WO2018043419A1 - Layered electrode body and power storage element - Google Patents

Layered electrode body and power storage element Download PDF

Info

Publication number
WO2018043419A1
WO2018043419A1 PCT/JP2017/030771 JP2017030771W WO2018043419A1 WO 2018043419 A1 WO2018043419 A1 WO 2018043419A1 JP 2017030771 W JP2017030771 W JP 2017030771W WO 2018043419 A1 WO2018043419 A1 WO 2018043419A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
positive electrode
separators
negative electrode
welding
Prior art date
Application number
PCT/JP2017/030771
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 沖
篤哉 石橋
稲益 徳雄
Original Assignee
リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト, 株式会社Gsユアサ filed Critical リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト
Priority to DE112017004317.4T priority Critical patent/DE112017004317T5/en
Priority to JP2018537267A priority patent/JPWO2018043419A1/en
Priority to CN201780052890.2A priority patent/CN110088966A/en
Publication of WO2018043419A1 publication Critical patent/WO2018043419A1/en
Priority to JP2021184231A priority patent/JP2022024044A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laminated electrode body and a storage element.
  • secondary batteries that can be charged and discharged are used in various devices such as mobile phones and electric vehicles.
  • a secondary battery having a smaller size and a higher energy density (electric capacity per volume) has been demanded.
  • a secondary battery is formed by alternately laminating a positive electrode plate having an active material layer formed on a surface and a negative electrode plate having an active material layer formed on a surface through an electrically insulating separator.
  • a positive electrode plate having an active material layer formed on a surface
  • a negative electrode plate having an active material layer formed on a surface
  • an electrically insulating separator In order to increase the energy density in such a secondary battery, it is effective to make the separator thinner. For this reason, the secondary battery which formed the separator with the resin film is put into practical use.
  • the separator formed from the resin film is relatively weak against heat, when the energy density of the secondary battery is increased, the separator is damaged by heat, and metal precipitates (for example, lithium dendrite) generated by electrodeposition are generated. There is a possibility that the positive electrode plate and the negative electrode plate may be short-circuited through the separator. For this reason, a secondary battery has been proposed in which a heat-resistant layer (inorganic coating layer) is formed on the surface of the separator that contacts the electrode plate to improve the heat resistance of the separator (see JP 2013-143337 A).
  • a packaged positive electrode plate in which a positive electrode plate is sandwiched between two separators and an unpacked negative electrode plate that is larger than the positive electrode plate and smaller than the separator are alternately stacked.
  • the laminated electrode body is accommodated in an exterior material.
  • a positive electrode plate is held between two separators by forming a plurality of dotted adhesive portions at intervals on the outer edges of the two separators.
  • the electrolyte can pass relatively easily between the bonded portions of the two separators sandwiching the positive electrode plate. For this reason, in the secondary battery described in the above publication, metal species that generate metal ions capable of generating precipitates are mixed in the electrolyte near the positive electrode plate, or metal ions generated in the positive electrode move to the negative electrode. Electrodeposition by contact cannot be sufficiently suppressed.
  • an object of the present invention is to provide a laminated electrode body and a storage element that can effectively suppress electrodeposition.
  • the laminated electrode body which concerns on 1 aspect of this invention has a positive electrode plate which has the tab which protrudes from a 1st edge, a resin layer, and the heat resistant layer formed on the said resin layer,
  • the said heat resistant layer is said positive electrode plate
  • At least a pair of separators covering the first surface and the second surface of the positive electrode plate in a state of being opposed to each other, and a negative electrode plate facing the positive electrode plate through the separator, and the outer peripheral side of the positive electrode plate
  • a second welding region extending substantially vertically and continuously.
  • the laminated electrode body according to one embodiment of the present invention can effectively suppress electrodeposition.
  • FIG. 2 is a schematic plan view of a laminated electrode body of the energy storage device in FIG. 1.
  • One embodiment of the present invention includes a positive electrode plate having a tab protruding from a first side, a resin layer and a heat resistant layer formed on the resin layer, and the heat resistant layer facing the positive electrode plate And at least a pair of separators covering the first surface and the second surface of the positive electrode plate, and a negative electrode plate facing the positive electrode plate via the separator, and the at least one pair of separators on the outer peripheral side of the positive electrode plate A plurality of welding regions welded to each other, the plurality of welding regions extending substantially parallel and intermittently to the first side of the positive electrode plate, and substantially perpendicular and continuous to the first side; A laminated electrode body including a second welding region extending in the direction.
  • the laminated electrode body has a plurality of welding regions in which the at least one pair of separators are welded to each other on the outer peripheral side of the positive electrode plate, and the plurality of welding regions are substantially parallel and intermittent to the first side of the positive electrode plate.
  • the first welding region extending in the direction, the inside of the at least one pair of separators can be filled from between the first welding regions.
  • the multilayer electrode body includes a second welding region in which the plurality of welding regions extend substantially perpendicularly and continuously to the first side, so that the electrolyte is separated into two separators in a direction parallel to the first side. I can't go in and out.
  • the laminated electrode body suppresses mixing of metal species that generate metal ions capable of generating precipitates in the electrolyte in the vicinity of the positive electrode plate.
  • the metal ions generated at the positive electrode can be prevented from moving and coming into contact with the negative electrode for electrodeposition.
  • the second weld region may have a cut surface.
  • the second welding region has a cut surface, that is, the second welding region is formed on the outer edges of the at least one pair of separators, so that the second welding in the width direction is performed on the long sheet-like separator.
  • a plurality of packaged positive plates can be efficiently formed by forming a region and cutting the second welding region into two parts in the width direction.
  • the at least one pair of separators may have a translucent portion in the welding region, and the average width of the welding region may be 10 ⁇ m or more and 1000 ⁇ m or less. As described above, the at least one pair of separators has a light-transmitting portion in the welding region, and the average width of the welding region is within the range. Can be bigger.
  • the at least one pair of separators may include fragments of the heat-resistant layer in the welding region. As described above, since the at least one pair of separators includes the fragments of the heat-resistant layer in the welding region, it is not necessary to remove the fragments of the heat-resistant layer that is destroyed when the resin layers are welded to each other. The separator can be welded relatively easily.
  • Another aspect of the present invention is a power storage device including the multilayer electrode body and an exterior material that accommodates the multilayer electrode body.
  • the electrical storage element can be used safely by preventing the short circuit by including the laminated electrode body that can effectively suppress electrodeposition.
  • the exterior material is a metal case.
  • stacked electrode body can be protected because the said exterior material is a metal case.
  • substantially parallel means that the relative angle is 15 ° or less
  • substantially perpendicular means that the relative angle is 75 ° or more.
  • having translucency means that the total light transmittance measured in accordance with JIS-K7375 (2008) is 20% or more.
  • the power storage device of FIG. 1 includes a laminated electrode body 1 that is another embodiment of the present invention, and an exterior material 2 that accommodates the laminated electrode body 1.
  • the power storage element is filled with an electrolyte (electrolytic solution) in the exterior material 2.
  • the laminated electrode body 1 includes a plurality of positive plates 3, a plurality of pairs of separators 4 that cover the first surface and the second surface of the positive plates 3, and a plurality of negative electrodes that face the positive plates 3 with the separators 4 interposed therebetween. And a plate 5.
  • the positive electrode plate 3 includes a conductive foil-shaped or sheet-shaped positive electrode current collector 6 and a positive electrode active material layer 7 laminated on both surfaces of the positive electrode current collector 6. More specifically, as shown in FIG. 2, the positive electrode plate 3 includes an electrode portion 8 having a polygonal shape (usually rectangular shape) in plan view in which a positive electrode active material layer 7 is laminated on both surfaces of a positive electrode current collector 6. A tab 9 protrudes from the first side S of the electrode portion 8 and is electrically connected to the electrode terminal of the power storage element.
  • the tab 9 is preferably formed in a belt shape extending vertically from the first side S of the electrode portion 8 and having a width smaller than that of the electrode portion 8. In addition, the tab 9 is preferably disposed offset to one end side of the first side S of the electrode portion 8.
  • the width of the separator 4 in the direction along the first side S of the positive electrode plate 3 is preferably equal to or less than the width of the negative electrode plate 5. More specifically, in the multilayer electrode body 1, the separator 4 has a shape that does not protrude from the negative electrode plate 5 in the direction along the first side S in a plan view. Thus, the positive electrode plate 3 held between the paired separators 4 is opposed to the negative electrode plate 5 without protruding from the negative electrode plate 5 in plan view. Thereby, in the said laminated electrode body 1 and by extension, the said electrical storage element, since a current density becomes large in the outer edge part of the negative electrode plate 5, and electrodeposition is not promoted locally, the short circuit by electrodeposition is prevented.
  • the lower limit of the difference between the average length in the direction along the first side S of the separator 4 and the average length in the direction along the first side S of the negative electrode plate 5 is preferably 0 mm.
  • the upper limit of the difference between the average length in the direction along the side S and the average length in the direction along the first side S of the negative electrode plate 5 is preferably 1 mm, and more preferably 0.5 mm.
  • the positive electrode plate 3 and the negative electrode plate 5 it becomes easy to laminate the packaged positive electrode plate and the negative electrode plate 5 so that the positive electrode plate 3 does not protrude from the negative electrode plate 5. Moreover, by making the difference of the average length of the direction along the 1st edge
  • the positive electrode plate 3 can be relatively easily positioned with respect to the negative electrode plate 5 by positioning the separator 4 of the positive electrode plate 3 with respect to the negative electrode plate 5. For this reason, in the laminated electrode body 1, even if the ratio of the area of the positive electrode plate 3 to the area of the negative electrode plate 5 is relatively large, the electrodeposition is not promoted at the outer edge portion of the negative electrode plate 5. can do.
  • the separator 4 is disposed on the inner side in the width direction of the negative electrode plate 5 in the laminated electrode body 1, the clearance between the negative electrode plate 5 and the exterior material 2 can be reduced. For this reason, the said electrical storage element can make the dead space in the exterior material 2 comparatively small, and can make energy density comparatively large.
  • the positive electrode current collector 6 As a material of the positive electrode current collector 6, a metal such as aluminum, copper, iron, nickel, or an alloy thereof is used. Among these, aluminum, an aluminum alloy, copper, and a copper alloy are preferable from the balance between high conductivity and cost, and aluminum and an aluminum alloy are more preferable. Moreover, as a formation form of the positive electrode electrical power collector 6, foil, a vapor deposition film, etc. are mentioned, A foil is preferable from the surface of cost. That is, the positive electrode current collector 6 is preferably an aluminum foil. Examples of aluminum or aluminum alloy include A1085P and A3003P defined in JIS-H4000 (2014).
  • the lower limit of the average thickness of the positive electrode current collector 6 is preferably 5 ⁇ m, more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the positive electrode current collector 6 is preferably 50 ⁇ m, more preferably 40 ⁇ m.
  • the positive electrode active material layer 7 is formed from a so-called positive electrode mixture containing a positive electrode active material.
  • the positive electrode mixture forming the positive electrode active material layer 7 includes optional components such as a conductive agent, a binder (binder), a thickener, and a filler as necessary.
  • Examples of the positive electrode active material include complex oxides (Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x ) represented by Li x MO y (M represents at least one transition metal).
  • MnO 3 Li x Ni ⁇ Co (1- ⁇ ) O 2 , Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2 , Li x Ni ⁇ Mn (2- ⁇ ) O 4 ), Li w A polyanion compound (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 ) represented by Me x (XO y ) z (Me represents at least one transition metal, and X represents, for example, P, Si, B, V, etc.) Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.).
  • the elements or polyanions in these compounds may be partially substituted with other elements or anion species.
  • one kind of these compounds may be used alone, or two or more kinds may be mixed and used.
  • the crystal structure of the positive electrode active material is preferably a layered structure or a spinel structure.
  • the lower limit of the content of the positive electrode active material in the positive electrode active material layer 7 is preferably 50% by mass, more preferably 70% by mass, and still more preferably 80% by mass.
  • an upper limit of content of a positive electrode active material 99 mass% is preferable and 94 mass% is more preferable.
  • the conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect battery performance.
  • a conductive agent include carbon black such as natural or artificial graphite, furnace black, acetylene black, and ketjen black, metals, and conductive ceramics.
  • Examples of the shape of the conductive agent include powder and fiber.
  • the lower limit of the content of the conductive agent in the positive electrode active material layer 7 is preferably 0.1% by mass, and more preferably 0.5% by mass.
  • an upper limit of content of a electrically conductive agent 10 mass% is preferable and 5 mass% is more preferable.
  • binder examples include thermoplastic resins such as fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM. , Elastomers such as styrene butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
  • thermoplastic resins such as fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM.
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene butadiene rubber
  • fluororubber polysaccharide polymers and the like.
  • the lower limit of the binder content in the positive electrode active material layer 7 is preferably 1% by mass, and more preferably 2% by mass. On the other hand, as an upper limit of content of a binder, 10 mass% is preferable and 5 mass% is more preferable. By setting the content of the binder in the above range, the positive electrode active material can be stably held.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose a functional group that reacts with lithium
  • the filler is not particularly limited as long as it does not adversely affect battery performance.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, glass, and carbon.
  • the separator 4 has a sheet-like resin layer 10 and a heat-resistant layer 11 laminated on the resin layer 10.
