WO2018043355A1 - V-ribbed belt and use thereof - Google Patents

V-ribbed belt and use thereof Download PDF

Info

Publication number
WO2018043355A1
WO2018043355A1 PCT/JP2017/030600 JP2017030600W WO2018043355A1 WO 2018043355 A1 WO2018043355 A1 WO 2018043355A1 JP 2017030600 W JP2017030600 W JP 2017030600W WO 2018043355 A1 WO2018043355 A1 WO 2018043355A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulley
rib
ribbed belt
belt
parts
Prior art date
Application number
PCT/JP2017/030600
Other languages
French (fr)
Japanese (ja)
Inventor
国広 康嗣
宏貴 今井
雄司 丸山
長谷川 新
日根野 順文
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017159935A external-priority patent/JP6553687B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to CN201780052510.5A priority Critical patent/CN109642640B/en
Priority to US16/329,289 priority patent/US11668371B2/en
Priority to EP17846360.0A priority patent/EP3505792B1/en
Publication of WO2018043355A1 publication Critical patent/WO2018043355A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts

Definitions

  • the present invention relates to a V-ribbed belt used for driving an automotive engine accessory, and more specifically, improving the fuel efficiency while stabilizing the frictional state of a friction transmission surface and maintaining sound resistance (quietness).
  • the present invention relates to a V-ribbed belt that can be reduced and its use.
  • An auxiliary machine such as an alternator, a water pump, and a power steering pump is attached to an internal combustion engine (engine) such as an automobile, and these auxiliary machines are connected via a power transmission mechanism in which a transmission belt is suspended by an engine crankshaft. It is generally mechanically driven.
  • V-ribbed belt is used as a transmission belt used in an engine accessory drive system, and means for reducing torcross is proposed for the V-ribbed belt.
  • Patent Document 1 proposes a V-ribbed belt in which the torque loss is reduced by reducing internal loss (self-heating) using a rubber composition having a small loss tangent tan ⁇ . .
  • Patent Document 2 proposes the torcross by arranging the position of the core wire on the inner peripheral side to reduce the bending stress (belt bending loss) of the core wire. V-ribbed belts have been proposed.
  • V-ribbed belts can achieve a certain degree of torque reduction, in a portion where the pulley diameter is small, such as an alternator that is a power generation device, the amount of bending of the wound belt is large, and the torque loss is not reduced. It is enough. Since the part where such a large torque cross is generated greatly affects the friction loss of the engine, further reduction of the torque cross is a major issue.
  • Stick-slip phenomenon refers to self-excited vibration caused by microscopic adhesion between friction surfaces and repeated sliding, and the friction coefficient decreases with increasing sliding speed, or from static friction. This is a phenomenon that occurs when discontinuous friction drop occurs when moving to dynamic friction. Even in the case of a V-ribbed belt, if the friction coefficient of the transmission surface that is in friction with the pulley is high (particularly high in adhesiveness), sticking and sticking (slip) are repeated between the friction between the belt and the pulley. A slip phenomenon (vibration) occurs, and abnormal noise (squealing noise) occurs at the stage of transition from adhesion to slipping. In view of this, a means has been proposed in which an additive (soundproofing improver) for improving sound resistance is blended to reduce the friction coefficient of the friction transmission surface and suppress the generation of abnormal noise.
  • an additive soundproofing improver
  • Patent Document 3 uses ultra high molecular weight polyethylene powder
  • Patent Document 4 uses a flat inorganic powder, and friction transmission surface. There has been proposed a method for reducing the coefficient of friction by blending with the compressed rubber layer constituting the material.
  • the ultrahigh molecular weight polyethylene powder and the inorganic powder are compounding agents that increase the internal loss (tan ⁇ ), and have the disadvantage that the torque loss becomes large.
  • stick-slip noise that occurs during running under water is also a problem. Specifically, if the wettability of the friction transmission surface is low and the water ingress state between the belt and pulley (between the belt and the pulley) is not uniform, the friction coefficient is high at locations where water has not entered (dry state). On the other hand, at the place where water has infiltrated (water-impregnated state), the friction coefficient is partly lowered, so that the friction state becomes unstable and a stick-slip sound is generated.
  • a means has been proposed in which a soundproofing improver is blended to improve the affinity of the friction transmission surface for water to suppress the generation of abnormal noise.
  • a friction transmission surface is formed with a rubber composition in which 1 to 25 parts by mass of a surfactant is blended with 100 parts by mass of an ethylene / ⁇ -olefin elastomer.
  • a friction transmission belt is disclosed.
  • the Japanese Patent 2007-232205 Patent Document 6
  • the ethylene ⁇ alpha-olefin elastomer 100 parts by weight
  • a friction transmission belt in which a friction transmission surface is formed with a rubber composition containing 10 to 25 parts by weight of the plasticizer 2 is disclosed.
  • the affinity between the rubber (ethylene- ⁇ -olefin elastomer) that forms the friction transmission surface and water is increased by blending surfactants and plasticizers, so that noise caused by stick-slip is reduced. Decrease and improve sound resistance when wet.
  • Patent Document 7 discloses a V-belt between a driving V pulley and a driven V pulley as a power transmission V-belt device that can prevent jerky oscillation and noise at the start. in hung and comprising transmission, the V-belt angle theta 1 a power transmission V-belt apparatus having an increased 5 ⁇ 15 ° than the groove angle theta 2 of the V-pulley is disclosed.
  • the V belt include a wrapped belt, a low edge belt, a low edge cogged belt, and a rib star belt.
  • Patent Document 8 As a V-ribbed belt in which sound and noise during belt running are reduced, para-aramid fibers are fibrillated and protruded on the rib surface, and the rib portion A V-ribbed belt is disclosed in which the rib angle, which is the V-shaped angle, is 42 to 50 °.
  • the rib angle is 2 to 10 ° larger than the angle of the V-shaped groove portion of the pulley. In the embodiment, the rib angle is 2.5 ° or 4.5 ° larger.
  • chloroprene rubber, hydrogenated nitrile rubber, natural rubber, CSM, and SBR are exemplified as the rubber of the belt material, and chloroprene rubber is used in the examples.
  • Patent Document 9 discloses that the heat resistance life of the belt is improved without substantially reducing the transmission performance, and the core wires exposed at both end portions of the belt are short during operation.
  • a V-ribbed belt that does not peel off over time a V-ribbed belt in which the rib angle is set to 10 ⁇ 2.5 ° higher than the groove angle with respect to a V-ribbed pulley having a groove angle of 36 to 50 °, or a groove angle of 36 to 45
  • the rib angle is set to 15 ⁇ 2.5 ° or 5 ⁇ 2.5 ° higher than the groove angle with respect to the V-ribbed pulley at 0 °, both end portions of the belt are deleted or exposed at both end portions.
  • a V-ribbed belt with the core wire removed is disclosed.
  • Patent Documents 7 to 9 describe that the belt angle and the rib angle are made larger than the groove angle of the pulley, but there is no description about the small-diameter pulley and the torque cross (fuel saving performance), No soundproofing improver is included. Patent Document 7 does not describe the material of the belt, and Patent Document 9 does not describe details of the rib rubber.
  • Japanese Unexamined Patent Publication No. 2010-276127 (Claim 1, paragraph [0008]) Japanese Unexamined Patent Publication No. 2013-177967 (Claim 1, paragraphs [0001] [0012]) Japanese Unexamined Patent Publication No. 2007-70592 (Claim 1, paragraph [0010]) Japanese Unexamined Patent Publication No. 2009-168243 (Claim 1, paragraph [0015]) Japanese Patent Laid-Open No. 2008-185162 (Claim 1) Japanese Unexamined Patent Publication No. 2007-232205 (Claim 1) Japanese Utility Model Publication No. 63-147951 (claims for utility model registration, page 4, lines 2 to 3, page 5, lines 2 to 7) Japanese Patent Laid-Open No. 8-184347 (Claims 1 and 8, paragraphs [0001] [0014], Examples) Japanese Unexamined Patent Publication No. 2000-74154 (Claims, paragraph [0020])
  • An object of the present invention is to provide a V-ribbed belt that can achieve both soundproofing and fuel saving, a belt transmission device including the V-ribbed belt, and a method for reducing torcross of the belt transmission device using the V-ribbed belt. is there.
  • Another object of the present invention is to provide a V-ribbed belt that can reduce torcross while maintaining sound resistance against stick-slip noise and adhesive wear sound even when a sound resistance improver is blended with rubber forming a friction transmission surface.
  • Another object of the present invention is to provide a belt transmission device provided with the V-ribbed belt and a method for reducing the torque cross of the belt transmission device using the V-ribbed belt.
  • Still another object of the present invention is to provide a V-ribbed belt capable of reducing the torque cross even in a small-diameter pulley such as an alternator that is a power generation device, a belt transmission device provided with the V-ribbed belt, and a torcross of the belt transmission device using the V-ribbed belt. It is to provide a method of reducing.
  • the present inventors have determined that the V-rib angle of the V-rib portion of the V-ribbed belt provided with the compression rubber layer containing the soundproofing improver is set to 5 than the V-rib groove angle of the pulley. It has been found that by increasing the angle by 9 °, it is possible to achieve both sound resistance and fuel saving, and the present invention has been completed.
  • the V-ribbed belt of the present invention has a plurality of V-rib portions extending in parallel with each other along the longitudinal direction of the belt, and at least a part of which is a compressed rubber having a friction transmission surface capable of contacting the V-rib groove portion of the pulley.
  • a V-ribbed belt provided with a layer, wherein the friction transmission surface of the compressed rubber layer is formed of a vulcanized product of a rubber composition containing a rubber component and a soundproofing improver, and a V-rib angle of the V-rib portion Is 5 to 9 ° larger than the V-rib groove angle of the pulley.
  • the V rib angle of the V rib portion is about 41 to 45 °.
  • the pulley may include a pulley having an outer diameter of 65 mm or less.
  • the soundproofing improver is at least one selected from the group consisting of a surfactant, a plasticizer having a solubility index greater than that of a rubber component, inorganic particles, and polyethylene resin particles (in particular, a polyethylene glycol type nonionic interface). Activator and / or ether ester plasticizer).
  • the ratio of the polyethylene glycol type nonionic surfactant is about 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the ratio of the ether ester plasticizer is about 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber component may contain an ethylene- ⁇ -olefin elastomer.
  • the present invention includes the V-ribbed belt and a pulley having a V-rib groove portion that can be fitted to the V-rib portion of the V-ribbed belt, and the V-rib angle of the V-rib portion of the V-ribbed belt is such that the V-rib angle of the pulley. Also included are belt transmissions that are 5-9 degrees larger than the rib groove angle.
  • the pulley may include a pulley having an outer diameter of 65 mm or less.
  • the present invention also includes a method of reducing the torque cross of the belt transmission device by hanging the V-ribbed belt on a pulley including a pulley having an outer diameter of 65 mm or less.
  • the V-rib angle of the V-rib portion of the V-ribbed belt having the compression rubber layer containing the sound-proofing improver is 5 to 9 ° larger than the V-rib groove angle of the pulley. And both. Specifically, even when a soundproofing improver, which is a foreign substance, is blended with the rubber forming the friction transmission surface, the torque loss can be reduced while maintaining the soundproofness against stick-slip noise and adhesive wear sound. In particular, even in a small-diameter pulley such as an alternator that is a power generator, torque cross can be reduced.
  • FIG. 1 is a schematic cross-sectional view showing an example of a V-ribbed belt of the present invention.
  • FIG. 2 is a schematic perspective view for explaining the V-rib angle ⁇ of the V-rib portion of the V-ribbed belt of the present invention.
  • FIG. 3 is a schematic cross-sectional view for explaining the V-rib groove angle ⁇ of the pulley.
  • FIG. 4 is a schematic cross-sectional view for explaining a state in which the V-rib portion of the V-ribbed belt of the present invention is fitted in the V-rib groove portion of the pulley.
  • FIG. 5 is a schematic diagram for explaining the dimensions of the V-ribbed belt used in the examples.
  • FIG. 1 is a schematic cross-sectional view showing an example of a V-ribbed belt of the present invention.
  • FIG. 2 is a schematic perspective view for explaining the V-rib angle ⁇ of the V-rib portion of the V-ribbed belt of the present invention.
  • FIG. 3 is a schematic cross-section
  • FIG. 6 is a schematic diagram for explaining a method of measuring the friction loss of the V-ribbed belt in the example.
  • FIG. 7 is a schematic diagram for explaining the sound resistance test (sound measurement in an actual vehicle) of the V-ribbed belt in the example.
  • FIG. 8 is a schematic diagram for explaining a sound resistance test (misalignment sound measurement) of the V-ribbed belt in the example.
  • FIG. 9 is a schematic view for explaining an adhesive wear test of the rib bottom portion of the V-ribbed belt in the example.
  • FIG. 10 is a graph showing a simulation result of torcross by FEM analysis of Example 4 and Comparative Example 9.
  • FIG. 1 is a schematic sectional view showing an example of the V-ribbed belt of the present invention.
  • a V-ribbed belt shown in FIG. 1 includes a compression rubber layer 2, an adhesive layer 4 in which a core body 1 is embedded in the belt longitudinal direction, a cover canvas (woven fabric) in order from the belt lower surface (inner circumferential surface) to the belt upper surface (back surface).
  • a knitted fabric, a non-woven fabric, etc. A plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compressed rubber layer 2, and a plurality of V-rib portions 3 having a V-shaped cross section (reverse trapezoid) are formed between the grooves (example shown in FIG. 1). 4), and the two inclined surfaces (surfaces) of the V-rib portion 3 form a friction transmission surface and contact the pulley to transmit power (friction transmission).
  • the V-ribbed belt of the present invention is not limited to this form, and it is sufficient that at least a part is provided with a compression rubber layer having a transmission surface that can come into contact with the V-rib groove portion (V-groove portion) of the pulley. What is necessary is just to provide the core body embed
  • the stretch layer 5 may be formed of a rubber composition, or the core body 1 may be embedded between the stretch layer 5 and the compressed rubber layer 2 without providing the adhesive layer 4. Good.
  • the adhesive layer 4 is provided on either the compressed rubber layer 2 or the stretched layer 5, and the core 1 is disposed between the adhesive layer 4 (compressed rubber layer 2 side) and the stretched layer 5, or the adhesive layer 4 (stretched layer). 5 side) and the compressed rubber layer 2 may be embedded.
  • the compressed rubber layer is formed of the rubber composition described in detail below, and the stretch layer and the adhesive layer are formed of a conventional rubber composition used as the stretch layer and the adhesive layer. As long as it is formed, it may not be formed of the same rubber composition as the compressed rubber layer. Note that the rubber composition forming the stretch layer and the adhesive layer does not need to contain a soundproofing improver.
  • the V-rib angle ⁇ of the V-ribbed belt shown in FIG. 2 is larger (wide angle) than the V-rib groove angle ⁇ of the pulley shown in FIG. 3, and the angle difference ( ⁇ ) is 5 to 9 °.
  • the friction loss can be achieved without deteriorating other characteristics such as soundproofing (silence). ) Can be reduced, but the reason can be estimated as follows.
  • the angle difference between the V rib angle ⁇ and the V rib groove angle ⁇ may be 5 to 9 °, preferably 5.5 to 8.5 °, more preferably 6 to 8 ° (especially 6.5 to 7). .5 °). If the angle difference is too small, the torque cross is not reduced, and if it is too large, adhesive wear on the bottom of the V-rib portion (abnormal noise due to adhesive wear) occurs, resulting in poor sound resistance.
  • the V rib angle ⁇ of the V rib portion is, for example, about 35 to 50 °, preferably about 40 to 47 °, and more preferably about 41 to 45 °.
  • the V-ribbed belt of the present invention having such a V-rib angle is particularly effective for a small-diameter pulley having a small diameter and a large bending amount of the wound belt. This is because the torque cross becomes the largest with a small-diameter pulley having the highest surface pressure against the pulley, and the torque cross with the small-diameter pulley greatly affects the friction loss of the engine.
  • the V-ribbed belt of the present invention is preferably hung on a pulley including a small-diameter pulley, and the outer diameter of such a small-diameter pulley may be 65 mm or less, for example, 10 to 65 mm, preferably 30 to 60 mm, More preferably, it may be about 40 to 55 mm.
  • the core is not particularly limited, but normally, cores (twisted cords) arranged at a predetermined interval in the belt width direction can be used.
  • core wire high-modulus fibers, for example, the above-mentioned polyester fibers (polyalkylene arylate fibers), synthetic fibers such as aramid fibers, inorganic fibers such as carbon fibers, etc. are widely used, and polyester fibers (polyethylene terephthalate fibers, polyethylene naphthalates). Phthalate fibers) and aramid fibers are preferred.
  • the fiber may be a multifilament yarn, for example, a multifilament yarn having a fineness of 2000 to 10000 denier (particularly 4000 to 8000 denier).
  • the core wire usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used.
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm.
  • the core wire may be embedded in the longitudinal direction of the belt, and one or a plurality of core wires may be embedded in parallel at a predetermined pitch parallel to the longitudinal direction of the belt.
  • the core wire is subjected to various adhesion treatments with a resorcin-formalin-latex (RFL) liquid, an epoxy compound, an isocyanate compound, etc., and then between the stretched layer and the compressed rubber layer. (Especially, it may be embedded in the adhesive layer).
  • RTL resorcin-formalin-latex
  • the stretch layer may have a reinforcing cloth, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth or a non-woven cloth. If necessary, the reinforcing cloth may be laminated on the surface of the stretched layer by performing the adhesion treatment.
  • a cloth material preferably a woven cloth
  • the reinforcing cloth may be laminated on the surface of the stretched layer by performing the adhesion treatment.
  • the V-ribbed belt of the present invention includes a compressed rubber layer having a transmission surface at least a part of which can contact with the V-rib groove portion of the pulley.
  • the compression rubber layer has a friction transmission surface with a rubber component and a soundproofing improver.
  • a surface layer portion formed of the rubber composition is formed on the friction transmission surface, and the other portion (inner layer portion) does not contain a soundproofing improver.
  • it may be a compressed rubber layer, the entire compressed rubber layer is formed of a rubber composition containing a soundproofing improver in terms of soundproofing (particularly soundproofing over a long period of time) and productivity.
  • a compressed rubber layer is preferred.
  • Rubber component examples include known rubber components and / or elastomers such as diene rubber [natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile. Rubber (including mixed polymers of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), etc.], ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber Examples thereof include silicone rubber, urethane rubber, and fluorine rubber.
  • diene rubber natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile. Rubber (including mixed polymers
  • ethylene- ⁇ -olefin elastomers ethylene-propylene rubber (EPR), ethylene-propylene rubber (EPR), free from harmful halogens, ozone-resistant, heat-resistant, cold-resistant, and economically superior
  • Ethylene- ⁇ -olefin rubbers such as ethylene-propylene-diene copolymers (EPDM, etc.) are preferred.
  • the friction transmission surface of the compression rubber layer contains a soundproofing improver, the friction state between the belt and the pulley can be stabilized, and not only the soundproofing performance can be improved, but also the compression rubber layer improves the soundproofing performance.
  • the torcross can be reduced because the V-rib portion is formed at a predetermined angle.
  • the proportion of the soundproofing improver can be selected from the range of about 1 to 100 parts by weight with respect to 100 parts by weight of the rubber component depending on the type of the soundproofing improver. 35 parts by mass). If the proportion of the sound-proofing improver is too small, the sound-proofing property may be lowered, and conversely if too large, the torque loss may be increased.
  • a conventional soundproofing improver for stabilizing the friction state between the belt and the pulley can be used.
  • surfactants and plasticizers are used because they are excellent in soundproofing improvement effect.
  • Inorganic particles and polyethylene resin particles are preferred.
  • the surfactant may be either an ionic surfactant or a nonionic surfactant, and can be selected according to the type of rubber component.
  • the rubber component is an ethylene- ⁇ -olefin elastomer.
  • a nonionic surfactant is preferable from the viewpoint of improving sound resistance, and a polyethylene glycol type nonionic surfactant and a polyhydric alcohol type nonionic surfactant are particularly preferable.
  • Polyethylene glycol type nonionic surfactant is a hydrophilic group formed by adding ethylene oxide to a hydrophobic base component having a hydrophobic group such as higher alcohol, alkylphenol, higher fatty acid, higher polyhydric alcohol higher fatty acid ester, higher fatty acid amide, or polypropylene glycol. Is a nonionic surfactant.
  • Examples of the higher alcohol as the hydrophobic base component include C 10-30 saturated alcohols such as lauryl alcohol, tetradecyl alcohol, cetyl alcohol, octadecyl alcohol, aralkyl alcohol, and C 10-26 unsaturated alcohols such as oleyl alcohol. It can be illustrated.
  • Examples of the alkylphenol include C 4-16 alkylphenol such as octylphenol and nonylphenol. These higher alcohols may be used alone or in combination of two or more.
  • Higher fatty acids of the hydrophobic base component include saturated fatty acids [eg C 10-30 saturated fatty acids such as myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, preferably C 12-28 saturated fatty acids, more preferably C 14-26 saturated fatty acids, particularly preferably C 16-22 saturated fatty acids and the like; oxycarboxylic acids such as hydroxystearic acid], unsaturated fatty acids [eg oleic acid, erucic acid, erucic acid, linoleic acid, linolenic acid, unsaturated C 10-30 fatty acids such as eleostearic acid], and others. These higher fatty acids may be used alone or in combination of two or more.
  • saturated fatty acids eg C 10-30 saturated fatty acids such as myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid
  • the polyhydric alcohol higher fatty acid ester is an ester of a polyhydric alcohol and the higher fatty acid and has an unreacted hydroxyl group.
  • polyhydric alcohols include alkanediols (such as C 2-10 alkanediols such as ethylene glycol, propylene glycol, and butanediol), alkanetriols (such as glycerin, trimethylolethane, trimethylolpropane), and alkanetetraols (pentaerythritol, Examples thereof include diglycerin and the like, alkanehexaol (such as dipentaerythritol, sorbitol, and sorbit), alkaneoctaol (such as sucrose), and alkylene oxide adducts thereof (such as C 2-4 alkylene oxide adducts). These higher fatty acid esters may be used alone or in combination of two or more.
  • oxyethylene ethylene oxide or “ethylene glycol”
  • EO ethylene oxide
  • PO ethylene glycol
  • poly EO higher alcohol ethers poly EO 10-26 alkyl ethers such as poly EO lauryl ether and poly EO stearyl ether
  • C 10-26 such as poly EO poly PO alkyl ether
  • alkylphenol-EO adducts such as polyEO octylphenyl ether and polyEO nonylphenyl ether
  • fatty acid such as polyEO monolaurate, polyEO monooleate and polyEO monostearate Body
  • glycerol mono- or di-higher fatty acid esters -EO adduct glycerin mono- or dilaurate, glycerin mono- or dipalmitate, glyceryl mono- or distearate, EO adducts of glycerin mono- or di-C 10-26 fatty acid esters such as glycerol mono- or dioleate
  • Pentaerythritol higher fatty acid ester-EO adduct pentaerythritol mono to tri C 10-26 fatty acid ester-EO adduct such as pentaerythritol distearate-EO adduct
  • the polyhydric alcohol type nonionic surfactant is a nonionic surfactant in which a hydrophobic group such as a higher fatty acid is bonded to the polyhydric alcohol (especially alkanetriol or alkanehexaol such as glycerol, pentaerythritol, sucrose or sorbitol). It is an agent.
  • polyhydric alcohol type nonionic surfactant examples include glycerin fatty acid esters such as glycerin monostearate and glycerin monooleate, pentaerythritol fatty acid esters such as pentaerythritol monostearate and pentaerythritol beef tallow fatty acid ester, Sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monostearate, sorbitol fatty acid esters such as sorbitol monostearate, sucrose fatty acid esters, alkyl ethers of polyhydric alcohols, fatty acid amides of alkanolamines such as coconut fatty acid diethanolamide, Examples thereof include alkyl polyglycosides. These polyhydric alcohol type nonionic surfactants can also be used alone or in combination of two or more, and may be used in combination with the polyethylene glycol type nonionic surfactant.
  • Preferred surfactants are nonionic surfactants, particularly polyethylene glycol type nonionic surfactants (eg, poly EOC 10-26 alkyl ether, alkylphenol-EO adducts, polyhydric alcohol C 10-26 fatty acid ester-EO Adducts, etc.).
  • polyethylene glycol type nonionic surfactants eg, poly EOC 10-26 alkyl ether, alkylphenol-EO adducts, polyhydric alcohol C 10-26 fatty acid ester-EO Adducts, etc.
  • the HLB (Hydrophile-Lipophile-Balance) value of the surfactant is, for example, 8.7 to 17, preferably 9 to 15, and more preferably 9.5 to 14 ( In particular, it is about 10 to 13.5).
  • the HLB value is a value calculated by the Griffin method.
  • the viscosity (25 ° C.) of the surfactant is, for example, about 10 to 300 MPa ⁇ s, preferably about 20 to 200 MPa ⁇ s.
  • the ratio of the surfactant is, for example, 1 to 25 parts by mass, preferably 2 to 20 parts by mass, and more preferably 3 to 15 parts by mass with respect to 100 parts by mass of the rubber component. Part (particularly 4 to 10 parts by mass). If the proportion of the surfactant is too small, the sound resistance may be lowered, and if too much, the torque loss may be increased.
  • the plasticizer may be any plasticizer having a solubility index (Solubility Parameters: SP value) larger than that of the rubber component. For example, 8.3 to 10.7 ( cal / cm 3 ) 1/2 , preferably 8.4 to 10.5 (cal / cm 3 ) 1/2 , more preferably 8.5 to 10 (cal / cm 3 ) 1/2
  • the plasticizer which has is preferable.
  • the solubility index is particularly effective when the rubber component is an ethylene- ⁇ -olefin elastomer.
  • plasticizer a conventional plasticizer having such a solubility index can be used.
