment of the present invention. 図17は、本発明の一実施形態の第7変形例に係るロータの周縁部の一部を拡大した拡大平面図である。FIG. 17 is an enlarged plan view enlarging a part of a peripheral portion of a rotor according to a seventh modified example of the embodiment of the present invention. 図18は、本発明の一実施形態の第8変形例に係るロータの周縁部の一部を拡大した拡大平面図である。FIG. 18 is an enlarged plan view enlarging a part of a peripheral portion of a rotor according to an eighth modified embodiment of the embodiment of the present invention. 図19は、本発明の一実施形態の第9変形例に係るロータの周縁部の一部を拡大した拡大平面図である。FIG. 19 is an enlarged plan view enlarging a part of a peripheral portion of a rotor according to a ninth modified embodiment of the embodiment of the present invention.
以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。本明細書では、モータの中心軸が延びる方向を単に「軸方向」と呼び、モータの中心軸を中心として中心軸と直交する方向(軸方向に垂直な方向)を単に「径方向」と呼び、モータの中心軸を中心とする円弧に沿う方向を単に「周方向」と呼ぶ。ロータコアの中心軸は、モータの中心軸に一致する。また、本明細書では、説明の便宜上、軸方向を上下方向とし、図1の紙面に直交する方向をロータコア、ロータ、及びモータの上下方向として各部の形状や位置関係を説明する。なお、この上下方向の定義はモータの使用時の向きを限定するものではない。また、本明細書で用いる「平行」及び「垂直」は、それぞれ厳密な意味での平行及び垂直のほかに、略平行及び略垂直も含む。  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In the present specification, the direction in which the central axis of the motor extends is simply referred to as “axial direction”, and the direction orthogonal to the central axis (direction perpendicular to the axial direction) centered on the central axis of the motor is simply referred to as “radial direction”. A direction along an arc centering on the central axis of the motor is simply referred to as "circumferential direction". The central axis of the rotor core coincides with the central axis of the motor. Further, in the present specification, for convenience of explanation, the shape and positional relationship of each part will be described with the axial direction as the vertical direction and the direction orthogonal to the sheet of FIG. 1 as the rotor core, the rotor and the motor. Note that the definition in the vertical direction does not limit the direction of use of the motor. Also, as used herein, "parallel" and "perpendicular" include near parallel and near vertical as well as parallel and vertical in the strict sense respectively.



<1.モータの全体構成>



 本発明の例示的な一実施形態に係るモータの全体構成について説明する。図1は、本発明の一実施形態に係るモータの平面図である。モータ1はいわゆるインナーロータ型のモータであり、ステータ2及びロータ3を有する。モータ1は、さらに、ステータ2およびロータ3を内包する筒状のハウジング(不図示)を有する。ステータ2は、ハウジングに、例えば圧入または焼き嵌めなどにより、固定される。なお、モータ1は、さらにステータ2に接続される制御基板(不図示)を有してもよい。 



<1. Overall configuration of motor>



An overall configuration of a motor according to an exemplary embodiment of the present invention will be described. FIG. 1 is a plan view of a motor according to an embodiment of the present invention. The motor 1 is a so-called inner rotor type motor and has a stator 2 and a rotor 3. The motor 1 further has a cylindrical housing (not shown) that encloses the stator 2 and the rotor 3. The stator 2 is fixed to the housing by, for example, press fitting or shrink fitting. The motor 1 may further include a control board (not shown) connected to the stator 2.
ステータ2は、例えば、軸方向に延びる円筒形状である。ステータ2は、ロータ3の径方向外側に所定の隙間を設けて配置される。ステータ2は、ステータコア21と、インシュレータ22と、コイル23と、を有する。


The stator 2 has, for example, an axially extending cylindrical shape. The stator 2 is disposed radially outside the rotor 3 with a predetermined gap. The stator 2 has a stator core 21, an insulator 22, and a coil 23.


ステータコア21は、軸方向に延びる筒形状である。ステータコア21は、複数枚の電磁鋼板を軸方向に積層して形成される。なお、ステータコア21は、圧粉磁心であってもよい。ステータコア21は、コアバック21aと、複数のティース(不図示)と、を有する。コアバック21aは円環形状である。ティースは、コアバック21aの内周面から径方向内側に延びる。複数のティースは周方向に所定間隔で並んで配置される。本実施形態では、ティースの数は12本である。しかしながら、ティースの数は、特に限定されるものではなく、所望の仕様にあわせて任意に変更されてもよい。また、本実施形態において、ステータコア21は、いわゆる丸コアとなっている。なお、ステータコア21は、分割コアや、ティースを有する複数のT字状のコアバック片を帯状に連結して形成されるストレートコアなどであってもよい。


The stator core 21 has a cylindrical shape extending in the axial direction. The stator core 21 is formed by laminating a plurality of electromagnetic steel plates in the axial direction. The stator core 21 may be a dust core. The stator core 21 has a core back 21 a and a plurality of teeth (not shown). The core back 21a has an annular shape. The teeth extend radially inward from the inner peripheral surface of the core back 21a. The plurality of teeth are arranged in the circumferential direction at predetermined intervals. In the present embodiment, the number of teeth is twelve. However, the number of teeth is not particularly limited, and may be arbitrarily changed in accordance with a desired specification. Further, in the present embodiment, the stator core 21 is a so-called round core. The stator core 21 may be a split core or a straight core formed by connecting a plurality of T-shaped core back pieces having teeth in a strip shape.


インシュレータ22はティースの外面を覆う。インシュレータ22はステータコア21とコイル23との間に配置される。インシュレータ22は、例えば合成樹脂等の絶縁材料により構成される。コイル23はティースにインシュレータ22を介して導線が巻き回されることにより構成される。  The insulator 22 covers the outer surface of the teeth. The insulator 22 is disposed between the stator core 21 and the coil 23. The insulator 22 is made of, for example, an insulating material such as a synthetic resin. The coil 23 is configured by winding a conducting wire around the teeth via the insulator 22.
<1-1.ロータの構成>



 図2は、シャフト4が取り付けられたロータ3の斜視図である。図3は、シャフト4が取り付けられたロータ3の平面図である。図4は、シャフト4が取り付けられたロータ3の側面図である。図5は、シャフト4が取り付けられたロータ3の押圧部材34が凹部33内に配置される前の状態を示す斜視図である。図6は、シャフト4が取り付けられたロータ3の押圧部材34が凹部33内に配置される前の状態を示す平面図である。 
<1-1. Rotor configuration>