  • the separators 4 are arranged in pairs on both sides of each positive electrode plate 3. More specifically, the pair of separators 4 cover the first surface and the second surface of the electrode portion 8 of the positive electrode plate 3 with the heat-resistant layer 11 facing the positive electrode plate 3.
  • the resin layers 10 are welded to each other on the outer peripheral side of the positive electrode plate 3, more specifically, in a range where the tab 9 near the outside of the electrode portion 8 does not exist in plan view. It has a plurality of welding regions (first welding region A1 and second welding region A2).
  • the resin layer 10 is formed from a porous resin film.
  • the main component of the resin layer 10 examples include polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and chlorinated polyethylene.
  • Polyolefins such as polyolefin derivatives, ethylene-propylene copolymers, and polyesters such as polyethylene terephthalate and copolymerized polyesters can be used.
  • polyethylene and polypropylene excellent in electrolytic solution resistance, durability, and weldability are preferably used.
  • the “main component” means a component having the largest mass content.
  • the lower limit of the average thickness of the resin layer 10 is preferably 5 ⁇ m and more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the resin layer 10 is preferably 50 ⁇ m, and more preferably 30 ⁇ m.
  • the heat-resistant layer 11 includes a large number of inorganic particles and a binder that connects the inorganic particles.
  • oxides such as alumina, silica, zirconia, titania, magnesia, ceria, yttria, zinc oxide, iron oxide, nitrides such as silicon nitride, titanium nitride, boron nitride, silicon carbide, carbonate Calcium, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate Etc.
  • alumina, silica and titania are particularly preferable as the main component of the inorganic particles of the heat-resistant layer 11.
  • the lower limit of the average particle diameter of the inorganic particles of the heat-resistant layer 11 is preferably 1 nm, and more preferably 7 nm.
  • the upper limit of the average particle diameter of the inorganic particles is preferably 5 ⁇ m and more preferably 1 ⁇ m.
  • Examples of the main component of the binder of the heat-resistant layer 11 include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluororubbers such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, and styrene-butadiene copolymers.
  • fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene
  • fluororubbers such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • styrene-butadiene copolymers styrene-butadiene copolymers.
  • the lower limit of the average thickness of the heat-resistant layer 11 is preferably 0.5 ⁇ m, and more preferably 1 ⁇ m.
  • the upper limit of the average thickness of the heat-resistant layer 11 is preferably 10 ⁇ m, and more preferably 6 ⁇ m.
  • the plurality of welding regions include a first welding region A ⁇ b> 1 that extends approximately in parallel and intermittently with the first side S on which the tab 9 of the positive electrode plate 3 is provided, and is substantially perpendicular to and continuous with the first side S. And a second welding region A2 extending in the direction.
  • the first welding region A1 is discontinuously spaced along a pair of outer edges (edges on both sides in the short direction in FIG. 2) of the electrode portion 8 substantially perpendicular to the extending direction of the tab 9.
  • the second welding region A2 is formed continuously along a pair of outer edges (edges on both sides in the longitudinal direction in FIG. 2) of the electrode portion 8 substantially parallel to the extending direction of the tab 9.
  • the positive electrode plate 3 is accurately held at a predetermined position between the two separators 4 forming a pair. Accordingly, the positive electrode plate 3 can be relatively accurately aligned with the negative electrode plate 5 by aligning the lower end of the separator 4 with the lower end of the negative electrode plate 5 using a guide or the like.
  • the welded areas A1 and A2 in which the two separators 4 forming a pair are welded have higher rigidity than the two separators 4 (non-welded areas) that are stacked without being welded. , A2 is brought into contact with the guide, whereby the positive electrode plate 3 can be positioned relatively easily and accurately.
  • this welding area A1, A2 there may be a fragment of the heat-resistant layer 11 that has been destroyed.
  • the fragments of the heat-resistant layer 11 present in the welding regions A1 and A2 extend in a zigzag manner in the welding regions A1 and A2, specifically, extend in the longitudinal direction while reciprocating in a direction different from the longitudinal direction of the welding regions A1 and A2. It is preferable that the existence density is small in the existing region of the vibration wave shape.
  • Such welding regions A1 and A2 are used to weld the resin layers 10 of the two separators 4 to each other while scraping the fragments of the heat-resistant layer 11 formed while breaking the heat-resistant layer 11 with a relatively small indenter in the width direction. Can be formed.
  • the welding regions A1 and A2 have a translucent portion. That is, the welding regions A1 and A2 are semi-transparent portions or heat-resistant layers formed by dispersing relatively small pieces of forming material of the heat-resistant layer 11 having a light shielding property in the transparent resin forming the resin layer 10. It is good to have a transparent part with a sufficiently small content of 11 pieces.
  • the lower limit of the ratio of the average length of the non-welded portion (average interval of the welded portion) to the average length of the welded portion in the first weld region A1 is preferably 0.2, and more preferably 0.5.
  • the upper limit of the ratio of the average length of the non-welded portion to the average length of the welded portion in the first weld region A1 is preferably 3, and more preferably 2.
  • mixing the metal into the electrolyte in contact with the positive electrode plate 3 is sufficiently suppressed by setting the ratio of the average length of the non-welded portion to the average length of the welded portion in the first weld region A1 to be equal to or less than the above upper limit. And a sufficient electrodeposition preventing effect can be obtained.
  • the lower limit of the average width of the welding regions A1 and A2 is preferably 10 ⁇ m, and more preferably 20 ⁇ m.
  • the upper limit of the average width of the welding regions A1 and A2 is preferably 1000 ⁇ m, and more preferably 300 ⁇ m.
  • the separator 4 does not become unnecessarily large and the positive electrode plate 3 does not become relatively small by setting the average width of the welding regions A1 and A2 to be equal to or less than the upper limit, the laminated electrode body 1 and the The energy density of the power storage element can be sufficiently increased.
  • the lower limit of the average distance between the welded areas A1 and A2 and the outer edge of the positive electrode plate 3 is preferably 0.1 mm, and more preferably 0.2 mm.
  • the upper limit of the average distance between the welding regions A1 and A2 and the outer edge of the positive electrode plate 3 is preferably 1.0 mm, and more preferably 0.8 mm.
  • the positive electrode plate 3 is not unnecessarily small with respect to the separator 4 and the negative electrode plate 5, and Energy density can be increased sufficiently.
  • the lower limit of the average distance between the outer edge of the separator 4 and the first welding region A1 is preferably 100 ⁇ m, and more preferably 200 ⁇ m.
  • the upper limit of the average distance between the outer edge of the separator 4 and the first welding region A1 is preferably 1 mm, and more preferably 0.5 mm.
  • the second welding region A2 has a cut surface, that is, is formed on the outer edge of the separator 4. Since the second welding region A2 has a cut surface, a plurality of wide welding regions are formed in the width direction on the pair of long sheet-like separator base materials, and the wide welding regions are divided into two second widths. By cutting so as to be divided into two welding regions A2, a packaged positive electrode plate in which the positive electrode plate 3 is sandwiched between a pair of separators 4 can be efficiently formed.
  • the lower limit of the outer edge of the separator 4, the second welding region A2, and the average interval is preferably 100 ⁇ m.
  • the upper limit of the average distance between the outer edge of the separator 4 and the welded areas A1, A2 is preferably 1 mm, and more preferably 0.5 mm.
  • the negative electrode plate 5 is laminated in the laminated electrode body without being covered with a separator 4 or the like in a bag shape.
  • the negative electrode plate 5 includes a conductive foil-like or sheet-like negative electrode current collector 12 and a negative electrode active material layer 13 laminated on the surface of the negative electrode current collector 12 (a surface facing the positive electrode plate 4).
  • the negative electrode plate 5 includes an electrode portion 14 having a polygonal shape (usually rectangular shape) in plan view in which a negative electrode active material layer 13 is laminated on the surface of the negative electrode current collector 12, and the electrode portion 14 to the electrode portion. 14 and a tab 15 extending in a band shape smaller than 14 and electrically connected to the electrode terminal of the power storage element.
  • the laminated electrode body 1 all the welding regions A 1 and A 2 of the separator 4 of the positive electrode plate 3 are included inside the electrode portion 14 of the negative electrode plate 5 in a plan view. Therefore, since the electrode portion 8 of the positive electrode plate 3 included inside the welding regions A1 and A2 of the two separators 4 forming a pair is disposed in the projection region of the electrode portion 14 of the negative electrode plate 5, the negative electrode plate The current is not concentrated on the outer edge portion of the five electrode portions 14.
  • the negative electrode current collector 12 can have the same configuration as the positive electrode current collector 6 described above, but the material is preferably copper or a copper alloy. That is, the negative electrode current collector 12 of the negative electrode plate 5 is preferably a copper foil. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the negative electrode active material layer 13 is formed from a so-called negative electrode plate mixture containing a negative electrode active material. Moreover, the negative electrode plate mixture forming the negative electrode active material layer 13 includes optional components such as a conductive agent, a binder (binder), a thickener, and a filler as necessary. The same components as those for the positive electrode active material layer 7 can be used as optional components such as a conductive agent, a binder, a thickener, and a filler.
  • the negative electrode active material a material capable of inserting and extracting lithium ions is preferably used.
  • the negative electrode active material include metals such as lithium and lithium alloys; metal oxides; polyphosphate compounds; carbon materials such as graphite and amorphous carbon (easily graphitizable carbon or non-graphitizable carbon). Can be mentioned.
  • Si, Si oxide, Sn, Sn oxide, or a combination thereof is used from the viewpoint of setting the discharge capacity per unit facing area between the positive electrode plate 3 and the negative electrode plate 5 to a suitable range. It is preferable to use Si oxide. Si and Sn can have a discharge capacity about three times that of graphite when they are made into oxides.
  • the ratio of the number of atoms of O to Si contained in the Si oxide is preferably more than 0 and less than 2. That is, as the Si oxide, a compound represented by SiO x (0 ⁇ x ⁇ 2) is preferable. The ratio of the number of atoms is more preferably 0.5 or more and 1.5 or less.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the discharge capacity per unit facing area between the positive electrode plate 3 and the negative electrode plate 5 and the mass of the negative electrode active material to be described later can be reduced. Both of the mass ratios can be adjusted to be suitable values.
  • Other negative electrode active materials used in combination with Si oxide include carbon materials such as graphite, hard carbon, soft carbon, coke, acetylene black, ketjen black, vapor grown carbon fiber, fullerene, activated carbon and the like. . Only one kind of these carbon materials may be mixed with Si oxide, or two or more kinds may be mixed with Si oxide in an arbitrary combination and ratio.
  • graphite having a relatively low charge / discharge potential is preferable, and a secondary battery element having a high energy density can be obtained by using graphite.
  • graphite used by mixing with Si oxide include flaky graphite, spherical graphite, artificial graphite, and natural graphite. Among these, scaly graphite that can easily maintain contact with the surface of the Si oxide particles even after repeated charge and discharge is preferable.
  • the upper limit of the content of Si oxide is usually 100% by mass, and preferably 90% by mass.
  • the negative electrode active material layer 13 includes a small amount of typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn in addition to Si oxide.
  • typical metal elements such as Ga, Ge, and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W may be contained. .
  • Si oxide (substance represented by the general formula SiO x ), it is preferable to use a material containing both phases of SiO 2 and Si. Such Si oxide has a small volume change and excellent charge / discharge cycle characteristics because lithium is occluded and released from Si in the SiO 2 matrix.
  • the average particle size of the Si oxide is preferably 1 ⁇ m or more and 15 ⁇ m or less. By setting the average particle diameter of the Si oxide to the upper limit or less, the charge / discharge cycle characteristics of the power storage element can be improved.
  • the Si oxide can be used from a highly crystalline one to an amorphous one. Further, as the Si oxide, one washed with an acid such as hydrogen fluoride or sulfuric acid or one reduced with hydrogen may be used.
  • an acid such as hydrogen fluoride or sulfuric acid or one reduced with hydrogen
  • the lower limit of the content of the negative electrode active material in the negative electrode active material layer 13 is preferably 60% by mass, more preferably 80% by mass, and even more preferably 90% by mass.
  • an upper limit of content of a negative electrode active material 99 mass% is preferable and 98 mass% is more preferable.
  • the lower limit of the binder content in the negative electrode active material layer 13 is preferably 1% by mass and more preferably 5% by mass.
  • an upper limit of content of a binder 20 mass% is preferable and 15 mass% is more preferable.
  • the exterior material 2 accommodates the laminated electrode body 1 and an electrolyte is enclosed therein.
  • the material of the exterior material 2 may be any material as long as it has a sealing property capable of enclosing an electrolyte and a strength capable of protecting the laminated electrode body 1, but a metal is preferably used. In other words, it is preferable to use a metal case that can more reliably protect the laminated electrode body 1 as the exterior material 2.
  • a known electrolytic solution that is usually used for a power storage element can be used.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), or diethyl
  • LiPF 6 lithium hexafluorophosphate
  • a solvent containing a chain carbonate such as carbonate (DEC), dimethyl carbonate (DMC), or ethyl methyl carbonate (EMC)
  • the separator of the laminated electrode body may omit the welding region outside the first side of the four sides of the positive electrode plate where the tab extends.
  • the laminated electrode body may be one in which one packaged positive electrode plate is sandwiched between a pair of negative electrode plates.
  • the heat-resistant layer can be omitted. That is, the laminated electrode body includes a positive electrode plate having a tab protruding from the first side, a resin layer, at least a pair of separators covering the first surface and the second surface of the positive electrode plate, and the separator. A plurality of welded areas in which the at least one pair of separators are welded to each other on the outer peripheral side of the positive electrode plate, and the plurality of welded areas are formed on the first plate of the positive electrode plate. It is also possible to provide a laminated electrode body including a first welding region extending substantially parallel and intermittently with one side and a second welding region extending substantially perpendicularly and continuously to the first side.
  • the laminated electrode body and the electricity storage device according to the present invention can be particularly suitably used as a power source for equipment that requires a relatively large energy density, such as an electric vehicle and a mobile phone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

