WO2015050084A1 - Method for bonding separators in electrical device, apparatus for bonding separators in electrical device, and electrical device - Google Patents

Method for bonding separators in electrical device, apparatus for bonding separators in electrical device, and electrical device Download PDF

Info

Publication number
WO2015050084A1
WO2015050084A1 PCT/JP2014/075909 JP2014075909W WO2015050084A1 WO 2015050084 A1 WO2015050084 A1 WO 2015050084A1 JP 2014075909 W JP2014075909 W JP 2014075909W WO 2015050084 A1 WO2015050084 A1 WO 2015050084A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
ceramic
pair
separators
joining
Prior art date
Application number
PCT/JP2014/075909
Other languages
French (fr)
Japanese (ja)
Inventor
岳洋 柳
浩 油原
正司 渡辺
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2015540484A priority Critical patent/JP6197877B2/en
Publication of WO2015050084A1 publication Critical patent/WO2015050084A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • B29C65/081Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations having a component of vibration not perpendicular to the welding surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • B29C65/7847Holding or clamping means for handling purposes using vacuum to hold at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7861In-line machines, i.e. feeding, joining and discharging are in one production line
    • B29C65/787In-line machines, i.e. feeding, joining and discharging are in one production line using conveyor belts or conveyor chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7888Means for handling of moving sheets or webs
    • B29C65/7891Means for handling of moving sheets or webs of discontinuously moving sheets or webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/005Detaching the article from the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/006Preventing damaging, e.g. of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/133Fin-type joints, the parts to be joined being flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/433Casing-in, i.e. enclosing an element between two sheets by an outlined seam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7232General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer
    • B29C66/72324General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a non-plastics layer consisting of inorganic materials not provided for in B29C66/72321 - B29C66/72322
    • B29C66/72325Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81463General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series
    • B29C66/8432Machines for making separate joints at the same time mounted in parallel or in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrical device separator joining method, an electrical device separator joining apparatus, and an electrical device.
  • a battery such as a lithium ion secondary battery is configured by sealing a power generation element to be charged and discharged with an exterior material.
  • the power generation element is configured, for example, by laminating a plurality of packaged electrodes formed by sandwiching a positive electrode with a pair of separators and negative electrodes.
  • the packaged electrode joins both ends thereof to suppress the movement of the positive electrode, thereby preventing a short circuit with the adjacent negative electrode through the separator (see, for example, Patent Document 1).
  • the present invention has been made in order to solve the above-described problems, and uses a separator including a molten material and a heat-resistant material having a melting temperature higher than that of the molten material, and a pair of heat-resistant materials facing each other. It is an object of the present invention to provide a separator joining method for an electric device capable of sufficiently joining a separator, a separator joining device for an electric device embodying the separator joining method, and an electric device formed by the separator joining device.
  • the separator joining method for an electric device uses a separator including a sheet-like molten material and a heat-resistant material laminated on the molten material and having a higher melting temperature than the molten material.
  • a separator bonding method a pair of separators in which the heat-resistant materials sandwiching the electrodes face each other are bonded to each other.
  • an ultrasonic processing member for processing the separator by ultrasonic waves is brought into contact with a molten material of one separator of a pair of separators, and ultrasonic waves are applied in a direction crossing the stacking direction.
  • the molten material of the pair of separators is made sparse by moving the heat-resistant material of the portion pressed along the laminating direction from the pressed region to the surrounding region while melting the molten material Join.
  • the separator joining apparatus for an electric device uses a separator including a sheet-like molten material and a heat-resistant material that is laminated on the molten material and has a higher melting temperature than the molten material.
  • a separator bonding apparatus a pair of separators in which the heat-resistant materials sandwiching the electrodes face each other are bonded to each other.
  • the separator joining apparatus has an ultrasonic processing member and a pressing member.
  • the ultrasonic processing member abuts on the molten material of one separator of the pair of separators and applies ultrasonic waves in a direction crossing the stacking direction to perform processing.
  • the pressing member presses the ultrasonic processing member along the stacking direction.
  • the electrical device uses a separator including a sheet-like molten material and a heat-resistant material laminated on the molten material and having a higher melting temperature than the molten material.
  • a pair of separators in which the heat-resistant materials sandwiching the electrodes face each other are joined to each other.
  • the electric device includes a joint portion formed by partially moving a heat-resistant material to a surrounding region to make it sparse and joining the melted materials of a pair of separators.
  • FIG. 4 is a partial cross-sectional view showing the configuration of FIG. 3 along line 4-4 shown in FIG. 3; It is a perspective view which shows the separator joining apparatus of the electrical device which concerns on 1st Embodiment. It is a perspective view which shows the separator holding
  • FIG. 5 It is a perspective view which shows the separator junction part of FIG.
  • FIG. 6 is a partial cross-sectional view schematically showing a state immediately before a pair of ceramic separators are joined by the separator joining portion of FIG. 5.
  • FIG. 1 It is a perspective view which shows the various forms of the horn of the separator junction part of FIG. It is a perspective view which shows a separator holding
  • arrows represented by X, Y, and Z are used to indicate the orientation.
  • the direction of the arrow represented by X indicates the conveyance direction X of the ceramic separator 40, the positive electrode 20, and the like.
  • the direction of the arrow represented by Y indicates the direction Y that intersects the transport direction of the ceramic separator 40, the positive electrode 20, and the like.
  • the direction of the arrow represented by Z indicates the stacking direction Z of the ceramic separator 40, the positive electrode 20, and the like.
  • the electrical device formed by joining with the separator joining apparatus 100 corresponds to, for example, the packaged electrode 11 of the lithium ion secondary battery 10 as shown in FIGS.
  • the lithium ion secondary battery 10 is configured by sealing a power generation element 12 to be charged and discharged with an exterior material 50.
  • the power generation element 12 is configured by alternately laminating the packed electrode 11 and the negative electrode 30 in which the positive electrode 20 is sandwiched and bonded by a pair of ceramic separators 40. Even if the lithium ion secondary battery 10 vibrates or receives an impact, it is adjacent to each other via the ceramic separator 40 by suppressing the movement of the positive electrode 20 by the joint portions 40h formed at both ends of the pair of ceramic separators 40.
  • the joining portion 40h moves the ceramic layer 42 adjacent to the polypropylene layer 41 to be melted to the surrounding area and makes it sparse while partially melting the polypropylene layers 41 with the ceramic layers 42 facing each other.
  • the polypropylene layers 41 facing each other are formed by welding.
  • Separator joining apparatus 100 is used in joining an electric device (packed electrode 11 of lithium ion secondary battery 10).
  • Separator joining apparatus 100 includes ceramic separators 40 each including a sheet-like molten material (corresponding to polypropylene layer 41) and a molten material (corresponding to polypropylene layer 41) laminated on polypropylene layer 41 and having a melting temperature higher than that of polypropylene layer 41. Join.
  • the separator bonding apparatus 100 includes an electrode transport unit 110 that transports an electrode (positive electrode 20 or negative electrode 30), a first separator transport unit 120 that transports a ceramic separator 40 stacked on one surface of the positive electrode 20, and a stack on the other surface of the positive electrode 20.
  • the 2nd separator conveyance part 130 which conveys the ceramic separator 40 to perform is included.
  • the separator bonding apparatus 100 includes a separator holding unit 140 that holds a pair of ceramic separators 40 that sandwich the positive electrode 20, a separator bonding unit 150 that bonds the pair of ceramic separators 40 to each other, and the ceramic separators 40 being bonded together.
  • a separator transport follower 160 that follows the transport operation of the packaged electrode transport unit 170 is included.
  • the separator joining apparatus 100 includes a packaged electrode transport unit 170 that transports the packaged electrode 11 and a control unit 180 that controls the operation of each component.
  • the packaged electrode 11 formed by bonding by the separator bonding apparatus 100 will be described with reference to FIGS. 1 to 4 based on the configuration of the lithium ion secondary battery 10 including the packaged electrode 11.
  • FIG. 1 is a perspective view showing a lithium ion secondary battery 10 configured using an electric device (packed electrode 11).
  • FIG. 2 is an exploded perspective view showing the lithium ion secondary battery 10 of FIG.
  • FIG. 3 is a perspective view showing a state in which the negative electrodes 30 are laminated on both surfaces of the packaged electrode 11 of FIG.
  • FIG. 4 is a partial cross-sectional view showing the configuration of FIG. 3 along line 4-4 shown in FIG.
  • the positive electrode 20 corresponds to an electrode, and is formed by binding a positive electrode active material on both surfaces of a positive electrode current collector 21 which is a conductor.
  • the positive electrode terminal 21 a for taking out electric power is formed to extend from a part of one end of the positive electrode current collector 21.
  • the positive electrode terminals 21a of the stacked positive electrodes 20 are fixed to each other by welding or adhesion.
  • the material of the positive electrode current collector 21 of the positive electrode 20 is, for example, aluminum expanded metal, aluminum mesh, or aluminum punched metal.
  • the positive electrode active material of the positive electrode 20 includes various oxides (lithium manganese oxide such as LiMn 2 O 4, manganese dioxide, lithium nickel oxide such as LiNiO 2, lithium cobalt oxide such as LiCoO 2, and lithium-containing nickel cobalt.
  • a chalcogen compound titanium disulfide, molybdenum disulfide
  • the negative electrode 30 corresponds to an electrode having a polarity different from that of the positive electrode 20, and is formed by binding a negative electrode active material 32 on both surfaces of a negative electrode current collector 31 which is a conductor.
  • the negative electrode terminal 31 a extends from a part of one end of the negative electrode current collector 31 so as not to overlap with the positive electrode terminal 21 a formed on the positive electrode 20.
  • the length of the negative electrode 30 in the longitudinal direction is longer than the length of the positive electrode 20 in the longitudinal direction.
  • the length of the negative electrode 30 in the short direction is the same as the length of the positive electrode 20 in the short direction.
  • the negative electrode terminals 31a of the plurality of negative electrodes 30 that are stacked are fixed to each other by welding or adhesion.
  • the material of the negative electrode current collector 31 of the negative electrode 30 of the negative electrode for example, copper expanded metal, copper mesh, or copper punched metal is used.
  • a carbon material that absorbs and releases lithium ions is used.
  • carbon materials for example, natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, or organic precursor (phenol resin, polyacrylonitrile, or cellulose) is heat-treated in an inert atmosphere and synthesized. Carbon is used.
  • the ceramic separator 40 is provided between the positive electrode 20 and the negative electrode 30 and electrically isolates the positive electrode 20 and the negative electrode 30.
  • the ceramic separator 40 holds the electrolytic solution between the positive electrode 20 and the negative electrode 30 to ensure ion conductivity.
  • the ceramic separator 40 is formed in a rectangular shape. The length in the longitudinal direction of the ceramic separator 40 is longer than the length in the longitudinal direction of the negative electrode 30 excluding the portion of the negative electrode terminal 31a.
  • the ceramic separator 40 is formed, for example, by laminating a ceramic layer 42 corresponding to a heat-resistant material on a polypropylene layer 41 corresponding to a molten material.
  • the ceramic layer 42 has a higher melting temperature than the polypropylene layer 41.
  • the pair of ceramic separators 40 sandwich the positive electrode 20 and laminate the ceramic layers 42 facing each other.
  • the ceramic layer 42 is in contact with the positive electrode active material of the positive electrode 20.
  • the polypropylene layer 41 of the ceramic separator 40 is formed of polypropylene in a sheet shape.
  • the polypropylene layer 41 is impregnated with a nonaqueous electrolytic solution prepared by dissolving an electrolyte in a nonaqueous solvent.
  • a polymer is contained in order to hold the non-aqueous electrolyte in the polypropylene layer 41.
  • the ceramic layer 42 is formed by, for example, applying a ceramic obtained by molding an inorganic compound at a high temperature to the polypropylene layer 41 and drying it.
  • the ceramic is made of a porous material formed by bonding a ceramic particle such as silica, alumina, zirconium oxide, titanium oxide or the like and a binder.
  • the pair of ceramic separators 40 are bonded to each other by a plurality of bonding portions 40 h formed at both ends in the longitudinal direction along the conveying direction X of the separator bonding apparatus 100. While the ceramic layers 42 are facing each other, the joint portion 40h is partially melted with the polypropylene layers 41 while the ceramic layers 42 adjacent to the polypropylene layer 41 are moved to the surrounding area to make them sparse and face each other. It is formed by welding the polypropylene layers 41 together.
  • a pair of ceramic separators 40 are stacked so as to sandwich both surfaces of the positive electrode 20 and packed into a bag, thereby forming a packaged electrode 11.
  • three joint portions 40h are formed on both sides along the longitudinal direction of the pair of ceramic separators 40, for example, at both end portions and the central portion. Even if the lithium ion secondary battery 10 vibrates or receives an impact, the movement of the positive electrode 20 in the packaged electrode 11 can be suppressed by the joint portions 40 h formed at both ends in the longitudinal direction of the ceramic separator 40. . That is, it is possible to prevent a short circuit between the adjacent positive electrode 20 and negative electrode 30 through the ceramic separator 40. Therefore, the lithium ion secondary battery 10 can maintain the desired electrical characteristics.
  • the exterior material 50 is composed of, for example, laminate sheets 51 and 52 each having a metal plate therein, and covers and seals the power generation element 12 from both sides.
  • the power generating element 12 is sealed with the laminate sheets 51 and 52, a part of the periphery of the laminate sheets 51 and 52 is opened, and the other periphery is sealed by heat welding or the like.
  • An electrolyte solution is injected from the open portions of the laminate sheets 51 and 52, and the ceramic separator 40 and the like are impregnated with the charge solution. While decompressing the inside from the open portions of the laminate sheets 51 and 52, the open portions are also heat-sealed and completely sealed.
  • the laminate sheets 51 and 52 of the exterior material 50 are each formed by laminating three kinds of materials to form a three-layer structure.
  • the first layer corresponds to a heat-fusible resin and uses, for example, polyethylene (PE), ionomer, or ethylene vinyl acetate (EVA).
  • the first layer material is adjacent to the negative electrode 30.
  • the second layer corresponds to a metal foil formed, for example, an Al foil or Ni foil.
  • the third layer corresponds to a resinous film and uses, for example, rigid polyethylene terephthalate (PET) or nylon.
  • each component of the separator bonding apparatus 100 (the electrode conveyance unit 110, the first separator conveyance unit 120, the first number) that embodies the separator bonding method of the electrical device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10).
  • the two-separator transport unit 130, separator holding unit 140, separator joining unit 150, separator transport follower 160, bagging electrode transport unit 170, and control unit 180) will be described in order with reference to FIGS.
  • FIG. 5 is a perspective view showing the separator joining apparatus 100 of the electric device (packed electrode 11).
  • FIG. 6 is a perspective view showing the separator holding unit 140, the separator joint 150, the separator conveyance follower 160, and the packaged electrode conveyance unit 170 of FIG.
  • FIG. 7 is a perspective view showing the separator joint 150 of FIG.
  • FIG. 8 is a partial cross-sectional view schematically showing a state immediately before the pair of ceramic separators 40 are joined by the separator joint 150 of FIG.
  • FIG. 9 is a photograph showing the pair of ceramic separators 40 in the state of FIG.
  • FIG. 10 is a partial cross-sectional view schematically showing a state immediately after the pair of ceramic separators 40 are joined by the separator joint 150 of FIG.
  • FIG. 11 is a photograph showing the pair of ceramic separators 40 in the state of FIG.
  • FIG. 12 is a perspective view showing various forms of the horn of the separator joint 150 of FIG.
  • the electrode conveyance part 110 cuts out and conveys the positive electrode 20 from the elongate positive electrode base material 20A shown in FIG.
  • the electrode supply roller 111 of the electrode transport unit 110 has a cylindrical shape, and is wound and held with a long positive electrode base material 20A.
  • the conveyance roller 112 has an elongated cylindrical shape, and is guided to the conveyance belt 113 in a state where a certain tension is applied to the positive electrode base material 20 ⁇ / b> A wound around the electrode supply roller 111.
  • the conveyor belt 113 is an endless belt provided with a plurality of suction ports on the outer peripheral surface, and conveys the positive electrode base material 20A along the conveyance direction X in a sucked state.
  • the width of the transport belt 113 along the direction Y intersecting the transport direction X is longer than the width of the positive electrode base material 20A.
  • a plurality of rotation rollers 114 are arranged on the inner peripheral surface of the conveyance belt 113 along the direction Y intersecting the conveyance direction X to rotate the conveyance belt 113.
  • one is a driving roller provided with power, and the other is a driven roller driven by the driving roller.
  • the transport roller 112 and the electrode supply roller 111 rotate following the rotation of the transport belt 113.
  • the cutting blades 115 and 116 of the electrode transport unit 110 are arranged so as to be adjacent to each other along a direction Y intersecting the transport direction X, and the positive electrode base 20A is cut into a predetermined shape to form a positive electrode.
  • the cutting blade 115 is provided with a straight and sharp blade at the tip, and cuts one end of the positive electrode base material 20A along the direction Y in a straight line.
  • the cutting blade 116 is provided with a sharp blade that is partially refracted at the tip, and cuts the other end of the positive electrode base material 20A immediately after one end is cut according to the shape of the positive electrode terminal 21a. To do.
  • the cradle 117 receives the cutting blade 115 and the cutting blade 116 for cutting the positive electrode base material 20A.
  • the cradle 117 is disposed to face the cutting blade 115 and the cutting blade 116 via the positive electrode base material 20A to be conveyed.
  • the electrode transport unit 110 carries out the positive electrode 20 cut out from the positive electrode base material 20 ⁇ / b> A so as to pass between the first separator transport unit 120 and the second separator transport unit 130.
  • the first separator transport unit 120 cuts out the ceramic separator 40 for stacking on one surface of the positive electrode 20 (upward in FIG. 5 along the stacking direction Z) from the ceramic separator substrate 40A shown in FIG. Transport.
  • the first separator transport unit 120 is disposed on the downstream side in the transport direction X from the electrode transport unit 110, and is disposed above the stacking direction Z in FIG.
  • the 1st separator supply roller 121 of the 1st separator conveyance part 120 consists of cylindrical shapes, and winds and hold
  • the first pressure roller 122 and the first nip roller 123 that are arranged to face each other have an elongated cylindrical shape, and apply a certain tension to the ceramic separator substrate 40A wound around the first separator supply roller 121. In this state, it is guided to the first transport drum 124.
  • the first transport drum 124 has a cylindrical shape, and a plurality of suction ports are provided on the outer peripheral surface thereof.
  • the width of the first transport drum 124 along the direction Y intersecting the transport direction X is shorter than the width of the ceramic separator substrate 40A. That is, both ends of the ceramic separator substrate 40A protrude outward from the first transport drum 124 in the direction Y. In this way, the first transport drum 124 avoids interference with the separator holding part 140 and the separator joint part 150.
  • the first separator supply roller 121 is driven and rotated in addition to the first pressure roller 122 and the first nip roller 123.
  • the first cutting blade 125 is provided with a straight and sharp blade at the tip, is disposed along a direction Y intersecting the transport direction X, and is used for a long ceramic separator sucked by the first transport drum 124
  • the base material 40A is cut with a certain width.
  • the first transport drum 124 is laminated with the ceramic separator 40 cut into a rectangular shape being brought close to one surface of the positive electrode 20 carried out from the electrode transport unit 110.
  • the ceramic separator 40 has the ceramic layer 42 facing the one surface of the positive electrode 20.
  • the second separator conveyance unit 130 is a separator for stacking from the ceramic separator base material 40A on the other surface facing the one surface of the positive electrode 20 (downward in FIG. 5 along the stacking direction Z) as shown in FIG. 40 is cut out and transported.
  • the second separator transport unit 130 is disposed downstream of the electrode transport unit 110 in the transport direction X and below the stacking direction Z in FIG.
  • the second separator transport unit 130 is disposed to face the first separator transport unit 120 along the stacking direction Z.
  • the second separator supply roller 131 of the second separator transport unit 130 has a cylindrical shape, and holds the long ceramic separator base material 40A wound around it.
  • the second pressure roller 132 and the second nip roller 133 that are arranged to face each other have an elongated cylindrical shape, and apply a certain tension to the ceramic separator substrate 40A wound around the second separator supply roller 131. In this state, it is guided to the second transport drum 134.
  • the second transport drum 134 has a cylindrical shape, and a plurality of suction ports are provided on the outer peripheral surface thereof. Similarly to the first transport drum 124, the second transport drum 134 has a width along the direction Y intersecting the transport direction X shorter than the width of the ceramic separator substrate 40A. Interference with the separator joint 150 is avoided.
  • the second cutting blade 135 is provided with a linear sharp blade at the tip, is disposed along the direction Y intersecting the transport direction X, and is a long ceramic separator 40 sucked by the second transport drum 134. Is cut to a certain width.
  • the second transport drum 134 is laminated while bringing the ceramic separator substrate 40A cut into a rectangular shape close to the other surface side of the positive electrode 20 carried out from the electrode transport unit 110.
  • the ceramic separator 40 has the ceramic layer 42 facing the other surface of the positive electrode 20.
  • the first separator transport unit 120 and the second separator transport unit 130 are stacked so that the positive electrode 20 is sandwiched between the pair of ceramic separators 40 in the gap portion between the first transport drum 124 and the second transport drum 134. Transport along the transport direction X. Separator holding portions 140 and separator joint portions 150 are disposed at both ends on the downstream side along the transport direction X, respectively.
  • the separator holding unit 140 holds a pair of ceramic separators 40 shown in FIGS. 5 and 6 and sandwiched and stacked with the positive electrode 20 interposed therebetween.
  • the separator holding unit 140 is adjacent to the electrode transport unit 110 along the transport direction X, and is disposed downstream of the first separator transport unit 120 and the second separator transport unit 130 in the transport direction X.
  • One set of separator holding portions 140 is disposed at both ends along the conveyance direction X of the packaged electrode conveyance portion 170.
  • the holding plate 141 of the separator holding unit 140 is formed in a long plate shape.
  • the holding plate 141 is disposed below the stacking direction Z of the ceramic separator 40 in FIG. 6 and in parallel with the end portion along the transport direction X of the ceramic separator 40.
  • the holding plate 141 assists the bonding of the ceramic separators 40 by the separator bonding portion 150 by holding the pair of ceramic separators 40 from below in the stacking direction Z in FIG.
  • the holding plate 141 has a rectangular hole in order to avoid interference with the horn 151 and the anvil 154 of the separator joint 150.
  • the holding plate 141 of the separator holding part 140 is raised and lowered along the stacking direction Z by the driving support column 158 of the separator joint part 150.
  • the holding plate 141 holds the pair of ceramic separators 40 from below in the stacking direction Z in FIG. 6 while the horn 151 and the anvil 154 are in contact with each other so as to sandwich the pair of ceramic separators 40.
  • the holding plate 141 is retracted downward in the stacking direction Z shown in FIG. 6 while the horn 151 and the anvil 154 are separated from the pair of ceramic separators 40.
  • the separator joining portion 150 is rubbed by ultrasonic waves laminated so as to sandwich the positive electrode 20, and the ceramic separators 40 are melted and joined by frictional heat accompanying the friction.
  • the separator joint 150 is disposed on the downstream side in the transport direction X with respect to the first separator transport unit 120 and the second separator transport unit 130.
  • One set of separator joints 150 is disposed at both ends along the transport direction X. Separator joining portion 150 is close to separator holding portion 140.
  • the horn 151 of the separator joint 150 applies ultrasonic waves to the ceramic separator 40.
  • the horn 151 is made of metal, and integrally includes a rectangular main body 151a and a protrusion 151b that protrudes from a corner of the main body 151a.
  • the horn 151 is pressed by the pressing member 155 as indicated by the arrow P1 in FIG. 7, and the protruding portion 151 b contacts the polypropylene layer 41 of the ceramic separator 40.
  • the horn 151 generates frictional heat by applying ultrasonic waves along the bonding surfaces of the ceramic layers 42 intersecting with the stacking direction Z and oscillating as represented by the wavy line S1 in FIG.
  • the booster 152 of the separator joint 150 amplifies the ultrasonic wave while fastening the horn 151 and the vibrator 153.
  • the booster 152 is made of metal and has a cylindrical shape.
  • the vibrator 153 generates vibration corresponding to the frequency of the ultrasonic wave by using electric power supplied from the outside.
  • the vibrator 153 has one end fastened to the booster 152 and a power cable connected to the other end facing the one end.
  • the anvil 154 corresponds to a contact member, and biases the horn 151 while receiving ultrasonic vibration derived from the horn 151.
  • the anvil 154 is made of metal, and integrally includes a rectangular main body 154a and a protrusion 154b formed to protrude from one end of the main body 154a.
  • the protruding portion 154b of the anvil 154 faces the protruding portion 151b of the horn 151 with the pair of ceramic separators 40 interposed therebetween.
  • the anvil 154 is pressed by the urging member 156 to urge the horn 151 as indicated by the arrow P2 in FIG.
  • the pressing member 155 of the separator joint 150 presses the horn 151 along the stacking direction Z in the downward direction shown in FIG.
  • One end of the pressing member 155 is formed in an annular shape, and a booster 152 fastened to the horn 151 is inserted therethrough.
  • the side of the pressing member 155 is movably connected to the drive column 158 along the stacking direction Z.
  • the urging member 156 presses the anvil 154 upward along the stacking direction Z shown in FIG.
  • the urging member 156 is formed in a plate shape, and an anvil 154 is joined to the end thereof.
  • the urging member 156 is connected to the drive column 158 so as to be movable along the stacking direction Z.
  • the driving stage 157 of the separator joint 150 moves the pressing member 155 and the urging member 156 along the stacking direction Z via the driving column 158.
  • the driving force generated by the driving stage 157 is converted into a driving force along the stacking direction Z by the driving column 158 and used.
  • the horn 151, the booster 152, the vibrator 153, and the pressing member 155 are disposed above the separator holding portion 140 in the stacking direction Z in FIG. It is configured in a scale.
  • the anvil 154 and the urging member 156 are disposed below the separator holding portion 140 in the stacking direction Z in FIG. 7 and are formed in a long shape along the transport direction X.
  • the drive stage 157 is disposed directly below the reference numeral 7 in the drawing direction Z of the biasing member 156 on which the anvil 154 is placed, and is disposed along the transport direction X. That is, the constituent members of the separator joint 150 are arranged in a long shape along the transport direction X.
