WO2018043411A1 - Ultrasonic welding method for separators - Google Patents

Ultrasonic welding method for separators Download PDF

Info

Publication number
WO2018043411A1
WO2018043411A1 PCT/JP2017/030763 JP2017030763W WO2018043411A1 WO 2018043411 A1 WO2018043411 A1 WO 2018043411A1 JP 2017030763 W JP2017030763 W JP 2017030763W WO 2018043411 A1 WO2018043411 A1 WO 2018043411A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
separators
vibration
ultrasonic welding
welding method
Prior art date
Application number
PCT/JP2017/030763
Other languages
French (fr)
Japanese (ja)
Inventor
祐輔 沖
篤哉 石橋
稲益 徳雄
Original Assignee
リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト, 株式会社Gsユアサ filed Critical リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト
Priority to DE112017004334.4T priority Critical patent/DE112017004334T5/en
Priority to CN201780052895.5A priority patent/CN110114909B/en
Priority to JP2018537259A priority patent/JP6843870B2/en
Publication of WO2018043411A1 publication Critical patent/WO2018043411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for ultrasonic welding of a separator.
  • secondary batteries that can be charged and discharged are used in various devices such as mobile phones and electric vehicles.
  • a secondary battery having a smaller size and a larger electric capacity has been demanded.
  • a secondary battery is formed by alternately laminating a positive electrode plate having a positive electrode active material layer formed on a surface and a negative electrode plate having a negative electrode active material layer formed on a surface via an electrically insulating separator. .
  • a positive electrode plate having a positive electrode active material layer formed on a surface and a negative electrode plate having a negative electrode active material layer formed on a surface via an electrically insulating separator.
  • metal deposits for example, lithium dendrite
  • electrodeposition in the negative electrode may penetrate the separator and cause a short circuit between the positive electrode plate and the negative electrode plate.
  • metal deposits for example, lithium dendrite
  • the separator by welding the outer edges of a pair of separators sandwiching the positive electrode plate or the negative electrode plate into a bag shape, it is possible to suppress the inclusion of metal species that generate metal ions that can generate precipitates in the electrolyte near the positive electrode plate.
  • a structure that suppresses metal ions from coming into contact with the negative electrode and being electrodeposited may be employed.
  • a secondary battery Since the separator formed from a resin film is relatively weak against heat, when the electric capacity of the secondary battery is increased, the separator is damaged by heat, and the precipitate generated by electrodeposition penetrates the separator and the positive electrode plate. There is a risk of short-circuiting the negative electrode plate. For this reason, a secondary battery has been proposed in which a heat-resistant layer (inorganic layer) is formed on the surface of the separator that contacts the electrode plate to improve the heat resistance of the separator.
  • a heat-resistant layer inorganic layer
  • the heat-resistant layer inhibits the welding of the resin film, so that the separator cannot be easily welded.
  • JP 2013-143337 A a separator layer made of a resin material is laminated through a heat-resistant layer, and a portion where an exterior material is laminated from both sides is sandwiched between a pressure excitation unit and a jig receiving unit.
  • the heat-resistant layer is destroyed by forming convex portions on the pressure excitation part and the jig receiving part, and the separator layer resin is welded at the destruction part. Has been.
  • JP-A-2015-185372 uses a separator (ceramic separator) containing a molten material (polypropylene layer) and a heat-resistant material (ceramic layer) as a separator bonding method for an electric device (packed electrode plate), and an electrode (positive electrode)
  • a separator ceramic separator
  • a separator bonding method for an electric device packed electrode plate
  • an electrode positive electrode
  • a method of joining while cutting a ceramic separator having a negative electrode) sandwiched between ceramic layers facing each other cutting a joining region of a ceramic separator facing through an electrode, and connecting a polypropylene layer of one joining region to another It has been proposed to move toward the polypropylene layer in the joining region and melt and join the polypropylene layers in the joining region.
  • JP 2013-143337 A Japanese Patent Laying-Open No. 2015-185372
  • At least two separators having a resin layer and a heat-resistant layer formed on the resin layer are supported by a support member with the heat-resistant layers facing each other. And a relative movement with respect to the separator while pressing a vibration member that abuts on the separator in a dot shape and vibrates ultrasonically against the at least two separators.
  • an ultrasonic welding method for a separator wherein at least two separators having a resin layer and a heat-resistant layer formed on the resin layer are opposed to each other, and ultrasonic vibration is applied. Sandwiching the at least two separators between the vibrating member and the support member that supports the separators in a dotted manner, and moving the at least two separators relative to the vibration member and the support member Is provided.
  • the above-described ultrasonic welding method of the separator can weld the separator having the heat-resistant layer with the heat-resistant layers facing each other, and has relatively high bonding strength.
  • the present inventors have confirmed that in the conventional ultrasonic welding method using a linearly extending ultrasonic application member, it is difficult to sufficiently bond the separators with the heat-resistant layers of the two separators facing each other. The following hypothesis was made about the reason.
  • the present inventors use two vibration-resistant separators using a vibrating member that vibrates ultrasonically (for example, a vibrating member having a spherical tip) instead of a linearly extending member.
  • a vibrating member that vibrates ultrasonically for example, a vibrating member having a spherical tip
  • An experiment for welding was performed. That is, a linear weld portion was formed by moving the welding point by moving the ultrasonic vibration member against the two separators while pressing the vibrating member against the two separators.
  • this method it was possible to sufficiently bond the separators with the heat resistant layers of the two separators facing each other without increasing the ultrasonic output.
  • At least two separators each having a resin layer and a heat-resistant layer formed on the resin layer are supported by a support member with the heat-resistant layers facing each other, and the separator has a dotted shape.
  • the separator is ultrasonically welded to the separator by moving relative to the separator while pressing the vibrating member in contact with the at least two separators against each other.
  • At least two separators having a resin layer and a heat-resistant layer formed on the resin layer are placed on a support member with the heat-resistant layers facing each other, and are ultrasonically vibrated.
  • a vibration member ultrasonic vibrating indenter
  • the heat-resistant layer is destroyed and the resin is destroyed.
  • the layers can be welded together.
  • the ultrasonic welding method of the separator uses a vibrating member that comes into contact with the separator in a point-like manner, unlike an ultrasonic application member that extends in a linear shape, so that energy is concentrated in one place.
  • the ultrasonic welding method of the separator can perform continuous welding by moving the vibrating member relative to the separator. For this reason, since the linear weld part which is continuous with a comparatively large width
  • the relative movement of the vibrating member may be performed by moving the absolute position of the vibrating member.
  • the configuration of the apparatus can be relatively simplified, and productivity can be improved.
  • the form of the welded portion formed on the two separators such as a linear shape and a broken line shape, can be selected relatively freely.
  • the relative movement of the vibrating member may be performed while conveying the separator.
  • productivity can be further improved by performing the relative movement of the vibration member while conveying the separator.
  • the radius of curvature of the contact portion of the vibration member with the separator is 0.5 mm or more.
  • the “curvature radius” includes the point of contact with the separator, and the curvature radius of the cross section where the curvature radius of the contour line is the maximum in the cross section of the vibrating member perpendicular to the separator, and the contour line in the cross section orthogonal to the cross section. Mean the average value with the radius of curvature.
  • Relative movement of the vibrating member moves the vibrating member relative to the separator in a first direction, and moves the vibrating member relative to the separator in a second direction that intersects the first direction. It may include relative movement.
  • the relative movement of the vibration member includes a relative movement in the first direction and a relative movement in the second direction, so that the planar shape is more complicated than two separators compared to a conventional linearly extending member.
  • the welded portion can be formed. For example, it is relatively easy to dispose an electrode plate between two separators and form a welded portion along the contour of the electrode plate.
  • the vibration member is moved relative to the separator in the second direction while avoiding a separator weld formed when the vibration member is moved relative to the separator in the first direction. In this way, by performing the next welding while avoiding the place once welded, the productivity can be improved and a good welding state can be maintained.
  • an electrode plate is further disposed between the at least two separators, and a linear weld portion is formed along the contour of the electrode plate by relative movement of the vibration member.
  • the electrode plate is further disposed between the at least two separators, and the electrode is formed by forming a linear weld portion along the contour of the electrode plate by relative movement of the vibration member.
  • Another aspect of the present invention is to provide at least two separators having a resin layer and a heat-resistant layer formed on the resin layer so that the heat-resistant layers face each other, a vibration member that vibrates ultrasonically, and the separator.
  • An ultrasonic welding method for a separator comprising sandwiching the at least two separators with a support member that is supported in a dotted manner, and moving the at least two separators relative to the vibration member and the support member. It is.
  • the ultrasonic welding method of the separator uses a support member that comes into contact with the separator in the form of dots, so that the heat concentrates in a relatively large dotted area by concentrating energy in one place, and fragments of the heat resistant layer It is considered that sufficient energy can be obtained to extrude the resin layer outward in the plane direction and weld the resin layers together. Furthermore, the ultrasonic welding method of the separator can perform continuous welding by moving the separator relative to the vibration member and the support member. For this reason, since the linear weld part which is continuous with a comparatively large width
  • the at least two separators may be cut by moving the at least two separators relative to the vibrating member.
  • the welding process and the cutting process are simultaneously performed to improve manufacturing efficiency. Can do.
  • the contact surface of the vibration member may be planar, and the support surface of the support member may be arcuate in a side view perpendicular to the relative movement direction of the separator. As described above, the contact surface of the vibration member is planar, and the support surface of the support member is arcuate in a side view perpendicular to the relative movement direction of the separator. The separator sandwiched between the two can be moved relatively smoothly.
  • the ultrasonic welding method of a separator heats at least two separators S having a resin layer 1 and a heat-resistant layer 2 formed on the resin layer 1.
  • the layers 2 are opposed to each other and supported by a support member (anvil) A, and as shown in FIG. 2, a separator S while pressing a vibration member (horn) H that vibrates ultrasonically against the at least two separators S. Relative movement.
  • the ultrasonic welding method of the separator typically includes an electrode plate P for a storage element sandwiched between two separators S, and the two separators S are welded outside the electrode plate (positive electrode plate or negative electrode plate) P. Then, it can be adopted as one process for manufacturing a packaged electrode plate joined in an envelope shape. By using such a packaged electrode plate, it is possible to suppress the metal ions generated by the inclusion of foreign matter or the like from moving to the negative electrode on the positive electrode plate of the electricity storage element, and to prevent electrodeposition. Can be prevented.
  • the separator S may be supplied from a reel on which a long sheet is wound, and may be cut after the welding by the ultrasonic welding method. Further, the two separators S may be configured by folding one large sheet into two.
  • the packaged electrode plate cuts the separator S by cutting the long sheet on which the welded portion C is formed by the ultrasonic welding method between the two welded portions C or at the center of the welded portion C. Can be obtained.
  • the resin layer 1 is formed from a porous resin film.
  • the main component of the resin layer 1 examples include polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and chlorinated polyethylene.
  • Polyolefins such as polyolefin derivatives, ethylene-propylene copolymers, and polyesters such as polyethylene terephthalate and copolymerized polyesters can be used.
  • polyethylene and polypropylene excellent in electrolytic solution resistance, durability, and weldability are preferably used.
  • the “main component” means a component having the largest mass content.
  • the lower limit of the average thickness of the resin layer 1 is preferably 5 ⁇ m and more preferably 10 ⁇ m.
  • the upper limit of the average thickness of the resin layer 1 is preferably 50 ⁇ m, and more preferably 30 ⁇ m.
  • the heat-resistant layer 2 includes a large number of inorganic particles and a binder that connects the inorganic particles.
  • oxides such as alumina, silica, zirconia, titania, magnesia, ceria, yttria, zinc oxide, iron oxide, nitrides such as silicon nitride, titanium nitride, boron nitride, silicon carbide, carbonate Calcium, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate Etc.
  • alumina, silica, and titania are particularly preferable as the main component of the inorganic particles of the heat-resistant layer 2.
  • the lower limit of the average particle diameter of the inorganic particles of the heat-resistant layer 2 is preferably 1 nm, and more preferably 7 nm.
  • the upper limit of the average particle diameter of the inorganic particles is preferably 5 ⁇ m and more preferably 1 ⁇ m.
  • Examples of the main component of the binder of the heat-resistant layer 2 include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), fluorine rubber such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, Styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid Cellulose derivatives such as ester copolymers, synthetic rubbers such as acrylonitrile-acrylic acid ester copolymers, carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC), ammonium salts of carboxymethylcellulose, etc.
  • fluorine resins
  • Polyimide imides such as polyetherimide, polyamideimide, polyamide and precursors thereof (polyamic acid, etc.), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymer, polyvinyl alcohol (PVA), polyvinyl butyral ( PVB), polyvinyl pyrrolidone (PVP), polyvinyl acetate, polyurethane, polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyester and the like.
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • PVP polyvinyl pyrrolidone
  • polyvinyl acetate polyurethane
  • polyphenylene ether polysulfone
  • polyether sulfone polyether sulfone
  • polyphenylene sulfide polyester and the like.
  • the lower limit of the average thickness of the heat-resistant layer 2 is preferably 0.5 ⁇ m and more preferably 1 ⁇ m.
  • the upper limit of the average thickness of the heat-resistant layer 2 is preferably 10 ⁇ m, and more preferably 6 ⁇ m.
  • Electrode plate As the electrode plate P, the one obtained by laminating an active material layer on the surface of a metal foil is used.
  • the material of the metal foil of the electrode plate P for example, aluminum or the like can be used for the positive electrode, and for example, copper, iron, stainless steel, or the like can be used for the negative electrode.
  • a material mainly composed of an oxide material such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be used in the case of the positive electrode, and graphite or the like can be used in the case of the negative electrode. Can be used.
  • the supporting member A may be any member as long as the top surface on which the separator S is placed is flat, has sufficient surface hardness, and strength.
  • the separators S When welding the two separators S while transporting them, the separators S may be slid on the support member A, but by feeding the support members A together with the separators S, the contact of the vibrating member H of the separators S It is possible to prevent unnecessary tension from acting on the contact area. Therefore, by moving the support member A together with the separator S, it is possible to prevent a decrease in the bonding strength of the separator S while continuously welding a plurality of pairs of separators S efficiently.
  • vibration member H any member that contacts the separator S in a dot shape may be used.
  • the vibration member H may have a round bar shape and a hemispherical tip.
  • the lower limit of the radius of curvature of the contact portion of the vibration member H with the separator S is preferably 0.5 mm, and more preferably 1.0 mm.
  • the upper limit of the radius of curvature of the contact portion of the vibration member H with the separator S is preferably 8 mm, and more preferably 15 mm.
  • the ultrasonic vibration is not dispersed over a wide range of the separator S, and the heat-resistant layer 2 can be efficiently destroyed. .
  • the vibration direction of the vibration member H is preferably inclined with respect to the surface of the separator S. Since the vibration direction of the vibration member is inclined with respect to the surface of the separator S, the heat-resistant layer 2 is destroyed by the ultrasonic vibration of the vibration member H, and the broken pieces of the heat-resistant layer 2 are ultrasonicated by the vibration member H.
  • the resin layers 1 can be welded relatively easily by scraping them by vibration.
  • the vibration direction of the vibration member H is inclined with respect to the surface of the separator S, the clearance between the vibration member H and the support member A at the time of manufacture (interval in a state in which no ultrasonic vibration occurs) Even if it is adjusted to be smaller than the moving width (twice the amplitude) of the tip of the vibration member H by ultrasonic vibration, the vibration member H and the support member A do not collide with each other. For this reason, since the vibration direction of the vibration member H is inclined with respect to the surface of the separator S, the energy of ultrasonic vibration of the vibration member H can be transmitted efficiently, so that less It is considered that the welded portion C having a large length and a high peel strength can be formed.
  • the lower limit of the tilt angle with respect to the surface of the separator S in the vibration direction of the vibration member H is preferably 5 °, and more preferably 10 °.
  • the upper limit of the inclination angle of the vibrating member H with respect to the surface of the separator S in the vibration direction is preferably 70 °, and more preferably 60 °.
  • the resin layers 1 can be efficiently welded together by pushing away the broken pieces of the heat-resistant layer 2. , Can improve the efficiency.
  • a rod-shaped vibrating member H that abuts against the separator S at the tip and ultrasonically vibrates in the axial direction is used. It is good to arrange inclining with respect to the surface of S.
  • the lower limit of the amplitude of the vibration member H is preferably 10 ⁇ m, and more preferably 27 ⁇ m.
  • the upper limit of the amplitude of the vibration member H is preferably 80 ⁇ m, and more preferably 68 ⁇ m.
  • the frequency of ultrasonic vibration of the vibrating member H is preferably 10 kHz, and more preferably 20 kHz.
  • the upper limit of the frequency of ultrasonic vibration of the vibrating member H is preferably 80 kHz, and more preferably 40 kHz.
  • the lower limit of the pressure contact force (excluding the force acting by ultrasonic vibration) of the vibration member H with respect to the separator S is preferably 5N, and more preferably 10N.
  • the upper limit of the pressure contact force of the vibrating member H with respect to the separator S is preferably 50N, and more preferably 30N.
  • the moving direction of the vibrating member H preferably has an angle with respect to the vibrating direction of the vibrating member H in plan view. That is, it is preferable that the vibration of the vibration member H has a component in the width direction of the welded portion C to be formed.
  • the moving direction of the vibrating member H in plan view is different from the vibrating direction, the width of the welded portion C where the reciprocating movement of the pressure contact by the ultrasonic vibration of the vibrating member H is increased, and the heat-resistant layer destroyed. It is possible to efficiently weld the resin layers 1 to each other by scraping the two pieces into left and right.
  • the lower limit of the moving direction of the vibrating member H relative to the vibrating direction of the vibrating member H in plan view is preferably 30 °, and more preferably 40 °.
  • the angle of the moving direction of the vibration member H with respect to the vibration direction of the vibration member H in a plan view equal to or greater than the lower limit, the broken pieces of the heat-resistant layer 2 can be efficiently pushed out of the welded portion C. It is possible to perform welding well or to obtain a sufficient bonding strength of the separator S.
  • the upper limit of the angle in the moving direction of the vibration member H with respect to the vibration direction of the vibration member H in plan view is not particularly limited, and 90 ° is ideal considering only the weldability, but is shown in FIG.
  • the moving direction D1 of the vibration member H with respect to the vibration direction of the vibration member H (the length direction of the vibration member H) in plan view.
  • the mechanism for changing the direction of the vibrating member H is not required by setting the angle of D2 to 45 °.
  • the vibration member H moves relative to the separator S by moving its absolute position while being ultrasonically vibrated while being in pressure contact with the upper surfaces of the two separators S placed on the support member A.
  • a linear weld portion C is formed on the two separators S.
  • the vibration member H is held so as to be arbitrarily movable by a positioning drive mechanism formed from, for example, an articulated robot, an orthogonal coordinate system robot, or the like.
  • the relative movement of the vibration member H with respect to the separator S includes, for example, a movement in the first direction D1 and a movement in the second direction D2, as shown in FIG. Accordingly, the two separators S can be welded in a line along the contour of the electrode plate P while using the vibrating member H that comes into contact with the separator S in a point shape.
  • the vibration member H is relatively moved so as to form the welded portion C in the second direction D2 while avoiding the welded portion C in the first direction D1 formed earlier. That is, by preventing the vibration member H from pressing the same position of the separator S twice or more, the separator S of the welded portion C that has been previously formed is peeled off, or the separator S is broken at the welded portion C. Can be prevented.
  • the electrode laminate may be formed by alternately laminating a plurality of positive plates and a plurality of negative plates via separators, and collectively welding all separators outside the positive plates and the negative plates.
  • the vibration member may be relatively moved with respect to the separator by fixing the vibration member while being pressed against the separator and moving the support member on which the separator is loaded.
  • intermittent welds may be formed in a broken line shape, for example.
  • the shape of the contact surface of the vibration member is substantially symmetrical to the left and right in the relative movement direction so that the separator can be cut at the center in the width direction of the formed welded portion.
  • the ultrasonic welding method of the separator according to the present invention includes at least two separators having a resin layer and a heat-resistant layer formed on the resin layer, the heat-resistant layers facing each other, a vibrating member that vibrates ultrasonically, Sandwiching the at least two separators between the separator and the support member that supports the separators in a dotted manner, and moving the at least two separators relative to the vibration member and the support member. Good.
  • the above ultrasonic welding method may be carried out by using, for example, an ultrasonic welding apparatus shown in FIGS.
  • the vibration member H1 that vibrates ultrasonically has a preferably flat contact surface that extends linearly in a side view perpendicular to the relative movement direction of the separator S.
  • the support member A1 extends in an arc shape in a side view perpendicular to the relative movement direction of the separator S, and the width in the direction perpendicular to the relative movement direction of the separator S is sufficiently small. Abut.
  • This ultrasonic welding apparatus can be suitably used for cutting the separator S while welding.
  • the ultrasonic bonding method at least two separators S are sandwiched between the contact surface of the vibration member H1 and the support surface of the support member A1, and the separator S is moved relative to the vibration member H1 and the support member A1. By doing so, two separators S can be welded along the direction of relative movement.
  • the contact surface and the support surface come into contact with each other via the separator S, so that the energy of ultrasonic vibration is concentrated in one place, so that a relatively large dotted region is formed. It is considered that sufficient energy can be obtained to break the heat-resistant layer and extrude the heat-resistant layer fragments to weld the resin layers together.
  • the support member A1 is formed in a convex shape that bulges toward the separator, and protrudes in a linear shape extending from the base B to the relative movement direction of the separator S, and a base B that ensures strength. , And a convex portion E that forms a support surface that contacts the separator S.
  • the average width of the convex part E As a minimum of average width (substantially contact width with respect to separator S) of convex part E, 0.1 mm is preferred and 0.2 mm is more preferred. On the other hand, as an upper limit of the average width of the convex part E, 1 mm is preferable and 0.6 mm is more preferable. By setting the average width of the convex portions E to be equal to or greater than the lower limit, it is possible to sufficiently secure the width of the formed welded portion. Moreover, it can avoid that the contact area with respect to the separator S becomes large too much by making the average width of the convex part E below the said upper limit, and it can ensure welding.
  • the support member A1 comes into contact with the separator S substantially in a dot shape due to the small width of the projection E in particular.
  • the contact point of the convex portion E with respect to the separator S may have a width of about 1 mm
  • the cross-sectional shape of the tip portion of the convex portion E is not particularly limited, and for example, a square shape, a trapezoidal shape, or a semicircular shape Various shapes such as can be adopted.
  • the cross-sectional shape of the tip of the convex portion E can be a semicircular shape with a radius of about 0.2 mm.
  • the outer shape of the convex portion E in the direction perpendicular to the relative movement direction of the separator S may be an arc shape or an elliptical arc shape.
  • the lower limit of the radius of curvature at the contact position of the convex portion E with respect to the separator S in the direction perpendicular to the relative movement direction of the separator S is preferably 1 cm, more preferably 2 cm.
  • As an upper limit of a curvature radius 10 cm is preferable and 8 cm is more preferable.
  • the radius of curvature at the contact position of the convex portion E is equal to or less than the upper limit, it is possible to avoid the support member A1 coming into linear contact with the separator S and disperse the pressure contact force, The welding of the separator S can be ensured.
  • the vibration direction of the vibration member H1 is preferably a direction perpendicular to the moving direction (plane direction) of the separator S.
  • the apparatus configuration becomes relatively simple and the relative movement of the separator S becomes easy.
  • the separator S can be cut at the center of the formed welded portion.
  • the vibration member H1 may contact the lower surface of the separator S, and the support member A1 may contact the upper surface of the separator S.
  • Separator As a separator for ultrasonic welding, an average of 16 ⁇ m thick porous film formed of polypropylene as a main component is used as a resin layer, and alumina powder is coated on the surface of the resin layer using polyvinylidene fluoride as a binder. A separator having a heat-resistant layer having a thickness of 5 ⁇ m was prepared. Two separators were tested for ultrasonic welding with the heat-resistant layers facing each other in the manner described below. For comparison, a separator made of only the resin layer without a heat-resistant layer was prepared.
  • Test No. 1 a spherical rod-shaped vibrating member having a radius of 3.25 mm was used, and the vibrating member was supported so that the axial direction was inclined by 20 ° with respect to the surface of the separator and pressed against the separator. By vibrating the vibrating member in the axial direction at a frequency of 39.5 kHz and moving the vibrating member in a direction perpendicular to the vibrating direction in plan view, two separators were welded.
  • This test No. 1 the pressure contact load with respect to the separator was set to 16 N, the amplitude of the vibrating member was set to 80% of the maximum amplitude (67.7 ⁇ m), and the moving speed of the vibrating member was set to 500 mm / sec.
  • the two separators thus welded were observed with a microscope and the average thickness of the welded portion was measured to find that it was 31.2 ⁇ m. Further, a T-type peel test in accordance with JIS-K6854-3 (1999) was performed using a test piece obtained by cutting two welded separators into a width of 3 cm as an index of bonding strength between the two separators. As a result, test no. The peel strength at 1 was 1.3N. Moreover, when the peeling surface of the test piece after a peeling test was confirmed, it peeled in the welding part. Further, the sealability of the welded portions of the two separators was examined using a penetrant flaw detector, but the sealability was good.
  • Test No. 2 Test No. 2 except that the amplitude of the vibrating member was set to 100% of the maximum amplitude. The same test as 1 was performed. This test No. In No. 2, the average thickness of the welded portions of the two separators that were welded was 32.6 ⁇ m, and the peel strength was 4.9 N. Moreover, when the peeling surface of the test piece after a peeling test was confirmed, it peeled in the welding part. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
  • Test No. 3 Test No. 3 except that a separator consisting only of a resin layer was used. The same test as 2 was performed. This test No. 3, the average thickness of the welded portions of the two separators that were welded was 37.1 ⁇ m, and the peel strength was 14.5 N. Moreover, the test piece after a peeling test peeled in the welding part. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
  • Test No. 4 Test No. 4 except that the moving speed of the vibrating member was 250 mm / sec. The same test as 2 was performed. This test No. In No. 4, the average thickness of the welded portions of the two welded separators was 17.1 ⁇ m, and the peel strength was 10.5 N. Moreover, the test piece after a peeling test peeled in the welding part. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
  • Test No. 5 Test No. No. 5 except that the pressure contact load of the vibrating member was 18N. The same test as 2 was performed. This test No. 5, the average thickness of the welded portions of the two separators that were welded was 28.2 ⁇ m, and the peel strength was 5.9 N. Moreover, the test piece after a peeling test peeled in the welding part. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
  • Test No. 6 Test No. No. 6 except that the pressure contact load of the vibrating member was 24N. The same test as 2 was performed. This test No. In No. 6, two separators were welded and cut at the welded portion. The average width (total of both sides cut) of the two separators thus welded was 23.7 ⁇ m, and the peel strength (only one side cut) was 2.0 N. Further, the resin layer of the test piece after the peel test was broken. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
  • Test No. 7 Test No. 7 except that the moving speed of the vibrating member was 250 mm / sec. The same test as 1 was performed. This test No. In No. 7, the average width of the welded portions of the two separators that were welded was 23.7 ⁇ m, and the peel strength was 5.6 N. Further, the resin layer of the test piece after the peel test was broken. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
  • Test No. 8 except that the amplitude of the vibrating member was set to 60% of the maximum amplitude and the moving speed of the vibrating member was set to 250 mm / sec. The same test as 1 was performed.
  • Test No. 9 except that the amplitude of the vibrating member was set to 90% of the maximum amplitude and the moving speed of the vibrating member was set to 250 mm / sec. The same test as 1 was performed.
  • Test No. No. 10 was used for welding by using a vibrating member linearly contacting the separator, setting the pressure contact load of the vibrating member to 200 N, setting the frequency of the vibrating member to 90% of the maximum amplitude (49 ⁇ m) at a frequency of 30 kHz.
  • This test No. In No. 10 two separators could be barely welded. However, the peel strength of the two separators thus welded could not be measured because they were peeled off during handling. Further, the resin layer of the test piece after the peel test was broken. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was a seal failure.
  • the heat-resistant layer can be moved by relatively moving while pressing the vibration member that abuts against the separator in a dotted shape and ultrasonically vibrates. It was confirmed that the resin layers can be welded by breaking the layers. It was also confirmed that by adjusting the pressure contact load, amplitude, and moving speed of the vibration member, it was possible to perform welding with relatively high bonding strength or to cut while welding two separators.
  • the method for welding a separator according to the present invention can be suitably used for producing a packaged electrode plate.