FIG. 2 is a perspective view of the rotor 3 to which the shaft 4 is attached. FIG. 3 is a plan view of the rotor 3 to which the shaft 4 is attached. FIG. 4 is a side view of the rotor 3 to which the shaft 4 is attached. FIG. 5 is a perspective view showing a state before the pressing member 34 of the rotor 3 to which the shaft 4 is attached is disposed in the recess 33. FIG. FIG. 6 is a plan view showing a state before the pressing member 34 of the rotor 3 to which the shaft 4 is attached is disposed in the recess 33. FIG.
ロータ3は、軸方向に延びる円筒形状である。ロータ3は、ステータ2の径方向内側に所定の隙間を設けて配置される。ロータ3はIPM(Interior Permanent Magnet)型ロータであり、ロータコア30と、複数のマグネット31と、を有する。  The rotor 3 has an axially extending cylindrical shape. The rotor 3 is disposed radially inward of the stator 2 with a predetermined gap. The rotor 3 is an IPM (Interior Permanent Magnet) type rotor, and includes a rotor core 30 and a plurality of magnets 31.
ロータコア30は、上下に延びる中心軸Cに沿って配置され、電磁鋼板30bを有する。電磁鋼板30bは、ロータコア30の中心軸Cに対して径方向外側に拡がる。ロータコア30は、電磁鋼板30bが軸方向に複数積層された積層鋼板である。複数の電磁鋼板30bは、例えばかしめ又は溶接などによって互いに固定される。なお、ロータコア30は、積層鋼板に限られず、例えば、圧粉磁心であってもよい。  The rotor core 30 is disposed along a central axis C extending up and down and has an electromagnetic steel plate 30b. The electromagnetic steel plate 30 b extends radially outward with respect to the central axis C of the rotor core 30. The rotor core 30 is a laminated steel plate in which a plurality of electromagnetic steel plates 30 b are laminated in the axial direction. The plurality of electromagnetic steel plates 30b are fixed to each other by, for example, caulking or welding. The rotor core 30 is not limited to a laminated steel plate, and may be, for example, a dust core.
本実施形態では、ロータコア30は、軸方向に延びる略円筒形状である。ロータコア30の中心部には軸方向に貫通する孔部30aが配置される。孔部30a内にはシャフト4の一部が圧入される。シャフト4はモータ1の回転軸である。本実施形態では、シャフト4は、上下方向に延びる円柱形状である。なお、シャフト4は、中空の部材であってもよい。また、孔部30a内に樹脂部材や金属部材などの部材が取り付けられ、シャフト4が当該部材を介して孔部30aに一部が固定されてもよい。すなわち、シャフト4は、ロータコア30に直接または間接的に固定される。シャフト4の上端側および下端側は、ロータ3の上方及び下方に設けられた上軸受及び下軸受(いずれも不図示)に回転可能に支持される。これにより、ロータ3は、上下方向に延びるシャフト4とともに中心軸Cを中心に回転可能である。本実施形態では、ロータコア30の中心軸は、モータ1のシャフト4に一致する。なお、シャフト4は、上端または下端のいずれか一方のみが軸受に回転可能に支持されてもよい。軸受は、玉軸受などであってもよく、特に種類は限定されない。  In the present embodiment, the rotor core 30 has a substantially cylindrical shape extending in the axial direction. A hole 30 a penetrating in the axial direction is disposed at the center of the rotor core 30. A portion of the shaft 4 is press-fitted into the hole 30a. The shaft 4 is a rotating shaft of the motor 1. In the present embodiment, the shaft 4 has a cylindrical shape extending in the vertical direction. The shaft 4 may be a hollow member. In addition, a member such as a resin member or a metal member may be attached in the hole 30a, and a part of the shaft 4 may be fixed to the hole 30a via the member. That is, the shaft 4 is fixed to the rotor core 30 directly or indirectly. The upper end side and the lower end side of the shaft 4 are rotatably supported by upper and lower bearings (both not shown) provided above and below the rotor 3. Thus, the rotor 3 can rotate around the central axis C together with the shaft 4 extending in the vertical direction. In the present embodiment, the central axis of the rotor core 30 coincides with the shaft 4 of the motor 1. Note that only one of the upper end and the lower end of the shaft 4 may be rotatably supported by the bearing. The bearing may be a ball bearing or the like, and the type is not particularly limited.
ロータコア30は、複数のマグネット収容部32と、複数の周壁部35と、を有する。マグネット収容部32はロータコア30を軸方向に貫通する貫通孔である。複数のマグネット収容部32は周方向に並んで配置される。本実施形態では、マグネット収容部32の内側面におけける軸方向に垂直な断面の形状は周方向に延びる矩形形状である。  The rotor core 30 has a plurality of magnet housing portions 32 and a plurality of peripheral wall portions 35. The magnet housing portion 32 is a through hole which penetrates the rotor core 30 in the axial direction. The plurality of magnet housing portions 32 are arranged side by side in the circumferential direction. In the present embodiment, the shape of the cross section perpendicular to the axial direction in the inner side surface of the magnet housing portion 32 is a rectangular shape extending in the circumferential direction.
マグネット収容部32にはマグネット31の少なくとも一部が収容される。複数のマグネット31はロータコア30に周方向に並んで配置される。本実施形態では、マグネット31の軸方向に垂直な断面の形状は周方向に延びる矩形形状である。言い換えると、本実施形態において、マグネット31の形状は、軸方向に伸びる板状である。本実施形態ではマグネット収容部32及びマグネット31はそれぞれ8個設けられる。マグネット31の軸方向長さは、マグネット収容部32の軸方向長さに略一致する。なお、マグネット31の軸方向長さは、マグネット収容部32の軸方向長さよりも短くてもよい。マグネット収容部32の数及びマグネット31の数は、特に限定されるものではなく、所望の仕様にあわせて任意に変更されてもよい。マグネット31の形状は、上述の形状に限られない。マグネット31の形状は、マグネット収容部32に収容可能であればよく、径方向における側面が湾曲面である形状などででもよく、特に限定されるものではない。また、マグネット31の種類は、ネオジ焼結マグネット、ネオジボンド磁石、フェライト磁石などでもよく、特に限定されるものではない。  The magnet housing portion 32 houses at least a part of the magnet 31. The plurality of magnets 31 are arranged in the circumferential direction on the rotor core 30. In the present embodiment, the shape of the cross section perpendicular to the axial direction of the magnet 31 is a rectangular shape extending in the circumferential direction. In other words, in the present embodiment, the shape of the magnet 31 is a plate extending in the axial direction. In the present embodiment, eight magnet housing portions 32 and eight magnets 31 are provided. The axial length of the magnet 31 substantially coincides with the axial length of the magnet housing portion 32. The axial length of the magnet 31 may be shorter than the axial length of the magnet housing portion 32. The number of magnet housing portions 32 and the number of magnets 31 are not particularly limited, and may be arbitrarily changed in accordance with desired specifications. The shape of the magnet 31 is not limited to the above-described shape. The shape of the magnet 31 may be any shape as long as it can be accommodated in the magnet accommodating portion 32, and may be a shape in which the side surface in the radial direction is a curved surface or the like, and is not particularly limited. Further, the type of the magnet 31 may be a neodymium sintered magnet, a neodymium bond magnet, a ferrite magnet or the like, and is not particularly limited.
周壁部35はマグネット収容部32の径方向外側に配置され、各マグネット収容部32の内側壁32aの少なくとも一部を構成する。マグネット収容部32の内側壁32aは、マグネット収容部32の周方向両側及び径方向両側に配置される。内側壁32aは、マグネット収容部32の少なくとも周方向一方側に配置された周方向端部32b(図6参照)と、周方向端部32bと周壁部35とを連結する複数のブリッジ部36と、を有する。  The circumferential wall portion 35 is disposed radially outside the magnet housing portion 32 and constitutes at least a part of the inner side wall 32 a of each magnet housing portion 32. The inner side wall 32 a of the magnet housing portion 32 is disposed on both sides in the circumferential direction and both sides in the radial direction of the magnet housing portion 32. The inner side wall 32a includes a circumferential end 32b (see FIG. 6) disposed on at least one circumferential side of the magnet housing 32 and a plurality of bridge portions 36 connecting the circumferential end 32b and the circumferential wall 35. And.
各マグネット収容部32において、ブリッジ部36は、外側部36aと、内側部36bと、を有する。軸方向から見たときに、外側部36aは、周壁部35から径方向内側に行くほどマグネット31から離れる方向(周方向の一方側または他方側)に延びる。軸方向から見たときに、内側部36bは、外側部36aの先端から径方向内側へ行くほどマグネット31に近づく方向(周方向他方側または一方側)に延びる。すなわち、軸方向から見て、周方向に隣り合うブリッジ部36は互いに近づく方向に屈曲している。言い換えると、軸方向から見たときに、周方向一方側に位置するブリッジ部36は、周方向他方側に位置するブリッジ部36に向かって突出し、周方向他方側に位置するブリッジ部36は、周方向一方側に位置するブリッジ部36に向かって突出する。  In each magnet housing portion 32, the bridge portion 36 has an outer portion 36a and an inner portion 36b. When viewed from the axial direction, the outer side portion 36 a extends in the direction (one side or the other side in the circumferential direction) away from the magnet 31 as it goes radially inward from the peripheral wall 35. When viewed in the axial direction, the inner portion 36b extends in the direction approaching the magnet 31 (the other side or one side in the circumferential direction) as it goes radially inward from the tip of the outer portion 36a. That is, when viewed in the axial direction, the bridge portions 36 adjacent in the circumferential direction are bent in directions approaching each other. In other words, when viewed from the axial direction, the bridge portion 36 located on one side in the circumferential direction protrudes toward the bridge portion 36 located on the other side in the circumferential direction, and the bridge portion 36 located on the other side in the circumferential direction It protrudes toward the bridge part 36 located in circumferential direction one side.
本実施形態におけるロータコア30は、ブリッジ部36を有する電磁鋼板30bとブリッジ部36を有しない電磁鋼板30bとが軸方向に交互に積層されることにより、構成されている。そのため、軸方向に隣り合うブリッジ部36同士の間には、空間部37が構成される。なお、ブリッジ部36を有する電磁鋼板30bとブリッジ部36を有しない電磁鋼板30bとは、必ずしも交互に配置される必要はない。ロータコア30は、ブリッジ部36を有しない電磁鋼板30bを少なくとも1以上有してもよい。ロータコア30は、ブリッジ部36を有しない電磁鋼板30bを含まず、ブリッジ部36を有する電磁鋼板のみから構成されてもよい。この場合、ロータコア30は、空間部37を有しない。  The rotor core 30 in the present embodiment is configured by alternately laminating an electromagnetic steel plate 30 b having a bridge portion 36 and an electromagnetic steel plate 30 b having no bridge portion 36 in the axial direction. Therefore, the space portion 37 is formed between the bridge portions 36 adjacent in the axial direction. The electromagnetic steel plates 30 b having the bridge portions 36 and the electromagnetic steel plates 30 b not having the bridge portions 36 need not necessarily be alternately arranged. The rotor core 30 may have at least one or more electromagnetic steel plates 30 b having no bridge portion 36. The rotor core 30 may not include the electromagnetic steel plate 30 b having no bridge portion 36, and may be configured only of the electromagnetic steel plate having the bridge portion 36. In this case, the rotor core 30 does not have the space 37.
周方向に隣り合うマグネット収容部32間には、ロータコア30の外周面から径方向内方に凹む凹部33が設けられる。凹部33はロータコア30の軸方向一端から軸方向下端にわたって延びる。凹部33の内側壁はブリッジ部36を含む。  Between the magnet accommodating parts 32 adjacent in the circumferential direction, a recessed part 33 recessed inward in the radial direction from the outer peripheral surface of the rotor core 30 is provided. The recess 33 extends from one axial end to the lower axial end of the rotor core 30. The inner side wall of the recess 33 includes a bridge portion 36.
図6に示すように、凹部33は、幅狭部331と、内側幅広部332と、外側幅広部333と、を有する。径方向内側から径方向外側に向かって、内側幅広部332、幅狭部331及び外側幅広部333が順に配置される。内側幅広部332と、幅狭部331と、外側幅広部333とは互いに径方向で連通する。軸方向から見て、内側幅広部332の開口における形状は略C字状である。軸方向から見たときに、幅狭部331は、内側幅広部332から径方向に延びる一対の線状である。軸方向から見たときに、外側幅広部333の周方向の幅は径方向外側へ行くほど概ね大きくなる。  As shown in FIG. 6, the recess 33 has a narrow portion 331, an inner wide portion 332, and an outer wide portion 333. An inner wide portion 332, a narrow portion 331, and an outer wide portion 333 are arranged in order from the inner side in the radial direction to the outer side in the radial direction. The inner wide portion 332, the narrow portion 331, and the outer wide portion 333 communicate with each other in the radial direction. When viewed from the axial direction, the shape of the opening of the inner wide portion 332 is substantially C-shaped. When viewed from the axial direction, the narrow portions 331 are a pair of linear shapes extending in the radial direction from the inner wide portion 332. When viewed from the axial direction, the circumferential width of the outer wide portion 333 generally increases toward the radially outer side.
内側幅広部332の周方向の最長幅W2は幅狭部331の周方向の幅W1よりも大きく、外側幅広部333の周方向の最短幅W3は幅狭部331の周方向の幅W1以上である。すなわち、内側幅広部332は、幅狭部331の径方向内側に配されて幅狭部331よりも周方向の幅が大きい。外側幅広部333は、幅狭部331の径方向外側に配されて幅狭部331よりも周方向の幅が大きい。そして、凹部33内には後述する第1延伸部341(押圧部材34)が配置される。  The longest width W2 in the circumferential direction of the inner wide portion 332 is larger than the width W1 in the circumferential direction of the narrow portion 331, and the shortest width W3 in the circumferential direction of the outer wide portion 333 is at least the circumferential width W1 of the narrow portion 331 is there. That is, the inner wide portion 332 is disposed radially inward of the narrow portion 331, and the width in the circumferential direction is larger than that of the narrow portion 331. The outer wide portion 333 is disposed radially outward of the narrow portion 331 and has a circumferential width greater than that of the narrow portion 331. Then, in the recess 33, a first extending portion 341 (pressing member 34) described later is disposed.
図7は押圧部材34の斜視図である。図8は押圧部材34の平面図である。押圧部材34は第1補強部343と複数の第1延伸部341とを有する。押圧部材34は、例えば、樹脂、非磁性ステンレス鋼、またはアルミニウム等の非磁性材であると好ましい。本実施形態では第1延伸部341は8個配置されるが、第1延伸部341の数はこれに限定されない。すなわち、第1延伸部341の数は、凹部33の数以下であればよい。  FIG. 7 is a perspective view of the pressing member 34. As shown in FIG. FIG. 8 is a plan view of the pressing member 34. As shown in FIG. The pressing member 34 has a first reinforcing portion 343 and a plurality of first extending portions 341. The pressing member 34 is preferably made of, for example, a nonmagnetic material such as resin, nonmagnetic stainless steel, or aluminum. Although eight first extending portions 341 are arranged in the present embodiment, the number of first extending portions 341 is not limited thereto. That is, the number of first extending portions 341 may be equal to or less than the number of recesses 33.
第1補強部343は環状であり、ロータコア30の軸方向下方側(軸方向一方側)に位置する。第1延伸部341は第1補強部343から軸方向上方側(軸方向他方側)へ延びる。本実施形態において、第1延伸部341の軸方向の長さはロータコア30の軸方向の長さの略半分になっているが、ロータコア30の軸方向の長さと同じでもよい。第1補強部343は、複数の第1延伸部341を連結する。本実施形態では、第1延伸部341は第1補強部343と一体の部材である。しかしながら、第1延伸部341は、第1補強部343と別体の部材であってもよい。この場合、第1補強部343は、第1延伸部341と、例えば、溶着や溶接等により連結されるのが望ましい。内側幅広部332における押圧部材34の周方向の幅L1(図8参照)は、幅狭部331よりも大きく、内側幅広部332の周方向の最長幅W2(図6参照)よりも小さい。第1延伸部341の軸方向に垂直な断面形状は凹部33の軸方向に垂直な断面形状と略同じである。また、第1延伸部341を凹部33に挿入する前の状態において、第1延伸部341の軸方向に垂直な断面の面積は、凹部33の軸方向に垂直な断面の面積よりも大きくなっている。  The first reinforcing portion 343 is annular, and is located on the axially lower side (axially one side) of the rotor core 30. The first extending portion 341 extends axially upward from the first reinforcing portion 343 (the other side in the axial direction). In the present embodiment, the axial length of the first extending portion 341 is approximately half of the axial length of the rotor core 30, but may be the same as the axial length of the rotor core 30. The first reinforcing portion 343 connects the plurality of first extending portions 341. In the present embodiment, the first extending portion 341 is a member integral with the first reinforcing portion 343. However, the first extending portion 341 may be a member separate from the first reinforcing portion 343. In this case, it is desirable that the first reinforcing portion 343 be connected to the first extending portion 341 by, for example, welding or welding. The circumferential width L1 (see FIG. 8) of the pressing member 34 in the inner wide portion 332 is larger than the narrow portion 331 and smaller than the circumferential maximum width W2 (see FIG. 6) of the inner wide portion 332. The cross-sectional shape perpendicular to the axial direction of the first extending portion 341 is substantially the same as the cross-sectional shape perpendicular to the axial direction of the recess 33. Moreover, in the state before inserting the first extending portion 341 into the recess 33, the area of the cross section perpendicular to the axial direction of the first extending portion 341 is larger than the area of the cross section perpendicular to the axial direction of the recess 33. There is.