  • the ceramic separator 40 formed by laminating the polypropylene layer 41 and the ceramic layer 42 has the ceramic layers 42 facing each other as shown in FIG.
  • the horn 151 is in contact with the polypropylene layer 41 of one ceramic separator 40 of the pair of ceramic separators 40 and is represented by a wavy line S1 in FIG. 10 along the bonding surface between the ceramic layers 42 intersecting the stacking direction Z. Ultrasonic waves were applied to the.
  • the direction of the wavy line S1 corresponds to the transport direction X that intersects the stacking direction Z.
  • the pressing member 155 pressed the horn 151 toward the polypropylene layer 41 of the ceramic separator 40 as represented by the arrow P1 in FIG.
  • the urging member 156 pressed the anvil 154 toward the horn 151 as indicated by an arrow P2 in FIG.
  • the pair of ceramic separators 40 became sparse as the polypropylene layer 41 was melted by frictional heat and the ceramic layer 42 moved from the joint 40h to the surrounding area as shown in FIG. Therefore, the facing polypropylene layers 41 could be joined.
  • the horn 151 described above is shown in FIG. Since the ultrasonic wave is applied to the horn 151 by the vibrator 153, the portion facing the anvil 154 deteriorates. Therefore, when the protrusion 151b1 formed at one corner of one side surface of the main body 151a deteriorates, first, the main body 151a is rotated by 180 ° along the transport direction X, and the protrusion 151b2 facing the protrusion 151b1 is used. To do. Next, when the protruding portion 151b2 deteriorates, the horns 151 arranged one by one so as to face each other along the direction Y via the packaged electrode transport portion 170 are exchanged so as to move in parallel along the direction Y.
  • the projection 151b3 of the replaced horn 151 is used. Further, when the protrusion 151b3 is deteriorated, the main body 151a is rotated by 180 ° along the transport direction X, and the protrusion 151b4 facing the protrusion 151b3 is used. Thus, if one protrusion 151b is formed at each of the four corners of one end of the main body 151a, the life of the horn 151 can be extended four times.
  • a horn 191 according to Modification 1 of the horn 151 is shown in FIG.
  • the horn 191 is integrally formed with two protrusions 191b so as to be adjacent to each other at four corners on one side of the main body 191a so as to be orthogonal to each other. Therefore, the life of the horn 191 can be extended to twice the life of the horn 151 by using another protrusion 191b each time the protrusion 191b deteriorates.
  • a horn 192 according to Modification 2 of the horn 151 is shown in FIG.
  • one protrusion 192b is formed integrally with each of the four corners on one side of the main body 192a and the four corners on the other side facing the one side. Therefore, the life of the horn 192 can be extended to the same extent as the life of the horn 191 by using another protrusion 192b each time the protrusion 192b deteriorates.
  • the anvil 154 receives ultrasonic vibration derived from the horn 151 via the pair of ceramic separators 40, and thus deteriorates in the same manner as the horn 151. Therefore, the anvil 154 has a plurality of protrusions 154b formed integrally with the main body 154a, as with the horn 151.
  • the separator conveyance follower 160 follows the conveyance of the packaged electrode conveyance unit 170 and moves the separator junction 150 and the like while the separator bonding unit 150 is bonding the ceramic separators 40 to each other.
  • the separator conveyance follower 160 is a lower part in FIG. 5 along the stacking direction Z of the packaged electrode conveyance unit 170, and is downstream of the first separator conveyance unit 120 and the second separator conveyance unit 130 in the conveyance direction X. It is arranged on the side.
  • the X-axis stage 161 of the separator conveyance follower 160 mounts all the constituent members of the separator holding portion 140 and all the constituent members of the separator joint portion 150.
  • the X-axis stage 161 moves so as to reciprocate between the downstream side and the upstream side in the transport direction X.
  • the X-axis stage 161 moves along the downstream side in the transport direction X while the horn 151 and the anvil 154 are in contact with and joined to the pair of ceramic separators 40. On the other hand, when the horn 151 and the anvil 154 complete the joining of the pair of ceramic separators 40 and are separated from each other, the X-axis stage 161 moves at a high speed along the upstream side in the transport direction X and returns to the original position.
  • the separator transport follower 160 moves the separator holding unit 140 and the separator joint 150 along the transport direction X. Therefore, while the pair of ceramic separators 40 are joined, the first separator transport unit 120 and the second separator transport unit 120 are moved.
  • the operation of the separator transport unit 130 can be continued. That is, by using the X-axis stage 161, without stopping the rotation of the first transport drum 124 of the first separator transport unit 120 and the second transport drum 134 of the second separator transport unit 130, the pair of ceramic separators 40 Joining can be completed.
  • the packaged electrode transport unit 170 transports the packaged electrode 11 formed by the separator joint 150 as shown in FIGS. 5 and 6.
  • the packaged electrode transport unit 170 is adjacent to the electrode transport unit 110 along the transport direction X, and is disposed downstream of the first separator transport unit 120 and the second separator transport unit 130 in the transport direction X.
  • the transport belt 171 of the packaged electrode transport unit 170 is an endless belt provided with a plurality of suction ports on the outer peripheral surface, and transports along the transport direction X while the packaged electrode 11 is sucked.
  • the conveyance belt 171 has a width along the direction Y intersecting the conveyance direction X shorter than the width of the packaged electrode 11. That is, both ends of the bagging electrode 11 protrude outward from the conveyance belt 171 in the direction Y. In this way, the conveyor belt 171 avoids interference with the separator holding part 140 and the separator joining part 150.
  • Rotating rollers 172 of the packaged electrode transport unit 170 are arranged on the inner peripheral surface of the transport belt 171 along the direction Y intersecting the transport direction X, and rotate the transport belt 171.
  • the rotating roller 172 does not protrude from the conveyor belt 171 in order to avoid interference with the separator holding unit 140 and the separator joint 150.
  • one is a driving roller provided with power, and the other is a driven roller driven by the driving roller.
  • three transport belts 171 are arranged along the transport direction X.
  • the suction pad 173 of the packaged electrode transport unit 170 is positioned to face the packaged electrode 11 above the packaged electrode 11 placed on the transport belt 171 in the stacking direction Z in FIG. Yes.
  • the suction pad 173 has a plate shape, and a plurality of suction ports are provided on the surface that comes into contact with the bagging electrode 11.
  • the elastic member 174 is located above the suction pad 173 in the stacking direction Z shown in FIG. One end of the elastic member 174 is joined to the suction pad.
  • the stretchable member 174 is stretchable along the stacking direction Z by using an air compressor or the like as power.
  • the X-axis stage 175 and the X-axis auxiliary rail 176 of the packaged electrode transport unit 170 support the other end of the telescopic member 174 so as to be movable.
  • the X-axis stage 175 is disposed along the transport direction X and scans the telescopic member 174 along the transport direction X.
  • the X-axis auxiliary rail 176 is disposed in parallel with the X-axis stage 175 and assists the scanning of the telescopic member 174 by the X-axis stage 175.
  • the mounting table 177 has a plate shape, and is disposed on the downstream side in the conveyance direction X with respect to, for example, three conveyance belts 171. The mounting table 177 temporarily stores and stores the packaged electrode 11.
  • control unit 180 includes an electrode transport unit 110, a first separator transport unit 120, a second separator transport unit 130, a separator holding unit 140, a separator joining unit 150, a separator transport follower 160, and a packaged electrode transport unit. Each operation of 170 is controlled.
  • the controller 181 of the control unit 180 includes a ROM, a CPU, and a RAM.
  • a ROM Read Only Memory stores a control program related to the separator joining apparatus 100.
  • the control program includes the rotation roller 114 and the cutting blades 115 and 116 of the electrode transport unit 110, the first transport drum 124 and the first cutting blade 125 of the first separator transport unit 120, and the second transport drum of the second separator transport unit 130. 134 and control of the second cutting blade 135 are included.
  • control program includes the holding plate 141 of the separator holding unit 140, the vibrator 153 and the drive stage 157 of the separator bonding unit 150, the X-axis stage 161 of the separator conveyance follower 160, and the rotation roller 172 of the packaged electrode conveyance unit 170. And those related to the control of the expansion and contraction member 174 and the like.
  • a CPU Central Processing Unit of the control unit 180 controls the operation of each component of the separator joining apparatus 100 based on the control program.
  • a RAM Random Access Memory temporarily stores various data related to each component of the separator joining apparatus 100 under control. The data relates to, for example, the operation timing of the vibrator 153 of the separator joint 150.
  • the electrode transport unit 110 forms the positive electrode 20 by cutting the long positive electrode base material 20 ⁇ / b> A one by one into a predetermined shape by the cutting blades 115 and 116.
  • the electrode transport unit 110 transports the positive electrode 20 between the first separator transport unit 120 and the second separator transport unit 130.
  • the first separator transport unit 120 cuts out and transports the ceramic separator 40 to be laminated on one surface of the positive electrode 20 from the ceramic separator substrate 40 ⁇ / b> A.
  • the long ceramic separator substrate 40A is cut into a rectangular shape one by one by the first cutting blade 125, and the ceramic separator 40 is formed.
  • the 1st separator conveyance part 120 laminates
  • the second separator transport unit 130 cuts out and transports the ceramic separator 40 to be laminated on the other surface facing the one surface of the positive electrode 20 from the ceramic separator substrate 40 ⁇ / b> A.
  • the long ceramic separator substrate 40A is cut into a rectangular shape one by one by the second cutting blade 135, and the ceramic separator 40 is formed.
  • the second separator transport unit 130 stacks the ceramic separator 40 on the other surface side of the positive electrode 20 transported from the electrode transport unit 110.
  • the separator holding unit 140 holds a pair of ceramic separators 40 stacked on the positive electrode 20.
  • the holding plate 141 assists the bonding of the ceramic separators 40 by the separator bonding portion 150 by holding the pair of ceramic separators 40 from below in the stacking direction Z in FIG. That is, while the horn 151 and the anvil 154 are in contact with the pair of ceramic separators 40, the holding plate 141 holds the ceramic separator 40 positioned below the pair from the lower side shown in FIG. .
  • the separator joining portion 150 joins the ceramic separators 40 stacked so as to sandwich the positive electrode 20.
  • the horn 151 abuts on the polypropylene layer 41 of the ceramic separator 40 and applies ultrasonic waves along the bonding surface of the ceramic layers 42 intersecting with the stacking direction Z as indicated by a broken line S1 in the drawing.
  • the direction of the wavy line S1 corresponds to the transport direction X that intersects the stacking direction Z.
  • the pressing member 155 presses the horn 151 along the stacking direction Z toward the polypropylene layer 41 of the ceramic separator 40 as represented by an arrow P1 in the drawing.
  • the anvil 154 presses toward the horn 151 as represented by the arrow P2 in the figure.
  • the ceramic separator 40 can be joined to each other from the state in which the ceramic layers 42 that are difficult to melt are opposed to each other.
  • the separator transport follower 160 follows the transport operation of the packaged electrode transport unit 170 while the separator joint 150 joins the ceramic separators 40 to each other.
  • the X-axis stage 161 mounts all the constituent members of the separator holding portion 140 and all the constituent members of the separator joint portion 150.
  • the X-axis stage 161 moves along the downstream side in the transport direction X while the horn 151 and the anvil 154 are in contact with and joined to the pair of ceramic separators 40. That is, by using the X-axis stage 161, the pair of ceramic separators 40 can be joined without stopping the rotation of the first transport drum 124 and the second transport drum 134.
  • the packaged electrode transport unit 170 transports the packaged electrode 11 formed by the separator joint 150.
  • the packaged electrode transport unit 170 places the packaged electrode 11 on the mounting table 177 and temporarily stores it.
  • the separator joining method of the electric device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10)
  • the sheet-like molten material (corresponding to the polypropylene layer 41) and the polypropylene layer 41 are laminated on the polypropylene layer 41.
  • a separator (corresponding to the ceramic separator 40) containing a heat-resistant material (corresponding to the ceramic layer 42) having a high melting temperature is used.
  • a pair of ceramic separators 40 facing each other with ceramic layers 42 sandwiching electrodes (corresponding to the positive electrode 20 or the negative electrode 30) are joined together.
  • the separator joining method for the packaged electrode 11 of the lithium ion secondary battery 10 includes a joining step.
  • a processing member (corresponding to the horn 151) that processes the ceramic separator 40 by ultrasonic waves is brought into contact with the polypropylene layer 41 of one ceramic separator 40 of the pair of ceramic separators 40 and intersects the stacking direction Z. While the ultrasonic wave is applied in the applied direction and the polypropylene layer 41 is melted, the ceramic layer 42 of the portion where the horn 151 is pressed along the stacking direction Z is moved from the pressed region (joint portion 40h) to the surrounding region. The polypropylene layers 41 of the pair of ceramic separators 40 are bonded to each other.
  • the separator joining apparatus 100 of the electric device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10)
  • the sheet-like molten material (corresponding to the polypropylene layer 41) and the polypropylene layer 41 are laminated on the polypropylene.
  • a separator (corresponding to the ceramic separator 40) containing a heat-resistant material (corresponding to the ceramic layer 42) having a melting temperature higher than that of the layer 41 is used.
  • a pair of ceramic separators 40 in which ceramic layers 42 sandwiching electrodes (corresponding to the positive electrode 20 or the negative electrode 30) face each other are bonded to each other.
  • the separator bonding apparatus 100 includes an ultrasonic processing member (corresponding to the horn 151) and a pressing member 155.
  • the horn 151 abuts on the polypropylene layer 41 of one ceramic separator 40 of the pair of ceramic separators 40 and applies an ultrasonic wave in a direction crossing the stacking direction Z to perform processing.
  • the pressing member 155 presses the horn 151 along the stacking direction Z.
  • the ceramic separator 40 is pressed along the stacking direction Z while applying the ultrasonic wave along the direction intersecting the stacking direction Z of the ceramic separator 40 to melt the polypropylene layer 41. Therefore, the facing polypropylene layers 41 can be joined by partially moving the ceramic layer 42 to the surrounding area to make it sparse. That is, the pair of ceramic separators 40 in which the ceramic layers 42 face each other can be sufficiently bonded.
  • the joining step starts the application of ultrasonic waves by the horn 151 while the horn 151 is pressed by the pressing member 155. It can be.
  • the pair of ceramic separators 40 can sufficiently maintain the bonding strength of the bonding portion 40h.
  • the joining step ends the pressing of the pressing member 155 against the horn 151 while the ultrasonic wave is continuously applied by the horn 151. It can be set as the structure to do.
  • the pair of ceramic separators 40 is in a state where the application of ultrasonic waves by the horn 151 is continued, and the pressing of the horn 151 by the pressing member 155 is completed.
  • the anvil 154 and the urging member 156 may be further included.
  • the anvil 154 is disposed facing the horn 151 along the stacking direction Z, and abuts against the polypropylene layer 41 of the other ceramic separator 40 of the pair of ceramic separators 40.
  • the biasing member 156 biases the anvil 154 toward the horn 151 along the stacking direction Z.
  • the pair of ceramic separators 40 can be held between the horn 151 and the anvil 154 and sufficiently pressed. Therefore, compared with the case where the pair of ceramic separators 40 are pressed only by the horn 151, the ceramic layer 42 can be partially moved to the surrounding region in a shorter time, and the joining portion 40h can be formed.
  • a sheet-like molten material corresponding to the polypropylene layer 41
  • the polypropylene layer 41 are laminated and have a melting temperature higher than that of the polypropylene layer 41.
  • a separator corresponding to the ceramic separator 40
  • the packaged electrode 11 is formed by joining together a pair of ceramic separators 40 in which ceramic layers 42 sandwiching electrodes (corresponding to the positive electrode 20 or the negative electrode 30) face each other.
  • the packaged electrode 11 includes a joining portion 40 h formed by partially moving the ceramic layer 42 to the surrounding area to make the ceramic layer 42 sparse and joining the polypropylene layers 41 of the pair of ceramic separators 40.
  • FIG. 13 is a perspective view showing the separator holding unit 240, the separator bonding unit 150, the separator conveyance follower 160, and the packaged electrode conveyance unit 170 of the separator bonding apparatus.
  • FIG. 14 is a cross-sectional view showing the operation of the separator holding portion 240 and the separator joint portion 150 of FIG.
  • the separator joining apparatus according to the modified example of the first embodiment has a configuration in which the pair of holding plates 241 and 242 are separated from the polypropylene layers 41 after the horn 151 is detached from the polypropylene layer 41 of the ceramic separator 40 as described above. It differs from the structure of the separator joining apparatus 100 which concerns on 1st Embodiment.
  • the separator holding unit 240 is disposed on the downstream side in the transport direction X from the first separator transport unit 120 and the second separator transport unit 130.
  • One set of separator holding parts 240 is disposed at both ends along the carrying direction X of the packaged electrode carrying part 170.
  • the holding plate 241 of the separator holding unit 240 is formed in a long plate shape, and is below the stacking direction Z of the ceramic separator 40 in FIG. 13 and at an end portion along the conveying direction X of the ceramic separator 40. They are arranged in parallel.
  • the holding plate 242 has the same shape as the holding plate 241.
  • the holding plate 241 and the holding plate 242 are disposed to face each other along the stacking direction Z with a pair of ceramic separators 40 interposed therebetween.
  • the holding plate 241 has a rectangular hole in order to avoid interference with the anvil 154 of the separator joint 150.
  • the holding plate 242 includes a rectangular hole in order to avoid interference with the horn 151 of the separator joint 150.
  • the holding plates 241 and 242 are raised and lowered by the drive support column 158 of the separator joint 150 so as to approach and separate from each other along the stacking direction Z.
  • the separator holding unit 240 holds the pair of ceramic separators 40 along the stacking direction Z by a pair of holding plates 241 and 242.
  • the horn 151 and the anvil 154 are ultrasonically bonded to the pair of ceramic separators 40 while being pressed against the polypropylene layer 41.
  • the horn 151 is detached upward along the stacking direction Z from the pair of ceramic separators 40 as indicated by the arrow T1 in FIG.
  • the anvil 154 is spaced downward along the stacking direction Z from the pair of ceramic separators 40, as indicated by the arrow T2 in FIG.
  • the holding plate 241 is separated downward along the stacking direction Z from the pair of ceramic separators 40 as represented by the arrow T ⁇ b> 4 in FIG. 14.
  • the holding plate 242 is detached upward along the stacking direction Z from the pair of ceramic separators 40 as indicated by the arrow T ⁇ b> 3 in FIG. 14.
  • the separator further has a pair of holding plates 241 and 242.
  • the pair of holding plates 241 and 242 sandwich and hold the polypropylene layers 41 along the stacking direction Z.
  • the pair of holding plates 241 and 242 are separated from the polypropylene layers 41 after the horn 151 is detached from the polypropylene layer 41.
  • the horn 151 is in a state where the polypropylene layers 41 are held by the pair of holding plates 241 and 242 even if the horn 151 adheres to the polypropylene layer 41 when the pair of ceramic separators 40 are welded. Thus, it can be separated from the polypropylene layer 41. Therefore, the horn 151 can be prevented from moving while attached to the polypropylene layer 41, and the ceramic separator 40 is not damaged.
  • the anvil 154 adheres to the polypropylene layer 41 when contacting the pair of ceramic separators 40, the polypropylene layer 41 is supported by the pair of holding plates 241 and 242. In a state where they are held together, they can be separated from the polypropylene layer 41. Therefore, the anvil 154 can be prevented from moving while attached to the polypropylene layer 41, and the ceramic separator 40 is not damaged.
  • FIG. 15 is a perspective view showing a separator bonding portion 350 of the separator bonding apparatus.
  • FIG. 16 is a perspective view showing the packaged electrode 13 formed by the separator joint portion 350 of FIG.
  • the separator joining apparatus according to the second embodiment differs from the separator joining apparatus 100 according to the first embodiment described above in that the both ends of the pair of ceramic separators 40 along the conveying direction X are seam welded.
  • the separator joining portion 350 is disposed on the downstream side in the transport direction X from the first separator transport unit 120 and the second separator transport unit 130.
  • One set of separator joints 350 is disposed at both ends along the transport direction X.
  • the separator bonding portion 350 is provided with each constituent material along a direction Y that intersects the conveyance direction X.
  • the separator joint 350 is different from the separator joint 150 in the configuration of the horn 351, the anvil 354, and the biasing member 356.
  • the horn 351 of the separator joint 350 applies ultrasonic waves to the ceramic separator 40.
  • the horn 351 is made of metal and has a disk shape.
  • the horn 351 is rotatably arranged along the conveyance direction X of the pair of ceramic separators 40.
  • the horn 351 is pressed by the pressing member 155 as indicated by the arrow P3 in FIG. 15 and presses the polypropylene layer 41 of one ceramic separator 40 of the pair of ceramic separators 40.
  • the horn 351 applies ultrasonic waves along the bonding surface between the ceramic layers 42 intersecting with the stacking direction Z, as represented by the wavy line S2 in FIG.
  • the direction of the wavy line S2 corresponds to the direction Y intersecting the stacking direction Z.
  • the anvil 354 is made of metal and has a disk shape.
  • the horn 351 is rotatably arranged along the conveyance direction X of the pair of ceramic separators 40.
  • the anvil 354 is opposed to the horn 351 with the pair of ceramic separators 40 interposed therebetween.
  • the anvil 354 is pressed by the urging member 356 as shown by the arrow P4 in FIG.
  • One end of the biasing member 356 is formed in an annular shape, and the rear portion of the anvil 354 is inserted and rotatably connected.
  • the biasing member 356 is movable along the stacking direction Z with respect to the drive column 158.
  • the separator joining portion 350 continuously joins both ends along the transport direction X of the pair of ceramic separators 40 to form the packaged electrode 13 including the linear joining portion 40 i.
  • the horn 351 is formed in a disk shape that is rotatable along the conveying direction X of the pair of ceramic separators 40. ing.
  • both ends along the conveying direction X of the pair of ceramic separators 40 can be continuously joined by seam welding to form a linear joint 40i. Therefore, both ends of the pair of ceramic separators 40 can be bonded more firmly.
  • the horn 351 is hardly adhered to the polypropylene layer 41 because the horn 351 is welded while moving at both ends of the pair of ceramic separators 40. Therefore, the horn 351 can be prevented from moving in a state where it is attached to the polypropylene layer 41, and the ceramic separator 40 is not damaged.
  • the horn 351 only needs to abut on the polypropylene layer 41 of the ceramic separator 40 in a freely rotatable manner. That is, without using the separator conveyance follower 160, the pair of ceramic separators 40 can be joined while the rotation of the first conveyance drum 124 and the second conveyance drum 134 is continued.
  • anvil 354 can be formed in a disk shape that is rotatable along the conveying direction X of the pair of ceramic separators 40.
  • the pair of ceramic separators 40 can be held between the horn 351 and the anvil 354 and sufficiently pressed. Therefore, compared with the case where the pair of ceramic separators 40 are pressed only by the horn 351, the ceramic layer 42 can be partially moved to the surrounding region in a shorter time, and the joint portion 40i can be formed.
  • the direction in which the ultrasonic wave is propagated to the ceramic separator 40 may be a direction along the bonding surface of the ceramic layers 42 intersecting with the stacking direction Z, and the conveyance direction X and the direction Y intersecting the stacking direction Z There is no particular limitation as long as it is within the plane.
  • the ceramic layer 42 of a pair of ceramic separator 40 was partially moved to the surrounding area, and it demonstrated as a structure which joins the polypropylene layers 41 which faced each other.
  • the packaged electrode 11 used for the lithium ion secondary battery 10 although demonstrated with the structure which joins a pair of ceramic separator 40 mutually, it is limited to such a structure. Absent. The present invention can also be applied to joining members other than the packaged electrode 11 used in the lithium ion secondary battery 10.
  • the secondary battery has been described with the configuration of the lithium ion secondary battery 10, but the configuration is not limited to such a configuration.
  • the secondary battery can be configured as, for example, a polymer lithium battery, a nickel-hydrogen battery, or a nickel-cadmium battery.
  • the heat-resistant material of the ceramic separator 40 has been described with the configuration of the ceramic layer 42, but is not limited to such a configuration.
  • the heat-resistant material is not limited to ceramics and may be a member having a melting temperature higher than that of the molten material.
  • the molten material of the ceramic separator 40 has been described with the configuration of the polypropylene layer 41.
  • the configuration is not limited to such a configuration.
  • the molten material is not limited to polypropylene and may be a member having a melting temperature lower than that of the heat-resistant material.
  • the ceramic separator 40 has been described as a configuration in which a heat-resistant material (ceramic layer 42) is laminated on one surface of a molten material (polypropylene layer 41), but the configuration is limited to such a configuration. None happen.
  • the ceramic separator 40 may be configured by laminating a heat-resistant material (ceramic layer 42) on both surfaces of a molten material (polypropylene layer 41).
  • the positive electrode 20 is packed with the pair of ceramic separators 40 to form the packed electrode 11, but the present invention is not limited to such a configuration.
  • the negative electrode 30 may be packed with a pair of ceramic separators 40 to form a packed electrode. Furthermore, it is good also as a structure which inserts the positive electrode 20 or the negative electrode 30 after joining a pair of ceramic separator 40 mutually, and forms a packing electrode.
  • the positive electrode 20, the ceramic separator 40, and the packaged electrode 11 have been described as being automatically conveyed.
  • the present invention is not limited to such a configuration.
  • the positive electrode 20, the ceramic separator 40, or the packaged electrode 11 may be configured to be manually transported.
  • 1st Embodiment demonstrated as a structure which carries out the spot welding of the both ends of a pair of ceramic separator 40 using the horn 151 and the anvil 154 provided with the projection part, it is not limited to such a structure. . It is good also as a structure which operates the horn 151 provided with the projection part, and the anvil 154 so that a junction part may continue, and seam welds the both ends of a pair of ceramic separator 40.
  • the projection 151b of the horn 151 and the projection 154b of the anvil 154 are described as being sandwiched and pressed while sandwiching the pair of ceramic separators 40.
  • the configuration is limited to such a configuration. Absent. What is necessary is just to provide the projection part in any one of the horn 151 or the anvil 154.
  • the pair of ceramic separators 40 may be pressed while being held between the protrusion 151b of the horn 151 and the flat portion of the main body 154a of the anvil 154.
  • the disk-shaped horn 351 and the disk-shaped anvil 354 are used to describe seam welding at both ends of the pair of ceramic separators 40.
  • the present invention is not limited to such a structure. Absent. It is good also as a structure which carries out spot welding of the both ends of a pair of ceramic separator 40 by separating the disk-shaped horn 351 and the anvil 354 from a pair of ceramic separator 40 with a fixed period. In such a configuration, the disk-shaped horn 351 and the anvil 354 need not be rotated. Further, in the case of such a configuration, the long separator joining portion 350 shown in FIG. 15 may be disposed by being rotated by 90 ° with respect to the joining portion so as to be along the transport direction X. . Moreover, it is good also as a structure which does not rotate the anvil 354, rotating the horn 351. FIG.
  • a spiral spring member having elasticity may be used instead of the pressing member 155 that presses the disk-shaped horn 351 toward the pair of ceramic separators 40.
  • a spiral spring member having elasticity instead of the urging member 356 that urges the disc-shaped anvil 354 toward the horn 351, a spiral spring member having elasticity may be used.