The present invention addresses the problem of providing a layered electrode body and a power storage element that are able to effectively suppress electrodeposition. The layered electrode body according to one embodiment of the present invention is provided with: a positive electrode plate having a tab protruding from a first edge; at least one pair of separators which have a resin layer and a heat resistant layer formed on the resin layer, and which cover first and second surfaces of the positive electrode plate in a state in which the heat resistant layer faces the positive electrode plate; and a negative electrode plate which is disposed so as to face the positive electrode plate across the separator, wherein an outer peripheral side of the positive electrode plate has a plurality of welding regions where the at least one pair of separators are welded together; and the plurality of welding regions include a first welding region which extends intermittently and approximately parallel to the first edge of the positive electrode plate, and a second welding region which extends continuously and approximately perpendicular to the first edge.

Description

積層電極体及び蓄電素子LAMINATED ELECTRODE BODY AND STORAGE ELEMENT
 本発明は、積層電極体及び蓄電素子に関する。 The present invention relates to a laminated electrode body and a storage element.
 例えば携帯電話、電気自動車等の様々な機器に充放電可能な二次電池が使用されている。近年、これらの機器の高出力化や高性能化に伴い、より小型でエネルギー密度(体積当たりの電気容量)の大きな二次電池が求められている。 For example, secondary batteries that can be charged and discharged are used in various devices such as mobile phones and electric vehicles. In recent years, with higher output and higher performance of these devices, a secondary battery having a smaller size and a higher energy density (electric capacity per volume) has been demanded.
 一般に二次電池は、表面に活物質層が形成された正極板と表面に活物質層が形成された負極板とを電気絶縁性を有するセパレータを介して交互に積層して形成される。このような二次電池でエネルギー密度を大きくするには、セパレータを薄くすることが有効である。このため、セパレータを樹脂フィルムによって形成した二次電池が実用化されている。 Generally, a secondary battery is formed by alternately laminating a positive electrode plate having an active material layer formed on a surface and a negative electrode plate having an active material layer formed on a surface through an electrically insulating separator. In order to increase the energy density in such a secondary battery, it is effective to make the separator thinner. For this reason, the secondary battery which formed the separator with the resin film is put into practical use.
 しかしながら、樹脂フィルムから形成されるセパレータは、比較的熱に弱いため、二次電池のエネルギー密度を大きくすると、セパレータが熱により損傷し、電析によって生成される金属析出物(例えばリチウムデンドライト)がセパレータを貫通して正極板と負極板とを微小短絡させるおそれがある。このため、セパレータの電極板に当接する面に耐熱層(無機コート層)を形成し、セパレータの耐熱性を向上した二次電池が提案されている(特開2013-143337号公報参照)。 However, since the separator formed from the resin film is relatively weak against heat, when the energy density of the secondary battery is increased, the separator is damaged by heat, and metal precipitates (for example, lithium dendrite) generated by electrodeposition are generated. There is a possibility that the positive electrode plate and the negative electrode plate may be short-circuited through the separator. For this reason, a secondary battery has been proposed in which a heat-resistant layer (inorganic coating layer) is formed on the surface of the separator that contacts the electrode plate to improve the heat resistance of the separator (see JP 2013-143337 A).
 前記公報に記載の二次電池では、正極板を2枚のセパレータで挟み込んだ袋詰正極板と、正極板よりも大きく、かつセパレータよりも小さい袋詰めされていない負極板とを交互に積層した積層電極体を外装材の中に収容している。この公報に記載の二次電池では、2枚のセパレータの外縁に、間隔を空けて複数の点状の接着部を形成することによって2枚のセパレータ間に正極板を保持している。 In the secondary battery described in the publication, a packaged positive electrode plate in which a positive electrode plate is sandwiched between two separators and an unpacked negative electrode plate that is larger than the positive electrode plate and smaller than the separator are alternately stacked. The laminated electrode body is accommodated in an exterior material. In the secondary battery described in this publication, a positive electrode plate is held between two separators by forming a plurality of dotted adhesive portions at intervals on the outer edges of the two separators.
特開2013-143337号公報JP 2013-143337 A
 前記公報に記載の二次電池では、正極板を挟み込む2枚のセパレータの接着部の間を電解質が比較的容易に通過することができる。このため、前記公報に記載の二次電池は、正極板近傍の電解質に析出物を生成し得る金属イオンを生じる金属種が混入することや、正極において生成された金属イオンが移動して負極に接触することにより電析することを十分に抑制できない。 In the secondary battery described in the above publication, the electrolyte can pass relatively easily between the bonded portions of the two separators sandwiching the positive electrode plate. For this reason, in the secondary battery described in the above publication, metal species that generate metal ions capable of generating precipitates are mixed in the electrolyte near the positive electrode plate, or metal ions generated in the positive electrode move to the negative electrode. Electrodeposition by contact cannot be sufficiently suppressed.
 かかる状況に鑑みて、本発明は、効果的に電析を抑制できる積層電極体及び蓄電素子を提供することを課題とする。 In view of this situation, an object of the present invention is to provide a laminated electrode body and a storage element that can effectively suppress electrodeposition.
 本発明の一態様に係る積層電極体は、第一辺から突出するタブを有する正極板と、樹脂層と前記樹脂層上に形成された耐熱層とを有し、前記耐熱層を前記正極板に対向させた状態で前記正極板の第一面及び第二面を覆う少なくとも一対のセパレータと、前記セパレータを介して前記正極板に対向する負極板とを備え、前記正極板の外周側に前記少なくとも一対のセパレータが互いに溶着された複数の溶着領域を有し、前記複数の溶着領域が、前記正極板の第一辺と略平行かつ間欠的に延びる第一溶着領域と、前記第一辺と略垂直かつ連続的に延びる第二溶着領域とを含む。 The laminated electrode body which concerns on 1 aspect of this invention has a positive electrode plate which has the tab which protrudes from a 1st edge, a resin layer, and the heat resistant layer formed on the said resin layer, The said heat resistant layer is said positive electrode plate At least a pair of separators covering the first surface and the second surface of the positive electrode plate in a state of being opposed to each other, and a negative electrode plate facing the positive electrode plate through the separator, and the outer peripheral side of the positive electrode plate A plurality of welding regions in which at least a pair of separators are welded to each other, the plurality of welding regions extending substantially in parallel and intermittently with the first side of the positive electrode plate, and the first side; A second welding region extending substantially vertically and continuously.
 本発明の一態様に係る積層電極体は、効果的に電析を抑制することができる。 The laminated electrode body according to one embodiment of the present invention can effectively suppress electrodeposition.
本発明の一実施形態の蓄電素子を示す模式的断面図である。It is typical sectional drawing which shows the electrical storage element of one Embodiment of this invention. 図1の蓄電素子の積層電極体の模式的平面図である。FIG. 2 is a schematic plan view of a laminated electrode body of the energy storage device in FIG. 1.
 本発明の一態様は、第一辺から突出するタブを有する正極板と、樹脂層と前記樹脂層上に形成された耐熱層とを有し、前記耐熱層を前記正極板に対向させた状態で前記正極板の第一面及び第二面を覆う少なくとも一対のセパレータと、前記セパレータを介して前記正極板に対向する負極板とを備え、前記正極板の外周側に前記少なくとも一対のセパレータが互いに溶着された複数の溶着領域を有し、前記複数の溶着領域が、前記正極板の第一辺と略平行かつ間欠的に延びる第一溶着領域と、前記第一辺と略垂直かつ連続的に延びる第二溶着領域とを含む積層電極体である。 One embodiment of the present invention includes a positive electrode plate having a tab protruding from a first side, a resin layer and a heat resistant layer formed on the resin layer, and the heat resistant layer facing the positive electrode plate And at least a pair of separators covering the first surface and the second surface of the positive electrode plate, and a negative electrode plate facing the positive electrode plate via the separator, and the at least one pair of separators on the outer peripheral side of the positive electrode plate A plurality of welding regions welded to each other, the plurality of welding regions extending substantially parallel and intermittently to the first side of the positive electrode plate, and substantially perpendicular and continuous to the first side; A laminated electrode body including a second welding region extending in the direction.
 当該積層電極体は、前記正極板の外周側に前記少なくとも一対のセパレータが互いに溶着された複数の溶着領域を有し、前記複数の溶着領域が前記正極板の第一辺と略平行かつ間欠的に延びる第一溶着領域を含むことによって、この第一溶着領域の間から前記少なくとも一対のセパレータの内側に電解液を充填することができる。また、当該積層電極体は、前記複数の溶着領域が前記第一辺と略垂直かつ連続的に延びる第二溶着領域を含むことによって、第一辺と平行方向には電解液が2枚のセパレータ内に出入りできない。このため、当該積層電極体は、正極板に接触する電解液の移動が抑制されるので、正極板近傍の電解質に析出物を生成し得る金属イオンを生じる金属種が混入することを抑制することができ、かつ正極において生成された金属イオンが移動して、負極に接触することにより電析することを抑制できる。 The laminated electrode body has a plurality of welding regions in which the at least one pair of separators are welded to each other on the outer peripheral side of the positive electrode plate, and the plurality of welding regions are substantially parallel and intermittent to the first side of the positive electrode plate. By including the first welding region extending in the direction, the inside of the at least one pair of separators can be filled from between the first welding regions. Further, the multilayer electrode body includes a second welding region in which the plurality of welding regions extend substantially perpendicularly and continuously to the first side, so that the electrolyte is separated into two separators in a direction parallel to the first side. I can't go in and out. For this reason, since the movement of the electrolyte solution in contact with the positive electrode plate is suppressed, the laminated electrode body suppresses mixing of metal species that generate metal ions capable of generating precipitates in the electrolyte in the vicinity of the positive electrode plate. In addition, the metal ions generated at the positive electrode can be prevented from moving and coming into contact with the negative electrode for electrodeposition.
 前記第二溶着領域が切断面を有するとよい。このように、前記第二溶着領域が切断面を有すること、つまり前記第二溶着領域が前記少なくとも一対のセパレータの外縁に形成されることによって、長尺シート状のセパレータに幅方向に第二溶着領域を形成し、この第二溶着領域を幅方向に2分割するよう切断することで、複数の袋詰正極板を効率よく形成することができる。 The second weld region may have a cut surface. Thus, the second welding region has a cut surface, that is, the second welding region is formed on the outer edges of the at least one pair of separators, so that the second welding in the width direction is performed on the long sheet-like separator. A plurality of packaged positive plates can be efficiently formed by forming a region and cutting the second welding region into two parts in the width direction.
 前記少なくとも一対のセパレータが前記溶着領域に透光性を有する部分を有し、前記溶着領域の平均幅が10μm以上1000μm以下であるとよい。このように、前記少なくとも一対のセパレータが前記溶着領域に透光性を有する部分を有し、前記溶着領域の平均幅が前記範囲内であることによって、前記2枚のセパレータの接合強度を比較的大きくすることができる。 The at least one pair of separators may have a translucent portion in the welding region, and the average width of the welding region may be 10 μm or more and 1000 μm or less. As described above, the at least one pair of separators has a light-transmitting portion in the welding region, and the average width of the welding region is within the range. Can be bigger.
 前記少なくとも一対のセパレータが前記溶着領域に前記耐熱層の砕片を含むとよい。このように、前記少なくとも一対のセパレータが前記溶着領域に前記耐熱層の砕片を含むことによって、樹脂層同士を溶着する際に破壊される耐熱層の砕片を取り除く必要がないので、前記少なくとも一対のセパレータを比較的容易に溶着することができる。 The at least one pair of separators may include fragments of the heat-resistant layer in the welding region. As described above, since the at least one pair of separators includes the fragments of the heat-resistant layer in the welding region, it is not necessary to remove the fragments of the heat-resistant layer that is destroyed when the resin layers are welded to each other. The separator can be welded relatively easily.
 本発明の別の態様は、当該積層電極体と、この積層電極体を収容する外装材とを備える蓄電素子である。 Another aspect of the present invention is a power storage device including the multilayer electrode body and an exterior material that accommodates the multilayer electrode body.
 当該蓄電素子は、効果的に電析を抑制することができる当該積層電極体を備えることによって、短絡を防止して安全に使用することができる。 The electrical storage element can be used safely by preventing the short circuit by including the laminated electrode body that can effectively suppress electrodeposition.
 前記外装材が金属ケースであるとよい。このように、前記外装材が金属ケースであることによって、当該積層電極体を保護することができる。 It is preferable that the exterior material is a metal case. Thus, the said laminated | stacked electrode body can be protected because the said exterior material is a metal case.
 なお、「略平行」とは、相対角度が15°以下であることを意味し、「略垂直」とは、相対角度が75°以上であることを意味する。また、「透光性を有する」とは、JIS-K7375(2008)に準拠して測定される全光線透過率が20%以上であることを意味する。 Note that “substantially parallel” means that the relative angle is 15 ° or less, and “substantially perpendicular” means that the relative angle is 75 ° or more. Further, “having translucency” means that the total light transmittance measured in accordance with JIS-K7375 (2008) is 20% or more.
 以下、適宜図面を参照しつつ、本発明の一実施形態に係る蓄電素子について詳説する。 Hereinafter, a power storage device according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
[蓄電素子]
 図1の蓄電素子は、それ自体が本発明の別の実施形態である積層電極体1と、この積層電極体1を収容する外装材2とを備える。また、当該蓄電素子は、外装材2の内部に電解質(電解液)が充填されている。
[Storage element]
The power storage device of FIG. 1 includes a laminated electrode body 1 that is another embodiment of the present invention, and an exterior material 2 that accommodates the laminated electrode body 1. In addition, the power storage element is filled with an electrolyte (electrolytic solution) in the exterior material 2.
〔積層電極体〕
 当該積層電極体1は、複数の正極板3と、正極板3の第一面及び第二面を覆う複数対のセパレータ4と、前記セパレータ4を介して前記正極板3に対向する複数の負極板5とを備える。
(Laminated electrode body)
The laminated electrode body 1 includes a plurality of positive plates 3, a plurality of pairs of separators 4 that cover the first surface and the second surface of the positive plates 3, and a plurality of negative electrodes that face the positive plates 3 with the separators 4 interposed therebetween. And a plate 5.
<正極板>
 正極板3は、導電性を有する箔状乃至シート状の正極集電体6と、この正極集電体6の両面に積層される正極活物質層7とを有する。より詳しくは、図2に示すように、正極板3は、正極集電体6の両面に正極活物質層7が積層される平面視多角形状(通常は矩形状)の電極部8と、この電極部8の第一辺Sから突出し、当該蓄電素子の電極端子に電気的に接続されるタブ9とを有する。
<Positive electrode plate>
The positive electrode plate 3 includes a conductive foil-shaped or sheet-shaped positive electrode current collector 6 and a positive electrode active material layer 7 laminated on both surfaces of the positive electrode current collector 6. More specifically, as shown in FIG. 2, the positive electrode plate 3 includes an electrode portion 8 having a polygonal shape (usually rectangular shape) in plan view in which a positive electrode active material layer 7 is laminated on both surfaces of a positive electrode current collector 6. A tab 9 protrudes from the first side S of the electrode portion 8 and is electrically connected to the electrode terminal of the power storage element.