<1-2.マグネット及び押圧部材の取付方法>



次に、マグネット31及び押圧部材34のロータコア30への取付方法について説明する。マグネット31を軸方向からマグネット収容部32内に挿入する。押圧部材34を凹部33に配置する前のロータコア30では、マグネット収容部32の径方向の長さはマグネット31の径方向の長さより大きく、マグネット収容部32の周方向の長さはマグネット31の周方向の長さよりも大きい。このため、マグネット31をマグネット収容部32に軸方向から挿入する際に、電磁鋼板30bからマグネット31に対して過大な応力が加わらない。したがって、マグネット31をマグネット収容部32に容易に収容することができる。また、マグネット31をマグネット収容部32に収容する際に、マグネット31の割れ等の損傷を防止することができる。 



<1-2. Mounting method of magnet and pressing member>



Next, a method of attaching the magnet 31 and the pressing member 34 to the rotor core 30 will be described. The magnet 31 is inserted into the magnet housing portion 32 in the axial direction. In the rotor core 30 before the pressing member 34 is disposed in the recess 33, the radial length of the magnet housing portion 32 is larger than the radial length of the magnet 31, and the circumferential length of the magnet housing portion 32 is Greater than the circumferential length. Therefore, when the magnet 31 is inserted into the magnet housing portion 32 in the axial direction, excessive stress is not applied to the magnet 31 from the electromagnetic steel plate 30 b. Therefore, the magnet 31 can be easily housed in the magnet housing portion 32. Further, when the magnet 31 is housed in the magnet housing portion 32, damage such as cracking of the magnet 31 can be prevented.
マグネット31をマグネット収容部32に収容した後に、第1延伸部341を軸方向から凹部33内に挿入する。これにより、第1延伸部341は凹部33に配置される。なお、第1延伸部341の少なくとも一部が凹部33に収容されればよい。また、第1補強部343の上面(軸方向他方側の面)は、ロータコア30の下面(軸方向一方側の面)に接触する。第1補強部343は、マグネット収容部32の下端の開口の少なくとも一部を覆う。これにより、ロータコア30に対して外部から衝撃等が加わった場合であっても、マグネット31がマグネット収容部32から抜け出ることが防止される。なお、第1補強部343は、必ずしもマグネット収容部32の下端の開口を覆わなくてもよい。  After the magnet 31 is housed in the magnet housing portion 32, the first extending portion 341 is inserted into the recess 33 in the axial direction. Thus, the first extending portion 341 is disposed in the recess 33. Note that at least a portion of the first extending portion 341 may be accommodated in the recess 33. Further, the upper surface (the surface on the other side in the axial direction) of the first reinforcing portion 343 contacts the lower surface (the surface on the one side in the axial direction) of the rotor core 30. The first reinforcing portion 343 covers at least a part of the opening at the lower end of the magnet housing portion 32. As a result, even when an impact or the like is applied to the rotor core 30 from the outside, the magnet 31 is prevented from coming out of the magnet housing portion 32. The first reinforcing portion 343 may not necessarily cover the opening at the lower end of the magnet housing portion 32.
第1延伸部341を凹部33内に配置する前の状態において、第1延伸部341の軸方向に垂直な断面の面積は、凹部33の軸方向に垂直な断面の面積よりも大きくなっている。このため、第1延伸部341を凹部33内に配置すると、第1延伸部341の径方向外端部がブリッジ部36の外側部36aを径方向内方に押圧し、ブリッジ部36が弾性変形する。この時、周壁部35はブリッジ部36に連結されているため、周壁部35も径方向内方に移動する。すなわち、押圧部材34の第1延伸部341は周壁部35をマグネット31側に押圧する。これにより、マグネット収容部32において、周壁部35とマグネット31との径方向の隙間、及びマグネット収容部32の内周側の内側壁32aとマグネット31との径方向の隙間を低減することができる。また、マグネット31をマグネット収容部32内に収容する際に、マグネット収容部32の内側壁32aから過度の応力を受けることがない。このため、マグネット収容部32へのマグネット31の収容を円滑に行うことができる。したがって、マグネット収容部32内に収容されるマグネット31のガタツキを抑制しながらロータ3及びモータ1の製造工数の増大を抑制することができる。  Before the first extending portion 341 is disposed in the recess 33, the area of the cross section perpendicular to the axial direction of the first extending portion 341 is larger than the area of the cross section perpendicular to the axial direction of the recess 33 . Therefore, when the first extending portion 341 is disposed in the recess 33, the radially outer end portion of the first extending portion 341 presses the outer portion 36a of the bridge portion 36 radially inward, and the bridge portion 36 is elastically deformed. Do. At this time, since the peripheral wall portion 35 is connected to the bridge portion 36, the peripheral wall portion 35 also moves radially inward. That is, the first extending portion 341 of the pressing member 34 presses the peripheral wall 35 toward the magnet 31. Thereby, in the magnet housing portion 32, the gap in the radial direction between the peripheral wall portion 35 and the magnet 31 and the gap in the radial direction between the inner side wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 can be reduced. . Further, when the magnet 31 is housed in the magnet housing portion 32, excessive stress is not received from the inner side wall 32 a of the magnet housing portion 32. For this reason, accommodation of the magnet 31 in the magnet accommodation part 32 can be performed smoothly. Therefore, it is possible to suppress an increase in the number of manufacturing steps of the rotor 3 and the motor 1 while suppressing the rattling of the magnet 31 housed in the magnet housing portion 32.
ブリッジ部36は凹部33の内側壁を含み、押圧部材34は、ブリッジ部36を少なくとも径方向内方に押圧する。これにより、押圧部材34を周壁部35の径方向外側の面に接触させなくとも押圧部材34はブリッジ部36を介して周壁部35をマグネット31側に押圧することができる。したがって、ロータ3の径方向の長さの増大を抑えることができる。