Abstract

[Problem] To provide a method for bonding separators in an electrical device whereby a pair of separators that each contain a melt material and a heat-resistant material can be bonded together securely with the heat-resistant materials thereof facing each other. [Solution] This method for bonding separators in an electrical device (a packaged electrode (11)) uses ceramic separators (40) each containing a melt material (a polypropylene layer (41)) and a heat-resistant material (a ceramic layer (42)) that is laminated to the polypropylene layer and has a higher melting point than said polypropylene layer. A pair of said ceramic separators are bonded together with the ceramic layers thereof facing each other so as to sandwich a positive electrode (20). A horn (151) that applies an ultrasonic treatment to the ceramic separators is placed up against the polypropylene layers, and while ultrasound is applied in a direction that intersects the lamination direction (Z) so as to melt the polypropylene layers, the ceramic layers in the section that is under pressure from the horn in the lamination direction are pushed out of the region under pressure (the bond site (40h)) to the surrounding region, thereby bonding the polypropylene layers of the ceramic separators to each other.

Description

電気デバイスのセパレータ接合方法、電気デバイスのセパレータ接合装置、および電気デバイスElectric device separator bonding method, electric device separator bonding apparatus, and electric device
 本発明は、電気デバイスのセパレータ接合方法、電気デバイスのセパレータ接合装置、および電気デバイスに関する。 The present invention relates to an electrical device separator joining method, an electrical device separator joining apparatus, and an electrical device.
 従来から、リチウムイオン二次電池のような電池は、充放電が行われる発電要素を外装材によって封止して構成している。発電要素は、例えば、正極を一対のセパレータで挟持して形成した袋詰電極と、負極とを交互に複数積層して構成している。袋詰電極は、その両端を接合して正極の移動を抑制することによって、セパレータを介して隣り合う負極との短絡を防止している(例えば、特許文献1参照。)。 Conventionally, a battery such as a lithium ion secondary battery is configured by sealing a power generation element to be charged and discharged with an exterior material. The power generation element is configured, for example, by laminating a plurality of packaged electrodes formed by sandwiching a positive electrode with a pair of separators and negative electrodes. The packaged electrode joins both ends thereof to suppress the movement of the positive electrode, thereby preventing a short circuit with the adjacent negative electrode through the separator (see, for example, Patent Document 1).
特開平9-320636号公報Japanese Patent Laid-Open No. 9-320636
 しかしながら、上記特許文献1のような構成では、電池の高出力化に伴い、充放電時における正極および負極での発熱量が増大した場合、セパレータの耐熱性が不十分となる虞がある。 However, in the configuration as described in Patent Document 1, when the amount of heat generated at the positive electrode and the negative electrode at the time of charging / discharging increases as the output of the battery increases, the heat resistance of the separator may be insufficient.
 そこで、セパレータを溶融材とその溶融材よりも溶融温度が高い耐熱材とを積層して形成し、その耐熱材の側を発熱する電極に対面させることによって、セパレータの耐熱性を向上させる技術が要請されている。一方、一対のセパレータの耐熱材同士を対面させるように電極を挟持して積層すると、その一対のセパレータを溶融して互いに接合することが困難となる。 Therefore, there is a technology for improving the heat resistance of a separator by forming a separator by laminating a molten material and a heat-resistant material having a melting temperature higher than that of the molten material, and facing the heat-resistant material side to an electrode that generates heat. It has been requested. On the other hand, if the electrodes are sandwiched and stacked so that the heat-resistant materials of the pair of separators face each other, it becomes difficult to melt the pair of separators and join them together.
 本発明は、上記の課題を解決するためになされたものであり、溶融材とその溶融材よりも溶融温度が高い耐熱材とを含んだセパレータを用い、その耐熱材同士を対面させた一対のセパレータを十分に接合することができる電気デバイスのセパレータ接合方法、そのセパレータ接合方法を具現化した電気デバイスのセパレータ接合装置、そのセパレータ接合装置によって形成した電気デバイスの提供を目的とする。 The present invention has been made in order to solve the above-described problems, and uses a separator including a molten material and a heat-resistant material having a melting temperature higher than that of the molten material, and a pair of heat-resistant materials facing each other. It is an object of the present invention to provide a separator joining method for an electric device capable of sufficiently joining a separator, a separator joining device for an electric device embodying the separator joining method, and an electric device formed by the separator joining device.
 上記目的を達成する本発明に係る電気デバイスのセパレータ接合方法は、シート状の溶融材と、溶融材に積層し溶融材よりも溶融温度が高い耐熱材と、を含むセパレータを用いる。このセパレータ接合方法では、電極を挟持する耐熱材同士を対面させた一対のセパレータを互いに接合する。セパレータ接合方法の接合工程では、超音波によって前記セパレータに加工を施す超音波加工部材を一対のセパレータのうちの一のセパレータの溶融材に当接させ、積層方向と交差した方向に超音波を印加して溶融材を溶融させつつ、超音波加工部材を積層方向に沿って押圧した部分の耐熱材を、その押圧した領域から周囲の領域に移動させて疎にして、一対のセパレータの溶融材同士を接合する。 The separator joining method for an electric device according to the present invention that achieves the above object uses a separator including a sheet-like molten material and a heat-resistant material laminated on the molten material and having a higher melting temperature than the molten material. In this separator bonding method, a pair of separators in which the heat-resistant materials sandwiching the electrodes face each other are bonded to each other. In the joining process of the separator joining method, an ultrasonic processing member for processing the separator by ultrasonic waves is brought into contact with a molten material of one separator of a pair of separators, and ultrasonic waves are applied in a direction crossing the stacking direction. The molten material of the pair of separators is made sparse by moving the heat-resistant material of the portion pressed along the laminating direction from the pressed region to the surrounding region while melting the molten material Join.
 上記目的を達成する本発明に係る電気デバイスのセパレータ接合装置は、シート状の溶融材と、溶融材に積層し溶融材よりも溶融温度が高い耐熱材と、を含むセパレータを用いる。このセパレータ接合装置では、電極を挟持する耐熱材同士を対面させた一対のセパレータを互いに接合する。セパレータ接合装置は、超音波加工部材と押圧部材とを有している。超音波加工部材は、一対のセパレータのうちの一のセパレータの溶融材に当接し、積層方向と交差した方向に超音波を印加して加工を施す。押圧部材は、超音波加工部材を積層方向に沿って押圧する。 The separator joining apparatus for an electric device according to the present invention that achieves the above object uses a separator including a sheet-like molten material and a heat-resistant material that is laminated on the molten material and has a higher melting temperature than the molten material. In this separator bonding apparatus, a pair of separators in which the heat-resistant materials sandwiching the electrodes face each other are bonded to each other. The separator joining apparatus has an ultrasonic processing member and a pressing member. The ultrasonic processing member abuts on the molten material of one separator of the pair of separators and applies ultrasonic waves in a direction crossing the stacking direction to perform processing. The pressing member presses the ultrasonic processing member along the stacking direction.
 上記目的を達成する本発明に係る電気デバイスは、シート状の溶融材と、溶融材に積層し溶融材よりも溶融温度が高い耐熱材と、を含むセパレータを用いる。電気デバイスは、電極を挟持する耐熱材同士を対面させた一対のセパレータを互いに接合している。電気デバイスは、耐熱材を部分的に周囲の領域に移動させて疎にして一対のセパレータの溶融材同士を接合して形成した接合部を備えている。 The electrical device according to the present invention that achieves the above object uses a separator including a sheet-like molten material and a heat-resistant material laminated on the molten material and having a higher melting temperature than the molten material. In the electric device, a pair of separators in which the heat-resistant materials sandwiching the electrodes face each other are joined to each other. The electric device includes a joint portion formed by partially moving a heat-resistant material to a surrounding region to make it sparse and joining the melted materials of a pair of separators.
第1実施形態に係る電気デバイス(袋詰電極)を用いて構成したリチウムイオン二次電池を示す斜視図である。It is a perspective view which shows the lithium ion secondary battery comprised using the electric device (packed electrode) which concerns on 1st Embodiment. 図1のリチウムイオン二次電池を各構成部材に分解して示す分解斜視図である。It is a disassembled perspective view which decomposes | disassembles and shows the lithium ion secondary battery of FIG. 1 to each structural member. 図1の袋詰電極の両面に負極をそれぞれ積層した状態を示す斜視図である。It is a perspective view which shows the state which each laminated | stacked the negative electrode on both surfaces of the packaging electrode of FIG. 図3の構成を図3中に示す4-4線に沿って示す部分断面図である。FIG. 4 is a partial cross-sectional view showing the configuration of FIG. 3 along line 4-4 shown in FIG. 3; 第1実施形態に係る電気デバイスのセパレータ接合装置を示す斜視図である。It is a perspective view which shows the separator joining apparatus of the electrical device which concerns on 1st Embodiment. 図5のセパレータ保持部とセパレータ接合部とセパレータ搬送追随部と袋詰電極搬送部とを示す斜視図である。It is a perspective view which shows the separator holding | maintenance part of FIG. 5, a separator junction part, a separator conveyance follower, and a bagging electrode conveyance part. 図5のセパレータ接合部を示す斜視図である。It is a perspective view which shows the separator junction part of FIG. 図5のセパレータ接合部によって一対のセラミックセパレータを接合する直前の状態を模式的に示す部分断面図である。FIG. 6 is a partial cross-sectional view schematically showing a state immediately before a pair of ceramic separators are joined by the separator joining portion of FIG. 5. 図8の状態における一対のセラミックセパレータを搬送方向に沿った側面から示す写真である。It is a photograph which shows a pair of ceramic separator in the state of FIG. 8 from the side surface along a conveyance direction. 図5のセパレータ接合部によって一対のセラミックセパレータを接合した直後の状態を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the state immediately after joining a pair of ceramic separator by the separator junction part of FIG. 図10の状態における一対のセラミックセパレータを搬送方向に沿った側面から示す写真である。It is a photograph which shows a pair of ceramic separator in the state of FIG. 10 from the side surface along a conveyance direction. 図5のセパレータ接合部のホーンの様々な形態を示す斜視図である。It is a perspective view which shows the various forms of the horn of the separator junction part of FIG. 第1実施形態の変形例に係る電気デバイスのセパレータ接合装置において、セパレータ保持部とセパレータ接合部とセパレータ搬送追随部と袋詰電極搬送部とを示す斜視図である。It is a perspective view which shows a separator holding | maintenance part, a separator junction part, a separator conveyance follower, and a bagging electrode conveyance part in the separator joining apparatus of the electric device which concerns on the modification of 1st Embodiment. 図13のセパレータ保持部とセパレータ接合部の作動を示す断面図である。It is sectional drawing which shows the action | operation of the separator holding part and separator junction part of FIG. 第2実施形態に係る電気デバイスのセパレータ接合装置のセパレータ接合部を示す斜視図である。It is a perspective view which shows the separator junction part of the separator joining apparatus of the electric device which concerns on 2nd Embodiment. 図15のセパレータ接合部によって形成した袋詰電極を示す斜視図である。It is a perspective view which shows the bagging electrode formed by the separator junction part of FIG.
 以下、添付した図面を参照しながら、本発明に係る第1および第2実施形態について説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。図1~図16の全ての図において、X、Y、およびZで表す矢印を用いて、方位を示している。Xで表す矢印の方向は、セラミックセパレータ40や正極20等の搬送方向Xを示している。Yで表す矢印の方向は、セラミックセパレータ40や正極20等の搬送方向と交差した方向Yを示している。Zで表す矢印の方向は、セラミックセパレータ40や正極20等の積層方向Zを示している。 Hereinafter, first and second embodiments according to the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The sizes and ratios of the members in the drawings are exaggerated for convenience of explanation and may be different from the actual sizes and ratios. In all the drawings of FIGS. 1 to 16, arrows represented by X, Y, and Z are used to indicate the orientation. The direction of the arrow represented by X indicates the conveyance direction X of the ceramic separator 40, the positive electrode 20, and the like. The direction of the arrow represented by Y indicates the direction Y that intersects the transport direction of the ceramic separator 40, the positive electrode 20, and the like. The direction of the arrow represented by Z indicates the stacking direction Z of the ceramic separator 40, the positive electrode 20, and the like.
 (第1実施形態)
 セパレータ接合装置100によって接合して形成する電気デバイスは、図1~図4に示すように、例えばリチウムイオン二次電池10の袋詰電極11に相当する。リチウムイオン二次電池10は、充放電が行われる発電要素12を外装材50で封止して構成している。発電要素12は、正極20を一対のセラミックセパレータ40で挟持して接合した袋詰電極11と、負極30とを交互に積層して構成している。リチウムイオン二次電池10が振動したり衝撃を受けたりしても、一対のセラミックセパレータ40の両端に形成した接合部40hによって正極20の移動を抑制することによって、セラミックセパレータ40を介して隣り合う正極20と負極30との短絡を防止する。接合部40hは、セラミックス層42同士を対面させた状態で、ポリプロピレン層41同士を部分的に溶融させつつ、溶融するポリプロピレン層41に隣接するセラミックス層42を周囲の領域に移動させて疎にし、対面したポリプロピレン層41同士を溶着させて形成している。
(First embodiment)
The electrical device formed by joining with the separator joining apparatus 100 corresponds to, for example, the packaged electrode 11 of the lithium ion secondary battery 10 as shown in FIGS. The lithium ion secondary battery 10 is configured by sealing a power generation element 12 to be charged and discharged with an exterior material 50. The power generation element 12 is configured by alternately laminating the packed electrode 11 and the negative electrode 30 in which the positive electrode 20 is sandwiched and bonded by a pair of ceramic separators 40. Even if the lithium ion secondary battery 10 vibrates or receives an impact, it is adjacent to each other via the ceramic separator 40 by suppressing the movement of the positive electrode 20 by the joint portions 40h formed at both ends of the pair of ceramic separators 40. A short circuit between the positive electrode 20 and the negative electrode 30 is prevented. The joining portion 40h moves the ceramic layer 42 adjacent to the polypropylene layer 41 to be melted to the surrounding area and makes it sparse while partially melting the polypropylene layers 41 with the ceramic layers 42 facing each other. The polypropylene layers 41 facing each other are formed by welding.
 セパレータ接合装置100は、図5~図7等に示している。セパレータ接合装置100は、電気デバイス(リチウムイオン二次電池10の袋詰電極11)の接合において使用される。セパレータ接合装置100は、シート状の溶融材(ポリプロピレン層41に相当)と、ポリプロピレン層41に積層しポリプロピレン層41よりも溶融温度が高い溶融材(ポリプロピレン層41に相当)を含むセラミックセパレータ40同士を接合する。 The separator joining apparatus 100 is shown in FIGS. Separator joining apparatus 100 is used in joining an electric device (packed electrode 11 of lithium ion secondary battery 10). Separator joining apparatus 100 includes ceramic separators 40 each including a sheet-like molten material (corresponding to polypropylene layer 41) and a molten material (corresponding to polypropylene layer 41) laminated on polypropylene layer 41 and having a melting temperature higher than that of polypropylene layer 41. Join.
 セパレータ接合装置100は、電極(正極20または負極30)を搬送する電極搬送部110、正極20の一面に積層するセラミックセパレータ40を搬送する第1セパレータ搬送部120、および正極20の他面に積層するセラミックセパレータ40を搬送する第2セパレータ搬送部130を、含んでいる。また、セパレータ接合装置100は、正極20を挟持した一対のセラミックセパレータ40を保持するセパレータ保持部140、一対のセラミックセパレータ40を互いに接合するセパレータ接合部150、セラミックセパレータ40同士が接合されている間、袋詰電極搬送部170の搬送動作に追随するセパレータ搬送追随部160を、含んでいる。さらに、セパレータ接合装置100は、袋詰電極11を搬送する袋詰電極搬送部170、および各構成部材の作動をそれぞれ制御する制御部180を、含んでいる。 The separator bonding apparatus 100 includes an electrode transport unit 110 that transports an electrode (positive electrode 20 or negative electrode 30), a first separator transport unit 120 that transports a ceramic separator 40 stacked on one surface of the positive electrode 20, and a stack on the other surface of the positive electrode 20. The 2nd separator conveyance part 130 which conveys the ceramic separator 40 to perform is included. The separator bonding apparatus 100 includes a separator holding unit 140 that holds a pair of ceramic separators 40 that sandwich the positive electrode 20, a separator bonding unit 150 that bonds the pair of ceramic separators 40 to each other, and the ceramic separators 40 being bonded together. In addition, a separator transport follower 160 that follows the transport operation of the packaged electrode transport unit 170 is included. Furthermore, the separator joining apparatus 100 includes a packaged electrode transport unit 170 that transports the packaged electrode 11 and a control unit 180 that controls the operation of each component.
 先ず、セパレータ接合装置100によって接合して形成する袋詰電極11を、その袋詰電極11を包含するリチウムイオン二次電池10の構成に基づき、図1~図4を参照しながら説明する。 First, the packaged electrode 11 formed by bonding by the separator bonding apparatus 100 will be described with reference to FIGS. 1 to 4 based on the configuration of the lithium ion secondary battery 10 including the packaged electrode 11.
 図1は、電気デバイス(袋詰電極11)を用いて構成したリチウムイオン二次電池10を示す斜視図である。図2は、図1のリチウムイオン二次電池10を各構成部材に分解して示す分解斜視図である。図3は、図1の袋詰電極11の両面に負極30をそれぞれ積層した状態を示す斜視図である。図4は、図3の構成を図3中に示す4-4線に沿って示す部分断面図である。 FIG. 1 is a perspective view showing a lithium ion secondary battery 10 configured using an electric device (packed electrode 11). FIG. 2 is an exploded perspective view showing the lithium ion secondary battery 10 of FIG. FIG. 3 is a perspective view showing a state in which the negative electrodes 30 are laminated on both surfaces of the packaged electrode 11 of FIG. FIG. 4 is a partial cross-sectional view showing the configuration of FIG. 3 along line 4-4 shown in FIG.
 正極20は、電極に相当し、導電体である正極集電体21の両面に正極活物質を結着して形成している。電力を取り出す正極電極端子21aは、正極集電体21の一端の一部から延在して形成している。複数積層された正極20の正極電極端子21aは、溶接または接着によって互いに固定している。 The positive electrode 20 corresponds to an electrode, and is formed by binding a positive electrode active material on both surfaces of a positive electrode current collector 21 which is a conductor. The positive electrode terminal 21 a for taking out electric power is formed to extend from a part of one end of the positive electrode current collector 21. The positive electrode terminals 21a of the stacked positive electrodes 20 are fixed to each other by welding or adhesion.
 正極20の正極集電体21の材料には、例えば、アルミニウム製エキスパンドメタル、アルミニウム製メッシュ、アルミニウム製パンチドメタルを用いている。正極20の正極活物質の材料には、種々の酸化物(LiMn2O4のようなリチウムマンガン酸化物、二酸化マンガン、LiNiO2のようなリチウムニッケル酸化物、LiCoO2のようなリチウムコバルト酸化物、リチウム含有ニッケルコバルト酸化物、またはリチウムを含む非晶質五酸化バナジウム)またはカルコゲン化合物(二硫化チタン、二硫化モリブテン)等を用いている。 The material of the positive electrode current collector 21 of the positive electrode 20 is, for example, aluminum expanded metal, aluminum mesh, or aluminum punched metal. The positive electrode active material of the positive electrode 20 includes various oxides (lithium manganese oxide such as LiMn 2 O 4, manganese dioxide, lithium nickel oxide such as LiNiO 2, lithium cobalt oxide such as LiCoO 2, and lithium-containing nickel cobalt. An oxide or amorphous vanadium pentoxide containing lithium) or a chalcogen compound (titanium disulfide, molybdenum disulfide) or the like is used.
 負極30は、正極20と極性が異なる電極に相当し、導電体である負極集電体31の両面に負極活物質32を結着して形成している。負極電極端子31aは、正極20に形成した正極電極端子21aと重ならないように、負極集電体31の一端の一部から延在して形成している。負極30の長手方向の長さは、正極20の長手方向の長さよりも長い。負極30の短手方向の長さは、正極20の短手方向の長さと同様である。複数積層された負極30の負極電極端子31aは、溶接または接着によって互いに固定している。 The negative electrode 30 corresponds to an electrode having a polarity different from that of the positive electrode 20, and is formed by binding a negative electrode active material 32 on both surfaces of a negative electrode current collector 31 which is a conductor. The negative electrode terminal 31 a extends from a part of one end of the negative electrode current collector 31 so as not to overlap with the positive electrode terminal 21 a formed on the positive electrode 20. The length of the negative electrode 30 in the longitudinal direction is longer than the length of the positive electrode 20 in the longitudinal direction. The length of the negative electrode 30 in the short direction is the same as the length of the positive electrode 20 in the short direction. The negative electrode terminals 31a of the plurality of negative electrodes 30 that are stacked are fixed to each other by welding or adhesion.
 負極30の負極集電体31の材料には、例えば、銅製エキスパンドメタル、銅製メッシュ、または銅製パンチドメタルを用いている。負極30の負極活物質32の材料には、リチウムイオンを吸蔵して放出する炭素材料を用いている。このような炭素材料には、例えば、天然黒鉛、人造黒鉛、カーボンブラック、活性炭、カーボンファイバー、コークス、または有機前駆体(フェノール樹脂、ポリアクリロニトリル、またはセルロース)を不活性雰囲気中で熱処理して合成した炭素を用いている。 As the material of the negative electrode current collector 31 of the negative electrode 30, for example, copper expanded metal, copper mesh, or copper punched metal is used. As the material of the negative electrode active material 32 of the negative electrode 30, a carbon material that absorbs and releases lithium ions is used. For such carbon materials, for example, natural graphite, artificial graphite, carbon black, activated carbon, carbon fiber, coke, or organic precursor (phenol resin, polyacrylonitrile, or cellulose) is heat-treated in an inert atmosphere and synthesized. Carbon is used.
 セラミックセパレータ40は、正極20と負極30の間に設けられ、その正極20と負極30を電気的に隔離している。セラミックセパレータ40は、正極20と負極30との間に電解液を保持して、イオンの伝導性を担保している。セラミックセパレータ40は、矩形状に形成している。セラミックセパレータ40の長手方向の長さは、負極電極端子31aの部分を除いた負極30の長手方向の長さよりも長い。 The ceramic separator 40 is provided between the positive electrode 20 and the negative electrode 30 and electrically isolates the positive electrode 20 and the negative electrode 30. The ceramic separator 40 holds the electrolytic solution between the positive electrode 20 and the negative electrode 30 to ensure ion conductivity. The ceramic separator 40 is formed in a rectangular shape. The length in the longitudinal direction of the ceramic separator 40 is longer than the length in the longitudinal direction of the negative electrode 30 excluding the portion of the negative electrode terminal 31a.
 セラミックセパレータ40は、図4に示すように、例えば、溶融材に相当するポリプロピレン層41に対して、耐熱材に相当するセラミックス層42を積層して形成している。セラミックス層42は、ポリプロピレン層41よりも溶融温度が高い。一対のセラミックセパレータ40は、正極20を挟持し、セラミックス層42同士を対面させて積層している。セラミックス層42は、正極20の正極活物質に当接している。 As shown in FIG. 4, the ceramic separator 40 is formed, for example, by laminating a ceramic layer 42 corresponding to a heat-resistant material on a polypropylene layer 41 corresponding to a molten material. The ceramic layer 42 has a higher melting temperature than the polypropylene layer 41. The pair of ceramic separators 40 sandwich the positive electrode 20 and laminate the ceramic layers 42 facing each other. The ceramic layer 42 is in contact with the positive electrode active material of the positive electrode 20.
 セラミックセパレータ40のポリプロピレン層41は、ポリプロピレンをシート状に形成している。ポリプロピレン層41には、非水溶媒に電解質を溶解することによって調製した非水電解液を含浸させている。非水電解液をポリプロピレン層41に保持するために、ポリマーを含有させている。セラミックス層42は、例えば、無機化合物を高温で成形したセラミックスをポリプロピレン層41に塗布して乾燥させることによって形成している。セラミックスは、シリカ、アルミナ、ジルコニウム酸化物、チタン酸化物等のセラミック粒子とバインダーの結合により形成された多孔質からなる。 The polypropylene layer 41 of the ceramic separator 40 is formed of polypropylene in a sheet shape. The polypropylene layer 41 is impregnated with a nonaqueous electrolytic solution prepared by dissolving an electrolyte in a nonaqueous solvent. In order to hold the non-aqueous electrolyte in the polypropylene layer 41, a polymer is contained. The ceramic layer 42 is formed by, for example, applying a ceramic obtained by molding an inorganic compound at a high temperature to the polypropylene layer 41 and drying it. The ceramic is made of a porous material formed by bonding a ceramic particle such as silica, alumina, zirconium oxide, titanium oxide or the like and a binder.
 一対のセラミックセパレータ40は、セパレータ接合装置100の搬送方向Xに沿った長手方向の両端にそれぞれ形成した複数の接合部40hによって、互いに接合している。接合部40hは、セラミックス層42同士を対面させた状態で、ポリプロピレン層41同士を部分的に溶融しつつ、ポリプロピレン層41に隣接するセラミックス層42を周囲の領域に移動させて疎にし、対面したポリプロピレン層41同士を溶着することによって、形成している。 The pair of ceramic separators 40 are bonded to each other by a plurality of bonding portions 40 h formed at both ends in the longitudinal direction along the conveying direction X of the separator bonding apparatus 100. While the ceramic layers 42 are facing each other, the joint portion 40h is partially melted with the polypropylene layers 41 while the ceramic layers 42 adjacent to the polypropylene layer 41 are moved to the surrounding area to make them sparse and face each other. It is formed by welding the polypropylene layers 41 together.
 一対のセラミックセパレータ40によって、正極20の両面を挟持するように積層して袋詰めし、袋詰電極11を構成している。接合部40hは、一対のセラミックセパレータ40の長手方向に沿った両側において、たとえば両端部と中央部に合計3つずつ形成している。リチウムイオン二次電池10が振動したり衝撃を受けたりしても、セラミックセパレータ40の長手方向の両端に形成した接合部40hによって、袋詰電極11内における正極20の移動を抑制することができる。すなわち、セラミックセパレータ40を介して、隣り合う正極20と負極30の短絡を防止できる。したがって、リチウムイオン二次電池10は、所期の電気的特性を維持することができる。 A pair of ceramic separators 40 are stacked so as to sandwich both surfaces of the positive electrode 20 and packed into a bag, thereby forming a packaged electrode 11. For example, three joint portions 40h are formed on both sides along the longitudinal direction of the pair of ceramic separators 40, for example, at both end portions and the central portion. Even if the lithium ion secondary battery 10 vibrates or receives an impact, the movement of the positive electrode 20 in the packaged electrode 11 can be suppressed by the joint portions 40 h formed at both ends in the longitudinal direction of the ceramic separator 40. . That is, it is possible to prevent a short circuit between the adjacent positive electrode 20 and negative electrode 30 through the ceramic separator 40. Therefore, the lithium ion secondary battery 10 can maintain the desired electrical characteristics.
 外装材50は、例えば、内部に金属板を備えたラミネートシート51および52から構成し、発電要素12を両側から被覆して封止している。ラミネートシート51および52で発電要素12を封止する際に、そのラミネートシート51および52の周囲の一部を開放して、その他の周囲を熱溶着等によって封止する。ラミネートシート51および52の開放している部分から電解液を注入し、セラミックセパレータ40等に電荷液を含浸させる。ラミネートシート51および52の開放部から内部を減圧することによって空気を抜きつつ、その開放部も熱融着して完全に密封する。 The exterior material 50 is composed of, for example, laminate sheets 51 and 52 each having a metal plate therein, and covers and seals the power generation element 12 from both sides. When the power generating element 12 is sealed with the laminate sheets 51 and 52, a part of the periphery of the laminate sheets 51 and 52 is opened, and the other periphery is sealed by heat welding or the like. An electrolyte solution is injected from the open portions of the laminate sheets 51 and 52, and the ceramic separator 40 and the like are impregnated with the charge solution. While decompressing the inside from the open portions of the laminate sheets 51 and 52, the open portions are also heat-sealed and completely sealed.
 外装材50のラミネートシート51および52は、例えば、それぞれ3種類の材料を積層して3層構造を形成している。1層目は、熱融着性樹脂に相当し、例えばポリエチレン(PE)、アイオノマー、またはエチレンビニルアセテート(EVA)を用いている。1層目の材料は、負極30に隣接させる。2層目は、金属を箔状に形成したものに相当し、例えばAl箔またはNi箔を用いている。3層目は、樹脂性のフィルムに相当し、例えば剛性を有するポリエチレンテレフタレート(PET)またはナイロンを用いている。 For example, the laminate sheets 51 and 52 of the exterior material 50 are each formed by laminating three kinds of materials to form a three-layer structure. The first layer corresponds to a heat-fusible resin and uses, for example, polyethylene (PE), ionomer, or ethylene vinyl acetate (EVA). The first layer material is adjacent to the negative electrode 30. The second layer corresponds to a metal foil formed, for example, an Al foil or Ni foil. The third layer corresponds to a resinous film and uses, for example, rigid polyethylene terephthalate (PET) or nylon.