Abstract

The present invention addresses the problem of providing an ultrasonic welding method for separators, by which two separators each having a heat resistant layer can be welded together while the heat resistant layers are opposed to each other such that the strength of bonding therebetween is relatively high. The ultrasonic welding method for separators according to one aspect of the present invention comprises: supporting, by a support member, at least two separators each having a resin layer and a heat resistant layer formed on the resin layer such that the heat resistant layers are opposed to each other; and moving, relative to the at least two separators, a vibration member that ultrasonically vibrates upon contact, in a dot pattern, with the separators, while pressing the vibration member against the separators.

Description

セパレータの超音波溶着方法Ultrasonic welding method of separator
 本発明は、セパレータの超音波溶着方法に関する。 The present invention relates to a method for ultrasonic welding of a separator.
 例えば携帯電話、電気自動車等の様々な機器に充放電可能な二次電池が使用されている。近年、これらの機器の高出力化や高性能化に伴い、より小型で電気容量の大きな二次電池が求められている。 For example, secondary batteries that can be charged and discharged are used in various devices such as mobile phones and electric vehicles. In recent years, with higher output and higher performance of these devices, a secondary battery having a smaller size and a larger electric capacity has been demanded.
 一般に二次電池は、表面に正極活物質層が形成された正極板と表面に負極活物質層が形成された負極板とを電気絶縁性を有するセパレータを介して交互に積層して形成される。このような二次電池で単位体積当たりの電気容量を大きくするには、セパレータを薄くすることが有効である。このため、セパレータを樹脂フィルムによって形成した二次電池が実用化されている。 Generally, a secondary battery is formed by alternately laminating a positive electrode plate having a positive electrode active material layer formed on a surface and a negative electrode plate having a negative electrode active material layer formed on a surface via an electrically insulating separator. . In order to increase the electric capacity per unit volume in such a secondary battery, it is effective to make the separator thinner. For this reason, the secondary battery which formed the separator with the resin film is put into practical use.
 二次電池では、負極において電析によって生成される金属析出物(例えばリチウムデンドライト)がセパレータを貫通して正極板と負極板とを微小短絡させるおそれがある。このため、正極板又は負極板を挟み込む一対のセパレータの外縁を溶着して袋状にすることで、正極板近傍の電解質に析出物を生成し得る金属イオンを生じる金属種が混入することを抑制したり、金属イオンが負極に接触して電析することを抑制したりする構成が採用される場合がある。 In a secondary battery, metal deposits (for example, lithium dendrite) generated by electrodeposition in the negative electrode may penetrate the separator and cause a short circuit between the positive electrode plate and the negative electrode plate. For this reason, by welding the outer edges of a pair of separators sandwiching the positive electrode plate or the negative electrode plate into a bag shape, it is possible to suppress the inclusion of metal species that generate metal ions that can generate precipitates in the electrolyte near the positive electrode plate. Or a structure that suppresses metal ions from coming into contact with the negative electrode and being electrodeposited may be employed.
 樹脂フィルムから形成されるセパレータは、比較的熱に弱いため、二次電池の電気容量を大きくすると、セパレータが熱により損傷し、電析によって生成される析出物がセパレータを貫通して正極板と負極板とを微小短絡させるおそれがある。このため、セパレータの電極板に当接する面に耐熱層(無機層)を形成し、セパレータの耐熱性を向上した二次電池が提案されている。 Since the separator formed from a resin film is relatively weak against heat, when the electric capacity of the secondary battery is increased, the separator is damaged by heat, and the precipitate generated by electrodeposition penetrates the separator and the positive electrode plate. There is a risk of short-circuiting the negative electrode plate. For this reason, a secondary battery has been proposed in which a heat-resistant layer (inorganic layer) is formed on the surface of the separator that contacts the electrode plate to improve the heat resistance of the separator.
 しかしながら、樹脂フィルムの表面に耐熱層を有するセパレータを耐熱層同士を当接させて重ね合わせると耐熱層が樹脂フィルムの溶着を阻害するため、セパレータを容易に溶着することができない。 However, if a separator having a heat-resistant layer is put on the surface of the resin film and the heat-resistant layers are brought into contact with each other, the heat-resistant layer inhibits the welding of the resin film, so that the separator cannot be easily welded.
 特開2013-143337号公報には、耐熱層を介して樹脂材料からなるセパレータ層が積層され、さらにその両側から外装材が積層されている部分を加圧加振部と冶具受部により挟んで加圧しつつ振動を加える二次電池の製造方法において、加圧加振部及び冶具受部に凸部を形成することで耐熱層を破壊して、破壊部分でセパレータ層樹脂を溶着することが提案されている。 In JP 2013-143337 A, a separator layer made of a resin material is laminated through a heat-resistant layer, and a portion where an exterior material is laminated from both sides is sandwiched between a pressure excitation unit and a jig receiving unit. In a method of manufacturing a secondary battery that applies vibration while applying pressure, it is proposed that the heat-resistant layer is destroyed by forming convex portions on the pressure excitation part and the jig receiving part, and the separator layer resin is welded at the destruction part. Has been.
 特開2015-185372号公報には、電気デバイス(袋詰電極板)のセパレータ接合方法として、溶融材(ポリプロピレン層)と耐熱材(セラミックス層)を含むセパレータ(セラミックセパレータ)を用い、電極(正極または負極)を挟持しセラミックス層同士を対面させたセラミックセパレータを切断しつつ接合する方法として、電極を介して対面するセラミックセパレータの接合領域を切断しつつ、一の接合領域のポリプロピレン層を他の接合領域のポリプロピレン層に向けて移動させ、接合領域のポリプロピレン層同士を溶融して接合することが提案されている。 JP-A-2015-185372 uses a separator (ceramic separator) containing a molten material (polypropylene layer) and a heat-resistant material (ceramic layer) as a separator bonding method for an electric device (packed electrode plate), and an electrode (positive electrode) Alternatively, as a method of joining while cutting a ceramic separator having a negative electrode) sandwiched between ceramic layers facing each other, cutting a joining region of a ceramic separator facing through an electrode, and connecting a polypropylene layer of one joining region to another It has been proposed to move toward the polypropylene layer in the joining region and melt and join the polypropylene layers in the joining region.
特開2013-143337号公報JP 2013-143337 A 特開2015-185372号公報Japanese Patent Laying-Open No. 2015-185372
 特開2013-143337号公報に記載の方法では、加圧加振部及び冶具受部に凸部を形成するため、溶着が断続的に行われ、全体として溶着面積を大きくすることが難しく、十分な接合強度を得ることが容易ではない。 In the method described in Japanese Patent Application Laid-Open No. 2013-143337, since convex portions are formed in the pressure excitation unit and the jig receiving unit, welding is performed intermittently, and it is difficult to increase the welding area as a whole. It is not easy to obtain a good bonding strength.
 また、特開2015-185372号公報に記載の方法では、連続してポリプロピレン層同士を溶着することができるが、比較的鋭利な切断刃を用いるのでポリプロピレンの溶着幅を大きくすることが困難であるため、やはり、全体として溶着面積を大きくすることが難しく、十分な接合強度を得ることが容易ではない。 Further, in the method described in JP-A-2015-185372, polypropylene layers can be continuously welded to each other. However, since a relatively sharp cutting blade is used, it is difficult to increase the welding width of polypropylene. Therefore, it is still difficult to increase the welding area as a whole, and it is not easy to obtain sufficient bonding strength.
 かかる状況に鑑みて、本発明は、耐熱層を有する2枚のセパレータを耐熱層同士を対向させて溶着することができ、比較的接合強度が大きいセパレータの超音波溶着方法を提供することを課題とする。 In view of such a situation, it is an object of the present invention to provide an ultrasonic welding method for a separator that can weld two separators having a heat-resistant layer with the heat-resistant layers facing each other and has a relatively high bonding strength. And
 本発明の一態様に係るセパレータの超音波溶着方法は、樹脂層と前記樹脂層上に形成された耐熱層とを有する少なくとも2枚のセパレータを前記耐熱層同士を対向させて支持部材で支持すること、及び前記セパレータに点状に当接して超音波振動する振動部材を前記少なくとも2枚のセパレータに押し当てながらセパレータに対して相対移動することを備える。 In the ultrasonic welding method for a separator according to one aspect of the present invention, at least two separators having a resin layer and a heat-resistant layer formed on the resin layer are supported by a support member with the heat-resistant layers facing each other. And a relative movement with respect to the separator while pressing a vibration member that abuts on the separator in a dot shape and vibrates ultrasonically against the at least two separators.
 本発明の別の態様に係るセパレータの超音波溶着方法は、樹脂層と前記樹脂層上に形成された耐熱層とを有する少なくとも2枚のセパレータを前記耐熱層同士を対向させること、超音波振動する振動部材と、前記セパレータを点状に支持する支持部材との間に前記少なくとも2枚のセパレータを挟むこと、並びに前記振動部材及び支持部材に対して前記少なくとも2枚のセパレータを相対移動することを備える。 According to another aspect of the present invention, there is provided an ultrasonic welding method for a separator, wherein at least two separators having a resin layer and a heat-resistant layer formed on the resin layer are opposed to each other, and ultrasonic vibration is applied. Sandwiching the at least two separators between the vibrating member and the support member that supports the separators in a dotted manner, and moving the at least two separators relative to the vibration member and the support member Is provided.
 以上のセパレータの超音波溶着方法は、耐熱層を有するセパレータを耐熱層同士を対向させて溶着することができ、かつ比較的接合強度が大きい。 The above-described ultrasonic welding method of the separator can weld the separator having the heat-resistant layer with the heat-resistant layers facing each other, and has relatively high bonding strength.
本発明の一実施形態のセパレータの超音波溶着方法を示す模式的断面図である。It is typical sectional drawing which shows the ultrasonic welding method of the separator of one Embodiment of this invention. 図1のセパレータの超音波溶着方法の模式的平面図である。It is a schematic plan view of the ultrasonic welding method of the separator of FIG. 本発明の図1とは異なるセパレータの超音波溶着方法を示す模式的断面図である。It is typical sectional drawing which shows the ultrasonic welding method of the separator different from FIG. 1 of this invention. 図3のセパレータの超音波溶着方法の模式的部分断面側面図である。It is a typical fragmentary sectional side view of the ultrasonic welding method of the separator of FIG.
 本発明者らは、線状に延びる超音波印加部材を用いる従来の超音波溶着方法では、2枚のセパレータの耐熱層を対向させた状態でそれらセパレータ十分に接合することが難しいことを確認し、その理由について、次の仮説をたてた。 The present inventors have confirmed that in the conventional ultrasonic welding method using a linearly extending ultrasonic application member, it is difficult to sufficiently bond the separators with the heat-resistant layers of the two separators facing each other. The following hypothesis was made about the reason.
(仮説1)
 線状に延びる超音波印加部材では、エネルギーが分散しやすい。
(Hypothesis 1)
In the ultrasonic wave application member extending linearly, energy is easily dispersed.
(仮説2)
 線状に延びる超音波印加部材を用いる場合、エネルギーを可能な限り集中させるために、超音波印加部材の先端を細くする必要があるため、セパレータ上に形成される溶着幅が狭くなり、十分な接合強度が得られにくい。
(Hypothesis 2)
When using a linearly extending ultrasonic application member, it is necessary to make the tip of the ultrasonic application member thin in order to concentrate the energy as much as possible, so that the welding width formed on the separator is narrow and sufficient. Bond strength is difficult to obtain.
(仮説3)
 線状に延びる超音波印加部材を用いる場合、超音波印加部材で破壊された耐熱層の破片が、セパレータ内で、超音波印加部材が延びる線を境とした両サイドにのみ押し出される。そのため、エネルギー集中のために先端を細くする必要性とあいまって、セパレータ上に形成される溶着幅が狭くなり、十分な接合強度が得られにくい。
(Hypothesis 3)
In the case of using a linearly extending ultrasonic wave application member, fragments of the heat-resistant layer destroyed by the ultrasonic wave application member are pushed out only to both sides of the separator with the line extending the ultrasonic wave application member as a boundary. Therefore, combined with the necessity of narrowing the tip for energy concentration, the welding width formed on the separator is narrowed, and it is difficult to obtain sufficient bonding strength.
 本発明者らは、上記の仮説に基づいて、線状に延びる部材に代えて、超音波振動する振動部材(例えば、先端が球形状の振動部材)を用いて、2枚の耐熱層付きセパレータを溶着する実験を行った。つまり、超音波振動する振動部材を2枚のセパレータに押し当てながらセパレータに対して相対移動することによって溶着点を移動させることにより線状の溶着部を形成した。驚くべきことに、この方法により、超音波出力を増大させなくても、2枚のセパレータの耐熱層を対向させた状態でそれらセパレータを十分に接合することができた。 Based on the above hypothesis, the present inventors use two vibration-resistant separators using a vibrating member that vibrates ultrasonically (for example, a vibrating member having a spherical tip) instead of a linearly extending member. An experiment for welding was performed. That is, a linear weld portion was formed by moving the welding point by moving the ultrasonic vibration member against the two separators while pressing the vibrating member against the two separators. Surprisingly, with this method, it was possible to sufficiently bond the separators with the heat resistant layers of the two separators facing each other without increasing the ultrasonic output.
 本発明の一態様は、樹脂層と前記樹脂層上に形成された耐熱層とを有する少なくとも2枚のセパレータを前記耐熱層同士を対向させて支持部材で支持すること、及び前記セパレータに点状に当接して超音波振動する振動部材を前記少なくとも2枚のセパレータに押し当てながらセパレータに対して相対移動することを備えるセパレータの超音波溶着方法である。 In one embodiment of the present invention, at least two separators each having a resin layer and a heat-resistant layer formed on the resin layer are supported by a support member with the heat-resistant layers facing each other, and the separator has a dotted shape. The separator is ultrasonically welded to the separator by moving relative to the separator while pressing the vibrating member in contact with the at least two separators against each other.