The bridge portion 36 includes the inner side wall of the recess 33, and the pressing member 34 presses the bridge portion 36 at least radially inward. Thus, the pressing member 34 can press the peripheral wall 35 toward the magnet 31 via the bridge portion 36 without contacting the pressing member 34 with the radially outer surface of the peripheral wall 35. Therefore, the increase in the radial length of the rotor 3 can be suppressed.


内側幅広部332における押圧部材34の周方向の幅は、幅狭部331よりも大きく、内側幅広部332の周方向の最長幅よりも小さい。これにより、押圧部材34の径方向外方への抜けを防止することができる。したがって、マグネット31のガタツキをより抑制することができる。また、外側幅広部333の周方向の幅を幅狭部331よりも広くし、後述のようにモータ1の回転時に、マグネット31の周方向への磁束漏れを低減することができる。


The circumferential width of the pressing member 34 in the inner wide portion 332 is larger than the narrow portion 331 and smaller than the circumferential maximum width of the inner wide portion 332. Thus, it is possible to prevent the radial outward displacement of the pressing member 34. Therefore, rattling of the magnet 31 can be further suppressed. Further, the width of the outer wide portion 333 in the circumferential direction is made wider than the narrow portion 331, and magnetic flux leakage in the circumferential direction of the magnet 31 can be reduced when the motor 1 rotates as described later.


第1補強部343により、第1延伸部341を補強することができる。また、第1補強部343により、複数の第1延伸部341の凹部33への挿入時の作業性を向上させることができる。  The first extending portion 341 can be reinforced by the first reinforcing portion 343. Moreover, the workability at the time of insertion to the recessed part 33 of several 1st extending | stretching part 341 can be improved by the 1st reinforcement part 343. FIG.



<2.モータの動作>



上記構成のモータ1において、外部電源(不図示)から制御基板等を介してコイル23に電力が供給されると、ステータコア21の複数のティースに径方向の磁束が生じる。ステータ2に発生した磁束とマグネット31の磁束との相互作用により周方向のトルクが発生する。これにより、ステータ2に対してロータ3が中心軸Cを中心として回転する。 



<2. Motor operation>



In the motor 1 configured as described above, when electric power is supplied to the coil 23 from an external power supply (not shown) via a control board or the like, magnetic flux in the radial direction is generated in the plurality of teeth of the stator core 21. The interaction between the magnetic flux generated in the stator 2 and the magnetic flux of the magnet 31 generates torque in the circumferential direction. Thereby, the rotor 3 rotates around the central axis C with respect to the stator 2.
この時、上述のように、マグネット収容部32において、押圧部材34により周壁部35とマグネット31との径方向の隙間及びマグネット収容部32の内周側の内側壁32aとマグネット31との径方向の隙間を低減することができる。このため、マグネット収容部32におけるモータ1の磁気抵抗が低減されて磁束がステータ2及びロータ3との間を円滑に流れる。したがって、モータ1の回転効率を向上させることができる。  At this time, as described above, in the magnet housing portion 32, the radial gap between the peripheral wall portion 35 and the magnet 31 by the pressing member 34 and the radial direction of the magnet 31 and the inner side wall 32a on the inner peripheral side of the magnet housing portion 32. Can be reduced. Therefore, the magnetic resistance of the motor 1 in the magnet housing portion 32 is reduced, and the magnetic flux flows smoothly between the stator 2 and the rotor 3. Therefore, the rotation efficiency of the motor 1 can be improved.
押圧部材34が非磁性材であると、ステータ2から押圧部材34への磁束の漏れが抑制され、モータ1における回転効率が減少することが抑制される。なお、マグネット収容部32内には、さらに接着剤や樹脂材料などが配置されてもよい。これにより、マグネット収容部32において、周壁部35とマグネット31との径方向の隙間、及びマグネット収容部32の内周側の内側壁32aとマグネット31との径方向の隙間を、さらに小さくすることができ、マグネット収容部32内に収容されるマグネット31のガタツキをより抑制することができる。  When the pressing member 34 is a nonmagnetic material, the leakage of the magnetic flux from the stator 2 to the pressing member 34 is suppressed, and the decrease in the rotation efficiency of the motor 1 is suppressed. In the magnet housing portion 32, an adhesive, a resin material, or the like may be further disposed. Thereby, in the magnet housing portion 32, the clearance in the radial direction between the peripheral wall portion 35 and the magnet 31 and the clearance in the radial direction between the inner side wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 are further reduced. Thus, it is possible to further suppress the rattling of the magnet 31 housed in the magnet housing portion 32.



<3.第1変形例>



 図9は本実施形態の第1変形例のロータ3のシャフト4を取り付けた状態を示す斜視図である。図10は第1変形例のロータ3のシャフト4を取り付けた状態を示す側面図である。なお、図9及び図10では、押圧部材34の第2延伸部342を凹部33に挿入している途中の様子を示している。 



<3. First Modified Example>



FIG. 9 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the first modified example of the present embodiment is attached. FIG. 10 is a side view showing a state in which the shaft 4 of the rotor 3 of the first modification is attached. 9 and 10 show a state in which the second extending portion 342 of the pressing member 34 is being inserted into the recess 33.
押圧部材34は、第1補強部343及び第1延伸部341に加えて、第2補強部344及び複数の第2延伸部342を有する。第2補強部344は環状であり、ロータコア30の軸方向他方側(軸方向上方側)に位置する。第2延伸部342は第2補強部344から軸方向一方側(軸方向下方側)へ延び、第2延伸部342の少なくとも一部は凹部33に収容される。第2補強部344は、複数の第2延伸部342を連結する。本変形例では、第2補強部344は、第2延伸部342と一体に形成される。なお、第2補強部344が、第2延伸部342と別体に構成されてもよい。この場合、第2補強部344は、第2延伸部342と、例えば、溶着や溶接等により連結されるのが望ましい。本実施形態では第2延伸部342の数は8個であるが、これに限定されない。すなわち、第2延伸部342の数は、凹部33の数以下であればよい。また、本実施形態では、第1延伸部341の数は、第2延伸部342の数と同じである。なお、第1延伸部341の数が、第2延伸部342の数と異なってもよい。  The pressing member 34 has a second reinforcing portion 344 and a plurality of second extending portions 342 in addition to the first reinforcing portion 343 and the first extending portion 341. The second reinforcing portion 344 is annular, and is located on the other axial side (axially upper side) of the rotor core 30. The second extending portion 342 extends from the second reinforcing portion 344 in the axial direction to one side (axially lower side), and at least a part of the second extending portion 342 is accommodated in the recess 33. The second reinforcing portion 344 connects the plurality of second extending portions 342. In the present modification, the second reinforcing portion 344 is integrally formed with the second extending portion 342. The second reinforcing portion 344 may be configured separately from the second extending portion 342. In this case, it is desirable that the second reinforcing portion 344 be connected to the second extending portion 342 by, for example, welding or welding. Although the number of second extending portions 342 is eight in the present embodiment, the present invention is not limited to this. That is, the number of second extending portions 342 may be equal to or less than the number of concave portions 33. Further, in the present embodiment, the number of first extending portions 341 is the same as the number of second extending portions 342. The number of first extending portions 341 may be different from the number of second extending portions 342.
第2補強部344は第1補強部343と同様に構成される。なお、第2補強部344の形状は、第1補強部343の形状と必ずしも同じである必要はなく、互いに異なる形状であってもよい。第2延伸部342は第1延伸部341と同様に構成される。第2延伸部342の形状は、第1延伸部341の形状と必ずしも同じである必要はなく、互いに異なる形状であってもよい。また、第1延伸部341の軸方向長さと第2延伸部342の軸方向長さは略同じであり、ロータコア30の軸方向長さの略半分である。なお、第1延伸部341の軸方向長さは、第2延伸部342の軸方向長さと必ずしも同じである必要はなく、互いの長さが異なっていてもよい。第1延伸部341の軸方向長さが第2延伸部342の軸方向長さよりも長くてもよく、または、第2延伸部342の軸方向長さが第1延伸部341の軸方向長さよりも長くてもよい。この場合でも、第1延伸部341の軸方向長さと第2延伸部342の軸方向長さとの和は、ロータコア30の軸方向長さであるのが望ましい。  The second reinforcing portion 344 is configured in the same manner as the first reinforcing portion 343. The shape of the second reinforcing portion 344 does not have to be the same as the shape of the first reinforcing portion 343 and may be different from each other. The second extending portion 342 is configured in the same manner as the first extending portion 341. The shape of the second extending portion 342 does not have to be the same as the shape of the first extending portion 341, and may be different from each other. Further, the axial length of the first extending portion 341 and the axial length of the second extending portion 342 are substantially the same, and are approximately half of the axial length of the rotor core 30. The axial length of the first extending portion 341 does not have to be the same as the axial length of the second extending portion 342, and the lengths may be different from each other. The axial length of the first extending portion 341 may be longer than the axial length of the second extending portion 342, or the axial length of the second extending portion 342 is greater than the axial length of the first extending portion 341 It may also be long. Even in this case, it is desirable that the sum of the axial length of the first extending portion 341 and the axial length of the second extending portion 342 be the axial length of the rotor core 30.
第1延伸部341の軸方向上方側(軸方向他方側)の先端は、第2延伸部342の軸方向下方側(軸方向一方側)の先端と、接触または対向する。第2延伸部342は、第1延伸部341と同様に、周壁部35をマグネット31側に押圧する。これにより、マグネット収容部32において、周壁部35とマグネット31との径方向の隙間、及びマグネット収容部32の内周側の内側壁32aとマグネット31との径方向の隙間を低減することができる。したがって、マグネット収容部32内に収容されるマグネット31のガタツキを抑制することができる。また、第2補強部344により、第2延伸部342を補強することができる。第2補強部344により、複数の第2延伸部342の凹部33への挿入時の作業性を向上させることができる。  The tip of the first extending portion 341 on the upper side in the axial direction (the other side in the axial direction) contacts or opposes the tip on the lower side (the one side in the axial direction) of the second extending portion 342 in the axial direction. Similar to the first extending portion 341, the second extending portion 342 presses the peripheral wall portion 35 to the magnet 31 side. Thereby, in the magnet housing portion 32, the gap in the radial direction between the peripheral wall portion 35 and the magnet 31 and the gap in the radial direction between the inner side wall 32a on the inner peripheral side of the magnet housing portion 32 and the magnet 31 can be reduced. . Therefore, rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed. Further, the second extending portion 342 can be reinforced by the second reinforcing portion 344. The second reinforcing portion 344 can improve the workability at the time of inserting the plurality of second extending portions 342 into the concave portion 33.