  • conventional plasticizers include aliphatic carboxylic acid plasticizers (adipic acid ester plasticizers, sebacic acid ester plasticizers, etc.), aromatic carboxylic acid ester plasticizers (phthalic acid ester plasticizers, Merit acid ester plasticizers), oxycarboxylic acid ester plasticizers, phosphate ester plasticizers, ether plasticizers, ether ester plasticizers, and the like. These plasticizers can be used alone or in combination of two or more. Of these plasticizers, when the rubber component is an ethylene- ⁇ -olefin elastomer, ether ester plasticizers are preferred because they have a large effect of improving sound resistance.
  • ether ester plasticizers include poly C 2 such as poly EO dibutanoate, poly EO diisobutanoate, poly EO di-2-ethylbutyrate, poly EO di-2-ethylhexylate, poly EO didecanoate, and the like.
  • ether ester plasticizers can be used alone or in combination of two or more.
  • poly C 2-4 alkylene glycol di C 4-12 fatty acid esters such as poly EO di-2-ethylhexylate are preferred.
  • the weight average molecular weight of the plasticizer is, for example, 300 to 2000, preferably 350 to 1500 (eg 370 to 1000), more preferably 400 in terms of polystyrene in gel permeation chromatography (GPC). About 800 (especially 450 to 600).
  • the proportion of the plasticizer is, for example, 3 to 20 parts by mass (eg 5 to 15 parts by mass), preferably 3.5 to 15 parts by mass, more preferably 100 parts by mass of the rubber component. Is about 4 to 10 parts by mass (especially 4.5 to 8 parts by mass). If the proportion of the plasticizer is too small, the sound resistance may be lowered. Conversely, if the proportion is too large, the torque loss may be increased.
  • inorganic particles can be used as the inorganic particles (inorganic filler or inorganic powder).
  • Conventional inorganic particles include, for example, graphite, metal oxide (calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), metal carbonate (magnesium carbonate, calcium carbonate, etc.), metal silicate Salt (such as calcium silicate and aluminum silicate), metal carbide (such as silicon carbide and tungsten carbide), metal nitride (such as titanium nitride, aluminum nitride, boron nitride), metal sulfide (such as molybdenum disulfide), metal sulfate Salt (calcium sulfate, barium sulfate, etc.), clay (hydrous aluminum silicate: clay composed of clay minerals such as pyrophyllite, kaolinite, sericite, montmorillonite, bentonite, smectite), talc (
  • the shape of the inorganic particles is not particularly limited, and for example, a spherical shape, an elliptical shape, a polygonal shape (polygonal pyramid shape, a rectangular parallelepiped shape, a rectangular parallelepiped shape, etc.), a flat shape (plate shape, scale shape, etc.), a rod shape, a fiber shape And indefinite shape.
  • a spherical shape an elliptical shape
  • a polygonal shape polygonal pyramid shape, a rectangular parallelepiped shape, a rectangular parallelepiped shape, etc.
  • a flat shape plate shape, scale shape, etc.
  • rod shape a fiber shape And indefinite shape
  • flat shapes, indefinite shapes, etc. are widely used.
  • the average particle size (number average primary particle size) of the inorganic particles is, for example, about 0.1 to 100 ⁇ m, preferably about 1 to 50 ⁇ m, and more preferably about 1 to 30 ⁇ m. If the size of the inorganic particles is too small, the sound resistance may not be improved sufficiently, and conversely if too large, the mechanical properties of the belt may be deteriorated.
  • the average particle diameter and the aspect ratio can be measured by a method of measuring dimensions based on a scanning electron micrograph taken at 50 times, a laser diffraction scattering method, or the like.
  • the inorganic particles may be either non-porous or porous, but the nitrogen adsorption specific surface area by the BET method is, for example, about 5000 to 30000 cm 2 / g, preferably about 6000 to 25000 cm 2 / g. If the specific surface area is too small, the particles become large and the mechanical properties of the belt may be reduced. Conversely, if the surface area is too large, the particles become small and the sound resistance may not be sufficiently improved.
  • the apparent density of the inorganic particles is, for example, about 0.2 to 0.7 g / ml, preferably about 0.25 to 0.65 g / ml.
  • the oil absorption of the inorganic particles is about 10 to 40 ml / 100 g, preferably about 20 to 38 ml / 100 g.
  • the proportion of the inorganic particles is, for example, 10 to 50 parts by weight, preferably 15 to 45 parts by weight (eg 15 to 35 parts by weight), more preferably 20 to 40 parts by weight (particularly 30 to 100 parts by weight) with respect to 100 parts by weight of the rubber component. 35 parts by mass). If the proportion of the inorganic particles is too small, the sound resistance may be reduced. Conversely, if the proportion is too large, the torque loss may be increased.
  • the polyethylene resin constituting the polyethylene resin particles may be a polyethylene homopolymer (homopolymer) or a polyethylene copolymer (copolymer).
  • the copolymerizable monomer contained in the copolymer include olefins (for example, ⁇ such as propylene, 1-butene, 1-pentene, 1-hexene, 3-methylpentene, 4-methylpentene, and 1-octene).
  • (meth) acrylic monomers for example, (meth) acrylic acid C 1-6 alkyl esters such as methyl (meth) acrylate and ethyl (meth) acrylate
  • acrylic monomers for example, (meth) acrylic acid C 1-6 alkyl esters such as methyl (meth) acrylate and ethyl (meth) acrylate
  • saturated carboxylic acids for example, maleic anhydride
  • vinyl esters for example, vinyl acetate, vinyl propionate, etc.
  • dienes for example, butadiene, isoprene, etc.
  • copolymerizable monomers ⁇ -C 3-8 olefins such as propylene, 1-butene, 1-hexene, 4-methylpentene and 1-octene are preferred.
  • the proportion of the copolymerizable monomer is 30 mol% or less (for example, 0.01 to 30 mol%), preferably 20 mol% or less (for example, 0.1 to 20 mol%), more preferably 10 mol% or less (for example, 1 to 10 mol%).
  • the copolymer may be a random copolymer, a block copolymer, or the like.
  • polyethylene resin examples include low, medium or high density polyethylene, linear low density polyethylene, ultrahigh molecular weight polyethylene, ethylene-propylene copolymer, ethylene-butene-1 copolymer, ethylene-propylene-butene- 1 copolymer, ethylene- (4-methylpentene-1) copolymer and the like. These polyethylenes can be used alone or in combination of two or more. Among these polyethylenes, polyethylenes such as medium- or high-density polyethylene and ultrahigh molecular weight polyethylene are preferable because they have a large effect of improving sound resistance.
  • the viscosity-average molecular weight of the polyethylene resin can be selected from a range of, for example, 10,000 or more, and is, for example, 100,000 to 9 million, preferably 150,000 to 5 million, and more preferably about 200,000 to 3 million. If the molecular weight is too small, the effect of improving sound resistance is not sufficient. In the present specification and claims, the viscosity average molecular weight can be measured according to ASTM D4020.
  • the density of the polyethylene-based resin can be selected from a range of about 0.9 to 0.97 g / cm 3 by a method in accordance with ASTM D792, and is, for example, 0.92 to 0.97 g from the viewpoint of a great effect of improving sound resistance.
  • / Cm 3 preferably 0.93 to 0.97 g / cm 3 , and more preferably about 0.94 to 0.97 g / cm 3 .
  • the melting point (or softening point) of the polyethylene resin is preferably not less than the processing temperature for kneading or rolling the rubber composition and not more than the vulcanization temperature, for example, 160 ° C.
  • the following for example, 120 to 160 ° C., preferably 125 to 150 ° C., more preferably about 125 to 140 ° C.
  • Examples of the shape of the polyethylene resin particles include the shapes exemplified in the section of the inorganic particles. Of the above-mentioned shapes, as the shape of the polyethylene resin particles, particles such as a spherical shape, an ellipsoidal shape, a polygonal shape, and an indefinite shape are generally used.
  • the average particle size (primary particle size) of the polyethylene resin particles is, for example, about 10 to 200 ⁇ m, preferably about 20 to 150 ⁇ m, and more preferably about 25 to 120 ⁇ m. If the particle diameter of the polyethylene resin particles is too small, the sound resistance may not be sufficiently improved, and conversely if too large, the mechanical properties of the belt may be deteriorated.
  • the ratio of the polyethylene resin particles is, for example, 1 to 30 parts by mass (for example, 5 to 20 parts by mass), preferably 3 to 20 parts by mass, more preferably 4 to 10 parts by mass (particularly with respect to 100 parts by mass of the rubber component. 4.5 to 8 parts by mass). If the proportion of the polyethylene resin particles is too small, the sound resistance may be lowered. Conversely, if the proportion is too large, the torque loss may be increased.
  • the rubber composition forming the compressed rubber layer may further contain a reinforcing agent in addition to the rubber component and the soundproofing improver.
  • the reinforcing agent includes reinforcing fibers and carbon black as a reinforcing agent.
  • reinforcing fibers examples include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyester fibers (polyethylene terephthalate (PET) fibers, polyethylene).
  • C 2-4 alkylene C 6-14 arylate fiber such as naphthalate (PEN) fiber]
  • synthetic fiber such as vinylon fiber, polyparaphenylenebenzobisoxazole (PBO) fiber
  • natural fiber such as cotton, hemp, wool
  • An inorganic fiber such as carbon fiber can be exemplified. These fibers can be used alone or in combination of two or more.
  • reinforcing fibers at least one selected from polyamide fibers such as polyamide 66 fibers and aramid fibers, polyester fibers, and vinylon fibers is preferable.
  • the reinforcing fiber may be fibrillated. Further, various adhesive treatments may be applied to the reinforcing fiber in the same manner as the core wire.
  • the reinforcing fibers may be usually contained in the compressed rubber layer in the form of short fibers, and the average length of the short fibers is, for example, 0.1 to 20 mm, preferably 0.5 to 15 mm (for example, 1 to 10 mm), More preferably, it may be about 1 to 5 mm (especially 2 to 4 mm).
  • the average fiber diameter of the reinforcing fibers is, for example, about 1 to 100 ⁇ m, preferably 3 to 50 ⁇ m, more preferably 5 to 40 ⁇ m (particularly 10 to 30 ⁇ m).
  • Carbon black has a large particle size, particularly a large particle size carbon black having an iodine adsorption amount of 40 mg / g or less in order to improve fuel economy by reducing internal heat generation of the rubber composition forming the compressed rubber layer. Is preferably included.
  • the large particle size carbon black include FEF, GPF, APF, SRF-LM and SRF-HM. These carbon blacks can be used alone or in combination of two or more.
  • the number average primary particle size of the large particle size carbon black may be, for example, about 40 to 200 nm, preferably 45 to 150 nm, and more preferably about 50 to 125 nm.
  • the large particle size carbon black has a low reinforcing effect, it is preferable to use a small particle size carbon black having a small particle size and a high reinforcing effect (iodine adsorption amount higher than 40 mg / g).
  • a small particle size carbon black having a small particle size and a high reinforcing effect By using at least two types of carbon black having different particle sizes, both fuel saving and reinforcing effect can be achieved.
  • the small particle size carbon black include SAF, ISAF-HM, ISAF-LM, HAF-LS, HAF, and HAF-HS. These carbon blacks can be used alone or in combination of two or more.
  • the number average primary particle size of the small particle size carbon black may be less than 40 nm, for example, 5 to 38 nm, preferably 10 to 35 nm, more preferably about 15 to 30 nm.
  • the former / the latter 20/80 to 55/45, preferably 25 / It may be about 75 to 50/50, more preferably about 30/70 to 50/50.
  • there is too much ratio of small particle size carbon black among carbon black there exists a possibility that a fuel-saving property may fall, and there exists a possibility that a reinforcement effect may fall when there are too many large particle size carbon blacks.
  • the proportion of the reinforcing agent may be 40 parts by mass or more based on 100 parts by mass of the rubber component, for example, 50 to 200 parts by mass, preferably 60 to 180 parts by mass, more preferably 80 to 150 parts by mass (particularly 100 parts by mass). (About 120 parts by mass). In the present invention, even when the proportion of the reinforcing agent is large, the torcloth can be reduced.
  • the proportion of the reinforcing fibers may be 80 parts by mass or less (for example, 0 to 80 parts by mass) with respect to 100 parts by mass of the rubber component, for example, 60 parts by mass or less (for example, 1 to 60 parts by mass), preferably 50 parts by mass. Part or less (for example, 5 to 50 parts by mass), more preferably about 40 parts by mass or less (for example, 10 to 40 parts by mass). If the proportion of reinforcing fibers is too large, there is a possibility that the torque cross cannot be reduced.
  • the proportion of carbon black may be 10 parts by mass or more with respect to 100 parts by mass of the rubber component, for example, 20 to 180 parts by mass, preferably 30 to 150 parts by mass, more preferably 50 to 120 parts by mass (particularly 60 parts). (About 100 parts by mass).
  • the rubber composition for forming the compression rubber layer further includes other plasticizer (or softener) having a solubility index equal to or lower than the solubility index of the rubber component, in addition to the rubber component and the soundproofing improver. Also good.
  • the other plasticizer is, for example, 6.0 to 8.1 (cal / cm 3 ) 1/2 , preferably 6.5 to 8.0 (cal / cm) when the rubber component is an ethylene- ⁇ -olefin elastomer. 3 ) 1/2 , more preferably, a plasticizer having a solubility index of about 7.0 to 7.8 (cal / cm 3 ) 1/2 .
  • other plasticizers include oils such as paraffin oil, naphthenic oil, and process oil.
  • the ratio of the other plasticizer (softener) may be 30 parts by mass or less with respect to 100 parts by mass of the rubber component, for example, 1 to 30 parts by mass, preferably 3 to 25 parts by mass, and more preferably 5 to 5 parts by mass. About 20 parts by mass (particularly 7 to 15 parts by mass).
  • the rubber composition forming the compression rubber layer may further contain a vulcanizing agent in addition to the rubber component and the soundproofing improver.
  • vulcanizing agent or cross-linking agent
  • conventional components can be used depending on the type of rubber component.
  • organic peroxides diacyl peroxide, peroxy ester, dialkyl peroxide, etc.
  • oximes quinone
  • examples thereof include dioximes
  • guanidines diphenylguanidine, etc.
  • metal oxides magnesium oxide, zinc oxide, etc.
  • These vulcanizing agents can be used alone or in combination of two or more.
  • the rubber component is an ethylene- ⁇ -olefin elastomer
  • organic peroxides, sulfur-based vulcanizing agents and the like are generally used as vulcanizing agents.
  • the proportion of the vulcanizing agent can be selected from a range of about 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component depending on the types of the vulcanizing agent and the rubber component.
  • the ratio of the organic peroxide as the vulcanizing agent is 1 to 8 parts by weight, preferably 1.5 to 5 parts by weight, and more preferably about 2 to 4.5 parts by weight with respect to 100 parts by weight of the rubber component. It is.
  • the rubber composition forming the compression rubber layer may further contain a co-crosslinking agent such as bismaleimides (arene bismaleimide such as N, N′-m-phenylene dimaleimide or aromatic bismaleimide).
  • a co-crosslinking agent such as bismaleimides (arene bismaleimide such as N, N′-m-phenylene dimaleimide or aromatic bismaleimide).
  • the ratio of the co-crosslinking agent can be selected from the range of about 0.01 to 10 parts by weight, for example, 0.1 to 10 parts by weight, preferably 0.5 to 6 parts by weight, more preferably 100 parts by weight of the rubber component. Is about 1 to 5 parts by mass.
  • the rubber composition forming the compression rubber layer may contain a conventional additive as another additive in addition to the rubber component and the soundproofing improver.
  • vulcanization accelerators examples include vulcanization accelerators, vulcanization retarders, processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, fatty acid amide, etc.), stabilizers or anti-aging agents ( UV absorbers, antioxidants, anti-aging agents or heat stabilizers, anti-bending cracking agents, anti-ozone degradation agents, etc.), coloring agents, adhesion improvers [resorcin-formaldehyde cocondensates, hexamethoxymethyl melamine, etc.
  • Melamine resins, co-condensates thereof resorcin-melamine-formaldehyde co-condensate, etc.
  • tackifiers plasticizers
  • coupling agents silane coupling agents, etc.
  • lubricants flame retardants
  • antistatic agents Etc. may be included.
  • the ratio of these other additives can be selected from a conventional range depending on the type, for example, about 0.1 to 5 parts by mass (particularly 0.5 to 3 parts by mass) with respect to 100 parts by mass of the rubber component. It may be.
  • the method for producing the V-ribbed belt of the present invention is not particularly limited, and a known or conventional method can be adopted.
  • a compressed rubber layer, an adhesive layer in which a core body is embedded, and an extension layer are each formed from an unvulcanized rubber composition and laminated, and the laminated body is molded into a cylindrical shape with a molding die, and added. It can be formed by forming a sleeve by vulcanization and cutting the vulcanized sleeve to a predetermined width. More specifically, the V-ribbed belt can be manufactured by the following method.
  • a stretch layer sheet is wound around a cylindrical molding mold having a smooth surface, and a core wire (twisted cord) forming a core is spirally spun on the sheet, and further, an adhesive layer sheet and compressed rubber A layered sheet is sequentially wound to produce a molded body. Thereafter, a jacket for vulcanization is placed on the molded body, the mold (molding die) is accommodated in a vulcanizing can, vulcanized under predetermined vulcanization conditions, and then removed from the molding mold to form a cylindrical shape. A vulcanized rubber sleeve is obtained.
  • the outer surface (compressed rubber layer) of the vulcanized rubber sleeve is polished with a grinding wheel to form a plurality of ribs, and then the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter.
  • a V-ribbed belt By reversing the cut belt, a V-ribbed belt provided with a compressed rubber layer having a rib portion on the inner peripheral surface can be obtained.
  • a cylindrical inner mold with a flexible jacket attached to the outer peripheral surface is used as the inner mold, and an unvulcanized stretch layer sheet is wound around the outer peripheral flexible jacket, and a core is formed on the sheet.
  • the core wire to be spirally spun and wound with an unvulcanized compressed rubber layer sheet to produce a laminate.
  • an outer mold that can be attached to the inner mold a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface is used, and an inner mold in which the laminate is wound is provided in the outer mold. Install concentrically.
  • the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed rubber layer) is press-fitted into the rib mold and vulcanized. Then, after extracting the inner mold from the outer mold and removing the vulcanized rubber sleeve having a plurality of ribs from the outer mold, the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter. Finish the ribbed belt.
  • a laminated body including an extension layer, a core body, and a compressed rubber layer can be expanded at a time to be finished into a sleeve (or V-ribbed belt) having a plurality of ribs.
  • hird production method In connection with the second production method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2004-82702 (only a compression rubber layer is expanded to form a preform (semi-vulcanized state), A method in which the core body is expanded and pressure-bonded to the preform, and vulcanized and integrated into a V-ribbed belt) may be employed.
  • EPDM “EPT2060M” manufactured by Mitsui Chemicals, Inc.
  • Nylon short fiber 66 nylon, average fiber diameter 27 ⁇ m, average fiber length 3 mm
  • Cotton short fiber Denim, average fiber diameter 13 ⁇ m, average fiber length 6mm
  • Zinc oxide “Zinc oxide 3 types” manufactured by Shodo Chemical Industry Co., Ltd.
  • Stearic acid Tsubaki stearic acid manufactured by NOF Corporation Carbon black HAF: “Seast 3” manufactured by Tokai Carbon Co., Ltd., average particle size 28 nm Carbon black FEF: “Seast SO” manufactured by Tokai Carbon Co., Ltd., average particle size 43 nm Hydrous silica: “Nippil VN3” manufactured by Tosoh Silica Corporation Paraffinic oil (softener): “Diana Process Oil PW-90” manufactured by Idemitsu Kosan Co., Ltd.
  • Surfactant Polyoxyalkylene alkyl ether, “New Coal 2304-Y” manufactured by Nippon Emulsifier Co., Ltd.
  • Ether ester plasticizer “RS-700” manufactured by ADEKA Corporation Calcium carbonate: “Whiteon SSB” manufactured by Shiraishi Calcium Co., Ltd.
  • Talc “RL217” manufactured by Fuji Talc Kogyo Co., Ltd., median diameter 20 ⁇ m
  • Polyethylene particles “Hi-Z Million 240S” manufactured by Mitsui Chemicals, Inc.
  • Organic peroxide “Park Mill D-40” manufactured by NOF Corporation
  • Vulcanization accelerator A Tetramethylthiuram disulfide (TMTD)
  • Vulcanization accelerator B N-cyclohexyl-2-benzothiazyl-sulfenamide (CBS)
  • Co-crosslinking agent A p, p′-dibenzylquinone dioxime, “Barunok DGM” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Co-crosslinking agent B N, N'-m-phenylene dimaleimide, "Barunok PM” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Core wire a twisted yarn cord obtained by adhering a cord of total denier 6,000, which is a 2 ⁇ 3 twisted configuration of 1,000 denier PET fiber, and twisted at an upper twist factor of 3.0 and a lower twist factor of 3.0, Core wire diameter 1.0mm
  • Examples 1 to 22 and Comparative Examples 1 to 18 Manufacture of V-ribbed belt
  • the rubber composition for forming an extension layer, the rubber composition for forming a compression rubber layer, and the rubber composition for forming an adhesive layer shown in Tables 1 and 2 are each kneaded using a known method such as a Banbury mixer.
  • the kneaded rubber was passed through a calender roll to prepare a stretch layer forming sheet, a compressed rubber layer forming sheet and an adhesive layer forming sheet having a predetermined thickness.
  • a V-ribbed belt was prepared using the following known method.
  • a stretch layer sheet is wound around a cylindrical molding mold having a smooth surface, and a core wire (twisted cord) that forms a core on the stretch layer sheet is spirally spun to form an adhesive layer sheet, compressed
  • the rubber layer sheets were sequentially wound to form a molded body.
  • the molding mold is placed on a vulcanizing can with the vulcanization jacket placed on the molded body, vulcanized at a temperature of 160 ° C. for 30 minutes, and then demolded from the molding mold.
  • a cylindrical vulcanized rubber sleeve was obtained.
  • the vulcanized rubber sleeve is formed with a predetermined width in the longitudinal direction of the belt using a cutter. And finished into a V-ribbed belt.
  • V-ribbed belt dimensions 5 and Table 3, the obtained V-ribbed belt has a distance a from the center of the core [2] to the back of the V-ribbed belt [1] of 1.00 mm, and the bottom of the core [3] to the back of the V-ribbed belt [
  • the distance b from the rib bottom [4] to the V-ribbed belt back [1] is 2.30 mm and the distance d from the rib tip [5] to the V-ribbed belt back [1] is 1.50 mm.
  • a V-ribbed belt (4 ribs, length 750 mm) is wound around a two-axis running test machine composed of a driving (Dr) pulley having a diameter of 55 mm and a driven (Dn) pulley having a diameter of 55 mm.
  • Dr driving
  • Dn driven
  • a predetermined initial tension was applied to the V-ribbed belt in the tension range of 100 to 600 N / one belt, and the difference between the driving torque and the driven torque when the driving pulley was rotated at 2000 rpm without a driven pulley was calculated as a torque cross.
  • Tables 4-6 The results obtained are shown in Tables 4-6.
  • the table shows the torcloth when an initial tension of 500 N was applied.
  • the torque cross required by this measurement includes the torque cross resulting from the bearing of the testing machine in addition to the torque cross due to the bending loss of the V-ribbed belt. Therefore, a metal belt (material: maraging steel) considered to have a torque cross as a V-ribbed belt of substantially zero is run in advance, and the difference between the drive torque and the driven torque at this time is a torque cross due to the bearing (bearing loss). Therefore, a value obtained by subtracting the torque cross caused by the bearing from the torque cross calculated by running the V-ribbed belt (the torque cross resulting from the V-ribbed belt and the bearing) was obtained as the torque cross resulting from the single V-ribbed belt.
  • the torcross (bearing loss) to be subtracted is the torcross when the metal belt is run at a predetermined initial tension (for example, when a V-ribbed belt is run at an initial tension of 500 N / one belt, the metal belt is moved at this initial tension. (Torcross when running).
  • No abnormal noise was generated.
  • Small abnormal noise was generated within 3 seconds.
  • A small noise was generated within 3 seconds (can be heard in the engine room but not in the car. NG when a high level of quietness is required, but normally no problem)
  • X A continuous abnormal noise of 3 seconds or more was generated.
  • the testing machine used for the evaluation is a drive (Dr) pulley (diameter 101 mm), an idler (Id) pulley (diameter 70 mm), a driven (Dn) pulley (diameter 120 mm), and a tension (Ten) pulley. (Diameter 61 mm) was arranged, and misalignment was set at an angle of 1.5 ° between the driving pulley and the driven pulley.
  • a V-ribbed belt (6 ribs, 1200 mm in length) was hung between each pulley of the test machine, and the drive pulley was run at a rotation speed of 1000 rpm under 25 ° C conditions. At this time, a load was applied to the drive pulley so that the belt tension was 50 N / rib. Then, the occurrence of stick-slip abnormal noise (abnormal sound heard as “curculle”) when water was poured into the belt at 100 ml / min for 1 minute was confirmed, and the evaluation was made according to the same criteria as the pronunciation measurement in an actual vehicle. The results are shown in Tables 4-6.
  • the adhesion wear test is a test machine in which a drive (Dr) pulley (diameter 120 mm), an idler (Id) pulley (diameter 45 mm), and a driven (Dn) pulley (diameter 120 mm) are arranged in this order. Used.
  • a V-ribbed belt (4 ribs, 1200 mm in length) is hung on each pulley of the testing machine, the rotational speed of the driving pulley is 4900 rpm, the load of the idler pulley and the driven pulley is 11.7 kW, and the initial belt tension ( 940 N / 4 ribs) was applied, and the belt was run at an ambient temperature of 25 ° C. for 5 hours.
  • production of the adhesion wear abnormal sound by adhesion
  • O A small amount of adhesive wear occurred, but there was no problem in running performance.
  • X Adhesive wear that caused problems in running occurred.
  • the difference between the level of “0.30 to 0.34 N ⁇ m” and the level of “0.20 to 0.24 N ⁇ m”, that is, the torque cross is reduced by “0.06 to 0.14 N ⁇ m”. What is done is, for example, a significant difference corresponding to an improvement of 0.2% in the fuel consumption of a light vehicle (improvement of fuel consumption by 0.1% in the automobile field is a great effect).
  • a V-ribbed belt and a V pulley An analysis model was created, and the energy due to compressive strain, which is an index of energy loss due to heat generation, was analyzed by computer simulation. The result is shown in FIG. 10.
  • Example 4 in which the angle difference ⁇ is large and a gap with the pulley is generated at the tip of the V-rib, the energy due to the compressive strain near the tip of the V-rib is smaller. I understand that.
  • the V-ribbed belt of the present invention can be used as a V-ribbed belt for various belt transmission systems, and is particularly useful as a system including a small-diameter pulley such as an alternator as a power generator, for example, a V-ribbed belt for an automobile engine accessory drive system.