 当該セパレータの超音波溶着方法は、樹脂層と前記樹脂層上に形成された耐熱層とを有する少なくとも2枚のセパレータを耐熱層同士を対向させて支持部材上に載置し、超音波振動する振動部材(ultrasonic vibrating indenter)を前記少なくとも2枚のセパレータに押し当てることにより、振動部材と支持部材とで少なくとも2枚のセパレータを挟み込んで超音波振動を加えることによって、耐熱層を破壊して樹脂層同士を溶着することができる。 In the ultrasonic welding method for the separator, at least two separators having a resin layer and a heat-resistant layer formed on the resin layer are placed on a support member with the heat-resistant layers facing each other, and are ultrasonically vibrated. By pressing a vibration member (ultrasonic vibrating indenter) against the at least two separators, sandwiching at least two separators between the vibration member and the support member, and applying ultrasonic vibration, the heat-resistant layer is destroyed and the resin is destroyed. The layers can be welded together.
 具体的には、当該セパレータの超音波溶着方法は、従来の線状に延びる超音波印加部材とは異なり、セパレータに点状に当接する振動部材を使用するため、エネルギーが一カ所に集中することで比較的大きな点状の領域の耐熱層を破壊して耐熱層の砕片を平面方向外側に押し出して樹脂層同士を溶着するのに十分なエネルギーが得られると考えられる。さらに、当該セパレータの超音波溶着方法は、振動部材をセパレータに対して相対移動することで連続的な溶着を行うことができる。このため、比較的大きい幅で連続した線状の溶着部を形成することができるので、セパレータの接合強度を比較的大きくすることができる。 Specifically, the ultrasonic welding method of the separator uses a vibrating member that comes into contact with the separator in a point-like manner, unlike an ultrasonic application member that extends in a linear shape, so that energy is concentrated in one place. Thus, it is considered that sufficient energy can be obtained to break the heat-resistant layer in a relatively large dot-like region and push the fragments of the heat-resistant layer to the outside in the plane direction to weld the resin layers together. Furthermore, the ultrasonic welding method of the separator can perform continuous welding by moving the vibrating member relative to the separator. For this reason, since the linear weld part which is continuous with a comparatively large width | variety can be formed, the joining strength of a separator can be made comparatively large.
 前記振動部材の相対移動を前記振動部材の絶対位置の移動により行うとよい。このように、前記振動部材の相対移動を前記振動部材の絶対位置の移動により行うことによって、装置の構成を比較的簡素にすることができると共に、生産性を向上することができる。また、振動部材を移動することによって、例えば線状、破線状等、2枚のセパレータに形成する溶着部の形態を比較的自由に選択することができる。 The relative movement of the vibrating member may be performed by moving the absolute position of the vibrating member. Thus, by performing relative movement of the vibrating member by moving the absolute position of the vibrating member, the configuration of the apparatus can be relatively simplified, and productivity can be improved. Further, by moving the vibrating member, for example, the form of the welded portion formed on the two separators, such as a linear shape and a broken line shape, can be selected relatively freely.
 前記振動部材の相対移動を前記セパレータを搬送しながら行うとよい。このように、前記振動部材の相対移動を前記セパレータを搬送しながら行うことによって、生産性を一層高めることができる。 The relative movement of the vibrating member may be performed while conveying the separator. Thus, productivity can be further improved by performing the relative movement of the vibration member while conveying the separator.
 前記振動部材の前記セパレータへの当接部分の曲率半径が0.5mm以上であるとよい。このように、前記振動部材の前記セパレータへの当接部分の曲率半径が0.5mm以上であることによって、溶着部の幅を比較的大きくすることができ、より確実にセパレータ間の接合強度を向上できる。なお、「曲率半径」は、セパレータに当接する点を含み、セパレータに垂直な振動部材の断面の中で輪郭線の曲率半径が最大となる断面の曲率半径と、これに直交する断面における輪郭線の曲率半径との平均値を意味するものとする。 It is preferable that the radius of curvature of the contact portion of the vibration member with the separator is 0.5 mm or more. As described above, when the radius of curvature of the contact portion of the vibrating member to the separator is 0.5 mm or more, the width of the welded portion can be made relatively large, and the bonding strength between the separators can be more reliably increased. Can be improved. The “curvature radius” includes the point of contact with the separator, and the curvature radius of the cross section where the curvature radius of the contour line is the maximum in the cross section of the vibrating member perpendicular to the separator, and the contour line in the cross section orthogonal to the cross section. Mean the average value with the radius of curvature.
 前記振動部材の相対移動が、前記振動部材を前記セパレータに対して第1の方向に相対移動すること、及び前記振動部材を前記セパレータに対して前記第1の方向と交差する第2の方向に相対移動することを含むとよい。前記振動部材の相対移動が、第1の方向の相対移動と第2の方向の相対移動とを含むことによって、従来の線状に延びる部材と比較して、2枚のセパレータより複雑な平面形状の溶着部を形成することができる。例えば、2枚のセパレータの間に電極板を配置し、その電極板の輪郭に沿って溶着部を形成することも比較的容易である。 Relative movement of the vibrating member moves the vibrating member relative to the separator in a first direction, and moves the vibrating member relative to the separator in a second direction that intersects the first direction. It may include relative movement. The relative movement of the vibration member includes a relative movement in the first direction and a relative movement in the second direction, so that the planar shape is more complicated than two separators compared to a conventional linearly extending member. The welded portion can be formed. For example, it is relatively easy to dispose an electrode plate between two separators and form a welded portion along the contour of the electrode plate.
 前記振動部材を前記セパレータに対して前記第1の方向に相対移動した時に形成されたセパレータ溶着部を避けて、前記振動部材を前記セパレータに対して前記第2の方向に相対移動するとよい。このように、一度溶着した箇所を避けて次の溶着を行うことで、生産性を向上でき、かつ、良好な溶着状態を維持できる。 It is preferable that the vibration member is moved relative to the separator in the second direction while avoiding a separator weld formed when the vibration member is moved relative to the separator in the first direction. In this way, by performing the next welding while avoiding the place once welded, the productivity can be improved and a good welding state can be maintained.
 前記少なくとも2枚のセパレータの間に電極板を配置することをさらに備え、前記振動部材の相対移動により前記電極板の輪郭に沿って線状の溶着部を形成するとよい。このように、前記少なくとも2枚のセパレータの間に電極板を配置することをさらに備え、前記振動部材の相対移動により前記電極板の輪郭に沿って線状の溶着部を形成することによって、電極板を袋状のセパレータで覆った袋詰め電極を効率よく製造することができる。 It is preferable that an electrode plate is further disposed between the at least two separators, and a linear weld portion is formed along the contour of the electrode plate by relative movement of the vibration member. Thus, the electrode plate is further disposed between the at least two separators, and the electrode is formed by forming a linear weld portion along the contour of the electrode plate by relative movement of the vibration member. A bag-packed electrode in which the plate is covered with a bag-like separator can be efficiently produced.
 本発明の別の態様は、樹脂層と前記樹脂層上に形成された耐熱層とを有する少なくとも2枚のセパレータを前記耐熱層同士を対向させること、超音波振動する振動部材と、前記セパレータを点状に支持する支持部材との間に前記少なくとも2枚のセパレータを挟むこと、並びに前記振動部材及び支持部材に対して前記少なくとも2枚のセパレータを相対移動することを備えるセパレータの超音波溶着方法である。 Another aspect of the present invention is to provide at least two separators having a resin layer and a heat-resistant layer formed on the resin layer so that the heat-resistant layers face each other, a vibration member that vibrates ultrasonically, and the separator. An ultrasonic welding method for a separator, comprising sandwiching the at least two separators with a support member that is supported in a dotted manner, and moving the at least two separators relative to the vibration member and the support member. It is.
 当該セパレータの超音波溶着方法は、セパレータに点状に当接する支持部材を使用するため、エネルギーが一カ所に集中することで比較的大きな点状の領域の耐熱層を破壊して耐熱層の砕片を平面方向外側に押し出して樹脂層同士を溶着するのに十分なエネルギーが得られると考えられる。さらに、当該セパレータの超音波溶着方法は、前記振動部材及び支持部材に対してセパレータを相対移動することで連続的な溶着を行うことができる。このため、比較的大きい幅で連続した線状の溶着部を形成することができるので、セパレータの接合強度を比較的大きくすることができる。 The ultrasonic welding method of the separator uses a support member that comes into contact with the separator in the form of dots, so that the heat concentrates in a relatively large dotted area by concentrating energy in one place, and fragments of the heat resistant layer It is considered that sufficient energy can be obtained to extrude the resin layer outward in the plane direction and weld the resin layers together. Furthermore, the ultrasonic welding method of the separator can perform continuous welding by moving the separator relative to the vibration member and the support member. For this reason, since the linear weld part which is continuous with a comparatively large width | variety can be formed, the joining strength of a separator can be made comparatively large.
 前記振動部材に対して前記少なくとも2枚のセパレータを相対移動することにより前記少なくとも2枚のセパレータを切断してもよい。このように、前記振動部材に対して前記少なくとも2枚のセパレータを相対移動することにより前記少なくとも2枚のセパレータを切断することで、溶着工程と切断工程とを同時に行って製造効率を向上することができる。 The at least two separators may be cut by moving the at least two separators relative to the vibrating member. Thus, by cutting the at least two separators by moving the at least two separators relative to the vibrating member, the welding process and the cutting process are simultaneously performed to improve manufacturing efficiency. Can do.
 前記振動部材の当接面が平面状であり、前記セパレータの相対移動方向に垂直な側面視において前記支持部材の支持面が円弧状であるとよい。このように、前記振動部材の当接面が平面状であり、前記セパレータの相対移動方向に垂直な側面視において前記支持部材の支持面が円弧状であることによって、前記振動部材と支持部材との間に挟み込まれているセパレータを比較的スムーズに移動させることができる。 The contact surface of the vibration member may be planar, and the support surface of the support member may be arcuate in a side view perpendicular to the relative movement direction of the separator. As described above, the contact surface of the vibration member is planar, and the support surface of the support member is arcuate in a side view perpendicular to the relative movement direction of the separator. The separator sandwiched between the two can be moved relatively smoothly.
 以下、適宜図面を参照しつつ、本発明の一実施形態に係るセパレータの超音波溶着方法について詳説する。 Hereinafter, a method for ultrasonic welding of a separator according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
[セパレータの超音波溶着方法]
 本発明の一実施形態に係るセパレータの超音波溶着方法は、図1に示すように、樹脂層1とこの樹脂層1上に形成された耐熱層2とを有する少なくとも2枚のセパレータSを耐熱層2同士を対向させて支持部材(アンビル)Aで支持することと、図2に示すように、超音波振動する振動部材(ホーン)Hを前記少なくとも2枚のセパレータSに押し当てながらセパレータSに対して相対移動することとを備える。
[Ultrasonic welding method of separator]
As shown in FIG. 1, the ultrasonic welding method of a separator according to an embodiment of the present invention heats at least two separators S having a resin layer 1 and a heat-resistant layer 2 formed on the resin layer 1. The layers 2 are opposed to each other and supported by a support member (anvil) A, and as shown in FIG. 2, a separator S while pressing a vibration member (horn) H that vibrates ultrasonically against the at least two separators S. Relative movement.
 当該セパレータの超音波溶着方法は、典型的には、蓄電素子用の電極板Pを2枚のセパレータSによって挟み込み、電極板(正極板又は負極板)Pの外側で2枚のセパレータSを溶着して封筒状に接合した袋詰電極板を製造するための一工程として採用できる。このような袋詰電極板を用いることにより、蓄電素子の正極板において異物等の混入によって生成される金属イオンが負極に移動して電析することを抑制することができ、電析による微小短絡を防止することができる。 The ultrasonic welding method of the separator typically includes an electrode plate P for a storage element sandwiched between two separators S, and the two separators S are welded outside the electrode plate (positive electrode plate or negative electrode plate) P. Then, it can be adopted as one process for manufacturing a packaged electrode plate joined in an envelope shape. By using such a packaged electrode plate, it is possible to suppress the metal ions generated by the inclusion of foreign matter or the like from moving to the negative electrode on the positive electrode plate of the electricity storage element, and to prevent electrodeposition. Can be prevented.
<セパレータ>
 セパレータSは、長尺のシートを巻き取ったリールから供給され、当該超音波溶着方法によって溶着後に切断されてもよい。また、1枚の大判のシートを2つ折りにすることで、2枚のセパレータSを構成してもよい。
<Separator>
The separator S may be supplied from a reel on which a long sheet is wound, and may be cut after the welding by the ultrasonic welding method. Further, the two separators S may be configured by folding one large sheet into two.
 2枚のセパレータSをリールから連続供給することで、多数の袋詰電極板を連続して効率よく製造することができる。なお、袋詰電極板は、当該超音波溶着方法により溶着部Cを形成した長尺のシートを2本の溶着部Cの間又は1本の溶着部Cの中央で切断してセパレータSを切り離すことで得られる。 By continuously supplying the two separators S from the reel, a large number of packed electrode plates can be manufactured continuously and efficiently. The packaged electrode plate cuts the separator S by cutting the long sheet on which the welded portion C is formed by the ultrasonic welding method between the two welded portions C or at the center of the welded portion C. Can be obtained.
(樹脂層)
 樹脂層1は、多孔質樹脂フィルムから形成される。
(Resin layer)
The resin layer 1 is formed from a porous resin film.
 この樹脂層1の主成分としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、エチレン-酢酸ビニル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、塩素化ポリエチレン等のポリオレフィン誘導体、エチレン-プロピレン共重合体等のポリオレフィン、ポリエチレンテレフタレートや共重合ポリエステル等のポリエステルなどを採用することができる。中でも、樹脂層1の主成分としては、耐電解液性、耐久性及び溶着性に優れるポリエチレン及びポリプロピレンが好適に用いられる。なお、「主成分」とは、最も質量含有率が大きい成分を意味する。 Examples of the main component of the resin layer 1 include polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, and chlorinated polyethylene. Polyolefins such as polyolefin derivatives, ethylene-propylene copolymers, and polyesters such as polyethylene terephthalate and copolymerized polyesters can be used. Among these, as the main component of the resin layer 1, polyethylene and polypropylene excellent in electrolytic solution resistance, durability, and weldability are preferably used. The “main component” means a component having the largest mass content.
 樹脂層1の平均厚さの下限としては、5μmが好ましく、10μmがより好ましい。一方、樹脂層1の平均厚さの上限としては、50μmが好ましく、30μmがより好ましい。樹脂層1の平均厚さを前記下限以上とすることで、樹脂層1が破断することなくセパレータSを溶着することができる。また、樹脂層1の平均厚さを前記上限以下とすることで、セパレータSの厚さが不必要に増大することなく蓄電素子の体積当たりの容量を十分な大きさにできる。 The lower limit of the average thickness of the resin layer 1 is preferably 5 μm and more preferably 10 μm. On the other hand, the upper limit of the average thickness of the resin layer 1 is preferably 50 μm, and more preferably 30 μm. By making the average thickness of the resin layer 1 equal to or greater than the lower limit, the separator S can be welded without the resin layer 1 breaking. Further, by setting the average thickness of the resin layer 1 to be equal to or less than the above upper limit, the capacity per unit volume of the power storage element can be sufficiently increased without unnecessarily increasing the thickness of the separator S.