<4.第2変形例>



図11は本実施形態の第2変形例のロータ3のシャフト4を取り付けた状態を示す側面図である。ロータコア30は、軸方向に複数の段に分割された構成であってもよい。より好ましくは、ロータコア30は、軸方向に複数の段に分割されたスキュー構造を有する。ロータコア30は、例えば、第1ロータコア301と、第2ロータコア302と、を含む。第1ロータコア301及び第2ロータコア302は、上述の実施形態と同様に、複数枚の電磁鋼板30bが軸方向に積層されることにより構成される。第2ロータコア302は、第1ロータコア301の軸方向上方側(軸方向他方側)に位置する。第1ロータコア301及び第2ロータコア302は、それぞれ、上述の実施形態と同様に、凹部33、ブリッジ部36、マグネット収容部32、マグネット31を有する。第1ロータコア301の軸方向高さは、第2ロータコア302の軸方向高さと同じである。なお、第1ロータコア301の軸方向高さは、第2ロータコア302の軸方向高さと異なっていてもよい。さらに、第1ロータコア301は、第2ロータコア302に対して、中心軸Cを中心として周方向に所定角度だけずれて配置される。なお、ロータコア30は、2段ではなく、3段以上に軸方向に分割されてもよい。 



<4. Second Modified Example>



FIG. 11 is a side view showing a state in which the shaft 4 of the rotor 3 of the second modified example of the present embodiment is attached. The rotor core 30 may be divided into a plurality of stages in the axial direction. More preferably, the rotor core 30 has a skew structure axially divided into a plurality of stages. The rotor core 30 includes, for example, a first rotor core 301 and a second rotor core 302. The first rotor core 301 and the second rotor core 302 are configured by laminating a plurality of electromagnetic steel plates 30 b in the axial direction, as in the above-described embodiment. The second rotor core 302 is located on the axially upper side (the other axial side) of the first rotor core 301. Each of the first rotor core 301 and the second rotor core 302 has the recess 33, the bridge portion 36, the magnet housing portion 32, and the magnet 31 as in the above-described embodiment. The axial height of the first rotor core 301 is the same as the axial height of the second rotor core 302. The axial height of the first rotor core 301 may be different from the axial height of the second rotor core 302. Furthermore, the first rotor core 301 is arranged to be offset from the second rotor core 302 by a predetermined angle in the circumferential direction around the central axis C. The rotor core 30 may be axially divided into three or more stages instead of two stages.
第1ロータコア301の軸方向下方側(軸方向一方側)には、第1補強部343が配置される。第1補強部343は第1ロータコア301の軸方向一方側の面と軸方向に対向または接触する。より好ましくは、第1補強部343は、第1ロータコア301のマグネット収容部32の下端の開口の少なくとも一部を覆う。これにより、第1ロータコア301において、マグネット収容部32からマグネット31が軸方向に抜けることが防止される。第1延伸部341は、第1ロータコア301の凹部33内に少なくとも一部が収容される。これにより、第1ロータコア301において、第1延伸部341はブリッジ部36を押圧することができ、マグネット収容部32内に収容されるマグネット31のガタツキを抑制することができる。  The first reinforcing portion 343 is disposed on the axially lower side (one side in the axial direction) of the first rotor core 301. The first reinforcing portion 343 axially faces or contacts the surface on one axial side of the first rotor core 301. More preferably, the first reinforcing portion 343 covers at least a part of the opening at the lower end of the magnet housing portion 32 of the first rotor core 301. As a result, in the first rotor core 301, the magnet 31 is prevented from coming off the magnet housing portion 32 in the axial direction. At least a portion of the first extending portion 341 is accommodated in the recess 33 of the first rotor core 301. Thereby, in the first rotor core 301, the first extending portion 341 can press the bridge portion 36, and rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
同様に、第2補強部344は、第2ロータコア302の軸方向他方側に配置される。第2補強部344は、第2ロータコア302の軸方向他方側の面と、対向または接触する。第2補強部344は、第2ロータコア302のマグネット収容部32の上端の開口の少なくとも一部を覆う。これにより、第2ロータコア302において、マグネット収容部32からマグネット31が軸方向に抜けることが防止される。第2延伸部342は、第2ロータコア302の凹部33内に少なくとも一部が収容される。これにより、第2ロータコア302において、第2延伸部342はブリッジ部36を押圧することができ、マグネット収容部32内に収容されるマグネット31のガタツキを抑制することができる。  Similarly, the second reinforcing portion 344 is disposed on the other axial side of the second rotor core 302. The second reinforcing portion 344 faces or contacts the other surface of the second rotor core 302 in the axial direction. The second reinforcing portion 344 covers at least a part of the opening at the upper end of the magnet housing portion 32 of the second rotor core 302. As a result, in the second rotor core 302, the magnet 31 is prevented from coming off the magnet housing portion 32 in the axial direction. At least a portion of the second extending portion 342 is accommodated in the recess 33 of the second rotor core 302. Thus, in the second rotor core 302, the second extending portion 342 can press the bridge portion 36, and rattling of the magnet 31 housed in the magnet housing portion 32 can be suppressed.
第1ロータコア301と第2ロータコア302とが周方向にずれて配置される。そのため、周方向において、第1延伸部341の位置は、第2延伸部342の位置と、異なる。言い換えると、第1延伸部341は、第2延伸部342と軸方向に対向または接触しない。なお、第1ロータコア301と第2ロータコア302とが周方向にずれて配置された場合でも、第1延伸部341の先端の少なくとも一部が、第2延伸部342の先端の少なくとも一部と、対向または接触してもよい。  The first rotor core 301 and the second rotor core 302 are arranged to be offset in the circumferential direction. Therefore, in the circumferential direction, the position of the first extending portion 341 is different from the position of the second extending portion 342. In other words, the first extending portion 341 does not face or contact the second extending portion 342 in the axial direction. Note that, even when the first rotor core 301 and the second rotor core 302 are offset in the circumferential direction, at least a portion of the end of the first extending portion 341 is at least a portion of the end of the second extending portion 342; It may be opposed or in contact.
なお、好ましくは、第1延伸部341の長さは、第1ロータコア301の軸方向長さと同じまたは第1ロータコア301の軸方向長さよりも短い。第2延伸部342の長さは、第2ロータコア302の軸方向長さと同じまたは第2ロータコア302の軸方向長さよりも短い。しかしながら、第1延伸部341の軸方向長さが、第1ロータコア301の軸方向長さよりも長く、第2延伸部342の軸方向長さが第2ロータコア302の軸方向長さよりも短くてもよい。この場合、第1延伸部341の先端と第1ロータコア301の軸方向他方側の面との間の寸法だけ、第2延伸部342の軸方向長さが短い。また、第1延伸部341の軸方向長さが、第1ロータコア301の軸方向長さよりも長く、第2延伸部342の軸方向長さが第2ロータコア302の軸方向長さよりも長くてもよい。この場合、第1延伸部341の軸方向他方側の先端の少なくとも一部が、第2延伸部342の軸方向一方側の先端の少なくとも一部と径方向に重なる。  Preferably, the length of the first extending portion 341 is the same as the axial length of the first rotor core 301 or shorter than the axial length of the first rotor core 301. The length of the second extending portion 342 is the same as the axial length of the second rotor core 302 or shorter than the axial length of the second rotor core 302. However, even if the axial length of the first extending portion 341 is longer than the axial length of the first rotor core 301 and the axial length of the second extending portion 342 is shorter than the axial length of the second rotor core 302 Good. In this case, the axial length of the second extending portion 342 is short by the dimension between the end of the first extending portion 341 and the other surface of the first rotor core 301 in the axial direction. In addition, the axial length of the first extending portion 341 is longer than the axial length of the first rotor core 301, and the axial length of the second extending portion 342 is longer than the axial length of the second rotor core 302. Good. In this case, at least a part of the tip on the other side in the axial direction of the first extension part 341 radially overlaps with at least a part of the tip on the one side in the axial direction of the second extension part 342.
さらに、ロータコア30は、各電磁鋼板30bが中心軸Cを中心として周方向に所定角度だけずれて積層されるスキュー構造であってもよい。この場合、第1延伸部341は中心軸Cに対して当該所定角度だけ周方向に傾斜して延びるのが好ましい。  Furthermore, the rotor core 30 may have a skew structure in which the electromagnetic steel plates 30b are stacked with a predetermined angle in the circumferential direction with the central axis C as a center. In this case, it is preferable that the first extending portion 341 extend in the circumferential direction at a predetermined angle with respect to the central axis C.