 次に、電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合方法を具現化したセパレータ接合装置100の各構成部材(電極搬送部110、第1セパレータ搬送部120、第2セパレータ搬送部130、セパレータ保持部140、セパレータ接合部150、セパレータ搬送追随部160、袋詰電極搬送部170、および制御部180)について、図5~図12を参照しながら順に説明する。 Next, each component of the separator bonding apparatus 100 (the electrode conveyance unit 110, the first separator conveyance unit 120, the first number) that embodies the separator bonding method of the electrical device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10). The two-separator transport unit 130, separator holding unit 140, separator joining unit 150, separator transport follower 160, bagging electrode transport unit 170, and control unit 180) will be described in order with reference to FIGS.
 図5は、電気デバイス(袋詰電極11)のセパレータ接合装置100を示す斜視図である。図6は、図5のセパレータ保持部140とセパレータ接合部150とセパレータ搬送追随部160と袋詰電極搬送部170とを示す斜視図である。図7は、図5のセパレータ接合部150を示す斜視図である。図8は、図5のセパレータ接合部150によって一対のセラミックセパレータ40を接合する直前の状態を模式的に示す部分断面図である。図9は、図8の状態における一対のセラミックセパレータ40を搬送方向Zに沿った側面から示す写真である。図10は、図5のセパレータ接合部150によって一対のセラミックセパレータ40を接合した直後の状態を模式的に示す部分断面図である。図11は、図10の状態における一対のセラミックセパレータ40を搬送方向Zに沿った側面から示す写真である。図12は、図5のセパレータ接合部150のホーンの様々な形態を示す斜視図である。 FIG. 5 is a perspective view showing the separator joining apparatus 100 of the electric device (packed electrode 11). FIG. 6 is a perspective view showing the separator holding unit 140, the separator joint 150, the separator conveyance follower 160, and the packaged electrode conveyance unit 170 of FIG. FIG. 7 is a perspective view showing the separator joint 150 of FIG. FIG. 8 is a partial cross-sectional view schematically showing a state immediately before the pair of ceramic separators 40 are joined by the separator joint 150 of FIG. FIG. 9 is a photograph showing the pair of ceramic separators 40 in the state of FIG. FIG. 10 is a partial cross-sectional view schematically showing a state immediately after the pair of ceramic separators 40 are joined by the separator joint 150 of FIG. FIG. 11 is a photograph showing the pair of ceramic separators 40 in the state of FIG. FIG. 12 is a perspective view showing various forms of the horn of the separator joint 150 of FIG.
 電極搬送部110は、図5に示し、長尺状の正極用基材20Aから正極20を切り出して搬送する。 The electrode conveyance part 110 cuts out and conveys the positive electrode 20 from the elongate positive electrode base material 20A shown in FIG.
 電極搬送部110の電極供給ローラ111は、円柱形状からなり、長尺状の正極用基材20Aを巻き付けて保持している。搬送ローラ112は、細長い円柱形状からなり、電極供給ローラ111に巻き付けられた正極用基材20Aに対して一定の張力をかけた状態で搬送ベルト113に導く。搬送ベルト113は、外周面に吸引口を複数設けた無端状のベルトからなり、正極用基材20Aを吸引した状態で搬送方向Xに沿って搬送する。搬送ベルト113は、搬送方向Xと交差した方向Yに沿った幅が、正極用基材20Aの幅よりも長い。回転ローラ114は、搬送方向Xと交差した方向Yに沿って、搬送ベルト113の内周面に複数配設し、搬送ベルト113を回転させる。複数の回転ローラ114のうち、一つが動力を設けた駆動ローラであり、その他が駆動ローラに従動する従動ローラである。搬送ローラ112および電極供給ローラ111は、搬送ベルト113の回転に従動して回転する。 The electrode supply roller 111 of the electrode transport unit 110 has a cylindrical shape, and is wound and held with a long positive electrode base material 20A. The conveyance roller 112 has an elongated cylindrical shape, and is guided to the conveyance belt 113 in a state where a certain tension is applied to the positive electrode base material 20 </ b> A wound around the electrode supply roller 111. The conveyor belt 113 is an endless belt provided with a plurality of suction ports on the outer peripheral surface, and conveys the positive electrode base material 20A along the conveyance direction X in a sucked state. The width of the transport belt 113 along the direction Y intersecting the transport direction X is longer than the width of the positive electrode base material 20A. A plurality of rotation rollers 114 are arranged on the inner peripheral surface of the conveyance belt 113 along the direction Y intersecting the conveyance direction X to rotate the conveyance belt 113. Among the plurality of rotating rollers 114, one is a driving roller provided with power, and the other is a driven roller driven by the driving roller. The transport roller 112 and the electrode supply roller 111 rotate following the rotation of the transport belt 113.
 電極搬送部110の切断刃115および116は、搬送方向Xと交差した方向Yに沿って隣り合うように配設し、正極用基材20Aを所定の形状に切断して正極を成形する。切断刃115は、先端に直線状の鋭利な刃を設け、正極用基材20Aの一端を方向Yに沿って直線状に切断する。切断刃116は、先端に一部を屈折させ段違いに形成した鋭利な刃を設け、一端を切断された直後の正極用基材20Aの他端を、正極電極端子21aの形状に対応して切断する。受け台117は、正極用基材20Aを切断する切断刃115および切断刃116を受ける。受け台117は、搬送する正極用基材20Aを介して、切断刃115および切断刃116と対向して配設している。電極搬送部110は、正極用基材20Aから切り出した正極20を、第1セパレータ搬送部120と第2セパレータ搬送部130との間を通過するように搬出する。 The cutting blades 115 and 116 of the electrode transport unit 110 are arranged so as to be adjacent to each other along a direction Y intersecting the transport direction X, and the positive electrode base 20A is cut into a predetermined shape to form a positive electrode. The cutting blade 115 is provided with a straight and sharp blade at the tip, and cuts one end of the positive electrode base material 20A along the direction Y in a straight line. The cutting blade 116 is provided with a sharp blade that is partially refracted at the tip, and cuts the other end of the positive electrode base material 20A immediately after one end is cut according to the shape of the positive electrode terminal 21a. To do. The cradle 117 receives the cutting blade 115 and the cutting blade 116 for cutting the positive electrode base material 20A. The cradle 117 is disposed to face the cutting blade 115 and the cutting blade 116 via the positive electrode base material 20A to be conveyed. The electrode transport unit 110 carries out the positive electrode 20 cut out from the positive electrode base material 20 </ b> A so as to pass between the first separator transport unit 120 and the second separator transport unit 130.
 第1セパレータ搬送部120は、図5に示し、セラミックセパレータ用基材40Aから、正極20の一面(積層方向Zに沿った図5中に示す上方)に積層するためのセラミックセパレータ40を切り出して搬送する。 The first separator transport unit 120 cuts out the ceramic separator 40 for stacking on one surface of the positive electrode 20 (upward in FIG. 5 along the stacking direction Z) from the ceramic separator substrate 40A shown in FIG. Transport.
 第1セパレータ搬送部120は、電極搬送部110よりも搬送方向Xの下流側であって、積層方向Zに沿った図5中に示す上方に配設している。第1セパレータ搬送部120の第1セパレータ供給ローラ121は、円柱形状からなり、長尺状のセラミックセパレータ用基材40Aを巻き付けて保持している。対向して配設した第1加圧ローラ122と第1ニップローラ123は、それぞれ細長い円柱形状からなり、第1セパレータ供給ローラ121に巻き付けられたセラミックセパレータ用基材40Aに対して一定の張力をかけた状態で第1搬送ドラム124に導く。第1搬送ドラム124は、円柱形状からなり、その外周面に吸引口を複数設けている。第1搬送ドラム124は、搬送方向Xと交差した方向Yに沿った幅を、セラミックセパレータ用基材40Aの幅よりも短くしている。すなわち、セラミックセパレータ用基材40Aの両端は、第1搬送ドラム124から方向Yに対して外方に突出している。このようにして、第1搬送ドラム124は、セパレータ保持部140およびセパレータ接合部150との干渉を回避している。 The first separator transport unit 120 is disposed on the downstream side in the transport direction X from the electrode transport unit 110, and is disposed above the stacking direction Z in FIG. The 1st separator supply roller 121 of the 1st separator conveyance part 120 consists of cylindrical shapes, and winds and hold | maintains the elongate ceramic separator base material 40A. The first pressure roller 122 and the first nip roller 123 that are arranged to face each other have an elongated cylindrical shape, and apply a certain tension to the ceramic separator substrate 40A wound around the first separator supply roller 121. In this state, it is guided to the first transport drum 124. The first transport drum 124 has a cylindrical shape, and a plurality of suction ports are provided on the outer peripheral surface thereof. The width of the first transport drum 124 along the direction Y intersecting the transport direction X is shorter than the width of the ceramic separator substrate 40A. That is, both ends of the ceramic separator substrate 40A protrude outward from the first transport drum 124 in the direction Y. In this way, the first transport drum 124 avoids interference with the separator holding part 140 and the separator joint part 150.
 第1セパレータ搬送部120の第1搬送ドラム124を回転させると、第1加圧ローラ122と第1ニップローラ123に加えて第1セパレータ供給ローラ121が従動して回転する。第1切断刃125は、先端に直線状の鋭利な刃を設け、搬送方向Xと交差した方向Yに沿って配設し、第1搬送ドラム124によって吸引されている長尺状のセラミックセパレータ用基材40Aを一定の幅で切断する。第1搬送ドラム124は、長方形状に切断されたセラミックセパレータ40を、電極搬送部110から搬出された正極20の一面の側に近接させつつ積層する。セラミックセパレータ40は、そのセラミックス層42の側を、正極20の一面に対向させている。 When the first transport drum 124 of the first separator transport unit 120 is rotated, the first separator supply roller 121 is driven and rotated in addition to the first pressure roller 122 and the first nip roller 123. The first cutting blade 125 is provided with a straight and sharp blade at the tip, is disposed along a direction Y intersecting the transport direction X, and is used for a long ceramic separator sucked by the first transport drum 124 The base material 40A is cut with a certain width. The first transport drum 124 is laminated with the ceramic separator 40 cut into a rectangular shape being brought close to one surface of the positive electrode 20 carried out from the electrode transport unit 110. The ceramic separator 40 has the ceramic layer 42 facing the one surface of the positive electrode 20.
 第2セパレータ搬送部130は、図5に示し、セラミックセパレータ用基材40Aから、正極20の一面に対向した他面(積層方向Zに沿った図5中に示す下方)に積層するためのセパレータ40を切り出して搬送する。 The second separator conveyance unit 130 is a separator for stacking from the ceramic separator base material 40A on the other surface facing the one surface of the positive electrode 20 (downward in FIG. 5 along the stacking direction Z) as shown in FIG. 40 is cut out and transported.
 第2セパレータ搬送部130は、電極搬送部110よりも搬送方向Xの下流側であって、積層方向Zに沿った図5中に示す下方に配設している。第2セパレータ搬送部130は、第1セパレータ搬送部120と積層方向Zに沿って対向して配設している。第2セパレータ搬送部130の第2セパレータ供給ローラ131は、円柱形状からなり、長尺状のセラミックセパレータ用基材40Aを巻き付けて保持している。対向して配設した第2加圧ローラ132と第2ニップローラ133は、それぞれ細長い円柱形状からなり、第2セパレータ供給ローラ131に巻き付けられたセラミックセパレータ用基材40Aに対して一定の張力をかけた状態で第2搬送ドラム134に導く。第2搬送ドラム134は、円柱形状からなり、その外周面に吸引口を複数設けている。第2搬送ドラム134は、第1搬送ドラム124と同様に、搬送方向Xと交差した方向Yに沿った幅を、セラミックセパレータ用基材40Aの幅よりも短くすることによって、セパレータ保持部140およびセパレータ接合部150との干渉を回避している。 The second separator transport unit 130 is disposed downstream of the electrode transport unit 110 in the transport direction X and below the stacking direction Z in FIG. The second separator transport unit 130 is disposed to face the first separator transport unit 120 along the stacking direction Z. The second separator supply roller 131 of the second separator transport unit 130 has a cylindrical shape, and holds the long ceramic separator base material 40A wound around it. The second pressure roller 132 and the second nip roller 133 that are arranged to face each other have an elongated cylindrical shape, and apply a certain tension to the ceramic separator substrate 40A wound around the second separator supply roller 131. In this state, it is guided to the second transport drum 134. The second transport drum 134 has a cylindrical shape, and a plurality of suction ports are provided on the outer peripheral surface thereof. Similarly to the first transport drum 124, the second transport drum 134 has a width along the direction Y intersecting the transport direction X shorter than the width of the ceramic separator substrate 40A. Interference with the separator joint 150 is avoided.
 第2セパレータ搬送部130の第2搬送ドラム134を回転させると、第2加圧ローラ132と第2ニップローラ133に加えて第2セパレータ供給ローラ131が従動して回転する。第2切断刃135は、先端に直線状の鋭利な刃を設け、搬送方向Xと交差した方向Yに沿って配設し、第2搬送ドラム134によって吸引されている長尺状のセラミックセパレータ40を一定の幅で切断する。第2搬送ドラム134は、長方形状に切断されたセラミックセパレータ用基材40Aを、電極搬送部110から搬出された正極20の他面の側に近接させつつ積層する。セラミックセパレータ40は、そのセラミックス層42の側を、正極20の他面に対向させている。 When the second transport drum 134 of the second separator transport unit 130 is rotated, the second separator supply roller 131 is driven and rotated in addition to the second pressure roller 132 and the second nip roller 133. The second cutting blade 135 is provided with a linear sharp blade at the tip, is disposed along the direction Y intersecting the transport direction X, and is a long ceramic separator 40 sucked by the second transport drum 134. Is cut to a certain width. The second transport drum 134 is laminated while bringing the ceramic separator substrate 40A cut into a rectangular shape close to the other surface side of the positive electrode 20 carried out from the electrode transport unit 110. The ceramic separator 40 has the ceramic layer 42 facing the other surface of the positive electrode 20.
 第1セパレータ搬送部120と第2セパレータ搬送部130は、第1搬送ドラム124と第2搬送ドラム134との隙間の部分において、一対のセラミックセパレータ40によって正極20を挟持させるように積層しつつ、搬送方向Xに沿って搬送する。その搬送方向Xに沿った下流側の両端には、それぞれセパレータ保持部140およびセパレータ接合部150を配設している。 The first separator transport unit 120 and the second separator transport unit 130 are stacked so that the positive electrode 20 is sandwiched between the pair of ceramic separators 40 in the gap portion between the first transport drum 124 and the second transport drum 134. Transport along the transport direction X. Separator holding portions 140 and separator joint portions 150 are disposed at both ends on the downstream side along the transport direction X, respectively.
 セパレータ保持部140は、図5および図6に示し、正極20を挟持して積層した一対のセラミックセパレータ40を保持する。 The separator holding unit 140 holds a pair of ceramic separators 40 shown in FIGS. 5 and 6 and sandwiched and stacked with the positive electrode 20 interposed therebetween.
 セパレータ保持部140は、電極搬送部110と搬送方向Xに沿って隣り合い、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ保持部140は、袋詰電極搬送部170の搬送方向Xに沿った両端に一組ずつ配設している。セパレータ保持部140の保持プレート141は、長尺の板状に形成している。保持プレート141は、セラミックセパレータ40の積層方向Zよりも図6中に示す下方であって、セラミックセパレータ40の搬送方向Xに沿った端部に並行して配設している。保持プレート141は、一対のセラミックセパレータ40を積層方向Zの図6中に示す下方から保持することによって、セパレータ接合部150によるセラミックセパレータ40同士の接合を補助する。保持プレート141は、セパレータ接合部150のホーン151およびアンビル154との干渉を回避するために、矩形状の穴を備えている。 The separator holding unit 140 is adjacent to the electrode transport unit 110 along the transport direction X, and is disposed downstream of the first separator transport unit 120 and the second separator transport unit 130 in the transport direction X. One set of separator holding portions 140 is disposed at both ends along the conveyance direction X of the packaged electrode conveyance portion 170. The holding plate 141 of the separator holding unit 140 is formed in a long plate shape. The holding plate 141 is disposed below the stacking direction Z of the ceramic separator 40 in FIG. 6 and in parallel with the end portion along the transport direction X of the ceramic separator 40. The holding plate 141 assists the bonding of the ceramic separators 40 by the separator bonding portion 150 by holding the pair of ceramic separators 40 from below in the stacking direction Z in FIG. The holding plate 141 has a rectangular hole in order to avoid interference with the horn 151 and the anvil 154 of the separator joint 150.
 セパレータ保持部140の保持プレート141は、セパレータ接合部150の駆動支柱158によって、積層方向Zに沿って上昇および降下する。保持プレート141は、ホーン151とアンビル154が一対のセラミックセパレータ40を挟持するように当接している間、一対のセラミックセパレータ40を積層方向Zの図6中に示す下方から保持する。一方、保持プレート141は、ホーン151とアンビル154が一対のセラミックセパレータ40から離間している間、積層方向Zの図6中に示す下方に退避している。 The holding plate 141 of the separator holding part 140 is raised and lowered along the stacking direction Z by the driving support column 158 of the separator joint part 150. The holding plate 141 holds the pair of ceramic separators 40 from below in the stacking direction Z in FIG. 6 while the horn 151 and the anvil 154 are in contact with each other so as to sandwich the pair of ceramic separators 40. On the other hand, the holding plate 141 is retracted downward in the stacking direction Z shown in FIG. 6 while the horn 151 and the anvil 154 are separated from the pair of ceramic separators 40.
 セパレータ接合部150は、図5~図12に関連し、正極20を挟持するように積層した超音波によって摩擦し、その摩擦に伴う摩擦熱によってセラミックセパレータ40同士を溶融して接合する。 5 to 12, the separator joining portion 150 is rubbed by ultrasonic waves laminated so as to sandwich the positive electrode 20, and the ceramic separators 40 are melted and joined by frictional heat accompanying the friction.
 先ず、セパレータ接合部150の構成について、図5~図7を参照しながら説明する。 First, the configuration of the separator joint 150 will be described with reference to FIGS.
 セパレータ接合部150は、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ接合部150は、搬送方向Xに沿った両端に一組ずつ配設している。セパレータ接合部150は、セパレータ保持部140に近接している。 The separator joint 150 is disposed on the downstream side in the transport direction X with respect to the first separator transport unit 120 and the second separator transport unit 130. One set of separator joints 150 is disposed at both ends along the transport direction X. Separator joining portion 150 is close to separator holding portion 140.
 セパレータ接合部150のホーン151は、超音波をセラミックセパレータ40に印加する。ホーン151は、金属からなり、長方形状の本体部151aとその本体部151aの隅から突出して形成した突起部151bとを一体に形成している。ホーン151は、図7中のP1の矢印で表すように押圧部材155によって押圧され、突起部151bがセラミックセパレータ40のポリプロピレン層41に当接する。ホーン151は、図7中のS1の波線で表すように、積層方向Zと交差したセラミックス層42同士の接合面に沿って超音波を印加して振動させることによって摩擦熱を発生させる。 The horn 151 of the separator joint 150 applies ultrasonic waves to the ceramic separator 40. The horn 151 is made of metal, and integrally includes a rectangular main body 151a and a protrusion 151b that protrudes from a corner of the main body 151a. The horn 151 is pressed by the pressing member 155 as indicated by the arrow P1 in FIG. 7, and the protruding portion 151 b contacts the polypropylene layer 41 of the ceramic separator 40. The horn 151 generates frictional heat by applying ultrasonic waves along the bonding surfaces of the ceramic layers 42 intersecting with the stacking direction Z and oscillating as represented by the wavy line S1 in FIG.
 セパレータ接合部150のブースタ152は、ホーン151と振動子153を締結しつつ、超音波を増幅させる。ブースタ152は、金属からなり、円柱形状に形成している。振動子153は、外部から供給された電力によって、超音波の周波数に相当する振動を発生させる。振動子153は、その一端をブースタ152に締結し、一端に対向する他端に電源ケーブルを接続する。アンビル154は、当接部材に相当し、ホーン151から導出される超音波振動を受け止めつつ、ホーン151を付勢する。アンビル154は、金属からなり、長方形状の本体部154aとその本体部154aの一端から突出して形成した突起部154bを一体に形成している。アンビル154の突起部154bは、一対のセラミックセパレータ40を介して、ホーン151の突起部151bと対向している。アンビル154は、図7中のP2の矢印で表すように付勢部材156によって押圧され、ホーン151を付勢する。 The booster 152 of the separator joint 150 amplifies the ultrasonic wave while fastening the horn 151 and the vibrator 153. The booster 152 is made of metal and has a cylindrical shape. The vibrator 153 generates vibration corresponding to the frequency of the ultrasonic wave by using electric power supplied from the outside. The vibrator 153 has one end fastened to the booster 152 and a power cable connected to the other end facing the one end. The anvil 154 corresponds to a contact member, and biases the horn 151 while receiving ultrasonic vibration derived from the horn 151. The anvil 154 is made of metal, and integrally includes a rectangular main body 154a and a protrusion 154b formed to protrude from one end of the main body 154a. The protruding portion 154b of the anvil 154 faces the protruding portion 151b of the horn 151 with the pair of ceramic separators 40 interposed therebetween. The anvil 154 is pressed by the urging member 156 to urge the horn 151 as indicated by the arrow P2 in FIG.
 セパレータ接合部150の押圧部材155は、ホーン151を積層方向Zに沿って図7中に示す下方に押圧する。押圧部材155は、その一端を環状に形成し、ホーン151と締結したブースタ152を挿通している。押圧部材155は、その側部を駆動支柱158に対して積層方向Zに沿って移動自在に連結している。付勢部材156は、アンビル154を積層方向Zに沿って図7中に示す上方に押圧する。付勢部材156は、板状に形成し、その端部にアンビル154を接合している。付勢部材156は、駆動支柱158に対して積層方向Zに沿って移動自在に連結している。 The pressing member 155 of the separator joint 150 presses the horn 151 along the stacking direction Z in the downward direction shown in FIG. One end of the pressing member 155 is formed in an annular shape, and a booster 152 fastened to the horn 151 is inserted therethrough. The side of the pressing member 155 is movably connected to the drive column 158 along the stacking direction Z. The urging member 156 presses the anvil 154 upward along the stacking direction Z shown in FIG. The urging member 156 is formed in a plate shape, and an anvil 154 is joined to the end thereof. The urging member 156 is connected to the drive column 158 so as to be movable along the stacking direction Z.
 セパレータ接合部150の駆動ステージ157は、駆動支柱158を介し、押圧部材155および付勢部材156を積層方向Zに沿って移動させる。駆動ステージ157で発生させた駆動力は、駆動支柱158によって積層方向Zに沿った駆動力に変換して用いている。 The driving stage 157 of the separator joint 150 moves the pressing member 155 and the urging member 156 along the stacking direction Z via the driving column 158. The driving force generated by the driving stage 157 is converted into a driving force along the stacking direction Z by the driving column 158 and used.
 セパレータ接合部150において、ホーン151とブースタ152と振動子153と押圧部材155は、セパレータ保持部140に対して積層方向Zの図7中に示す上方に配設し、搬送方向Xに沿って長尺状に構成している。アンビル154と付勢部材156は、セパレータ保持部140に対して積層方向Zの図7中に示す下方に配設し、搬送方向Xに沿って長尺状に構成している。駆動ステージ157は、アンビル154を載置した付勢部材156の積層方向Zの図中7の直下に配設し、搬送方向Xに沿って配設している。すなわち、セパレータ接合部150の各構成材は、搬送方向Xに沿って長尺状に配設している。 In the separator joining portion 150, the horn 151, the booster 152, the vibrator 153, and the pressing member 155 are disposed above the separator holding portion 140 in the stacking direction Z in FIG. It is configured in a scale. The anvil 154 and the urging member 156 are disposed below the separator holding portion 140 in the stacking direction Z in FIG. 7 and are formed in a long shape along the transport direction X. The drive stage 157 is disposed directly below the reference numeral 7 in the drawing direction Z of the biasing member 156 on which the anvil 154 is placed, and is disposed along the transport direction X. That is, the constituent members of the separator joint 150 are arranged in a long shape along the transport direction X.
 次に、セパレータ接合部150の作用について、図8~図11を参照しながら説明する。 Next, the operation of the separator joint 150 will be described with reference to FIGS.
 セパレータ接合部150によって一対のセラミックセパレータ40を接合する直前の状態を図8および図9に示す。ポリプロピレン層41とセラミックス層42を積層して形成したセラミックセパレータ40は、図9に示すようにセラミックス層42同士を対面させている。 8 and 9 show a state immediately before the pair of ceramic separators 40 are joined by the separator joining portion 150. The ceramic separator 40 formed by laminating the polypropylene layer 41 and the ceramic layer 42 has the ceramic layers 42 facing each other as shown in FIG.
 セパレータ接合部150によって一対のセラミックセパレータ40を接合した直後の状態を図10および図11に示す。ホーン151は、一対のセラミックセパレータ40のうちの一のセラミックセパレータ40のポリプロピレン層41に当接し、積層方向Zと交差したセラミックス層42同士の接合面に沿って図10中の波線S1で表すように超音波を印加した。波線S1の方向は、積層方向Zと交差した搬送方向Xに相当する。同時に、押圧部材155は、図10中の矢印P1で表すように、ホーン151をセラミックセパレータ40のポリプロピレン層41に向かって押圧した。また、付勢部材156は、図10中の矢印P2で表すように、アンビル154をホーン151に向かって押圧した。このように作用させることによって、一対のセラミックセパレータ40は、図11に示すようにポリプロピレン層41が摩擦熱によって溶融し、セラミックス層42が接合部40hから周囲の領域に移動して疎になったことから、対面したポリプロピレン層41同士を接合させることができた。 10 and 11 show a state immediately after the pair of ceramic separators 40 are joined by the separator joining portion 150. The horn 151 is in contact with the polypropylene layer 41 of one ceramic separator 40 of the pair of ceramic separators 40 and is represented by a wavy line S1 in FIG. 10 along the bonding surface between the ceramic layers 42 intersecting the stacking direction Z. Ultrasonic waves were applied to the. The direction of the wavy line S1 corresponds to the transport direction X that intersects the stacking direction Z. At the same time, the pressing member 155 pressed the horn 151 toward the polypropylene layer 41 of the ceramic separator 40 as represented by the arrow P1 in FIG. Further, the urging member 156 pressed the anvil 154 toward the horn 151 as indicated by an arrow P2 in FIG. By acting in this manner, the pair of ceramic separators 40 became sparse as the polypropylene layer 41 was melted by frictional heat and the ceramic layer 42 moved from the joint 40h to the surrounding area as shown in FIG. Therefore, the facing polypropylene layers 41 could be joined.
 次に、セパレータ接合部150のホーンの様々な構成について、図12を参照しながら説明する。 Next, various configurations of the horn of the separator joint 150 will be described with reference to FIG.
 前述したホーン151を、図12(a)に示す。ホーン151は、振動子153によって超音波が印加されることから、アンビル154と対向した部分が劣化する。そこで、本体部151aの一側面の一つの隅に形成した突起部151b1が劣化すると、先ず、本体部151aを搬送方向Xに沿って180°回転させ、突起部151b1と対向した突起部151b2を使用する。次に、突起部151b2が劣化すると、袋詰電極搬送部170を介して方向Yに沿って対向して1つずつ配設したホーン151同士を方向Yに沿って平行移動するように交換し、その交換したホーン151の突起部151b3を使用する。さらに、突起部151b3が劣化すると、本体部151aを搬送方向Xに沿って180°回転させ、突起部151b3と対向した突起部151b4を使用する。このように、本体部151aの一端の4隅に対して突起部151bを1個ずつ形成すれば、ホーン151の寿命を4倍に延ばすことができる。 The horn 151 described above is shown in FIG. Since the ultrasonic wave is applied to the horn 151 by the vibrator 153, the portion facing the anvil 154 deteriorates. Therefore, when the protrusion 151b1 formed at one corner of one side surface of the main body 151a deteriorates, first, the main body 151a is rotated by 180 ° along the transport direction X, and the protrusion 151b2 facing the protrusion 151b1 is used. To do. Next, when the protruding portion 151b2 deteriorates, the horns 151 arranged one by one so as to face each other along the direction Y via the packaged electrode transport portion 170 are exchanged so as to move in parallel along the direction Y. The projection 151b3 of the replaced horn 151 is used. Further, when the protrusion 151b3 is deteriorated, the main body 151a is rotated by 180 ° along the transport direction X, and the protrusion 151b4 facing the protrusion 151b3 is used. Thus, if one protrusion 151b is formed at each of the four corners of one end of the main body 151a, the life of the horn 151 can be extended four times.
 ホーン151の改変例1に係るホーン191を、図12(b)に示す。ホーン191は、本体部191aの一側面の4隅に対して、互いに直交した状態で隣り合うように突起部191bを2個ずつ一体形成している。したがって、突起部191bが劣化する毎に、別の突起部191bを使用することによって、ホーン191の寿命を、ホーン151の寿命の2倍に延ばすことができる。 A horn 191 according to Modification 1 of the horn 151 is shown in FIG. The horn 191 is integrally formed with two protrusions 191b so as to be adjacent to each other at four corners on one side of the main body 191a so as to be orthogonal to each other. Therefore, the life of the horn 191 can be extended to twice the life of the horn 151 by using another protrusion 191b each time the protrusion 191b deteriorates.
