WO2016068337A1 - Friction transmission belt and manufacturing method thereof - Google Patents

Friction transmission belt and manufacturing method thereof Download PDF

Info

Publication number
WO2016068337A1
WO2016068337A1 PCT/JP2015/080842 JP2015080842W WO2016068337A1 WO 2016068337 A1 WO2016068337 A1 WO 2016068337A1 JP 2015080842 W JP2015080842 W JP 2015080842W WO 2016068337 A1 WO2016068337 A1 WO 2016068337A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polyvinyl alcohol
friction transmission
transmission belt
belt
Prior art date
Application number
PCT/JP2015/080842
Other languages
French (fr)
Japanese (ja)
Inventor
裕司 勘場
宏貴 今井
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015208209A external-priority patent/JP6175113B2/en
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to CN201580059231.2A priority Critical patent/CN107002818B/en
Priority to US15/523,125 priority patent/US10508712B2/en
Priority to EP15854588.9A priority patent/EP3214338B1/en
Publication of WO2016068337A1 publication Critical patent/WO2016068337A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed

Definitions

  • the present invention relates to a friction transmission belt used for driving an automobile engine auxiliary machine, and more specifically, while maintaining belt performance such as fuel saving and wear resistance, the friction state of the friction transmission surface is stabilized and sound generation resistance is improved.
  • the present invention relates to a friction transmission belt capable of improving the speed and a manufacturing method thereof.
  • a friction transmission belt In the rubber industry field, high functionality and high performance are desired especially for automotive parts.
  • One of the rubber products used for such automobile parts is a friction transmission belt, and this friction transmission belt is widely used for power transmission for driving auxiliary equipment such as an air compressor and an alternator of an automobile.
  • a V-ribbed belt in which ribs are provided along the longitudinal direction of the belt is known, but in addition to belt performance such as fuel saving and wear resistance, the V-ribbed belt has sound generation resistance. Required. In particular, when traveling under water, the generation of stick-slip noise is a problem.
  • the friction coefficient is high in the area where water has not entered (dry state), and the area where water has entered (covered) In the water state), the coefficient of friction is significantly reduced partially, the friction state becomes unstable, and a stick-slip sound is generated.
  • Patent Document 1 discloses a friction transmission belt in which at least a friction transmission surface is composed of a rubber composition in which 1 to 25 parts by mass of a surfactant is blended with 100 parts by mass of an ethylene / ⁇ -olefin elastomer. Yes.
  • This friction transmission belt can increase the affinity between water (ethylene- ⁇ -olefin elastomer) that forms the friction transmission surface and water by adding a surfactant, reducing noise caused by stick-slip. This improves the sound resistance when wet.
  • Patent Document 2 in a transmission belt in which a compression rubber layer is disposed on the belt bottom surface side of a core wire, short fibers made of gelable polyvinyl alcohol fibers subjected to RFL treatment are formed on the compression rubber layer.
  • a transmission belt embedded so as to be exposed is disclosed.
  • the exposed polyvinyl alcohol short fiber absorbs water and gels, so even if a large amount of water enters, the water film breaks through the water layer generated at the interface between the belt and the pulley. It is described that a reduction in transmission capability and abnormal noise due to the slip caused by the slip are prevented. Further, in the examples, as an evaluation of the sound production performance, the sound production limit tension at the time of water injection is measured by rotating the belt with a biaxial testing machine.
  • the gelled short fibers are softened by water absorption, but the abrasion resistance cannot be maintained because the short fibers protruding during belt transmission wear away.
  • short fibers are harder to disperse in the compressed rubber layer than particles and have low processability. Furthermore, the short fibers dispersed in the rubber have a small contact area with the rubber and become a smooth contact surface, so that the adhesion to the rubber is reduced, and the resorcin-formalin-latex (RFL) treatment is performed to improve the adhesion. Surface treatment such as is necessary. Moreover, since the short fiber is mix
  • At least a part of the friction transmission surface is composed of a rubber composition containing 5 to 50 parts by mass of a water-soluble polymer having a melting point or softening point of 80 ° C. or less with respect to 100 parts by mass of rubber.
  • a friction transmission belt is disclosed.
  • polyethylene oxide is described as the water-soluble polymer.
  • Patent Document 4 discloses a surface rubber layer that includes a compressed rubber layer that contacts a pulley and transmits power, and that the compressed rubber layer has a relatively high plasticizer content and includes a granular ultrahigh molecular weight polyethylene resin. And a friction transmission belt having an inner rubber layer with a relatively small plasticizer content.
  • Patent Document 5 discloses a friction transmission belt having a compression rubber layer having a friction transmission surface for engaging or contacting with a pulley, and having a lubricant formed of polyethylene resin attached to the friction transmission surface. Has been.
  • polyethylene resins such as ultra-high molecular weight polyethylene resin can improve the sound resistance and wear resistance by reducing the friction coefficient, but cannot suppress the sound generation under water at a high level.
  • Japanese Unexamined Patent Publication No. 2008-185162 Japanese Unexamined Patent Publication No. 2006-118661 Japanese Unexamined Patent Publication No. 2008-157445 International Publication No. 2011/114727 Japanese Unexamined Patent Publication No. 2013-113343
  • an object of the present invention is to provide a friction transmission belt capable of improving the sound resistance by stabilizing the friction state of the friction transmission surface while maintaining the belt performance such as fuel saving and wear resistance, and a method for manufacturing the same. There is to do.
  • Another object of the present invention is to provide a friction transmission belt capable of suppressing sound generation due to slip between a friction transmission surface and a pulley during flooding while maintaining belt performance such as strength and elongation, and a method for manufacturing the same. .
  • Still another object of the present invention is to provide a friction transmission belt capable of improving sound resistance while maintaining belt performance such as wear resistance and a method for manufacturing the same.
  • the present inventors have found that when the compression layer of the friction transmission belt is formed of a rubber composition containing a polymer component and a polyvinyl alcohol-based resin, fuel economy, wear resistance, etc.
  • the present invention has been completed by finding that the sound transmission can be improved by stabilizing the friction state of the friction transmission surface while maintaining the belt performance.
