WO2018045968A1 - 一种液态金属三维宏观结构的悬浮打印成形方法 - Google Patents

一种液态金属三维宏观结构的悬浮打印成形方法 Download PDF

Info

Publication number
WO2018045968A1
WO2018045968A1 PCT/CN2017/100733 CN2017100733W WO2018045968A1 WO 2018045968 A1 WO2018045968 A1 WO 2018045968A1 CN 2017100733 W CN2017100733 W CN 2017100733W WO 2018045968 A1 WO2018045968 A1 WO 2018045968A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
liquid metal
layer
dimensional
suspension
Prior art date
Application number
PCT/CN2017/100733
Other languages
English (en)
French (fr)
Inventor
于永泽
刘福军
刘静
Original Assignee
北京梦之墨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京梦之墨科技有限公司 filed Critical 北京梦之墨科技有限公司
Publication of WO2018045968A1 publication Critical patent/WO2018045968A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/115Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by spraying molten metal, i.e. spray sintering, spray casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the invention belongs to the field of three-dimensional structural molding, and in particular relates to a method for three-dimensional forming by using liquid metal.
  • 3D printing also known as “additive manufacturing” as an advanced manufacturing technology, through the “layered manufacturing, incremental forming” processing method to meet the individualized and customized needs of physical goods, is considered to be “the third industry One of the important incentives and key drivers of the revolution. Based on computer-aided design and manufacturing environment, and deep integration with Internet business services and advanced materials technology, it will bring subversive breakthroughs to traditional manufacturing.
  • 3D printing technology of metal materials is one of the important development directions for accelerating the development of new technologies and equipments for intelligent manufacturing.
  • the special metal printing materials, process technology level and manufacturing equipment and core devices of innovative research and development and transformation of results are the key technology nodes to develop advanced manufacturing technology for 3D printing.
  • the metal materials that can be used for direct 3D printing are mainly high-melting-point metal powders, and laser or high-energy electron beams are used as processing heat sources, and power matching, powder feeding mechanism, high vacuum or inert gas protection and the like are required.
  • the existing metal 3D printing technology has great advantages, but there are still defects such as high forming temperature, high energy consumption, complicated metal-solid phase change process, many process influence factors, and expensive equipment maintenance. Unable to take into account the large difference in melting point temperature of non-metallic materials, it is difficult to use for direct printing terminal functional devices, especially for devices with electronic functions, and it is still necessary to additionally install circuit boards, wiring and assemble electronic components.
  • low melting point metals refer to a large class of metallic materials with melting points below 200 °C. In recent years, low melting point metals, especially at room temperature, are liquid. Metals offer unique advantages in cooling, electronic printing and flexible circuits. Research and develop 3D printing technology with low-melting liquid metal as molding material, break through the shape and high temperature limit of existing metal 3D printing materials, realize composite printing of metal and non-metal functional materials under room temperature conditions, and form complex three-dimensional macrostructures One of the focuses of liquid metal 3D printing forming research.
  • the existing liquid metal incremental forming mainly includes lithography, flow channel infusion, direct writing and droplet deposition. These methods mainly rely on manual and mold forming, and are often used to form two-dimensional patterns and three-dimensional microstructures. Since various incremental forming processes have strict requirements on processing conditions and the types of materials to be applied, the forming of materials requires special use. The tool is operated under extreme temperature conditions, so the liquid metal cannot be processed into a macroscopic structure that satisfies any three-dimensional scale requirement, and the structure cannot be separated from the substrate, and thus is limited and functioned by the substrate.
  • the object of the present invention is to provide a suspension printing forming method for a three-dimensional macroscopic structure of liquid metal, which aims to freely, quickly and economically deposit liquid metal droplets layer by layer in a gel supporting environment. To achieve any three-dimensional macrostructure formation of liquid metal.
  • a suspension printing forming method for a three-dimensional macroscopic structure of liquid metal comprising the steps of:
  • Step 1 dissolve the gellable polymer material in a solvent and fully swell
  • Step 2 adjusting the solution obtained in step 1 to be neutral or alkaline, eliminating bubbles, and making a transparent gel as a suspension printing support material;
  • Step 3 Using the computer 3D modeling software to create a 3D structural model and output the STL format file, import the STL file of the 3D structural model into the 3D printing control software, generate a motion track code of the print head, thereby guiding the printer to print layer by layer;
  • Step 4 The liquid metal is pumped into the syringe, and the liquid metal is continuously extruded through the nozzle by the control of the micro syringe pump at room temperature, and the three-dimensional macroscopic structure of the liquid metal is incrementally formed in the gel layer by layer.
  • the gellable polymer material is polyacrylamide, polyacrylic acid, polyethylene oxide, polyoxypropylene, polyvinyl alcohol, chitosan, sodium alginate, hyaluronic acid, having a three-dimensional network structure, Modified cellulose, cyclodextrin, peptide, polyurethane, urethane acrylate
  • One or more of the polymer materials are dissolved in water in a mass to volume ratio of 0.1 to 10% (0.1 to 10 g dissolved in 100 mL of water).
  • the solvent is one or more of water, methanol, ethanol, propanol, n-butanol, isobutanol, ethylene glycol, propylene glycol, and glycerin.