 ホーン151の改変例2に係るホーン192を、図12(c)に示す。ホーン192は、本体部192aの一側面の4隅と一側面に対向する他側面の4隅に対して、それぞれ突起部192bを1個ずつ一体形成している。したがって、突起部192bが劣化する毎に、別の突起部192bを使用することによって、ホーン192の寿命をホーン191の寿命と同程度に延ばすことができる。ここで、アンビル154は、一対のセラミックセパレータ40を介して、ホーン151から導出された超音波振動を受けることから、ホーン151と同様に劣化する。したがって、アンビル154は、ホーン151と同様に、本体部154aに対して複数の突起部154bを一体形成しておく。 A horn 192 according to Modification 2 of the horn 151 is shown in FIG. In the horn 192, one protrusion 192b is formed integrally with each of the four corners on one side of the main body 192a and the four corners on the other side facing the one side. Therefore, the life of the horn 192 can be extended to the same extent as the life of the horn 191 by using another protrusion 192b each time the protrusion 192b deteriorates. Here, the anvil 154 receives ultrasonic vibration derived from the horn 151 via the pair of ceramic separators 40, and thus deteriorates in the same manner as the horn 151. Therefore, the anvil 154 has a plurality of protrusions 154b formed integrally with the main body 154a, as with the horn 151.
 セパレータ搬送追随部160は、図5および図6に示し、セパレータ接合部150がセラミックセパレータ40同士を接合している間、袋詰電極搬送部170の搬送に追随してセパレータ接合部150等を移動させる。 5 and 6, the separator conveyance follower 160 follows the conveyance of the packaged electrode conveyance unit 170 and moves the separator junction 150 and the like while the separator bonding unit 150 is bonding the ceramic separators 40 to each other. Let
 セパレータ搬送追随部160は、袋詰電極搬送部170の積層方向Zに沿った図5中に示す下方であって、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ搬送追随部160のX軸ステージ161は、セパレータ保持部140の全ての構成部材と、セパレータ接合部150の全ての構成部材を載置している。X軸ステージ161は、搬送方向Xの下流側と上流側との間を往復するように移動する。X軸ステージ161は、ホーン151およびアンビル154が一対のセラミックセパレータ40に当接して接合している間、搬送方向Xの下流側に沿って移動する。一方、X軸ステージ161は、ホーン151およびアンビル154が一対のセラミックセパレータ40の接合を完了し離間すると、搬送方向Xの上流側に沿って高速で移動して元の位置に戻る。 The separator conveyance follower 160 is a lower part in FIG. 5 along the stacking direction Z of the packaged electrode conveyance unit 170, and is downstream of the first separator conveyance unit 120 and the second separator conveyance unit 130 in the conveyance direction X. It is arranged on the side. The X-axis stage 161 of the separator conveyance follower 160 mounts all the constituent members of the separator holding portion 140 and all the constituent members of the separator joint portion 150. The X-axis stage 161 moves so as to reciprocate between the downstream side and the upstream side in the transport direction X. The X-axis stage 161 moves along the downstream side in the transport direction X while the horn 151 and the anvil 154 are in contact with and joined to the pair of ceramic separators 40. On the other hand, when the horn 151 and the anvil 154 complete the joining of the pair of ceramic separators 40 and are separated from each other, the X-axis stage 161 moves at a high speed along the upstream side in the transport direction X and returns to the original position.
 セパレータ搬送追随部160によって、セパレータ保持部140とセパレータ接合部150とを搬送方向Xに沿って移動させることから、一対のセラミックセパレータ40が接合されている間、第1セパレータ搬送部120および第2セパレータ搬送部130の動作を継続させることができる。すなわち、X軸ステージ161を用いることによって、第1セパレータ搬送部120の第1搬送ドラム124、および第2セパレータ搬送部130の第2搬送ドラム134の回転を止めることなく、一対のセラミックセパレータ40の接合を完了させることができる。 The separator transport follower 160 moves the separator holding unit 140 and the separator joint 150 along the transport direction X. Therefore, while the pair of ceramic separators 40 are joined, the first separator transport unit 120 and the second separator transport unit 120 are moved. The operation of the separator transport unit 130 can be continued. That is, by using the X-axis stage 161, without stopping the rotation of the first transport drum 124 of the first separator transport unit 120 and the second transport drum 134 of the second separator transport unit 130, the pair of ceramic separators 40 Joining can be completed.
 袋詰電極搬送部170は、図5および図6に示し、セパレータ接合部150によって形成される袋詰電極11を搬送する。 The packaged electrode transport unit 170 transports the packaged electrode 11 formed by the separator joint 150 as shown in FIGS. 5 and 6.
 袋詰電極搬送部170は、電極搬送部110と搬送方向Xに沿って隣り合い、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。袋詰電極搬送部170の搬送ベルト171は、外周面に吸引口を複数設けた無端状のベルトからなり、袋詰電極11を吸引した状態で搬送方向Xに沿って搬送する。搬送ベルト171は、搬送方向Xと交差した方向Yに沿った幅を、袋詰電極11の幅よりも短く形成している。すなわち、袋詰電極11の両端は、搬送ベルト171から方向Yに対して外方に突出している。このようにして、搬送ベルト171は、セパレータ保持部140およびセパレータ接合部150との干渉を回避している。 The packaged electrode transport unit 170 is adjacent to the electrode transport unit 110 along the transport direction X, and is disposed downstream of the first separator transport unit 120 and the second separator transport unit 130 in the transport direction X. The transport belt 171 of the packaged electrode transport unit 170 is an endless belt provided with a plurality of suction ports on the outer peripheral surface, and transports along the transport direction X while the packaged electrode 11 is sucked. The conveyance belt 171 has a width along the direction Y intersecting the conveyance direction X shorter than the width of the packaged electrode 11. That is, both ends of the bagging electrode 11 protrude outward from the conveyance belt 171 in the direction Y. In this way, the conveyor belt 171 avoids interference with the separator holding part 140 and the separator joining part 150.
 袋詰電極搬送部170の回転ローラ172は、搬送方向Xと交差した方向Yに沿って、搬送ベルト171の内周面に複数配設し、搬送ベルト171を回転させる。回転ローラ172は、セパレータ保持部140およびセパレータ接合部150との干渉を回避するため、搬送ベルト171から突出させていない。複数の回転ローラ172のうち、一つが動力を設けた駆動ローラであり、その他が駆動ローラに従動する従動ローラである。搬送ベルト171は、例えば、搬送方向Xに沿って3組配設している。 Rotating rollers 172 of the packaged electrode transport unit 170 are arranged on the inner peripheral surface of the transport belt 171 along the direction Y intersecting the transport direction X, and rotate the transport belt 171. The rotating roller 172 does not protrude from the conveyor belt 171 in order to avoid interference with the separator holding unit 140 and the separator joint 150. Among the plurality of rotating rollers 172, one is a driving roller provided with power, and the other is a driven roller driven by the driving roller. For example, three transport belts 171 are arranged along the transport direction X.
 袋詰電極搬送部170の吸着パッド173は、搬送ベルト171に載置された袋詰電極11よりも積層方向Zの図5中に示す上方において、袋詰電極11と対向するように位置している。吸着パッド173は、板状からなり、袋詰電極11と当接する面に吸引口を複数設けている。伸縮部材174は、吸着パッド173よりも積層方向Zの図5中に示す上方に位置している。伸縮部材174の一端は、吸着パッドを接合している。伸縮部材174は、エアーコンプレッサー等を動力として、積層方向Zに沿って伸縮自在である。 The suction pad 173 of the packaged electrode transport unit 170 is positioned to face the packaged electrode 11 above the packaged electrode 11 placed on the transport belt 171 in the stacking direction Z in FIG. Yes. The suction pad 173 has a plate shape, and a plurality of suction ports are provided on the surface that comes into contact with the bagging electrode 11. The elastic member 174 is located above the suction pad 173 in the stacking direction Z shown in FIG. One end of the elastic member 174 is joined to the suction pad. The stretchable member 174 is stretchable along the stacking direction Z by using an air compressor or the like as power.
 袋詰電極搬送部170のX軸ステージ175およびX軸補助レール176は、伸縮部材174の一端に対向した他端を移動自在に支持している。X軸ステージ175は、搬送方向Xに沿って配設し、伸縮部材174を搬送方向Xに沿って走査する。X軸補助レール176は、X軸ステージ175と並行に配設し、X軸ステージ175による伸縮部材174の走査を補助する。載置台177は、板状からなり、例えば3組配設された搬送ベルト171よりも、搬送方向Xに沿った下流側に配設している。載置台177は、袋詰電極11を一時的に載置して保管する。 The X-axis stage 175 and the X-axis auxiliary rail 176 of the packaged electrode transport unit 170 support the other end of the telescopic member 174 so as to be movable. The X-axis stage 175 is disposed along the transport direction X and scans the telescopic member 174 along the transport direction X. The X-axis auxiliary rail 176 is disposed in parallel with the X-axis stage 175 and assists the scanning of the telescopic member 174 by the X-axis stage 175. The mounting table 177 has a plate shape, and is disposed on the downstream side in the conveyance direction X with respect to, for example, three conveyance belts 171. The mounting table 177 temporarily stores and stores the packaged electrode 11.
 制御部180は、図5に示し、電極搬送部110と第1セパレータ搬送部120と第2セパレータ搬送部130とセパレータ保持部140とセパレータ接合部150とセパレータ搬送追随部160および袋詰電極搬送部170の作動をそれぞれ制御する。 As shown in FIG. 5, the control unit 180 includes an electrode transport unit 110, a first separator transport unit 120, a second separator transport unit 130, a separator holding unit 140, a separator joining unit 150, a separator transport follower 160, and a packaged electrode transport unit. Each operation of 170 is controlled.
 制御部180のコントローラ181は、ROM、CPU、およびRAMを含んでいる。ROM(Read Only Memory)は、セパレータ接合装置100に係る制御プログラムを格納している。制御プログラムは、電極搬送部110の回転ローラ114と切断刃115および116、第1セパレータ搬送部120の第1搬送ドラム124と第1切断刃125、および第2セパレータ搬送部130の第2搬送ドラム134と第2切断刃135の制御に関するものを含んでいる。さらに、制御プログラムは、セパレータ保持部140の保持プレート141、セパレータ接合部150の振動子153と駆動ステージ157等、セパレータ搬送追随部160のX軸ステージ161、袋詰電極搬送部170の回転ローラ172と伸縮部材174等の制御に関するものを含んでいる。 The controller 181 of the control unit 180 includes a ROM, a CPU, and a RAM. A ROM (Read Only Memory) stores a control program related to the separator joining apparatus 100. The control program includes the rotation roller 114 and the cutting blades 115 and 116 of the electrode transport unit 110, the first transport drum 124 and the first cutting blade 125 of the first separator transport unit 120, and the second transport drum of the second separator transport unit 130. 134 and control of the second cutting blade 135 are included. Further, the control program includes the holding plate 141 of the separator holding unit 140, the vibrator 153 and the drive stage 157 of the separator bonding unit 150, the X-axis stage 161 of the separator conveyance follower 160, and the rotation roller 172 of the packaged electrode conveyance unit 170. And those related to the control of the expansion and contraction member 174 and the like.
 制御部180のCPU(Central Processing Unit)は、制御プログラムに基づいてセパレータ接合装置100の各構成部材の作動を制御する。RAM(Random Access Memory)は、制御中のセパレータ接合装置100の各構成部材に係る様々なデータを一時的に記憶する。データは、例えば、セパレータ接合部150の振動子153の作動のタイミングに関するものである。 A CPU (Central Processing Unit) of the control unit 180 controls the operation of each component of the separator joining apparatus 100 based on the control program. A RAM (Random Access Memory) temporarily stores various data related to each component of the separator joining apparatus 100 under control. The data relates to, for example, the operation timing of the vibrator 153 of the separator joint 150.
 次に、セパレータ接合装置100の作用について説明する。 Next, the operation of the separator bonding apparatus 100 will be described.
 電極搬送部110は、図5に示すように、切断刃115および116によって、長尺状の正極用基材20Aを所定の形状に1枚ずつ切断して正極20を成形する。電極搬送部110は、正極20を第1セパレータ搬送部120および第2セパレータ搬送部130の間に搬出する。 As shown in FIG. 5, the electrode transport unit 110 forms the positive electrode 20 by cutting the long positive electrode base material 20 </ b> A one by one into a predetermined shape by the cutting blades 115 and 116. The electrode transport unit 110 transports the positive electrode 20 between the first separator transport unit 120 and the second separator transport unit 130.
 次いで、第1セパレータ搬送部120は、図5に示すように、セラミックセパレータ用基材40Aから正極20の一面に積層するためのセラミックセパレータ40を切り出して搬送する。第1切断刃125によって、長尺状のセラミックセパレータ用基材40Aを長方形状に1枚ずつ切断してセラミックセパレータ40を成形する。第1セパレータ搬送部120は、セラミックセパレータ40を電極搬送部110から搬出された正極20の一面の側に積層する。 Next, as shown in FIG. 5, the first separator transport unit 120 cuts out and transports the ceramic separator 40 to be laminated on one surface of the positive electrode 20 from the ceramic separator substrate 40 </ b> A. The long ceramic separator substrate 40A is cut into a rectangular shape one by one by the first cutting blade 125, and the ceramic separator 40 is formed. The 1st separator conveyance part 120 laminates | stacks the ceramic separator 40 on the one surface side of the positive electrode 20 carried out from the electrode conveyance part 110. FIG.
 次いで、第2セパレータ搬送部130は、図5に示すように、セラミックセパレータ用基材40Aから正極20の一面に対向した他面に積層するためのセラミックセパレータ40を切り出して搬送する。第2切断刃135によって、長尺状のセラミックセパレータ用基材40Aを長方形状に1枚ずつ切断してセラミックセパレータ40を成形する。第2セパレータ搬送部130は、セラミックセパレータ40を電極搬送部110から搬出された正極20の他面の側に積層する。 Next, as shown in FIG. 5, the second separator transport unit 130 cuts out and transports the ceramic separator 40 to be laminated on the other surface facing the one surface of the positive electrode 20 from the ceramic separator substrate 40 </ b> A. The long ceramic separator substrate 40A is cut into a rectangular shape one by one by the second cutting blade 135, and the ceramic separator 40 is formed. The second separator transport unit 130 stacks the ceramic separator 40 on the other surface side of the positive electrode 20 transported from the electrode transport unit 110.
 次いで、セパレータ保持部140は、図5および図6に示すように、正極20に積層した一対のセラミックセパレータ40を保持する。保持プレート141は、一対のセラミックセパレータ40を積層方向Zの図6中に示す下方から保持することによって、セパレータ接合部150によるセラミックセパレータ40同士の接合を補助する。すなわち、保持プレート141は、ホーン151およびアンビル154が一対のセラミックセパレータ40に当接している間、一対のうちの下方に位置するセラミックセパレータ40を積層方向Zの図5中に示す下方から保持する。 Next, as shown in FIGS. 5 and 6, the separator holding unit 140 holds a pair of ceramic separators 40 stacked on the positive electrode 20. The holding plate 141 assists the bonding of the ceramic separators 40 by the separator bonding portion 150 by holding the pair of ceramic separators 40 from below in the stacking direction Z in FIG. That is, while the horn 151 and the anvil 154 are in contact with the pair of ceramic separators 40, the holding plate 141 holds the ceramic separator 40 positioned below the pair from the lower side shown in FIG. .
 次いで、セパレータ接合部150は、図10および図11に示すように、正極20を挟持するように積層したセラミックセパレータ40同士を接合する。ホーン151は、セラミックセパレータ40のポリプロピレン層41に当接し、積層方向Zと交差したセラミックス層42同士の接合面に沿って図中の波線S1で表すように超音波を印加する。波線S1の方向は、積層方向Zと交差した搬送方向Xに相当する。押圧部材155は、ホーン151を積層方向Zに沿って図中の矢印P1で表すように、セラミックセパレータ40のポリプロピレン層41に向かって押圧する。アンビル154は、図中の矢印P2で表すようにホーン151に向かって押圧する。このようにして、一対のセラミックセパレータ40は、図11に示すようにポリプロピレン層41が溶融し、セラミックス層42が接合部40hから周囲の領域に移動して疎になり、ポリプロピレン層41同士が接合する。したがって、セラミックセパレータ40は、溶融させることが困難であるセラミックス層42同士を対面させた状態から互いに接合させることができる。 Next, as shown in FIGS. 10 and 11, the separator joining portion 150 joins the ceramic separators 40 stacked so as to sandwich the positive electrode 20. The horn 151 abuts on the polypropylene layer 41 of the ceramic separator 40 and applies ultrasonic waves along the bonding surface of the ceramic layers 42 intersecting with the stacking direction Z as indicated by a broken line S1 in the drawing. The direction of the wavy line S1 corresponds to the transport direction X that intersects the stacking direction Z. The pressing member 155 presses the horn 151 along the stacking direction Z toward the polypropylene layer 41 of the ceramic separator 40 as represented by an arrow P1 in the drawing. The anvil 154 presses toward the horn 151 as represented by the arrow P2 in the figure. In this way, in the pair of ceramic separators 40, as shown in FIG. 11, the polypropylene layer 41 is melted, the ceramic layer 42 moves from the joint 40h to the surrounding area and becomes sparse, and the polypropylene layers 41 are joined together. To do. Therefore, the ceramic separator 40 can be joined to each other from the state in which the ceramic layers 42 that are difficult to melt are opposed to each other.
 ここで、セパレータ搬送追随部160は、図5および図6に示すように、セパレータ接合部150がセラミックセパレータ40同士を接合している間、袋詰電極搬送部170の搬送動作に追随する。X軸ステージ161は、セパレータ保持部140の全ての構成部材と、セパレータ接合部150の全ての構成部材を載置している。X軸ステージ161は、ホーン151およびアンビル154が一対のセラミックセパレータ40に当接して接合している間、搬送方向Xの下流側に沿って移動する。すなわち、X軸ステージ161を用いることによって、第1搬送ドラム124および第2搬送ドラム134の回転を止めることなく、一対のセラミックセパレータ40を接合することができる。 Here, as shown in FIGS. 5 and 6, the separator transport follower 160 follows the transport operation of the packaged electrode transport unit 170 while the separator joint 150 joins the ceramic separators 40 to each other. The X-axis stage 161 mounts all the constituent members of the separator holding portion 140 and all the constituent members of the separator joint portion 150. The X-axis stage 161 moves along the downstream side in the transport direction X while the horn 151 and the anvil 154 are in contact with and joined to the pair of ceramic separators 40. That is, by using the X-axis stage 161, the pair of ceramic separators 40 can be joined without stopping the rotation of the first transport drum 124 and the second transport drum 134.
 その後、袋詰電極搬送部170は、図5および図6に示すように、セパレータ接合部150によって形成された袋詰電極11を搬送する。袋詰電極搬送部170は、袋詰電極11を載置台177に載置して一時的に保管する。 Thereafter, as shown in FIGS. 5 and 6, the packaged electrode transport unit 170 transports the packaged electrode 11 formed by the separator joint 150. The packaged electrode transport unit 170 places the packaged electrode 11 on the mounting table 177 and temporarily stores it.
 上述した第1実施形態によれば、以下の構成によって作用効果を奏する。 According to the first embodiment described above, the following effects are obtained.
 電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合方法にあっては、シート状の溶融材(ポリプロピレン層41に相当)と、ポリプロピレン層41に積層しポリプロピレン層41よりも溶融温度が高い耐熱材(セラミックス層42に相当)と、を含むセパレータ(セラミックセパレータ40に相当)を用いる。このセパレータ接合方法では、電極(正極20または負極30に相当)を挟持するセラミックス層42同士を対面させた一対のセラミックセパレータ40を互いに接合する。リチウムイオン二次電池10の袋詰電極11のセパレータ接合方法は、接合工程を有している。接合工程では、超音波によってセラミックセパレータ40に加工を施す加工部材(ホーン151に相当)を一対のセラミックセパレータ40のうちの一のセラミックセパレータ40のポリプロピレン層41に当接させ、積層方向Zと交差した方向に超音波を印加してポリプロピレン層41を溶融させつつ、ホーン151を積層方向Zに沿って押圧した部分のセラミックス層42を、その押圧した領域(接合部40h)から周囲の領域に移動させて疎にして、一対のセラミックセパレータ40のポリプロピレン層41同士を接合する。 In the separator joining method of the electric device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10), the sheet-like molten material (corresponding to the polypropylene layer 41) and the polypropylene layer 41 are laminated on the polypropylene layer 41. Also, a separator (corresponding to the ceramic separator 40) containing a heat-resistant material (corresponding to the ceramic layer 42) having a high melting temperature is used. In this separator joining method, a pair of ceramic separators 40 facing each other with ceramic layers 42 sandwiching electrodes (corresponding to the positive electrode 20 or the negative electrode 30) are joined together. The separator joining method for the packaged electrode 11 of the lithium ion secondary battery 10 includes a joining step. In the joining process, a processing member (corresponding to the horn 151) that processes the ceramic separator 40 by ultrasonic waves is brought into contact with the polypropylene layer 41 of one ceramic separator 40 of the pair of ceramic separators 40 and intersects the stacking direction Z. While the ultrasonic wave is applied in the applied direction and the polypropylene layer 41 is melted, the ceramic layer 42 of the portion where the horn 151 is pressed along the stacking direction Z is moved from the pressed region (joint portion 40h) to the surrounding region. The polypropylene layers 41 of the pair of ceramic separators 40 are bonded to each other.
 また、電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合装置100にあっては、シート状の溶融材(ポリプロピレン層41に相当)と、ポリプロピレン層41に積層しポリプロピレン層41よりも溶融温度が高い耐熱材(セラミックス層42に相当)と、を含むセパレータ(セラミックセパレータ40に相当)を用いる。このセパレータ接合装置100では、電極(正極20または負極30に相当)を挟持するセラミックス層42同士を対面させた一対のセラミックセパレータ40を互いに接合する。セパレータ接合装置100は、超音波加工部材(ホーン151に相当)と押圧部材155を有している。ホーン151は、一対のセラミックセパレータ40のうちの一のセラミックセパレータ40のポリプロピレン層41に当接し、積層方向Zと交差した方向に超音波を印加して加工を施す。押圧部材155は、ホーン151を積層方向Zに沿って押圧する。 Further, in the separator joining apparatus 100 of the electric device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10), the sheet-like molten material (corresponding to the polypropylene layer 41) and the polypropylene layer 41 are laminated on the polypropylene. A separator (corresponding to the ceramic separator 40) containing a heat-resistant material (corresponding to the ceramic layer 42) having a melting temperature higher than that of the layer 41 is used. In this separator bonding apparatus 100, a pair of ceramic separators 40 in which ceramic layers 42 sandwiching electrodes (corresponding to the positive electrode 20 or the negative electrode 30) face each other are bonded to each other. The separator bonding apparatus 100 includes an ultrasonic processing member (corresponding to the horn 151) and a pressing member 155. The horn 151 abuts on the polypropylene layer 41 of one ceramic separator 40 of the pair of ceramic separators 40 and applies an ultrasonic wave in a direction crossing the stacking direction Z to perform processing. The pressing member 155 presses the horn 151 along the stacking direction Z.
 このような構成では、セラミックセパレータ40の積層方向Zと交差した方向に沿って超音波を印加してポリプロピレン層41を溶融させつつ、セラミックセパレータ40を積層方向Zに沿って押圧する。したがって、セラミックス層42を部分的に周囲の領域に移動させて疎にすることによって対面したポリプロピレン層41同士を接合することができる。すなわち、セラミックス層42同士を対面させた一対のセラミックセパレータ40同士を十分に接合することができる。 In such a configuration, the ceramic separator 40 is pressed along the stacking direction Z while applying the ultrasonic wave along the direction intersecting the stacking direction Z of the ceramic separator 40 to melt the polypropylene layer 41. Therefore, the facing polypropylene layers 41 can be joined by partially moving the ceramic layer 42 to the surrounding area to make it sparse. That is, the pair of ceramic separators 40 in which the ceramic layers 42 face each other can be sufficiently bonded.
 電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合方法において、接合工程は、押圧部材155によってホーン151を押圧した状態で、ホーン151による超音波の印加を開始する構成とすることができる。 In the separator joining method of the electric device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10), the joining step starts the application of ultrasonic waves by the horn 151 while the horn 151 is pressed by the pressing member 155. It can be.
 このような構成によれば、一対のセラミックセパレータ40は、ポリプロピレン層41がホーン151に押圧された状態で超音波が印加されることから、その押圧された部分に超音波の振動に起因したしわが生じることを防止できる。したがって、一対のセラミックセパレータ40は、その接合部40hの接合強度を十分に保つことができる。 According to such a configuration, since the ultrasonic waves are applied to the pair of ceramic separators 40 while the polypropylene layer 41 is pressed against the horn 151, the pressed portions are caused by the vibration of the ultrasonic waves. Can prevent wrinkles. Therefore, the pair of ceramic separators 40 can sufficiently maintain the bonding strength of the bonding portion 40h.
 電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合方法において、接合工程は、ホーン151による超音波の印加を継続した状態で、押圧部材155によるホーン151に対する押圧を終了する構成とすることができる。 In the separator joining method of the electric device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10), the joining step ends the pressing of the pressing member 155 against the horn 151 while the ultrasonic wave is continuously applied by the horn 151. It can be set as the structure to do.
 このような構成によれば、一対のセラミックセパレータ40は、ホーン151による超音波の印加が継続された状態で、押圧部材155によるホーン151の押圧が終了されることから、接合に要する総時間において、実際に超音波を印加している時間の割合を高めることができる。したがって、接合部40hの形成に要する時間を短縮することができる。 According to such a configuration, the pair of ceramic separators 40 is in a state where the application of ultrasonic waves by the horn 151 is continued, and the pressing of the horn 151 by the pressing member 155 is completed. In addition, it is possible to increase the proportion of time during which ultrasonic waves are actually applied. Therefore, the time required for forming the joint portion 40h can be shortened.
 電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合装置100において、アンビル154と付勢部材156をさらに有する構成とすることができる。アンビル154は、ホーン151と積層方向Zに沿って対向して配設し、一対のセラミックセパレータ40のうちの他のセラミックセパレータ40のポリプロピレン層41に当接する。付勢部材156は、アンビル154を積層方向Zに沿ってホーン151の側に付勢する。 In the separator joining apparatus 100 of the electrical device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10), the anvil 154 and the urging member 156 may be further included. The anvil 154 is disposed facing the horn 151 along the stacking direction Z, and abuts against the polypropylene layer 41 of the other ceramic separator 40 of the pair of ceramic separators 40. The biasing member 156 biases the anvil 154 toward the horn 151 along the stacking direction Z.
 このような構成によれば、ホーン151とアンビル154とで一対のセラミックセパレータ40を挟持して十分に押圧することができる。したがって、ホーン151だけで一対のセラミックセパレータ40を押圧する場合と比較して、より短時間でセラミックス層42を部分的に周囲の領域に移動させ、接合部40hを形成することができる。 According to such a configuration, the pair of ceramic separators 40 can be held between the horn 151 and the anvil 154 and sufficiently pressed. Therefore, compared with the case where the pair of ceramic separators 40 are pressed only by the horn 151, the ceramic layer 42 can be partially moved to the surrounding region in a shorter time, and the joining portion 40h can be formed.
 電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)にあっては、シート状の溶融材(ポリプロピレン層41に相当)と、ポリプロピレン層41に積層しポリプロピレン層41よりも溶融温度が高い耐熱材(セラミックス層42に相当)と、を含むセパレータ(セラミックセパレータ40に相当)を用いている。袋詰電極11は、電極(正極20または負極30に相当)を挟持するセラミックス層42同士を対面させた一対のセラミックセパレータ40を互いに接合したものである。袋詰電極11は、セラミックス層42を部分的に周囲の領域に移動させて疎にして一対のセラミックセパレータ40のポリプロピレン層41同士を接合して形成した接合部40hを備えている。 In an electrical device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10), a sheet-like molten material (corresponding to the polypropylene layer 41) and the polypropylene layer 41 are laminated and have a melting temperature higher than that of the polypropylene layer 41. A separator (corresponding to the ceramic separator 40) including a high heat-resistant material (corresponding to the ceramic layer 42) is used. The packaged electrode 11 is formed by joining together a pair of ceramic separators 40 in which ceramic layers 42 sandwiching electrodes (corresponding to the positive electrode 20 or the negative electrode 30) face each other. The packaged electrode 11 includes a joining portion 40 h formed by partially moving the ceramic layer 42 to the surrounding area to make the ceramic layer 42 sparse and joining the polypropylene layers 41 of the pair of ceramic separators 40.
 このような構成によれば、一対のセラミックセパレータ40を接合するために、接合部分からセラミックス層42を予め除外したセラミックセパレータ40を用いる必要がない。すなわち、このような袋詰電極11によれば、セラミックセパレータ40の製造コストとタクトを削減することができ、かつ、そのセラミックセパレータ40同士を十分に接合することができる。 According to such a configuration, in order to join the pair of ceramic separators 40, it is not necessary to use the ceramic separator 40 in which the ceramic layer 42 is excluded in advance from the joining portion. That is, according to such a packaged electrode 11, the manufacturing cost and tact of the ceramic separator 40 can be reduced, and the ceramic separators 40 can be sufficiently joined together.
 (第1実施形態の変形例)
 第1実施形態の変形例に係る袋詰電極11のセパレータ接合方法を具現化したセパレータ接合装置について、図13および図14を参照しながら説明する。
(Modification of the first embodiment)
A separator bonding apparatus that embodies a separator bonding method for a packaged electrode 11 according to a modification of the first embodiment will be described with reference to FIGS. 13 and 14.
 図13は、セパレータ接合装置のセパレータ保持部240とセパレータ接合部150とセパレータ搬送追随部160と袋詰電極搬送部170とを示す斜視図である。図14は、図13のセパレータ保持部240とセパレータ接合部150の作動を示す断面図である。 FIG. 13 is a perspective view showing the separator holding unit 240, the separator bonding unit 150, the separator conveyance follower 160, and the packaged electrode conveyance unit 170 of the separator bonding apparatus. FIG. 14 is a cross-sectional view showing the operation of the separator holding portion 240 and the separator joint portion 150 of FIG.