  • the friction transmission belt of the present invention is a friction transmission belt including a compression layer having a transmission surface at least partially in contact with the pulley, and the compression layer includes a polymer component and a polyvinyl alcohol resin.
  • the compression layer preferably has a surface layer containing a polyvinyl alcohol resin on the surface of the transmission surface. Moreover, it is preferable that the said surface layer is formed with the rubber composition containing a polymer component and polyvinyl alcohol-type resin, or is formed with polyvinyl alcohol-type resin.
  • the compressed layer preferably contains a polyvinyl alcohol-based resin only on the surface layer.
  • the polyvinyl alcohol resin is preferably polyvinyl alcohol resin particles.
  • the average aspect ratio of the polyvinyl alcohol resin particles is preferably 10 or less.
  • the saponification degree of the vinyl alcohol unit of the polyvinyl alcohol resin is preferably about 86 to 97 mol%.
  • the polyvinyl alcohol-based resin preferably has a viscosity average polymerization degree of about 300 to 3,500.
  • the melting point of the polyvinyl alcohol resin is preferably higher than the vulcanization temperature of the belt.
  • the solubility of the polyvinyl alcohol resin in water at 20 ° C. is preferably 60% by mass or more.
  • the polyvinyl alcohol resin is preferably polyvinyl alcohol resin particles modified with a hydrophobic group.
  • the ratio of the polyvinyl alcohol-based resin is preferably about 5 to 30 parts by mass with respect to 100 parts by mass of the polymer component.
  • the polyvinyl alcohol resin is preferably dispersedly exposed on the transmission surface.
  • the compressed layer further includes a reinforcing material.
  • the polymer component is preferably an ethylene- ⁇ -olefin elastomer.
  • the friction transmission belt of the present invention further includes a core and a stretch layer forming a belt back surface, the compression layer is formed on one surface of the stretch layer, and between the stretch layer and the compression layer.
  • the core body is preferably embedded along the belt longitudinal direction.
  • the friction transmission belt of the present invention is preferably a V-ribbed belt.
  • a laminated sheet of an unvulcanized rubber layer for forming a surface layer and an unvulcanized rubber layer for forming a compressed layer is preferably used as the unvulcanized rubber sheet.
  • the unvulcanized rubber sheet a sheet in which polyvinyl alcohol resin particles are applied to the surface of an unvulcanized rubber sheet for forming a compressed layer.
  • the vulcanization molding step it is preferable to use a mold in which polyvinyl alcohol resin particles are applied to the contact surface with the unvulcanized rubber sheet as the mold.
  • the compression layer contains a combination of a polymer component and a polyvinyl alcohol-based resin
  • belt performance such as fuel saving and wear resistance is maintained (performance does not deteriorate due to inhibition of rubber cross-linking).
  • the friction state of the friction transmission surface can be stabilized to improve the sound resistance (especially sound resistance when wet).
  • the polyvinyl alcohol resin particles are appropriately dissolved in water to form a uniform water film on the friction transmission surface, or sound generation due to slip between the friction transmission surface and the pulley during water can be suppressed.
  • the friction state of the friction transmission surface is stabilized and sound resistance (especially sound resistance when wet) Property).
  • the surface layer contains a polyvinyl alcohol-based resin
  • the polyvinyl alcohol-based resin is appropriately dissolved in water to form a uniform water film on the friction transmission surface while maintaining mechanical properties such as strength and elongation.
  • sound generation due to slip between the friction transmission surface and the pulley during flooding can be suppressed.
  • FIG. 1 is a schematic sectional view showing an example of the V-ribbed belt of the present invention.
  • FIG. 2 is a schematic sectional view showing another example of the V-ribbed belt of the present invention.
  • FIG. 3 is a schematic diagram for explaining a method of measuring a contact angle in the embodiment.
  • FIG. 4 is a schematic diagram for explaining a method of measuring torcross in the embodiment.
  • FIG. 5 is a schematic diagram for explaining a misalignment pronunciation test in the embodiment.
  • FIG. 6 is a graph showing the contact angle with water in the vulcanized rubber sheet obtained in the example.
  • FIG. 7 is a graph showing the relationship between the friction coefficient and the sliding speed of the vulcanized rubber sheet obtained in the example.
  • FIG. 8 is a graph showing the sound generation limit angle of the belt obtained in the example.
  • the friction transmission belt of the present invention usually has a stretch layer, a compression layer formed on one surface of the stretch layer, and a core embedded along the longitudinal direction of the belt between the stretch layer and the compression layer. It has a body (heart wire).
  • the friction transmission belt of the present invention includes a stretch layer that forms an outer peripheral surface, a compression layer that is formed on one surface of the stretch layer and forms an inner peripheral surface, and between the stretch layer and the compression layer. And a core body extending in the longitudinal direction.
  • the friction transmission belt of the present invention may further have an adhesive rubber layer (adhesive layer) interposed between the stretch layer and the compression layer, and the core body is embedded in the adhesive rubber layer. May be.
  • the type of the friction transmission belt of the present invention is not particularly limited, and includes a V belt [a low edge belt (a low edge belt having a V-shaped cross section, etc.), a low edge cogged belt (both the inner peripheral side or the inner peripheral side and the outer peripheral side of the low edge belt Low-edge cogged belt having a cog formed on the surface thereof]], V-ribbed belt, flat belt, and the like.
  • a V-ribbed belt having high transmission efficiency is preferable.
  • FIG. 1 is a schematic sectional view showing an example of a friction transmission belt of the present invention.
  • a friction transmission belt 10 shown in FIG. 1 includes a compression layer 2, an adhesive layer 4 in which a core body 1 is embedded in the belt longitudinal direction, a cover canvas (in the belt longitudinal direction) from the belt lower surface (inner circumferential surface) to the belt upper surface (back surface).
  • the stretched layer 5 is made of a woven fabric, a knitted fabric, a non-woven fabric, or the like.
  • a plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compression layer 2, and a plurality of ribs 3 (four in the example shown in FIG. 1) having a V-shaped cross section (reverse trapezoid) are formed between the grooves. ), And the two inclined surfaces (surfaces) of the rib 3 form a friction transmission surface and contact the pulley to transmit power (friction transmission).