(耐熱層)
 耐熱層2は、多数の無機粒子と、この無機粒子間を接続するバインダとを含む構成とされる。
(Heat resistant layer)
The heat-resistant layer 2 includes a large number of inorganic particles and a binder that connects the inorganic particles.
 無機粒子の主成分としては、例えばアルミナ、シリカ、ジルコニア、チタニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレイ、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウムなどが挙げられる。中でも、耐熱層2の無機粒子の主成分としては、アルミナ、シリカ及びチタニアが特に好ましい。 As the main component of the inorganic particles, for example, oxides such as alumina, silica, zirconia, titania, magnesia, ceria, yttria, zinc oxide, iron oxide, nitrides such as silicon nitride, titanium nitride, boron nitride, silicon carbide, carbonate Calcium, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amicite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate Etc. Among these, alumina, silica, and titania are particularly preferable as the main component of the inorganic particles of the heat-resistant layer 2.
 耐熱層2の無機粒子の平均粒子径の下限としては、1nmが好ましく、7nmがより好ましい。一方、無機粒子の平均粒子径の上限としては、5μmが好ましく、1μmがより好ましい。無機粒子の平均粒子径を前記下限以上とすることで、耐熱層2中のバインダの比率が大きくなることはなく、十分な耐熱性を有する耐熱層2を得ることができる。また、無機粒子の平均粒子径を前記上限以下とすることで、均質な耐熱層2を容易に形成することができる。なお、「平均粒子径」とは、透過電子顕微鏡(TEM)又は走査電子顕微鏡(SEM)を用いてJIS-R1670に準じて測定される値である。 The lower limit of the average particle diameter of the inorganic particles of the heat-resistant layer 2 is preferably 1 nm, and more preferably 7 nm. On the other hand, the upper limit of the average particle diameter of the inorganic particles is preferably 5 μm and more preferably 1 μm. By setting the average particle diameter of the inorganic particles to the above lower limit or more, the ratio of the binder in the heat-resistant layer 2 does not increase, and the heat-resistant layer 2 having sufficient heat resistance can be obtained. Moreover, the uniform heat resistant layer 2 can be easily formed by making the average particle diameter of inorganic particles below the upper limit. The “average particle diameter” is a value measured according to JIS-R1670 using a transmission electron microscope (TEM) or a scanning electron microscope (SEM).
 耐熱層2のバインダの主成分としては、例えばポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体等のフッ素ゴム、スチレン-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン共重合体及びその水素化物、アクリロニトリル-ブタジエン-スチレン共重合体及びその水素化物、メタクリル酸エステル-アクリル酸エステル共重合体、スチレン-アクリル酸エステル共重合体、アクリロニトリル-アクリル酸エステル共重合体等の合成ゴム、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロースのアンモニウム塩等のセルロース誘導体、ポリエーテルイミド、ポリアミドイミド、ポリアミド及びその前駆体(ポリアミック酸等)等のポリイミド樹脂、エチレン-エチルアクリレート共重合体等のエチレン-アクリル酸共重合体、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリ酢酸ビニル、ポリウレタン、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエステルなどが挙げられる。 Examples of the main component of the binder of the heat-resistant layer 2 include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), fluorine rubber such as vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, Styrene-butadiene copolymer and its hydride, acrylonitrile-butadiene copolymer and its hydride, acrylonitrile-butadiene-styrene copolymer and its hydride, methacrylic acid ester-acrylic acid ester copolymer, styrene-acrylic acid Cellulose derivatives such as ester copolymers, synthetic rubbers such as acrylonitrile-acrylic acid ester copolymers, carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC), ammonium salts of carboxymethylcellulose, etc. , Polyimide imides such as polyetherimide, polyamideimide, polyamide and precursors thereof (polyamic acid, etc.), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymer, polyvinyl alcohol (PVA), polyvinyl butyral ( PVB), polyvinyl pyrrolidone (PVP), polyvinyl acetate, polyurethane, polyphenylene ether, polysulfone, polyether sulfone, polyphenylene sulfide, polyester and the like.
 耐熱層2の平均厚さの下限としては、0.5μmが好ましく、1μmがより好ましい。一方、耐熱層2の平均厚さの上限としては、10μmが好ましく、6μmがより好ましい。耐熱層2の平均厚さを前記下限以上とすることで、セパレータSの耐熱性を十分に向上することができる。また、耐熱層2の平均厚さを前記上限以下とすることで、セパレータSの厚さが不必要に増大することなく蓄電素子の体積当たりの容量を十分な大きさにできる。 The lower limit of the average thickness of the heat-resistant layer 2 is preferably 0.5 μm and more preferably 1 μm. On the other hand, the upper limit of the average thickness of the heat-resistant layer 2 is preferably 10 μm, and more preferably 6 μm. By making the average thickness of the heat-resistant layer 2 equal to or more than the lower limit, the heat resistance of the separator S can be sufficiently improved. In addition, by setting the average thickness of the heat-resistant layer 2 to be equal to or less than the above upper limit, the capacity per volume of the power storage element can be sufficiently increased without unnecessarily increasing the thickness of the separator S.
(電極板)
 電極板Pとしては、金属箔の表面に活物質層を積層したものが使用される。
(Electrode plate)
As the electrode plate P, the one obtained by laminating an active material layer on the surface of a metal foil is used.
 電極板Pの金属箔の材質としては、正極の場合には例えばアルミニウム等を用いることができ、負極の場合には例えば銅、鉄、ステンレス等を用いることができる。 As the material of the metal foil of the electrode plate P, for example, aluminum or the like can be used for the positive electrode, and for example, copper, iron, stainless steel, or the like can be used for the negative electrode.
 電極板Pの活物質としては、正極の場合には例えばLiCoO、LiNiO、LiMn等の酸化物材料を主成分とする材料を用いることができ、負極の場合には例えば黒鉛等を主成分とする材料を用いることができる。 As the active material of the electrode plate P, a material mainly composed of an oxide material such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 can be used in the case of the positive electrode, and graphite or the like can be used in the case of the negative electrode. Can be used.
(支持部材)
 支持部材Aとしては、セパレータSが載置される天面が平坦で、十分な表面硬度を有し、強度を有するものであればよい。
(Support member)
The supporting member A may be any member as long as the top surface on which the separator S is placed is flat, has sufficient surface hardness, and strength.
 2枚のセパレータSを搬送しながら溶着する場合、支持部材Aの上でセパレータSを滑らせてもよいが、支持部材AをセパレータSと共にピッチ送りすることにより、セパレータSの振動部材Hの当接領域に不必要な張力を作用させることを防止できる。従って、支持部材AをセパレータSと共に移動することで、複数対のセパレータSを連続して効率よく溶着しながら、セパレータSの接合強度の低下を防止できる。 When welding the two separators S while transporting them, the separators S may be slid on the support member A, but by feeding the support members A together with the separators S, the contact of the vibrating member H of the separators S It is possible to prevent unnecessary tension from acting on the contact area. Therefore, by moving the support member A together with the separator S, it is possible to prevent a decrease in the bonding strength of the separator S while continuously welding a plurality of pairs of separators S efficiently.
(振動部材)
 振動部材Hとしては、セパレータSに点状に当接するものであればよく、例えば丸棒状かつ先端が半球状に成形されたものとすることができる。
(Vibration member)
As the vibration member H, any member that contacts the separator S in a dot shape may be used. For example, the vibration member H may have a round bar shape and a hemispherical tip.
 振動部材HのセパレータSへの当接部分の曲率半径の下限としては、0.5mmが好ましく、1.0mmがより好ましい。一方、振動部材HのセパレータSへの当接部分の曲率半径の上限としては、8mmが好ましく、15mmがより好ましい。振動部材HのセパレータSへの当接部分の曲率半径を前記下限以上とすることで、2枚のセパレータSの溶着部Cの幅が小さくならずに、十分な接合強度を得ることができる。また、振動部材HのセパレータSへの当接部分の曲率半径を前記上限以下とすることで、超音波振動がセパレータSの広い範囲に分散されず、耐熱層2を効率よく破壊することができる。 The lower limit of the radius of curvature of the contact portion of the vibration member H with the separator S is preferably 0.5 mm, and more preferably 1.0 mm. On the other hand, the upper limit of the radius of curvature of the contact portion of the vibration member H with the separator S is preferably 8 mm, and more preferably 15 mm. By setting the radius of curvature of the contact portion of the vibration member H to the separator S to be equal to or greater than the lower limit, a sufficient bonding strength can be obtained without reducing the width of the welded portion C of the two separators S. In addition, by setting the radius of curvature of the contact portion of the vibrating member H to the separator S to be equal to or less than the upper limit, the ultrasonic vibration is not dispersed over a wide range of the separator S, and the heat-resistant layer 2 can be efficiently destroyed. .
 振動部材Hの振動方向は、セパレータSの表面に対して傾斜していることが好ましい。振動部材の振動方向がセパレータSの表面に対して傾斜していることによって、振動部材Hの超音波振動により耐熱層2を破壊すると共に、破壊した耐熱層2の砕片を振動部材Hの超音波振動により掻き分けて、樹脂層1同士を比較的容易に溶着することができる。 The vibration direction of the vibration member H is preferably inclined with respect to the surface of the separator S. Since the vibration direction of the vibration member is inclined with respect to the surface of the separator S, the heat-resistant layer 2 is destroyed by the ultrasonic vibration of the vibration member H, and the broken pieces of the heat-resistant layer 2 are ultrasonicated by the vibration member H. The resin layers 1 can be welded relatively easily by scraping them by vibration.
 また、振動部材Hの振動方向がセパレータSの表面に対して傾斜していることにより、製造時の振動部材Hと支持部材Aとのクリアランス(超音波振動していない状態での間隔)を、超音波振動による振動部材Hの先端の移動幅(振幅の2倍)よりも小さく調整しても、振動部材Hと支持部材Aとがぶつかり合うことがない。このため、振動部材Hの振動方向がセパレータSの表面に対して傾斜していることで、振動部材Hの超音波振動のエネルギーを効率よく伝えることができるので、より少ないエネルギーで、比較的厚さが大きく剥離強度の大きい溶着部Cを形成できると考えられる。 Further, since the vibration direction of the vibration member H is inclined with respect to the surface of the separator S, the clearance between the vibration member H and the support member A at the time of manufacture (interval in a state in which no ultrasonic vibration occurs) Even if it is adjusted to be smaller than the moving width (twice the amplitude) of the tip of the vibration member H by ultrasonic vibration, the vibration member H and the support member A do not collide with each other. For this reason, since the vibration direction of the vibration member H is inclined with respect to the surface of the separator S, the energy of ultrasonic vibration of the vibration member H can be transmitted efficiently, so that less It is considered that the welded portion C having a large length and a high peel strength can be formed.
 振動部材Hの振動方向のセパレータSの表面に対する傾斜角度の下限としては、5°が好ましく、10°がより好ましい。一方、振動部材Hの振動方向のセパレータSの表面に対する傾斜角度の上限としては、70°が好ましく、60°がより好ましい。振動部材Hの振動方向のセパレータSの表面に対する傾斜角度を前記下限以上とすることで、耐熱層2に効率よく超音波振動を加えることができ、耐熱層2を効率よく破壊でき、ひいてはセパレータSの十分な接合強度を得ることができる。また、振動部材Hの振動方向のセパレータSの表面に対する傾斜角度を前記上限以下とすることで、破壊した耐熱層2の砕片を押しのけて樹脂層1同士を効率よく溶着することができるようになり、効率を向上させることができる。 The lower limit of the tilt angle with respect to the surface of the separator S in the vibration direction of the vibration member H is preferably 5 °, and more preferably 10 °. On the other hand, the upper limit of the inclination angle of the vibrating member H with respect to the surface of the separator S in the vibration direction is preferably 70 °, and more preferably 60 °. By setting the inclination angle of the vibration direction of the vibration member H with respect to the surface of the separator S to be equal to or greater than the lower limit, it is possible to efficiently apply ultrasonic vibration to the heat resistant layer 2 and efficiently destroy the heat resistant layer 2. A sufficient bonding strength can be obtained. In addition, by setting the inclination angle of the vibration member H in the vibration direction with respect to the surface of the separator S to be equal to or less than the upper limit, the resin layers 1 can be efficiently welded together by pushing away the broken pieces of the heat-resistant layer 2. , Can improve the efficiency.
 このような振動を実現するためには、図1に示すように、先端部でセパレータSに当接し、軸方向に超音波振動する棒状の振動部材Hを用い、この棒状の振動部材HをセパレータSの表面に対して傾斜して配置するとよい。 In order to realize such vibration, as shown in FIG. 1, a rod-shaped vibrating member H that abuts against the separator S at the tip and ultrasonically vibrates in the axial direction is used. It is good to arrange inclining with respect to the surface of S.
 振動部材Hの振幅の下限としては、10μmが好ましく、27μmがより好ましい。一方、振動部材Hの振幅の上限としては、80μmが好ましく、68μmがより好ましい。振動部材Hの振幅を前記下限以上とすることで、耐熱層2を容易に破壊することができる。また、振動部材Hの振幅を前記上限以下とすることで、樹脂層1の損傷を抑制したり、エネルギー効率の不必要な低下を抑制したりすることができる。 The lower limit of the amplitude of the vibration member H is preferably 10 μm, and more preferably 27 μm. On the other hand, the upper limit of the amplitude of the vibration member H is preferably 80 μm, and more preferably 68 μm. By setting the amplitude of the vibrating member H to the lower limit or more, the heat-resistant layer 2 can be easily broken. Moreover, the damage of the resin layer 1 can be suppressed or an unnecessary decrease in energy efficiency can be suppressed by setting the amplitude of the vibration member H to the upper limit or less.
 振動部材Hの超音波振動の周波数としては、10kHzが好ましく、20kHzがより好ましい。一方、振動部材Hの超音波振動の周波数の上限としては、80kHzが好ましく、40kHzがより好ましい。振動部材Hの超音波振動の周波数を前記下限以上とすることで、樹脂層1へのダメージが抑制され、セパレータSの溶着部Cの強度の低下を抑制したり、溶着時のセパレータSの破断を抑制したりすることができる。また、振動部材Hの超音波振動の周波数を前記上限以下とすることで、装置が不必要に高価となることが回避できる。 The frequency of ultrasonic vibration of the vibrating member H is preferably 10 kHz, and more preferably 20 kHz. On the other hand, the upper limit of the frequency of ultrasonic vibration of the vibrating member H is preferably 80 kHz, and more preferably 40 kHz. By setting the frequency of the ultrasonic vibration of the vibrating member H to be equal to or higher than the lower limit, damage to the resin layer 1 can be suppressed, the strength of the welded portion C of the separator S can be prevented from decreasing, and the separator S can be broken at the time of welding. Can be suppressed. Moreover, it can avoid that an apparatus becomes unnecessarily expensive by making the frequency of the ultrasonic vibration of the vibration member H below the said upper limit.