Abstract

Provided is a v-ribbed belt comprising a compression rubber layer that has a plurality of v-ribbed sections that extend in the longitudinal direction of the belt and are parallel to each other and has a friction transmission face, at least a portion of which can contact a v-ribbed groove of a pulley, wherein the friction transmission face of the compression rubber layer is formed with a vulcanizate of a rubber composition containing a rubber component and an agent to improve sound proofing, and the v-ribbed angle of the v-ribbed portion is 5° to 9° larger than the v-ribbed groove angle of the pulley.

Description

Vリブドベルト及びその用途V-ribbed belt and its use
 本発明は、自動車エンジン補機駆動などに用いられるVリブドベルトに関し、詳しくは、摩擦伝動面の摩擦状態を安定化して耐発音性(静粛性)を維持しつつ、省燃費性を向上(トルクロスを低減)できるVリブドベルト及びその用途に関する。 The present invention relates to a V-ribbed belt used for driving an automotive engine accessory, and more specifically, improving the fuel efficiency while stabilizing the frictional state of a friction transmission surface and maintaining sound resistance (quietness). The present invention relates to a V-ribbed belt that can be reduced and its use.
 自動車などの内燃機関(エンジン)には、オルタネータ、ウォータポンプ、パワーステアリングポンプ等の補機が取り付けられており、これら補機は、エンジンのクランク軸により伝動ベルトを懸架した動力伝達機構を介して機械的に駆動されるのが一般的である。 An auxiliary machine such as an alternator, a water pump, and a power steering pump is attached to an internal combustion engine (engine) such as an automobile, and these auxiliary machines are connected via a power transmission mechanism in which a transmission belt is suspended by an engine crankshaft. It is generally mechanically driven.
 近年、自動車エンジンにおいては、省燃費性と耐発音性(静粛性)とを両立させる技術の要求が高まっている。省燃費性に関して、エンジンのフリクションロス低減及び燃費向上等の観点から、動力伝達機構におけるトルクロス(クランク軸における駆動トルクと、従動軸(補機)における従動トルクとの差)を低減することが望まれている。 In recent years, there has been an increasing demand for technologies for achieving both fuel saving and soundproofing (quietness) in automobile engines. With regard to fuel efficiency, from the viewpoint of reducing engine friction loss and improving fuel efficiency, it is desirable to reduce the torque cross in the power transmission mechanism (the difference between the drive torque on the crankshaft and the driven torque on the driven shaft (auxiliary)). It is rare.
 具体的には、エンジンの補機駆動システムで用いる伝動ベルトとしてはVリブドベルトが用いられるが、Vリブドベルトに関してトルクロスを低減する手段が提案されている。 Specifically, a V-ribbed belt is used as a transmission belt used in an engine accessory drive system, and means for reducing torcross is proposed for the V-ribbed belt.
 日本国特開2010-276127号公報(特許文献1)には、損失正接tanδが小さいゴム組成物を用いて内部損失(自己発熱)を低減することによりトルクロスを低減したVリブドベルトが提案されている。また、日本国特開2013-177967号公報(特許文献2)には、心線の位置を内周側に配置して心線の曲げ応力(ベルトの屈曲損失)を低減することによりトルクロスを低減したVリブドベルトが提案されている。 Japanese Patent Application Laid-Open No. 2010-276127 (Patent Document 1) proposes a V-ribbed belt in which the torque loss is reduced by reducing internal loss (self-heating) using a rubber composition having a small loss tangent tan δ. . In Japanese Patent Laid-Open No. 2013-177967 (Patent Document 2), the torcross is reduced by arranging the position of the core wire on the inner peripheral side to reduce the bending stress (belt bending loss) of the core wire. V-ribbed belts have been proposed.
 しかし、これらのVリブドベルトでは、ある程度のトルクロスの低減は達成できるものの、発電装置であるオルタネータのような、プーリ径が小さい部位においては、巻き掛けたベルトの曲げ量が大きく、トルクロスの低減が不充分である。このように大きなトルクロスが発生する部位は、エンジンのフリクションロスに大きく影響するので、トルクロスの更なる低減が大きな課題となっている。 However, although these V-ribbed belts can achieve a certain degree of torque reduction, in a portion where the pulley diameter is small, such as an alternator that is a power generation device, the amount of bending of the wound belt is large, and the torque loss is not reduced. It is enough. Since the part where such a large torque cross is generated greatly affects the friction loss of the engine, further reduction of the torque cross is a major issue.
 その一方で、自動車エンジンなどの補機駆動システムにおける耐発音性に関しては、プーリに接するベルト表面(プーリ係合面)の摩擦係数を小さくして、プーリのミスアライメント(軸ずれ)発生時に生じ易い騒音や、スティック・スリップ現象による騒音の改善が課題となっている。 On the other hand, with respect to sound generation resistance in an accessory drive system such as an automobile engine, the friction coefficient of the belt surface (pulley engagement surface) in contact with the pulley is reduced to easily occur when pulley misalignment (axial misalignment) occurs. Improvement of noise and noise caused by the stick-slip phenomenon has become an issue.
 スティック・スリップ現象とは、摩擦面間に生ずる微視的な摩擦面の付着や、滑りの繰り返しによって引き起こされる自励振動のことで、摩擦係数が滑り速度の増加とともに低下する場合や、静摩擦から動摩擦に移るときの不連続な摩擦低下が生ずる場合などに発生する現象である。Vリブドベルトにおいても、プーリと摩擦する伝動面の摩擦係数が高い(特に粘着性が高い)場合は、ベルトとプーリとの摩擦間にて、付着(スティック)と滑り(スリップ)とを繰り返すスティック・スリップ現象(振動)が生じ、付着から滑りへ移行する段階で異音(鳴き音)が生じる。そこで、耐発音性を向上させるための添加剤(耐発音性向上剤)を配合して摩擦伝動面の摩擦係数を低減して異音の発生を抑制する手段が提案されている。 Stick-slip phenomenon refers to self-excited vibration caused by microscopic adhesion between friction surfaces and repeated sliding, and the friction coefficient decreases with increasing sliding speed, or from static friction. This is a phenomenon that occurs when discontinuous friction drop occurs when moving to dynamic friction. Even in the case of a V-ribbed belt, if the friction coefficient of the transmission surface that is in friction with the pulley is high (particularly high in adhesiveness), sticking and sticking (slip) are repeated between the friction between the belt and the pulley. A slip phenomenon (vibration) occurs, and abnormal noise (squealing noise) occurs at the stage of transition from adhesion to slipping. In view of this, a means has been proposed in which an additive (soundproofing improver) for improving sound resistance is blended to reduce the friction coefficient of the friction transmission surface and suppress the generation of abnormal noise.
 例えば、日本国特開2007-70592号公報(特許文献3)では超高分子量ポリエチレン粉体、日本国特開2009-168243号公報(特許文献4)では扁平状の無機質粉体を、摩擦伝動面を構成する圧縮ゴム層に配合して摩擦係数を低下させる方法が提案されている。 For example, Japanese Patent Application Publication No. 2007-70592 (Patent Document 3) uses ultra high molecular weight polyethylene powder, Japanese Patent Application Publication No. 2009-168243 (Patent Document 4) uses a flat inorganic powder, and friction transmission surface. There has been proposed a method for reducing the coefficient of friction by blending with the compressed rubber layer constituting the material.
 しかし、これらの方法では、摩擦係数を低減できるものの、超高分子量ポリエチレン粉体及び無機質粉体は、内部損失(tanδ)を増加させる配合剤であり、トルクロスが大きくなる欠点を有している。 However, in these methods, although the friction coefficient can be reduced, the ultrahigh molecular weight polyethylene powder and the inorganic powder are compounding agents that increase the internal loss (tan δ), and have the disadvantage that the torque loss becomes large.
 さらに、被水時での走行において発生するスティック・スリップ音も問題となっている。詳しくは、摩擦伝動面の濡れ性が低く、ベルトとプーリとの間(ベルト-プーリ間)における水の進入状態が均一でない場合、水が進入していない箇所(乾燥状態)では摩擦係数が高くなるのに対して、水が浸入した箇所(被水状態)では、部分的に摩擦係数が著しく低下するため、摩擦状態が不安定になり、スティック-スリップ音が発生する。ここでも耐発音性向上剤を配合して摩擦伝動面の水に対する親和性を改善して異音の発生を抑制する手段が提案されている。 Furthermore, stick-slip noise that occurs during running under water is also a problem. Specifically, if the wettability of the friction transmission surface is low and the water ingress state between the belt and pulley (between the belt and the pulley) is not uniform, the friction coefficient is high at locations where water has not entered (dry state). On the other hand, at the place where water has infiltrated (water-impregnated state), the friction coefficient is partly lowered, so that the friction state becomes unstable and a stick-slip sound is generated. Here too, a means has been proposed in which a soundproofing improver is blended to improve the affinity of the friction transmission surface for water to suppress the generation of abnormal noise.
 日本国特開2008-185162号公報(特許文献5)には、エチレン・α-オレフィンエラストマー100質量部に対して界面活性剤を1~25質量部配合したゴム組成物で摩擦伝動面を形成した摩擦伝動ベルトが開示されている。さらに、日本国特開2007-232205号公報(特許文献6)には、エチレン・α-オレフィンエラストマー100重量部に対して、溶解度指数が8.3~10.7(cal/cm1/2の可塑剤を10~25重量部配合したゴム組成物で摩擦伝動面を形成した摩擦伝動ベルトが開示されている。これらの摩擦伝動ベルトでは、界面活性剤や可塑剤の配合により摩擦伝動面を形成するゴム(エチレン-α-オレフィンエラストマー)と水との親和性が高められており、スティック-スリップによる異音を低減して被水時の耐発音性を向上できる。 In Japanese Patent Laid-Open No. 2008-185162 (Patent Document 5), a friction transmission surface is formed with a rubber composition in which 1 to 25 parts by mass of a surfactant is blended with 100 parts by mass of an ethylene / α-olefin elastomer. A friction transmission belt is disclosed. Furthermore, the Japanese Patent 2007-232205 (Patent Document 6), the ethylene · alpha-olefin elastomer 100 parts by weight, solubility parameter 8.3 ~ 10.7 (cal / cm 3 ) 1 / A friction transmission belt in which a friction transmission surface is formed with a rubber composition containing 10 to 25 parts by weight of the plasticizer 2 is disclosed. In these friction transmission belts, the affinity between the rubber (ethylene-α-olefin elastomer) that forms the friction transmission surface and water is increased by blending surfactants and plasticizers, so that noise caused by stick-slip is reduced. Decrease and improve sound resistance when wet.
 しかし、これらのベルトでは、摩擦伝動面に滲出した界面活性剤や可塑剤がベルト-プーリ間の摩擦状態を安定化するものの、ゴム中の界面活性剤や可塑剤の挙動が不安定であるためか、内部損失(tanδ)が増加し、トルクロスが大きくなる。 However, in these belts, surfactants and plasticizers that have exuded to the friction transmission surface stabilize the friction between the belt and pulley, but the behavior of the surfactants and plasticizers in the rubber is unstable. Or, the internal loss (tan δ) increases, and the torque cross increases.
 すなわち、Vリブドベルトを構成するゴム組成物の配合設計においては、耐発音性(静粛性)と省燃費性(トルクロス低減)とは背反特性となっており、配合設計のみで両立させることは困難であった。 That is, in the compounding design of the rubber composition constituting the V-ribbed belt, the sound resistance (silence) and the fuel saving (torque cross reduction) are contradictory characteristics, and it is difficult to achieve both by compounding design alone. there were.
 一方、日本国実開昭63-147951号公報(特許文献7)には、スタート時のギクシャク発振及び騒音を防止できる動力伝動用Vベルト装置として、駆動Vプーリと従動Vプーリ間にVベルトを掛架してなる伝動装置において、前記Vベルトの角度θをVプーリの溝角度θよりも5~15°大きくした動力伝動用Vベルト装置が開示されている。前記Vベルトとしては、ラップドベルト、ローエッジベルト、ローエッジコグドベルト、リブスターベルトが例示されている。 On the other hand, Japanese Utility Model Publication No. 63-147951 (Patent Document 7) discloses a V-belt between a driving V pulley and a driven V pulley as a power transmission V-belt device that can prevent jerky oscillation and noise at the start. in hung and comprising transmission, the V-belt angle theta 1 a power transmission V-belt apparatus having an increased 5 ~ 15 ° than the groove angle theta 2 of the V-pulley is disclosed. Examples of the V belt include a wrapped belt, a low edge belt, a low edge cogged belt, and a rib star belt.
 日本国特開平8-184347号公報(特許文献8)には、ベルト走行時の発音や異音を少なくしたVリブドベルトとして、リブ部表面でパラ系アラミド繊維がフィブリル化して突出し、かつリブ部のV形状の角度であるリブ角度が42~50°であるVリブドベルトが開示されている。この文献には、前記リブ角度がプーリのV状溝部の角度よりも2~10°大きくすることが記載され、実施例では、2.5°又は4.5°大きくしている。この文献には、ベルト材質のゴムとして、クロロプレンゴム、水素化ニトリルゴム、天然ゴム、CSM、SBRが例示され、実施例では、クロロプレンゴムが使用されている。 In Japanese Patent Laid-Open No. 8-184347 (Patent Document 8), as a V-ribbed belt in which sound and noise during belt running are reduced, para-aramid fibers are fibrillated and protruded on the rib surface, and the rib portion A V-ribbed belt is disclosed in which the rib angle, which is the V-shaped angle, is 42 to 50 °. This document describes that the rib angle is 2 to 10 ° larger than the angle of the V-shaped groove portion of the pulley. In the embodiment, the rib angle is 2.5 ° or 4.5 ° larger. In this document, chloroprene rubber, hydrogenated nitrile rubber, natural rubber, CSM, and SBR are exemplified as the rubber of the belt material, and chloroprene rubber is used in the examples.
 日本国特開2000-74154号公報(特許文献9)には、伝達性能を殆ど低下させることなく、ベルトの耐熱寿命を向上させ、さらにベルトの両端面部に露出している芯線が運転中に短時間で剥がれ出ないVリブドベルトとして、溝角度が36~50°のVリブドプーリに対して、リブ角度が前記溝角度よりも10±2.5°高く設定したVリブドベルトや、溝角度が36~45°のVリブドプーリに対して、リブ角度が前記溝角度よりも15±2.5°又は5±2.5°高く設定したVリブドベルトにおいて、ベルトの両端面部分を削除するか、両端面部に露出した芯線を取り除いたVリブドベルトが開示されている。 Japanese Patent Application Laid-Open No. 2000-74154 (Patent Document 9) discloses that the heat resistance life of the belt is improved without substantially reducing the transmission performance, and the core wires exposed at both end portions of the belt are short during operation. As a V-ribbed belt that does not peel off over time, a V-ribbed belt in which the rib angle is set to 10 ± 2.5 ° higher than the groove angle with respect to a V-ribbed pulley having a groove angle of 36 to 50 °, or a groove angle of 36 to 45 For V-ribbed belts where the rib angle is set to 15 ± 2.5 ° or 5 ± 2.5 ° higher than the groove angle with respect to the V-ribbed pulley at 0 °, both end portions of the belt are deleted or exposed at both end portions. A V-ribbed belt with the core wire removed is disclosed.
 しかし、特許文献7~9には、ベルト角度及びリブ角度をプーリの溝角度よりも大きくすることが記載されているが、小径のプーリ及びトルクロス(省燃費性)については記載されておらず、耐発音性向上剤も配合されていない。なお、特許文献7には、ベルトの材質について記載されておらず、特許文献9にも、リブゴムの詳細について記載されていない。 However, Patent Documents 7 to 9 describe that the belt angle and the rib angle are made larger than the groove angle of the pulley, but there is no description about the small-diameter pulley and the torque cross (fuel saving performance), No soundproofing improver is included. Patent Document 7 does not describe the material of the belt, and Patent Document 9 does not describe details of the rib rubber.
日本国特開2010-276127号公報(請求項1、段落[0008])Japanese Unexamined Patent Publication No. 2010-276127 (Claim 1, paragraph [0008]) 日本国特開2013-177967号公報(請求項1、段落[0001][0012])Japanese Unexamined Patent Publication No. 2013-177967 (Claim 1, paragraphs [0001] [0012]) 日本国特開2007-70592号公報(請求項1、段落[0010])Japanese Unexamined Patent Publication No. 2007-70592 (Claim 1, paragraph [0010]) 日本国特開2009-168243号公報(請求項1、段落[0015])Japanese Unexamined Patent Publication No. 2009-168243 (Claim 1, paragraph [0015]) 日本国特開2008-185162号公報(請求項1)Japanese Patent Laid-Open No. 2008-185162 (Claim 1) 日本国特開2007-232205号公報(請求項1)Japanese Unexamined Patent Publication No. 2007-232205 (Claim 1) 日本国実開昭63-147951号公報(実用新案登録請求の範囲、第4頁2~3行、第5頁2~7行)Japanese Utility Model Publication No. 63-147951 (claims for utility model registration, page 4, lines 2 to 3, page 5, lines 2 to 7) 日本国特開平8-184347号公報(請求項1及び8、段落[0001][0014]、実施例)Japanese Patent Laid-Open No. 8-184347 (Claims 1 and 8, paragraphs [0001] [0014], Examples) 日本国特開2000-74154号公報(特許請求の範囲、段落[0020])Japanese Unexamined Patent Publication No. 2000-74154 (Claims, paragraph [0020])
 本発明の目的は、耐発音性と省燃費性とを両立できるVリブドベルト並びにこのVリブドベルトを備えたベルト伝動装置及び前記Vリブドベルトを用いてベルト伝動装置のトルクロスを低減する方法を提供することにある。 An object of the present invention is to provide a V-ribbed belt that can achieve both soundproofing and fuel saving, a belt transmission device including the V-ribbed belt, and a method for reducing torcross of the belt transmission device using the V-ribbed belt. is there.
 本発明の他の目的は、摩擦伝動面を形成するゴムに耐発音性向上剤を配合しても、スティックスリップ音や粘着摩耗音などに対する耐発音性を維持したまま、トルクロスを低減できるVリブドベルト並びにこのVリブドベルトを備えたベルト伝動装置及び前記Vリブドベルトを用いてベルト伝動装置のトルクロスを低減する方法を提供することにある。 Another object of the present invention is to provide a V-ribbed belt that can reduce torcross while maintaining sound resistance against stick-slip noise and adhesive wear sound even when a sound resistance improver is blended with rubber forming a friction transmission surface. Another object of the present invention is to provide a belt transmission device provided with the V-ribbed belt and a method for reducing the torque cross of the belt transmission device using the V-ribbed belt.
 本発明のさらに他の目的は、発電装置であるオルタネータなどの小径プーリにおいても、トルクロスを低減できるVリブドベルト並びにこのVリブドベルトを備えたベルト伝動装置及び前記Vリブドベルトを用いてベルト伝動装置のトルクロスを低減する方法を提供することにある。 Still another object of the present invention is to provide a V-ribbed belt capable of reducing the torque cross even in a small-diameter pulley such as an alternator that is a power generation device, a belt transmission device provided with the V-ribbed belt, and a torcross of the belt transmission device using the V-ribbed belt. It is to provide a method of reducing.
 本発明者らは、前記課題を達成するため鋭意検討した結果、耐発音性向上剤を含む圧縮ゴム層を備えたVリブドベルトのVリブ部のVリブ角度をプーリのVリブ溝角度よりも5~9°大きくすることにより、耐発音性と省燃費性とを両立できることを見出し、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have determined that the V-rib angle of the V-rib portion of the V-ribbed belt provided with the compression rubber layer containing the soundproofing improver is set to 5 than the V-rib groove angle of the pulley. It has been found that by increasing the angle by 9 °, it is possible to achieve both sound resistance and fuel saving, and the present invention has been completed.
 すなわち、本発明のVリブドベルトは、ベルト長手方向に沿って互いに平行して延びる複数のVリブ部を有し、かつ少なくとも一部がプーリのVリブ溝部と接触可能な摩擦伝動面を有する圧縮ゴム層を備えたVリブドベルトであって、前記圧縮ゴム層の摩擦伝動面が、ゴム成分及び耐発音性向上剤を含むゴム組成物の加硫物で形成され、かつ前記Vリブ部のVリブ角度が、前記プーリのVリブ溝角度よりも5~9°大きい。前記Vリブ部のVリブ角度は41~45°程度である。前記プーリは、外径65mm以下のプーリを含んでいてもよい。前記耐発音性向上剤は、界面活性剤、ゴム成分よりも大きい溶解度指数を有する可塑剤、無機粒子及びポリエチレン系樹脂粒子からなる群より選択される少なくとも1種(特に、ポリエチレングリコール型非イオン界面活性剤及び/又はエーテルエステル系可塑剤)であってもよい。前記ポリエチレングリコール型非イオン界面活性剤の割合は、ゴム成分100質量部に対して2~20質量部程度である。前記エーテルエステル系可塑剤の割合は、ゴム成分100質量部に対して5~15質量部程度である。前記ゴム成分は、エチレン-α-オレフィンエラストマーを含んでいてもよい。 That is, the V-ribbed belt of the present invention has a plurality of V-rib portions extending in parallel with each other along the longitudinal direction of the belt, and at least a part of which is a compressed rubber having a friction transmission surface capable of contacting the V-rib groove portion of the pulley. A V-ribbed belt provided with a layer, wherein the friction transmission surface of the compressed rubber layer is formed of a vulcanized product of a rubber composition containing a rubber component and a soundproofing improver, and a V-rib angle of the V-rib portion Is 5 to 9 ° larger than the V-rib groove angle of the pulley. The V rib angle of the V rib portion is about 41 to 45 °. The pulley may include a pulley having an outer diameter of 65 mm or less. The soundproofing improver is at least one selected from the group consisting of a surfactant, a plasticizer having a solubility index greater than that of a rubber component, inorganic particles, and polyethylene resin particles (in particular, a polyethylene glycol type nonionic interface). Activator and / or ether ester plasticizer). The ratio of the polyethylene glycol type nonionic surfactant is about 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component. The ratio of the ether ester plasticizer is about 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component. The rubber component may contain an ethylene-α-olefin elastomer.
 本発明には、前記Vリブドベルトと、このVリブドベルトのVリブ部と嵌合可能なVリブ溝部を有するプーリとを備え、かつ前記VリブドベルトのVリブ部のVリブ角度が、前記プーリのVリブ溝角度よりも5~9°大きいベルト伝動装置も含まれる。前記プーリは、外径65mm以下のプーリを含んでいてもよい。 The present invention includes the V-ribbed belt and a pulley having a V-rib groove portion that can be fitted to the V-rib portion of the V-ribbed belt, and the V-rib angle of the V-rib portion of the V-ribbed belt is such that the V-rib angle of the pulley. Also included are belt transmissions that are 5-9 degrees larger than the rib groove angle. The pulley may include a pulley having an outer diameter of 65 mm or less.
 本発明には、外径65mm以下のプーリを含むプーリに、前記Vリブドベルトを掛架してベルト伝動装置のトルクロスを低減する方法も含まれる。 The present invention also includes a method of reducing the torque cross of the belt transmission device by hanging the V-ribbed belt on a pulley including a pulley having an outer diameter of 65 mm or less.
 本発明では、耐発音性向上剤を含む圧縮ゴム層を備えたVリブドベルトのVリブ部のVリブ角度がプーリのVリブ溝角度よりも5~9°大きいため、耐発音性と省燃費性とを両立できる。詳しくは、摩擦伝動面を形成するゴムに異物である耐発音性向上剤を配合しても、スティックスリップ音や粘着摩耗音などに対する耐発音性を維持したまま、トルクロスを低減できる。特に、発電装置であるオルタネータなどの小径プーリにおいても、トルクロスを低減できる。 In the present invention, the V-rib angle of the V-rib portion of the V-ribbed belt having the compression rubber layer containing the sound-proofing improver is 5 to 9 ° larger than the V-rib groove angle of the pulley. And both. Specifically, even when a soundproofing improver, which is a foreign substance, is blended with the rubber forming the friction transmission surface, the torque loss can be reduced while maintaining the soundproofness against stick-slip noise and adhesive wear sound. In particular, even in a small-diameter pulley such as an alternator that is a power generator, torque cross can be reduced.
図1は、本発明のVリブドベルトの一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a V-ribbed belt of the present invention. 図2は、本発明のVリブドベルトのVリブ部のVリブ角度αを説明するための概略斜視図である。FIG. 2 is a schematic perspective view for explaining the V-rib angle α of the V-rib portion of the V-ribbed belt of the present invention. 図3は、プーリのVリブ溝角度βを説明するための概略断面図である。FIG. 3 is a schematic cross-sectional view for explaining the V-rib groove angle β of the pulley. 図4は、本発明のVリブドベルトのVリブ部がプーリのVリブ溝部に嵌合した状態を説明するための概略断面図である。FIG. 4 is a schematic cross-sectional view for explaining a state in which the V-rib portion of the V-ribbed belt of the present invention is fitted in the V-rib groove portion of the pulley. 図5は、実施例で用いたVリブドベルトの寸法を説明するための概略図である。FIG. 5 is a schematic diagram for explaining the dimensions of the V-ribbed belt used in the examples. 図6は、実施例におけるVリブドベルトのフリクションロスの測定方法を説明するための概略図である。FIG. 6 is a schematic diagram for explaining a method of measuring the friction loss of the V-ribbed belt in the example. 図7は、実施例におけるVリブドベルトの耐発音性試験(実車での発音測定)を説明するための概略図である。FIG. 7 is a schematic diagram for explaining the sound resistance test (sound measurement in an actual vehicle) of the V-ribbed belt in the example. 図8は、実施例におけるVリブドベルトの耐発音性試験(ミスアライメント発音測定)を説明するための概略図である。FIG. 8 is a schematic diagram for explaining a sound resistance test (misalignment sound measurement) of the V-ribbed belt in the example. 図9は、実施例におけるVリブドベルトのリブ底部の粘着摩耗試験を説明するための概略図である。FIG. 9 is a schematic view for explaining an adhesive wear test of the rib bottom portion of the V-ribbed belt in the example. 図10は、実施例4及び比較例9のFEM解析によるトルクロスのシミュレーション結果を示すグラフである。FIG. 10 is a graph showing a simulation result of torcross by FEM analysis of Example 4 and Comparative Example 9.
 [Vリブドベルトの構造]
 本発明のVリブドベルトの形態は、ベルト長手方向に沿って互いに平行して延びる複数のVリブ部を有し、かつプーリのVリブ溝角度よりも大きいVリブ角度を有していれば、特に制限されず、例えば、図1に示す形態が例示される。図1は本発明のVリブドベルトの一例を示す概略断面図である。図1に示されるVリブドベルトは、ベルト下面(内周面)からベルト上面(背面)に向かって順に、圧縮ゴム層2、ベルト長手方向に芯体1を埋設した接着層4、カバー帆布(織物、編物、不織布など)で構成された伸張層5を積層した形態を有している。圧縮ゴム層2には、ベルト長手方向に伸びる複数の断面V字状の溝が形成され、この溝の間には断面V字形(逆台形)の複数のVリブ部3(図1に示す例では4個)が形成されており、このVリブ部3の二つの傾斜面(表面)が摩擦伝動面を形成し、プーリと接して動力を伝達(摩擦伝動)する。
[V-ribbed belt structure]
If the form of the V-ribbed belt of the present invention has a plurality of V-rib portions extending parallel to each other along the belt longitudinal direction and has a V-rib groove angle larger than the V-rib groove angle of the pulley, For example, the form shown in FIG. 1 is exemplified. FIG. 1 is a schematic sectional view showing an example of the V-ribbed belt of the present invention. A V-ribbed belt shown in FIG. 1 includes a compression rubber layer 2, an adhesive layer 4 in which a core body 1 is embedded in the belt longitudinal direction, a cover canvas (woven fabric) in order from the belt lower surface (inner circumferential surface) to the belt upper surface (back surface). , A knitted fabric, a non-woven fabric, etc.). A plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compressed rubber layer 2, and a plurality of V-rib portions 3 having a V-shaped cross section (reverse trapezoid) are formed between the grooves (example shown in FIG. 1). 4), and the two inclined surfaces (surfaces) of the V-rib portion 3 form a friction transmission surface and contact the pulley to transmit power (friction transmission).