  • FIG. 2 is a schematic sectional view showing another example of the friction transmission belt of the present invention.
  • the friction transmission belt 20 shown in FIG. 2 is different from the friction transmission belt 10 shown in FIG. 1 in that it has a surface layer 6 on the surface of the compression layer 2.
  • the friction transmission belt of the present invention is not limited to this configuration, and it is sufficient that at least a part of the friction transmission belt has a compression layer having a transmission surface that can come into contact with the pulley. Typically, the stretch layer and the compression layer are interposed therebetween. What is necessary is just to provide the core body embed
  • the stretch layer 5 may be formed of a rubber composition, or the core body 1 may be embedded between the stretch layer 5 and the compression layer 2 without providing the adhesive layer 4. Good.
  • the adhesive layer 4 is provided on either the compression layer 2 or the stretch layer 5, and the core 1 is disposed between the adhesive layer 4 (compression layer 2 side) and the stretch layer 5, or the adhesive layer 4 (stretch layer 5 side). ) And the compression layer 2 may be embedded. Further, a form in which powdery fibers (for example, cotton, nylon, aramid, etc.) are planted on the surface of the rib 3 (particularly, a friction transmission surface) may be used, or a form in which a lubricant or the like is spray applied may be used.
  • powdery fibers for example, cotton, nylon, aramid, etc.
  • the compression layer only needs to be formed of a rubber composition described in detail below, and the stretch layer and the adhesive layer may not be formed of the same rubber composition as the compression layer.
  • the rubber composition forming the stretch layer and the adhesive layer need not contain polyvinyl alcohol resin particles.
  • the core is not particularly limited, but normally, cores (twisted cords) arranged at a predetermined interval in the belt width direction can be used.
  • core wire high modulus fibers such as polyester fibers (polyalkylene arylate fibers), synthetic fibers such as aramid fibers, and inorganic fibers such as carbon fibers are widely used.
  • Polyester fibers polyethylene terephthalate fibers, polyethylene naphthalates) System fibers
  • aramid fibers are preferred.
  • the fiber may be a multifilament yarn, for example, a multifilament yarn having a fineness of 2000 to 10000 denier (particularly 4000 to 8000 denier).
  • the core wire usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used.
  • the average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm.
  • the core wire may be embedded in the longitudinal direction of the belt, and one or a plurality of core wires may be embedded in parallel at a predetermined pitch parallel to the longitudinal direction of the belt.
  • the core wire may be embedded between the stretched layer and the compressed layer (especially the adhesive layer) after being subjected to various adhesion treatments with an epoxy compound, an isocyanate compound, or the like.
  • the stretch layer may have a reinforcing cloth, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth or a non-woven cloth.
  • a reinforcing cloth for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth or a non-woven cloth.
  • the reinforcing fabric may be laminated on the surface of the stretched rubber layer by performing the above-described adhesion treatment.
  • the friction transmission belt of the present invention includes a compression layer having a transmission surface at least partially in contact with the pulley, and the compression layer includes a polymer component and a polyvinyl alcohol resin.
  • the compression layer may have a surface layer containing a polyvinyl alcohol resin on the surface.
  • the polyvinyl alcohol-based resin may be present in the entire compression layer or only in the surface layer.
  • the surface layer may be a surface layer (single layer) formed of a polyvinyl alcohol resin, or a surface layer (composite layer) formed of a rubber composition containing a polyvinyl alcohol resin and a polymer component. The surface layer will be described later.
  • Polymer component examples include known rubber components and / or elastomers such as diene rubber [natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile. Rubber (including mixed polymers of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), etc.], ethylene- ⁇ -olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber Examples thereof include silicone rubber, urethane rubber, and fluorine rubber.
  • diene rubber natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile. Rubber (including mixed poly
  • polymer components can be used alone or in combination of two or more.
  • ethylene- ⁇ -olefin elastomers ethylene-propylene rubber (EPR), ethylene-propylene rubber (EPR), free from harmful halogens, ozone-resistant, heat-resistant, cold-resistant, and economically superior.
  • Ethylene- ⁇ -olefin rubbers such as ethylene-propylene-diene copolymers (EPDM, etc.) are preferred.
  • Polyvinyl alcohol resin In the present invention, by blending a polyvinyl alcohol-based resin with the polymer component, the particles can be dispersed substantially uniformly on the polished friction transmission surface and exposed without protruding.
  • the polyvinyl alcohol resin may be present in the form of particles.
  • the polyvinyl alcohol resin is water-soluble and can improve the wettability (affinity between rubber and water) of the friction transmission surface of the compression layer with respect to water. For this reason, even if water enters during traveling, the water film spreads uniformly between the belt and the pulley, and the frictional state is stabilized to suppress sound generation due to self-excited vibration.
  • the polyvinyl alcohol resin only needs to contain a vinyl alcohol unit as a main unit, and may further contain other copolymerizable units in addition to the vinyl alcohol unit.
  • Examples of monomers constituting other copolymerizable units include olefins (such as ⁇ -C 2-10 olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene), unsaturated carboxylic acids [ (Meth) acrylic acid, (meth) acrylic acid methyl, (meth) acrylic acid C 1-6 alkyl ester such as ethyl (meth) acrylate, (anhydrous) maleic acid, etc.], vinyl ethers (methyl vinyl ether, ethyl vinyl ether, C 1-6 alkyl vinyl ethers such as propyl vinyl ether, C 2-6 alkanediol-vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, 1,4-butanediol vinyl ether), unsaturated sulfonic acids (ethylene Sulfonic acid, allyl sulphone Etc. phosphate) and the
  • the proportion of other copolymerizable units may be 50 mol% or less with respect to the total units, for example, 0 to 30 mol%, preferably 0.1 to 20 mol%, more preferably 1 to 10 mol. %.
  • the polyvinyl alcohol-based resin may be a homopolymer composed of vinyl alcohol units alone.
  • the vinyl alcohol unit may be modified with a hydrophobic group.
  • the hydrophobic group include a C 1-10 alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a hexyl group, a cycloalkyl group such as a cyclohexyl group, and an aryl group such as a phenyl group.