 振動部材HのセパレータSに対する圧接力(超音波振動により作用する力を除く)の下限としては、5Nが好ましく、10Nがより好ましい。一方、振動部材HのセパレータSに対する圧接力の上限としては、50Nが好ましく、30Nがより好ましい。振動部材HのセパレータSに対する圧接力を前記下限以上とすることで、耐熱層2を効率よく破壊することができる。また、振動部材HのセパレータSに対する圧接力を前記上限以下とすることで、溶着部Cの厚さの減少やそれに伴う強度の低下を抑制することができ、また溶着時のセパレータSの破断を抑制することができる。 The lower limit of the pressure contact force (excluding the force acting by ultrasonic vibration) of the vibration member H with respect to the separator S is preferably 5N, and more preferably 10N. On the other hand, the upper limit of the pressure contact force of the vibrating member H with respect to the separator S is preferably 50N, and more preferably 30N. By setting the pressure contact force of the vibrating member H to the separator S to be equal to or higher than the lower limit, the heat-resistant layer 2 can be efficiently destroyed. Further, by setting the pressure contact force of the vibrating member H to the separator S to be equal to or less than the above upper limit, it is possible to suppress the decrease in the thickness of the welded portion C and the accompanying strength, and to break the separator S during the welding. Can be suppressed.
 振動部材Hの移動方向は、平面視で振動部材Hの振動方向に対して角度を有することが好ましい。つまり、振動部材Hの振動は、形成する溶着部Cの幅方向の成分を有することが好ましい。平面視での振動部材Hの移動方向が振動方向と異なることによって、振動部材Hの超音波振動による圧接点の往復移動が形成される溶着部Cの幅を増大させると共に、破壊された耐熱層2の砕片を左右に掻き分けて効率よく樹脂層1同士を溶着することができる。 The moving direction of the vibrating member H preferably has an angle with respect to the vibrating direction of the vibrating member H in plan view. That is, it is preferable that the vibration of the vibration member H has a component in the width direction of the welded portion C to be formed. When the moving direction of the vibrating member H in plan view is different from the vibrating direction, the width of the welded portion C where the reciprocating movement of the pressure contact by the ultrasonic vibration of the vibrating member H is increased, and the heat-resistant layer destroyed. It is possible to efficiently weld the resin layers 1 to each other by scraping the two pieces into left and right.
 平面視での振動部材Hの振動方向に対する振動部材Hの移動方向の角度の下限としては、30°が好ましく、40°がより好ましい。平面視での振動部材Hの振動方向に対する振動部材Hの移動方向の角度を前記下限以上とすることで、破壊した耐熱層2の砕片を効率よく溶着部Cの外側に押しのけることができ、効率よく溶着を行ったり、セパレータSの十分な接合強度を得たりすることができる。一方、平面視での振動部材Hの振動方向に対する振動部材Hの移動方向の角度の上限としては、特に制限されず、溶着性だけを考慮すると90°が理想的であるが、図2に示すように、2枚のセパレータSに互いに垂直な線状の溶着部Cを形成する場合、平面視での振動部材Hの振動方向(振動部材Hの長さ方向)に対する振動部材Hの移動方向D1,D2の角度を45°とすることで振動部材Hの向きを変える機構が不要となる。 The lower limit of the moving direction of the vibrating member H relative to the vibrating direction of the vibrating member H in plan view is preferably 30 °, and more preferably 40 °. By making the angle of the moving direction of the vibration member H with respect to the vibration direction of the vibration member H in a plan view equal to or greater than the lower limit, the broken pieces of the heat-resistant layer 2 can be efficiently pushed out of the welded portion C. It is possible to perform welding well or to obtain a sufficient bonding strength of the separator S. On the other hand, the upper limit of the angle in the moving direction of the vibration member H with respect to the vibration direction of the vibration member H in plan view is not particularly limited, and 90 ° is ideal considering only the weldability, but is shown in FIG. Thus, when the linear welded part C perpendicular to each other is formed on the two separators S, the moving direction D1 of the vibration member H with respect to the vibration direction of the vibration member H (the length direction of the vibration member H) in plan view. , The mechanism for changing the direction of the vibrating member H is not required by setting the angle of D2 to 45 °.
 振動部材Hは、支持部材A上に載置される2枚のセパレータSの上面に圧接した状態で、超音波振動しつつその絶対位置を移動することにより、セパレータSに対して相対移動して2枚のセパレータSに線状の溶着部Cを形成する。このため、振動部材Hは、例えば多関節ロボット、直交座標系ロボット等から形成される位置決め駆動機構によって任意に移動できるよう保持されることが好ましい。 The vibration member H moves relative to the separator S by moving its absolute position while being ultrasonically vibrated while being in pressure contact with the upper surfaces of the two separators S placed on the support member A. A linear weld portion C is formed on the two separators S. For this reason, it is preferable that the vibration member H is held so as to be arbitrarily movable by a positioning drive mechanism formed from, for example, an articulated robot, an orthogonal coordinate system robot, or the like.
 振動部材HのセパレータSに対する相対移動としては、例えば図2に示すように、第1の方向D1の移動と、第2の方向D2の移動とを含む。これにより、セパレータSに対して点状に当接する振動部材Hを用いながら、電極板Pの輪郭に沿った線状に2枚のセパレータSを溶着することができる。 The relative movement of the vibration member H with respect to the separator S includes, for example, a movement in the first direction D1 and a movement in the second direction D2, as shown in FIG. Accordingly, the two separators S can be welded in a line along the contour of the electrode plate P while using the vibrating member H that comes into contact with the separator S in a point shape.
 このとき、先に形成した第1の方向D1の溶着部Cを避けて、第2の方向D2の溶着部Cを形成するよう振動部材Hを相対移動することが好ましい。つまり、振動部材HでセパレータSの同じ位置を2度以上押圧しないようにすることによって、先に形成されている溶着部CのセパレータSを剥離させたり、溶着部CでセパレータSを破断させたりすることを防止できる。 At this time, it is preferable that the vibration member H is relatively moved so as to form the welded portion C in the second direction D2 while avoiding the welded portion C in the first direction D1 formed earlier. That is, by preventing the vibration member H from pressing the same position of the separator S twice or more, the separator S of the welded portion C that has been previously formed is peeled off, or the separator S is broken at the welded portion C. Can be prevented.
[その他の実施形態]
 前記実施形態は、本発明の構成を限定するものではない。従って、前記実施形態は、本明細書の記載及び技術常識に基づいて前記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The said embodiment does not limit the structure of this invention. Therefore, in the above-described embodiment, components of each part of the above-described embodiment can be omitted, replaced, or added based on the description and common general knowledge of the present specification, and they are all interpreted as belonging to the scope of the present invention. Should.
 当該セパレータの超音波溶着方法では、3枚以上のセパレータを溶着してもよい。例えば、複数の正極板及び複数の負極板をセパレータを介して交互に積層し、正極板及び負極板の外側で全てのセパレータを一括して溶着することによって電極積層体を形成してもよい。 In the ultrasonic welding method for the separator, three or more separators may be welded. For example, the electrode laminate may be formed by alternately laminating a plurality of positive plates and a plurality of negative plates via separators, and collectively welding all separators outside the positive plates and the negative plates.
 当該超音波溶着方法において、振動部材をセパレータに圧接した状態で固定し、セパレータを積載した支持部材を移動することで、振動部材をセパレータに対して相対移動してもよい。 In the ultrasonic welding method, the vibration member may be relatively moved with respect to the separator by fixing the vibration member while being pressed against the separator and moving the support member on which the separator is loaded.
 当該超音波溶着方法において、例えば破線状に断続的な溶着部を形成してもよい。 In the ultrasonic welding method, intermittent welds may be formed in a broken line shape, for example.
 振動部材の相対移動により少なくとも2枚のセパレータを溶着しながら切断してもよい。この場合、形成される溶着部の幅方向中央においてセパレータを切断できるよう、振動部材の当接面の形状が相対移動方向の左右に略対称となることが好ましい。 It may be cut while welding at least two separators by relative movement of the vibration member. In this case, it is preferable that the shape of the contact surface of the vibration member is substantially symmetrical to the left and right in the relative movement direction so that the separator can be cut at the center in the width direction of the formed welded portion.
 上述した実施形態では、超音波振動する振動部材と、支持部材との間に2枚のセパレータを挟んでいたが、本発明はその形態に限定されない。本発明に係るセパレータの超音波溶着方法は、樹脂層と前記樹脂層上に形成された耐熱層とを有する少なくとも2枚のセパレータを前記耐熱層同士を対向させること、超音波振動する振動部材と、前記セパレータを点状に支持する支持部材との間に前記少なくとも2枚のセパレータを挟むこと、並びに前記振動部材及び支持部材に対して前記少なくとも2枚のセパレータを相対移動することを備えてもよい。 In the above-described embodiment, two separators are sandwiched between the vibration member that vibrates ultrasonically and the support member, but the present invention is not limited to this form. The ultrasonic welding method of the separator according to the present invention includes at least two separators having a resin layer and a heat-resistant layer formed on the resin layer, the heat-resistant layers facing each other, a vibrating member that vibrates ultrasonically, Sandwiching the at least two separators between the separator and the support member that supports the separators in a dotted manner, and moving the at least two separators relative to the vibration member and the support member. Good.
 上記の超音波溶着方法は、例えば、図3及び図4に示す超音波溶着装置を用いて実施してもよい。この超音波溶着装置において、超音波振動する振動部材H1は、セパレータSの相対移動方向に垂直な側面視において直線状に伸びる好ましくは平面状の当接面を有する。一方、支持部材A1は、セパレータSの相対移動方向に垂直な側面視において円弧状に延び、セパレータSの相対移動方向に垂直な方向の幅が十分に小さいことにより、セパレータSに対して点状に当接する。この超音波溶着装置は、特に、セパレータSを溶着しながら切断するために好適に用いることができる。 The above ultrasonic welding method may be carried out by using, for example, an ultrasonic welding apparatus shown in FIGS. In this ultrasonic welding apparatus, the vibration member H1 that vibrates ultrasonically has a preferably flat contact surface that extends linearly in a side view perpendicular to the relative movement direction of the separator S. On the other hand, the support member A1 extends in an arc shape in a side view perpendicular to the relative movement direction of the separator S, and the width in the direction perpendicular to the relative movement direction of the separator S is sufficiently small. Abut. This ultrasonic welding apparatus can be suitably used for cutting the separator S while welding.
 当該超音波貼着方法では、振動部材H1の当接面と支持部材A1の支持面との間に少なくとも2枚のセパレータSを挟み込み、振動部材H1及び支持部材A1に対してセパレータSを相対移動することにより、相対移動の方向に沿って2枚のセパレータSを溶着できる。図3の超音波溶着装置では、当接面と支持面とがセパレータSを介して点状に接触するため、超音波振動のエネルギーが一カ所に集中することで比較的大きな点状の領域の耐熱層を破壊して耐熱層の砕片を押し出して樹脂層同士を溶着するのに十分なエネルギーが得られると考えられる。 In the ultrasonic bonding method, at least two separators S are sandwiched between the contact surface of the vibration member H1 and the support surface of the support member A1, and the separator S is moved relative to the vibration member H1 and the support member A1. By doing so, two separators S can be welded along the direction of relative movement. In the ultrasonic welding apparatus of FIG. 3, the contact surface and the support surface come into contact with each other via the separator S, so that the energy of ultrasonic vibration is concentrated in one place, so that a relatively large dotted region is formed. It is considered that sufficient energy can be obtained to break the heat-resistant layer and extrude the heat-resistant layer fragments to weld the resin layers together.
 支持部材A1は、図示するように、セパレータに向かって膨出する凸状に形成され、強度を担保する基部Bと、この基部BからさらにセパレータSの相対移動方向に延在する線状に突出し、セパレータSに当接する支持面を形成する凸部Eとを有する構成とすることができる。 As shown in the drawing, the support member A1 is formed in a convex shape that bulges toward the separator, and protrudes in a linear shape extending from the base B to the relative movement direction of the separator S, and a base B that ensures strength. , And a convex portion E that forms a support surface that contacts the separator S.
 凸部Eの平均幅(セパレータSに対する実質的な当接幅)の下限としては、0.1mmが好ましく、0.2mmがより好ましい。一方、凸部Eの平均幅の上限としては、1mmが好ましく、0.6mmがより好ましい。凸部Eの平均幅を前記下限以上とすることで、形成される溶着部の幅を十分に確保することができる。また、凸部Eの平均幅を前記上限以下とすることで、セパレータSに対する接触面積が過度に大きくなることが回避でき、溶着を確実にすることができる。 As a minimum of average width (substantially contact width with respect to separator S) of convex part E, 0.1 mm is preferred and 0.2 mm is more preferred. On the other hand, as an upper limit of the average width of the convex part E, 1 mm is preferable and 0.6 mm is more preferable. By setting the average width of the convex portions E to be equal to or greater than the lower limit, it is possible to sufficiently secure the width of the formed welded portion. Moreover, it can avoid that the contact area with respect to the separator S becomes large too much by making the average width of the convex part E below the said upper limit, and it can ensure welding.
 支持部材A1は、特に凸部Eの幅が小さいことによりセパレータSに対して実質的に点状に当接する。凸部EのセパレータSに対する当接点は、1mm程度の幅を有してもよいため、凸部Eの先端部の断面形状としては、特に限定されず、例えば方形状、台形状、半円形状等の多様な形状を採用することができる。特に好ましい例として、凸部Eの先端部断面形状は、半径が0.2mm程度の半円形状とすることができる。 The support member A1 comes into contact with the separator S substantially in a dot shape due to the small width of the projection E in particular. Since the contact point of the convex portion E with respect to the separator S may have a width of about 1 mm, the cross-sectional shape of the tip portion of the convex portion E is not particularly limited, and for example, a square shape, a trapezoidal shape, or a semicircular shape Various shapes such as can be adopted. As a particularly preferable example, the cross-sectional shape of the tip of the convex portion E can be a semicircular shape with a radius of about 0.2 mm.