 第1実施形態の変形例に係るセパレータ接合装置は、ホーン151をセラミックセパレータ40のポリプロピレン層41から離脱させた後に、一対の保持プレート241および242をポリプロピレン層41同士から離間させる構成が、前述した第1実施形態に係るセパレータ接合装置100の構成と異なる。 The separator joining apparatus according to the modified example of the first embodiment has a configuration in which the pair of holding plates 241 and 242 are separated from the polypropylene layers 41 after the horn 151 is detached from the polypropylene layer 41 of the ceramic separator 40 as described above. It differs from the structure of the separator joining apparatus 100 which concerns on 1st Embodiment.
 第1実施形態の変形例においては、前述した第1実施形態と同様の構成からなるものについて、同一の符号を使用し、前述した説明を省略する。 In the modification of the first embodiment, the same reference numerals are used for components having the same configuration as in the first embodiment described above, and the above description is omitted.
 先ず、セパレータ保持部240の構成について、図13を参照しながら説明する。 First, the configuration of the separator holding unit 240 will be described with reference to FIG.
 セパレータ保持部240は、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ保持部240は、袋詰電極搬送部170の搬送方向Xに沿った両端に一組ずつ配設している。セパレータ保持部240の保持プレート241は、長尺の板状からなり、セラミックセパレータ40の積層方向Zよりも図13中に示す下方であって、セラミックセパレータ40の搬送方向Xに沿った端部に並行して配設している。保持プレート242は、保持プレート241と同様の形状からなる。保持プレート241と保持プレート242は、一対のセラミックセパレータ40を介して、積層方向Zに沿って対向して配設している。保持プレート241は、セパレータ接合部150のアンビル154との干渉を回避するために、矩形状の穴を備えている。一方、保持プレート242は、セパレータ接合部150のホーン151との干渉を回避するために、矩形状の穴を備えている。保持プレート241および242は、セパレータ接合部150の駆動支柱158によって、積層方向Zに沿って互いに接近離間するように、上昇および降下する。 The separator holding unit 240 is disposed on the downstream side in the transport direction X from the first separator transport unit 120 and the second separator transport unit 130. One set of separator holding parts 240 is disposed at both ends along the carrying direction X of the packaged electrode carrying part 170. The holding plate 241 of the separator holding unit 240 is formed in a long plate shape, and is below the stacking direction Z of the ceramic separator 40 in FIG. 13 and at an end portion along the conveying direction X of the ceramic separator 40. They are arranged in parallel. The holding plate 242 has the same shape as the holding plate 241. The holding plate 241 and the holding plate 242 are disposed to face each other along the stacking direction Z with a pair of ceramic separators 40 interposed therebetween. The holding plate 241 has a rectangular hole in order to avoid interference with the anvil 154 of the separator joint 150. On the other hand, the holding plate 242 includes a rectangular hole in order to avoid interference with the horn 151 of the separator joint 150. The holding plates 241 and 242 are raised and lowered by the drive support column 158 of the separator joint 150 so as to approach and separate from each other along the stacking direction Z.
 次に、セパレータ保持部240の作用について、図14を参照しながら説明する。 Next, the operation of the separator holding unit 240 will be described with reference to FIG.
 セパレータ保持部240は、図14(a)に示すように、一対の保持プレート241および242によって、一対のセラミックセパレータ40を積層方向Zに沿って挟持して保持する。ホーン151とアンビル154は、それぞれポリプロピレン層41に押圧した状態で、一対のセラミックセパレータ40を超音波接合する。次に、図14(b)に示すように、ホーン151は、図14中のT1の矢印で表すように、一対のセラミックセパレータ40から積層方向Zに沿って上方に離脱する。アンビル154は、ホーン151の動作と同時に、図14中のT2の矢印で表すように、一対のセラミックセパレータ40から積層方向Zに沿って下方に離間する。次に、図14(c)に示すように、保持プレート241は、図14中のT4の矢印で表すように、一対のセラミックセパレータ40から積層方向Zに沿って下方に離間する。保持プレート242は、保持プレート241の動作と同時に、図14中のT3の矢印で表すように、一対のセラミックセパレータ40から積層方向Zに沿って上方に離脱する。 14A, the separator holding unit 240 holds the pair of ceramic separators 40 along the stacking direction Z by a pair of holding plates 241 and 242. As shown in FIG. The horn 151 and the anvil 154 are ultrasonically bonded to the pair of ceramic separators 40 while being pressed against the polypropylene layer 41. Next, as shown in FIG. 14B, the horn 151 is detached upward along the stacking direction Z from the pair of ceramic separators 40 as indicated by the arrow T1 in FIG. At the same time as the operation of the horn 151, the anvil 154 is spaced downward along the stacking direction Z from the pair of ceramic separators 40, as indicated by the arrow T2 in FIG. Next, as shown in FIG. 14C, the holding plate 241 is separated downward along the stacking direction Z from the pair of ceramic separators 40 as represented by the arrow T <b> 4 in FIG. 14. At the same time as the operation of the holding plate 241, the holding plate 242 is detached upward along the stacking direction Z from the pair of ceramic separators 40 as indicated by the arrow T <b> 3 in FIG. 14.
 上述した第1実施形態の変形例によれば、以下の構成によって作用効果を奏する。 According to the modification of the first embodiment described above, the following configuration provides an effect.
 電気デバイス(リチウムイオン二次電池10の袋詰電極11に相当)のセパレータ接合装置にあっては、一対の保持プレート241および242をさらに有している。一対の保持プレート241および242は、ポリプロピレン層41同士を積層方向Zに沿って挟持して保持する。一対の保持プレート241および242は、ホーン151がポリプロピレン層41から離脱してから、ポリプロピレン層41同士から離間する。 In the separator joining apparatus of the electrical device (corresponding to the packaged electrode 11 of the lithium ion secondary battery 10), the separator further has a pair of holding plates 241 and 242. The pair of holding plates 241 and 242 sandwich and hold the polypropylene layers 41 along the stacking direction Z. The pair of holding plates 241 and 242 are separated from the polypropylene layers 41 after the horn 151 is detached from the polypropylene layer 41.
 このような構成によれば、ホーン151は、一対のセラミックセパレータ40を溶着する際にポリプロピレン層41に付着してしまっても、一対の保持プレート241および242によってポリプロピレン層41同士を保持させた状態で、ポリプロピレン層41から離間させることができる。したがって、ホーン151がポリプロピレン層41に付着した状態で移動することを防止でき、セラミックセパレータ40に損傷を与えることがない。 According to such a configuration, the horn 151 is in a state where the polypropylene layers 41 are held by the pair of holding plates 241 and 242 even if the horn 151 adheres to the polypropylene layer 41 when the pair of ceramic separators 40 are welded. Thus, it can be separated from the polypropylene layer 41. Therefore, the horn 151 can be prevented from moving while attached to the polypropylene layer 41, and the ceramic separator 40 is not damaged.
 また、第1実施形態の変形例の構成において、アンビル154は、一対のセラミックセパレータ40に当接した際にポリプロピレン層41に付着してしまっても、一対の保持プレート241および242によってポリプロピレン層41同士を保持させた状態で、ポリプロピレン層41から離間させることができる。したがって、アンビル154がポリプロピレン層41に付着した状態で移動することを防止でき、セラミックセパレータ40に損傷を与えることがない。 Further, in the configuration of the modified example of the first embodiment, even if the anvil 154 adheres to the polypropylene layer 41 when contacting the pair of ceramic separators 40, the polypropylene layer 41 is supported by the pair of holding plates 241 and 242. In a state where they are held together, they can be separated from the polypropylene layer 41. Therefore, the anvil 154 can be prevented from moving while attached to the polypropylene layer 41, and the ceramic separator 40 is not damaged.
 (第2実施形態)
 第2実施形態に係る袋詰電極13のセパレータ接合方法を具現化したセパレータ接合装置について、図15および図16を参照しながら説明する。
(Second Embodiment)
A separator bonding apparatus that embodies the separator bonding method for the packaged electrode 13 according to the second embodiment will be described with reference to FIGS. 15 and 16.
 図15は、セパレータ接合装置のセパレータ接合部350を示す斜視図である。図16は、図15のセパレータ接合部350によって形成した袋詰電極13を示す斜視図である。 FIG. 15 is a perspective view showing a separator bonding portion 350 of the separator bonding apparatus. FIG. 16 is a perspective view showing the packaged electrode 13 formed by the separator joint portion 350 of FIG.
 第2実施形態に係るセパレータ接合装置は、一対のセラミックセパレータ40の搬送方向Xに沿った両端をシーム溶着する構成が、前述した第1実施形態に係るセパレータ接合装置100の構成と異なる。 The separator joining apparatus according to the second embodiment differs from the separator joining apparatus 100 according to the first embodiment described above in that the both ends of the pair of ceramic separators 40 along the conveying direction X are seam welded.
 第2実施形態においては、前述した第1実施形態と同様の構成からなるものについて、同一の符号を使用し、前述した説明を省略する。 In the second embodiment, the same reference numerals are used for components having the same configuration as in the first embodiment described above, and the above description is omitted.
 セパレータ接合部350は、第1セパレータ搬送部120および第2セパレータ搬送部130よりも搬送方向Xの下流側に配設している。セパレータ接合部350は、搬送方向Xに沿った両端に一組ずつ配設している。セパレータ接合部350は、セパレータ接合部150と異なり、各構成材を搬送方向Xと交差した方向Yに沿って配設している。セパレータ接合部350は、セパレータ接合部150と比較して、ホーン351とアンビル354と付勢部材356の構成が異なる。 The separator joining portion 350 is disposed on the downstream side in the transport direction X from the first separator transport unit 120 and the second separator transport unit 130. One set of separator joints 350 is disposed at both ends along the transport direction X. Unlike the separator bonding portion 150, the separator bonding portion 350 is provided with each constituent material along a direction Y that intersects the conveyance direction X. The separator joint 350 is different from the separator joint 150 in the configuration of the horn 351, the anvil 354, and the biasing member 356.
 セパレータ接合部350のホーン351は、超音波をセラミックセパレータ40に印加する。ホーン351は、金属からなり、円盤形状に形成している。ホーン351は、一対のセラミックセパレータ40の搬送方向Xに沿って回転自在に配設している。ホーン351は、図15中のP3の矢印で表すように押圧部材155によって押圧され、一対のセラミックセパレータ40のうちの一のセラミックセパレータ40のポリプロピレン層41を押圧する。ホーン351は、図15中のS2の波線で表すように、積層方向Zと交差したセラミックス層42同士の接合面に沿って超音波を印加する。波線S2の方向は、積層方向Zと交差した方向Yに相当する。 The horn 351 of the separator joint 350 applies ultrasonic waves to the ceramic separator 40. The horn 351 is made of metal and has a disk shape. The horn 351 is rotatably arranged along the conveyance direction X of the pair of ceramic separators 40. The horn 351 is pressed by the pressing member 155 as indicated by the arrow P3 in FIG. 15 and presses the polypropylene layer 41 of one ceramic separator 40 of the pair of ceramic separators 40. The horn 351 applies ultrasonic waves along the bonding surface between the ceramic layers 42 intersecting with the stacking direction Z, as represented by the wavy line S2 in FIG. The direction of the wavy line S2 corresponds to the direction Y intersecting the stacking direction Z.
 アンビル354は、金属からなり、円盤形状に形成している。ホーン351は、一対のセラミックセパレータ40の搬送方向Xに沿って回転自在に配設している。アンビル354は、一対のセラミックセパレータ40を介して、ホーン351と対向している。アンビル354は、図15中のP4の矢印で表すように付勢部材356によって押圧され、ホーン351を付勢する。付勢部材356は、その一端を環状に形成し、アンビル354の後部を挿通し回転自在に連結している。付勢部材356は、駆動支柱158に対して積層方向Zに沿って移動自在としている。図16に示すように、セパレータ接合部350によって、一対のセラミックセパレータ40の搬送方向Xに沿った両端を連続的に接合し直線状の接合部40iを備えた袋詰電極13を形成する。 The anvil 354 is made of metal and has a disk shape. The horn 351 is rotatably arranged along the conveyance direction X of the pair of ceramic separators 40. The anvil 354 is opposed to the horn 351 with the pair of ceramic separators 40 interposed therebetween. The anvil 354 is pressed by the urging member 356 as shown by the arrow P4 in FIG. One end of the biasing member 356 is formed in an annular shape, and the rear portion of the anvil 354 is inserted and rotatably connected. The biasing member 356 is movable along the stacking direction Z with respect to the drive column 158. As shown in FIG. 16, the separator joining portion 350 continuously joins both ends along the transport direction X of the pair of ceramic separators 40 to form the packaged electrode 13 including the linear joining portion 40 i.
 上述した第2実施形態によれば、以下の構成によって作用効果を奏する。 According to the second embodiment described above, the following effects are obtained.
 電気デバイス(リチウムイオン二次電池10の袋詰電極13に相当)のセパレータ接合装置にあっては、ホーン351を、一対のセラミックセパレータ40の搬送方向Xに沿って回転自在な円盤形状に形成している。 In the separator joining device of the electric device (corresponding to the packaged electrode 13 of the lithium ion secondary battery 10), the horn 351 is formed in a disk shape that is rotatable along the conveying direction X of the pair of ceramic separators 40. ing.
 このような構成によれば、一対のセラミックセパレータ40の搬送方向Xに沿った両端をシーム溶着によって連続的に接合して直線状の接合部40iを形成することができる。したがって、一対のセラミックセパレータ40の両端をより強固に接合することができる。 According to such a configuration, both ends along the conveying direction X of the pair of ceramic separators 40 can be continuously joined by seam welding to form a linear joint 40i. Therefore, both ends of the pair of ceramic separators 40 can be bonded more firmly.
 さらに、このような構成によれば、ホーン351は、一対のセラミックセパレータ40両端の部分を移動しつつ溶着していくことから、ポリプロピレン層41に付着し難い。したがって、ホーン351がポリプロピレン層41に付着した状態で移動することを防止でき、セラミックセパレータ40に損傷を与えることがない。 Furthermore, according to such a configuration, the horn 351 is hardly adhered to the polypropylene layer 41 because the horn 351 is welded while moving at both ends of the pair of ceramic separators 40. Therefore, the horn 351 can be prevented from moving in a state where it is attached to the polypropylene layer 41, and the ceramic separator 40 is not damaged.
 さらに、このような構成によれば、ホーン351をセラミックセパレータ40のポリプロピレン層41に回転自在に当接させているだけでよい。すなわち、セパレータ搬送追随部160を用いることなく、第1搬送ドラム124および第2搬送ドラム134の回転を継続したままの状態で、一対のセラミックセパレータ40を接合することができる。 Furthermore, according to such a configuration, the horn 351 only needs to abut on the polypropylene layer 41 of the ceramic separator 40 in a freely rotatable manner. That is, without using the separator conveyance follower 160, the pair of ceramic separators 40 can be joined while the rotation of the first conveyance drum 124 and the second conveyance drum 134 is continued.
 さらに、アンビル354は、一対のセラミックセパレータ40の搬送方向Xに沿って回転自在な円盤形状に形成した構成とすることができる。 Further, the anvil 354 can be formed in a disk shape that is rotatable along the conveying direction X of the pair of ceramic separators 40.
 このような構成によれば、ホーン351とアンビル354とで一対のセラミックセパレータ40を挟持して十分に押圧することができる。したがって、ホーン351だけで一対のセラミックセパレータ40を押圧する場合と比較して、より短時間でセラミックス層42を部分的に周囲の領域に移動させ、接合部40iを形成することができる。 According to such a configuration, the pair of ceramic separators 40 can be held between the horn 351 and the anvil 354 and sufficiently pressed. Therefore, compared with the case where the pair of ceramic separators 40 are pressed only by the horn 351, the ceramic layer 42 can be partially moved to the surrounding region in a shorter time, and the joint portion 40i can be formed.
 そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。 In addition, the present invention can be variously modified based on the configuration described in the claims, and these are also within the scope of the present invention.
 例えば、セラミックセパレータ40に超音波を伝搬させる方向は、積層方向Zと交差したセラミックス層42同士の接合面に沿った方向であればよく、積層方向Zと交差した搬送方向Xと方向Yとでなす面内であれば、特に限定されることはない。 For example, the direction in which the ultrasonic wave is propagated to the ceramic separator 40 may be a direction along the bonding surface of the ceramic layers 42 intersecting with the stacking direction Z, and the conveyance direction X and the direction Y intersecting the stacking direction Z There is no particular limitation as long as it is within the plane.
 また、第1および第2実施形態では、一対のセラミックセパレータ40のセラミックス層42を部分的に周囲の領域に移動させて疎にすることによって、対面したポリプロピレン層41同士を接合する構成として説明した。ここで、接合部となる部位のセラミックス層42同士を周囲の領域に完全に移動させる必要はなく、疎になる程度に移動させればよい。すなわち、セラミックス層42同士の一部が接合部となる部位に残留した状態で、対面したポリプロピレン層41同士を接合することもできる。 Moreover, in 1st and 2nd embodiment, the ceramic layer 42 of a pair of ceramic separator 40 was partially moved to the surrounding area, and it demonstrated as a structure which joins the polypropylene layers 41 which faced each other. . Here, it is not necessary to completely move the ceramic layers 42 at the portion to be the joint portion to the surrounding area, and they may be moved to such a degree that they become sparse. That is, the facing polypropylene layers 41 can be bonded together in a state where a part of the ceramic layers 42 remains in a portion that becomes a bonding portion.
 また、第1および第2実施形態では、リチウムイオン二次電池10に用いる袋詰電極11において、一対のセラミックセパレータ40を互いに接合する構成で説明したが、このような構成に限定されることはない。リチウムイオン二次電池10に用いる袋詰電極11以外の部材の接合にも適用することができる。 Moreover, in 1st and 2nd embodiment, in the packaged electrode 11 used for the lithium ion secondary battery 10, although demonstrated with the structure which joins a pair of ceramic separator 40 mutually, it is limited to such a structure. Absent. The present invention can also be applied to joining members other than the packaged electrode 11 used in the lithium ion secondary battery 10.
 また、第1および第2実施形態では、二次電池をリチウムイオン二次電池10の構成で説明したが、このような構成に限定されることはない。二次電池は、例えば、ポリマーリチウム電池、ニッケル-水素電池、ニッケル-カドミウム電池として構成することができる。 In the first and second embodiments, the secondary battery has been described with the configuration of the lithium ion secondary battery 10, but the configuration is not limited to such a configuration. The secondary battery can be configured as, for example, a polymer lithium battery, a nickel-hydrogen battery, or a nickel-cadmium battery.
 また、第1および第2実施形態では、セラミックセパレータ40の耐熱材をセラミックス層42の構成で説明したが、このような構成に限定されることはない。耐熱材は、セラミックスに限定されることはなく、溶融材よりも溶融温度が高い部材であればよい。 In the first and second embodiments, the heat-resistant material of the ceramic separator 40 has been described with the configuration of the ceramic layer 42, but is not limited to such a configuration. The heat-resistant material is not limited to ceramics and may be a member having a melting temperature higher than that of the molten material.
 また、第1および第2実施形態では、セラミックセパレータ40の溶融材をポリプロピレン層41の構成で説明したが、このような構成に限定されることはない。溶融材は、ポリプロピレンに限定されることはなく、耐熱材よりも溶融温度が低い部材であればよい。 In the first and second embodiments, the molten material of the ceramic separator 40 has been described with the configuration of the polypropylene layer 41. However, the configuration is not limited to such a configuration. The molten material is not limited to polypropylene and may be a member having a melting temperature lower than that of the heat-resistant material.
 また、第1および第2実施形態では、セラミックセパレータ40を、溶融材(ポリプロピレン層41)の片面に耐熱材(セラミックス層42)を積層させた構成として説明したが、このような構成に限定されることはない。セラミックセパレータ40は、溶融材(ポリプロピレン層41)の両面に耐熱材(セラミックス層42)を積層させて構成してもよい。 In the first and second embodiments, the ceramic separator 40 has been described as a configuration in which a heat-resistant material (ceramic layer 42) is laminated on one surface of a molten material (polypropylene layer 41), but the configuration is limited to such a configuration. Never happen. The ceramic separator 40 may be configured by laminating a heat-resistant material (ceramic layer 42) on both surfaces of a molten material (polypropylene layer 41).
 また、第1および第2実施形態では、正極20を一対のセラミックセパレータ40によって袋詰めして袋詰電極11を形成する構成で説明したが、このような構成に限定されることはない。負極30を一対のセラミックセパレータ40によって袋詰めして袋詰電極を形成する構成としてもよい。さらに、一対のセラミックセパレータ40を互いに接合した後に、正極20または負極30を挿入して袋詰電極を形成する構成としてもよい。 In the first and second embodiments, the positive electrode 20 is packed with the pair of ceramic separators 40 to form the packed electrode 11, but the present invention is not limited to such a configuration. The negative electrode 30 may be packed with a pair of ceramic separators 40 to form a packed electrode. Furthermore, it is good also as a structure which inserts the positive electrode 20 or the negative electrode 30 after joining a pair of ceramic separator 40 mutually, and forms a packing electrode.
 また、第1および第2実施形態では、正極20、セラミックセパレータ40、および袋詰電極11を自動で搬送する構成として説明したが、このような構成に限定されることはない。正極20、セラミックセパレータ40、または袋詰電極11は、人手によって搬送する構成としてもよい。 In the first and second embodiments, the positive electrode 20, the ceramic separator 40, and the packaged electrode 11 have been described as being automatically conveyed. However, the present invention is not limited to such a configuration. The positive electrode 20, the ceramic separator 40, or the packaged electrode 11 may be configured to be manually transported.
 また、第1実施形態では、突起部を備えたホーン151とアンビル154を用いて、一対のセラミックセパレータ40の両端をスポット溶着する構成として説明したが、このような構成に限定されることはない。突起部を備えたホーン151とアンビル154を接合部が連なるように作動させて、一対のセラミックセパレータ40の両端をシーム溶着する構成としてもよい。 Moreover, although 1st Embodiment demonstrated as a structure which carries out the spot welding of the both ends of a pair of ceramic separator 40 using the horn 151 and the anvil 154 provided with the projection part, it is not limited to such a structure. . It is good also as a structure which operates the horn 151 provided with the projection part, and the anvil 154 so that a junction part may continue, and seam welds the both ends of a pair of ceramic separator 40. FIG.
 また、第1実施形態では、ホーン151の突起部151bとアンビル154の突起部154bによって、一対のセラミックセパレータ40を挟持しつつ押圧する構成として説明したが、このような構成に限定されることはない。ホーン151またはアンビル154のいずれか一方に突起部を備えていればよい。すなわち、ホーン151の突起部151bとアンビル154の本体部154aの平坦部分によって、一対のセラミックセパレータ40を挟持しつつ押圧する構成としてもよい。また、ホーン151の凸状の突起部151bと、アンビル154の凹状の窪み部によって、一対のセラミックセパレータ40の接合部となる部分を挟み込むように挟持しつつ押圧する構成としてもよい。さらに、ホーン151の本体部151aの平坦部分の一端とアンビル154の本体部154aの平坦部分の一端によって、一対のセラミックセパレータ40を挟持しつつ押圧する構成としてもよい。 In the first embodiment, the projection 151b of the horn 151 and the projection 154b of the anvil 154 are described as being sandwiched and pressed while sandwiching the pair of ceramic separators 40. However, the configuration is limited to such a configuration. Absent. What is necessary is just to provide the projection part in any one of the horn 151 or the anvil 154. FIG. In other words, the pair of ceramic separators 40 may be pressed while being held between the protrusion 151b of the horn 151 and the flat portion of the main body 154a of the anvil 154. Moreover, it is good also as a structure pressed while pinching so that the part which becomes a junction part of a pair of ceramic separator 40 may be pinched | interposed by the convex-shaped projection part 151b of the horn 151, and the concave hollow part of the anvil 154. Further, the pair of ceramic separators 40 may be pressed while being sandwiched between one end of the flat portion of the main body portion 151a of the horn 151 and one end of the flat portion of the main body portion 154a of the anvil 154.
 また、第2実施形態では、円盤状のホーン351と円盤状のアンビル354を用いて、一対のセラミックセパレータ40の両端をシーム溶着する構成として説明したが、このような構成に限定されることはない。円盤状のホーン351とアンビル354を一定の周期で一対のセラミックセパレータ40から離間させることによって、一対のセラミックセパレータ40の両端をスポット溶着する構成としてもよい。また、このような構成の場合には、円盤状のホーン351とアンビル354を回転させなくてもよい。さらに、このような構成の場合には、図15に示す長尺のセパレータ接合部350を、搬送方向Xに沿わせるように、接合部位を基準にして90°回転させて配設してもよい。また、ホーン351を回転させつつ、アンビル354を回転させない構成としてもよい。 In the second embodiment, the disk-shaped horn 351 and the disk-shaped anvil 354 are used to describe seam welding at both ends of the pair of ceramic separators 40. However, the present invention is not limited to such a structure. Absent. It is good also as a structure which carries out spot welding of the both ends of a pair of ceramic separator 40 by separating the disk-shaped horn 351 and the anvil 354 from a pair of ceramic separator 40 with a fixed period. In such a configuration, the disk-shaped horn 351 and the anvil 354 need not be rotated. Further, in the case of such a configuration, the long separator joining portion 350 shown in FIG. 15 may be disposed by being rotated by 90 ° with respect to the joining portion so as to be along the transport direction X. . Moreover, it is good also as a structure which does not rotate the anvil 354, rotating the horn 351. FIG.
 また、第2実施形態では、円盤状のホーン351を一対のセラミックセパレータ40に向かって押圧する押圧部材155に換えて、伸縮性を備えた螺旋状のバネ部材を用いる構成としてもよい。同様に、円盤状のアンビル354をホーン351に向かって付勢する付勢部材356に換えて、伸縮性を備えた螺旋状のバネ部材を用いる構成としてもよい。 In the second embodiment, instead of the pressing member 155 that presses the disk-shaped horn 351 toward the pair of ceramic separators 40, a spiral spring member having elasticity may be used. Similarly, instead of the urging member 356 that urges the disc-shaped anvil 354 toward the horn 351, a spiral spring member having elasticity may be used.
 本出願は、2013年10月2日に出願された日本特許出願番号2013-207665号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2013-207665 filed on October 2, 2013, the disclosure content of which is referenced and incorporated as a whole.
10  リチウムイオン二次電池、
11,13 袋詰電極(電気デバイス)、
12  発電要素、
20  正極(電極)、
20A 正極用基材、
21  正極集電体、
21a 正極電極端子、
30  負極(電極)、
31  負極集電体、
31a 負極電極端子、
32  負極活物質、
40  セラミックセパレータ(セパレータ)、
40A セラミックセパレータ用基材、
40h,40i 接合部、
41  ポリプロピレン層(溶融材)、
42  セラミックス層(耐熱材)、
50  外装材、
51,52 ラミネートシート、
100 セパレータ接合装置、
110 電極搬送部、
111 電極供給ローラ、
112 搬送ローラ、
113 搬送ベルト、
114 回転ローラ、
115,116 切断刃、
117 受け台、
120 第1セパレータ搬送部、
121 第1セパレータ供給ローラ、
122 第1加圧ローラ、
123 第1ニップローラ、
124 第1搬送ドラム、
125 第1切断刃、
130 第2セパレータ搬送部、
131 第2セパレータ供給ローラ、
132 第2加圧ローラ、
133 第2ニップローラ、
134 第2搬送ドラム、
135 第2切断刃、
140,240 セパレータ保持部、
141,241,242 保持プレート(保持部材)、
150,350 セパレータ接合部、
151,191,192,351 ホーン(超音波加工部材)、
151a,191a,192a 本体部、
151b,151b1,151b2,151b3,151b4,191b,192b 突起部、
152 ブースタ、
153 振動子、
154,354 アンビル(当接部材)、
154a 本体部、
154b 突起部、
155 押圧部材、
156,356 付勢部材、
157 駆動ステージ、
158 駆動支柱、
160 セパレータ搬送追随部、
161 X軸ステージ、
170 袋詰電極搬送部、
171 搬送ベルト、
172 回転ローラ、
173 吸着パッド、
174 伸縮部材、
175 X軸ステージ、
176 X軸補助レール、
177 載置台、
180 制御部、
181 コントローラ、
X   搬送方向、
Y   (搬送方向Xと交差する)方向、
Z   積層方向。
10 Lithium ion secondary battery,
11, 13 Packed electrode (electric device),
12 power generation elements,
20 positive electrode (electrode),
20A positive electrode substrate,
21 positive electrode current collector,
21a positive electrode terminal,
30 negative electrode (electrode),
31 negative electrode current collector,
31a negative electrode terminal,
32 negative electrode active material,
40 Ceramic separator (separator),
40A substrate for ceramic separator,
40h, 40i joint,
41 polypropylene layer (melting material),
42 Ceramic layer (heat-resistant material),
50 exterior materials,
51,52 Laminate sheet,
100 separator joining device,
110 Electrode transfer unit,
111 electrode supply roller,
112 transport rollers,
113 Conveyor belt,
114 rotating rollers,
115,116 cutting blades,
117 cradle,
120 first separator transport section,
121 first separator supply roller;
122 first pressure roller,
123 first nip roller,
124 first transport drum,
125 first cutting blade,
130 second separator transport section,
131 second separator supply roller;
132 second pressure roller,
133 second nip roller,
134 second transport drum,
135 second cutting blade,
140,240 separator holding part,
141, 241, 242 holding plate (holding member),
150, 350 separator joint,
151, 191, 192, 351 Horn (ultrasonic processing member),
151a, 191a, 192a main body,
151b, 151b1, 151b2, 151b3, 151b4, 191b, 192b protrusions,
152 booster,
153 vibrator,
154,354 anvil (contact member),
154a body part,
154b protrusion,
155 pressing member,
156, 356 biasing member,
157 drive stage,
158 drive strut,
160 separator conveyance follower,
161 X-axis stage,
170 Packed electrode transport section,
171 Conveyor belt,
172 rotating roller,
173 suction pad,
174 telescopic member,
175 X axis stage,
176 X-axis auxiliary rail,
177 mounting table,
180 control unit,
181 controller,
X transport direction,
Y direction (crossing the transport direction X),
Z Stacking direction.