  • These hydrophobic groups can be used alone or in combination of two or more. Of these hydrophobic groups, C 2-4 alkyl groups such as ethyl group and propyl group are preferred.
  • the solubility of polyvinyl alcohol resin in water can be adjusted, and torcross can be suppressed.
  • the saponification degree of the vinyl alcohol unit of the polyvinyl alcohol resin may be 85 mol% or more, for example, 85 to 99.7 mol%, preferably 86 to 97 mol%, more preferably 86.5 to 93 mol%. (Especially 86.5 to 89.5 mol%).
  • a saponification degree of 97 mol% or less is preferable and a partially saponified product (86.5 to 89.5 mol%) is particularly preferable from the viewpoint that a uniform water film can be easily formed on the friction transmission surface.
  • the saponification degree of the completely saponified product may be 97.5 mol% or more (particularly 98 mol% or more).
  • the viscosity average degree of polymerization of the polyvinyl alcohol resin is, for example, about 300 to 3,500, preferably about 400 to 3,200, and more preferably about 500 to 3,000. If the degree of polymerization is too large, it is difficult to form a uniform water film on the friction transmission surface, and if it is too small, it may be difficult to maintain a uniform dispersion state, layer shape, and particle shape.
  • the viscosity average degree of polymerization can be measured by a method according to JIS K6726 (1994).
  • the melting point of the polyvinyl alcohol resin only needs to be higher than the vulcanization temperature of the belt, and may be, for example, 10 ° C. or higher (particularly 50 ° C. or higher) higher than the vulcanization temperature of the belt.
  • the melting point of the polyvinyl alcohol resin may be, for example, 180 ° C. or higher, for example, 180 to 300 ° C., preferably 200 to 280 ° C., more preferably about 210 to 250 ° C. If the melting point is too low, the resin is melted by vulcanization, and it may be difficult to uniformly disperse in the polymer component, or it may be difficult to maintain the layer shape.
  • the solubility of polyvinyl alcohol resin in water at 20 ° C. may be 5% by mass or more (particularly 10% by mass or more), for example, 30% by mass or more (particularly 50% by mass or more), preferably 60% by mass or more ( For example, it may be about 60 to 99% by mass), more preferably about 80% by mass or more (for example, 80 to 95% by mass). If the belt gets wet, the belt temperature during running will drop, so if the solubility near room temperature is too low, the wettability of the friction transmission surface at lower temperatures (for example, near room temperature) will be reduced, and sound resistance will be increased. May decrease.
  • the number average particle diameter of the particles is, for example, about 10 to 300 ⁇ m, preferably 15 to 200 ⁇ m, and more preferably 20 to 100 ⁇ m (for example, 50 to 100 ⁇ m).
  • the number average particle diameter of the polyvinyl alcohol resin particles can improve sound resistance (especially sound resistance when exposed to water), and drop off of particles during belt running and generation of cracks between particles and rubber.
  • the particle size may be relatively small, for example, about 10 to 100 ⁇ m, preferably about 20 to 80 ⁇ m, more preferably about 30 to 50 ⁇ m (particularly 35 to 45 ⁇ m).
  • the reason why small-diameter particles can improve sound resistance is that the uniform dispersion improves the wettability with water and prevents the particles from falling off and cracking between the particles and the rubber during belt running. Can be estimated. If the particle size is too large, the mechanical properties and durability of the compressed layer may be reduced. On the other hand, if the particle size is too small, it becomes difficult to uniformly fill and disperse in the polymer component, which may reduce the sound resistance.
  • the number average particle diameter is represented by an average value of the major axis and the minor axis when the particles are anisotropic.
  • the maximum particle diameter of the polyvinyl alcohol-based resin particles may be 500 ⁇ m or less, for example, 400 ⁇ m or less, preferably 350 ⁇ m or less (for example, 300 ⁇ m or less), more preferably 200 ⁇ m or less (particularly 180 ⁇ m or less).
  • the minimum particle size of the polyvinyl alcohol resin particles may be 1 ⁇ m or more, for example, 3 ⁇ m or more, preferably 5 ⁇ m or more, and more preferably 8 ⁇ m or more. If the maximum particle size is too large, the sound resistance may decrease.
  • the average aspect ratio (ratio of major axis to minor axis) of the particles may be 10 or less (for example, 1 to 10), for example, 1 to 5, preferably 1 to 3, More preferably, it is about 1 to 2 (for example, 1.2 to 1.9).
  • the aspect ratio of the polyvinyl alcohol-based resin particles is, for example, 1.5 to 5, preferably 1.6 to 3, and more preferably 1.8 to 2.5, from the viewpoint of improving sound resistance when wet. It may be a degree. If the aspect ratio is too large, stress concentration occurs at the interface when the compressed layer is deformed, and the fracture elongation of the compressed layer may be reduced.
  • the number average particle diameter and the average aspect ratio can be measured by a method of measuring dimensions based on a scanning electron micrograph taken at 50 times.
  • polyvinyl alcohol-based resin When the polyvinyl alcohol-based resin has a particle shape, shearing or tensile stress concentration at the interface between the rubber and the polyvinyl alcohol hardly occurs when the compression layer is deformed. Therefore, the particles can be fixed in the polymer component without performing an adhesion treatment with an adhesion component such as resorcin-formalin-latex (RFL) liquid.
  • an adhesion component such as resorcin-formalin-latex (RFL) liquid.
  • polyvinyl alcohol since polyvinyl alcohol has an acetic acid group (hydrophobic group) in addition to a hydroxyl group (hydrophilic group), it has a surface activity and can be easily and uniformly dispersed in a polymer component forming a compression layer (or surface layer).
  • the proportion of the polyvinyl alcohol resin may be about 1 part by mass or more, for example, 1 to 50 parts by mass, preferably 3 to 40 parts by mass with respect to 100 parts by mass of the polymer component. (For example, 5 to 30 parts by mass), more preferably about 5 to 35 parts by mass (particularly 10 to 30 parts by mass).