  • the pH adjuster having a concentration of 0.25 to 10 mol/L and the high molecular polymer solution are thoroughly mixed uniformly according to a mass ratio of 1:1000 to 1:100, and the pH adjuster is hydrogen hydroxide.
  • the pH adjuster is hydrogen hydroxide.
  • the neutral or alkaline may have a pH between 7 and 10.
  • the layer height is set to 0.5 to 0.8 mm and the slice processing is performed to generate a motion track code of the print head, thereby guiding the printer to print layer by layer.
  • the computer three-dimensional modeling software in the step 3 is one of UG NX, SolidWorks, and ProE Wildfire three-dimensional modeling software; the 3D printing control software is Repetier-Host; and the slicing software is Slic3r.
  • the feeding speed of the micro syringe pump is set to be 0.1 to 0.3 ml/s, and the printing speed is 10 to 15 mm/s.
  • the print head has a diameter of 0.06 mm; and the floating printing process of the arbitrary three-dimensional macro structure of the liquid metal is performed after each layer of the structure is formed, and the nozzle is raised by 0.5 to 0.8 mm according to the set layer height parameter.
  • the next layer of structure is printed, and the layer-by-layer printing is completed until the printing process of the liquid metal three-dimensional structure is completed.
  • the liquid metal is gallium, gallium indium alloy, gallium indium tin alloy, gallium indium tin zinc alloy, bismuth indium alloy, bismuth indium tin alloy, bismuth indium tin zinc alloy, bismuth based alloy such as bismuth indium alloy, bismuth indium tin One of an alloy, a tantalum indium tin zinc alloy.
  • the liquid metal is a gallium indium binary alloy, and the mass ratio of gallium indium is 75.5:24.5 to 90:10.
  • step 4 the starting position of the printing should not contact the bottom of the container in which the gel is placed, preferably more than 1 cm from the bottom of the container.
  • the present invention uses a hydrogel having shear thinning and rapid static curing properties as a supporting material, and utilizing the thixotropic property under the shear stress, the suspended printing nozzle can be set in the supporting material environment.
  • the trajectory of the movement makes the reentry movement; the rapid curing performance of the gel can support And the extruded liquid metal is wrapped, the droplet shape of the extruded material is maintained, and the layer-by-layer accumulation of the droplets is finally formed, and finally, any three-dimensional macrostructure of the liquid metal which can be freely designed and personalized can be formed, and the macroscopic three-dimensional structure of the liquid material can be controlled. Forming.
  • the present invention broadens the application to 3D by continuously extruding and laminating liquid metal layer by layer in the gel support material without considering the influence of gravity, surface oxidation and diffusion of the liquid metal on the forming process and the final structure.
  • the suspension printing forming method for any three-dimensional macrostructure of liquid metal provided by the present invention has not been reported in domestic and foreign literatures and patents, and has great advantages in fully utilizing liquid metal and 3D printing flexible manufacturing processes and developing new incremental forming technology.
  • Figure 1 is a photograph of a printed result of a rectangular structure of the test example 1 of the present invention having a size of 10 ⁇ 10 ⁇ 5 mm;
  • FIG. 2 is a photograph showing a result of printing of a rectangular structure having a size of 10 ⁇ 10 ⁇ 5 mm according to Embodiment 1 of the present invention
  • Figure 3 is a front view of the second embodiment of the present invention: the animal head of the Yuanmingyuan Zodiac;
  • Figure 4 is a side view of the second embodiment of the present invention: the animal head of the Yuanmingyuan Zodiac.
  • the invention combines the characteristics of the 3D printing forming process and the stability of the polymer gel structure, and is used for realizing the individualized design and free manufacture of the liquid metal macroscopic three-dimensional complex structure to meet the needs of different individuals.
  • Step 1 The gellable polymer material is prepared into an aqueous solution having a mass to volume ratio of 0.1 to 3%, and is sufficiently swollen and mixed for use.
  • Step 2 Mix the neutralizing agent with a concentration of 0.25-10 mol/L and the high molecular polymer solution at a mass ratio of 1:1000 to 1:100, and remove the bubbles to prepare a transparent gel as a suspension printing support material. .
  • Step 3 According to the design requirements of the macroscopic three-dimensional structure, UG NX, Solidworks,
  • the computer 3D modeling software such as ProE Wildfire constructs a 3D model corresponding to the shape of the liquid metal three-dimensional structure and outputs the STL format file, and imports the STL format file of the 3D model of the stereo circuit into the 3D printing control system Repetier-Host to set the layer height.
  • the parameter range is from 0.5 to 0.8 mm.
  • the three-dimensional model is layered and sliced by the special slicing software Slic3r in the control system, and the data of each layer is converted into the motion track code to guide the subsequent three-dimensional entity printing.
  • Step 4 Continuously extrude the liquid using a flow controllable suspension printing supply system consisting of a micro syringe pump, a 20 ml disposable syringe, a 0.06 mm dispensing needle, a 1.6 mm Luer connector and a PVC transparent hose with an inner diameter of 1.5 mm.
  • the liquid metal may be selected from gallium, gallium indium alloy, gallium indium tin alloy, gallium indium tin zinc alloy, bismuth indium alloy, bismuth indium tin alloy, bismuth indium tin zinc alloy, bismuth based alloy such as bismuth indium alloy, bismuth indium tin alloy, bismuth.
  • Indium tin zinc alloy or the like preferably a gallium indium binary alloy, and the mass ratio of gallium indium is 75.5:24.5 to 90:10.
  • the feeding speed of the micro syringe pump is set to 0.1 to 0.3 ml/s, the printing speed is 10 to 15 mm/s, and then the three-dimensional macro structure is suspended and printed according to the generated motion trajectory code.
  • the nozzle is raised by 0.5 to 0.8 mm according to the layer height setting value, and then the printing of the second layer structure is performed, and the printing is repeated layer by layer until the entire liquid metal three-dimensional macro structure is completed, and all the operation steps are completed.