Claims (9)

  1.  シート状の溶融材と、前記溶融材に積層し前記溶融材よりも溶融温度が高い耐熱材と、を含むセパレータを用い、電極を挟持する前記耐熱材同士を対面させた一対の前記セパレータを互いに接合する電気デバイスのセパレータ接合方法であって、
     超音波によって前記セパレータに加工を施す超音波加工部材を一対の前記セパレータのうちの一の前記セパレータの前記溶融材に当接させ、積層方向と交差した方向に超音波を印加して前記溶融材を溶融させつつ、前記超音波加工部材を前記積層方向に沿って押圧した部分の前記耐熱材を、その押圧した領域から周囲の領域に移動させて疎にして、一対の前記セパレータの前記溶融材同士を接合する接合工程、を有する電気デバイスのセパレータ接合方法。
    A separator including a sheet-like melted material and a heat-resistant material laminated on the melted material and having a melting temperature higher than that of the melted material, and a pair of the separators facing each other between the heat-resistant materials sandwiching the electrodes A separator joining method for electrical devices to be joined,
    An ultrasonic processing member for processing the separator by ultrasonic waves is brought into contact with the molten material of the separator of one of the pair of separators, and ultrasonic waves are applied in a direction crossing the laminating direction to apply the molten material. The melted material of the pair of separators is made sparse by moving the heat-resistant material in the portion where the ultrasonic processing member is pressed along the stacking direction from the pressed region to the surrounding region. The separator joining method of the electric device which has a joining process of joining each other.
  2.  前記接合工程は、前記押圧部材によって前記超音波加工部材を押圧した状態で、前記超音波加工部材による超音波の印加を開始する請求項1に記載の電気デバイスのセパレータ接合方法。 2. The separator joining method for an electric device according to claim 1, wherein in the joining step, application of ultrasonic waves by the ultrasonic processing member is started in a state where the ultrasonic processing member is pressed by the pressing member.
  3.  前記接合工程は、前記超音波加工部材による超音波の印加を継続した状態で、前記押圧部材による前記超音波加工部材に対する押圧を終了する請求項1または2に記載の電気デバイスのセパレータ接合方法。 3. The separator joining method for an electric device according to claim 1, wherein the joining step ends pressing of the ultrasonic processing member by the pressing member in a state where application of ultrasonic waves by the ultrasonic processing member is continued.
  4.  シート状の溶融材と、前記溶融材に積層し前記溶融材よりも溶融温度が高い耐熱材と、を含むセパレータを用い、電極を挟持する前記耐熱材同士を対面させた一対の前記セパレータを互いに接合する電気デバイスのセパレータ接合装置であって、
     一対の前記セパレータのうちの一の前記セパレータの前記溶融材に当接し、積層方向と交差した方向に超音波を印加して加工を施す超音波加工部材と、
     前記超音波加工部材を前記積層方向に沿って押圧する押圧部材と、を有する電気デバイスのセパレータ接合装置。
    A separator including a sheet-like melted material and a heat-resistant material laminated on the melted material and having a melting temperature higher than that of the melted material, and a pair of the separators facing each other between the heat-resistant materials sandwiching the electrodes A separator joining apparatus for electrical devices to be joined,
    An ultrasonic processing member that contacts the molten material of one of the pair of separators and applies an ultrasonic wave in a direction crossing the stacking direction to perform processing;
    And a pressing member that presses the ultrasonic processing member along the laminating direction.
  5.  前記超音波加工部材と前記積層方向に沿って対向して配設し、一対の前記セパレータのうちの他の前記セパレータの前記溶融材に当接する当接部材と、
     前記当接部材を前記積層方向に沿って前記超音波加工部材の側に付勢する付勢部材と、をさらに有する請求項4に記載の電気デバイスのセパレータ接合装置。
    An abutting member disposed opposite to the ultrasonic processing member along the laminating direction and abutting against the molten material of the other separator of the pair of separators;
    The separator joining apparatus for an electric device according to claim 4, further comprising an urging member that urges the abutting member toward the ultrasonic machining member along the laminating direction.
  6.  前記溶融材同士を積層方向に沿って挟持して保持する一対の保持部材をさらに有し、
     一対の前記保持部材は、前記超音波加工部材が前記溶融材から離脱してから、前記溶融材同士から離間する請求項4または5に記載の電気デバイスのセパレータ接合装置。
    Further comprising a pair of holding members that hold the molten materials together in the stacking direction;
    The separator joining apparatus for an electric device according to claim 4 or 5, wherein the pair of holding members are separated from the melted materials after the ultrasonic processing member is detached from the melted material.
  7.  前記超音波加工部材は、一対の前記セパレータの搬送方向に沿って回転自在な円盤形状に形成した請求項4~6のいずれか1項に記載の電気デバイスのセパレータ接合装置。 The separator joining apparatus for an electric device according to any one of claims 4 to 6, wherein the ultrasonic processing member is formed in a disk shape that is rotatable along a conveying direction of the pair of separators.
  8.  前記当接部材は、一対の前記セパレータの搬送方向に沿って回転自在な円盤形状に形成した請求項5~7のいずれか1項に記載の電気デバイスのセパレータ接合装置。 The separator joining apparatus for an electric device according to any one of claims 5 to 7, wherein the contact member is formed in a disk shape that is rotatable along a conveying direction of the pair of separators.
  9.  シート状の溶融材と、前記溶融材に積層し前記溶融材よりも溶融温度が高い耐熱材と、を含むセパレータを用い、電極を挟持する前記耐熱材同士を対面させた一対の前記セパレータを互いに接合した電気デバイスであって、
     前記耐熱材を部分的に周囲の領域に移動させて疎にして一対の前記セパレータの前記溶融材同士を接合して形成した接合部を備えた電気デバイス。
    A separator including a sheet-like melted material and a heat-resistant material laminated on the melted material and having a melting temperature higher than that of the melted material, and a pair of the separators facing each other between the heat-resistant materials sandwiching the electrodes Bonded electrical devices,
    An electrical device comprising a joining portion formed by partially moving the heat-resistant material to a surrounding region to make it sparse and joining the molten materials of a pair of the separators.
PCT/JP2014/075909 2013-10-02 2014-09-29 Method for bonding separators in electrical device, apparatus for bonding separators in electrical device, and electrical device WO2015050084A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015540484A JP6197877B2 (en) 2013-10-02 2014-09-29 Electric device separator bonding method, electric device separator bonding apparatus, and electric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013207665 2013-10-02
JP2013-207665 2013-10-02