 正極集電体6において、タブ9は、電極部8の第一辺Sから垂直に延出し、電極部8よりも幅の小さい帯状に形成されることが好ましい。また、タブ9は、電極部8の第一辺Sのいずれか一方の端部側にオフセットして配設されることが好ましい。 In the positive electrode current collector 6, the tab 9 is preferably formed in a belt shape extending vertically from the first side S of the electrode portion 8 and having a width smaller than that of the electrode portion 8. In addition, the tab 9 is preferably disposed offset to one end side of the first side S of the electrode portion 8.
 正極板3の第一辺Sに沿う方向のセパレータ4の幅は、負極板5の幅以下であることが好ましい。より詳しくは、当該積層電極体1において、セパレータ4は、平面視で負極板5から第一辺Sに沿う方向にはみ出さないような形状とされる。これにより、対をなすセパレータ4の間に保持される正極板3は、平面視で負極板5からはみ出すことなく、その全面を負極板5に対向させる。これにより、当該積層電極体1ひいては当該蓄電素子では、負極板5の外縁部で電流密度が大きくなって局所的に電析が助長されることがないため、電析による短絡が防止される。 The width of the separator 4 in the direction along the first side S of the positive electrode plate 3 is preferably equal to or less than the width of the negative electrode plate 5. More specifically, in the multilayer electrode body 1, the separator 4 has a shape that does not protrude from the negative electrode plate 5 in the direction along the first side S in a plan view. Thus, the positive electrode plate 3 held between the paired separators 4 is opposed to the negative electrode plate 5 without protruding from the negative electrode plate 5 in plan view. Thereby, in the said laminated electrode body 1 and by extension, the said electrical storage element, since a current density becomes large in the outer edge part of the negative electrode plate 5, and electrodeposition is not promoted locally, the short circuit by electrodeposition is prevented.
 このように、セパレータ4の第一辺Sに沿う方向の平均長さと負極板5の第一辺Sに沿う方向の平均長さとの差の下限としては、0mmが好ましいが、セパレータ4の第一辺Sに沿う方向の平均長さと負極板5の第一辺Sに沿う方向の平均長さとの差の上限としては、1mmが好ましく、0.5mmがより好ましい。セパレータ4の第一辺Sに沿う方向の平均長さと負極板5の第一辺Sに沿う方向の平均長さとの差を前記下限以上とすることで、正極板3を一対のセパレータ4で挟み込んだ袋詰正極板と負極板5とを正極板3が負極板5からはみ出さないよう積層することが容易になる。また、セパレータ4の第一辺Sに沿う方向の平均長さと負極板5の第一辺Sに沿う方向の平均長さとの差を前記上限以下とすることで、正極板3と負極板5との面積の差が不必要に大きくなることがなく、当該積層電極体1ひいては当該蓄電素子のエネルギー密度を十分に大きくできる。 Thus, the lower limit of the difference between the average length in the direction along the first side S of the separator 4 and the average length in the direction along the first side S of the negative electrode plate 5 is preferably 0 mm. The upper limit of the difference between the average length in the direction along the side S and the average length in the direction along the first side S of the negative electrode plate 5 is preferably 1 mm, and more preferably 0.5 mm. By making the difference between the average length in the direction along the first side S of the separator 4 and the average length in the direction along the first side S of the negative electrode plate 5 equal to or greater than the lower limit, the positive electrode plate 3 is sandwiched between the pair of separators 4. It becomes easy to laminate the packaged positive electrode plate and the negative electrode plate 5 so that the positive electrode plate 3 does not protrude from the negative electrode plate 5. Moreover, by making the difference of the average length of the direction along the 1st edge | side S of the separator 4 and the average length of the direction along the 1st edge | side S of the negative electrode plate 5 below the said upper limit, the positive electrode plate 3 and the negative electrode plate 5 Thus, the difference in area between the stacked electrode body 1 and the energy density of the power storage element can be sufficiently increased.
 また、当該積層電極体1では、正極板3のセパレータ4を負極板5に対して位置決めすることで、正極板3を負極板5に対して比較的容易に位置決めすることができる。このため、当該積層電極体1では、負極板5の面積に対する正極板3の面積の比を比較的大きくしても負極板5の外縁部で電析が助長されないので、エネルギー密度を比較的大きくすることができる。 In the laminated electrode body 1, the positive electrode plate 3 can be relatively easily positioned with respect to the negative electrode plate 5 by positioning the separator 4 of the positive electrode plate 3 with respect to the negative electrode plate 5. For this reason, in the laminated electrode body 1, even if the ratio of the area of the positive electrode plate 3 to the area of the negative electrode plate 5 is relatively large, the electrodeposition is not promoted at the outer edge portion of the negative electrode plate 5. can do.
 また、当該積層電極体1は、セパレータ4が負極板5の幅方向内側に配置されるので、負極板5と外装材2とのクリアランスを小さくすることができる。このため、当該蓄電素子は、外装材2の中のデッドスペースを比較的小さくしてエネルギー密度を比較的大きくすることができる。 Further, since the separator 4 is disposed on the inner side in the width direction of the negative electrode plate 5 in the laminated electrode body 1, the clearance between the negative electrode plate 5 and the exterior material 2 can be reduced. For this reason, the said electrical storage element can make the dead space in the exterior material 2 comparatively small, and can make energy density comparatively large.
(正極集電体)
 正極集電体6の材質としては、アルミニウム、銅、鉄、ニッケル等の金属又はそれらの合金が用いられる。これらの中でも、導電性の高さとコストとのバランスからアルミニウム、アルミニウム合金、銅及び銅合金が好ましく、アルミニウム及びアルミニウム合金がより好ましい。また、正極集電体6の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極集電体6としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H4000(2014)に規定されるA1085P、A3003P等が例示できる。
(Positive electrode current collector)
As a material of the positive electrode current collector 6, a metal such as aluminum, copper, iron, nickel, or an alloy thereof is used. Among these, aluminum, an aluminum alloy, copper, and a copper alloy are preferable from the balance between high conductivity and cost, and aluminum and an aluminum alloy are more preferable. Moreover, as a formation form of the positive electrode electrical power collector 6, foil, a vapor deposition film, etc. are mentioned, A foil is preferable from the surface of cost. That is, the positive electrode current collector 6 is preferably an aluminum foil. Examples of aluminum or aluminum alloy include A1085P and A3003P defined in JIS-H4000 (2014).
 正極集電体6の平均厚さの下限としては、5μmが好ましく、10μmがより好ましい、一方、正極集電体6の平均厚さの上限としては、50μmが好ましく、40μmがより好ましい。正極集電体6の平均厚さを前記下限以上とすることで、正極集電体6の十分な強度を得ることができる。また、正極集電体6の平均厚さを前記上限以下とすることで、相対的に正極活物質層7の体積が小さくなることがなく、当該蓄電素子のエネルギー密度を十分に大きくできる。 The lower limit of the average thickness of the positive electrode current collector 6 is preferably 5 μm, more preferably 10 μm. On the other hand, the upper limit of the average thickness of the positive electrode current collector 6 is preferably 50 μm, more preferably 40 μm. By setting the average thickness of the positive electrode current collector 6 to be equal to or more than the lower limit, sufficient strength of the positive electrode current collector 6 can be obtained. In addition, by setting the average thickness of the positive electrode current collector 6 to be equal to or lower than the above upper limit, the volume of the positive electrode active material layer 7 is not relatively decreased, and the energy density of the power storage element can be sufficiently increased.
(正極活物質層)
 正極活物質層7は、正極活物質を含むいわゆる正極合材から形成される。また、正極活物質層7を形成する正極合材は、必要に応じて導電剤、結着剤(バインダ)、増粘剤、フィラー等の任意成分を含む。
(Positive electrode active material layer)
The positive electrode active material layer 7 is formed from a so-called positive electrode mixture containing a positive electrode active material. In addition, the positive electrode mixture forming the positive electrode active material layer 7 includes optional components such as a conductive agent, a binder (binder), a thickener, and a filler as necessary.
 前記正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(LiCoO、LiNiO、LiMn、LiMnO、LiNiαCo(1-α)、LiNiαMnβCo(1-α-β)、LiNiαMn(2-α)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは他の元素又はアニオン種で一部が置換されていてもよい。正極活物質層7においては、これら化合物の一種を単独で用いてもよく、二種以上を混合して用いてもよい。また、正極活物質の結晶構造は、層状構造又はスピネル構造であることが好ましい。 Examples of the positive electrode active material include complex oxides (Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x ) represented by Li x MO y (M represents at least one transition metal). MnO 3 , Li x Ni α Co (1-α) O 2 , Li x Ni α Mn β Co (1-α-β) O 2 , Li x Ni α Mn (2-α) O 4 ), Li w A polyanion compound (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 ) represented by Me x (XO y ) z (Me represents at least one transition metal, and X represents, for example, P, Si, B, V, etc.) Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.). The elements or polyanions in these compounds may be partially substituted with other elements or anion species. In the positive electrode active material layer 7, one kind of these compounds may be used alone, or two or more kinds may be mixed and used. The crystal structure of the positive electrode active material is preferably a layered structure or a spinel structure.
 正極活物質層7における正極活物質の含有量の下限としては、50質量%が好ましく、70質量%がより好ましく、80質量%がさらに好ましい。一方、正極活物質の含有量の上限としては、99質量%が好ましく、94質量%がより好ましい。正極活物質粒子の含有量を前記範囲とすることで、当該蓄電素子のエネルギー密度を高めることができる。 The lower limit of the content of the positive electrode active material in the positive electrode active material layer 7 is preferably 50% by mass, more preferably 70% by mass, and still more preferably 80% by mass. On the other hand, as an upper limit of content of a positive electrode active material, 99 mass% is preferable and 94 mass% is more preferable. By setting the content of the positive electrode active material particles in the above range, the energy density of the power storage element can be increased.
 前記導電剤としては、電池性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックスなどが挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。 The conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect battery performance. Examples of such a conductive agent include carbon black such as natural or artificial graphite, furnace black, acetylene black, and ketjen black, metals, and conductive ceramics. Examples of the shape of the conductive agent include powder and fiber.
 正極活物質層7における導電剤の含有量の下限としては、0.1質量%が好ましく、0.5質量%がより好ましい。一方、導電剤の含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。導電剤の含有量を前記範囲とすることで、当該蓄電素子のエネルギー密度を高めることができる。 The lower limit of the content of the conductive agent in the positive electrode active material layer 7 is preferably 0.1% by mass, and more preferably 0.5% by mass. On the other hand, as an upper limit of content of a electrically conductive agent, 10 mass% is preferable and 5 mass% is more preferable. By setting the content of the conductive agent in the above range, the energy density of the power storage element can be increased.
 前記結着剤としては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子などが挙げられる。 Examples of the binder include thermoplastic resins such as fluororesin (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), polyethylene, polypropylene, polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM. , Elastomers such as styrene butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
 正極活物質層7における結着剤の含有量の下限としては、1質量%が好ましく、2質量%がより好ましい。一方、結着剤の含有量の上限としては、10質量%が好ましく、5質量%がより好ましい。結着剤の含有量を前記範囲とすることで、正極活物質を安定して保持することができる。 The lower limit of the binder content in the positive electrode active material layer 7 is preferably 1% by mass, and more preferably 2% by mass. On the other hand, as an upper limit of content of a binder, 10 mass% is preferable and 5 mass% is more preferable. By setting the content of the binder in the above range, the positive electrode active material can be stably held.
 前記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。 Examples of the thickener include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. When the thickener has a functional group that reacts with lithium, it is preferable to deactivate this functional group in advance by methylation or the like.
 前記フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス、炭素などが挙げられる。 The filler is not particularly limited as long as it does not adversely affect battery performance. Examples of the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, glass, and carbon.
<セパレータ>
 セパレータ4は、シート状の樹脂層10と、この樹脂層10に積層される耐熱層11とを有する。セパレータ4は、各正極板3の両側に対をなして配置される。より詳しくは、一対のセパレータ4は、耐熱層11を正極板3に対向させた状態で、正極板3の電極部8の第一面及び第二面を覆う。
<Separator>
The separator 4 has a sheet-like resin layer 10 and a heat-resistant layer 11 laminated on the resin layer 10. The separators 4 are arranged in pairs on both sides of each positive electrode plate 3. More specifically, the pair of separators 4 cover the first surface and the second surface of the electrode portion 8 of the positive electrode plate 3 with the heat-resistant layer 11 facing the positive electrode plate 3.
 正極板3を挟み込む対をなすセパレータ4は、正極板3の外周側、より詳しくは、平面視で電極部8の外側近傍のタブ9が存在しない範囲に、互いの樹脂層10が溶着された複数の溶着領域(第一溶着領域A1及び第二溶着領域A2)を有する。 In the separator 4 forming a pair sandwiching the positive electrode plate 3, the resin layers 10 are welded to each other on the outer peripheral side of the positive electrode plate 3, more specifically, in a range where the tab 9 near the outside of the electrode portion 8 does not exist in plan view. It has a plurality of welding regions (first welding region A1 and second welding region A2).
(樹脂層)
 樹脂層10は、多孔質樹脂フィルムから形成される。
(Resin layer)
The resin layer 10 is formed from a porous resin film.
 この樹脂層10の主成分としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、エチレン-酢酸ビニル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、塩素化ポリエチレン等のポリオレフィン誘導体、エチレン-プロピレン共重合体等のポリオレフィン、ポリエチレンテレフタレートや共重合ポリエステル等のポリエステルなどを採用することができる。中でも、樹脂層10の主成分としては、耐電解液性、耐久性及び溶着性に優れるポリエチレン及びポリプロピレンが好適に用いられる。なお、「主成分」とは、最も質量含有率が大きい成分を意味する。 Examples of the main component of the resin layer 10 include polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and chlorinated polyethylene. Polyolefins such as polyolefin derivatives, ethylene-propylene copolymers, and polyesters such as polyethylene terephthalate and copolymerized polyesters can be used. Among these, as the main component of the resin layer 10, polyethylene and polypropylene excellent in electrolytic solution resistance, durability, and weldability are preferably used. The “main component” means a component having the largest mass content.
 樹脂層10の平均厚さの下限としては、5μmが好ましく、10μmがより好ましい。一方、樹脂層10の平均厚さの上限としては、50μmが好ましく、30μmがより好ましい。樹脂層10の平均厚さを前記下限以上とすることで、樹脂層10が破断することなくセパレータ4を溶着することができる。また、樹脂層10の平均厚さを前記上限以下とすることで、セパレータ4の厚さが不必要に増大することなく蓄電素子の体積当たりの容量を十分な大きさにできる。 The lower limit of the average thickness of the resin layer 10 is preferably 5 μm and more preferably 10 μm. On the other hand, the upper limit of the average thickness of the resin layer 10 is preferably 50 μm, and more preferably 30 μm. By setting the average thickness of the resin layer 10 to be equal to or greater than the lower limit, the separator 4 can be welded without the resin layer 10 breaking. Further, by setting the average thickness of the resin layer 10 to be equal to or less than the above upper limit, the capacity per volume of the power storage element can be made sufficiently large without unnecessarily increasing the thickness of the separator 4.
(耐熱層)
 耐熱層11は、多数の無機粒子と、この無機粒子間を接続するバインダとを含む構成とされる。
(Heat resistant layer)