  • the ratio of the polyvinyl alcohol-based resin particles is preferably large from the viewpoint of improving sound resistance when wet, and is preferably 10 parts by mass or more, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the polymer component. Part, preferably 15 to 40 parts by weight, more preferably about 20 to 30 parts by weight. If the proportion of the polyvinyl alcohol-based resin is too large, the mechanical properties of the compression layer are deteriorated, and if it is too small, the sound resistance may be deteriorated.
  • the compression layer may include a reinforcing material in order to improve the mechanical strength of the compression layer.
  • Reinforcing materials include conventional fillers and reinforcing fibers.
  • the filler examples include carbonaceous materials (carbon black, graphite, etc.), metal compounds or synthetic ceramics (metal oxides such as calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, calcium silicate) Metal silicates such as aluminum silicate, metal carbides such as silicon carbide and tungsten carbide, metal nitrides such as titanium nitride, aluminum nitride and boron nitride, metal carbonates such as magnesium carbonate and calcium carbonate, calcium sulfate and sulfuric acid Metal sulfates such as barium), mineral materials (zeolite, diatomaceous earth, calcined siliceous clay, activated clay, alumina, silica, talc, mica, kaolin, sericite, bentonite, montmorillonite, smectite, clay, etc.) Can be mentioned.
  • metal compounds or synthetic ceramics metal oxides such as calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide
  • fillers can be used alone or in combination of two or more.
  • the shape of the filler is granular, plate-like, or indefinite shape.
  • the number average primary particle size of the filler can be appropriately selected from the range of about 10 nm to 10 ⁇ m depending on the type.
  • carbonaceous materials such as carbon black and mineral materials such as silica are widely used, and carbon black is preferred.
  • Carbon black has a large particle size, particularly a large particle size carbon black having an iodine adsorption of 40 mg / g or less in order to improve fuel economy by reducing internal heat generation of the rubber composition forming the compression layer. It is preferable to include.
  • Examples of the large particle size carbon black include FEF, GPF, APF, SRF-LM, SRF-HM and the like. These carbon blacks can be used alone or in combination of two or more.
  • the number average primary particle size of the large particle size carbon black may be, for example, about 40 to 200 nm, preferably about 45 to 150 nm, and more preferably about 50 to 125 nm.
  • the large particle size carbon black has a small reinforcing effect and poor wear resistance, it is preferable to use a small particle size carbon black (iodine adsorption amount higher than 40 mg / g) having a small particle size and a high reinforcing effect.
  • a small particle size carbon black (iodine adsorption amount higher than 40 mg / g) having a small particle size and a high reinforcing effect.
  • the small particle size carbon black include SAF, ISAF-HM, ISAF-LM, HAF-LS, HAF, and HAF-HS. These carbon blacks can be used alone or in combination of two or more.
  • the number average primary particle size of the small particle size carbon black may be less than 40 nm, for example, about 5 to 38 nm, preferably about 10 to 35 nm, and more preferably about 15 to 30 nm.
  • reinforcing fibers examples include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyester fibers (polyethylene terephthalate (PET) fibers, polyethylene).
  • C 2-4 alkylene C 6-14 arylate fiber such as naphthalate (PEN) fiber]
  • synthetic fiber such as vinylon fiber, polyparaphenylenebenzobisoxazole (PBO) fiber
  • natural fiber such as cotton, hemp, wool
  • An inorganic fiber such as carbon fiber can be exemplified. These fibers can be used alone or in combination of two or more.
  • At least one selected from polyamide fibers such as aramid fibers, polyester fibers, and vinylon fibers is preferable.
  • the reinforcing fiber may be fibrillated.
  • the reinforcing fibers may be usually contained in the compressed layer in the form of short fibers, and the average length of the short fibers is, for example, 0.1 to 20 mm, preferably 0.5 to 15 mm, more preferably 1 to 10 mm. It may be about 1 to 5 mm (for example, 2 to 4 mm).
  • the average fiber diameter of the reinforcing fibers is, for example, about 1 to 100 ⁇ m, preferably 3 to 50 ⁇ m, more preferably 5 to 40 ⁇ m (particularly 10 to 30 ⁇ m).
  • the proportion of the reinforcing material may be 40 parts by mass or more with respect to 100 parts by mass of the polymer component, for example, 45 to 100 parts by mass, preferably 50 to 90 parts by mass, more preferably 55 to 80 parts by mass (especially 60 parts by mass). (About 70 parts by mass). In the present invention, even if the ratio of the reinforcing material is large, the torcross can be reduced.
  • the proportion of the filler may be 10 parts by mass or more with respect to 100 parts by mass of the polymer component, for example, 20 to 100 parts by mass, preferably 30 to 90 parts by mass, more preferably 35 to 80 parts by mass (particularly 40 parts by mass). (About 70 parts by mass).
  • the proportion of the reinforcing fiber may be 80 parts by mass or less (for example, 0 to 80 parts by mass) with respect to 100 parts by mass of the polymer component, for example, 60 parts by mass or less (for example, 1 to 60 parts by mass), preferably 50 parts by mass. Part or less (for example, 5 to 50 parts by mass), more preferably about 40 parts by mass or less (for example, 10 to 40 parts by mass). If the proportion of reinforcing fibers is too large, there is a possibility that the torque cross cannot be reduced.
  • the compression layer may contain a conventional additive or compounding agent as necessary.
  • the compounding agent include a vulcanizing agent or a crosslinking agent [for example, oximes (such as quinonedioxime), guanidines (such as diphenylguanidine), metal oxides (such as magnesium oxide and zinc oxide), and organic peroxides (such as Diacyl peroxide, peroxy ester, dialkyl peroxide, etc.)], vulcanization aid, vulcanization accelerator, vulcanization retarder, plasticizer, softener (oils such as paraffin oil and naphthenic oil), Processing agents or processing aids (stearic acid, stearic acid metal salts, waxes, paraffins, etc.), anti-aging agents (aromatic amines, benzimidazole anti-aging agents, etc.), adhesion improvers (resorcin-formaldehyde cocondensates) , Melamine resins
  • oximes such as quinone
  • the polyvinyl alcohol resin can form a uniform water film on the frictional transmission surface when wet. Therefore, from the viewpoint of the effect of reducing torcross, it is preferable that the compression layer substantially does not contain a surfactant other than the polyvinyl alcohol resin, and the ratio of the surfactant other than the polyvinyl alcohol resin forms the compression layer. It may be 10% by mass or less (especially 1% by mass or less) with respect to the entire rubber composition, and is substantially free of surfactants other than polyvinyl alcohol resin (except for inevitable impurities). preferable.