 また、セパレータSの相対移動方向に垂直な方向視における凸部Eの外形形状としては、円弧状又は楕円弧状とするとよい。セパレータSの相対移動方向に垂直な方向視における凸部EのセパレータSに対する接触位置での曲率半径の下限としては、1cmが好ましく、2cmがより好ましい、一方、前記凸部Eの接触位置での曲率半径の上限としては、10cmが好ましく、8cmがより好ましい。前記凸部Eの接触位置での曲率半径を前記下限以上とすることで、セパレータSの相対移動を容易にすることができる。また、前記凸部Eの接触位置での曲率半径を前記上限以下とすることで、支持部材A1がセパレータSに対して線状に当接して圧接力が分散することを回避することができ、セパレータSの溶着を確実にすることができる。 Further, the outer shape of the convex portion E in the direction perpendicular to the relative movement direction of the separator S may be an arc shape or an elliptical arc shape. The lower limit of the radius of curvature at the contact position of the convex portion E with respect to the separator S in the direction perpendicular to the relative movement direction of the separator S is preferably 1 cm, more preferably 2 cm. As an upper limit of a curvature radius, 10 cm is preferable and 8 cm is more preferable. By setting the radius of curvature at the contact position of the convex portion E to be equal to or greater than the lower limit, the relative movement of the separator S can be facilitated. In addition, by setting the radius of curvature at the contact position of the convex portion E to be equal to or less than the upper limit, it is possible to avoid the support member A1 coming into linear contact with the separator S and disperse the pressure contact force, The welding of the separator S can be ensured.
 振動部材H1の振動方向は、セパレータSの移動方向(面方向)に垂直な方向であることが好ましい。これにより、装置構成が比較的簡単となると共に、セパレータSの相対移動が容易となる。また、振動部材H1の振動方向がセパレータS面方向に垂直であることによって、形成される溶着部の中央でセパレータSを切断することができる。 The vibration direction of the vibration member H1 is preferably a direction perpendicular to the moving direction (plane direction) of the separator S. Thereby, the apparatus configuration becomes relatively simple and the relative movement of the separator S becomes easy. Moreover, when the vibration direction of the vibration member H1 is perpendicular to the separator S surface direction, the separator S can be cut at the center of the formed welded portion.
 なお、振動部材H1と支持部材A1との位置関係は、任意に変更でき、例えば振動部材H1がセパレータSの下面に当接し、支持部材A1がセパレータSの上面に当接してもよい。 Note that the positional relationship between the vibration member H1 and the support member A1 can be arbitrarily changed. For example, the vibration member H1 may contact the lower surface of the separator S, and the support member A1 may contact the upper surface of the separator S.
 以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the present invention will be described in detail based on examples, but the present invention is not construed as being limited based on the description of the examples.
(セパレータ)
 超音波溶着するセパレータとして、ポリプロピレンを主成分として形成される平均厚さ16μmの多孔質フィルムを樹脂層とし、この樹脂層の表面にアルミナ粉末をポリフッ化ビニリデンをバインダとして塗工して形成した平均厚さ5μmの耐熱層を有するセパレータを用意した。2枚のセパレータを、以下に説明する要領で、耐熱層同士を対向させて超音波溶着する試験を行った。また、比較のために、耐熱層を積層しておらず、前記樹脂層のみからなるセパレータを用意した。
(Separator)
As a separator for ultrasonic welding, an average of 16 μm thick porous film formed of polypropylene as a main component is used as a resin layer, and alumina powder is coated on the surface of the resin layer using polyvinylidene fluoride as a binder. A separator having a heat-resistant layer having a thickness of 5 μm was prepared. Two separators were tested for ultrasonic welding with the heat-resistant layers facing each other in the manner described below. For comparison, a separator made of only the resin layer without a heat-resistant layer was prepared.
(試験No.1)
 試験No.1として、先端が半径3.25mmの球形状の棒状の振動部材を用い、この振動部材を軸方向がセパレータの表面に対して20°傾斜するよう支持してセパレータに圧接した。この振動部材を軸方向に周波数39.5kHzで振動させて平面視で振動方向と垂直な方向に移動させることで、2枚のセパレータを溶着した。この試験No.1では、セパレータに対する圧接荷重を16N、振動部材の振幅を最大振幅(67.7μm)の80%に設定し、振動部材の移動速度を500mm/secとした。
(Test No. 1)
Test No. 1, a spherical rod-shaped vibrating member having a radius of 3.25 mm was used, and the vibrating member was supported so that the axial direction was inclined by 20 ° with respect to the surface of the separator and pressed against the separator. By vibrating the vibrating member in the axial direction at a frequency of 39.5 kHz and moving the vibrating member in a direction perpendicular to the vibrating direction in plan view, two separators were welded. This test No. 1, the pressure contact load with respect to the separator was set to 16 N, the amplitude of the vibrating member was set to 80% of the maximum amplitude (67.7 μm), and the moving speed of the vibrating member was set to 500 mm / sec.
 こうして溶着された2枚のセパレータをマイクロスコープで観察して溶着部の平均厚さを測定したところ、31.2μmであった。さらに、2枚のセパレータの接合強度の指標として、溶着された2枚のセパレータを幅3cmに切断した試験片を用い、JIS-K6854-3(1999)に準拠したT型剥離試験を行った。この結果試験No.1における剥離強度は、1.3Nであった。また、剥離試験後の試験片の剥離面を確認したところ、溶着部で剥離していた。また、2枚のセパレータの溶着部のシール性について浸透探傷剤を用いて検査したが、シール性は良好であった。 The two separators thus welded were observed with a microscope and the average thickness of the welded portion was measured to find that it was 31.2 μm. Further, a T-type peel test in accordance with JIS-K6854-3 (1999) was performed using a test piece obtained by cutting two welded separators into a width of 3 cm as an index of bonding strength between the two separators. As a result, test no. The peel strength at 1 was 1.3N. Moreover, when the peeling surface of the test piece after a peeling test was confirmed, it peeled in the welding part. Further, the sealability of the welded portions of the two separators was examined using a penetrant flaw detector, but the sealability was good.
(試験No.2)
 試験No.2として、振動部材の振幅を最大振幅の100%に設定した以外は、試験No.1と同様の試験をした。この試験No.2では、溶着された2枚のセパレータの溶着部の平均厚さは32.6μm、剥離強度は4.9Nであった。また、剥離試験後の試験片の剥離面を確認したところ、溶着部で剥離していた。また、浸透探傷剤を用いたシール性の検査結果は良好であった。
(Test No. 2)
Test No. 2 except that the amplitude of the vibrating member was set to 100% of the maximum amplitude. The same test as 1 was performed. This test No. In No. 2, the average thickness of the welded portions of the two separators that were welded was 32.6 μm, and the peel strength was 4.9 N. Moreover, when the peeling surface of the test piece after a peeling test was confirmed, it peeled in the welding part. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
(試験No.3)
 試験No.3として、樹脂層のみからなるセパレータを用いた以外は、試験No.2と同様の試験をした。この試験No.3では、溶着された2枚のセパレータの溶着部の平均厚さは37.1μm、剥離強度は14.5Nであった。また、剥離試験後の試験片は溶着部で剥離していた。また、浸透探傷剤を用いたシール性の検査結果は良好であった。
(Test No. 3)
Test No. 3 except that a separator consisting only of a resin layer was used. The same test as 2 was performed. This test No. 3, the average thickness of the welded portions of the two separators that were welded was 37.1 μm, and the peel strength was 14.5 N. Moreover, the test piece after a peeling test peeled in the welding part. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
(試験No.4)
 試験No.4として、振動部材の移動速度を250mm/secとした以外は、試験No.2と同様の試験をした。この試験No.4では、溶着された2枚のセパレータの溶着部の平均厚さは17.1μm、剥離強度は10.5Nであった。また、剥離試験後の試験片は溶着部で剥離していた。また、浸透探傷剤を用いたシール性の検査結果は良好であった。
(Test No. 4)
Test No. 4 except that the moving speed of the vibrating member was 250 mm / sec. The same test as 2 was performed. This test No. In No. 4, the average thickness of the welded portions of the two welded separators was 17.1 μm, and the peel strength was 10.5 N. Moreover, the test piece after a peeling test peeled in the welding part. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
(試験No.5)
 試験No.5として、振動部材の圧接荷重を18Nとした以外は、試験No.2と同様の試験をした。この試験No.5では、溶着された2枚のセパレータの溶着部の平均厚さは28.2μm、剥離強度は5.9Nであった。また、剥離試験後の試験片は溶着部で剥離していた。また、浸透探傷剤を用いたシール性の検査結果は良好であった。
(Test No. 5)
Test No. No. 5 except that the pressure contact load of the vibrating member was 18N. The same test as 2 was performed. This test No. 5, the average thickness of the welded portions of the two separators that were welded was 28.2 μm, and the peel strength was 5.9 N. Moreover, the test piece after a peeling test peeled in the welding part. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
(試験No.6)
 試験No.6として、振動部材の圧接荷重を24Nとした以外は、試験No.2と同様の試験をした。この試験No.6では、2枚のセパレータが溶着されると共に溶着部において切断された。こうして溶着された2枚のセパレータの溶着部の平均幅(切断された両側の合計)は23.7μm、剥離強度(切断された一方側のみ)は2.0Nであった。また、剥離試験後の試験片は樹脂層が破断していた。また、浸透探傷剤を用いたシール性の検査結果は良好であった。
(Test No. 6)
Test No. No. 6 except that the pressure contact load of the vibrating member was 24N. The same test as 2 was performed. This test No. In No. 6, two separators were welded and cut at the welded portion. The average width (total of both sides cut) of the two separators thus welded was 23.7 μm, and the peel strength (only one side cut) was 2.0 N. Further, the resin layer of the test piece after the peel test was broken. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
(試験No.7)
 試験No.7として、振動部材の移動速度を250mm/secとした以外は、試験No.1と同様の試験をした。この試験No.7では、溶着された2枚のセパレータの溶着部の平均幅は23.7μm、剥離強度は5.6Nであった。また、剥離試験後の試験片は樹脂層が破断していた。また、浸透探傷剤を用いたシール性の検査結果は良好であった。
(Test No. 7)
Test No. 7 except that the moving speed of the vibrating member was 250 mm / sec. The same test as 1 was performed. This test No. In No. 7, the average width of the welded portions of the two separators that were welded was 23.7 μm, and the peel strength was 5.6 N. Further, the resin layer of the test piece after the peel test was broken. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
(試験No.8)
 試験No.8として、振動部材の振幅を最大振幅の60%に設定し、振動部材の移動速度を250mm/secとした以外は、試験No.1と同様の試験をした。この試験No.8では、2枚のセパレータを溶着することができた。こうして溶着された2枚のセパレータの溶着部の平均厚さは20.0μm、剥離強度は5.7Nであった。また、剥離試験後の試験片は樹脂層が破断していた。また、浸透探傷剤を用いたシール性の検査結果は良好であった。
(Test No. 8)
Test No. 8 except that the amplitude of the vibrating member was set to 60% of the maximum amplitude and the moving speed of the vibrating member was set to 250 mm / sec. The same test as 1 was performed. This test No. In No. 8, two separators could be welded. The average thickness of the welded portions of the two separators thus welded was 20.0 μm, and the peel strength was 5.7 N. Further, the resin layer of the test piece after the peel test was broken. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was good.
(試験No.9)
 試験No.9として、振動部材の振幅を最大振幅の90%に設定し、振動部材の移動速度を250mm/secとした以外は、試験No.1と同様の試験をした。この試験No.9では、2枚のセパレータを溶着することができた。こうして溶着された2枚のセパレータの溶着部の平均厚さは25.2μmm、剥離強度は18.2Nであった。
(Test No. 9)
Test No. 9 except that the amplitude of the vibrating member was set to 90% of the maximum amplitude and the moving speed of the vibrating member was set to 250 mm / sec. The same test as 1 was performed. This test No. In No. 9, two separators could be welded. The average thickness of the welded portions of the two separators thus welded was 25.2 μm, and the peel strength was 18.2N.
(試験No.10)
 試験No.10として、セパレータに線状に当接する振動部材を用い、振動部材の圧接荷重を200Nとし、周波数30kHzで、振動部材の振幅を最大振幅(49μm)の90%に設定して溶着を試みた。この試験No.10では、2枚のセパレータをかろうじて溶着することができた。しかしながら、こうして溶着された2枚のセパレータの剥離強度は測定時のハンドリングにて剥離したため測定できなかった。また、剥離試験後の試験片は樹脂層が破断していた。また、浸透探傷剤を用いたシール性の検査結果はシール不良であった。
(Test No. 10)
Test No. No. 10 was used for welding by using a vibrating member linearly contacting the separator, setting the pressure contact load of the vibrating member to 200 N, setting the frequency of the vibrating member to 90% of the maximum amplitude (49 μm) at a frequency of 30 kHz. This test No. In No. 10, two separators could be barely welded. However, the peel strength of the two separators thus welded could not be measured because they were peeled off during handling. Further, the resin layer of the test piece after the peel test was broken. Moreover, the test result of the sealing performance using the penetrant flaw detection agent was a seal failure.
 前記試験No.1~10について、その条件及び結果を次の表1及び表2に示す。なお、溶着状態の評価として、「A」は2枚のセパレータが溶着されたことを示し、「B」は2枚のセパレータが溶着されると共に溶着部で切断されたことを示し、「C」は2枚のセパレータが溶着されなかったことを示す。 The test No. The conditions and results for 1 to 10 are shown in the following Tables 1 and 2. As an evaluation of the welded state, “A” indicates that two separators are welded, “B” indicates that two separators are welded and cut at the welded portion, and “C”. Indicates that the two separators were not welded.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上のように、耐熱層を有するセパレータを耐熱層同士を対向させて配置しても、セパレータに点状に当接して超音波振動する振動部材をセパレータに押し当てながら相対移動することによって、耐熱層を破壊して樹脂層同士を溶着できることが確認された。また、振動部材の圧接荷重、振幅及び移動速度を調節することにより、比較的接合強度が大きい溶着を行うことも、2枚のセパレータを溶着しつつ切断することもできることが確認できた。 As described above, even if a separator having a heat-resistant layer is disposed so that the heat-resistant layers are opposed to each other, the heat-resistant layer can be moved by relatively moving while pressing the vibration member that abuts against the separator in a dotted shape and ultrasonically vibrates. It was confirmed that the resin layers can be welded by breaking the layers. It was also confirmed that by adjusting the pressure contact load, amplitude, and moving speed of the vibration member, it was possible to perform welding with relatively high bonding strength or to cut while welding two separators.
 本発明に係るセパレータの溶着方法は、袋詰電極板を製造するために好適に利用することができる。 The method for welding a separator according to the present invention can be suitably used for producing a packaged electrode plate.
1 樹脂層
2 耐熱層
A,A1 支持部材
B 基部
C 溶着部
D1 第1の方向
D2 第2の方向
E 凸部
H,H1 振動部材
P 電極板
S セパレータ
DESCRIPTION OF SYMBOLS 1 Resin layer 2 Heat resistant layer A, A1 Support member B Base C Welding part D1 1st direction D2 2nd direction E Convex part H, H1 Vibration member P Electrode plate S Separator