Publications (1)

Publication Number Publication Date
WO2015050084A1 true WO2015050084A1 (en) 2015-04-09

Family

ID=52778674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075909 WO2015050084A1 (en) 2013-10-02 2014-09-29 Method for bonding separators in electrical device, apparatus for bonding separators in electrical device, and electrical device

Country Status (2)

Country Link
JP (1) JP6197877B2 (en)
WO (1) WO2015050084A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043419A1 (en) * 2016-08-29 2018-03-08 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト Layered electrode body and power storage element
WO2018043411A1 (en) * 2016-08-29 2018-03-08 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト Ultrasonic welding method for separators
WO2018097606A1 (en) * 2016-11-23 2018-05-31 주식회사 엘지화학 Electrode assembly manufacturing device and electrode assembly manufacturing method by same electrode assembly manufacturing device
WO2018162477A3 (en) * 2017-03-09 2019-01-17 Lithium Energy and Power GmbH & Co. KG Ultrasonic welding method
DE102018201293A1 (en) 2018-01-29 2019-08-01 Gs Yuasa International Ltd. Ultrasonic welding process
EP3557675A4 (en) * 2017-10-24 2020-05-27 LG Chem, Ltd. Lamination apparatus and method for secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210155357A (en) * 2020-06-15 2021-12-22 주식회사 엘지에너지솔루션 Manufacturing equipment for secondary battery and manufacturing method the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266568A (en) * 1985-09-19 1987-03-26 Matsushita Electric Ind Co Ltd Lead-acid battery
JPS62202462A (en) * 1986-02-28 1987-09-07 Shin Kobe Electric Mach Co Ltd Manufacture of lead-acid battery
JPH0992335A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery
JP2007035975A (en) * 2005-07-27 2007-02-08 Mitsui Mining & Smelting Co Ltd Capacitor layer formation material with support substrate, and capacitor layer formation material as well as method for manufacturing these
JP2013143337A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of secondary battery, secondary battery, and welding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266568A (en) * 1985-09-19 1987-03-26 Matsushita Electric Ind Co Ltd Lead-acid battery
JPS62202462A (en) * 1986-02-28 1987-09-07 Shin Kobe Electric Mach Co Ltd Manufacture of lead-acid battery
JPH0992335A (en) * 1995-09-27 1997-04-04 Sony Corp Cylindrical secondary battery
JP2007035975A (en) * 2005-07-27 2007-02-08 Mitsui Mining & Smelting Co Ltd Capacitor layer formation material with support substrate, and capacitor layer formation material as well as method for manufacturing these
JP2013143337A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of secondary battery, secondary battery, and welding device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043419A1 (en) * 2016-08-29 2018-03-08 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト Layered electrode body and power storage element
WO2018043411A1 (en) * 2016-08-29 2018-03-08 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト Ultrasonic welding method for separators
CN110088966A (en) * 2016-08-29 2019-08-02 株式会社杰士汤浅国际 Multilayer electrode body and charge storage element
CN110114909A (en) * 2016-08-29 2019-08-09 株式会社杰士汤浅国际 The ultrasonic fusing method of spacer
JPWO2018043411A1 (en) * 2016-08-29 2019-08-22 株式会社Gsユアサ Ultrasonic welding method of separator
WO2018097606A1 (en) * 2016-11-23 2018-05-31 주식회사 엘지화학 Electrode assembly manufacturing device and electrode assembly manufacturing method by same electrode assembly manufacturing device
WO2018162477A3 (en) * 2017-03-09 2019-01-17 Lithium Energy and Power GmbH & Co. KG Ultrasonic welding method
EP3557675A4 (en) * 2017-10-24 2020-05-27 LG Chem, Ltd. Lamination apparatus and method for secondary battery
US11563232B2 (en) 2017-10-24 2023-01-24 Lg Energy Solution, Ltd. Lamination apparatus and method for secondary battery
DE102018201293A1 (en) 2018-01-29 2019-08-01 Gs Yuasa International Ltd. Ultrasonic welding process
WO2019145482A1 (en) 2018-01-29 2019-08-01 Robert Bosch Gmbh Ultrasonic welding method
JP7200999B2 (en) 2018-01-29 2023-01-10 株式会社Gsユアサ ultrasonic welding method

Also Published As

Publication number Publication date
JP6197877B2 (en) 2017-09-27
JPWO2015050084A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6399092B2 (en) Composite material joining method and composite material joining device
JP6197877B2 (en) Electric device separator bonding method, electric device separator bonding apparatus, and electric device
JP6485461B2 (en) Ultrasonic bonding apparatus and ultrasonic bonding method
JP6115648B2 (en) Separator joining device for electrical devices
JP5994866B2 (en) Electrical device and method for joining separator of electrical device
JP6427909B2 (en) Separator joining device for electrical devices
JP5983766B2 (en) Separator conveying apparatus for electric device and conveying method thereof
JP2015197977A (en) Separator bonding method for electric device, separator bonding apparatus for electric device and electric device
JP6264817B2 (en) Separator joining device for electrical devices
JP6364854B2 (en) Separator joining device for electrical devices
JP6413277B2 (en) Electric device separator bonding method, electric device separator bonding apparatus, and electric device
JP6343905B2 (en) Separator bonding method for electric device and separator bonding apparatus for electric device
JP6292081B2 (en) Separator molding equipment
JP6343898B2 (en) Separator bonding method for electric device and separator bonding apparatus for electric device
JP6361108B2 (en) Separator bonding method for electric device and separator bonding apparatus for electric device
JP2015185362A (en) Separator joint method for electric device, separator joint device for electric device and electric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851303

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015540484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851303

Country of ref document: EP

Kind code of ref document: A1