The heat-resistant layer 11 includes a large number of inorganic particles and a binder that connects the inorganic particles.
 無機粒子の主成分としては、例えばアルミナ、シリカ、ジルコニア、チタニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレイ、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウムなどが挙げられる。中でも、耐熱層11の無機粒子の主成分としては、アルミナ、シリカ及びチタニアが特に好ましい。 As the main component of the inorganic particles, for example, oxides such as alumina, silica, zirconia, titania, magnesia, ceria, yttria, zinc oxide, iron oxide, nitrides such as silicon nitride, titanium nitride, boron nitride, silicon carbide, carbonate Calcium, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate Etc. Among these, alumina, silica and titania are particularly preferable as the main component of the inorganic particles of the heat-resistant layer 11.
 耐熱層11の無機粒子の平均粒子径の下限としては、1nmが好ましく、7nmがより好ましい。一方、無機粒子の平均粒子径の上限としては、5μmが好ましく、1μmがより好ましい。無機粒子の平均粒子径を前記下限以上とすることで、耐熱層11中のバインダの比率が大きくなることはなく、十分な耐熱性を有する耐熱層11を得ることができる。また、無機粒子の平均粒子径を前記上限以下とすることで、均質な耐熱層11を容易に形成することができる。なお、「平均粒子径」とは、透過電子顕微鏡(TEM)又は走査電子顕微鏡(SEM)を用いてJIS-R1670に準じて測定される値である。 The lower limit of the average particle diameter of the inorganic particles of the heat-resistant layer 11 is preferably 1 nm, and more preferably 7 nm. On the other hand, the upper limit of the average particle diameter of the inorganic particles is preferably 5 μm and more preferably 1 μm. By setting the average particle diameter of the inorganic particles to the above lower limit or more, the ratio of the binder in the heat resistant layer 11 does not increase, and the heat resistant layer 11 having sufficient heat resistance can be obtained. Moreover, the uniform heat resistant layer 11 can be easily formed by making the average particle diameter of an inorganic particle below the said upper limit. The “average particle diameter” is a value measured according to JIS-R1670 using a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
 耐熱層11のバインダの主成分としては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素樹脂、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体等のフッ素ゴム、スチレン-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体及びその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体等の合成ゴム、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロースのアンモニウム塩等のセルロース誘導体、ポリエーテルイミド、ポリアミドイミド、ポリアミド及びその前駆体(ポリアミック酸等)等のポリイミド、エチレン-エチルアクリレート共重合体等のエチレン-アクリル酸共重合体、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリ酢酸ビニル、ポリウレタン、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエステルなどが挙げられる。 Examples of the main component of the binder of the heat-resistant layer 11 include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, fluororubbers such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, and styrene-butadiene copolymers. And its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, acrylonitrile -Synthetic rubber such as acrylic acid ester copolymer, carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), cellulose derivatives such as ammonium salt of carboxymethyl cellulose, polyether imi , Polyimides such as polyamideimide, polyamide and precursors thereof (polyamic acid), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymer, polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone ( PVP), polyvinyl acetate, polyurethane, polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyester and the like.
 耐熱層11の平均厚さの下限としては、0.5μmが好ましく、1μmがより好ましい。一方、耐熱層11の平均厚さの上限としては、10μmが好ましく、6μmがより好ましい。耐熱層11の平均厚さを前記下限以上とすることで、耐熱層11が破断することなくセパレータ4を溶着することができる。また、耐熱層11の平均厚さを前記上限以下とすることで、セパレータ4の厚さが不必要に増大することなく当該蓄電素子の体積当たりの容量を十分な大きさにできる。 The lower limit of the average thickness of the heat-resistant layer 11 is preferably 0.5 μm, and more preferably 1 μm. On the other hand, the upper limit of the average thickness of the heat-resistant layer 11 is preferably 10 μm, and more preferably 6 μm. By making the average thickness of the heat-resistant layer 11 equal to or more than the lower limit, the separator 4 can be welded without the heat-resistant layer 11 breaking. Further, by setting the average thickness of the heat-resistant layer 11 to be equal to or less than the above upper limit, the capacity per volume of the power storage element can be sufficiently increased without unnecessarily increasing the thickness of the separator 4.
(溶着領域)
 複数の溶着領域は、図2に示すように、正極板3のタブ9が設けられる第一辺Sと略平行かつ間欠的に延びる第一溶着領域A1と、第一辺Sと略垂直かつ連続的に延びる第二溶着領域A2とを含む。換言すると、第一溶着領域A1は、タブ9の延出方向と略垂直な電極部8の一対の外縁(図2では、短手方向両側の端縁)に沿ってそれぞれ不連続に間隔を空けて形成され、第二溶着領域A2は、タブ9延出方向と略平行な電極部8の一対の外縁(図2では、長手方向両側の端縁)に沿ってそれぞれ連続して形成される。
(Welding area)
As shown in FIG. 2, the plurality of welding regions include a first welding region A <b> 1 that extends approximately in parallel and intermittently with the first side S on which the tab 9 of the positive electrode plate 3 is provided, and is substantially perpendicular to and continuous with the first side S. And a second welding region A2 extending in the direction. In other words, the first welding region A1 is discontinuously spaced along a pair of outer edges (edges on both sides in the short direction in FIG. 2) of the electrode portion 8 substantially perpendicular to the extending direction of the tab 9. The second welding region A2 is formed continuously along a pair of outer edges (edges on both sides in the longitudinal direction in FIG. 2) of the electrode portion 8 substantially parallel to the extending direction of the tab 9.
 このように、溶着領域A1,A2が正極板3の周囲に形成されることによって、正極板3は対をなす2枚のセパレータ4の間の所定位置に正確に保持される。これにより、ガイド等を用いてセパレータ4の下端を負極板5の下端に位置合わせすることで、正極板3を負極板5に対して比較的正確に位置合わせすることができる。 Thus, by forming the welding regions A1 and A2 around the positive electrode plate 3, the positive electrode plate 3 is accurately held at a predetermined position between the two separators 4 forming a pair. Accordingly, the positive electrode plate 3 can be relatively accurately aligned with the negative electrode plate 5 by aligning the lower end of the separator 4 with the lower end of the negative electrode plate 5 using a guide or the like.
 また、対をなす2枚のセパレータ4が溶着された溶着領域A1,A2は、溶着されずに重ね合わされた2枚のセパレータ4(非溶着領域)よりも剛性が大きくなるため、この溶着領域A1,A2をガイドに当接させることによって、正極板3を比較的容易かつ正確に位置決めすることができる。 Further, the welded areas A1 and A2 in which the two separators 4 forming a pair are welded have higher rigidity than the two separators 4 (non-welded areas) that are stacked without being welded. , A2 is brought into contact with the guide, whereby the positive electrode plate 3 can be positioned relatively easily and accurately.
 この溶着領域A1,A2には破壊された耐熱層11の砕片が存在してもよい。溶着領域A1,A2に存在する耐熱層11の砕片は、溶着領域A1,A2内にジグザグに延在、具体的には溶着領域A1,A2の長手方向と異なる方向に往復しつつ長手方向に延在する振動波形状の領域で存在密度が小さくなっているとよい。このような溶着領域A1,A2は、比較的小さい圧子により、耐熱層11を破壊しつつ形成される耐熱層11の砕片を幅方向に掻き分けながら2枚のセパレータ4の樹脂層10同士を溶着することにより形成することができる。 In this welding area A1, A2, there may be a fragment of the heat-resistant layer 11 that has been destroyed. The fragments of the heat-resistant layer 11 present in the welding regions A1 and A2 extend in a zigzag manner in the welding regions A1 and A2, specifically, extend in the longitudinal direction while reciprocating in a direction different from the longitudinal direction of the welding regions A1 and A2. It is preferable that the existence density is small in the existing region of the vibration wave shape. Such welding regions A1 and A2 are used to weld the resin layers 10 of the two separators 4 to each other while scraping the fragments of the heat-resistant layer 11 formed while breaking the heat-resistant layer 11 with a relatively small indenter in the width direction. Can be formed.
 また、溶着領域A1,A2は、透光性を有する部分を有することが好ましい。つまり、溶着領域A1,A2は、樹脂層10を形成する透明な樹脂中に、遮光性を有する耐熱層11の形成材料の比較的小さい砕片が分散して形成される半透明な部分又は耐熱層11の砕片の含有率が十分に小さい透明な部分を有するとよい。 Moreover, it is preferable that the welding regions A1 and A2 have a translucent portion. That is, the welding regions A1 and A2 are semi-transparent portions or heat-resistant layers formed by dispersing relatively small pieces of forming material of the heat-resistant layer 11 having a light shielding property in the transparent resin forming the resin layer 10. It is good to have a transparent part with a sufficiently small content of 11 pieces.
 このように、溶着領域A1,A2の内部及び溶着領域A1,A2の周囲に耐熱層11の砕片を含むことにより、樹脂層10同士を溶着する際に破壊される耐熱層11の砕片を取り除く必要がないので、一対のセパレータ4を比較的容易に溶着することができる。 Thus, it is necessary to remove the fragments of the heat-resistant layer 11 that are destroyed when the resin layers 10 are welded together by including the fragments of the heat-resistant layer 11 inside the welded regions A1 and A2 and around the welded regions A1 and A2. Therefore, the pair of separators 4 can be welded relatively easily.
 第一溶着領域A1の溶着部の平均長さに対する非溶着部の平均長さ(溶着部の平均間隔)の比の下限としては、0.2が好ましく、0.5がより好ましい。一方、第一溶着領域A1の溶着部の平均長さに対する非溶着部の平均長さの比の上限としては、3が好ましく、2がより好ましい。第一溶着領域A1の溶着部の平均長さに対する非溶着部の平均長さの比を前記下限以上とすることで、対をなすセパレータ4の内部への注液性が小さくなることを回避でき、当該蓄電素子の製造効率の低下を回避することができる。また、第一溶着領域A1の溶着部の平均長さに対する非溶着部の平均長さの比を前記上限以下とすることで、正極板3に接する電解質への金属の混入を十分に抑制することができ、十分な電析防止効果を得ることができる。 The lower limit of the ratio of the average length of the non-welded portion (average interval of the welded portion) to the average length of the welded portion in the first weld region A1 is preferably 0.2, and more preferably 0.5. On the other hand, the upper limit of the ratio of the average length of the non-welded portion to the average length of the welded portion in the first weld region A1 is preferably 3, and more preferably 2. By setting the ratio of the average length of the non-welded portion to the average length of the welded portion in the first weld region A1 to be equal to or higher than the lower limit, it is possible to avoid a decrease in the pouring property into the paired separators 4. Thus, it is possible to avoid a decrease in manufacturing efficiency of the power storage element. Moreover, mixing the metal into the electrolyte in contact with the positive electrode plate 3 is sufficiently suppressed by setting the ratio of the average length of the non-welded portion to the average length of the welded portion in the first weld region A1 to be equal to or less than the above upper limit. And a sufficient electrodeposition preventing effect can be obtained.
 溶着領域A1,A2の平均幅の下限としては、10μmが好ましく、20μmがより好ましい。一方、溶着領域A1,A2の平均幅の上限としては、1000μmが好ましく、300μmがより好ましい。溶着領域A1,A2の平均幅を前記下限以上とすることで、対をなすセパレータ4の十分な接合強度を得ることができ、正極板3の保持を確実にすることができる。また、溶着領域A1,A2の平均幅を前記上限以下とすることで、セパレータ4が不必要に大きくなることがなく正極板3が相対的に小さくなることもないので、当該積層電極体1ひいては当該蓄電素子のエネルギー密度を十分に大きくできる。 The lower limit of the average width of the welding regions A1 and A2 is preferably 10 μm, and more preferably 20 μm. On the other hand, the upper limit of the average width of the welding regions A1 and A2 is preferably 1000 μm, and more preferably 300 μm. By setting the average width of the welding regions A1 and A2 to be equal to or more than the lower limit, it is possible to obtain a sufficient bonding strength of the paired separators 4 and to ensure the holding of the positive electrode plate 3. Moreover, since the separator 4 does not become unnecessarily large and the positive electrode plate 3 does not become relatively small by setting the average width of the welding regions A1 and A2 to be equal to or less than the upper limit, the laminated electrode body 1 and the The energy density of the power storage element can be sufficiently increased.
 溶着領域A1,A2と正極板3の外縁との平均間隔の下限としては、0.1mmが好ましく、0.2mmがより好ましい。一方、溶着領域A1,A2と正極板3の外縁との平均間隔の上限としては、1.0mmが好ましく、0.8mmがより好ましい。溶着領域A1,A2と正極板3の外縁との平均間隔を前記下限以上とすることで、対をなすセパレータ4を容易に溶着することができる。また、溶着領域A1,A2と正極板3の外縁との平均間隔を前記上限以下とすることで、正極板3がセパレータ4及び負極板5に対して必要以上に小さくならず、当該蓄電素子のエネルギー密度を十分に大きくできる。 The lower limit of the average distance between the welded areas A1 and A2 and the outer edge of the positive electrode plate 3 is preferably 0.1 mm, and more preferably 0.2 mm. On the other hand, the upper limit of the average distance between the welding regions A1 and A2 and the outer edge of the positive electrode plate 3 is preferably 1.0 mm, and more preferably 0.8 mm. By making the average distance between the welding regions A1 and A2 and the outer edge of the positive electrode plate 3 equal to or more than the lower limit, the paired separators 4 can be easily welded. In addition, by setting the average distance between the welding regions A1 and A2 and the outer edge of the positive electrode plate 3 to be equal to or less than the upper limit, the positive electrode plate 3 is not unnecessarily small with respect to the separator 4 and the negative electrode plate 5, and Energy density can be increased sufficiently.
 セパレータ4の外縁と第一溶着領域A1との平均間隔の下限としては、100μmが好ましく、200μmがより好ましい。一方、セパレータ4の外縁と第一溶着領域A1との平均間隔の上限としては、1mmが好ましく、0.5mmがより好ましい。セパレータ4の外縁と第一溶着領域A1との平均間隔を前記下限以上とすることで、第一溶着領域A1を容易に形成することができる。また、セパレータ4の外縁と第一溶着領域A1との平均間隔を前記上限以下とすることで、セパレータ4の外縁の剛性を十分に大きくすることができ、正極板3の位置決めが容易になり、また当該蓄電素子のエネルギー密度を十分な大きさにすることができる。 The lower limit of the average distance between the outer edge of the separator 4 and the first welding region A1 is preferably 100 μm, and more preferably 200 μm. On the other hand, the upper limit of the average distance between the outer edge of the separator 4 and the first welding region A1 is preferably 1 mm, and more preferably 0.5 mm. By setting the average interval between the outer edge of the separator 4 and the first welding region A1 to be equal to or greater than the lower limit, the first welding region A1 can be easily formed. Further, by setting the average distance between the outer edge of the separator 4 and the first welding region A1 to be equal to or less than the upper limit, the rigidity of the outer edge of the separator 4 can be sufficiently increased, and the positioning of the positive electrode plate 3 is facilitated. In addition, the energy density of the power storage element can be sufficiently increased.
 第二溶着領域A2は、切断面を有すること、つまりセパレータ4の外縁に形成されることが好ましい。第二溶着領域A2が切断面を有することによって、長尺シート状の一対のセパレータ母材に幅方向に複数の幅広の溶着領域を形成し、この幅広の溶着領域を幅が半分の2つの第二溶着領域A2に分割するよう切断することで、正極板3を一対のセパレータ4で挟み込んだ袋詰正極板を効率よく形成することができる。 It is preferable that the second welding region A2 has a cut surface, that is, is formed on the outer edge of the separator 4. Since the second welding region A2 has a cut surface, a plurality of wide welding regions are formed in the width direction on the pair of long sheet-like separator base materials, and the wide welding regions are divided into two second widths. By cutting so as to be divided into two welding regions A2, a packaged positive electrode plate in which the positive electrode plate 3 is sandwiched between a pair of separators 4 can be efficiently formed.