 本発明のVリブドベルトはこの形態に限定されず、少なくとも一部がプーリのVリブ溝部(V溝部)と接触可能な伝動面を有する圧縮ゴム層を備えていればよく、典型的には、伸張層と圧縮ゴム層と、その間にベルト長手方向に沿って埋設される芯体とを備えていればよい。本発明のVリブドベルトにおいて、例えば、伸張層5をゴム組成物で形成してもよく、接着層4を設けることなく伸張層5と圧縮ゴム層2との間に芯体1を埋設してもよい。さらに、接着層4を圧縮ゴム層2又は伸張層5のいずれか一方に設け、芯体1を接着層4(圧縮ゴム層2側)と伸張層5との間、もしくは接着層4(伸張層5側)と圧縮ゴム層2との間に埋設する形態であってもよい。 The V-ribbed belt of the present invention is not limited to this form, and it is sufficient that at least a part is provided with a compression rubber layer having a transmission surface that can come into contact with the V-rib groove portion (V-groove portion) of the pulley. What is necessary is just to provide the core body embed | buried along a belt longitudinal direction between a layer and a compression rubber layer. In the V-ribbed belt of the present invention, for example, the stretch layer 5 may be formed of a rubber composition, or the core body 1 may be embedded between the stretch layer 5 and the compressed rubber layer 2 without providing the adhesive layer 4. Good. Further, the adhesive layer 4 is provided on either the compressed rubber layer 2 or the stretched layer 5, and the core 1 is disposed between the adhesive layer 4 (compressed rubber layer 2 side) and the stretched layer 5, or the adhesive layer 4 (stretched layer). 5 side) and the compressed rubber layer 2 may be embedded.
 なお、少なくとも前記圧縮ゴム層が以下に詳細に説明する前記ゴム組成物で形成されていればよく、前記伸張層及び接着層は、伸張層及び接着層として利用される慣用のゴム組成物で形成されていればよく、前記圧縮ゴム層と同一のゴム組成物で形成されていなくてもよい。なお、伸張層及び接着層を形成するゴム組成物は、耐発音性向上剤を含んでいる必要はない。 It is sufficient that at least the compressed rubber layer is formed of the rubber composition described in detail below, and the stretch layer and the adhesive layer are formed of a conventional rubber composition used as the stretch layer and the adhesive layer. As long as it is formed, it may not be formed of the same rubber composition as the compressed rubber layer. Note that the rubber composition forming the stretch layer and the adhesive layer does not need to contain a soundproofing improver.
 本発明のVリブドベルトは、図2に示すVリブドベルトのVリブ角度αが、図3に示すプーリのVリブ溝角度βよりも大きく(広い角度であり)、その角度差(α-β)が5~9°である。本発明では、Vリブ角度αがVリブ溝角度βよりも5~9°大きいことにより、耐発音性(静粛性)等の他の特性を低下させること無く、フリクションロス(ベルト伝動装置のトルクロス)を低減できるが、その理由は次のように推定できる。すなわち、プーリから受ける圧縮ひずみによる大きな発熱によりエネルギーロスが大きくなってトルクロスに繋がる部位は、Vリブ部の先端部付近であるため、α>βとすると、図4に示すように、VリブドベルトのVリブ部がプーリのVリブ溝部に嵌合しても、Vリブ部の先端部とVリブ溝部との間若干の間隙が生じ、Vリブ部の先端部付近での発熱(エネルギーロス)を低減できる。 In the V-ribbed belt according to the present invention, the V-rib angle α of the V-ribbed belt shown in FIG. 2 is larger (wide angle) than the V-rib groove angle β of the pulley shown in FIG. 3, and the angle difference (α−β) is 5 to 9 °. In the present invention, since the V-rib angle α is 5 to 9 ° larger than the V-rib groove angle β, the friction loss (torcross of the belt transmission device) can be achieved without deteriorating other characteristics such as soundproofing (silence). ) Can be reduced, but the reason can be estimated as follows. That is, since the portion where the energy loss is increased due to the large heat generation due to the compressive strain received from the pulley and is connected to the torcross is near the tip of the V-rib portion, if α> β, as shown in FIG. Even if the V rib part is fitted into the V rib groove part of the pulley, a slight gap is generated between the tip part of the V rib part and the V rib groove part, and heat generation (energy loss) near the tip part of the V rib part is generated. Can be reduced.
 Vリブ角度αとVリブ溝角度βとの角度差は5~9°であればよいが、好ましくは5.5~8.5°、さらに好ましくは6~8°(特に6.5~7.5°)程度である。角度差が小さすぎると、トルクロスが低減されず、大きすぎると、Vリブ部の底部への粘着摩耗(粘着摩耗による異音)が発生して耐発音性が低下する。具体的は、Vリブ部のVリブ角度αは、例えば35~50°、好ましくは40~47°、さらに好ましくは41~45°程度である。 The angle difference between the V rib angle α and the V rib groove angle β may be 5 to 9 °, preferably 5.5 to 8.5 °, more preferably 6 to 8 ° (especially 6.5 to 7). .5 °). If the angle difference is too small, the torque cross is not reduced, and if it is too large, adhesive wear on the bottom of the V-rib portion (abnormal noise due to adhesive wear) occurs, resulting in poor sound resistance. Specifically, the V rib angle α of the V rib portion is, for example, about 35 to 50 °, preferably about 40 to 47 °, and more preferably about 41 to 45 °.
 このようなVリブ角度を有する本発明のVリブドベルトは、径が小さく巻き掛けたベルトの曲げ量が大きくなる小径のプーリに対して特に有効である。トルクロスは、プーリとの面圧が最も高くなる小径プーリで最も大きくなり、小径プーリでのトルクロスがエンジンのフリクションロスに大きく影響するためである。そのため、本発明のVリブドベルトは、小径プーリを含むプーリに掛架するのが好ましく、このような小径プーリの外径は65mm以下であってもよく、例えば10~65mm、好ましくは30~60mm、さらに好ましくは40~55mm程度であってもよい。 The V-ribbed belt of the present invention having such a V-rib angle is particularly effective for a small-diameter pulley having a small diameter and a large bending amount of the wound belt. This is because the torque cross becomes the largest with a small-diameter pulley having the highest surface pressure against the pulley, and the torque cross with the small-diameter pulley greatly affects the friction loss of the engine. Therefore, the V-ribbed belt of the present invention is preferably hung on a pulley including a small-diameter pulley, and the outer diameter of such a small-diameter pulley may be 65 mm or less, for example, 10 to 65 mm, preferably 30 to 60 mm, More preferably, it may be about 40 to 55 mm.
 芯体としては、特に限定されないが、通常、ベルト幅方向に所定間隔で配列した心線(撚りコード)を使用できる。心線は、高モジュラスな繊維、例えば、前記ポリエステル繊維(ポリアルキレンアリレート系繊維)、アラミド繊維などの合成繊維、炭素繊維などの無機繊維などが汎用され、ポリエステル繊維(ポリエチレンテレフタレート系繊維、ポリエチレンナフタレート系繊維)、アラミド繊維が好ましい。繊維はマルチフィラメント糸、例えば、繊度2000~10000デニール(特に4000~8000デニール)程度のマルチフィラメント糸であってもよい。 The core is not particularly limited, but normally, cores (twisted cords) arranged at a predetermined interval in the belt width direction can be used. As the core wire, high-modulus fibers, for example, the above-mentioned polyester fibers (polyalkylene arylate fibers), synthetic fibers such as aramid fibers, inorganic fibers such as carbon fibers, etc. are widely used, and polyester fibers (polyethylene terephthalate fibers, polyethylene naphthalates). Phthalate fibers) and aramid fibers are preferred. The fiber may be a multifilament yarn, for example, a multifilament yarn having a fineness of 2000 to 10000 denier (particularly 4000 to 8000 denier).
 心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば0.5~3mm、好ましくは0.6~2mm、さらに好ましくは0.7~1.5mm程度であってもよい。心線はベルトの長手方向に埋設され、単数又は複数の心線がベルトの長手方向に平行に所定のピッチで並列的に埋設されていてもよい。 As the core wire, usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used. The average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm. The core wire may be embedded in the longitudinal direction of the belt, and one or a plurality of core wires may be embedded in parallel at a predetermined pitch parallel to the longitudinal direction of the belt.
 ゴム成分との接着性を改善するため、心線は、レゾルシン-ホルマリン-ラテックス(RFL)液、エポキシ化合物、イソシアネート化合物などによる種々の接着処理を施した後に、伸張層と圧縮ゴム層との間(特に接着層)に埋設してもよい。 In order to improve the adhesion to the rubber component, the core wire is subjected to various adhesion treatments with a resorcin-formalin-latex (RFL) liquid, an epoxy compound, an isocyanate compound, etc., and then between the stretched layer and the compressed rubber layer. (Especially, it may be embedded in the adhesive layer).
 さらに、伸張層は補強布、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)を有していてもよい。補強布は、必要であれば、前記接着処理を施し、伸張層の表面に積層してもよい。 Furthermore, the stretch layer may have a reinforcing cloth, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth or a non-woven cloth. If necessary, the reinforcing cloth may be laminated on the surface of the stretched layer by performing the adhesion treatment.
 [圧縮ゴム層]
 本発明のVリブドベルトは、少なくとも一部がプーリのVリブ溝部と接触可能な伝動面を有する圧縮ゴム層を備えており、この圧縮ゴム層は、摩擦伝動面がゴム成分及び耐発音性向上剤を含むゴム組成物で形成されていればよく、例えば、摩擦伝動面において、前記ゴム組成物で形成された表層部を形成し、他の部分(内層部)は耐発音性向上剤を含まない圧縮ゴム層であってもよいが、耐発音性(特に長期間に亘る耐発音性)や生産性などの点から、圧縮ゴム層全体が耐発音性向上剤を含むゴム組成物で形成された圧縮ゴム層が好ましい。
[Compressed rubber layer]
The V-ribbed belt of the present invention includes a compressed rubber layer having a transmission surface at least a part of which can contact with the V-rib groove portion of the pulley. The compression rubber layer has a friction transmission surface with a rubber component and a soundproofing improver. For example, a surface layer portion formed of the rubber composition is formed on the friction transmission surface, and the other portion (inner layer portion) does not contain a soundproofing improver. Although it may be a compressed rubber layer, the entire compressed rubber layer is formed of a rubber composition containing a soundproofing improver in terms of soundproofing (particularly soundproofing over a long period of time) and productivity. A compressed rubber layer is preferred.
 (ゴム成分)
 ゴム成分としては、公知のゴム成分及び/又はエラストマー、例えば、ジエン系ゴム[天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム(水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーを含む)など]、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらのゴム成分は単独で又は二種以上組み合わせて使用することができる。これらのゴム成分のうち、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性を有し、経済性にも優れる点から、エチレン-α-オレフィンエラストマー(エチレン-プロピレンゴム(EPR)、エチレン-プロピレン-ジエン共重合体(EPDMなど)などのエチレン-α-オレフィン系ゴム)が好ましい。
(Rubber component)
Examples of the rubber component include known rubber components and / or elastomers such as diene rubber [natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile. Rubber (including mixed polymers of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), etc.], ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber Examples thereof include silicone rubber, urethane rubber, and fluorine rubber. These rubber components can be used alone or in combination of two or more. Among these rubber components, ethylene-α-olefin elastomers (ethylene-propylene rubber (EPR), ethylene-propylene rubber (EPR), free from harmful halogens, ozone-resistant, heat-resistant, cold-resistant, and economically superior) Ethylene-α-olefin rubbers such as ethylene-propylene-diene copolymers (EPDM, etc.) are preferred.
 (耐発音性向上剤)
 本発明では、圧縮ゴム層の摩擦伝動面が耐発音性向上剤を含むため、ベルト-プーリ間の摩擦状態を安定化でき、耐発音性を向上できるだけでなく、圧縮ゴム層が耐発音性向上剤を含むにも拘わらず、Vリブ部が所定の角度で形成されているため、トルクロスも低減できる。
(Pronunciation improver)
In the present invention, since the friction transmission surface of the compression rubber layer contains a soundproofing improver, the friction state between the belt and the pulley can be stabilized, and not only the soundproofing performance can be improved, but also the compression rubber layer improves the soundproofing performance. Despite containing the agent, the torcross can be reduced because the V-rib portion is formed at a predetermined angle.
 耐発音性向上剤の割合は、耐発音性向上剤の種類に応じて、ゴム成分100質量部に対して1~100質量部程度の範囲から選択でき、例えば1~40質量部(特に2~35質量部)程度である。耐発音性向上剤の割合が少なすぎると、耐発音性が低下する虞があり、逆に多すぎるとトルクロスが大きくなる虞がある。 The proportion of the soundproofing improver can be selected from the range of about 1 to 100 parts by weight with respect to 100 parts by weight of the rubber component depending on the type of the soundproofing improver. 35 parts by mass). If the proportion of the sound-proofing improver is too small, the sound-proofing property may be lowered, and conversely if too large, the torque loss may be increased.
 耐発音性向上剤としては、ベルト-プーリ間の摩擦状態を安定化するための慣用の耐発音性向上剤を利用できるが、耐発音性の向上効果に優れる点から、界面活性剤、可塑剤、無機粒子、ポリエチレン系樹脂粒子が好ましい。これらの耐発音性向上剤は、単独で又は二種以上組み合わせて使用できる。 As the soundproofing improver, a conventional soundproofing improver for stabilizing the friction state between the belt and the pulley can be used. However, surfactants and plasticizers are used because they are excellent in soundproofing improvement effect. Inorganic particles and polyethylene resin particles are preferred. These soundproofing improvers can be used alone or in combination of two or more.
 (A)界面活性剤
 界面活性剤は、イオン界面活性剤、非イオン界面活性剤のいずれであってもよく、ゴム成分の種類などに応じて選択できるが、ゴム成分がエチレン-α-オレフィンエラストマーである場合、耐発音性を向上できる点から、非イオン界面活性剤が好ましく、ポリエチレングリコール型非イオン界面活性剤、多価アルコール型非イオン界面活性剤が特に好ましい。
(A) Surfactant The surfactant may be either an ionic surfactant or a nonionic surfactant, and can be selected according to the type of rubber component. The rubber component is an ethylene-α-olefin elastomer. In this case, a nonionic surfactant is preferable from the viewpoint of improving sound resistance, and a polyethylene glycol type nonionic surfactant and a polyhydric alcohol type nonionic surfactant are particularly preferable.
 ポリエチレングリコール型非イオン界面活性剤は、高級アルコール、アルキルフェノール、高級脂肪酸、多価アルコール高級脂肪酸エステル、高級脂肪酸アミド、ポリプロピレングリコールなどの疎水基を有する疎水性ベース成分にエチレンオキサイドが付加して親水基が付与された非イオン界面活性剤である。 Polyethylene glycol type nonionic surfactant is a hydrophilic group formed by adding ethylene oxide to a hydrophobic base component having a hydrophobic group such as higher alcohol, alkylphenol, higher fatty acid, higher polyhydric alcohol higher fatty acid ester, higher fatty acid amide, or polypropylene glycol. Is a nonionic surfactant.
 疎水性ベース成分としての高級アルコールとしては、例えば、ラウリルアルコール、テトラデシルアルコール、セチルアルコール、オクタデシルアルコール、アラルキルアルコールなどのC10-30飽和アルコール、オレイルアルコールなどのC10-26不飽和アルコールなどが例示できる。アルキルフェノールとしては、オクチルフェノール、ノニルフェノールなどのC4-16アルキルフェノールなどが例示できる。これらの高級アルコールは、単独で又は二種以上組み合わせてもよい。 Examples of the higher alcohol as the hydrophobic base component include C 10-30 saturated alcohols such as lauryl alcohol, tetradecyl alcohol, cetyl alcohol, octadecyl alcohol, aralkyl alcohol, and C 10-26 unsaturated alcohols such as oleyl alcohol. It can be illustrated. Examples of the alkylphenol include C 4-16 alkylphenol such as octylphenol and nonylphenol. These higher alcohols may be used alone or in combination of two or more.
 疎水性ベース成分の高級脂肪酸としては、飽和脂肪酸[例えば、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸などのC10-30飽和脂肪酸、好ましくはC12-28飽和脂肪酸、さらに好ましくはC14-26飽和脂肪酸、特に好ましくはC16-22飽和脂肪酸など;ヒドロキシステアリン酸などのオキシカルボン酸など]、不飽和脂肪酸[例えば、オレイン酸、エルカ酸、エルシン酸、リノール酸、リノレン酸、エレオステアリン酸などのC10-30不飽和脂肪酸など]などが例示できる。これらの高級脂肪酸は、単独で又は二種以上組み合わせてもよい。 Higher fatty acids of the hydrophobic base component include saturated fatty acids [eg C 10-30 saturated fatty acids such as myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, montanic acid, preferably C 12-28 saturated fatty acids, more preferably C 14-26 saturated fatty acids, particularly preferably C 16-22 saturated fatty acids and the like; oxycarboxylic acids such as hydroxystearic acid], unsaturated fatty acids [eg oleic acid, erucic acid, erucic acid, linoleic acid, linolenic acid, unsaturated C 10-30 fatty acids such as eleostearic acid], and others. These higher fatty acids may be used alone or in combination of two or more.
 多価アルコール高級脂肪酸エステルは、多価アルコールと前記高級脂肪酸とのエステルであって、未反応のヒドロキシル基を有している。多価アルコールとしては、アルカンジオール(エチレングリコール、プロピレングリコール、ブタンジオールなどのC2-10アルカンジオールなど)、アルカントリオール(グリセリン、トリメチロールエタン、トリメチロールプロパンなど)、アルカンテトラオール(ペンタエリスリトール、ジグリセリンなど)、アルカンヘキサオール(ジペンタエリスリトール、ソルビトール、ソルビットなど)、アルカンオクタオール(ショ糖など)、これらのアルキレンオキサイド付加体(C2-4アルキレンオキサイド付加体など)などが例示できる。これらの高級脂肪酸エステルは、単独で又は二種以上組み合わせてもよい。 The polyhydric alcohol higher fatty acid ester is an ester of a polyhydric alcohol and the higher fatty acid and has an unreacted hydroxyl group. Examples of polyhydric alcohols include alkanediols (such as C 2-10 alkanediols such as ethylene glycol, propylene glycol, and butanediol), alkanetriols (such as glycerin, trimethylolethane, trimethylolpropane), and alkanetetraols (pentaerythritol, Examples thereof include diglycerin and the like, alkanehexaol (such as dipentaerythritol, sorbitol, and sorbit), alkaneoctaol (such as sucrose), and alkylene oxide adducts thereof (such as C 2-4 alkylene oxide adducts). These higher fatty acid esters may be used alone or in combination of two or more.
 以下に、「オキシエチレン」、「エチレンオキサイド」又は「エチレングリコール」を「EO」で表し、「オキシプロピレン」、「プロピレンオキサイド」又は「プロピレングリコール」を「PO」で表すと、ポリエチレングリコール型非イオン界面活性剤の具体例としては、例えば、ポリEO高級アルコールエーテル(ポリEOラウリルエーテル、ポリEOステアリルエーテルなどのポリEOC10-26アルキルエーテル)、ポリEOポリPOアルキルエーテルなどのC10-26高級アルコール-EO-PO付加体;ポリEOオクチルフェニルエーテル、ポリEOノニルフェニルエーテルなどのアルキルフェノール-EO付加体;ポリEOモノラウレート、ポリEOモノオレエート、ポリEOモノステアレートなどの脂肪酸-EO付加体;グリセリンモノ又はジ高級脂肪酸エステル-EO付加体(グリセリンモノ又はジラウレート、グリセリンモノ又はジパルミテート、グリセリンモノ又はジステアレート、グリセリンモノ又はジオレートなどのグリセリンモノ又はジC10-26脂肪酸エステルのEO付加体)、ペンタエリスリトール高級脂肪酸エステル-EO付加体(ペンタエリスリトールジステアレート-EO付加体などのペンタエリスリトールモノ乃至トリC10-26脂肪酸エステル-EO付加体など)、ジペンタエリスリトール高級脂肪酸エステル-EO付加体、ソルビトール高級脂肪酸エステル-EO付加体、ソルビット高級脂肪酸エステル-EO付加体、ポリEOソルビタンモノラウレート、ポリEOソルビタンモノステアレート、ポリEOソルビタントリステアレートなどのソルビタン脂肪酸エステル-EO付加体、ショ糖高級脂肪酸エステル-EO付加体などの多価アルコール脂肪酸エステル-EO付加体;ポリEOラウリルアミノエーテル、ポリEOステアリルアミノエーテルなどの高級アルキルアミン-EO付加体;ポリEO椰子脂肪酸モノエタノールアマイド、ポリEOラウリン酸モノエタノールアマイド、ポリEOステアリン酸モノエタノールアマイド、ポリEOオレイン酸モノエタノールアマイドなどの脂肪酸アミド-EO付加体;ポリEOヒマシ油、ポリEO硬化ヒマシ油などの油脂-EO付加体;ポリPO-EO付加体(ポリEO-ポリPOブロック共重合体など)などが挙げられる。これらのポリエチレングリコール型非イオン界面活性剤は単独で又は二種以上組み合わせて使用できる。 Hereinafter, when “oxyethylene”, “ethylene oxide” or “ethylene glycol” is represented by “EO”, and “oxypropylene”, “propylene oxide” or “propylene glycol” is represented by “PO”, the polyethylene glycol type Specific examples of the ionic surfactant include, for example, poly EO higher alcohol ethers (poly EO 10-26 alkyl ethers such as poly EO lauryl ether and poly EO stearyl ether), and C 10-26 such as poly EO poly PO alkyl ether. Higher alcohol-EO-PO adducts; alkylphenol-EO adducts such as polyEO octylphenyl ether and polyEO nonylphenyl ether; fatty acid such as polyEO monolaurate, polyEO monooleate and polyEO monostearate Body; glycerol mono- or di-higher fatty acid esters -EO adduct (glycerin mono- or dilaurate, glycerin mono- or dipalmitate, glyceryl mono- or distearate, EO adducts of glycerin mono- or di-C 10-26 fatty acid esters such as glycerol mono- or dioleate) Pentaerythritol higher fatty acid ester-EO adduct (pentaerythritol mono to tri C 10-26 fatty acid ester-EO adduct such as pentaerythritol distearate-EO adduct), dipentaerythritol higher fatty acid ester-EO adduct Sorbitol higher fatty acid ester-EO adduct, sorbitol higher fatty acid ester-EO adduct, poly EO sorbitan monolaurate, poly EO sorbitan monostearate, poly EO sorbitant Sorbitan fatty acid ester-EO adduct such as stearate, polyhydric alcohol fatty acid ester-EO adduct such as sucrose higher fatty acid ester-EO adduct; higher alkylamine such as polyEO laurylamino ether, polyEO stearylaminoether EO adducts; poly EO palm fatty acid monoethanol amide, poly EO lauric acid monoethanol amide, poly EO stearic acid monoethanol amide, poly EO oleic acid monoethanol amide and other fatty acid amide-EO adducts; poly EO castor oil, poly Examples thereof include oils-EO adducts such as EO hydrogenated castor oil; polyPO-EO adducts (polyEO-polyPO block copolymers and the like) and the like. These polyethylene glycol type nonionic surfactants can be used alone or in combination of two or more.
 多価アルコール型非イオン界面活性剤は、前記多価アルコール(特に、グリセロール、ペンタエリスリトール、ショ糖、ソルビトールなどのアルカントリオール乃至アルカンヘキサオール)に高級脂肪酸などの疎水基が結合した非イオン界面活性剤である。多価アルコール型非イオン界面活性剤としては、例えば、グリセリンモノステアレート、グリセリンモノオレエートなどのグリセリン脂肪酸エステル、ペンタエリストールモノステアレート、ペンタエリストールジ牛脂脂肪酸エステルなどのペンタエリスリトール脂肪酸エステル、ソルビタンモノラウレート、ソルビタンモノステアレートなどのソルビタン脂肪酸エステル、ソルビトールモノステアレートなどのソルビトール脂肪酸エステル、ショ糖脂肪酸エステル、多価アルコールのアルキルエーテル、椰子脂肪酸ジエタノールアマイドなどのアルカノールアミン類の脂肪酸アミド、アルキルポリグリコシドなどが挙げられる。これらの多価アルコール型非イオン界面活性剤も単独で又は二種以上組み合わせて使用でき、前記ポリエチレングリコール型非イオン界面活性剤と組み合わせて使用してもよい。 The polyhydric alcohol type nonionic surfactant is a nonionic surfactant in which a hydrophobic group such as a higher fatty acid is bonded to the polyhydric alcohol (especially alkanetriol or alkanehexaol such as glycerol, pentaerythritol, sucrose or sorbitol). It is an agent. Examples of the polyhydric alcohol type nonionic surfactant include glycerin fatty acid esters such as glycerin monostearate and glycerin monooleate, pentaerythritol fatty acid esters such as pentaerythritol monostearate and pentaerythritol beef tallow fatty acid ester, Sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monostearate, sorbitol fatty acid esters such as sorbitol monostearate, sucrose fatty acid esters, alkyl ethers of polyhydric alcohols, fatty acid amides of alkanolamines such as coconut fatty acid diethanolamide, Examples thereof include alkyl polyglycosides. These polyhydric alcohol type nonionic surfactants can also be used alone or in combination of two or more, and may be used in combination with the polyethylene glycol type nonionic surfactant.
 好ましい界面活性剤は、非イオン界面活性剤、特に、ポリエチレングリコール型非イオン界面活性剤(例えば、ポリEOC10-26アルキルエーテル、アルキルフェノール-EO付加体、多価アルコールC10-26脂肪酸エステル-EO付加体など)である。 Preferred surfactants are nonionic surfactants, particularly polyethylene glycol type nonionic surfactants (eg, poly EOC 10-26 alkyl ether, alkylphenol-EO adducts, polyhydric alcohol C 10-26 fatty acid ester-EO Adducts, etc.).
 界面活性剤のHLB(Hydrophile-Lipophile-Balance)値は、ゴム成分がエチレン-α-オレフィンエラストマーである場合、例えば8.7~17、好ましくは9~15、さらに好ましくは9.5~14(特に10~13.5)程度である。なお、本明細書及び特許請求の範囲において、HLB値はグリフィン法によって算出された値である。 When the rubber component is an ethylene-α-olefin elastomer, the HLB (Hydrophile-Lipophile-Balance) value of the surfactant is, for example, 8.7 to 17, preferably 9 to 15, and more preferably 9.5 to 14 ( In particular, it is about 10 to 13.5). In the present specification and claims, the HLB value is a value calculated by the Griffin method.
 界面活性剤の粘度(25℃)は、例えば10~300MPa・s、好ましくは20~200MPa・s程度である。 The viscosity (25 ° C.) of the surfactant is, for example, about 10 to 300 MPa · s, preferably about 20 to 200 MPa · s.
 界面活性剤(特に、ポリエチレングリコール型非イオン界面活性剤)の割合は、ゴム成分100質量部に対して、例えば1~25質量部、好ましくは2~20質量部、さらに好ましくは3~15質量部(特に4~10質量部)程度である。界面活性剤の割合が少なすぎると、耐発音性が低下する虞があり、逆に多すぎるとトルクロスが大きくなる虞がある。 The ratio of the surfactant (particularly, the polyethylene glycol type nonionic surfactant) is, for example, 1 to 25 parts by mass, preferably 2 to 20 parts by mass, and more preferably 3 to 15 parts by mass with respect to 100 parts by mass of the rubber component. Part (particularly 4 to 10 parts by mass). If the proportion of the surfactant is too small, the sound resistance may be lowered, and if too much, the torque loss may be increased.
 (B)可塑剤
 可塑剤は、ゴム成分よりも大きい溶解度指数(Solubility Parameters:SP値)を有する可塑剤であればよく、耐発音性を向上できる点から、例えば8.3~10.7(cal/cm1/2、好ましくは8.4~10.5(cal/cm1/2、さらに好ましくは8.5~10(cal/cm1/2程度の溶解度指数を有する可塑剤が好ましい。前記溶解度指数は、ゴム成分がエチレン-α-オレフィンエラストマーである場合に特に有効である。
(B) Plasticizer The plasticizer may be any plasticizer having a solubility index (Solubility Parameters: SP value) larger than that of the rubber component. For example, 8.3 to 10.7 ( cal / cm 3 ) 1/2 , preferably 8.4 to 10.5 (cal / cm 3 ) 1/2 , more preferably 8.5 to 10 (cal / cm 3 ) 1/2 The plasticizer which has is preferable. The solubility index is particularly effective when the rubber component is an ethylene-α-olefin elastomer.
 可塑剤としては、このような溶解度指数を有する慣用の可塑剤を利用できる。慣用の可塑剤としては、例えば、脂肪族カルボン酸系可塑剤(アジピン酸エステル系可塑剤、セバシン酸エステル系可塑剤など)、芳香族カルボン酸エステル系可塑剤(フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤など)、オキシカルボン酸エステル系可塑剤、リン酸エステル系可塑剤、エーテル系可塑剤、エーテルエステル系可塑剤などが挙げられる。これらの可塑剤は、単独で又は二種以上組み合わせて使用できる。これらの可塑剤のうち、ゴム成分がエチレン-α-オレフィンエラストマーである場合、耐発音性の向上効果が大きい点から、エーテルエステル系可塑剤が好ましい。 As the plasticizer, a conventional plasticizer having such a solubility index can be used. Examples of conventional plasticizers include aliphatic carboxylic acid plasticizers (adipic acid ester plasticizers, sebacic acid ester plasticizers, etc.), aromatic carboxylic acid ester plasticizers (phthalic acid ester plasticizers, Merit acid ester plasticizers), oxycarboxylic acid ester plasticizers, phosphate ester plasticizers, ether plasticizers, ether ester plasticizers, and the like. These plasticizers can be used alone or in combination of two or more. Of these plasticizers, when the rubber component is an ethylene-α-olefin elastomer, ether ester plasticizers are preferred because they have a large effect of improving sound resistance.
 エーテルエステル系可塑剤としては、例えば、ポリEOジブタン酸エステル、ポリEOジイソブタン酸エステル、ポリEOジ2-エチルブチル酸エステル、ポリEOジ2-エチルヘキシル酸エステル、ポリEOジデカン酸エステルなどのポリC2-4アルキレングリコールジC2-18脂肪酸エステル;アジピン酸ポリEO付加体などのC2-12脂肪族ジカルボン酸のポリC2-4アルキレンオキサイド付加体;アジピン酸モノ又はジ(ブトキシエチル)エステル、アジピン酸ジ(2-エチルヘキシロキシエチル)エステル、アジピン酸ジ(オクトキシエチル)エステルなどのC2-12脂肪族ジカルボン酸ジ(C1-12アルコキシC2-4アルキル)エステルなどが挙げられる。これらのエーテルエステル系可塑剤は、単独で又は二種以上組み合わせて使用できる。これらのエーテルエステル系可塑剤のうち、ポリEOジ2-エチルヘキシル酸エステルなどのポリC2-4アルキレングリコールジC4-12脂肪酸エステルが好ましい。 Examples of ether ester plasticizers include poly C 2 such as poly EO dibutanoate, poly EO diisobutanoate, poly EO di-2-ethylbutyrate, poly EO di-2-ethylhexylate, poly EO didecanoate, and the like. -4 alkylene glycol di C 2-18 fatty acid esters; poly C 2-4 alkylene oxide adducts of C 2-12 aliphatic dicarboxylic acids such as adipic acid polyEO adducts; adipic acid mono- or di (butoxyethyl) esters; And C 2-12 aliphatic dicarboxylic acid di (C 1-12 alkoxy C 2-4 alkyl) esters such as adipic acid di (2-ethylhexyloxyethyl) ester and adipic acid di (octoxyethyl) ester . These ether ester plasticizers can be used alone or in combination of two or more. Of these ether ester plasticizers, poly C 2-4 alkylene glycol di C 4-12 fatty acid esters such as poly EO di-2-ethylhexylate are preferred.