  • Step 1 The gellable polymer material, specifically polyacrylic acid having a three-dimensional network structure, is mixed with water to prepare an aqueous solution having a mass to volume ratio of 0.5%, which is to be sufficiently swollen and mixed for use.
  • Step 2 The sodium hydroxide having a concentration of 1 mol/L and the solution prepared in the step 1 are thoroughly mixed at a mass to volume ratio of 1:100, and the bubbles are removed to prepare a transparent hydrogel as a suspension printing support material.
  • Step 3 UG NX 3D modeling software is used to construct a rectangular 3D model with a size of 10 ⁇ 10 ⁇ 5mm and output the STL format file.
  • the STL format file of the 3D model is imported into the 3D printing control system Repetier-Host to set the layer height parameter.
  • the range is 0.3mm.
  • the three-dimensional model is layered and sliced by the special slicing software Slic3r in the control system, and the data of each layer is converted into the motion track code to guide the subsequent three-dimensional entity printing.
  • Step 4 Use a flow controllable flow consisting of a micro syringe pump, a 20 ml disposable syringe, a 0.06 mm inner diameter dispensing needle, a 1.6 mm Luer fitting and a PVC transparent hose with an inner diameter of 1.5 mm.
  • the suspension printing feed system continuously extrudes the liquid metal GaIn 24.5 in the gel.
  • the feeding speed of the micro syringe pump was set to 0.4 ml/s, the moving speed of the printing head was 5 mm/s, and then the three-dimensional macro structure was suspended for printing according to the generated motion trajectory code.
  • the nozzle is raised by 0.3 mm according to the layer height setting value, and then the printing of the second layer structure is performed, and the printing is repeated layer by layer until the entire three-dimensional macro structure is completed, and all the operation steps are completed.
  • Step 1 The gelatinizable polymer material is specifically prepared by mixing polyacrylic acid having a three-dimensional network structure with water to prepare an aqueous solution having a mass to volume ratio of 1%, which is to be sufficiently swollen and mixed for use.
  • Step 2 The sodium hydroxide having a concentration of 1 mol/L and the solution prepared in the step 1 are thoroughly mixed at a mass to volume ratio of 1:100, and the bubbles are removed to prepare a transparent hydrogel as a suspension printing support material.
  • Step 3 UG NX 3D modeling software is used to construct a rectangular 3D model with a size of 10 ⁇ 10 ⁇ 5mm and output the STL format file.
  • the STL format file of the 3D model is imported into the 3D printing control system Repetier-Host to set the layer height parameter.
  • the range is 0.6mm.
  • the three-dimensional model is layered and sliced by the special slicing software Slic3r in the control system, and the data of each layer is converted into the motion track code to guide the subsequent three-dimensional entity printing.
  • Step 4 Use a flow controllable suspension printing supply system consisting of a micro syringe pump, a 20 ml disposable syringe, a 0.06 mm inner dispensing needle, a 1.6 mm Luer fitting and a 1.5 mm inner diameter PVC transparent hose in the gel.
  • the liquid metal GaIn24.5 was continuously extruded.
  • the feeding speed of the micro-injection pump was set to 0.25 mL/s, the moving speed of the printing head was 13 mm/s, and then the three-dimensional macro structure was suspended for printing according to the generated motion trajectory code.
  • the nozzle is raised by 0.6 mm according to the layer height setting value, and then the printing of the second layer structure is performed, and the printing is repeated layer by layer until the entire three-dimensional macro structure is completed, and all the operation steps are completed.
  • the results show that according to the suspension printing process parameters of the embodiment, the uniform metal droplets can be continuously extruded and stacked layer by layer, and finally the three-dimensional macrostructure of the liquid metal is formed.
  • Step 1 The gellable polymer material is specifically mixed with polyvinyl alcohol having a three-dimensional network structure and water and ethanol to prepare a solution having a mass to volume ratio of 1%, which is to be sufficiently swollen and mixed for use.
  • Step 2 The sodium hydroxide having a concentration of 1 mol/L and the solution prepared in the step 1 are thoroughly mixed at a mass to volume ratio of 1:100, and the bubbles are removed to prepare a transparent gel as a suspension printing support material.
  • Step 3 According to the three-dimensional structure of the dragon head in the 12th Zodiac of Yuanmingyuan, use UG NX 3D modeling software to construct the 3D model and output the STL format file, and import the STL format file of the 3D model of the dragon head into the 3D printing control system Repetier- In Host, set the layer height parameter range to 0.6mm, layer and slice the 3D model through the special slicing software Slic3r in the control system, and convert each layer of data into motion track code to guide the subsequent 3D solids. Print forming.
  • Step 4 Use a flow controllable suspension printing supply system consisting of a micro syringe pump, a 20 ml disposable syringe, a 0.06 mm inner dispensing needle, a 1.6 mm Luer fitting and a 1.5 mm inner diameter PVC transparent hose in the gel.
  • the liquid metal GaIn24.5 was continuously extruded.
  • the feeding speed of the micro-injection pump was set to 0.25 mL/s, the moving speed of the printing head was 13 mm/s, and then the three-dimensional macro structure was suspended for printing according to the generated motion trajectory code.
  • the nozzle is raised by 0.6 mm according to the layer height setting value, and then the printing of the second layer structure is performed, and the printing is repeated layer by layer until the entire liquid metal dragon head three-dimensional macro structure is completed, and all the operation steps are completed.
  • the gel was placed in an 80 mL beaker and printed from bottom to top from about 3 cm from the bottom.
  • the printed liquid metal dragon's head three-dimensional structure is about 4 cm high and is suspended in the gel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