Claims (11)

  1.  樹脂層と前記樹脂層上に形成された耐熱層とを有する少なくとも2枚のセパレータを前記耐熱層同士を対向させて支持部材で支持すること、及び
     前記セパレータに点状に当接して超音波振動する振動部材を前記少なくとも2枚のセパレータに押し当てながらセパレータに対して相対移動すること
     を備えるセパレータの超音波溶着方法。
    Supporting at least two separators having a resin layer and a heat-resistant layer formed on the resin layer with a support member with the heat-resistant layers facing each other, and contacting the separators in a dotted manner with ultrasonic vibration An ultrasonic welding method for a separator, comprising: moving the vibrating member against the separator while pressing the vibrating member against the at least two separators.
  2.  前記振動部材の相対移動を前記振動部材の絶対位置の移動により行う請求項1に記載のセパレータの超音波溶着方法。 The ultrasonic welding method of the separator according to claim 1, wherein the relative movement of the vibrating member is performed by moving the absolute position of the vibrating member.
  3.  前記振動部材の絶対位置の移動を前記セパレータを搬送しながら行う請求項2に記載の超音波溶着方法。 3. The ultrasonic welding method according to claim 2, wherein the absolute position of the vibration member is moved while the separator is conveyed.
  4.  前記振動部材の前記セパレータへの当接部分の曲率半径が0.5mm以上である請求項1、請求項2又は請求項3に記載の超音波溶着方法。 The ultrasonic welding method according to claim 1, 2 or 3, wherein a radius of curvature of a contact portion of the vibrating member with the separator is 0.5 mm or more.
  5.  前記振動部材の相対移動が、
     前記振動部材を前記セパレータに対して第1の方向に相対移動すること、及び
     前記振動部材を前記セパレータに対して前記第1の方向と交差する第2の方向に相対移動することを含む請求項1から請求項4のいずれか1項に記載の超音波溶着方法。
    The relative movement of the vibrating member is
    Relative movement of the vibration member with respect to the separator in a first direction, and relative movement of the vibration member with respect to the separator in a second direction intersecting the first direction. The ultrasonic welding method according to any one of claims 1 to 4.
  6.  前記振動部材を前記セパレータに対して前記第1の方向に相対移動した時に形成されたセパレータ溶着部を避けて、前記振動部材を前記セパレータに対して前記第2の方向に相対移動する請求項5に記載の超音波溶着方法。 6. The vibration member is moved relative to the separator in the second direction while avoiding a separator weld formed when the vibration member is moved relative to the separator in the first direction. The ultrasonic welding method described in 1.
  7.  前記少なくとも2枚のセパレータの間に電極板を配置することをさらに備え、
     前記振動部材の相対移動により前記電極板の輪郭に沿って線状の溶着部を形成する請求項1から請求項6のいずれか1項に記載の超音波溶着方法。
    Further comprising disposing an electrode plate between the at least two separators;
    The ultrasonic welding method according to claim 1, wherein a linear weld portion is formed along the contour of the electrode plate by relative movement of the vibration member.
  8.  前記振動部材の相対移動により前記少なくとも2枚のセパレータを切断する請求項1から請求項7のいずれか1項に記載の超音波溶着方法。 The ultrasonic welding method according to any one of claims 1 to 7, wherein the at least two separators are cut by relative movement of the vibration member.
  9.  樹脂層と前記樹脂層上に形成された耐熱層とを有する少なくとも2枚のセパレータを前記耐熱層同士を対向させること、
     超音波振動する振動部材と、前記セパレータを点状に支持する支持部材との間に前記少なくとも2枚のセパレータを挟むこと、並びに
     前記振動部材及び支持部材に対して前記少なくとも2枚のセパレータを相対移動すること
     を備えるセパレータの超音波溶着方法。
    Making the at least two separators having a resin layer and a heat-resistant layer formed on the resin layer face each other,
    Sandwiching the at least two separators between a vibration member that vibrates ultrasonically and a support member that supports the separators in a dot-like manner; and relative to the vibration member and the support member the at least two separators A separator ultrasonic welding method comprising: moving the separator.
  10.  前記振動部材に対して前記少なくとも2枚のセパレータを相対移動することにより前記少なくとも2枚のセパレータを切断する請求項9に記載の超音波溶着方法。 The ultrasonic welding method according to claim 9, wherein the at least two separators are cut by moving the at least two separators relative to the vibrating member.
  11.  前記振動部材の当接面が平面状であり、前記セパレータの相対移動方向に垂直な側面視において前記支持部材の支持面が円弧状である請求項9又は請求項10に記載の超音波溶着方法。 The ultrasonic welding method according to claim 9 or 10, wherein the contact surface of the vibration member is planar, and the support surface of the support member is arcuate in a side view perpendicular to the relative movement direction of the separator. .
PCT/JP2017/030763 2016-08-29 2017-08-28 Ultrasonic welding method for separators WO2018043411A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112017004334.4T DE112017004334T5 (en) 2016-08-29 2017-08-28 PROCESS FOR ULTRASONIC WELDING OF A SEPARATOR
CN201780052895.5A CN110114909B (en) 2016-08-29 2017-08-28 Ultrasonic welding method for spacer
JP2018537259A JP6843870B2 (en) 2016-08-29 2017-08-28 Ultrasonic welding method of separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-167374 2016-08-29
JP2016167374 2016-08-29