 可塑剤(特にエーテルエステル系可塑剤)の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)において、ポリスチレン換算で、例えば300~2000、好ましくは350~1500(例えば370~1000)、さらに好ましくは400~800(特に450~600)程度である。 The weight average molecular weight of the plasticizer (especially ether ester plasticizer) is, for example, 300 to 2000, preferably 350 to 1500 (eg 370 to 1000), more preferably 400 in terms of polystyrene in gel permeation chromatography (GPC). About 800 (especially 450 to 600).
 可塑剤(特にエーテルエステル系可塑剤)の割合は、ゴム成分100質量部に対して、例えば3~20質量部(例えば5~15質量部)、好ましくは3.5~15質量部、さらに好ましくは4~10質量部(特に4.5~8質量部)程度である。可塑剤の割合が少なすぎると、耐発音性が低下する虞があり、逆に多すぎるとトルクロスが大きくなる虞がある。 The proportion of the plasticizer (especially the ether ester plasticizer) is, for example, 3 to 20 parts by mass (eg 5 to 15 parts by mass), preferably 3.5 to 15 parts by mass, more preferably 100 parts by mass of the rubber component. Is about 4 to 10 parts by mass (especially 4.5 to 8 parts by mass). If the proportion of the plasticizer is too small, the sound resistance may be lowered. Conversely, if the proportion is too large, the torque loss may be increased.
 (C)無機粒子
 無機粒子(無機充填剤又は無機質粉体)としては、慣用の無機粒子を利用できる。慣用の無機粒子としては、例えば、グラファイト、金属酸化物(酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなど)、金属炭酸塩(炭酸マグネシウムや炭酸カルシウムなど)、金属ケイ酸塩(ケイ酸カルシウムやケイ酸アルミニウムなど)、金属炭化物(炭化ケイ素や炭化タングステンなど)、金属窒化物(窒化チタン、窒化アルミニウム、窒化ホウ素など)、金属硫化物(二硫化モリブデンなど)、金属硫酸塩(硫酸カルシウムや硫酸バリウムなど)、クレー(含水珪酸アルミニウム:パイロフィライト、カオリナイト、セリサイト、モンモリロナイト、ベントナイト、スメクタイトなどの粘土鉱物で構成されたクレー)、タルク(含水珪酸マグネシウム:滑石、ソープストーン、ステアタイトと称される無機粒子など)、マイカ、アルミナ、シリカ、ゼオライト、珪藻土、焼成珪成土、活性白土などが挙げられる。これらの無機粒子は、単独で又は二種以上組み合わせて使用できる。これらのうち、炭酸カルシウムの金属炭酸塩、クレー、タルクが好ましい。
(C) Inorganic particles Conventional inorganic particles can be used as the inorganic particles (inorganic filler or inorganic powder). Conventional inorganic particles include, for example, graphite, metal oxide (calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, etc.), metal carbonate (magnesium carbonate, calcium carbonate, etc.), metal silicate Salt (such as calcium silicate and aluminum silicate), metal carbide (such as silicon carbide and tungsten carbide), metal nitride (such as titanium nitride, aluminum nitride, boron nitride), metal sulfide (such as molybdenum disulfide), metal sulfate Salt (calcium sulfate, barium sulfate, etc.), clay (hydrous aluminum silicate: clay composed of clay minerals such as pyrophyllite, kaolinite, sericite, montmorillonite, bentonite, smectite), talc (hydrous magnesium silicate: talc, Soapstone, called steatite That inorganic particles), mica, alumina, silica, zeolites, diatomaceous earth, calcined 珪成 earth, such as activated clay and the like. These inorganic particles can be used alone or in combination of two or more. Of these, metal carbonates of calcium carbonate, clay and talc are preferred.
 無機粒子の形状としては、特に限定されず、例えば、球状、楕円体状、多角体形(多角錘状、正方体状、直方体状など)、扁平状(板状、鱗片状など)、棒状、繊維状、不定形状などが挙げられる。これらのうち、扁平状、不定形状などが汎用される。 The shape of the inorganic particles is not particularly limited, and for example, a spherical shape, an elliptical shape, a polygonal shape (polygonal pyramid shape, a rectangular parallelepiped shape, a rectangular parallelepiped shape, etc.), a flat shape (plate shape, scale shape, etc.), a rod shape, a fiber shape And indefinite shape. Among these, flat shapes, indefinite shapes, etc. are widely used.
 無機粒子の平均粒径(個数平均一次粒径)は、例えば0.1~100μm、好ましくは1~50μm、さらに好ましくは1~30μm程度である。無機粒子のサイズが小さすぎると、耐発音性を十分に向上できない虞があり、逆に大きすぎると、ベルトの機械的特性が低下する虞がある。なお、本明細書及び特許請求の範囲では、平均粒径及びアスペクト比は、50倍で撮影した走査型電子顕微鏡写真を基に寸法を計測する方法やレーザー回折散乱法などにより測定できる。 The average particle size (number average primary particle size) of the inorganic particles is, for example, about 0.1 to 100 μm, preferably about 1 to 50 μm, and more preferably about 1 to 30 μm. If the size of the inorganic particles is too small, the sound resistance may not be improved sufficiently, and conversely if too large, the mechanical properties of the belt may be deteriorated. In the present specification and claims, the average particle diameter and the aspect ratio can be measured by a method of measuring dimensions based on a scanning electron micrograph taken at 50 times, a laser diffraction scattering method, or the like.
 無機粒子は、非多孔質又は多孔質のいずれであってもよいが、BET法による窒素吸着比表面積は、例えば5000~30000cm/g、好ましくは6000~25000cm/g程度である。比表面積が小さすぎると、粒子が大きくなるため、ベルトの機械的特性が低下する虞があり、逆に大きすぎると、粒子が小さくなるため、耐発音性が十分に向上できない虞がある。 The inorganic particles may be either non-porous or porous, but the nitrogen adsorption specific surface area by the BET method is, for example, about 5000 to 30000 cm 2 / g, preferably about 6000 to 25000 cm 2 / g. If the specific surface area is too small, the particles become large and the mechanical properties of the belt may be reduced. Conversely, if the surface area is too large, the particles become small and the sound resistance may not be sufficiently improved.
 無機粒子の見掛け密度は、例えば0.2~0.7g/ml、好ましくは0.25~0.65g/ml程度である。無機粒子の吸油量は10~40ml/100g、好ましくは20~38ml/100g程度である。 The apparent density of the inorganic particles is, for example, about 0.2 to 0.7 g / ml, preferably about 0.25 to 0.65 g / ml. The oil absorption of the inorganic particles is about 10 to 40 ml / 100 g, preferably about 20 to 38 ml / 100 g.
 無機粒子の割合は、ゴム成分100質量部に対して、例えば10~50質量部、好ましくは15~45質量部(例えば15~35質量部)、さらに好ましくは20~40質量部(特に30~35質量部)程度である。無機粒子の割合が少なすぎると、耐発音性が低下する虞があり、逆に多すぎるとトルクロスが大きくなる虞がある。 The proportion of the inorganic particles is, for example, 10 to 50 parts by weight, preferably 15 to 45 parts by weight (eg 15 to 35 parts by weight), more preferably 20 to 40 parts by weight (particularly 30 to 100 parts by weight) with respect to 100 parts by weight of the rubber component. 35 parts by mass). If the proportion of the inorganic particles is too small, the sound resistance may be reduced. Conversely, if the proportion is too large, the torque loss may be increased.
 (D)ポリエチレン系樹脂粒子
 ポリエチレン系樹脂粒子を構成するポリエチレン系樹脂は、ポリエチレンホモポリマー(単独重合体)であってもよく、ポリエチレンコポリマー(共重合体)であってもよい。コポリマーに含まれる共重合性単量体としては、例えば、オレフィン類(例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチルペンテン、4-メチルペンテン、1-オクテンなどのα-C3-8オレフィンなど)、(メタ)アクリル系単量体[例えば、(メタ)アクリル酸メチルや(メタ)アクリル酸エチルなどの(メタ)アクリル酸C1-6アルキルエステルなど]、不飽和カルボン酸類(例えば、無水マレイン酸など)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニルなど)、ジエン類(例えば、ブタジエン、イソプレンなど)などが挙げられる。これらの共重合性単量体は、単独で又は二種以上組み合わせて使用できる。これらの共重合性単量体のうち、プロピレン、1-ブテン、1-ヘキセン、4-メチルペンテン、1-オクテンなどのα-C3-8オレフィンが好ましい。共重合性単量体の割合は30モル%以下(例えば0.01~30モル%)、好ましくは20モル%以下(例えば0.1~20モル%)、さらに好ましくは10モル%以下(例えば1~10モル%)程度である。コポリマーは、ランダム共重合体、ブロック共重合体などであってもよい。
(D) Polyethylene resin particles The polyethylene resin constituting the polyethylene resin particles may be a polyethylene homopolymer (homopolymer) or a polyethylene copolymer (copolymer). Examples of the copolymerizable monomer contained in the copolymer include olefins (for example, α such as propylene, 1-butene, 1-pentene, 1-hexene, 3-methylpentene, 4-methylpentene, and 1-octene). -C 3-8 olefins), (meth) acrylic monomers (for example, (meth) acrylic acid C 1-6 alkyl esters such as methyl (meth) acrylate and ethyl (meth) acrylate), Examples thereof include saturated carboxylic acids (for example, maleic anhydride), vinyl esters (for example, vinyl acetate, vinyl propionate, etc.), dienes (for example, butadiene, isoprene, etc.), and the like. These copolymerizable monomers can be used alone or in combination of two or more. Of these copolymerizable monomers, α-C 3-8 olefins such as propylene, 1-butene, 1-hexene, 4-methylpentene and 1-octene are preferred. The proportion of the copolymerizable monomer is 30 mol% or less (for example, 0.01 to 30 mol%), preferably 20 mol% or less (for example, 0.1 to 20 mol%), more preferably 10 mol% or less (for example, 1 to 10 mol%). The copolymer may be a random copolymer, a block copolymer, or the like.
 ポリエチレン系樹脂としては、例えば、低、中又は高密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン、エチレン-プロピレン共重合体、エチレン-ブテン-1共重合体、エチレン-プロピレン-ブテン-1共重合体、エチレン-(4-メチルペンテン-1)共重合体などが挙げられる。これらのポリエチレンは、単独で又は二種以上組み合わせて使用できる。これらのポリエチレンのうち、耐発音性の向上効果が大きい点から、中又は高密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレンが好ましい。 Examples of the polyethylene resin include low, medium or high density polyethylene, linear low density polyethylene, ultrahigh molecular weight polyethylene, ethylene-propylene copolymer, ethylene-butene-1 copolymer, ethylene-propylene-butene- 1 copolymer, ethylene- (4-methylpentene-1) copolymer and the like. These polyethylenes can be used alone or in combination of two or more. Among these polyethylenes, polyethylenes such as medium- or high-density polyethylene and ultrahigh molecular weight polyethylene are preferable because they have a large effect of improving sound resistance.
 ポリエチレン系樹脂の粘度平均分子量は、例えば10000以上の範囲から選択でき、例えば10万~900万、好ましくは15万~500万、さらに好ましくは20万~300万程度である。分子量が小さすぎると、耐発音性の向上効果が十分でない。なお、本明細書及び特許請求の範囲において、粘度平均分子量は、ASTM D4020に準拠して測定できる。 The viscosity-average molecular weight of the polyethylene resin can be selected from a range of, for example, 10,000 or more, and is, for example, 100,000 to 9 million, preferably 150,000 to 5 million, and more preferably about 200,000 to 3 million. If the molecular weight is too small, the effect of improving sound resistance is not sufficient. In the present specification and claims, the viscosity average molecular weight can be measured according to ASTM D4020.
 ポリエチレン系樹脂の密度は、ASTM D792に準拠した方法で、0.9~0.97g/cm程度の範囲から選択でき、耐発音性向上効果が大きい点から、例えば0.92~0.97g/cm、好ましくは0.93~0.97g/cm、さらに好ましくは0.94~0.97g/cm程度である。 The density of the polyethylene-based resin can be selected from a range of about 0.9 to 0.97 g / cm 3 by a method in accordance with ASTM D792, and is, for example, 0.92 to 0.97 g from the viewpoint of a great effect of improving sound resistance. / Cm 3 , preferably 0.93 to 0.97 g / cm 3 , and more preferably about 0.94 to 0.97 g / cm 3 .
 ポリエチレン系樹脂の融点(又は軟化点)は、耐発音性向上効果が大きい点から、ゴム組成物の混練りや圧延などの加工温度以上であり、かつ加硫温度以下であるの好ましく、例えば160℃以下(例えば120~160℃)、好ましくは125~150℃、さらに好ましくは125~140℃程度である。 The melting point (or softening point) of the polyethylene resin is preferably not less than the processing temperature for kneading or rolling the rubber composition and not more than the vulcanization temperature, for example, 160 ° C. The following (for example, 120 to 160 ° C.), preferably 125 to 150 ° C., more preferably about 125 to 140 ° C.
 ポリエチレン系樹脂粒子の形状としては、前記無機粒子の項で例示された形状などが挙げられる。前記形状のうち、ポリエチレン系樹脂粒子の形状としては、球状、楕円体状、多角体形、不定形状のなどの粒状が汎用される。 Examples of the shape of the polyethylene resin particles include the shapes exemplified in the section of the inorganic particles. Of the above-mentioned shapes, as the shape of the polyethylene resin particles, particles such as a spherical shape, an ellipsoidal shape, a polygonal shape, and an indefinite shape are generally used.
 ポリエチレン系樹脂粒子の平均粒径(一次粒径)は、例えば10~200μm、好ましくは20~150μm、さらに好ましくは25~120μm程度である。ポリエチレン系樹脂粒子の粒径が小さすぎると、耐発音性を十分に向上できない虞があり、逆に大きすぎると、ベルトの機械的特性が低下する虞がある。 The average particle size (primary particle size) of the polyethylene resin particles is, for example, about 10 to 200 μm, preferably about 20 to 150 μm, and more preferably about 25 to 120 μm. If the particle diameter of the polyethylene resin particles is too small, the sound resistance may not be sufficiently improved, and conversely if too large, the mechanical properties of the belt may be deteriorated.
 ポリエチレン系樹脂粒子の割合は、ゴム成分100質量部に対して、例えば1~30質量部(例えば5~20質量部)、好ましくは3~20質量部、さらに好ましくは4~10質量部(特に4.5~8質量部)程度である。ポリエチレン系樹脂粒子の割合が少なすぎると、耐発音性が低下する虞があり、逆に多すぎるとトルクロスが大きくなる虞がある。 The ratio of the polyethylene resin particles is, for example, 1 to 30 parts by mass (for example, 5 to 20 parts by mass), preferably 3 to 20 parts by mass, more preferably 4 to 10 parts by mass (particularly with respect to 100 parts by mass of the rubber component. 4.5 to 8 parts by mass). If the proportion of the polyethylene resin particles is too small, the sound resistance may be lowered. Conversely, if the proportion is too large, the torque loss may be increased.
 (補強剤)
 圧縮ゴム層を形成するゴム組成物は、前記ゴム成分及び前記耐発音性向上剤に加えて、さらに補強剤を含んでいてもよい。補強剤には、補強繊維や、増強剤としてのカーボンブラックなどが含まれる。
(Reinforcing agent)
The rubber composition forming the compressed rubber layer may further contain a reinforcing agent in addition to the rubber component and the soundproofing improver. The reinforcing agent includes reinforcing fibers and carbon black as a reinforcing agent.
 補強繊維としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維など)、ポリエステル繊維[ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維などのC2-4アルキレンC6-14アリレート系繊維など]、ビニロン繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などの合成繊維;綿、麻、羊毛などの天然繊維;炭素繊維などの無機繊維が例示できる。これらの繊維は、単独で又は二種以上組み合わせて使用できる。 Examples of reinforcing fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyester fibers (polyethylene terephthalate (PET) fibers, polyethylene). C 2-4 alkylene C 6-14 arylate fiber such as naphthalate (PEN) fiber], synthetic fiber such as vinylon fiber, polyparaphenylenebenzobisoxazole (PBO) fiber; natural fiber such as cotton, hemp, wool An inorganic fiber such as carbon fiber can be exemplified. These fibers can be used alone or in combination of two or more.
 これらの補強繊維のうち、ポリアミド66繊維やアラミド繊維などのポリアミド繊維、ポリエステル繊維、ビニロン繊維などから選択された少なくとも一種が好ましい。補強繊維はフィブリル化していてもよい。さらに、補強繊維にも、心線と同様に種々の接着処理を施してもよい。 Of these reinforcing fibers, at least one selected from polyamide fibers such as polyamide 66 fibers and aramid fibers, polyester fibers, and vinylon fibers is preferable. The reinforcing fiber may be fibrillated. Further, various adhesive treatments may be applied to the reinforcing fiber in the same manner as the core wire.
 補強繊維は、通常、短繊維の形態で圧縮ゴム層に含有させてもよく、短繊維の平均長さは、例えば0.1~20mm、好ましくは0.5~15mm(例えば1~10mm)、さらに好ましくは1~5mm(特に2~4mm)程度であってもよい。プーリからの側圧と摩擦力を大きく受ける圧縮ゴム層中で短繊維をベルト幅方向に配向させることにより、Vリブドベルトの耐側圧性を確保できる。補強繊維の平均繊維径は、例えば1~100μm、好ましくは3~50μm、さらに好ましくは5~40μm(特に10~30μm)程度である。 The reinforcing fibers may be usually contained in the compressed rubber layer in the form of short fibers, and the average length of the short fibers is, for example, 0.1 to 20 mm, preferably 0.5 to 15 mm (for example, 1 to 10 mm), More preferably, it may be about 1 to 5 mm (especially 2 to 4 mm). By orienting the short fibers in the belt width direction in the compressed rubber layer that receives a large lateral pressure and frictional force from the pulley, the lateral pressure resistance of the V-ribbed belt can be ensured. The average fiber diameter of the reinforcing fibers is, for example, about 1 to 100 μm, preferably 3 to 50 μm, more preferably 5 to 40 μm (particularly 10 to 30 μm).
 カーボンブラックは、圧縮ゴム層を形成するゴム組成物の内部発熱を低く抑えて省燃費性を向上させるため、粒径の大きいカーボンブラック、特にヨウ素吸着量が40mg/g以下の大粒径カーボンブラックを含むのが好ましい。大粒径カーボンブラックとしては、FEF、GPF、APF、SRF-LM、SRF-HMなどが例示できる。これらのカーボンブラックは単独で又は二種以上組み合わせて使用できる。大粒径カーボンブラックの個数平均一次粒径は、例えば40~200nm、好ましくは45~150nm、さらに好ましくは50~125nm程度であってもよい。 Carbon black has a large particle size, particularly a large particle size carbon black having an iodine adsorption amount of 40 mg / g or less in order to improve fuel economy by reducing internal heat generation of the rubber composition forming the compressed rubber layer. Is preferably included. Examples of the large particle size carbon black include FEF, GPF, APF, SRF-LM and SRF-HM. These carbon blacks can be used alone or in combination of two or more. The number average primary particle size of the large particle size carbon black may be, for example, about 40 to 200 nm, preferably 45 to 150 nm, and more preferably about 50 to 125 nm.
 大粒径カーボンブラックは補強効果が低いため、粒径が小さく補強効果の高い小粒径カーボンブラック(ヨウ素吸着量が40mg/gより高い)を併用するのが好ましい。粒径の異なる少なくとも2種のカーボンブラックを用いることで、省燃費性と補強効果とを両立させることができる。小粒径カーボンブラックとしては、SAF、ISAF-HM、ISAF-LM、HAF-LS、HAF、HAF-HSなどが例示できる。これらのカーボンブラックは単独又は二種以上組み合わせて使用できる。小粒径カーボンブラックの個数平均一次粒径は、40nm未満、例えば5~38nm、好ましくは10~35nm、さらに好ましくは15~30nm程度であってもよい。 Since the large particle size carbon black has a low reinforcing effect, it is preferable to use a small particle size carbon black having a small particle size and a high reinforcing effect (iodine adsorption amount higher than 40 mg / g). By using at least two types of carbon black having different particle sizes, both fuel saving and reinforcing effect can be achieved. Examples of the small particle size carbon black include SAF, ISAF-HM, ISAF-LM, HAF-LS, HAF, and HAF-HS. These carbon blacks can be used alone or in combination of two or more. The number average primary particle size of the small particle size carbon black may be less than 40 nm, for example, 5 to 38 nm, preferably 10 to 35 nm, more preferably about 15 to 30 nm.
 なお、大粒径カーボンブラックの平均粒径と小粒径カーボンブラックの平均粒径との比率は、前者/後者=1.5/1~3/1、好ましくは1.7/1~2.7/1、さらに好ましくは1.8/1~2.5/1程度であってもよい。 The ratio of the average particle size of the large particle size carbon black to the average particle size of the small particle size carbon black is the former / the latter = 1.5 / 1 to 3/1, preferably 1.7 / 1 to 2. It may be about 7/1, more preferably about 1.8 / 1 to 2.5 / 1.
 また、大粒径カーボンブラックと小粒径カーボンブラックとの質量比率は、省燃費性と補強効果とを両立可能な範囲、例えば、前者/後者=20/80~55/45、好ましくは25/75~50/50、さらに好ましくは30/70~50/50程度であってもよい。なお、カーボンブラックのうち、小粒径カーボンブラックの割合が多すぎると、省燃費性が低下する虞があり、大粒径カーボンブラックが多すぎると、補強効果が低下する虞がある。 The mass ratio of the large particle size carbon black to the small particle size carbon black is within a range where both fuel saving and reinforcing effect can be achieved, for example, the former / the latter = 20/80 to 55/45, preferably 25 / It may be about 75 to 50/50, more preferably about 30/70 to 50/50. In addition, if there is too much ratio of small particle size carbon black among carbon black, there exists a possibility that a fuel-saving property may fall, and there exists a possibility that a reinforcement effect may fall when there are too many large particle size carbon blacks.
 補強剤の割合は、ゴム成分100質量部に対して40質量部以上であってもよく、例えば50~200質量部、好ましくは60~180質量部、さらに好ましくは80~150質量部(特に100~120質量部)程度である。本発明では、補強剤の割合が多量でも、トルクロスを低減できる。 The proportion of the reinforcing agent may be 40 parts by mass or more based on 100 parts by mass of the rubber component, for example, 50 to 200 parts by mass, preferably 60 to 180 parts by mass, more preferably 80 to 150 parts by mass (particularly 100 parts by mass). (About 120 parts by mass). In the present invention, even when the proportion of the reinforcing agent is large, the torcloth can be reduced.
 補強繊維の割合は、ゴム成分100質量部に対して80質量部以下(例えば0~80質量部)であってもよく、例えば60質量部以下(例えば1~60質量部)、好ましくは50質量部以下(例えば5~50質量部)、さらに好ましくは40質量部以下(例えば10~40質量部)程度である。補強繊維の割合が多すぎると、トルクロスを低減できない虞がある。 The proportion of the reinforcing fibers may be 80 parts by mass or less (for example, 0 to 80 parts by mass) with respect to 100 parts by mass of the rubber component, for example, 60 parts by mass or less (for example, 1 to 60 parts by mass), preferably 50 parts by mass. Part or less (for example, 5 to 50 parts by mass), more preferably about 40 parts by mass or less (for example, 10 to 40 parts by mass). If the proportion of reinforcing fibers is too large, there is a possibility that the torque cross cannot be reduced.
 カーボンブラックの割合は、ゴム成分100質量部に対して10質量部以上であってもよく、例えば20~180質量部、好ましくは30~150質量部、さらに好ましくは50~120質量部(特に60~100質量部)程度である。 The proportion of carbon black may be 10 parts by mass or more with respect to 100 parts by mass of the rubber component, for example, 20 to 180 parts by mass, preferably 30 to 150 parts by mass, more preferably 50 to 120 parts by mass (particularly 60 parts). (About 100 parts by mass).
 (他の可塑剤)
 圧縮ゴム層を形成するゴム組成物は、前記ゴム成分及び前記耐発音性向上剤に加えて、ゴム成分の溶解度指数以下の溶解度指数を有する他の可塑剤(又は軟化剤)をさらに含んでいてもよい。他の可塑剤は、ゴム成分がエチレン-α-オレフィンエラストマーである場合、例えば6.0~8.1(cal/cm1/2、好ましくは6.5~8.0(cal/cm1/2、さらに好ましくは7.0~7.8(cal/cm1/2程度の溶解度指数を有する可塑剤であってもよい。他の可塑剤としては、例えば、パラフィンオイル、ナフテン系オイル、プロセスオイルなどのオイル類などが挙げられる。
(Other plasticizers)
The rubber composition for forming the compression rubber layer further includes other plasticizer (or softener) having a solubility index equal to or lower than the solubility index of the rubber component, in addition to the rubber component and the soundproofing improver. Also good. The other plasticizer is, for example, 6.0 to 8.1 (cal / cm 3 ) 1/2 , preferably 6.5 to 8.0 (cal / cm) when the rubber component is an ethylene-α-olefin elastomer. 3 ) 1/2 , more preferably, a plasticizer having a solubility index of about 7.0 to 7.8 (cal / cm 3 ) 1/2 . Examples of other plasticizers include oils such as paraffin oil, naphthenic oil, and process oil.
 他の可塑剤(軟化剤)の割合は、ゴム成分100質量部に対して30質量部以下であってもよく、例えば1~30質量部、好ましくは3~25質量部、さらに好ましくは5~20質量部(特に7~15質量部)程度である。 The ratio of the other plasticizer (softener) may be 30 parts by mass or less with respect to 100 parts by mass of the rubber component, for example, 1 to 30 parts by mass, preferably 3 to 25 parts by mass, and more preferably 5 to 5 parts by mass. About 20 parts by mass (particularly 7 to 15 parts by mass).
 (加硫剤及び共架橋剤)
 圧縮ゴム層を形成するゴム組成物は、前記ゴム成分及び前記耐発音性向上剤に加えて、さらに加硫剤を含んでいてもよい。
(Vulcanizing agent and co-crosslinking agent)
The rubber composition forming the compression rubber layer may further contain a vulcanizing agent in addition to the rubber component and the soundproofing improver.
 加硫剤(又は架橋剤)としては、ゴム成分の種類に応じて慣用の成分が使用でき、例えば、有機過酸化物(ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイドなど)、オキシム類(キノンジオキシムなど)、グアニジン類(ジフェニルグアニジンなど)、金属酸化物(酸化マグネシウム、酸化亜鉛など)、硫黄系加硫剤などが例示できる。これらの加硫剤は、単独で又は二種以上組み合わせて使用できる。ゴム成分がエチレン-α-オレフィンエラストマーである場合、加硫剤としては、有機過酸化物、硫黄系加硫剤などが汎用される。 As the vulcanizing agent (or cross-linking agent), conventional components can be used depending on the type of rubber component. For example, organic peroxides (diacyl peroxide, peroxy ester, dialkyl peroxide, etc.), oximes (quinone) Examples thereof include dioximes), guanidines (diphenylguanidine, etc.), metal oxides (magnesium oxide, zinc oxide, etc.), sulfur vulcanizing agents and the like. These vulcanizing agents can be used alone or in combination of two or more. When the rubber component is an ethylene-α-olefin elastomer, organic peroxides, sulfur-based vulcanizing agents and the like are generally used as vulcanizing agents.
 加硫剤の割合は、加硫剤及びゴム成分の種類に応じて、ゴム成分100質量部に対して1~20質量部程度の範囲から選択できる。例えば、加硫剤としての有機過酸化物の割合は、ゴム成分100質量部に対して1~8質量部、好ましくは1.5~5質量部、さらに好ましくは2~4.5質量部程度である。 The proportion of the vulcanizing agent can be selected from a range of about 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component depending on the types of the vulcanizing agent and the rubber component. For example, the ratio of the organic peroxide as the vulcanizing agent is 1 to 8 parts by weight, preferably 1.5 to 5 parts by weight, and more preferably about 2 to 4.5 parts by weight with respect to 100 parts by weight of the rubber component. It is.
 圧縮ゴム層を形成するゴム組成物は、ビスマレイミド類(N,N’-m-フェニレンジマレイミドなどのアレーンビスマレイミド又は芳香族ビスマレイミド)などの共架橋剤をさらに含んでいてもよい。 The rubber composition forming the compression rubber layer may further contain a co-crosslinking agent such as bismaleimides (arene bismaleimide such as N, N′-m-phenylene dimaleimide or aromatic bismaleimide).
 共架橋剤の割合は、ゴム成分100質量部に対して0.01~10質量部程度の範囲から選択でき、例えば0.1~10質量部、好ましくは0.5~6質量部、さらに好ましくは1~5質量部程度である。 The ratio of the co-crosslinking agent can be selected from the range of about 0.01 to 10 parts by weight, for example, 0.1 to 10 parts by weight, preferably 0.5 to 6 parts by weight, more preferably 100 parts by weight of the rubber component. Is about 1 to 5 parts by mass.
 (他の添加剤)
 圧縮ゴム層を形成するゴム組成物は、前記ゴム成分及び前記耐発音性向上剤に加えて、さらに他の添加剤として、慣用の添加剤を含んでいてもよい。
(Other additives)
The rubber composition forming the compression rubber layer may contain a conventional additive as another additive in addition to the rubber component and the soundproofing improver.