<5.第3変形例>



 図12は本実施形態の第3変形例のロータ3のシャフト4を取り付けた状態を示す斜視図である。図12に示すように、本変形例では押圧部材34から第1補強部343、第2補強部344が省かれ、第1延伸部341により押圧部材34が構成される。本変形例では、第1延伸部341(押圧部材34)の軸方向の長さはロータコア30の軸方向の長さと略同じである。 



<5. Third Modified Example>



FIG. 12 is a perspective view showing a state in which the shaft 4 of the rotor 3 of the third modified example of the present embodiment is attached. As shown in FIG. 12, in this modification, the first reinforcing portion 343 and the second reinforcing portion 344 are omitted from the pressing member 34, and the pressing member 34 is configured by the first extending portion 341. In the present modification, the axial length of the first extending portion 341 (the pressing member 34) is substantially the same as the axial length of the rotor core 30.
なお、第1延伸部341(押圧部材34)の軸方向の長さはロータコア30の軸方向の長さと、異なっていてもよい。例えば、第1延伸部341(押圧部材34)の軸方向の長さは、ロータコア30の軸方向の長さよりも、短くてもよい。この場合、第1延伸部341の軸方向一方側および軸方向他方側の端面の少なくとも一方は、凹部33内に位置する。また、第1延伸部341の軸方向一方側および軸方向他方側の端面は、ロータコア30の軸方向一方側および軸方向他方側の端面と、それぞれ面一であってもよい。第1延伸部341の軸方向一方側または軸方向他方側の端面のみが、ロータコア30の軸方向一方側または軸方向他方側の端面と、面一であってもよい。  The axial length of the first extending portion 341 (the pressing member 34) may be different from the axial length of the rotor core 30. For example, the axial length of the first extending portion 341 (the pressing member 34) may be shorter than the axial length of the rotor core 30. In this case, at least one of the axial direction one side and the axial direction other side end face of the first extending portion 341 is positioned in the recess 33. In addition, the end surface on the one axial direction side and the other axial direction side of the first extending portion 341 may be flush with the end surface on the axial direction one side and the other axial direction side of the rotor core 30, respectively. Only the end surface on the one axial direction side or the other axial direction side of the first extending portion 341 may be flush with the end surface on the axial direction one side or the other axial direction side of the rotor core 30.
また、ロータ3は、ロータコア30の外周面を覆って少なくとも周壁部35を径方向内方に押圧する筒状の保持部材38を備える。保持部材38は、例えば、樹脂やアルミニウムなどの非磁性材料により構成される。保持部材38の軸方向の長さはロータコア30の軸方向の長さと略同じである。保持部材38により、第1延伸部341が径方向外側へと移動することを防止することができる。これにより、第1延伸部341がブリッジ部16をより押圧することができ、マグネット収容部32内に位置するマグネット31のガタツキを一層抑制することができる。  The rotor 3 further includes a cylindrical holding member 38 covering the outer peripheral surface of the rotor core 30 and pressing at least the peripheral wall portion 35 radially inward. The holding member 38 is made of, for example, a nonmagnetic material such as resin or aluminum. The axial length of the holding member 38 is substantially the same as the axial length of the rotor core 30. The holding member 38 can prevent the first extending portion 341 from moving radially outward. As a result, the first extending portion 341 can press the bridge portion 16 more, and rattling of the magnet 31 positioned in the magnet housing portion 32 can be further suppressed.



<6.第4変形例>



保持部材38の形状は筒状に限定されず、図13に示すように、例えば帯状のリング状でもよい。図13では、リング状の保持部材38を軸方向上部と軸方向下部に配置している。これにより、周壁部35をマグネット31側に向けて容易に締め付けることができ、マグネット収容部32内のマグネット31のガタツキを一層抑制することができる。なお、リング状の保持部材38は、軸方向中央部にのみ配置してもよく、軸方向上部、軸方向下部および軸方向中央部にそれぞれ配置されてもよい。ロータコア30に取り付けられるリング状の保持部材38の数は、1つであってもよく、2以上であってもよい。また、ロータ3は筒状の保持部材38及びリング状の保持部材38の両方を有してもよい。また、軸方向から見て、保持部材38の形状は円形状に限定されず、例えば多角形状でもよい。また、保持部材38は、加熱により収縮する熱収縮チューブにより構成されてもよい。 



<6. Fourth Modified Example>



The shape of the holding member 38 is not limited to a cylindrical shape, and may be, for example, a band-like ring shape as shown in FIG. In FIG. 13, the ring-shaped holding member 38 is disposed at the axially upper portion and the axially lower portion. Thereby, the peripheral wall portion 35 can be easily tightened toward the magnet 31 side, and rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed. The ring-shaped holding member 38 may be disposed only at the axial center, or may be disposed at the axial upper portion, the axial lower portion, and the axial center. The number of ring-shaped holding members 38 attached to the rotor core 30 may be one or two or more. Also, the rotor 3 may have both a cylindrical holding member 38 and a ring-shaped holding member 38. Further, when viewed from the axial direction, the shape of the holding member 38 is not limited to a circular shape, and may be, for example, a polygonal shape. In addition, the holding member 38 may be configured by a heat-shrinkable tube that shrinks by heating.



<7.第5変形例>



 図14は本実施形態の第5変形例のロータ3の斜視図である。図15は第5変形例のロータ3の平面図である。本変形例では、軸方向から見て、凹部33の周方向の幅は、径方向外側に行くにつれて徐々に大きくなる。本変形例では、ロータコア30は、ブリッジ部36を有する電磁鋼板30bのみから構成されている。すなわち、本変形例のロータコア30は、空間部37を有しない。本変形例の押圧部材34は軸方向に延びる丸棒状である。すなわち、押圧部材34の軸方向に垂直な断面の形状は円形状である。これにより、押圧部材34を容易に形成することができる。なお、棒状の押圧部材34は丸棒状に限られない。棒状の押圧部材34の軸方向に垂直な断面の形状は例えば楕円形状、矩形を含む多角形形状などでもよく、特に限定されるものではない。 



<7. Fifth modified example>



FIG. 14 is a perspective view of a rotor 3 according to a fifth modification of the present embodiment. FIG. 15 is a plan view of a rotor 3 according to a fifth modification. In the present modification, as viewed in the axial direction, the circumferential width of the recess 33 gradually increases toward the radially outer side. In the present modification, the rotor core 30 is formed only of the electromagnetic steel plate 30 b having the bridge portion 36. That is, the rotor core 30 of the present modification does not have the space 37. The pressing member 34 of this modification is a round bar-like member extending in the axial direction. That is, the shape of the cross section perpendicular to the axial direction of the pressing member 34 is circular. Thereby, the pressing member 34 can be easily formed. The rod-shaped pressing member 34 is not limited to a round rod. The shape of the cross section perpendicular to the axial direction of the rod-like pressing member 34 may be, for example, an elliptical shape or a polygonal shape including a rectangle, and is not particularly limited.
凹部33に押圧部材34を配置すると、押圧部材34はブリッジ部36の押圧を介して、周壁部35をマグネット31側に押圧する。言い換えると、各マグネット収容部32を構成するブリッジ部36は、当該マグネット収容部32内に位置するマグネット31側へと押圧される。この時、周方向に隣り合うブリッジ部36は互いに離れる方向に変形する。これにより、押圧部材34は周方向に隣り合うブリッジ部36により挟み込まれる。この時、ロータ3に保持部材38を取り付けてもよい。これにより、押圧部材34の径方向外方への移動を規制することができる。また、押圧部材34がブリッジ部36を押圧することから、マグネット収容部32の内壁とマグネット31の外側面との間の隙間を小さくすることができる。これにより、マグネット収容部32内のマグネット31のガタツキを一層抑制することができる。  When the pressing member 34 is disposed in the recess 33, the pressing member 34 presses the peripheral wall 35 toward the magnet 31 via the pressing of the bridge 36. In other words, the bridge portion 36 constituting each magnet housing portion 32 is pressed toward the magnet 31 located inside the magnet housing portion 32. At this time, the bridge portions 36 adjacent in the circumferential direction deform in directions away from each other. Thus, the pressing member 34 is sandwiched by the bridge portions 36 adjacent in the circumferential direction. At this time, the holding member 38 may be attached to the rotor 3. Thereby, the radial outward movement of the pressing member 34 can be restricted. Further, since the pressing member 34 presses the bridge portion 36, the gap between the inner wall of the magnet housing portion 32 and the outer surface of the magnet 31 can be reduced. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.