 換言すると、セパレータ4の外縁と第二溶着領域A2と平均間隔の下限としては、100μmが好ましい。一方、セパレータ4の外縁と溶着領域A1,A2との平均間隔の上限としては、1mmが好ましく、0.5mmがより好ましい。セパレータ4の外縁と溶着領域A1,A2との平均間隔を前記上限以下とすることで、セパレータ4の外縁の剛性を十分に大きくすることができ、正極板3の位置決めが容易になったり、当該蓄電素子のエネルギー密度を十分な大きさにしたりすることができる。 In other words, the lower limit of the outer edge of the separator 4, the second welding region A2, and the average interval is preferably 100 μm. On the other hand, the upper limit of the average distance between the outer edge of the separator 4 and the welded areas A1, A2 is preferably 1 mm, and more preferably 0.5 mm. By setting the average distance between the outer edge of the separator 4 and the welding areas A1, A2 to be equal to or less than the upper limit, the rigidity of the outer edge of the separator 4 can be sufficiently increased, and the positive electrode plate 3 can be easily positioned, The energy density of the power storage element can be made sufficiently large.
<負極板>
 負極板5は、正極板3とは異なり、当該積層電極体において、セパレータ4等で袋状に覆われることなく積層されている。
<Negative electrode plate>
Unlike the positive electrode plate 3, the negative electrode plate 5 is laminated in the laminated electrode body without being covered with a separator 4 or the like in a bag shape.
 負極板5は、導電性を有する箔状乃至シート状の負極集電体12と、この負極集電体12の表面(正極板4に対向する面)に積層される負極活物質層13とを有する。具体的には、負極板5は、負極集電体12の表面に負極活物質層13が積層される平面視多角形状(通常は矩形状)の電極部14と、この電極部14から電極部14よりも幅の小さい帯状に延出し、当該蓄電素子の電極端子に電気的に接続されるタブ15とを有する構成とされる。 The negative electrode plate 5 includes a conductive foil-like or sheet-like negative electrode current collector 12 and a negative electrode active material layer 13 laminated on the surface of the negative electrode current collector 12 (a surface facing the positive electrode plate 4). Have. Specifically, the negative electrode plate 5 includes an electrode portion 14 having a polygonal shape (usually rectangular shape) in plan view in which a negative electrode active material layer 13 is laminated on the surface of the negative electrode current collector 12, and the electrode portion 14 to the electrode portion. 14 and a tab 15 extending in a band shape smaller than 14 and electrically connected to the electrode terminal of the power storage element.
 当該積層電極体1では、平面視において、この負極板5の電極部14の内側に正極板3のセパレータ4の全ての溶着領域A1,A2が内包される。従って、対をなす2枚のセパレータ4の溶着領域A1,A2の内側に内包される正極板3の電極部8は、負極板5の電極部14の投影領域内に配置されるため、負極板5の電極部14の外縁部に電流を集中させない。 In the laminated electrode body 1, all the welding regions A 1 and A 2 of the separator 4 of the positive electrode plate 3 are included inside the electrode portion 14 of the negative electrode plate 5 in a plan view. Therefore, since the electrode portion 8 of the positive electrode plate 3 included inside the welding regions A1 and A2 of the two separators 4 forming a pair is disposed in the projection region of the electrode portion 14 of the negative electrode plate 5, the negative electrode plate The current is not concentrated on the outer edge portion of the five electrode portions 14.
(負極集電体)
 負極集電体12は、上述の正極集電体6と同様の構成とすることができるが、材質としては、銅又は銅合金が好ましい。つまり、負極板5の負極集電体12としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
(Negative electrode current collector)
The negative electrode current collector 12 can have the same configuration as the positive electrode current collector 6 described above, but the material is preferably copper or a copper alloy. That is, the negative electrode current collector 12 of the negative electrode plate 5 is preferably a copper foil. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
(負極活物質層)
 負極活物質層13は、負極活物質を含むいわゆる負極板合材から形成される。また、負極活物質層13を形成する負極板合材は、必要に応じて導電剤、結着剤(バインダ)、増粘剤、フィラー等の任意成分を含む。導電剤、結着剤、増粘剤、フィラー等の任意成分は、正極活物質層7と同様のものを用いることができる。
(Negative electrode active material layer)
The negative electrode active material layer 13 is formed from a so-called negative electrode plate mixture containing a negative electrode active material. Moreover, the negative electrode plate mixture forming the negative electrode active material layer 13 includes optional components such as a conductive agent, a binder (binder), a thickener, and a filler as necessary. The same components as those for the positive electrode active material layer 7 can be used as optional components such as a conductive agent, a binder, a thickener, and a filler.
 負極活物質としては、リチウムイオンを吸蔵及び放出することができる材質が好適に用いられる。具体的な負極活物質としては、例えばリチウム、リチウム合金等の金属;金属酸化物;ポリリン酸化合物;黒鉛、非晶質炭素(易黒鉛化炭素または難黒鉛化性炭素)等の炭素材料などが挙げられる。 As the negative electrode active material, a material capable of inserting and extracting lithium ions is preferably used. Specific examples of the negative electrode active material include metals such as lithium and lithium alloys; metal oxides; polyphosphate compounds; carbon materials such as graphite and amorphous carbon (easily graphitizable carbon or non-graphitizable carbon). Can be mentioned.
 前記負極活物質の中でも、正極板3と負極板5との単位対向面積当たりの放電容量を好適な範囲とする観点から、Si、Si酸化物、Sn、Sn酸化物又はこれらの組み合わせを用いることが好ましく、Si酸化物を用いることが特に好ましい。なお、SiとSnとは、酸化物にした際に、黒鉛の3倍程度の放電容量を持つことができる。 Among the negative electrode active materials, Si, Si oxide, Sn, Sn oxide, or a combination thereof is used from the viewpoint of setting the discharge capacity per unit facing area between the positive electrode plate 3 and the negative electrode plate 5 to a suitable range. It is preferable to use Si oxide. Si and Sn can have a discharge capacity about three times that of graphite when they are made into oxides.
 負極活物質としてSi酸化物を用いる場合、Si酸化物に含まれるOのSiに対する原子数の比としては0超2未満が好ましい。つまり、Si酸化物としては、SiO(0<x<2)で表される化合物が好ましい。また、前記原子数の比としては、0.5以上1.5以下がより好ましい。 When Si oxide is used as the negative electrode active material, the ratio of the number of atoms of O to Si contained in the Si oxide is preferably more than 0 and less than 2. That is, as the Si oxide, a compound represented by SiO x (0 <x <2) is preferable. The ratio of the number of atoms is more preferably 0.5 or more and 1.5 or less.
 なお、負極活物質は上述したものを一種単体で用いてもよいし、二種以上を混合して用いてもよい。例えば、Si酸化物と他の負極活物質とを混合して用いることで、正極板3と負極板5との単位対向面積当たりの放電容量及び後述する負極活物質の質量に対する前記正極活物質の質量の比が共に好適な値となるように調整できる。Si酸化物と混合して用いる他の負極活物質としては、黒鉛、ハードカーボン、ソフトカーボン、コークス類、アセチレンブラック、ケッチェンブラック、気相成長炭素繊維、フラーレン、活性炭等の炭素材料が挙げられる。これらの炭素材料は、一種のみをSi酸化物と混合してもよいし、二種以上を任意の組み合わせ及び比率でSi酸化物と混合してもよい。これらの他の負極活物質の中でも、充放電電位が比較的卑である黒鉛が好ましく、黒鉛を用いることで高いエネルギー密度の二次電池素子が得られる。Si酸化物と混合して用いる黒鉛としては、鱗片状黒鉛、球状黒鉛、人造黒鉛、天然黒鉛等が挙げられる。これらの中でも、充放電を繰り返してもSi酸化物粒子表面との接触を維持しやすい鱗片状黒鉛が好ましい。 In addition, the negative electrode active material may be used alone or in combination of two or more. For example, by using a mixture of Si oxide and another negative electrode active material, the discharge capacity per unit facing area between the positive electrode plate 3 and the negative electrode plate 5 and the mass of the negative electrode active material to be described later can be reduced. Both of the mass ratios can be adjusted to be suitable values. Other negative electrode active materials used in combination with Si oxide include carbon materials such as graphite, hard carbon, soft carbon, coke, acetylene black, ketjen black, vapor grown carbon fiber, fullerene, activated carbon and the like. . Only one kind of these carbon materials may be mixed with Si oxide, or two or more kinds may be mixed with Si oxide in an arbitrary combination and ratio. Among these other negative electrode active materials, graphite having a relatively low charge / discharge potential is preferable, and a secondary battery element having a high energy density can be obtained by using graphite. Examples of graphite used by mixing with Si oxide include flaky graphite, spherical graphite, artificial graphite, and natural graphite. Among these, scaly graphite that can easily maintain contact with the surface of the Si oxide particles even after repeated charge and discharge is preferable.
 負極活物質におけるSi酸化物の含有量の下限としては、30質量%が好ましく、50質量%より好ましく、70質量%がさらに好ましい。一方、Si酸化物の含有量の上限としては、通常100質量%であり、90質量%が好ましい。 As a minimum of content of Si oxide in a negative electrode active material, 30 mass% is preferred, 50 mass% is more preferred, and 70 mass% is still more preferred. On the other hand, the upper limit of the content of Si oxide is usually 100% by mass, and preferably 90% by mass.
 さらに、負極活物質層13は、Si酸化物に加えて少量のB、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有してもよい。 Furthermore, the negative electrode active material layer 13 includes a small amount of typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn in addition to Si oxide. Typical metal elements such as Ga, Ge, and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W may be contained. .
 前記Si酸化物(一般式SiOで表される物質)として、SiO及びSiの両相を含むものを使用することが好ましい。このようなSi酸化物は、SiOのマトリックス中のSiにリチウムが吸蔵及び放出されるため、体積変化が小さく、かつ充放電サイクル特性に優れる。 As the Si oxide (substance represented by the general formula SiO x ), it is preferable to use a material containing both phases of SiO 2 and Si. Such Si oxide has a small volume change and excellent charge / discharge cycle characteristics because lithium is occluded and released from Si in the SiO 2 matrix.
 また、前記Si酸化物の平均粒子径は、1μm以上15μm以下が好ましい。Si酸化物の平均粒子径を前記上限以下とすることで、当該蓄電素子の充放電サイクル特性を向上できる。 The average particle size of the Si oxide is preferably 1 μm or more and 15 μm or less. By setting the average particle diameter of the Si oxide to the upper limit or less, the charge / discharge cycle characteristics of the power storage element can be improved.
 前記Si酸化物は、高結晶性のものからアモルファスのものまで使用することができる。さらに、Si酸化物としては、フッ化水素、硫酸などの酸で洗浄されているものや水素で還元されているものを使用してもよい。 The Si oxide can be used from a highly crystalline one to an amorphous one. Further, as the Si oxide, one washed with an acid such as hydrogen fluoride or sulfuric acid or one reduced with hydrogen may be used.
 負極活物質層13における負極活物質の含有量の下限としては、60質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。一方、負極活物質の含有量の上限としては、99質量%が好ましく、98質量%がより好ましい。負極活物質粒子の含有量を前記範囲とすることで、蓄電素子のエネルギー密度を高めることができる。 The lower limit of the content of the negative electrode active material in the negative electrode active material layer 13 is preferably 60% by mass, more preferably 80% by mass, and even more preferably 90% by mass. On the other hand, as an upper limit of content of a negative electrode active material, 99 mass% is preferable and 98 mass% is more preferable. By setting the content of the negative electrode active material particles in the above range, the energy density of the energy storage device can be increased.
 負極活物質層13における結着剤の含有量の下限としては、1質量%が好ましく、5質量%がより好ましい。一方、結着剤の含有量の上限としては、20質量%が好ましく、15質量%がより好ましい。結着剤の含有量を前記範囲とすることで、負極活物質を安定して保持することができる。 The lower limit of the binder content in the negative electrode active material layer 13 is preferably 1% by mass and more preferably 5% by mass. On the other hand, as an upper limit of content of a binder, 20 mass% is preferable and 15 mass% is more preferable. By setting the content of the binder in the above range, the negative electrode active material can be stably held.
〔外装材〕
 外装材2は、当該積層電極体1を収容し、内部に電解質が封入される。
[Exterior material]
The exterior material 2 accommodates the laminated electrode body 1 and an electrolyte is enclosed therein.
 外装材2の材質としては、電解質を封入できるシール性と、当該積層電極体1を保護できる強度とを備えるものであればよいが、金属が好適に用いられる。換言すると、外装材2としては、当該積層電極体1をより確実に保護できる金属ケースを用いることが好ましい。 The material of the exterior material 2 may be any material as long as it has a sealing property capable of enclosing an electrolyte and a strength capable of protecting the laminated electrode body 1, but a metal is preferably used. In other words, it is preferable to use a metal case that can more reliably protect the laminated electrode body 1 as the exterior material 2.
〔電解質〕
 外装材2に封入される電解質としては、蓄電素子に通常用いられる公知の電解液が使用でき、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状カーボネート、又はジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートを含有する溶媒に、リチウムヘキサフルオロホスフェート(LiPF)等を溶解した溶液を用いることができる。
〔Electrolytes〕
As the electrolyte enclosed in the outer packaging material 2, a known electrolytic solution that is usually used for a power storage element can be used. For example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), or diethyl A solution in which lithium hexafluorophosphate (LiPF 6 ) or the like is dissolved in a solvent containing a chain carbonate such as carbonate (DEC), dimethyl carbonate (DMC), or ethyl methyl carbonate (EMC) can be used.
[その他の実施形態]
 前記実施形態は、本発明の構成を限定するものではない。従って、前記実施形態は、本明細書の記載及び技術常識に基づいて前記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.
 例えば、当該積層電極体のセパレータは、正極板の四辺のうち、タブが延出する第一辺の外側の溶着領域を省略してもよい。 For example, the separator of the laminated electrode body may omit the welding region outside the first side of the four sides of the positive electrode plate where the tab extends.
 当該積層電極体は、一対の負極板の間に1つの袋詰正極板を挟み込んだものであってもよい。 The laminated electrode body may be one in which one packaged positive electrode plate is sandwiched between a pair of negative electrode plates.
 また、当該積層電極体にあっては、耐熱層を省略することも可能である。すなわち、当該積層電極体は、第一辺から突出するタブを有する正極板と、樹脂層を有し、前記正極板の第一面及び第二面を覆う少なくとも一対のセパレータと、前記セパレータを介して前記正極板に対向する負極板とを備え、前記正極板の外周側に前記少なくとも一対のセパレータが互いに溶着された複数の溶着領域を有し、前記複数の溶着領域が、前記正極板の第一辺と略平行かつ間欠的に延びる第一溶着領域と、前記第一辺と略垂直かつ連続的に延びる第二溶着領域とを含む積層電極体とすることも可能である。 Further, in the laminated electrode body, the heat-resistant layer can be omitted. That is, the laminated electrode body includes a positive electrode plate having a tab protruding from the first side, a resin layer, at least a pair of separators covering the first surface and the second surface of the positive electrode plate, and the separator. A plurality of welded areas in which the at least one pair of separators are welded to each other on the outer peripheral side of the positive electrode plate, and the plurality of welded areas are formed on the first plate of the positive electrode plate. It is also possible to provide a laminated electrode body including a first welding region extending substantially parallel and intermittently with one side and a second welding region extending substantially perpendicularly and continuously to the first side.
 本発明に係る積層電極体及び蓄電素子は、例えば電気自動車、携帯電話等の比較的大きいエネルギー密度が要求される機器の電源として特に好適に利用することができる。 The laminated electrode body and the electricity storage device according to the present invention can be particularly suitably used as a power source for equipment that requires a relatively large energy density, such as an electric vehicle and a mobile phone.
1 積層電極体
2 外装材
3 正極板
4 セパレータ
5 負極板
6 正極集電体
7 正極活物質層
8 電極部
9 タブ
10 樹脂層
11 耐熱層
12 負極集電体
13 負極活物質層
14 電極部
15 タブ
A1 第一溶着領域
A2 第二溶着領域
S 第一辺
DESCRIPTION OF SYMBOLS 1 Laminated electrode body 2 Exterior material 3 Positive electrode plate 4 Separator 5 Negative electrode plate 6 Positive electrode collector 7 Positive electrode active material layer 8 Electrode part 9 Tab 10 Resin layer 11 Heat resistant layer 12 Negative electrode collector 13 Negative electrode active material layer 14 Electrode part 15 Tab A1 First welding area A2 Second welding area S First side