 慣用の添加剤としては、例えば、加硫促進剤、加硫遅延剤、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィン、脂肪酸アマイドなど)、安定剤又は老化防止剤(紫外線吸収剤、酸化防止剤、熱老化防止剤又は熱安定剤、屈曲き裂防止剤、オゾン劣化防止剤など)、着色剤、接着性改善剤[レゾルシン-ホルムアルデヒド共縮合物、ヘキサメトキシメチルメラミンなどのメラミン樹脂、これらの共縮合物(レゾルシン-メラミン-ホルムアルデヒド共縮合物など)など]、粘着付与剤、可塑剤、カップリング剤(シランカップリング剤など)、潤滑剤、難燃剤、帯電防止剤などを含んでいてもよい。これら他の添加剤は、単独で又は二種以上組み合わせて使用できる。 Examples of conventional additives include vulcanization accelerators, vulcanization retarders, processing agents or processing aids (stearic acid, metal stearate, wax, paraffin, fatty acid amide, etc.), stabilizers or anti-aging agents ( UV absorbers, antioxidants, anti-aging agents or heat stabilizers, anti-bending cracking agents, anti-ozone degradation agents, etc.), coloring agents, adhesion improvers [resorcin-formaldehyde cocondensates, hexamethoxymethyl melamine, etc. Melamine resins, co-condensates thereof (resorcin-melamine-formaldehyde co-condensate, etc.), tackifiers, plasticizers, coupling agents (silane coupling agents, etc.), lubricants, flame retardants, antistatic agents Etc. may be included. These other additives can be used alone or in combination of two or more.
 これら他の添加剤の割合は、種類に応じて慣用の範囲から選択でき、例えば、ゴム成分100質量部に対して、それぞれ0.1~5質量部(特に0.5~3質量部)程度であってもよい。 The ratio of these other additives can be selected from a conventional range depending on the type, for example, about 0.1 to 5 parts by mass (particularly 0.5 to 3 parts by mass) with respect to 100 parts by mass of the rubber component. It may be.
 [Vリブドベルトの製造方法]
 本発明のVリブドベルトの製造方法は特に制限されず、公知又は慣用の方法が採用できる。例えば、圧縮ゴム層と、芯体が埋設された接着層と、伸張層とを、それぞれ未加硫ゴム組成物で形成して積層し、この積層体を成形型で筒状に成形し、加硫してスリーブを成形し、この加硫スリーブを所定幅にカッティングすることにより形成できる。より詳細には、以下の方法でVリブドベルトを製造できる。
[Manufacturing method of V-ribbed belt]
The method for producing the V-ribbed belt of the present invention is not particularly limited, and a known or conventional method can be adopted. For example, a compressed rubber layer, an adhesive layer in which a core body is embedded, and an extension layer are each formed from an unvulcanized rubber composition and laminated, and the laminated body is molded into a cylindrical shape with a molding die, and added. It can be formed by forming a sleeve by vulcanization and cutting the vulcanized sleeve to a predetermined width. More specifically, the V-ribbed belt can be manufactured by the following method.
 (第1の製造方法)
 先ず、表面が平滑な円筒状の成形モールドに伸張層用シートを巻きつけ、このシート上に芯体を形成する心線(撚りコード)を螺旋状にスピニングし、さらに接着層用シート、圧縮ゴム層用シートを順次巻き付けて成形体を作製する。その後、加硫用ジャケットを成形体の上から被せて金型(成形型)を加硫缶内に収容し、所定の加硫条件で加硫した後、成形モールドから脱型して筒状の加硫ゴムスリーブを得る。そして、この加硫ゴムスリーブの外表面(圧縮ゴム層)を研削ホイールにより研磨して複数のリブを形成した後、カッターを用いてこの加硫ゴムスリーブをベルト長手方向に所定の幅にカットしてVリブドベルトに仕上げる。なお、カットしたベルトを反転させることにより、内周面にリブ部を有する圧縮ゴム層を備えたVリブドベルトが得られる。
(First manufacturing method)
First, a stretch layer sheet is wound around a cylindrical molding mold having a smooth surface, and a core wire (twisted cord) forming a core is spirally spun on the sheet, and further, an adhesive layer sheet and compressed rubber A layered sheet is sequentially wound to produce a molded body. Thereafter, a jacket for vulcanization is placed on the molded body, the mold (molding die) is accommodated in a vulcanizing can, vulcanized under predetermined vulcanization conditions, and then removed from the molding mold to form a cylindrical shape. A vulcanized rubber sleeve is obtained. The outer surface (compressed rubber layer) of the vulcanized rubber sleeve is polished with a grinding wheel to form a plurality of ribs, and then the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter. To make a V-ribbed belt. By reversing the cut belt, a V-ribbed belt provided with a compressed rubber layer having a rib portion on the inner peripheral surface can be obtained.
 (第2の製造方法)
 先ず、内型として外周面に可撓性ジャケットを装着した円筒状内型を用い、外周面の可撓性ジャケットに未加硫の伸張層用シートを巻きつけ、このシート上に芯体を形成する心線を螺旋状にスピニングし、さらに未加硫の圧縮ゴム層用シートを巻き付けて積層体を作製する。次に、前記内型に装着可能な外型として、内周面に複数のリブ型が刻設された筒状外型を用い、この外型内に、前記積層体が巻き付けられた内型を、同心円状に設置する。その後、可撓性ジャケットを外型の内周面(リブ型)に向かって膨張させて積層体(圧縮ゴム層)をリブ型に圧入し、加硫する。そして、外型より内型を抜き取り、複数のリブを有する加硫ゴムスリーブを外型から脱型した後、カッターを用いて、加硫ゴムスリーブをベルト長手方向に所定の幅にカットしてVリブドベルトに仕上げる。この第2の製造方法では、伸張層、芯体、圧縮ゴム層を備えた積層体を一度に膨張させて複数のリブを有するスリーブ(又はVリブドベルト)に仕上げることができる。
(Second manufacturing method)
First, a cylindrical inner mold with a flexible jacket attached to the outer peripheral surface is used as the inner mold, and an unvulcanized stretch layer sheet is wound around the outer peripheral flexible jacket, and a core is formed on the sheet. The core wire to be spirally spun and wound with an unvulcanized compressed rubber layer sheet to produce a laminate. Next, as an outer mold that can be attached to the inner mold, a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface is used, and an inner mold in which the laminate is wound is provided in the outer mold. Install concentrically. Thereafter, the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed rubber layer) is press-fitted into the rib mold and vulcanized. Then, after extracting the inner mold from the outer mold and removing the vulcanized rubber sleeve having a plurality of ribs from the outer mold, the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter. Finish the ribbed belt. In the second manufacturing method, a laminated body including an extension layer, a core body, and a compressed rubber layer can be expanded at a time to be finished into a sleeve (or V-ribbed belt) having a plurality of ribs.
 (第3の製造方法)
 第2の製造方法に関連して、例えば、日本国特開2004-82702号公報に開示される方法(圧縮ゴム層のみを膨張させて予備成形体(半加硫状態)とし、次いで伸張層と芯体とを膨張させて前記予備成形体に圧着し、加硫一体化してVリブドベルトに仕上げる方法)を採用してもよい。
(Third production method)
In connection with the second production method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2004-82702 (only a compression rubber layer is expanded to form a preform (semi-vulcanized state), A method in which the core body is expanded and pressure-bonded to the preform, and vulcanized and integrated into a V-ribbed belt) may be employed.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。以下の例において、実施例に用いた原料、各物性における測定方法又は評価方法を以下に示す。なお、特にことわりのない限り、「部」及び「%」は質量基準である。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the following examples, the raw materials used in the examples and the measurement methods or evaluation methods for each physical property are shown below. Unless otherwise specified, “part” and “%” are based on mass.
 [原料]
 EPDM:三井化学(株)製「EPT2060M」
 ナイロン短繊維:66ナイロン、平均繊維径27μm、平均繊維長3mm
 綿短繊維:デニム、平均繊維径13μm、平均繊維長6mm
 酸化亜鉛:正同化学工業(株)製「酸化亜鉛3種」
 ステアリン酸:日油(株)製「ステアリン酸つばき」
 カーボンブラックHAF:東海カーボン(株)製「シースト3」、平均粒径28nm
 カーボンブラックFEF:東海カーボン(株)製「シーストSO」、平均粒径43nm
 含水シリカ:東ソー・シリカ(株)製「Nipsil VN3」
 パラフィン系オイル(軟化剤):出光興産(株)製「ダイアナプロセスオイルPW-90」
 界面活性剤:ポリオキシアルキレンアルキルエーテル、日本乳化剤(株)製「ニューコール2304-Y」
 エーテルエステル系可塑剤:(株)ADEKA製「RS-700」
 炭酸カルシウム:白石カルシウム(株)製「ホワイトンSSB」
 クレー(カオリナイト):白石カルシウム(株)製「ハードトップクレー」
 クレー(モンモリロナイト):ホージュン(株)製「ベンゲルA」
 タルク:富士タルク工業(株)製「RL217」、メディアン径20μm
 ポリエチレン粒子:三井化学(株)製「ハイゼックスミリオン240S」
 有機過酸化物:日油(株)製「パークミルD-40」
 加硫促進剤A:テトラメチルチウラム・ジスルフィド(TMTD)
 加硫促進剤B:N-シクロヘキシル-2-ベンゾチアジル-スルフェンアミド(CBS)
 共架橋剤A:p,p’-ジベンジルキノンジオキシム、大内新興化学工業(株)製「バルノックDGM」
 共架橋剤B:N,N’-m-フェニレンジマレイミド、大内新興化学工業(株)製「バルノックPM」
 心線:1,000デニールのPET繊維を2×3の撚り構成で、上撚り係数3.0、下撚り係数3.0で諸撚りしたトータルデニール6,000のコードを接着処理した撚糸コード、心線径1.0mm
[material]
EPDM: “EPT2060M” manufactured by Mitsui Chemicals, Inc.
Nylon short fiber: 66 nylon, average fiber diameter 27 μm, average fiber length 3 mm
Cotton short fiber: Denim, average fiber diameter 13μm, average fiber length 6mm
Zinc oxide: “Zinc oxide 3 types” manufactured by Shodo Chemical Industry Co., Ltd.
Stearic acid: Tsubaki stearic acid manufactured by NOF Corporation
Carbon black HAF: “Seast 3” manufactured by Tokai Carbon Co., Ltd., average particle size 28 nm
Carbon black FEF: “Seast SO” manufactured by Tokai Carbon Co., Ltd., average particle size 43 nm
Hydrous silica: “Nippil VN3” manufactured by Tosoh Silica Corporation
Paraffinic oil (softener): “Diana Process Oil PW-90” manufactured by Idemitsu Kosan Co., Ltd.
Surfactant: Polyoxyalkylene alkyl ether, “New Coal 2304-Y” manufactured by Nippon Emulsifier Co., Ltd.
Ether ester plasticizer: “RS-700” manufactured by ADEKA Corporation
Calcium carbonate: “Whiteon SSB” manufactured by Shiraishi Calcium Co., Ltd.
Clay (Kaolinite): "Hard Top Clay" manufactured by Shiraishi Calcium Co., Ltd.
Clay (Montmorillonite): “Bengel A” manufactured by Hojun Co., Ltd.
Talc: “RL217” manufactured by Fuji Talc Kogyo Co., Ltd., median diameter 20 μm
Polyethylene particles: “Hi-Z Million 240S” manufactured by Mitsui Chemicals, Inc.
Organic peroxide: “Park Mill D-40” manufactured by NOF Corporation
Vulcanization accelerator A: Tetramethylthiuram disulfide (TMTD)
Vulcanization accelerator B: N-cyclohexyl-2-benzothiazyl-sulfenamide (CBS)
Co-crosslinking agent A: p, p′-dibenzylquinone dioxime, “Barunok DGM” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Co-crosslinking agent B: N, N'-m-phenylene dimaleimide, "Barunok PM" manufactured by Ouchi Shinsei Chemical Co., Ltd.
Core wire: a twisted yarn cord obtained by adhering a cord of total denier 6,000, which is a 2 × 3 twisted configuration of 1,000 denier PET fiber, and twisted at an upper twist factor of 3.0 and a lower twist factor of 3.0, Core wire diameter 1.0mm
 実施例1~22及び比較例1~18
 (Vリブドベルトの製造)
 表1及び2に示す伸張層形成用のゴム組成物、圧縮ゴム層形成用のゴム組成物及び接着層形成用のゴム組成物を、それぞれバンバリーミキサーなどの公知の方法を用いてゴム練りを行い、この練りゴムをカレンダーロールに通して所定の厚みを有する伸張層形成用シート、圧縮ゴム層形成用シート及び接着層形成用シートを作製した。
Examples 1 to 22 and Comparative Examples 1 to 18
(Manufacture of V-ribbed belt)
The rubber composition for forming an extension layer, the rubber composition for forming a compression rubber layer, and the rubber composition for forming an adhesive layer shown in Tables 1 and 2 are each kneaded using a known method such as a Banbury mixer. The kneaded rubber was passed through a calender roll to prepare a stretch layer forming sheet, a compressed rubber layer forming sheet and an adhesive layer forming sheet having a predetermined thickness.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、以下のような公知の方法を用いてVリブドベルトを作成した。先ず、表面が平滑な円筒状成形モールドに伸張層用シートを巻きつけ、この伸張層用シート上に芯体を形成する心線(撚りコード)を螺旋状にスピニングし、接着層用シート、圧縮ゴム層用シートを順次巻き付けて成形体を形成した。その後、加硫用ジャケットを成形体の上から被せた状態で、前記成形モールドを加硫缶に設置し、温度160℃、時間30分の条件で加硫した後、成形モールドから脱型して筒状の加硫ゴムスリーブを得た。そして、この加硫ゴムスリーブの外面(圧縮ゴム層)を研削ホイールにより所定の間隔で研削して複数のリブを形成した後、カッターを用いて、加硫ゴムスリーブをベルト長手方向に所定の幅でカットして、Vリブドベルトに仕上げた。 Next, a V-ribbed belt was prepared using the following known method. First, a stretch layer sheet is wound around a cylindrical molding mold having a smooth surface, and a core wire (twisted cord) that forms a core on the stretch layer sheet is spirally spun to form an adhesive layer sheet, compressed The rubber layer sheets were sequentially wound to form a molded body. Thereafter, the molding mold is placed on a vulcanizing can with the vulcanization jacket placed on the molded body, vulcanized at a temperature of 160 ° C. for 30 minutes, and then demolded from the molding mold. A cylindrical vulcanized rubber sleeve was obtained. Then, after the outer surface (compressed rubber layer) of the vulcanized rubber sleeve is ground at a predetermined interval by a grinding wheel to form a plurality of ribs, the vulcanized rubber sleeve is formed with a predetermined width in the longitudinal direction of the belt using a cutter. And finished into a V-ribbed belt.
 (Vリブドベルトの寸法)
 得られたVリブドベルトは、図5及び表3に示すように、心線中央[2]からVリブドベルト背面[1]までの距離aを1.00mm、心線底部[3]からVリブドベルト背面[1]までの距離bを1.50mm、リブ底部[4]からVリブドベルト背面[1]までの距離cを2.30mm、リブ先端部[5]からVリブドベルト背面[1]までの距離dを4.30mm、リブピッチeを3.56mm、心線底部[3]からリブ底部[4]までの距離hを0.80mm、リブ先端部[5]からリブ底部[4]までの距離iを2.00mm、リブ先端部[5]から心線底部[3]までの距離jを2.80mmに調整した。
(V-ribbed belt dimensions)
5 and Table 3, the obtained V-ribbed belt has a distance a from the center of the core [2] to the back of the V-ribbed belt [1] of 1.00 mm, and the bottom of the core [3] to the back of the V-ribbed belt [ The distance b from the rib bottom [4] to the V-ribbed belt back [1] is 2.30 mm and the distance d from the rib tip [5] to the V-ribbed belt back [1] is 1.50 mm. 4.30 mm, rib pitch e 3.56 mm, distance h from core bottom [3] to rib bottom [4] is 0.80 mm, distance i from rib tip [5] to rib bottom [4] is 2 0.000 mm, and the distance j from the rib tip [5] to the core bottom [3] was adjusted to 2.80 mm.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [フリクションロス(トルクロス)の測定]
 図6に示すように、直径55mmの駆動(Dr)プーリと、直径55mmの従動(Dn)プーリで構成される2軸走行試験機にVリブドベルト(リブ数4、長さ750mm)を巻き掛け、100~600N/ベルト1本の張力範囲でVリブドベルトに所定の初張力を付与し、従動プーリ無負荷で駆動プーリを2000rpmで回転させたときの駆動トルクと従動トルクとの差をトルクロスとして算出した。得られた結果を表4~6に示す。なお、表には500Nの初張力を付与したときのトルクロスを示した。
[Measurement of friction loss (torcross)]
As shown in FIG. 6, a V-ribbed belt (4 ribs, length 750 mm) is wound around a two-axis running test machine composed of a driving (Dr) pulley having a diameter of 55 mm and a driven (Dn) pulley having a diameter of 55 mm. A predetermined initial tension was applied to the V-ribbed belt in the tension range of 100 to 600 N / one belt, and the difference between the driving torque and the driven torque when the driving pulley was rotated at 2000 rpm without a driven pulley was calculated as a torque cross. . The results obtained are shown in Tables 4-6. The table shows the torcloth when an initial tension of 500 N was applied.
 なお、この測定で求められるトルクロスは、Vリブドベルトの屈曲損失によるトルクロス以外に、試験機の軸受けに起因するトルクロスも含まれている。そのため、Vリブドベルトとしてのトルクロスが実質0と考えられる金属ベルト(材質:マルエージング鋼)を予め走行させておき、このときの駆動トルクと従動トルクとの差が軸受けに起因するトルクロス(軸受け損失)と考え、Vリブドベルトを走行させて算出したトルクロス(Vリブドベルトと軸受けの二つに起因するトルクロス)から軸受けに起因するトルクロスを差し引いた値をVリブドベルト単体に起因するトルクロスとして求めた。ここで、差し引くトルクロス(軸受け損失)は所定の初張力で金属ベルトを走行させたときのトルクロス(例えば、初張力500N/ベルト1本でVリブドベルトを走行させた場合、この初張力で金属ベルトを走行させたときのトルクロス)である。このVリブドベルトのトルクロスが小さいほど省燃費性に優れていることを意味する。自動車エンジンでの省燃費性の観点から、トルクロスの目安として、0.24N・m以下に低減していることが好ましい。 In addition, the torque cross required by this measurement includes the torque cross resulting from the bearing of the testing machine in addition to the torque cross due to the bending loss of the V-ribbed belt. Therefore, a metal belt (material: maraging steel) considered to have a torque cross as a V-ribbed belt of substantially zero is run in advance, and the difference between the drive torque and the driven torque at this time is a torque cross due to the bearing (bearing loss). Therefore, a value obtained by subtracting the torque cross caused by the bearing from the torque cross calculated by running the V-ribbed belt (the torque cross resulting from the V-ribbed belt and the bearing) was obtained as the torque cross resulting from the single V-ribbed belt. Here, the torcross (bearing loss) to be subtracted is the torcross when the metal belt is run at a predetermined initial tension (for example, when a V-ribbed belt is run at an initial tension of 500 N / one belt, the metal belt is moved at this initial tension. (Torcross when running). The smaller the torque cross of this V-ribbed belt, the better the fuel economy. From the viewpoint of fuel economy in an automobile engine, it is preferable that the torque is reduced to 0.24 N · m or less as a guideline for torque cross.
 [耐発音性試験(実車での発音測定)]
 実車エンジンを使用し、図7に示すレイアウトでウォーターポンププーリ(直径107mm)、クランクプーリ(直径120mm)及び発電機プーリ(直径55mm)にVリブドベルトを掛架し、ベルト張力:300N/ベルト1本、発電機負荷:70A、クランク回転数:アイドリングの条件で、Vリブドベルト(リブ数4、長さ750mm)に注水して被水させた時のスティック・スリップ異音の発生を確認し、以下の基準で評価した。結果を表4~6に示す。
[Sounding resistance test (measurement of pronunciation in actual vehicle)]
Using a real car engine, a V-ribbed belt is hung on the water pump pulley (diameter 107mm), crank pulley (diameter 120mm) and generator pulley (diameter 55mm) in the layout shown in Fig. 7, and belt tension: 300N / belt , Generator load: 70A, crank rotation speed: idling conditions, when the V-ribbed belt (4 ribs, length 750mm) was poured and submerged, the occurrence of abnormal stick-slip noise was confirmed. Evaluated by criteria. The results are shown in Tables 4-6.
  ◎:異音が発生しなかった
  ○:3秒以内の微小な異音が生じた(実用的に問題ないレベル)
  △:3秒以内の小さな異音が生じた(エンジンルームでは聞き取れるが車内では聞き取れない。高度な静粛性が要求される場合にはNGであるが、通常は問題ないレベル)
  ×:3秒以上の連続した異音が生じた。
◎: No abnormal noise was generated. ○: Small abnormal noise was generated within 3 seconds.
△: A small noise was generated within 3 seconds (can be heard in the engine room but not in the car. NG when a high level of quietness is required, but normally no problem)
X: A continuous abnormal noise of 3 seconds or more was generated.
 [耐発音性試験(ミスアライメント発音測定)]
 耐発音性について、ミスアライメント発音試験でも評価した。評価に用いた試験機は、図8に示すように、駆動(Dr)プーリ(直径101mm)、アイドラー(Id)プーリ(直径70mm)、従動(Dn)プーリ(直径120mm)、テンション(Ten)プーリ(直径61mm)を配置して構成され、駆動プーリと従動プーリとの間で1.5°の角度でミスアライメントを設定した。この試験機の各プーリ間にVリブドベルト(リブ数6、長さ1200mm)を掛架し、25℃条件下で、駆動プーリの回転数1000rpmで走行させた。このときベルト張力が50N/リブになるように駆動プーリに荷重を付与した。そして、100ml/分で1分間ベルトに注水した際のスティック・スリップ異音(「キュルキュル」と聞こえる異音)の発生を確認し、実車での発音測定と同様の基準で評価した。結果を表4~6に示す。
[Soundproof test (measurement of misaligned pronunciation)]
The pronunciation resistance was also evaluated in the misalignment pronunciation test. As shown in FIG. 8, the testing machine used for the evaluation is a drive (Dr) pulley (diameter 101 mm), an idler (Id) pulley (diameter 70 mm), a driven (Dn) pulley (diameter 120 mm), and a tension (Ten) pulley. (Diameter 61 mm) was arranged, and misalignment was set at an angle of 1.5 ° between the driving pulley and the driven pulley. A V-ribbed belt (6 ribs, 1200 mm in length) was hung between each pulley of the test machine, and the drive pulley was run at a rotation speed of 1000 rpm under 25 ° C conditions. At this time, a load was applied to the drive pulley so that the belt tension was 50 N / rib. Then, the occurrence of stick-slip abnormal noise (abnormal sound heard as “curculle”) when water was poured into the belt at 100 ml / min for 1 minute was confirmed, and the evaluation was made according to the same criteria as the pronunciation measurement in an actual vehicle. The results are shown in Tables 4-6.
 [リブ底部の粘着摩耗試験]
 粘着摩耗試験は、図9にレイアウトを示すように、駆動(Dr)プーリ(直径120mm)、アイドラー(Id)プーリ(直径45mm)、従動(Dn)プーリ(直径120mm)を順に配置した試験機を用いて行った。詳しくは、試験機の各プーリにVリブドベルト(リブ数4、長さ1200mm)を掛架し、駆動プーリの回転数を4900rpm、アイドラープーリ及び従動プーリの負荷を11.7kWとし、ベルト初期張力(940N/4リブ)を付与してベルトを雰囲気温度25℃で5時間走行させた。走行後のVリブ部の底部(リブ底部)の粘着摩耗(「ネチャネチャ」と聞こえる粘着による異音)の発生を以下の基準で評価した。結果を表4~6に示す。
[Rib bottom adhesive wear test]
As shown in the layout of FIG. 9, the adhesion wear test is a test machine in which a drive (Dr) pulley (diameter 120 mm), an idler (Id) pulley (diameter 45 mm), and a driven (Dn) pulley (diameter 120 mm) are arranged in this order. Used. Specifically, a V-ribbed belt (4 ribs, 1200 mm in length) is hung on each pulley of the testing machine, the rotational speed of the driving pulley is 4900 rpm, the load of the idler pulley and the driven pulley is 11.7 kW, and the initial belt tension ( 940 N / 4 ribs) was applied, and the belt was run at an ambient temperature of 25 ° C. for 5 hours. Generation | occurrence | production of the adhesion wear (abnormal sound by adhesion | attachment which can be heard as "nematic") of the bottom part (rib bottom part) of the V rib part after driving | running | working was evaluated on the following references | standards. The results are shown in Tables 4-6.
  ◎:粘着摩耗が生じなかった
  ○:微小な粘着摩耗が生じたが、走行性能には問題ないレベルであった
  ×:走行上問題になる粘着摩耗が生じた。
A: Adhesive wear did not occur. O: A small amount of adhesive wear occurred, but there was no problem in running performance. X: Adhesive wear that caused problems in running occurred.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表4~6の結果から明らかなように、内部損失(tanδ)が高いゴム組成物を使用し、角度差α-βが5~9°に達していない比較例4~16では、トルクロスの値が0.30~0.34N・mと大きくなった。それに対して、内部損失(tanδ)が高いゴム組成物を使用しても角度差α-βが5~9°の範囲にある実施例1~22ではトルクロスの値が0.20~0.24N・mと小さくなった。また、比較例1~3は、内部損失(tanδ)が低いゴム組成物を使用しているので、角度差α-βに拘わらずトルクロスは小さくなった。さらに、角度差α-βが9°の実施例18、20及び22では、微小な粘着摩耗が生じたが、走行性能には問題ないレベルであった。一方、角度差α-βが9°を超える比較例17及び18では、走行上問題になる粘着摩耗が生じた。 As is apparent from the results in Tables 4 to 6, in Comparative Examples 4 to 16 in which a rubber composition having a high internal loss (tan δ) was used and the angle difference α-β did not reach 5 to 9 °, the value of Torcross was Increased from 0.30 to 0.34 N · m. On the other hand, in Examples 1 to 22 in which the angle difference α-β is in the range of 5 to 9 ° even when a rubber composition having a high internal loss (tan δ) is used, the value of Torcross is 0.20 to 0.24 N・ It became small with m. In Comparative Examples 1 to 3, since the rubber composition having a low internal loss (tan δ) was used, the torque loss was small regardless of the angle difference α−β. Further, in Examples 18, 20 and 22 in which the angle difference α−β was 9 °, minute adhesive wear occurred, but the level was satisfactory for the running performance. On the other hand, in Comparative Examples 17 and 18 in which the angle difference α−β exceeds 9 °, adhesive wear that causes a problem in running occurred.
 なお、トルクロスが「0.30~0.34N・m」の水準と「0.20~0.24N・m」の水準との差、すなわちトルクロスが「0.06~0.14N・m」低減されることは、例えば軽自動車の燃費で0.2%の向上に相当する有意な差である(自動車分野で燃費を0.1%向上させることは大きな効果)。 In addition, the difference between the level of “0.30 to 0.34 N · m” and the level of “0.20 to 0.24 N · m”, that is, the torque cross is reduced by “0.06 to 0.14 N · m”. What is done is, for example, a significant difference corresponding to an improvement of 0.2% in the fuel consumption of a light vehicle (improvement of fuel consumption by 0.1% in the automobile field is a great effect).
 可塑剤や界面活性剤を配合したゴム組成物を用いた実施例1~6、17~20、比較例4~11、17~18ではスティック・スリップ異音は発生しなかった(◎か○のレベル)。無機充填剤やポリエチレン粒子を配合したゴム組成物を用いた実施例7~16、21~22、比較例12~16では、可塑剤や界面活性剤の場合よりは劣るが、スティック・スリップ異音の発生は軽微であった(○か△のレベル)。これに対して、これらの配合剤を用いない比較例1~3では、スティック・スリップ異音が発生した。 In Examples 1 to 6, 17 to 20, and Comparative Examples 4 to 11 and 17 to 18 using a rubber composition containing a plasticizer or a surfactant, no stick-slip noise was generated (A or B) level). In Examples 7 to 16, 21 to 22, and Comparative Examples 12 to 16 using a rubber composition containing an inorganic filler and polyethylene particles, the stick-slip noise is inferior to that of a plasticizer or a surfactant. Occurrence was minimal (○ or △ level). In contrast, in Comparative Examples 1 to 3 in which these compounding agents were not used, stick-slip noise was generated.
 以上の結果から実施例1~22のVリブドベルトとVプーリを組み合わせた駆動装置において、耐発音性(静粛性)を維持しつつ、省燃費性を向上(トルクロスを低減)できることが確認できた。 From the above results, it was confirmed that in the driving device combining the V-ribbed belts of Examples 1 to 22 and the V pulley, it was possible to improve fuel economy (reduce torcross) while maintaining sound resistance (quietness).
 [FEM解析によるトルクロスのシミュレーション]
 実施例4(可塑剤5重量部,α=43°,β=36°)及び比較例9(可塑剤5重量部,α=40°,β=36°)の条件で、VリブドベルトとVプーリとの解析モデルを作成し、コンピューターシミュレーションにて、発熱によるエネルギーロスの指標となる圧縮ひずみによるエネルギーを解析した。その結果を図10に示すが、角度差α-βが大きくVリブの先端部にてプーリとの間隙が生じる実施例4の方が、Vリブの先端部付近での圧縮ひずみによるエネルギーが小さいことがわかる。
[Torcross simulation by FEM analysis]
Under the conditions of Example 4 (plasticizer 5 parts by weight, α = 43 °, β = 36 °) and Comparative Example 9 (plasticizer 5 parts by weight, α = 40 °, β = 36 °), a V-ribbed belt and a V pulley An analysis model was created, and the energy due to compressive strain, which is an index of energy loss due to heat generation, was analyzed by computer simulation. The result is shown in FIG. 10. In Example 4, in which the angle difference α−β is large and a gap with the pulley is generated at the tip of the V-rib, the energy due to the compressive strain near the tip of the V-rib is smaller. I understand that.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2016年8月29日付出願の日本特許出願2016-166923、および2017年8月23日付出願の日本特許出願2017-159935に基づくものであり、その内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2016-166923 filed on Aug. 29, 2016, and Japanese Patent Application No. 2017-159935 filed on Aug. 23, 2017, the contents of which are incorporated herein by reference.
 本発明のVリブドベルトは、各種のベルト伝動システムのVリブドベルトとして利用でき、特に、発電装置であるオルタネータなどの小径プーリを含むシステム、例えば、自動車エンジン補機駆動システムのVリブドベルトとして有用である。 The V-ribbed belt of the present invention can be used as a V-ribbed belt for various belt transmission systems, and is particularly useful as a system including a small-diameter pulley such as an alternator as a power generator, for example, a V-ribbed belt for an automobile engine accessory drive system.
 1…芯体
 2…圧縮ゴム層
 3…リブ
 4…接着層
 5…伸張層
DESCRIPTION OF SYMBOLS 1 ... Core body 2 ... Compressed rubber layer 3 ... Rib 4 ... Adhesive layer 5 ... Stretch layer