一种液态金属三维宏观结构的悬浮打印成形方法,包括步骤:将促凝胶化高分子聚合物材料溶于水,充分溶胀;调节溶液为中性或碱性,消除气泡,得到透明凝胶基体;创建三维结构模型,导入3D打印控制软件,生成打印喷头的运动轨迹代码,指导打印机逐层打印;将液态金属抽入注射器中,控制液态金属通过打印喷头连续挤出,在水凝胶中逐层增量成形液态金属三维宏观结构。该方法以高分子凝胶为支撑材料,凝胶的触变性能使悬浮打印喷头可以在支撑材料环境中按照设定好的运动轨迹做折返运动;其快速固化的性能可以支撑并包裹挤出的液态金属,保持挤出材料的液滴形状,实现液体材料宏观三维结构的可控成形。

Description

一种液态金属三维宏观结构的悬浮打印成形方法
交叉引用
本申请引用于2016年09月09日提交的专利名称为“一种液态金属三维宏观结构的悬浮打印成形方法”的第201610815691X号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明属于三维结构成型领域,具体涉及一种利用液态金属进行三维成型的方法。
背景技术
3D打印(又称“增材制造”)作为一种先进制造技术,通过“分层制造,增量成形”的加工方式满足实体物品的个性化、定制化需求,被认为是“第三次工业革命”的重要诱因和关键推动力之一。其以计算机辅助设计和制造环境为基础,与互联网商业服务和先进材料技术的深度融合,必将为传统制造业带来颠覆式的突破。
金属材料的3D打印技术作为3D打印制造体系中最前沿和最有工程应用潜力的技术,是加快发展智能制造新技术、新装备的重要发展方向之一。其中,专用金属打印材料、工艺技术水平与制造装备及核心器件的创新研发和成果转化是发展3D打印先进制造技术的关键技术节点。目前可用于直接3D打印的金属材料主要为高熔点金属粉末,以激光或高能电子束作为加工热源,需要功率调控、送粉机构、高真空或惰性气体保护等配套装置。与传统加工方法相比,现有金属3D打印技术虽极具优势,但仍存在成形温度高、能源消耗大、金属液固相变过程复杂、工艺影响因素多、设备维护费用昂贵等缺陷,且无法顾及与非金属材料在熔点温度上的巨大差异,难以用于直接打印终端功能性器件,特别是含有电子功能的器件制造,仍需要另外安装电路板、布线及组装电子元件。
有别于传统的金属3D打印材料,低熔点金属指的是一大类熔点低于200℃的金属材料。近年来,低熔点金属,特别是在室温条件下呈液态的 金属,在冷却散热、电子印刷和柔性电路等方面显示出独特的优势。研究和开发以低熔点液态金属为成型材料的3D打印技术,突破现有金属3D打印材料的形状和高温限制,实现室温条件下金属与非金属功能材料的复合打印,成形复杂三维宏观结构成为目前液态金属3D打印成形研究的重点之一。
目前,现有的液态金属增量成形主要有平板印刷、流道灌注、直写与液滴堆积等方法。这些方法主要依靠手工和模具成形,多用于成形二维图案和三维微结构,且由于各种增量成形工艺对加工条件与所适用的材料种类都有较为严格的要求,材料的成形需要利用专用的工具或在极端的温度环境下进行,因此无法将液态金属加工成为满足任意三维尺度要求的宏观结构,且结构无法与基底脱离开,因而要受到基底的限制和作用。
发明内容
针对本领域存在的不足之处,本发明的目的是提供一种液态金属三维宏观结构的悬浮打印成形方法,目的在于可以自由、快速、经济的在凝胶支撑环境中逐层堆积液态金属液滴,实现液态金属任意三维宏观结构成形。
实现本发明目的的技术方案为:
一种液态金属三维宏观结构的悬浮打印成形方法,包括步骤:
步骤1:将可凝胶化高分子聚合物材料溶于溶剂,并充分溶胀;
步骤2:调节步骤1所得溶液为中性或碱性,消除气泡,制成透明凝胶作为悬浮打印支撑材料;
步骤3:利用计算机三维建模软件创建三维结构模型并输出STL格式文件,将三维结构模型的STL文件导入3D打印控制软件,生成打印喷头的运动轨迹代码,从而指导打印机逐层打印;
步骤4:将液态金属抽入注射器中,在室温条件下通过微量注射泵的控制将液态金属通过喷头连续挤出,在凝胶中逐层增量成形液态金属三维宏观结构。
其中,所述可凝胶化高分子聚合物材料为具有三维网络结构的聚丙烯酰胺、聚丙烯酸、聚氧化乙烯、聚氧化丙烯、聚乙烯醇、壳聚糖、海藻酸钠、透明质酸、改性纤维素、环糊精、多肽、聚氨酯、聚氨酯丙烯酸酯中 的一种或多种,高分子聚合物材料溶于水的质量体积比为0.1~10%(0.1~10g溶于100mL水)。
所述的溶剂为水、甲醇、乙醇、丙醇、正丁醇、异丁醇、乙二醇、丙二醇、丙三醇中的一种或几种。