Publications (1)

Publication Number Publication Date
WO2018043411A1 true WO2018043411A1 (en) 2018-03-08

Family

ID=61309080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030763 WO2018043411A1 (en) 2016-08-29 2017-08-28 Ultrasonic welding method for separators

Country Status (4)

Country Link
JP (1) JP6843870B2 (en)
CN (1) CN110114909B (en)
DE (1) DE112017004334T5 (en)
WO (1) WO2018043411A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147861A (en) * 2017-03-09 2018-09-20 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Ultrasonic welding method for separator
JP7340244B2 (en) 2019-09-25 2023-09-07 株式会社アドウェルズ processing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021126679A1 (en) 2021-10-14 2023-04-20 Herrmann Ultraschalltechnik Gmbh & Co. Kg Tool for an ultrasonic welding device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207223A (en) * 1996-02-02 1997-08-12 Matsushita Electric Ind Co Ltd Ultrasonic welder
WO2015050084A1 (en) * 2013-10-02 2015-04-09 日産自動車株式会社 Method for bonding separators in electrical device, apparatus for bonding separators in electrical device, and electrical device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09248857A (en) * 1996-03-18 1997-09-22 Asahi Medical Co Ltd Ultrasonic welding receiving stand
JP5164377B2 (en) * 2006-12-27 2013-03-21 三洋電機株式会社 Manufacturing method of sealed battery
JP6022784B2 (en) * 2011-04-07 2016-11-09 日産自動車株式会社 Separator welding apparatus and separator welding method
EP2957508A1 (en) * 2011-06-28 2015-12-23 Asahi Kasei Chemicals Corporation Sealed package body, and method and apparatus for producing same
JP2013143336A (en) * 2012-01-12 2013-07-22 Nissan Motor Co Ltd Manufacturing method of packed electrode, packed electrode, secondary battery, and heat sealing device
JP5899938B2 (en) 2012-01-12 2016-04-06 日産自動車株式会社 Secondary battery manufacturing method, secondary battery
CN105531865B (en) * 2013-09-27 2018-01-30 株式会社日立高新技术 The manufacture method of lithium rechargeable battery, the manufacture device of lithium rechargeable battery and lithium rechargeable battery
WO2015050228A1 (en) * 2013-10-03 2015-04-09 日産自動車株式会社 Apparatus for bonding separators in electrical devices
JP6427909B2 (en) 2014-03-24 2018-11-28 日産自動車株式会社 Separator joining device for electrical devices
FR3019083B1 (en) * 2014-04-01 2016-12-30 Sonimat ULTRASONIC SOLDERING DEVICE
US20170282295A1 (en) * 2014-09-01 2017-10-05 Toyota Motor Europe Systems for and method of welding with a laser beam point linear profile obliquely oriented relative to the travel direction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09207223A (en) * 1996-02-02 1997-08-12 Matsushita Electric Ind Co Ltd Ultrasonic welder
WO2015050084A1 (en) * 2013-10-02 2015-04-09 日産自動車株式会社 Method for bonding separators in electrical device, apparatus for bonding separators in electrical device, and electrical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147861A (en) * 2017-03-09 2018-09-20 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Ultrasonic welding method for separator
JP7340244B2 (en) 2019-09-25 2023-09-07 株式会社アドウェルズ processing equipment

Also Published As

Publication number Publication date
JP6843870B2 (en) 2021-03-17
CN110114909A (en) 2019-08-09
JPWO2018043411A1 (en) 2019-08-22
DE112017004334T5 (en) 2019-05-09
CN110114909B (en) 2022-03-29

Similar Documents

Publication Publication Date Title
CN108475756B (en) Method for manufacturing electrode body and method for manufacturing nonaqueous electrolyte secondary battery
EP2804247B1 (en) Secondary battery fabrication method, secondary battery, and welding device
JP6399092B2 (en) Composite material joining method and composite material joining device
WO2018043411A1 (en) Ultrasonic welding method for separators
EP3396767B1 (en) Unit cell for secondary battery with improved wettability and method for manufacturing the same
JP2007053002A (en) Manufacturing method of battery
CN105364295A (en) Ultrasonic welding device, manufacturing method of rechargeable battery using the same, and rechargeable battery
CN111384426B (en) Secondary battery
JP2015199095A (en) Ultrasonic welding apparatus and method of manufacturing battery
JP5377257B2 (en) Secondary battery and ultrasonic welding method for metal sheet
WO2021020032A1 (en) Ultrasonic horn, secondary battery, and method for manufacturing secondary battery
JP2014167881A (en) Battery and method of manufacturing battery
JPWO2018159197A1 (en) Secondary battery
JP2009187674A (en) Method of welding sheet-like electrode in laminated state to tab with ultrasonic wave
JP6917736B2 (en) Ultrasonic welding method of separator
KR20100094898A (en) Lithium battery and its assembly method
CN111384425B (en) Secondary battery
JP7205723B2 (en) Ultrasonic bonding method
CN114902486A (en) Secondary battery
JP6841227B2 (en) Manufacturing method of electrode assembly and electrode assembly
CN115207574B (en) Method and apparatus for welding foils
JP6834973B2 (en) Manufacturing method of electrode assembly
JP2002334682A (en) Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018537259

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17846416

Country of ref document: EP

Kind code of ref document: A1