Claims (10)

  1.  ベルト長手方向に沿って互いに平行して延びる複数のVリブ部を有し、かつ少なくとも一部がプーリのVリブ溝部と接触可能な摩擦伝動面を有する圧縮ゴム層を備えたVリブドベルトであって、前記圧縮ゴム層の摩擦伝動面が、ゴム成分及び耐発音性向上剤を含むゴム組成物の加硫物で形成され、かつ前記Vリブ部のVリブ角度が、前記プーリのVリブ溝角度よりも5~9°大きいVリブドベルト。 A V-ribbed belt having a compressed rubber layer having a plurality of V-rib portions extending in parallel with each other along the longitudinal direction of the belt, and at least a portion having a friction transmission surface capable of contacting the V-rib groove portion of the pulley. The friction transmission surface of the compressed rubber layer is formed of a vulcanized product of a rubber composition containing a rubber component and a soundproofing improver, and the V rib angle of the V rib portion is the V rib groove angle of the pulley. V-ribbed belt 5-9 ° larger than
  2.  前記Vリブ部のVリブ角度が41~45°である請求項1に記載のVリブドベルト。 The V-ribbed belt according to claim 1, wherein a V-rib angle of the V-rib portion is 41 to 45 °.
  3.  前記プーリが、外径65mm以下のプーリを含む請求項1又は2に記載のVリブドベルト。 The V-ribbed belt according to claim 1 or 2, wherein the pulley includes a pulley having an outer diameter of 65 mm or less.
  4.  前記耐発音性向上剤が、界面活性剤、ゴム成分よりも大きい溶解度指数を有する可塑剤、無機粒子及びポリエチレン系樹脂粒子からなる群より選択される少なくとも1種である請求項1~3のいずれか一項に記載のVリブドベルト。 The soundproofing improver is at least one selected from the group consisting of a surfactant, a plasticizer having a solubility index greater than that of a rubber component, inorganic particles, and polyethylene resin particles. A V-ribbed belt according to claim 1.
  5.  前記耐発音性向上剤が、ポリエチレングリコール型非イオン界面活性剤を含み、ポリエチレングリコール型非イオン界面活性剤の割合が、ゴム成分100質量部に対して2~20質量部である請求項1~4のいずれか一項に記載のVリブドベルト。 The soundproofing improver includes a polyethylene glycol type nonionic surfactant, and the ratio of the polyethylene glycol type nonionic surfactant is 2 to 20 parts by mass with respect to 100 parts by mass of the rubber component. 5. The V-ribbed belt according to claim 4.
  6.  前記耐発音性向上剤が、エーテルエステル系可塑剤を含み、エーテルエステル系可塑剤の割合が、ゴム成分100質量部に対して5~15質量部である請求項1~5のいずれか一項に記載のVリブドベルト。 6. The soundproofing improver includes an ether ester plasticizer, and the ratio of the ether ester plasticizer is 5 to 15 parts by mass with respect to 100 parts by mass of the rubber component. V-ribbed belt described in 1.
  7.  前記ゴム成分が、エチレン-α-オレフィンエラストマーを含む請求項1~6のいずれか一項に記載のVリブドベルト。 The V-ribbed belt according to any one of claims 1 to 6, wherein the rubber component contains an ethylene-α-olefin elastomer.
  8.  請求項1~7のいずれか一項に記載のVリブドベルトと、このVリブドベルトのVリブ部と嵌合可能なVリブ溝部を有するプーリとを備えたベルト伝動装置であって、前記Vリブドベルトの前記Vリブ部のVリブ角度が、前記プーリのVリブ溝角度よりも5~9°大きいベルト伝動装置。 A belt transmission device comprising: the V-ribbed belt according to any one of claims 1 to 7; and a pulley having a V-rib groove portion that can be fitted to the V-rib portion of the V-ribbed belt. A belt transmission device in which a V-rib angle of the V-rib portion is 5 to 9 ° larger than a V-rib groove angle of the pulley.
  9.  前記プーリが、外径65mm以下のプーリを含む請求項8記載のベルト伝動装置。 The belt transmission according to claim 8, wherein the pulley includes a pulley having an outer diameter of 65 mm or less.
  10.  外径65mm以下のプーリを含むプーリに、請求項1~7のいずれか一項に記載のVリブドベルトを掛架してベルト伝動装置のトルクロスを低減する方法。
     