优选地,所述步骤2中,将浓度为0.25~10mol/L的pH调节剂与高分子聚合物溶液按照质量比为1:1000~1:100充分混合均匀,所述pH调节剂为氢氧化钠、碳酸氢钠、氢氧化钾、三乙醇胺中的一种或多种。所述中性或碱性,可以是pH值在7~10之间。
其中,所述步骤3中,设定层高为0.5~0.8mm并进行切片处理,生成打印喷头的运动轨迹代码,从而指导打印机逐层打印。
其中,所述步骤3中的计算机三维建模软件为UG NX、SolidWorks、ProE Wildfire三维建模软件中的一种;3D打印控制软件为Repetier-Host;切片软件为Slic3r。
进一步地,所述步骤4中,设定微量注射泵的供料速度为0.1~0.3ml/s,打印速度为10~15mm/s。
其中,所述步骤4中,打印喷头直径为0.06mm;所述液态金属任意三维宏观结构的悬浮打印过程是每成形一层结构后,喷头按照设定的层高参数上升0.5~0.8mm,进行下一层结构打印,逐层打印直至液态金属三维结构的打印过程完成。
其中,所述液态金属为镓、镓铟合金、镓铟锡合金、镓铟锡锌合金、铋铟合金、铋铟锡合金、铋铟锡锌合金、铋基合金如铋铟合金、铋铟锡合金、铋铟锡锌合金中的一种。
更优选地,所述液态金属为镓铟二元合金,镓铟质量比例为75.5:24.5~90:10。
步骤4中,打印起始的位置应不接触放置凝胶的容器底部,优选距容器底1cm以上。
本发明的有益效果在于:
(1)本发明以具备剪切变稀与快速静态固化性质的水凝胶为支撑材料,利用其在剪切应力作用下的触变属性使悬浮打印喷头可以在支撑材料环境中按照设定好的运动轨迹做折返运动;凝胶的快速固化性能可以支撑 并包裹挤出的液态金属,保持挤出材料的液滴形状,通过液滴的逐层堆积,最终成形可自由设计、个性化的液态金属任意三维宏观结构,实现液体材料宏观三维结构的可控成形。
(2)本发明通过在凝胶支撑材料中连续挤出并逐层堆积液态金属,不需要考虑液态金属的重力、表面氧化和扩散等对成形过程和最后结构的影响,进而拓宽了适用于3D打印工艺的打印材料范围。
本发明提供的液态金属任意三维宏观结构的悬浮打印成形方法此前未见国内外文献和专利报道,在充分利用液态金属和3D打印柔性制造工艺以及发展新型增量成形技术上具有较大优势。
附图说明
图1是本发明试验例1:尺寸为10×10×5mm的矩形结构打印结果照片;
图2是本发明实施例1:尺寸为10×10×5mm的矩形结构打印结果照片;
图3是本发明实施例2:圆明园十二生肖兽首—龙头主视图;
图4是本发明实施例2:圆明园十二生肖兽首—龙头侧视图。
具体实施方式
现以以下实施例来说明本发明,但不用来限制本发明的范围。实施例中使用的手段,如无特别说明,均使用本领域常规的手段。
本发明结合3D打印成形工艺与高分子凝胶结构稳定的特点,用以实现液态金属宏观三维复杂结构的个性化设计与自由制造,满足不同个体的需要。
本发明方法的具体步骤如下:
步骤1:将可凝胶化的高分子聚合物材料制备成为质量体积比为0.1~3%的水溶液,待充分溶胀、混匀后备用。
步骤2:将浓度为0.25~10mol/L的中和剂与高分子聚合物溶液按照质量比为1:1000~1:100充分混合均匀,消除气泡后制备成透明的凝胶作为悬浮打印支撑材料。
步骤3:根据宏观三维结构的设计要求,采用UG NX、Solidworks、 ProE Wildfire等计算机三维建模软件构建与预定液态金属三维结构形状相对应的三维模型并输出STL格式文件,将立体电路三维模型的STL格式文件导入3D打印控制系统Repetier-Host中,设定层高参数范围为0.5~0.8mm,通过控制系统中专用的切片软件Slic3r对三维模型进行分层、切片处理,并将每层的数据转换成为运动轨迹代码,从而指导后续三维实体的打印成形。
步骤4:使用由微量注射泵、20ml一次性注射器、内径0.06mm点胶针头、1.6mm鲁尔接头与内径1.5mm的PVC透明软管组成的流量可控的悬浮打印供料系统连续挤出液态金属。液态金属可选用镓、镓铟合金、镓铟锡合金、镓铟锡锌合金、铋铟合金、铋铟锡合金、铋铟锡锌合金、铋基合金如铋铟合金、铋铟锡合金、铋铟锡锌合金等,其中优选为镓铟二元合金,镓铟质量比例为75.5:24.5~90:10。设定微量注射泵的供料速度为0.1~0.3ml/s,打印速度为10~15mm/s,随后根据生成的运动轨迹代码进行三维宏观结构的悬空打印。完成第一层结构的打印后,喷头按照层高设定值上升0.5~0.8mm,然后进行第二层结构的打印,逐层重复打印直至完成整个液态金属三维宏观结构,完成所有操作步骤。
试验例1:
步骤1:将可凝胶化的高分子聚合物材料,具体为具有三维网络结构的聚丙烯酸与水混合,制备成为质量体积比为0.5%的水溶液,待充分溶胀、混匀后备用。
步骤2:将浓度为1mol/L的氢氧化钠与步骤1制得的溶液按照质量体积比为1:100充分混合均匀,消除气泡后制备成透明水凝胶作为悬浮打印支撑材料。
步骤3:采用UG NX三维建模软件构建尺寸为10×10×5mm的矩形三维模型并输出STL格式文件,将三维模型的STL格式文件导入3D打印控制系统Repetier-Host中,设定层高参数范围为0.3mm,通过控制系统中专用的切片软件Slic3r对三维模型进行分层、切片处理,并将每层的数据转换成为运动轨迹代码,从而指导后续三维实体的打印成形。
步骤4:使用由微量注射泵、20ml一次性注射器、内径0.06mm点胶针头、1.6mm鲁尔接头与内径1.5mm的PVC透明软管组成的流量可控 的悬浮打印供料系统在凝胶中连续挤出液态金属GaIn24.5。设定微量注射泵的供料速度为0.4ml/s,打印喷头的运动速度为5mm/s,随后根据生成的运动轨迹代码进行三维宏观结构的悬空打印。完成第一层结构的打印后,喷头按照层高设定值上升0.3mm,然后进行第二层结构的打印,逐层重复打印直至完成整个三维宏观结构,完成所有操作步骤。
由于液态金属表面张力大,经喷头挤出后在凝胶内形成球形液滴。按照本试验例的悬浮打印工艺参数的设置参数,连续挤出的液态金属液滴彼此之间会发生挤压、融合,形成大体积液滴(见图1),影响了液态金属三维结构的成形效果和精度。
实施例1:
步骤1:将可凝胶化的高分子聚合物材料具体为具有三维网络结构的聚丙烯酸与水混合制备成为质量体积比为1%的水溶液,待充分溶胀、混匀后备用。
步骤2:将浓度为1mol/L的氢氧化钠与步骤1制得的溶液按照质量体积比为1:100充分混合均匀,消除气泡后制备成透明水凝胶作为悬浮打印支撑材料。
步骤3:采用UG NX三维建模软件构建尺寸为10×10×5mm的矩形三维模型并输出STL格式文件,将三维模型的STL格式文件导入3D打印控制系统Repetier-Host中,设定层高参数范围为0.6mm,通过控制系统中专用的切片软件Slic3r对三维模型进行分层、切片处理,并将每层的数据转换成为运动轨迹代码,从而指导后续三维实体的打印成形。
步骤4:使用由微量注射泵、20ml一次性注射器、内径0.06mm点胶针头、1.6mm鲁尔接头与内径1.5mm的PVC透明软管组成的流量可控的悬浮打印供料系统在凝胶中连续挤出液态金属GaIn24.5。设定微量注射泵的供料速度为0.25mL/s,打印喷头的运动速度为13mm/s,随后根据生成的运动轨迹代码进行三维宏观结构的悬空打印。完成第一层结构的打印后,喷头按照层高设定值上升0.6mm,然后进行第二层结构的打印,逐层重复打印直至完成整个三维宏观结构,完成所有操作步骤。
参见图2,结果显示,按照本实施例的悬浮打印工艺参数,可以连续挤出形态统一的金属液滴并逐层堆积,最终成形液态金属三维宏观结构。
实施例2:
步骤1:将可凝胶化的高分子聚合物材料具体为具有三维网络结构的聚乙烯醇与水和乙醇混合,制备成为质量体积比为1%的溶液,待充分溶胀、混匀后备用。
步骤2:将浓度为1mol/L的氢氧化钠与步骤1制得的溶液按照质量体积比为1:100充分混合均匀,消除气泡后制备成透明凝胶作为悬浮打印支撑材料。
步骤3:根据圆明园十二生肖兽首中龙首的三维结构造型,采用UG NX三维建模软件构建三维模型并输出STL格式文件,将龙首三维模型的STL格式文件导入3D打印控制系统Repetier-Host中,设定层高参数范围为0.6mm,通过控制系统中专用的切片软件Slic3r对三维模型进行分层、切片处理,并将每层的数据转换成为运动轨迹代码,从而指导后续三维实体的打印成形。
步骤4:使用由微量注射泵、20ml一次性注射器、内径0.06mm点胶针头、1.6mm鲁尔接头与内径1.5mm的PVC透明软管组成的流量可控的悬浮打印供料系统在凝胶中连续挤出液态金属GaIn24.5。设定微量注射泵的供料速度为0.25mL/s,打印喷头的运动速度为13mm/s,随后根据生成的运动轨迹代码进行三维宏观结构的悬空打印。完成第一层结构的打印后,喷头按照层高设定值上升0.6mm,然后进行第二层结构的打印,逐层重复打印直至完成整个液态金属龙首三维宏观结构,完成所有操作步骤。
参见图3和图4,凝胶置于80mL烧杯中,从距底部3cm左右位置开始从下向上打印。打印后的液态金属龙首三维结构约4cm高,悬浮在凝胶中。
以上的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通工程技术人员对本发明的技术方案作出的各种变型和改进,均应落入本发明的权利要求书确定的保护范围内。

Claims (9)

  1. 一种液态金属三维宏观结构的悬浮打印成形方法,其特征在于,包括步骤:
    步骤1:将可凝胶化高分子聚合物材料溶于溶剂,并充分溶胀;
    步骤2:调节步骤1所得溶液为中性或碱性,消除气泡,制成透明凝胶作为悬浮打印支撑材料;
    步骤3:利用计算机三维建模软件创建三维结构模型并输出STL格式文件,将三维结构模型的STL文件导入3D打印控制软件,生成打印喷头的运动轨迹代码,从而指导打印机逐层打印;
    步骤4:将液态金属抽入注射器中,在室温条件下通过微量注射泵的控制将液态金属通过喷头连续挤出,在凝胶中逐层增量成形液态金属三维宏观结构。
  2. 根据权利要求1所述的液态金属三维宏观结构的悬浮打印成形方法,其特征在于,所述可凝胶化高分子聚合物材料为具有三维网络结构的聚丙烯酰胺、聚丙烯酸、聚氧化乙烯、聚氧化丙烯、聚乙烯醇、壳聚糖、海藻酸钠、透明质酸、改性纤维素、环糊精、多肽、聚氨酯、聚氨酯丙烯酸酯中的一种或多种,高分子聚合物材料溶于水的质量体积比为0.1~10%;
    所述溶剂为水、甲醇、乙醇、丙醇、正丁醇、异丁醇、乙二醇、丙二醇、丙三醇中的一种或几种。
  3. 根据权利要求1所述的液态金属三维宏观结构的悬浮打印成形方法,其特征在于,所述步骤2中,将浓度为0.25~10mol/L的pH调节剂与高分子聚合物溶液按照质量比为1:1000~1:100充分混合均匀,所述pH调节剂为氢氧化钠、碳酸氢钠、氢氧化钾中、三乙醇胺的一种或多种。
  4. 根据权利要求1所述的液态金属三维宏观结构的悬浮打印成形方法,其特征在于,所述步骤3中,设定层高为0.5~0.8mm并进行切片处理,生成打印喷头的运动轨迹代码,从而指导打印机逐层打印。
  5. 根据权利要求1~4任一项所述的液态金属三维宏观结构的悬浮打印成形方法,其特征在于,所述步骤3中的计算机三维建模软件为UG NX、SolidWorks、ProE Wildfire三维建模软件中的一种;3D打印控制软件为Repetier-Host;切片软件为Slic3r。
  6. 根据权利要求1~4任一项所述的液态金属三维宏观结构的悬浮打印成形方法,其特征在于,所述步骤4中,设定微量注射泵的供料速度为0.1~0.3ml/s,打印速度为10~15mm/s。
  7. 根据权利要求1~4任一项所述的液态金属三维宏观结构的悬浮打印成形方法,其特征在于,所述步骤4中,打印喷头直径为0.06mm;所述液态金属任意三维宏观结构的悬浮打印过程是每成形一层结构后,喷头按照设定的层高参数上升0.5~0.8mm,进行下一层结构打印,逐层打印直至液态金属三维结构的打印过程完成。
  8. 根据权利要求1~4任一项所述的液态金属三维宏观结构的悬浮打印成形方法,其特征在于,所述液态金属为镓、镓铟合金、镓铟锡合金、镓铟锡锌合金、铋铟合金、铋铟锡合金、铋铟锡锌合金、铋基合金如铋铟合金、铋铟锡合金、铋铟锡锌合金中的一种。
  9. 根据权利要求8所述的液态金属三维宏观结构的悬浮打印成形方法,其特征在于,所述液态金属为镓铟二元合金,镓铟质量比例为75.5:24.5~90:10。
PCT/CN2017/100733 2016-09-09 2017-09-06 一种液态金属三维宏观结构的悬浮打印成形方法 WO2018045968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610815691.XA CN107803504B (zh) 2016-09-09 2016-09-09 一种液态金属三维宏观结构的悬浮打印成形方法
CN201610815691.X 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018045968A1 true WO2018045968A1 (zh) 2018-03-15

Family

ID=61561298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100733 WO2018045968A1 (zh) 2016-09-09 2017-09-06 一种液态金属三维宏观结构的悬浮打印成形方法

Country Status (2)

Country Link
CN (1) CN107803504B (zh)
WO (1) WO2018045968A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066750A1 (en) * 2019-10-03 2021-04-08 National University Of Singapore Apparatus for forming compartments and methods thereof
CN117464993A (zh) * 2023-10-18 2024-01-30 浙江大学 一种多喷头阵列3d打印梯度孔隙大孔明胶的装置及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108859097A (zh) * 2018-06-15 2018-11-23 南京大学 基于流体支撑的三维打印方法
CN108907200B (zh) * 2018-07-05 2020-03-24 清华大学 一种形成卫星天线的装置及方法
CN109366971A (zh) * 2018-09-20 2019-02-22 中南大学 一种无支撑增材制造方法
CN109249617B (zh) * 2018-10-08 2020-11-17 浙江大学 一种3d液滴打印机及其制备悬浮液滴的方法
CN111267333B (zh) * 2018-12-05 2021-09-07 中国科学院金属研究所 一种三维电子器件的料池制备方法和应用
CN110841080A (zh) * 2019-11-12 2020-02-28 浙江清华柔性电子技术研究院 导电水凝胶器件及其制备方法和应用
CN111069606B (zh) * 2019-12-06 2022-02-22 北京航空航天大学 一种低熔点金属的连续成型方法
CN112191853B (zh) * 2020-03-31 2022-05-10 北京航空航天大学 一种室温下液态金属镓的快速成型方法
CN114054763B (zh) * 2020-07-29 2024-02-27 中国科学院理化技术研究所 一种多形状液态金属颗粒及其制备方法
CN115124804B (zh) * 2021-03-29 2023-10-31 上普博源(北京)生物科技有限公司 一种组合物
CN113524660B (zh) * 2021-08-10 2022-12-13 烟台液秀生物科技有限公司 一种高通量阵列式3d液滴打印方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031453A1 (en) * 2013-08-28 2015-03-05 Elwha Llc Systems and methods for additive manufacturing of three dimensional structures
CN104399981A (zh) * 2014-12-14 2015-03-11 机械科学研究总院先进制造技术研究中心 一种金属基复合材料的三维打印成形方法
CN104646670A (zh) * 2015-03-06 2015-05-27 沈湧 高频感应熔融的金属3d打印机
CN105235210A (zh) * 2015-09-25 2016-01-13 深圳市博恩实业有限公司 可3d打印的导电复合材料及3d打印成型方法
CN105312573A (zh) * 2015-11-17 2016-02-10 北京科技大学 一种利用液态金属直接进行3d打印制造的方法和装置
CN105798306A (zh) * 2014-12-31 2016-07-27 中国科学院理化技术研究所 一种3d金属打印系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074064C (zh) * 1999-12-24 2001-10-31 清华大学 基于溶液的凝固堆积成形方法及其装置
CN103127608A (zh) * 2013-01-22 2013-06-05 清华大学 一种体内注射成型式电子装置的制造方法
CN104108248A (zh) * 2013-04-19 2014-10-22 中国科学院理化技术研究所 液态金属喷墨打印设备及打印方法
US9993996B2 (en) * 2015-06-17 2018-06-12 Deborah Duen Ling Chung Thixotropic liquid-metal-based fluid and its use in making metal-based structures with or without a mold
CN105655476A (zh) * 2016-01-25 2016-06-08 云南科威液态金属谷研发有限公司 智能水凝胶器件及其控制装置
CN105855540B (zh) * 2016-04-12 2017-10-17 北京梦之墨科技有限公司 一种液态金属打印设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031453A1 (en) * 2013-08-28 2015-03-05 Elwha Llc Systems and methods for additive manufacturing of three dimensional structures
CN104399981A (zh) * 2014-12-14 2015-03-11 机械科学研究总院先进制造技术研究中心 一种金属基复合材料的三维打印成形方法
CN105798306A (zh) * 2014-12-31 2016-07-27 中国科学院理化技术研究所 一种3d金属打印系统及方法
CN104646670A (zh) * 2015-03-06 2015-05-27 沈湧 高频感应熔融的金属3d打印机
CN105235210A (zh) * 2015-09-25 2016-01-13 深圳市博恩实业有限公司 可3d打印的导电复合材料及3d打印成型方法
CN105312573A (zh) * 2015-11-17 2016-02-10 北京科技大学 一种利用液态金属直接进行3d打印制造的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066750A1 (en) * 2019-10-03 2021-04-08 National University Of Singapore Apparatus for forming compartments and methods thereof
CN117464993A (zh) * 2023-10-18 2024-01-30 浙江大学 一种多喷头阵列3d打印梯度孔隙大孔明胶的装置及方法

Also Published As

Publication number Publication date
CN107803504A (zh) 2018-03-16
CN107803504B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2018045968A1 (zh) 一种液态金属三维宏观结构的悬浮打印成形方法
Lyu et al. Design and manufacture of 3D-printed batteries
Lee et al. Electroless deposition-assisted 3D printing of micro circuitries for structural electronics
Groll et al. A definition of bioinks and their distinction from biomaterial inks
Gonzalez-Gutierrez et al. Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives
Zhou et al. A review of 3D printing technologies for soft polymer materials
US20180169950A1 (en) Three-dimensional modelling and/or manufacturing apparatus, and related processes
Choi et al. Recent developments and directions in printed nanomaterials
CN103922755B (zh) 3d打印陶瓷零件所用材料及工艺
US20190070845A1 (en) Apparatuses, systems and method for generating three-dimensional objects with adjustable properties
Agarwala A perspective on 3D bioprinting technology: Present and future
CN109648817B (zh) 一种3d打印智能变形材料的制备方法
CN107353004B (zh) 一种直接挤出型3d打印制备三维石墨烯的方法
CN105034138A (zh) 一种供氧浆料槽系统及陶瓷面曝光3d连续打印方法
WO2019140969A1 (zh) 一种基于液固化学反应沉积的3d打印机及其运行方法
Sarabia-Vallejos et al. Innovation in additive manufacturing using polymers: a survey on the technological and material developments
Zhao et al. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning
Pandya et al. Breakthrough to the pragmatic evolution of direct ink writing: Progression, challenges, and future
Chen et al. Recent advances in multi-material 3D printing of functional ceramic devices
Xu et al. Unleashing the potential of 3D printing soft materials
Hossain et al. Ionic liquids for 3D printing: fabrication, properties, applications
CN207828410U (zh) 一种基于液固化学反应沉积的3d打印机
CN203726941U (zh) 一种离型阻隔膜
CN105734604B (zh) 一种立体复合多糖凝胶及其电化学3d打印制备方法和应用
KR20190042837A (ko) 3d 프린트 출력물에 기능성 물질층을 전사하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 17848141

Country of ref document: EP

Kind code of ref document: A1