Claims (6)

  1.  第一辺から突出するタブを有する正極板と、
     樹脂層と前記樹脂層上に形成された耐熱層とを有し、前記耐熱層を前記正極板に対向させた状態で前記正極板の第一面及び第二面を覆う少なくとも一対のセパレータと、
     前記セパレータを介して前記正極板に対向する負極板と
     を備え、
     前記正極板の外周側に前記少なくとも一対のセパレータが互いに溶着された複数の溶着領域を有し、
     前記複数の溶着領域が、前記正極板の第一辺と略平行かつ間欠的に延びる第一溶着領域と、前記第一辺と略垂直かつ連続的に延びる第二溶着領域とを含む積層電極体。
    A positive electrode plate having a tab protruding from the first side;
    A resin layer and a heat-resistant layer formed on the resin layer, and at least a pair of separators covering the first surface and the second surface of the positive electrode plate with the heat-resistant layer facing the positive electrode plate;
    A negative electrode plate facing the positive electrode plate with the separator interposed therebetween,
    A plurality of welding regions where the at least one pair of separators are welded to each other on the outer peripheral side of the positive electrode plate;
    The laminated electrode body, wherein the plurality of welding regions include a first welding region that extends substantially parallel and intermittently to the first side of the positive electrode plate, and a second welding region that extends substantially perpendicularly and continuously to the first side. .
  2.  前記第二溶着領域が切断面を有する請求項1に記載の積層電極体。 The laminated electrode body according to claim 1, wherein the second weld region has a cut surface.
  3.  前記少なくとも一対のセパレータが前記溶着領域に透光性を有する部分を有し、前記溶着領域の平均幅が10μm以上1000μm以下である請求項1又は請求項2に記載の積層電極体。 The laminated electrode body according to claim 1 or 2, wherein the at least one pair of separators has a portion having translucency in the welding region, and an average width of the welding region is 10 µm or more and 1000 µm or less.
  4.  前記少なくとも一対のセパレータが前記溶着領域に前記耐熱層の砕片を含む請求項1、請求項2又は請求項3に記載の積層電極体。 The laminated electrode body according to claim 1, 2 or 3, wherein the at least one pair of separators includes a fragment of the heat-resistant layer in the welding region.
  5.  請求項1から請求項4のいずれか1項に記載の積層電極体と、
     この積層電極体を収容する外装材と
     を備える蓄電素子。
    The laminated electrode body according to any one of claims 1 to 4,
    An electricity storage device comprising: an exterior material that houses the laminated electrode body.
  6.  前記外装材が金属ケースである請求項5に記載の蓄電素子。 The electricity storage device according to claim 5, wherein the exterior material is a metal case.
PCT/JP2017/030771 2016-08-29 2017-08-28 Layered electrode body and power storage element WO2018043419A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017004317.4T DE112017004317T5 (en) 2016-08-29 2017-08-28 Laminated electrode body and an electrical storage element
JP2018537267A JPWO2018043419A1 (en) 2016-08-29 2017-08-28 LAMINATED ELECTRODE BODY AND STORAGE ELEMENT
CN201780052890.2A CN110088966A (en) 2016-08-29 2017-08-28 Multilayer electrode body and charge storage element
JP2021184231A JP2022024044A (en) 2016-08-29 2021-11-11 Method for manufacturing laminate electrode body and method for manufacturing power storage element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016167375 2016-08-29
JP2016-167375 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018043419A1 true WO2018043419A1 (en) 2018-03-08