    A method for reducing the torque loss of a belt transmission device by hanging the V-ribbed belt according to any one of claims 1 to 7 on a pulley including a pulley having an outer diameter of 65 mm or less.
PCT/JP2017/030600 2016-08-29 2017-08-25 V-ribbed belt and use thereof WO2018043355A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780052510.5A CN109642640B (en) 2016-08-29 2017-08-25 V-ribbed belt and use thereof
US16/329,289 US11668371B2 (en) 2016-08-29 2017-08-25 V-ribbed belt and use thereof
EP17846360.0A EP3505792B1 (en) 2016-08-29 2017-08-25 V-ribbed belt and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016166923 2016-08-29
JP2016-166923 2016-08-29
JP2017-159935 2017-08-23
JP2017159935A JP6553687B2 (en) 2016-08-29 2017-08-23 V-ribbed belt and its use

Publications (1)

Publication Number Publication Date
WO2018043355A1 true WO2018043355A1 (en) 2018-03-08

Family

ID=61300805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030600 WO2018043355A1 (en) 2016-08-29 2017-08-25 V-ribbed belt and use thereof

Country Status (1)

Country Link
WO (1) WO2018043355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147464A1 (en) * 2022-01-28 2023-08-03 Timken Smo Llc V-ribbed belt

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140238U (en) * 1985-02-20 1986-08-30
JPH0818347A (en) 1994-06-27 1996-01-19 Rohm Co Ltd Power save circuit
JPH08184347A (en) 1994-12-28 1996-07-16 Mitsuboshi Belting Ltd V-ribbed belt and drive device using the belt
JP2000074154A (en) 1998-08-28 2000-03-07 Unitta Co Ltd V-ribbed belt
JP2003172414A (en) * 2001-12-07 2003-06-20 Mitsuboshi Belting Ltd Driving device for transmission belt
JP2004082702A (en) 2002-06-28 2004-03-18 Mitsuboshi Belting Ltd Transmission belt and its manufacturing method
JP2007070592A (en) 2004-11-25 2007-03-22 Mitsuboshi Belting Ltd Rubber composition, method for producing rubber composition, and friction drive belt
JP2007232205A (en) 2005-08-31 2007-09-13 Mitsuboshi Belting Ltd Frictional transmission belt
JP2008185162A (en) 2007-01-31 2008-08-14 Mitsuboshi Belting Ltd Friction transmission belt
JP2009168243A (en) 2007-12-18 2009-07-30 Mitsuboshi Belting Ltd Friction transmission belt
JP2009250293A (en) * 2008-04-03 2009-10-29 Mitsuboshi Belting Ltd V-ribbed belt
JP2010242825A (en) * 2009-04-03 2010-10-28 Bando Chem Ind Ltd V-ribbed belt and manufacturing method of the same
JP2010276127A (en) 2009-05-29 2010-12-09 Mitsuboshi Belting Ltd V-ribbed belt
JP2013177967A (en) 2012-01-31 2013-09-09 Mitsuboshi Belting Ltd V-ribbed belt
JP2015194239A (en) * 2013-06-27 2015-11-05 三ツ星ベルト株式会社 Drive belt, fiber member of the same, and method of fabricating fiber member
JP2016166923A (en) 2015-03-09 2016-09-15 Ntn株式会社 Measurement data recording/managing device
JP2017159935A (en) 2016-03-09 2017-09-14 ライオン株式会社 Flap type carton

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140238U (en) * 1985-02-20 1986-08-30
JPH0818347A (en) 1994-06-27 1996-01-19 Rohm Co Ltd Power save circuit
JPH08184347A (en) 1994-12-28 1996-07-16 Mitsuboshi Belting Ltd V-ribbed belt and drive device using the belt
JP2000074154A (en) 1998-08-28 2000-03-07 Unitta Co Ltd V-ribbed belt
JP2003172414A (en) * 2001-12-07 2003-06-20 Mitsuboshi Belting Ltd Driving device for transmission belt
JP2004082702A (en) 2002-06-28 2004-03-18 Mitsuboshi Belting Ltd Transmission belt and its manufacturing method
JP2007070592A (en) 2004-11-25 2007-03-22 Mitsuboshi Belting Ltd Rubber composition, method for producing rubber composition, and friction drive belt
JP2007232205A (en) 2005-08-31 2007-09-13 Mitsuboshi Belting Ltd Frictional transmission belt
JP2008185162A (en) 2007-01-31 2008-08-14 Mitsuboshi Belting Ltd Friction transmission belt
JP2009168243A (en) 2007-12-18 2009-07-30 Mitsuboshi Belting Ltd Friction transmission belt
JP2009250293A (en) * 2008-04-03 2009-10-29 Mitsuboshi Belting Ltd V-ribbed belt
JP2010242825A (en) * 2009-04-03 2010-10-28 Bando Chem Ind Ltd V-ribbed belt and manufacturing method of the same
JP2010276127A (en) 2009-05-29 2010-12-09 Mitsuboshi Belting Ltd V-ribbed belt
JP2013177967A (en) 2012-01-31 2013-09-09 Mitsuboshi Belting Ltd V-ribbed belt
JP2015194239A (en) * 2013-06-27 2015-11-05 三ツ星ベルト株式会社 Drive belt, fiber member of the same, and method of fabricating fiber member
JP2016166923A (en) 2015-03-09 2016-09-15 Ntn株式会社 Measurement data recording/managing device
JP2017159935A (en) 2016-03-09 2017-09-14 ライオン株式会社 Flap type carton

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147464A1 (en) * 2022-01-28 2023-08-03 Timken Smo Llc V-ribbed belt

Similar Documents

Publication Publication Date Title
JP6553687B2 (en) V-ribbed belt and its use
JP5997712B2 (en) Friction transmission belt
JP6674061B2 (en) V-ribbed belt and its use
EP2824363B1 (en) Friction drive belt and method for producing same
EP3214338B1 (en) Friction transmission belt and manufacturing method thereof
WO2021079809A1 (en) Friction transmission belt and production method therefor
JP2008185162A (en) Friction transmission belt
JP6291470B2 (en) Friction transmission belt and manufacturing method thereof
JP6175113B2 (en) Friction transmission belt
JP6306267B2 (en) Friction transmission belt
WO2018043355A1 (en) V-ribbed belt and use thereof
JP2019143800A (en) V-ribbed belt and use method thereof
WO2016068337A1 (en) Friction transmission belt and manufacturing method thereof
WO2019208740A1 (en) V-ribbed belt and application thereof
JP2020176718A (en) V-ribbed belt, method of manufacturing the same, and rubber composition
JP6849850B1 (en) Rubber composition and friction transmission belt
JP2021008603A (en) Rubber composition and method for producing the same and transmission belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017846360

Country of ref document: EP