  • the compression layer of the present invention preferably has a low internal loss tangent or dielectric loss tangent (tan ⁇ ).
  • the loss tangent (tan ⁇ ) is obtained by dividing the loss elastic modulus (E ′′) by the storage elastic modulus (E ′), and the maximum energy stored as energy dissipated (lost) as heat during one vibration cycle. Expressed as a ratio to energy, it is a measure of energy loss, that is, tan ⁇ can be expressed numerically as an index by which vibration energy applied to the compressed layer is dissipated as heat.
  • tan ⁇ at a temperature at which the belt normally travels for example, a temperature range of 40 to 120 ° C.
  • tan ⁇ of the compression layer at 40 ° C. and a frequency of 10 Hz is 0.0% in order to improve fuel efficiency.
  • the range can be selected from about 8 to 0.17, for example, 0.09 to 0.165, preferably 0.095 to 0.16, more preferably 0.1 to 0.15 (particularly 0.1 to 0.13).
  • the compression layer may have a surface layer containing a polyvinyl alcohol-based resin on the surface of the transmission surface.
  • the polyvinyl alcohol-based resin is water-soluble, and can exist on the surface of the compression layer as a surface layer to improve wettability (affinity between rubber and water) of the friction transmission surface of the compression layer with respect to water.
  • the surface layer may be laminated on the transmission surface that can come into contact with the pulley, but may be laminated on the entire surface of the compressed rubber layer (entire exposed surface) from the viewpoint of productivity.
  • the surface layer should just contain the above-mentioned polyvinyl alcohol-type resin, but the surface layer (single layer) formed with the polyvinyl alcohol-type resin and the surface layer (with the rubber composition containing a polyvinyl alcohol-type resin and a polymer component ( It can be roughly divided into a composite layer.
  • the polyvinyl alcohol resin may be present in the form of particles.
  • the particles can be substantially uniformly dispersed on the transmission surface and exposed without protruding.
  • the dispersion form of the polyvinyl alcohol-based resin particles is not particularly limited, and the particles partially exposed on the surface of the composite layer and the particles completely embedded in the composite layer are mixed and substantially uniform. It may be in a dispersed form, or may be in a form in which only particles partially exposed on the surface of the composite layer are dispersed substantially uniformly.
  • the former dispersion form can be easily prepared by forming a rubber composition in which particles are dispersed in advance, and the latter dispersion form can be easily prepared by partially attaching the particles to the surface of the compression layer. .
  • the inner layer of the compression layer does not need to include a polyvinyl alcohol-based resin. That is, the compressed layer of the present invention may contain a polyvinyl alcohol resin only in the surface layer.
  • the inner layer of the compression layer includes a polyvinyl alcohol resin, it is preferable that the polyvinyl alcohol resin is included at a lower concentration than the surface layer from the viewpoint that the mechanical properties of the compression layer can be maintained.
  • the surface layer may appropriately contain the above-described reinforcing material, other additives, and compounding agents.
  • the thickness (average thickness) of the surface layer can be selected from about 1 to 1500 ⁇ m. In the case of a single layer, for example, it is about 1 to 500 ⁇ m, preferably about 5 to 300 ⁇ m, more preferably about 10 to 150 ⁇ m.
  • the thickness is 1500 ⁇ m, preferably 150 to 800 ⁇ m, more preferably about 200 to 600 ⁇ m. If the thickness of the surface layer is too thin, the effect of improving sound resistance may be reduced, and the durability of sound resistance may also be reduced. On the other hand, if the surface layer is too thick, the mechanical properties of the compression layer may be reduced.
  • the average thickness of the surface layer is measured by observing the cross section of the compression layer portion of the friction transmission belt using a scanning electron microscope, and the average value of 10 positions is calculated for the surface layer containing the polyvinyl alcohol-based resin.
  • the production method of the friction transmission belt of the present invention is not particularly limited, and a known or conventional method can be adopted.
  • a compression layer, an adhesive layer in which a core body is embedded, and an extension layer are formed and laminated with an unvulcanized rubber composition, and the laminate is molded into a cylindrical shape with a molding die and vulcanized.
  • the sleeve can be formed and formed by cutting the vulcanized sleeve to a predetermined width.
  • the V-ribbed belt can be manufactured by the following method.
  • a stretch layer sheet is wound around a cylindrical mold having a smooth surface, and a core wire (twisted cord, etc.) that forms a core is spirally spun onto the sheet, and further, an adhesive layer sheet, compressed A layered sheet is sequentially wound to produce a molded body. Thereafter, a jacket for vulcanization is placed on the molded body, the mold (molding die) is accommodated in a vulcanizing can, vulcanized under predetermined vulcanization conditions, and then removed from the molding mold to form a cylindrical shape. A vulcanized rubber sleeve is obtained.
  • the outer surface (compression layer) of the vulcanized rubber sleeve is polished by a grinding wheel to form a plurality of ribs, and then the vulcanized rubber sleeve is cut to a predetermined width in the belt longitudinal direction using a cutter. Finish in a V-ribbed belt. By reversing the cut belt, a V-ribbed belt provided with a compression layer having a rib portion on the inner peripheral surface can be obtained.
  • a cylindrical inner mold with a flexible jacket attached to the outer peripheral surface is used as the inner mold, and an unvulcanized stretch layer sheet is wound around the outer peripheral flexible jacket, and a core is formed on the sheet.
  • a core is spun into a spiral shape, and an unvulcanized compressed layer sheet is wound around to produce a laminate.
  • an outer mold that can be attached to the inner mold a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface is used, and an inner mold in which the laminate is wound is provided in the outer mold. Install concentrically.
  • the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed layer) is pressed into the rib mold and vulcanized. Then, after extracting the inner mold from the outer mold and removing the vulcanized rubber sleeve having a plurality of ribs from the outer mold, the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter. Finish the ribbed belt.