<8.第6変形例>



図16は、本実施形態の第6変形例に係るロータ3の周縁部の一部を拡大した拡大平面図である。本変形例のマグネット収容部32は、周方向一方側に開口部39を有してロータコア30を軸方向に貫通する貫通孔である。開口部39は周方向一方側に貫通し、ロータコア30の軸方向一端から軸方向他端にわたって延びる。言い換えると、マグネット収容部32の開口部39側にはブリッジ部36が配置されていない。 



<8. Sixth modification>



FIG. 16 is an enlarged plan view of a part of the peripheral portion of the rotor 3 according to a sixth modification of the present embodiment. The magnet housing portion 32 of the present modification is a through hole having an opening 39 on one circumferential side and penetrating the rotor core 30 in the axial direction. The opening 39 penetrates to one side in the circumferential direction, and extends from one axial end of the rotor core 30 to the other axial end. In other words, the bridge portion 36 is not disposed on the opening 39 side of the magnet housing portion 32.
凹部33は、開口部39を介してマグネット収容部32に連通する。押圧部材34は開口部39を介してマグネット31に接触または対向する。また、押圧部材34の開口部39側の端部は周壁部35の径方向外側の面に接触して径方向内方に押圧する。マグネット収容部32が開口部39を有するため、マグネット31を開口部39を介してマグネット収容部32内に容易に収容することができる。押圧部材34によりマグネット31の開口部39を介した周方向の移動を規制することができる。  The recess 33 communicates with the magnet housing portion 32 through the opening 39. The pressing member 34 contacts or opposes the magnet 31 through the opening 39. Further, the end portion on the opening 39 side of the pressing member 34 contacts the radially outer surface of the peripheral wall 35 and presses radially inward. Since the magnet housing portion 32 has the opening 39, the magnet 31 can be easily stored in the magnet housing portion 32 via the opening 39. The pressing member 34 can restrict circumferential movement of the magnet 31 through the opening 39.



<9.第7変形例>



 図17は、本実施形態の第7変形例に係るロータ3の周縁部の一部を拡大した拡大平面図である。本変形例のロータ3のブリッジ部36は、第1延部36cと、第2延部36dと、第3延部36eと、を有する。第1延部36cは周壁部35から径方向内側へ延びる。第2延部36dは第1延部36cの径方向内端から、周方向におけるマグネット31から離れる側(隣り合うブリッジ部36が位置する側)に延びる。第3延部36eは第2延部36dの先端から径方向内側に延びる。すなわち、ブリッジ部36は周壁部35から径方向内側に延び、周方向においてマグネット31から離れる側に屈曲した後に径方向内側に延びる。これにより、周方向で隣り合うブリッジ部36は互いに近づく方向に屈曲している。 



<9. Seventh Modified Example>



FIG. 17 is an enlarged plan view of a part of the peripheral portion of the rotor 3 according to a seventh modification of the present embodiment. The bridge portion 36 of the rotor 3 of the present modification has a first extending portion 36 c, a second extending portion 36 d, and a third extending portion 36 e. The first extending portion 36 c extends radially inward from the peripheral wall 35. The second extending portion 36 d extends from the radially inner end of the first extending portion 36 c to the side away from the magnet 31 in the circumferential direction (the side on which the adjacent bridge portion 36 is located). The third extending portion 36 e extends radially inward from the tip of the second extending portion 36 d. That is, the bridge portion 36 extends inward in the radial direction from the peripheral wall portion 35, and is bent in the circumferential direction away from the magnet 31 and then extends inward in the radial direction. Thus, the bridge portions 36 adjacent in the circumferential direction are bent in directions approaching each other.
凹部33に配置される押圧部材34は第1延部36c、第2延部36d、及び第3延部36eの少なくとも1つを径方向内方に押圧することにより、周壁部35をマグネット31側に押圧する。第2延部36dを設けることにより、押圧部材34は、ブリッジ部36及び周壁部35を径方向内方に容易に押圧することができる。その結果、マグネット収容部32の内壁とマグネット31の外側面との間の隙間を小さくすることができる。これにより、マグネット収容部32内のマグネット31のガタツキを一層抑制することができる。


The pressing member 34 disposed in the recess 33 presses the circumferential wall 35 to the magnet 31 side by pressing radially inward at least one of the first extending portion 36 c, the second extending portion 36 d, and the third extending portion 36 e. Press to. By providing the second extending portion 36 d, the pressing member 34 can easily press the bridge portion 36 and the peripheral wall portion 35 radially inward. As a result, the gap between the inner wall of the magnet housing portion 32 and the outer surface of the magnet 31 can be reduced. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.





<10.第8変形例>



 図18は、本実施形態の第8変形例に係るロータ3の周縁部の一部を拡大した拡大平面図である。本変形例のロータ3では、周方向に隣り合う2つの外側部36aは1つの内側部36bの径方向外端に接続される。すなわち、周方向に隣り合うブリッジ部36は互いに連結される。凹部33に配置される押圧部材34は外側部36aを径方向内方に押圧する。そのため、マグネット収容部32の内壁とマグネット31の外側面との間の隙間を小さくすることができる。これにより、マグネット収容部32内のマグネット31のガタツキを一層抑制することができる。 



<10. Eighth Modification>



FIG. 18 is an enlarged plan view of a part of the peripheral portion of the rotor 3 according to an eighth modification of the present embodiment. In the rotor 3 of this modification, the two outer side portions 36a adjacent in the circumferential direction are connected to the radially outer end of one inner side portion 36b. That is, the bridge portions 36 adjacent in the circumferential direction are connected to each other. The pressing member 34 disposed in the recess 33 presses the outer side portion 36 a radially inward. Therefore, the gap between the inner wall of the magnet housing portion 32 and the outer surface of the magnet 31 can be reduced. Thereby, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.



<11.第9変形例>



 図19は、本実施形態の第9変形例に係るロータ3の周縁部の一部を拡大した拡大平面図である。本変形例のロータ3では、ブリッジ部36が省かれている。これにより、凹部33内に容易に押圧部材34を配置することができる。本変形例では、押圧部材34は周壁部35の径方向外側の面を径方向内方に押圧する。これにより、マグネット収容部32の内壁とマグネット31の外側面との間の隙間を小さくすることができる。その結果、マグネット収容部32内のマグネット31のガタツキを一層抑制することができる。 



<11. Ninth Modified Example>



FIG. 19 is an enlarged plan view of a part of the peripheral edge portion of a rotor 3 according to a ninth modified example of the present embodiment. In the rotor 3 of this modification, the bridge portion 36 is omitted. Thus, the pressing member 34 can be easily disposed in the recess 33. In the present modification, the pressing member 34 presses the radially outer surface of the peripheral wall 35 radially inward. Thus, the gap between the inner wall of the magnet housing portion 32 and the outer surface of the magnet 31 can be reduced. As a result, rattling of the magnet 31 in the magnet housing portion 32 can be further suppressed.



<12.その他>



 以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。また、上記実施形態やその変形例は適宜任意に組み合わせることができる。



<12. Other>



The embodiment of the present invention has been described above, but the scope of the present invention is not limited to this, and various modifications can be made without departing from the scope of the invention. In addition, the above-described embodiment and the modifications thereof can be arbitrarily combined arbitrarily.
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫、電動パワーステアリング装置、電動オイルポンプ、電動ブレーキなどの、各種モータを備える多様な機器に幅広く利用され得る。 Embodiments of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a sealing fan, a washing machine, a refrigerator, an electric power steering apparatus, an electric oil pump, and an electric brake.
1・・・モータ、2・・・ステータ、21・・・ステータコア、21a・・・コアバック、22・・・インシュレータ、23・・・コイル、3・・・ロータ、30・・・ロータコア、301・・・第1ロータコア、302・・・第2ロータコア、30a・・・孔部、30b・・・磁性鋼板、31・・・マグネット、32・・・マグネット収容部、32a・・・内側壁、32b・・・周方向端部、33・・・凹部、331・・・幅狭部、332・・・内側幅狭部、333・・・外側幅狭部、34・・・押圧部材、341・・・第1延伸部、342・・・第2延伸部、343・・・第1補強部、344・・・第2補強部、35・・・周壁部、36・・・ブリッジ部、36a・・・外側部、36b・・・内側部、36c・・・第1延部、36d・・・第2延部、36e・・・第3延部、37・・・空間部、38・・・保持部材、39・・・開口部、4・・・シャフト、C・・・中心軸、L1・・・幅、W1・・・幅、W2・・・最長幅、W3・・・最短幅 DESCRIPTION OF SYMBOLS 1 ... Motor 2, 2 ... Stator, 21 ... Stator core, 21a ... Core back, 22 ... Insulator, 23 ... Coil, 3 ... Rotor, 30 ... Rotor core, 301 ... 1st rotor core, 302 ... 2nd rotor core, 30a ... hole, 30b ... magnetic steel plate, 31 ... magnet, 32 ... magnet housing part, 32a ... inner wall, 32b: circumferential end, 33: recessed portion, 331: narrow portion, 332: inner narrow portion, 333: outer narrow portion, 34: pressing member, 341, ··· First extending portion, 342 ··· Second extending portion, 343 · · · First reinforcing portion, 344 · · · Second reinforcing portion, 35 · · · Peripheral wall portion, 36 · · · Bridge portion, 36a · · · · · · Outer part, 36b · · · inner part, 36c · · · first extension, 36d · · · Second extension portion 36 e: Third extension portion 37: Space portion 38: Holding member 39: Opening portion 4: Shaft C: Central axis L1 · · Width, W1 ... width, W2 ... longest width, W3 ... shortest width

Claims (10)

  1. 上下に延びる中心軸に沿って配置されるロータコアと、



    前記ロータコアに周方向に並んで配置された複数のマグネットと、



    を備え、



     前記ロータコアは、



      前記マグネットの少なくとも一部を収容して周方向に並んで配置される複数のマグネット収容部と、



      各前記マグネット収容部の内側壁の少なくとも一部を構成する周壁部と、



     を有し、



     周方向に隣り合う前記マグネット収容部間には、前記ロータコアの外周面から径方向内方に凹む凹部が設けられ、



     前記凹部には前記周壁部を前記マグネット側に押圧する押圧部材が配置される、ロータ。


    A rotor core disposed along a central axis extending up and down;



    A plurality of magnets arranged circumferentially on the rotor core;



    Equipped with



    The rotor core is



    A plurality of magnet accommodating portions that accommodate at least a part of the magnets and are arranged in the circumferential direction;



    A peripheral wall portion constituting at least a part of an inner side wall of each of the magnet housing portions;



    Have



    Between the magnet housing portions adjacent in the circumferential direction, there is provided a recess which is recessed radially inward from the outer peripheral surface of the rotor core,



    In the rotor, a pressing member for pressing the peripheral wall portion to the magnet side is disposed.