Family

ID=61300843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030771 WO2018043419A1 (en) 2016-08-29 2017-08-28 Layered electrode body and power storage element

Country Status (4)

Country Link
JP (2) JPWO2018043419A1 (en)
CN (1) CN110088966A (en)
DE (1) DE112017004317T5 (en)
WO (1) WO2018043419A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064723A (en) * 2018-10-15 2020-04-23 株式会社Gsユアサ Power storage element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213377A (en) * 1996-01-30 1997-08-15 Ricoh Co Ltd Rectangular battery
JP2003017112A (en) * 2001-06-28 2003-01-17 Nec Tokin Tochigi Ltd Laminated secondary cell
JP2011165481A (en) * 2010-02-10 2011-08-25 Nec Energy Devices Ltd Stacked secondary battery
JP2012155866A (en) * 2011-01-24 2012-08-16 Mitsubishi Heavy Ind Ltd Battery
JP2013254599A (en) * 2012-06-05 2013-12-19 Toyota Industries Corp Power storage device
WO2015050084A1 (en) * 2013-10-02 2015-04-09 日産自動車株式会社 Method for bonding separators in electrical device, apparatus for bonding separators in electrical device, and electrical device
WO2016002059A1 (en) * 2014-07-03 2016-01-07 日産自動車株式会社 Method for bonding composite materials and device for bonding composite materials

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355948B2 (en) * 1996-08-12 2002-12-09 新神戸電機株式会社 Prismatic secondary battery and method of manufacturing the same
JPH10106588A (en) * 1996-09-27 1998-04-24 Sanyo Electric Co Ltd Manufacture of square/rectangular battery
JP4383781B2 (en) * 2002-08-21 2009-12-16 株式会社東芝 Battery manufacturing method
JP2009181899A (en) * 2008-01-31 2009-08-13 Sanyo Electric Co Ltd Laminated battery
JP5701688B2 (en) * 2011-01-31 2015-04-15 三洋電機株式会社 Multilayer battery and method for manufacturing the same
JP5899938B2 (en) * 2012-01-12 2016-04-06 日産自動車株式会社 Secondary battery manufacturing method, secondary battery
JP2013178951A (en) * 2012-02-28 2013-09-09 Nagano Automation Kk Device for holding polar plate with separator
JP6131557B2 (en) * 2012-10-05 2017-05-24 株式会社豊田自動織機 Lithium ion secondary battery
JP2016006718A (en) * 2012-10-12 2016-01-14 日産自動車株式会社 Bagging electrode, lamination type electric device, and manufacturing method for bagging electrode
JP2015026522A (en) * 2013-07-26 2015-02-05 株式会社豊田自動織機 Electrode housing separator and power storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213377A (en) * 1996-01-30 1997-08-15 Ricoh Co Ltd Rectangular battery
JP2003017112A (en) * 2001-06-28 2003-01-17 Nec Tokin Tochigi Ltd Laminated secondary cell
JP2011165481A (en) * 2010-02-10 2011-08-25 Nec Energy Devices Ltd Stacked secondary battery
JP2012155866A (en) * 2011-01-24 2012-08-16 Mitsubishi Heavy Ind Ltd Battery
JP2013254599A (en) * 2012-06-05 2013-12-19 Toyota Industries Corp Power storage device
WO2015050084A1 (en) * 2013-10-02 2015-04-09 日産自動車株式会社 Method for bonding separators in electrical device, apparatus for bonding separators in electrical device, and electrical device
WO2016002059A1 (en) * 2014-07-03 2016-01-07 日産自動車株式会社 Method for bonding composite materials and device for bonding composite materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1998, IWANAMI SHOTEN, ISBN: 4-00-080090-6, article "Iwanami Rikagaku Jiten. 5 th Edition", pages: 1321 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064723A (en) * 2018-10-15 2020-04-23 株式会社Gsユアサ Power storage element
JP7155850B2 (en) 2018-10-15 2022-10-19 株式会社Gsユアサ Storage element

Also Published As

Publication number Publication date
DE112017004317T5 (en) 2019-05-16
CN110088966A (en) 2019-08-02
JPWO2018043419A1 (en) 2019-09-05
JP2022024044A (en) 2022-02-08

Similar Documents

Publication Publication Date Title
JP7069612B2 (en) Manufacturing method of laminated electrode body, power storage element and laminated electrode body
US11777101B2 (en) Non-aqueous electrolyte secondary battery
JP5590381B2 (en) Lithium ion secondary battery
JP7096979B2 (en) Lithium ion secondary battery
JP7040353B2 (en) Lithium ion secondary battery
US20210175546A1 (en) Non-Aqueous Electrolyte Secondary Battery
JP7069625B2 (en) Manufacturing method of power storage element
KR101799172B1 (en) Non-aqueous electrolyte secondary battery
WO2018166884A1 (en) Bag-packed positive electrode plate, layered electrode assembly, and energy storage device
JP2022024044A (en) Method for manufacturing laminate electrode body and method for manufacturing power storage element
JP6315281B2 (en) Nonaqueous electrolyte secondary battery
CN114665099B (en) Nonaqueous electrolyte secondary battery
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2019016493A (en) Electrode body sub-unit, electrode unit, multilayer electrode body and power storage element
JP2020061332A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2016015245A (en) Lithium ion secondary battery
CN111435729B (en) Lithium ion secondary battery
JP2018098154A (en) Power storage element, power storage device and method of manufacturing power storage element
JP2022175835A (en) Secondary battery current collector and secondary battery
WO2018043406A1 (en) Layered electrode body and power storage element
WO2018166882A1 (en) Bag-packed positive electrode plate, layered electrode assembly, energy storage device, and manufacturing method of bag-packed positive electrode plate
JP6681017B2 (en) Secondary battery having electrode body
JP7485643B2 (en) Manufacturing method for laser processed positive electrodes
JP7194338B2 (en) secondary battery
CN111954952B (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537267

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17846424

Country of ref document: EP

Kind code of ref document: A1