  • a laminated body including a stretch layer, a core body, and a compression layer can be expanded at a time to be finished into a sleeve (or a V-ribbed belt) having a plurality of ribs.
  • the first production method is preferable, in which the compressed layer can be polished to sufficiently protrude the short fibers on the friction transmission surface.
  • the compression layer is press-fitted into the rib mold to form the rib, so that the exposure amount of the polyvinyl alcohol resin is reduced.
  • the surface may be polished or ground to expose the polyvinyl alcohol-based resin.
  • the friction transmission belt manufacturing method includes a compression layer winding step of winding an unvulcanized rubber sheet around a cylindrical drum, and the unvulcanized rubber sheet as a mold.
  • a method including a vulcanization molding step of pressing and vulcanizing can be employed, and a surface layer can be formed in any one of the compression layer winding step and the vulcanization molding step.
  • any conventional method can be used without particular limitation as long as it is a method of forming with a mold.
  • Conventional methods include, for example, a core spinning process for winding a core wire around a cylindrical drum, a compression layer winding step for winding an unvulcanized rubber sheet on the wound core wire, the core wire and the unvulcanized
  • a method including a vulcanization molding process in which a rubber sheet is pressed against a mold (pressed with a mold) and vulcanized can be used.
  • the core wire may be further spirally spun on the wound member.
  • the method for forming the surface layer can be incorporated into any one of the compression layer winding step and the vulcanization molding step in such a conventional method.
  • a method using a laminated sheet of an unvulcanized rubber layer (rubber composition) for forming a surface layer and an unvulcanized rubber layer for forming a compression layer as a vulcanized rubber sheet (2) a compression layer winding step In the method of using a sheet in which polyvinyl alcohol resin particles are applied to the surface of an unvulcanized rubber sheet for forming a compression layer as an unvulcanized rubber sheet, (3)
  • the vulcanization molding step as a mold, Examples thereof include a method using a mold in which a polyvinyl alcohol resin is applied to the contact surface with the unvulcanized rubber sheet.
  • the production method of the laminated sheet is not particularly limited, and a conventional method can be used.
  • each unvulcanized sheet produced separately by rolling or the like may be laminated, It may be a molded laminated sheet.
  • the surface layer can be usually produced with a rubber composition containing a polyvinyl alcohol-based resin, particles partially exposed on the surface and particles completely buried in the layer are mixed and dispersed almost uniformly. A composite layer having the above shape can be easily formed.
  • the polyvinyl alcohol-based resin may be applied or adhered to the resin (resin particles) itself, or a liquid composition in which the resin (resin particles) is dispersed in a solvent. Also good.
  • Application methods include conventional methods such as coater method, casting method, dipping method, spray method, spinner method and the like. Of these methods, the coater method and the spray method are widely used. If necessary, the coating solution may be applied a plurality of times.
  • the solvent constituting the liquid composition examples include water, alcohols (for example, alkanols such as ethanol and isopropanol), hydrocarbons (for example, aromatic hydrocarbons such as toluene and xylene), ethers (for example, chain ethers such as diethyl ether; cyclic ethers such as dioxane and tetrahydrofuran), ketones (for example, chain ketones such as acetone and methyl ethyl ketone; cyclic ketones such as cyclohexanone), esters (for example, acetic acid such as ethyl acetate) Ester), cellosolves (methyl cellosolve, ethyl cellosolve, butyl cellosolve, etc.), and general-purpose solvents such as carbitols.
  • alcohols for example, alkanols such as ethanol and isopropanol
  • hydrocarbons for example, aromatic hydrocarbons such as toluen
  • solvents may be used alone or as a mixed solvent. These solvents can be selected depending on the application. For example, water and / or alcohols may be used to form a uniform single layer, or other solvents may be used to form a composite layer that maintains the particle shape. May be.
  • EPDM “EPT2060M” manufactured by Mitsui Chemicals, Inc.
  • PVA-A Completely saponified product of polyvinyl alcohol, saponification degree 98.7 to 99.7 mol%, viscosity average polymerization degree 1700, Denkapoval K-17C manufactured by Denki Kagaku Kogyo Co., Ltd.
  • PVA-B partially saponified polyvinyl alcohol, degree of saponification of 86.5 to 89.5 mol%, viscosity average polymerization degree of 600, “Denkapoval B-05S” manufactured by Denki Kagaku Kogyo Co., Ltd.
  • PVA-C polyvinyl alcohol hydrophobic group-modified product, saponification degree 93.0 to 97.0 mol%, viscosity average polymerization degree 1700, type of hydrophobic group: alkyl group, Denkapoval F- manufactured by Denki Kagaku Kogyo Co., Ltd. 300S " PVA-D: Completely saponified product of polyvinyl alcohol, saponification degree 99 mol% or more, viscosity average polymerization degree 1700, Denkapoval K-177 manufactured by Denki Kagaku Kogyo Co., Ltd. Ultra high molecular weight polyethylene (PE): “GUR4150” manufactured by Hexa Industry, average particle size of 80 ⁇ m, melting point of 135 ° C.
  • Stearic acid Tsubaki stearic acid manufactured by NOF Corporation
  • Zinc oxide “Zinc oxide 3 types” manufactured by Shodo Chemical Industry Co., Ltd.
  • Surfactant Polyoxyalkylene alkyl ether, “New Coal 2308-LY” manufactured by Nippon Emulsifier Co., Ltd.
  • Carbon black HAF “Seast 3” manufactured by Tokai Carbon Co., Ltd., average particle size 28 nm Carbon Black GPF: “Seast V” manufactured by Tokai Carbon Co., Ltd., average particle size 62 nm Talc: “RL217” manufactured by Fuji Talc Kogyo Co., Ltd., median diameter 20 ⁇ m Nylon short fiber: 66 nylon, average fiber diameter 27 ⁇ m, average fiber length 3 mm Cotton short fiber: Denim, average fiber diameter 13 ⁇ m, average fiber length 6mm Vinylon short fibers: average fiber diameter 26 ⁇ m, average fiber length 6 mm Organic peroxide: Dicumyl peroxide Co-crosslinking agent: Dibenzoyl quinone dioxime, “Barunok DMG” manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • Anti-aging agent A Diphenylamine-based anti-aging agent (“NOCRACK CD” manufactured by Ouchi Shinsei Chemical Co., Ltd.)