  2. 前記マグネット収容部は軸方向に貫通する貫通孔であり、



    前記周壁部は、前記マグネット収容部を構成する内側壁の少なくとも一部であり、



     前記マグネット収容部の内側壁は、



      前記マグネット収容部の少なくとも周方向一方側に配置された周方向端部と、



      前記周方向端部と前記周壁部とを連結する複数のブリッジ部と、



    を有し、



     前記凹部の内側壁は前記ブリッジ部を含み、



     前記押圧部材は、前記ブリッジ部を少なくとも径方向内方に押圧する、請求項1に記載のロータ。





    The magnet housing portion is a through hole penetrating in the axial direction,



    The peripheral wall portion is at least a part of an inner side wall constituting the magnet housing portion,



    The inner side wall of the magnet housing portion is



    A circumferential end disposed on at least one circumferential side of the magnet housing portion;



    A plurality of bridge portions connecting the circumferential end portion and the peripheral wall portion;



    Have



    The inner wall of the recess includes the bridge portion,



    The rotor according to claim 1, wherein the pressing member presses the bridge portion at least radially inward.


  3. 前記マグネット収容部は、周方向一方側に開口部を有して軸方向に貫通する貫通孔であり、



     前記凹部は、前記開口部を介して前記マグネット収容部に連通し、



     前記押圧部材は前記開口部を介して前記マグネットに接触または対向する、請求項1に記載のロータ。


    The magnet housing portion is a through hole having an opening on one side in the circumferential direction and penetrating in the axial direction,



    The recess communicates with the magnet housing through the opening,



    The rotor according to claim 1, wherein the pressing member contacts or opposes the magnet through the opening.


  4. 前記凹部は、



      幅狭部と、



      前記幅狭部の径方向外側に配されて前記幅狭部よりも周方向の幅が大きい外側幅広部と、



      前記幅狭部の径方向内側に配されて前記幅狭部よりも周方向の幅が大きい内側幅広部と、



     を有し、



    前記内側幅広部における前記押圧部材の周方向の幅は、前記幅狭部よりも大きく、前記内側幅広部の周方向の最長幅よりも小さい、請求項1から請求項3のいずれか一項に記載のロータ。


    The recess is



    The narrow part,



    An outer wide portion disposed radially outward of the narrow portion and having a circumferential width greater than that of the narrow portion;



    An inner wide portion disposed radially inward of the narrow portion and having a circumferential width greater than that of the narrow portion;



    Have



    The circumferential width of the pressing member in the inner wide portion is larger than the narrow portion, and smaller than the longest circumferential width of the inner wide portion in any one of claims 1 to 3. Description rotor.


  5. 前記押圧部材は、



      前記ロータコアの軸方向一方側に位置する第1補強部と、



      前記第1補強部から軸方向他方側へ延び、前記凹部に少なくとも一部が収容される第1延伸部と、



     を有し、



    前記第1延伸部は、前記周壁部を前記マグネット側に押圧する、請求項1から請求項4のいずれか一項に記載のロータ。


    The pressing member is



    A first reinforcing portion located on one side in the axial direction of the rotor core;



    A first extension portion extending from the first reinforcement portion to the other side in the axial direction and at least a part of which is accommodated in the recess;



    Have



    The rotor according to any one of claims 1 to 4, wherein the first extending portion presses the peripheral wall portion to the magnet side.


  6. 前記押圧部材は、



      前記ロータコアの前記軸方向他方側に位置する第2補強部と、



      前記第2補強部から前記軸方向一方側へ延び、前記凹部に少なくとも一部が収容される第2延伸部と、



     を有し、



    前記第1延伸部の前記軸方向他方側の先端は、前記第2延伸部の前記軸方向一方側の先端と、接触または対向し、



    前記第2延伸部は、前記周壁部を前記マグネット側に押圧する、請求項5に記載のロータ。


    The pressing member is



    A second reinforcing portion located on the other side in the axial direction of the rotor core;



    A second extension portion extending from the second reinforcement portion to the one axial direction side and at least a part of which is accommodated in the recess;



    Have



    The tip on the other side in the axial direction of the first extending portion contacts or faces the tip on the one side in the axial direction of the second extending portion,



    The rotor according to claim 5, wherein the second extending portion presses the peripheral wall portion to the magnet side.


  7. 前記押圧部材は、軸方向に延びる棒状である、請求項1から請求項4のいずれか一項に記載のロータ。


    The rotor according to any one of claims 1 to 4, wherein the pressing member is in the form of an axially extending rod.


  8. 前記ロータコアの外周面を覆って少なくとも前記周壁部を径方向内方に押圧する保持部材をさらに備える、請求項1から請求項7のいずれか一項に記載のロータ。


    The rotor according to any one of claims 1 to 7, further comprising a holding member that covers an outer peripheral surface of the rotor core and presses at least the circumferential wall portion radially inward.


  9. 前記押圧部材は非磁性材である、請求項1から請求項8のいずれか一項に記載のロータ。


    The rotor according to any one of claims 1 to 8, wherein the pressing member is a nonmagnetic material.


  10. 請求項1から請求項9のいずれか一項に記載のロータと、



    ステータと、



    を備えるモータ。
    A rotor according to any one of the preceding claims;



    With the stator,



    Motor.
PCT/JP2018/023720 2017-09-27 2018-06-22 Rotor and motor comprising rotor WO2019064747A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890001084.2U CN212462909U (en) 2017-09-27 2018-06-22 Rotor and motor having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-186974 2017-09-27
JP2017186974 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019064747A1 true WO2019064747A1 (en) 2019-04-04

Family

ID=65901238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023720 WO2019064747A1 (en) 2017-09-27 2018-06-22 Rotor and motor comprising rotor

Country Status (2)

Country Link
CN (1) CN212462909U (en)
WO (1) WO2019064747A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8310126B1 (en) * 2011-10-27 2012-11-13 Motor Patent Licensors, LLC Radial flux permanent magnet AC motor/generator
JP2013051795A (en) * 2011-08-30 2013-03-14 Asmo Co Ltd Rotor
JP2013219930A (en) * 2012-04-09 2013-10-24 Asmo Co Ltd Rotor
WO2015118682A1 (en) * 2014-02-10 2015-08-13 三菱電機株式会社 Rotor
JP2017034994A (en) * 2016-09-16 2017-02-09 日本電産株式会社 motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051795A (en) * 2011-08-30 2013-03-14 Asmo Co Ltd Rotor
US8310126B1 (en) * 2011-10-27 2012-11-13 Motor Patent Licensors, LLC Radial flux permanent magnet AC motor/generator
JP2013219930A (en) * 2012-04-09 2013-10-24 Asmo Co Ltd Rotor
WO2015118682A1 (en) * 2014-02-10 2015-08-13 三菱電機株式会社 Rotor
JP2017034994A (en) * 2016-09-16 2017-02-09 日本電産株式会社 motor

Also Published As

Publication number Publication date
CN212462909U (en) 2021-02-02

Similar Documents

Publication Publication Date Title
JP5958502B2 (en) Rotor and rotating electric machine using the same
US7474028B2 (en) Motor
US11165293B2 (en) Rotor and motor
JP6120991B2 (en) Permanent magnet embedded motor
JP7131564B2 (en) Rotors, motors and electric power steering devices
JP6461381B2 (en) Rotating electric machine stator, rotating electric machine, and method of manufacturing rotating electric machine stator
JP5920637B2 (en) Rotating electrical machine rotor
JP5666165B2 (en) Reluctance motor
JP5248048B2 (en) Rotating electric machine rotor and rotating electric machine
US10622855B2 (en) Permanent magnet electric motor
WO2014020756A1 (en) Dynamo-electric machine
JP2016129473A (en) motor
JP6366844B2 (en) Electric motor and air conditioner
JP4386909B2 (en) motor
CN110100376B (en) Rotor and motor
JP2020078099A (en) Rotary electric machine
WO2019064747A1 (en) Rotor and motor comprising rotor
WO2019064746A1 (en) Rotor and motor comprising rotor
WO2019181523A1 (en) Stator and motor provided therewith
CN108781006B (en) Rotating electrical machine and method for manufacturing rotating electrical machine
WO2018123841A1 (en) Rotor and motor
WO2011114758A1 (en) Stator and dynamo-electric machine
WO2018131402A1 (en) Permanent magnet embedded rotor and electric motor equipped with same
WO2018105046A1 (en) Permanent magnet type rotating electric machine
JP7122831B2 (en) Outer rotor type rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP