WO2018045831A1 - 眼图幅值调节方法、数据传输方法、电路和显示装置 - Google Patents

眼图幅值调节方法、数据传输方法、电路和显示装置 Download PDF

Info

Publication number
WO2018045831A1
WO2018045831A1 PCT/CN2017/093655 CN2017093655W WO2018045831A1 WO 2018045831 A1 WO2018045831 A1 WO 2018045831A1 CN 2017093655 W CN2017093655 W CN 2017093655W WO 2018045831 A1 WO2018045831 A1 WO 2018045831A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
differential signal
source driver
amplitude
comparison result
Prior art date
Application number
PCT/CN2017/093655
Other languages
English (en)
French (fr)
Inventor
潘艳姣
张月圆
章善财
张大宇
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/750,885 priority Critical patent/US10600375B2/en
Publication of WO2018045831A1 publication Critical patent/WO2018045831A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit

Definitions

  • the present disclosure relates to the field of eye image amplitude adjustment technology, and in particular, to an eye image amplitude adjustment method, a data transmission method, a circuit, and a display device.
  • the amplitude of the differential data signal output from the timing controller Tcon to the source driver is fixed. However, due to layout (layout), temperature, different load screens, etc., the amplitude of each set of differential data signals will be different when they reach the source driver, and the receiving capability of the source drivers will be different under different conditions.
  • the eye pattern amplitude requirements of the received differential data signals will also vary. If the eye amplitude is set to meet the display requirements under different conditions, but the power consumption will increase, if the eye amplitude setting just meets the requirements, there will be an abnormal risk under different conditions.
  • the main purpose of the present disclosure is to provide an eye image amplitude adjustment method, a data transmission method, a circuit, and a display device, which can not dynamically adjust the eye image amplitude in the related art, so that if the eye eye amplitude setting of the data is set to meet the meeting, The display requirements are displayed under different conditions, but the power consumption will increase. If the eye pattern amplitude setting of the data just meets the requirements, there will be a problem that the abnormality risk is displayed under different conditions.
  • an eye image amplitude adjustment method including: during an eye image amplitude adjustment phase,
  • Eye pattern amplitude setting step the basic eye pattern amplitude setting unit sets a base eye image amplitude for the corresponding source driver
  • the predetermined differential signal output unit outputs a predetermined differential signal to the source driver
  • Comparing step the comparing unit compares the received source signal with the predetermined differential signal to obtain a comparison result
  • the adjusting step the eye pattern adjusting unit controls the eye image amplitude corresponding to the source driver according to the comparison result.
  • the adjusting step specifically includes:
  • the eye pattern adjustment unit controls to decrease an eye pattern amplitude corresponding to the source driver by a first eye adjustment step, and to the predetermined differential signal output step until the comparison result is an indication a second comparison result that the differential signal received by the source driver is different from the predetermined differential signal, the eye image amplitude adjustment unit controls an eye frame corresponding to the source driver according to the second comparison result The value is adjusted by the first eye to adjust the step size and stop the operation.
  • the adjusting step specifically includes:
  • the eye pattern adjustment unit controls to increase the eye pattern amplitude corresponding to the source driver by a second eye adjustment step, and to the predetermined differential signal output step until the comparison result is an indication
  • the first comparison result that the differential signal received by the source driver is the same as the predetermined differential signal stops the operation.
  • the present disclosure also provides a data transmission method including the above-described eye image amplitude adjustment method.
  • the basic eye image amplitude setting unit, the predetermined differential signal output unit, and the eye image amplitude adjustment unit are disposed in the timing controller, and the comparison unit is disposed in the source driver, when the eye image amplitude adjustment method is After the adjustment step is completed, the data transmission method further includes:
  • the timing controller outputs a data differential signal to the corresponding source driver.
  • the present disclosure also provides an eye diagram amplitude adjustment circuit, including:
  • a basic eye image amplitude setting unit configured to set a basic eye image amplitude for the corresponding source driver
  • a predetermined differential signal output unit for outputting a predetermined differential signal to the source driver
  • a comparison unit configured to compare the differential signal received by the source driver with the predetermined differential signal to obtain a comparison result
  • An eye amplitude adjustment unit configured to adjust an eye image amplitude corresponding to the source driver according to the comparison result.
  • the basic eye image amplitude setting unit is connected to the source driver.
  • the comparison unit is connected to the predetermined differential signal output unit.
  • the eye amplitude adjustment unit is respectively connected to the source driver and the comparison unit, and is further configured to send the adjusted eye amplitude to the source driver.
  • the present disclosure also provides a data transmission circuit including a timing controller and a source driver, and further comprising the above-mentioned eye amplitude adjustment circuit;
  • the base eye amplitude adjustment unit, the predetermined differential signal output unit, and the eye image amplitude adjustment unit included in the eye image amplitude adjustment circuit are disposed in the timing controller, and the eye image amplitude adjustment circuit includes The comparison unit is set in the source driver.
  • the present disclosure also provides a display device including the above data transmission circuit.
  • the eye pattern amplitude adjustment method, the data transmission method, the circuit, and the display device of the present disclosure are capable of comparing whether the differential signal received by the source driver and the predetermined differential signal are the same according to the comparison unit
  • the dynamic adjustment of the amplitude of the eye can be realized, the data transmission and reception capability under various conditions can be ensured, the display failure caused by various data reception errors can be improved, and the most Excellent amplitude, reducing power consumption.
  • FIG. 1 is a flow chart of an eye pattern amplitude adjustment method according to at least one embodiment of the present disclosure
  • FIG. 2 is a flow chart of an eye pattern amplitude adjustment method of at least one embodiment of the present disclosure
  • FIG. 3 is a flow chart of an eye pattern amplitude adjustment method of at least one embodiment of the present disclosure
  • FIG. 4 is a block diagram showing the structure of a data transmission circuit of at least one embodiment of the present disclosure.
  • an eye amplitude adjustment method includes: During the eye amplitude adjustment phase,
  • Eye pattern amplitude setting step S1 the base eye pattern amplitude setting unit sets a base eye image amplitude for the corresponding source driver;
  • a predetermined differential signal output step S2 the predetermined differential signal output unit outputs a predetermined differential signal to the source driver;
  • Comparing step S3 the comparing unit compares the differential signal received by the source driver with the predetermined differential signal to obtain a comparison result
  • Adjustment step S4 The eye pattern amplitude adjustment unit controls the adjustment of the eye pattern amplitude corresponding to the source driver according to the comparison result.
  • the eye pattern amplitude adjustment method is capable of adjusting whether the differential signal received by the source driver and the predetermined differential signal are the same comparison result according to the comparison unit to adjust the eye corresponding to the source driver
  • the amplitude of the map can realize the dynamic adjustment of the amplitude of the eye diagram, ensure the data transmission and reception capability under various conditions, improve the display failure caused by various data reception errors, and select the optimal amplitude to achieve the power consumption reduction.
  • the basic eye image amplitude may be 200 mV.
  • the value of the basic eye image may also be changed according to the amplitude of the differential signal, where the basic eye image amplitude is The value is not limited.
  • the high and low transitions can be combined in multiple sequences. Taking 3 bits (bits) as an example, there may be a combination of 000-111 and 8 in total. In the time domain, enough sequences are aligned according to a certain reference point, and then the waveforms are superimposed to form an eye diagram. For the test instrument, the clock signal of the signal is first recovered from the signal to be tested, and then the eye diagram is superimposed according to the clock reference, and finally displayed.
  • the eye amplitude is the amplitude of the safe range of the differential signal received by the IC (Integrated Circuit).
  • the source driver mentioned above is an IC that receives a differential signal; in actual operation, if the amplitude of the eye pattern set for the source driver is 200 mV, the amplitude of the differential signal received by the source driver The difference signal may be correctly equivalent to the number "1" when it is greater than 200 mv, but if the amplitude falls below 200 mv when the differential signal reaches the source driver due to layout, temperature, different load pictures, etc., then The differential signal received by the source driver can only correspond to the digital “0”, so that the differential signal sent is different from the differential signal received by the source driver. To show an abnormal risk, you need to increase the eye amplitude.
  • the eye amplitude adjustment method according to at least one embodiment of the present disclosure is compared according to The unit compares whether the obtained differential signal received by the source driver and the predetermined differential signal are the same comparison result to adjust the eye image amplitude corresponding to the source driver.
  • the adjusting step specifically includes:
  • the eye pattern adjustment unit controls to decrease an eye pattern amplitude corresponding to the source driver by a first eye adjustment step, and to the predetermined differential signal output step until the comparison result is an indication a second comparison result that the differential signal received by the source driver is different from the predetermined differential signal, the eye image amplitude adjustment unit controls an eye frame corresponding to the source driver according to the second comparison result The value is adjusted by the first eye to adjust the step size and stop the operation.
  • the first eye adjustment step size may be 10 mV or 5 mV.
  • the value of the first eye adjustment step may also be adjusted according to actual conditions, where the first eye adjustment step is adjusted. Long values are not limited.
  • the amplitude of the eye corresponding to the source driver is gradually decreased step by step until the comparison result obtained by the comparison unit is the source driver receiving. And when the difference signal and the predetermined difference signal are different from each other, and then adjusting the eye amplitude to a first eye adjustment step, finding an optimal eye corresponding to the source driver.
  • the image amplitude ensures the data transmission and reception capability under various conditions, improves the display failure caused by various data reception errors, and reduces the power consumption.
  • the adjusting step specifically includes:
  • the eye pattern adjustment unit controls to increase the eye pattern amplitude corresponding to the source driver by a second eye adjustment step, and to the predetermined differential signal output step until the comparison result is an indication
  • the first comparison result that the differential signal received by the source driver is the same as the predetermined differential signal stops the operation.
  • the second eye adjustment step size may be 10 mV or 5 mV.
  • the value of the first eye adjustment step may also be adjusted according to actual conditions, where the second eye adjustment step is adjusted. Long values are not limited.
  • the amplitude of the eye corresponding to the source driver is gradually increased step by step until the comparison result obtained by the comparison unit is the source driver.
  • the operation is stopped, the data transmission and reception capability under various conditions is ensured, the display failure caused by various data reception errors is improved, and the power consumption can be reduced.
  • the eye pattern adjustment method of the present disclosure will be described below based on an embodiment.
  • the eye pattern amplitude adjustment method of at least one embodiment of the present disclosure includes:
  • Eye pattern amplitude setting step S21 the base eye pattern amplitude setting unit sets a base eye image amplitude for the corresponding source driver;
  • a predetermined differential signal output step S22 the predetermined differential signal output unit outputs a predetermined differential signal to the source driver;
  • Comparing step S23 the comparison unit compares the source driver to compare the received differential signal with the predetermined differential signal to obtain a comparison result; the first comparison result is a differential signal indicating the source driver and the a first comparison result in which the predetermined differential signal is the same; when the comparison result is the first comparison result, the process proceeds to a first adjustment step S24, when the comparison result is a differential signal indicating the source driver receives the predetermined When the second comparison result of the difference signals is different, the process proceeds to the second adjustment step S25;
  • a first adjustment step S24 preset a first eye adjustment step, the eye amplitude adjustment unit controls to decrease an eye amplitude corresponding to the source driver by a first eye adjustment step, and To the predetermined differential signal output step S22;
  • the second adjusting step S25 the eye image amplitude adjusting unit controls the eye image amplitude corresponding to the source driver to increase the first eye image adjusting step according to the second comparison result, and stops the operation.
  • the eye pattern amplitude adjustment method of at least one embodiment of the present disclosure is when the first comparison result of the comparison unit is a first comparison result indicating that the differential signal received by the source driver is the same as the predetermined differential signal It is necessary to gradually adjust the amplitude of the eye corresponding to the source driver step by step until the comparison result obtained by the comparison unit is a second comparison result of whether the differential signal received by the source driver and the predetermined differential signal are different, and then The eye image amplitude is increased by a first eye adjustment step, Then, the optimal eye amplitude corresponding to the source driver is found, the data transmission and reception capability under various conditions is ensured, the display failure caused by various data reception errors is improved, and the power consumption can be reduced.
  • the eye pattern amplitude adjustment method of at least one embodiment of the present disclosure includes:
  • Eye pattern amplitude setting step S31 the base eye pattern amplitude setting unit sets a base eye image amplitude for the corresponding source driver;
  • a predetermined differential signal output step S32 the predetermined differential signal output unit outputs a predetermined differential signal to the source driver;
  • Comparing step S33 the comparison unit compares the source driver to compare the received differential signal with the predetermined differential signal to obtain a comparison result; the first comparison result is a differential signal indicating the source driver and the a second comparison result in which the predetermined difference signals are different; when the comparison result is the second comparison result, the process proceeds to a first adjustment step S34, when the comparison result is a differential signal indicating the source driver receives the When the first comparison result of the same differential signal is predetermined, the process proceeds to the stopping step S35;
  • a first adjustment step S34 preset a second eye adjustment step, the eye amplitude adjustment unit controls to increase the eye amplitude corresponding to the source driver by a second eye adjustment step, To the predetermined differential signal output step S32;
  • Stop step S35 stop the operation.
  • the eye pattern amplitude adjustment method of at least one embodiment of the present disclosure is that the first comparison result corresponding to the comparison unit is a second comparison result indicating that the differential signal received by the source driver is different from the predetermined differential signal
  • the comparison result obtained by the comparison unit is the first comparison result of whether the differential signal received by the source driver and the predetermined differential signal are the same, stop.
  • a data transmission method includes the above-described eye pattern amplitude adjustment method.
  • the data transmission method is applied to the timing controller to transmit a differential signal to the source driver, and the eye pattern amplitude adjustment method is used to adjust the eye image amplitude to be optimal before the differential signal is formally transmitted.
  • the basic eye image amplitude setting unit, the predetermined differential signal output unit, and the eye image amplitude adjustment unit are disposed in the timing controller, and the comparison unit is disposed in the source driver, when the eye diagram After the adjustment step included in the amplitude adjustment method, the data transmission method further includes:
  • the timing controller outputs a data differential signal to the corresponding source driver.
  • the timing controller begins to formally transmit a data differential signal to the source driver.
  • a basic eye image amplitude setting unit configured to set a basic eye image amplitude for the corresponding source driver
  • a predetermined differential signal output unit for outputting a predetermined differential signal to the source driver
  • a comparison unit configured to compare the differential signal received by the source driver with the predetermined differential signal to obtain a comparison result
  • An eye amplitude adjustment unit configured to adjust an eye image amplitude corresponding to the source driver according to the comparison result.
  • a data transmission circuit includes a timing controller and a source driver, and further includes the above-described eye amplitude adjustment circuit;
  • the base eye amplitude adjustment unit, the predetermined differential signal output unit, and the eye image amplitude adjustment unit included in the eye image amplitude adjustment circuit are disposed in the timing controller, and the eye image amplitude adjustment circuit includes The comparison unit is set in the source driver.
  • the data transmission circuit of at least one embodiment of the present disclosure includes a timing controller, a source driver, and an eye pattern adjustment circuit;
  • the eye image amplitude adjustment circuit includes a basic eye image amplitude setting unit, a predetermined differential signal output unit, a comparison unit, and an eye image amplitude adjustment unit;
  • a basic eye image amplitude setting unit, a predetermined differential signal output unit, and an eye image amplitude adjustment unit 44 are disposed in the timing controller, the comparison unit being disposed in the source driver;
  • the basic eye pattern amplitude setting unit is connected to the source driver for setting a base eye image amplitude for the source driver SI;
  • the predetermined differential signal output unit is configured to output a predetermined differential signal to the source driver SI;
  • the comparison unit is connected to a predetermined differential signal output unit, and is configured to compare the differential signal received by the source driver SI with the predetermined differential signal to obtain a comparison result;
  • the eye image amplitude adjustment unit is respectively connected to the source driver and the comparison unit, and is configured to adjust and adjust an eye image amplitude corresponding to the source driver according to the comparison result, and adjust the image
  • the eye pattern amplitude is sent to the source driver.
  • a display device includes the above-described data transmission circuit.
  • the eye image amplitude of the data differential signal is divided into several files, which are respectively transmitted to the respective source drivers, and the optimal gear position is selected by the feedback training signal to set the output eye.
  • V0 can be, for example, 200mV
  • gear amplitude for example: 10mV / gear, the gear amplitude is the eye Figure adjustment step size
  • the base eye amplitude V0 is respectively transmitted to each of the source drivers in the eye amplitude adjustment phase, and each of the source drivers feeds back the comparison signal to the Tcon according to the received predetermined differential signal. If the comparison signal from the source driver received by the Tcon is 0, it means that the source driver receives the data correctly; if the comparison signal from the source driver received by the Tcon is 1, it indicates that the source driver receives the data.
  • the error that is, the eye amplitude does not meet the requirement, the amplitude of the eye pattern set in the register for setting the eye amplitude in Tcon is changed, so that the output eye amplitude is increased by one gear, that is, the eye amplitude. Change to V0+10mV, and send the adjusted eye image amplitude output to the source driver again;
  • Tcon can calculate according to the ambient temperature and the content of the load screen. It is recommended to first recommend the amplitude position of the eye, and then compare it. When the amplitude of the eye is set too large, the gear will be automatically reduced back to the original position; When the amplitude is set too small, the gear position is automatically raised to realize dynamic adjustment of the eye amplitude, to ensure the data transmission and reception capability under various conditions, to improve the display failure caused by various data reception errors, and to select the optimal amplitude. Reduce power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Dc Digital Transmission (AREA)

Abstract

一种眼图幅值调节方法、数据传输方法、电路和显示装置,该方法包括:在眼图幅值调节阶段,眼图幅值设定步骤:基础眼图幅值设定单元为相应的源极驱动器设定一个基础眼图幅值(S1);预定差分信号输出步骤:预定差分信号输出单元输出预定差分信号至源极驱动器(S2);比较步骤:比较单元比较源极驱动器接收到的差分信号与预定差分信号,得到比较结果(S3);调节步骤:眼图幅值调节单元根据比较结果控制调节对应于源极驱动器的眼图幅值(S4)。

Description

眼图幅值调节方法、数据传输方法、电路和显示装置
相关申请的交叉引用
本申请主张在2016年9月8日在中国提交的中国专利申请号No.201610811704.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及眼图幅值调节技术领域,尤其涉及一种眼图幅值调节方法、数据传输方法、电路和显示装置。
背景技术
在液晶显示面板的驱动电路中,时序控制器Tcon输出给源极驱动器的差分数据信号的幅值是固定的。但是由于layout(布局)、温度、不同负载画面等原因,会造成每组差分数据信号到达源极驱动器的时候的幅值有所差异,并且不同条件下源极驱动器的接收能力也会不同,对接收的差分数据信号的眼图幅值要求也会有所差异。如果眼图幅值设定过大会满足不同条件下显示要求,但是功耗会增大,如果眼图幅值设定刚好满足要求,会存在不同条件下显示异常风险。
发明内容
本公开的主要目的在于提供一种眼图幅值调节方法、数据传输方法、电路和显示装置,解决相关技术中不能动态调节眼图幅值,导致如果数据的眼图幅值设定过大会满足不同条件下显示要求,但是功耗会增大,如果数据的眼图幅值设定刚好满足要求,会存在不同条件下显示异常风险的问题。
为了解决上述问题,本公开提供了一种眼图幅值调节方法,包括:在眼图幅值调节阶段,
眼图幅值设定步骤:基础眼图幅值设定单元为相应的源极驱动器设定一个基础眼图幅值;
预定差分信号输出步骤:预定差分信号输出单元输出预定差分信号至所述源极驱动器;
比较步骤:比较单元比较所述源极驱动器比较接收到的差分信号与所述预定差分信号,得到比较结果;
调节步骤:眼图幅值调节单元根据所述比较结果控制调节对应于所述源极驱动器的眼图幅值。
可选的,当所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果时,所述调节步骤具体包括:
预先设定第一眼图调整步长;
所述眼图幅值调节单元控制将对应于所述源极驱动器的眼图幅值调降第一眼图调整步长,转至所述预定差分信号输出步骤,直至所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不同的第二比较结果,所述眼图幅值调节单元根据所述第二比较结果控制将对应于所述源极驱动器的眼图幅值调升第一眼图调整步长,停止操作。
可选的,当所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不同的第二比较结果时,所述调节步骤具体包括:
预先设定第二眼图调整步长;
所述眼图幅值调节单元控制将对应于所述源极驱动器的眼图幅值调升第二眼图调整步长,转至所述预定差分信号输出步骤,直至所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果,停止操作。
本公开还提供了一种数据传输方法,包括上述的眼图幅值调节方法。
可选的,基础眼图幅值设定单元、预定差分信号输出单元和眼图幅值调节单元设置于时序控制器中,比较单元设置于源极驱动器中,当所述眼图幅值调节方法包括的调节步骤结束后,所述数据传输方法还包括:
在数据差分信号输出阶段,时序控制器向相应的源极驱动器输出数据差分信号。
本公开还提供了一种眼图幅值调节电路,包括:
基础眼图幅值设定单元,用于为相应的源极驱动器设定一个基础眼图幅值;
预定差分信号输出单元,用于输出预定差分信号至所述源极驱动器;
比较单元,用于比较所述源极驱动器接收到的差分信号与所述预定差分信号,得到比较结果;
眼图幅值调节单元,用于根据所述比较结果控制调节对应于所述源极驱动器的眼图幅值。
可选的,所述基础眼图幅值设定单元与所述源极驱动器连接。
可选的,所述比较单元与所述预定差分信号输出单元连接。
可选的,所述眼图幅值调节单元分别与所述源极驱动器和所述比较单元连接,并进一步用于将调节后的眼图幅值发送至所述源极驱动器。
本公开还提供了一种数据传输电路,包括时序控制器和源极驱动器,还包括上述的眼图幅值调节电路;
所述眼图幅值调节电路包括的基础眼图幅值设定单元、预定差分信号输出单元和眼图幅值调节单元设置于所述时序控制器中,所述眼图幅值调节电路包括的比较单元设置于源极驱动器中。
本公开还提供了一种显示装置,包括上述的数据传输电路。
与相关技术相比,本公开所述的眼图幅值调节方法、数据传输方法、电路和显示装置能够根据比较单元比较得到的源极驱动器接收到的差分信号和预定差分信号是否相同的比较结果,以调节对应于源极驱动器的眼图幅值,从而可以实现眼图幅值的动态调整,保证各种条件下数据传输接收能力,改善各种数据接收失误造成的显示不良,又可以选择最优幅值,实现功耗降低。
附图说明
图1是本公开的至少一个实施例所述的眼图幅值调节方法的流程图;
图2是本公开的至少一个实施例的眼图幅值调节方法的流程图;
图3是本公开的至少一个实施例的眼图幅值调节方法的流程图;
图4是本公开的至少一个实施例的数据传输电路的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本公开的至少一个实施例所述的眼图幅值调节方法,包括: 在眼图幅值调节阶段,
眼图幅值设定步骤S1:基础眼图幅值设定单元为相应的源极驱动器设定一个基础眼图幅值;
预定差分信号输出步骤S2:预定差分信号输出单元输出预定差分信号至所述源极驱动器;
比较步骤S3:比较单元比较所述源极驱动器接收到的差分信号与所述预定差分信号,得到比较结果;
调节步骤S4:眼图幅值调节单元根据所述比较结果控制调节对应于所述源极驱动器的眼图幅值。
本公开的至少一个实施例所述的眼图幅值调节方法能够根据比较单元比较得到的源极驱动器接收到的差分信号和预定差分信号是否相同的比较结果,以调节对应于源极驱动器的眼图幅值,从而可以实现眼图幅值的动态调整,保证各种条件下数据传输接收能力,改善各种数据接收失误造成的显示不良,又可以选择最优幅值,实现功耗降低。
可选的,所述基础眼图幅值可以为200mV,在实际操作时,也可以根据差分信号的幅值情况相应改变所述基础眼图幅值的取值,在此对基础眼图幅值的取值不做限定。
对于数字信号,其高电平与低电平的变化可以有多种序列组合。以3个bit(位)为例,可以有000-111共8中组合,在时域上将足够多的上述序列按某一个基准点对齐,然后将其波形叠加起来,就形成了眼图。对于测试仪器而言,首先从待测信号中恢复出信号的时钟信号,然后按照时钟基准来叠加出眼图,最终予以显示。
眼图幅值即为IC(Integrated Circuit,集成电路)接收差分信号的安全范围幅值。
以上提到的源极驱动器即为接收差分信号的IC;在实际操作时,如果为源极驱动器设定的眼图幅值为200mV,则当所述源极驱动器接收到的差分信号的幅值大于200mv时则所述差分信号可以正确的相当于数字“1”,然而如果因为布局、温度、不同负载画面等原因导致差分信号到达所述源极驱动器时幅值下降到200mv以下,则所述源极驱动器接收到的差分信号只能对应为数字“0”,从而发出的差分信号和所述源极驱动器接收到的差分信号之间不一样,从而导 致显示异常风险,此时则需要提高眼图幅值。然而如果眼图幅值一开始设定的过高,虽然可以满足不同条件下的显示要求,但是会增大功耗,因此本公开的至少一个实施例所述的眼图幅值调节方法根据比较单元比较得到的源极驱动器接收到的差分信号和预定差分信号是否相同的比较结果,以调节对应于源极驱动器的眼图幅值。
根据一种具体实施方式,当所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果时,所述调节步骤具体包括:
预先设定第一眼图调整步长;
所述眼图幅值调节单元控制将对应于所述源极驱动器的眼图幅值调降第一眼图调整步长,转至所述预定差分信号输出步骤,直至所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不同的第二比较结果,所述眼图幅值调节单元根据所述第二比较结果控制将对应于所述源极驱动器的眼图幅值调升第一眼图调整步长,停止操作。
可选的,所述第一眼图调整步长可以为10mV或5mV,在实际操作时,也可以根据实际情况调整第一眼图调整步长的取值,在此对第一眼图调整步长的取值不作限定。
当一开始比较得到源极驱动器接收到的差分信号与预定差分信号相同时,则逐步将对应于将源极驱动器的眼图幅值逐步调降,直至比较单元得到的比较结果为源极驱动器接收到的差分信号和预定差分信号是否不同的第二比较结果时,再将所述眼图幅值调升一个第一眼图调整步长,则找到最佳的对应于所述源极驱动器的眼图幅值,保证各种条件下数据传输接收能力,改善各种数据接收失误造成的显示不良,又可以降低功耗。
根据另一种具体实施方式,当所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不同的第二比较结果时,所述调节步骤具体包括:
预先设定第二眼图调整步长;
所述眼图幅值调节单元控制将对应于所述源极驱动器的眼图幅值调升第二眼图调整步长,转至所述预定差分信号输出步骤,直至所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果,停止操作。
可选的,所述第二眼图调整步长可以为10mV或5mV,在实际操作时,也可以根据实际情况调整第一眼图调整步长的取值,在此对第二眼图调整步长的取值不作限定。
当一开始比较得到源极驱动器接收到的差分信号与预定差分信号不相同时,则逐步将对应于将源极驱动器的眼图幅值逐步调升,直至比较单元得到的比较结果为源极驱动器接收到的差分信号和预定差分信号是否相同的第一比较结果时,停止操作,保证各种条件下数据传输接收能力,改善各种数据接收失误造成的显示不良,又可以降低功耗。
下面根据实施例来说明本公开所述的眼图幅值调节方法。
如图2所示,本公开的至少一个实施例的眼图幅值调节方法包括:
眼图幅值设定步骤S21:基础眼图幅值设定单元为相应的源极驱动器设定一个基础眼图幅值;
预定差分信号输出步骤S22:预定差分信号输出单元输出预定差分信号至所述源极驱动器;
比较步骤S23:比较单元比较所述源极驱动器比较接收到的差分信号与所述预定差分信号,得到比较结果;第一次的比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果;当所述比较结果为第一比较结果时转至第一调节步骤S24,当所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不相同的第二比较结果时转至第二调节步骤S25;
第一调节步骤S24:预先设定第一眼图调整步长,所述眼图幅值调节单元控制将对应于所述源极驱动器的眼图幅值调降第一眼图调整步长,转至所述预定差分信号输出步骤S22;
第二调节步骤S25:所述眼图幅值调节单元根据所述第二比较结果控制将对应于所述源极驱动器的眼图幅值调升第一眼图调整步长,停止操作。
本公开的至少一个实施例的眼图幅值调节方法是对应于比较单元第一次的比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果时,需要逐步将对应于将源极驱动器的眼图幅值逐步调降,直至比较单元得到的比较结果为源极驱动器接收到的差分信号和预定差分信号是否不同的第二比较结果时,再将所述眼图幅值调升一个第一眼图调整步长, 则找到最佳的对应于所述源极驱动器的眼图幅值,保证各种条件下数据传输接收能力,改善各种数据接收失误造成的显示不良,又可以降低功耗。
如图3所示,本公开的至少一个实施例的眼图幅值调节方法包括:
眼图幅值设定步骤S31:基础眼图幅值设定单元为相应的源极驱动器设定一个基础眼图幅值;
预定差分信号输出步骤S32:预定差分信号输出单元输出预定差分信号至所述源极驱动器;
比较步骤S33:比较单元比较所述源极驱动器比较接收到的差分信号与所述预定差分信号,得到比较结果;第一次的比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不相同的第二比较结果;当所述比较结果为第二比较结果时转至第一调节步骤S34,当所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果时转至停止步骤S35;
第一调节步骤S34:预先设定第二眼图调整步长,所述眼图幅值调节单元控制将对应于所述源极驱动器的眼图幅值调升第二眼图调整步长,转至所述预定差分信号输出步骤S32;
停止步骤S35:停止操作。
本公开的至少一个实施例的眼图幅值调节方法是对应于比较单元第一次的比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不相同的第二比较结果时,需要逐步将对应于将源极驱动器的眼图幅值逐步调升,直至比较单元得到的比较结果为源极驱动器接收到的差分信号和预定差分信号是否相同的第一比较结果时,停止操作,保证各种条件下数据传输接收能力,改善各种数据接收失误造成的显示不良,又可以降低功耗。
本公开的至少一个实施例所述的数据传输方法,包括上述的眼图幅值调节方法。
本公开的至少一个实施例所述的数据传输方法应用于时序控制器向源极驱动器发送差分信号,采用眼图幅值调节方法在正式传输差分信号之前将眼图幅值调节为最佳。
在实际操作时,基础眼图幅值设定单元、预定差分信号输出单元和眼图幅值调节单元设置于时序控制器中,比较单元设置于源极驱动器中,当所述眼图 幅值调节方法包括的调节步骤结束后,所述数据传输方法还包括:
在数据差分信号输出阶段,时序控制器向相应的源极驱动器输出数据差分信号。
在本公开的至少一个实施例所述的数据传输方法中,在完成眼图幅值动态调节后,时序控制器开始正式向源极驱动器发送数据差分信号。
本公开的至少一个实施例所述的眼图幅值调节电路包括:
基础眼图幅值设定单元,用于为相应的源极驱动器设定一个基础眼图幅值;
预定差分信号输出单元,用于输出预定差分信号至所述源极驱动器;
比较单元,用于比较所述源极驱动器接收到的差分信号与所述预定差分信号,得到比较结果;
眼图幅值调节单元,用于根据所述比较结果控制调节对应于所述源极驱动器的眼图幅值。
本公开的至少一个实施例所述的数据传输电路,包括时序控制器和源极驱动器,还包括上述的眼图幅值调节电路;
所述眼图幅值调节电路包括的基础眼图幅值设定单元、预定差分信号输出单元和眼图幅值调节单元设置于所述时序控制器中,所述眼图幅值调节电路包括的比较单元设置于源极驱动器中。
本公开的至少一个实施例所述的数据传输电路包括时序控制器、源极驱动器和眼图幅值调节电路;
所述眼图幅值调节电路包括基础眼图幅值设定单元、预定差分信号输出单元、比较单元和眼图幅值调节单元;
基础眼图幅值设定单元、预定差分信号输出单元和眼图幅值调节单元44设置于所述时序控制器中,所述比较单元设置于源极驱动器中;
所述基础眼图幅值设定单元,与源极驱动器连接,用于为源极驱动器SI设定一个基础眼图幅值;
所述预定差分信号输出单元,用于输出预定差分信号至所述源极驱动器SI;
所述比较单元,与预定差分信号输出单元连接,所述用于比较所述源极驱动器SI接收到的差分信号与所述预定差分信号,得到比较结果;
所述眼图幅值调节单元,分别与所述源极驱动器和所述比较单元连接,用于根据所述比较结果控制调节对应于所述源极驱动器的眼图幅值,并将调节后 的眼图幅值发送至源极驱动器。
本公开的至少一个实施例所述的显示装置包括上述的数据传输电路。
下面通过一具体实施例来说明本公开所述的数据传输电路。
如图4所示,在时序控制器Tcon正式向三个源极驱动器:第一源极驱动器SI1、第二源极驱动器SI2、第三源极驱动器SI3分别输出数据差分信号之前,设置一个眼图幅值调节阶段;
在所述眼图幅值调节阶段,将数据差分信号的眼图幅值分为几档,分别传输给各个源极驱动器,通过反馈training(测试)信号选最优的档位进行设定输出眼图幅值;
首先,根据各个源极驱动器的基本要求设定一个基础眼图幅值V0(V0例如可以为200mV),并设定档位幅值(例如:10mV/档,所述档位幅值即为眼图调整步长);
然后,在眼图幅值调节阶段将基础眼图幅值V0分别传输给每颗源极驱动器,各个源极驱动器根据接收的预定差分信号是否正确反馈比较信号给Tcon。如果Tcon接收到的来自一源极驱动器比较信号为0,则表示所述源极驱动器接收数据正确;如果Tcon接收到的来自一源极驱动器比较信号为1,则表示所述源极驱动器接收数据错误,即眼图幅值不满足要求,在Tcon中设定眼图幅值的寄存器内将设定的眼图幅值更改,使输出眼图幅值增加一个档位,也即眼图幅值变为V0+10mV,再次将调整后的眼图幅值输出发送给所述源极驱动器;
同样,在眼图幅值设定偏高时依次将设定的眼图幅值递减档位,在Tcon收到的比较信号为1,表示数据错误时,选择所述档位的上一档位,既为最优的档位。
同时Tcon可根据环境温度和负载画面内容进行计算,优先推荐一眼图幅值档位,然后经过比较,在眼图幅值设定过大时,自动将档位减回原来档位;在眼图幅值设定过小时,自动提升档位,以实现动态调整眼图幅值,保证各种条件下数据传输接收能力,改善各种数据接收失误导致的显示不良;又可以选择最优幅值,实现功耗降低。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (11)

  1. 一种眼图幅值调节方法,包括:在眼图幅值调节阶段,
    眼图幅值设定步骤:基础眼图幅值设定单元为相应的源极驱动器设定一个基础眼图幅值;
    预定差分信号输出步骤:预定差分信号输出单元输出预定差分信号至所述源极驱动器;
    比较步骤:比较单元比较所述源极驱动器比较接收到的差分信号与所述预定差分信号,得到比较结果;
    调节步骤:眼图幅值调节单元根据所述比较结果控制调节对应于所述源极驱动器的眼图幅值。
  2. 如权利要求1所述的眼图幅值调节方法,其中,当所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果时,所述调节步骤具体包括:
    预先设定第一眼图调整步长;
    所述眼图幅值调节单元控制将对应于所述源极驱动器的眼图幅值调降第一眼图调整步长,转至所述预定差分信号输出步骤,直至所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不同的第二比较结果,所述眼图幅值调节单元根据所述第二比较结果控制将对应于所述源极驱动器的眼图幅值调升第一眼图调整步长,停止操作。
  3. 如权利要求1所述的眼图幅值调节方法,其中,当所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号不同的第二比较结果时,所述调节步骤具体包括:
    预先设定第二眼图调整步长;
    所述眼图幅值调节单元控制将对应于所述源极驱动器的眼图幅值调升第二眼图调整步长,转至所述预定差分信号输出步骤,直至所述比较结果为指示所述源极驱动器接收到的差分信号与所述预定差分信号相同的第一比较结果,停止操作。
  4. 一种数据传输方法,包括如权利要求1至3中任一权利要求所述的眼 图幅值调节方法。
  5. 如权利要求4所述的数据传输方法,其中,基础眼图幅值设定单元、预定差分信号输出单元和眼图幅值调节单元设置于时序控制器中,比较单元设置于源极驱动器中,当所述眼图幅值调节方法包括的调节步骤结束后,所述数据传输方法还包括:
    在数据差分信号输出阶段,时序控制器向相应的源极驱动器输出数据差分信号。
  6. 一种眼图幅值调节电路,包括:
    基础眼图幅值设定单元,用于为相应的源极驱动器设定一个基础眼图幅值;
    预定差分信号输出单元,用于输出预定差分信号至所述源极驱动器;
    比较单元,用于比较所述源极驱动器接收到的差分信号与所述预定差分信号,得到比较结果;
    眼图幅值调节单元,用于根据所述比较结果控制调节对应于所述源极驱动器的眼图幅值。
  7. 如权6所述的眼图幅值调节电路,其中,所述基础眼图幅值设定单元与所述源极驱动器连接。
  8. 如权6所述的眼图幅值调节电路,其中,所述比较单元与所述预定差分信号输出单元连接。
  9. 如权6所述的眼图幅值调节电路,其中,所述眼图幅值调节单元分别与所述源极驱动器和所述比较单元连接,并进一步用于将调节后的眼图幅值发送至所述源极驱动器。
  10. 一种数据传输电路,包括时序控制器和源极驱动器,还包括如权利要求6所述的眼图幅值调节电路;
    所述眼图幅值调节电路包括的基础眼图幅值设定单元、预定差分信号输出单元和眼图幅值调节单元设置于所述时序控制器中,所述眼图幅值调节电路包括的比较单元设置于源极驱动器中。
  11. 一种显示装置,包括如权利要求10所述的数据传输电路。
PCT/CN2017/093655 2016-09-08 2017-07-20 眼图幅值调节方法、数据传输方法、电路和显示装置 WO2018045831A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/750,885 US10600375B2 (en) 2016-09-08 2017-07-20 Method and circuit for modulating eye diagram amplitude, method and circuitry for data transmission, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610811704.6A CN106128406B (zh) 2016-09-08 2016-09-08 眼图幅值调节方法、数据传输方法、电路和显示装置
CN201610811704.6 2016-09-08

Publications (1)

Publication Number Publication Date
WO2018045831A1 true WO2018045831A1 (zh) 2018-03-15

Family

ID=57271521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093655 WO2018045831A1 (zh) 2016-09-08 2017-07-20 眼图幅值调节方法、数据传输方法、电路和显示装置

Country Status (3)

Country Link
US (1) US10600375B2 (zh)
CN (1) CN106128406B (zh)
WO (1) WO2018045831A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106128406B (zh) * 2016-09-08 2019-01-22 京东方科技集团股份有限公司 眼图幅值调节方法、数据传输方法、电路和显示装置
CN106714250B (zh) * 2017-01-19 2020-03-24 Oppo广东移动通信有限公司 一种小区注册方法及装置和计算机可读存储介质
CN109039553B (zh) * 2017-06-09 2022-05-24 京东方科技集团股份有限公司 信号检测方法、组件及显示装置
CN107995135B (zh) * 2017-10-31 2021-07-23 北京集创北方科技股份有限公司 信道衰减补偿系统、方法、电路、存储介质及处理器
CN109448645B (zh) * 2018-10-30 2020-12-18 惠科股份有限公司 信号调整电路及方法、显示装置
CN109410808B (zh) * 2018-11-22 2020-10-13 深圳市华星光电技术有限公司 显示装置及显示装置有载测试的方法
CN109509421A (zh) * 2018-12-26 2019-03-22 惠科股份有限公司 显示设备及其控制方法、装置
CN109559671A (zh) * 2018-12-26 2019-04-02 惠科股份有限公司 显示面板及其控制方法、控制装置和显示设备
US11244597B2 (en) * 2020-03-19 2022-02-08 E Ink Holdings Inc. Display device and driving protection method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125757A1 (en) * 2004-12-13 2006-06-15 Lg Philips Lcd Co., Ltd. Driver for display device
CN101075402A (zh) * 2006-05-16 2007-11-21 Lg电子株式会社 等离子显示装置和驱动该装置的方法
CN101605114A (zh) * 2008-06-10 2009-12-16 株式会社东芝 解调器
CN102014017A (zh) * 2010-09-30 2011-04-13 华为技术有限公司 一种信号检测电路、方法及系统
JP2011228799A (ja) * 2010-04-15 2011-11-10 Fujitsu Ltd 受信回路
CN102939721A (zh) * 2010-01-20 2013-02-20 北方电讯网络有限公司 用于在通信网络中调节接收器处的符号判定阈值的方法和设备
CN106128406A (zh) * 2016-09-08 2016-11-16 京东方科技集团股份有限公司 眼图幅值调节方法、数据传输方法、电路和显示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6820979B1 (en) * 1999-04-23 2004-11-23 Neuroptics, Inc. Pupilometer with pupil irregularity detection, pupil tracking, and pupil response detection capability, glaucoma screening capability, intracranial pressure detection capability, and ocular aberration measurement capability
GB2370473B (en) * 2000-12-21 2004-04-07 Marconi Caswell Ltd Improvements in or relating to optical communication
US7382984B2 (en) * 2002-10-03 2008-06-03 Nortel Networks Limited Electrical domain compensation of optical dispersion in an optical communications system
ATE354207T1 (de) * 2002-12-23 2007-03-15 Cit Alcatel Lvds-treiber mit vorverzerrung
JP4170963B2 (ja) * 2004-07-22 2008-10-22 浜松ホトニクス株式会社 Led駆動回路
US7769110B2 (en) * 2005-05-13 2010-08-03 Broadcom Corporation Threshold adjust system and method
JP4186951B2 (ja) * 2005-05-18 2008-11-26 横河電機株式会社 テストシステム
US8564502B2 (en) * 2009-04-02 2013-10-22 GM Global Technology Operations LLC Distortion and perspective correction of vector projection display
US8890946B2 (en) * 2010-03-01 2014-11-18 Eyefluence, Inc. Systems and methods for spatially controlled scene illumination
WO2012059985A1 (ja) * 2010-11-02 2012-05-10 富士通株式会社 集積回路、電圧値取得方法および送受信システム
CN102681925A (zh) * 2011-03-10 2012-09-19 鸿富锦精密工业(深圳)有限公司 串行外围设备接口总线测试系统及方法
WO2013058128A1 (ja) * 2011-10-18 2013-04-25 本田技研工業株式会社 車両周辺監視装置
US9128308B1 (en) * 2012-03-26 2015-09-08 Sandia Corporation Low-voltage differentially-signaled modulators
CN202931466U (zh) * 2012-11-01 2013-05-08 深圳Tcl新技术有限公司 Lvds输出调节装置及电视机
US9024659B2 (en) * 2013-09-30 2015-05-05 Broadcom Corporation Method and apparatus for passive equalization and slew-rate control
CN104699930A (zh) * 2013-12-05 2015-06-10 天津三星电子有限公司 一种lvds信号眼图的生成方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060125757A1 (en) * 2004-12-13 2006-06-15 Lg Philips Lcd Co., Ltd. Driver for display device
CN101075402A (zh) * 2006-05-16 2007-11-21 Lg电子株式会社 等离子显示装置和驱动该装置的方法
CN101605114A (zh) * 2008-06-10 2009-12-16 株式会社东芝 解调器
CN102939721A (zh) * 2010-01-20 2013-02-20 北方电讯网络有限公司 用于在通信网络中调节接收器处的符号判定阈值的方法和设备
JP2011228799A (ja) * 2010-04-15 2011-11-10 Fujitsu Ltd 受信回路
CN102014017A (zh) * 2010-09-30 2011-04-13 华为技术有限公司 一种信号检测电路、方法及系统
CN106128406A (zh) * 2016-09-08 2016-11-16 京东方科技集团股份有限公司 眼图幅值调节方法、数据传输方法、电路和显示装置

Also Published As

Publication number Publication date
CN106128406A (zh) 2016-11-16
US20190266964A1 (en) 2019-08-29
CN106128406B (zh) 2019-01-22
US10600375B2 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2018045831A1 (zh) 眼图幅值调节方法、数据传输方法、电路和显示装置
TWI455091B (zh) 液晶顯示裝置及其驅動方法
TWI407420B (zh) 液晶顯示器及其源極驅動電路
JP4205120B2 (ja) 液晶表示装置及びその駆動方法
TWI570680B (zh) 源極驅動器及更新伽瑪曲線的方法
KR101242727B1 (ko) 신호 생성 회로 및 이를 포함하는 액정 표시 장치
WO2017024627A1 (zh) 一种液晶显示驱动系统及驱动方法
TWI400452B (zh) 電流校正方法及其控制電路
US8698857B2 (en) Display device having a merge source driver and a timing controller
WO2018040497A1 (zh) 栅极电压驱动装置、方法、驱动电路以及液晶显示面板
WO2018233402A1 (zh) 电流比较电路、显示装置及其驱动方法
KR20110081375A (ko) 데이터 처리 방법 및 이를 수행하기 위한 표시 장치
US20160118013A1 (en) Display driving apparatus and method for driving display apparatus
JP2004233581A (ja) 表示装置駆動回路
US10115349B2 (en) Display device
US9378667B2 (en) Scan driving circuit
TW201621873A (zh) 液晶顯示器的伽瑪曲線校正方法
US20040196279A1 (en) Device for adjusting control signals for an LCD
JP2008164850A (ja) 液晶表示装置の基準電圧調整方法
US20100321359A1 (en) Common voltage generating circuit of an lcd
US20150262537A1 (en) Gamma voltage generating apparatus and method for generating gamma voltage
KR20100129153A (ko) 액정표시장치
TWI426483B (zh) 顯示裝置
WO2016165164A1 (zh) 一种多电压产生装置及液晶显示器
US20150161959A1 (en) Driving Method and Driving Device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17848004

Country of ref document: EP

Kind code of ref document: A1