  • Anti-aging agent B Mercaptobenzimidazole type anti-aging agent (“NOCRACK MB” manufactured by Ouchi Shinsei Chemical Co., Ltd.).
  • Softener (paraffin oil) “Diana Process Oil” manufactured by Idemitsu Kosan Co., Ltd.
  • Organic peroxide Dicumyl peroxide.
  • Viscoelasticity (tan ⁇ ) A test piece was collected from the vulcanized rubber sheet and used as a test piece. The test piece has a thickness of 2.0 mm, a width of 4.0 mm, and a length of 40 mm. Then, the test piece was chucked and fixed to the chuck of the viscoelasticity measuring apparatus (“VR-7121” manufactured by Ueshima Seisakusho Co., Ltd.) with a distance between chucks of 15 mm, giving an initial strain (static strain) of 2.0%, and a frequency of 10 Hz.
  • VR-7121 manufactured by Ueshima Seisakusho Co., Ltd.
  • Dynamic strain of 1.0% that is, while applying a strain of ⁇ 1.0% in the longitudinal direction with the initial strain of 2.0% as a central position or a reference position, 25 at a heating rate of 1 ° C./min
  • the tan ⁇ (loss tangent) at 40 ° C., 100 ° C. was determined.
  • the contact angle ⁇ between the surface of the vulcanized rubber sheet and water is calculated using the ⁇ / 2 method from a projection photograph of water droplets dropped on the surface. And can be obtained from the following equation.
  • 2 tan ⁇ 1 (h / r) (3)
  • the contact angle is measured by measuring r and h from the projected photograph of the dropped water using a fully automatic contact angle meter (“CA-W type” manufactured by Kyowa Interface Science Co., Ltd.), and using equation (3). Calculated. The measurement calculated the contact angle immediately after dropping (after 1 second) and after 60 seconds. The smaller the contact angle ⁇ , the better the surface has affinity with water.
  • a disk-shaped test piece having a diameter of 8 mm and a thickness of 2 mm was collected from the vulcanized rubber sheet, and the frictional force was measured using a pin-on-disk friction coefficient measuring device to calculate the friction coefficient. Specifically, the test piece is pressed with a load of 2.192 kgf / cm 2 with a counterpart material (SUS304) having a surface roughness Ra of 0.8 ⁇ m, and water is applied to the test piece only when measuring at a water volume of 30 ml / min.
  • SUS304 counterpart material having a surface roughness Ra of 0.8 ⁇ m
  • Friction force was measured at a friction speed of 0 to 2.0 m / sec while pouring water, and the slope of the coefficient of friction curve ( ⁇ -V characteristic) with respect to the friction speed (sliding speed with respect to the counterpart material) was calculated by the method of least squares. In addition, this inclination represents the change of the friction coefficient with respect to the sliding speed.
  • a V-ribbed belt is hung on each pulley of a testing machine in which a driving pulley (diameter 80 mm), a driven pulley (diameter 80 mm), and a tension pulley (diameter 120 mm) are arranged in order, and the winding angle of the belt around the tension pulley is 90 °.
  • the belt was run for 24 hours while automatically adjusting the belt tension so that the rotational speed of the driving pulley was 3000 rpm, the torque of the driven pulley was 9.8 N ⁇ m, and the belt slip ratio was 6%.
  • the belt weight before and after the running test was measured, and the belt weight loss (belt weight before running ⁇ belt weight after running) divided by the belt weight before running was calculated as the wear rate.
  • a V-ribbed belt is hung on a two-axis running tester composed of a 55 mm diameter drive (Dr) pulley and a 55 mm diameter driven (Dn) pulley, and a tension of 500 N / belt. Then, a predetermined initial tension was applied to the V-ribbed belt, and the difference between the driving torque and the driven torque when the driving pulley was rotated at 2000 rpm with no driven pulley loaded was calculated as the torque cross.
  • the torque cross obtained by this measurement includes the torque cross resulting from the bearing of the testing machine in addition to the torque cross resulting from the V-ribbed belt.
  • a metal belt material: maraging steel
  • the torque cross (bearing loss) caused by the bearing.
  • a value obtained by subtracting the torque cross (bearing loss) caused by the bearing from the torque cross (torque resulting from the two of the belt and the bearing) calculated by running the V-ribbed belt was obtained as the torque cross resulting from the belt alone.
  • the torcross (bearing loss) is the torcross when the metal belt is run at a predetermined initial tension (for example, when a V-ribbed belt is run at an initial tension of 500 N / one belt, the metal belt is run at this initial tension. The torcross when it is made a bearing loss). The smaller the torque cross of this V-ribbed belt, the better the fuel economy.
  • the misalignment sound generation evaluation test includes a 101 mm diameter drive pulley (Dr.), a 70 mm diameter idler pulley (IDL1), a 120 mm diameter misalignment pulley (W / P), and a 70 mm diameter idler pulley (IDL2). ), A tension pulley (Ten) having a diameter of 61 mm, and an idler pulley (IDL3) having a diameter of 70 mm were arranged in this order, and the test was performed using a testing machine whose layout is shown in FIG.
  • the axis separation (span length) of the idler pulley (IDL1) and the misalignment pulley was set to 135 mm, and all the pulleys were adjusted to be located on the same plane (misalignment angle 0 °).
  • a V-ribbed belt is suspended on each pulley of the test machine, and tension is applied so that the rotational speed of the drive pulley is 1000 rpm and the belt tension is 6 kgf / Rib (rib) under room temperature conditions.
  • 5 cc of water is periodically poured into the friction transmission surface of the V-ribbed belt (approximately every 30 seconds) and the belt is driven by misalignment (the misalignment pulley is shifted toward the front).
  • the angle (pronunciation limit angle) at the time of occurrence (near the misalignment pulley entrance) was determined. The greater the pronunciation limit angle, the better the silence.
  • the belt is detached from the pulley (that is, the rib is displaced), and the power is not normally transmitted.
  • Table 2 shows the results of measuring the amount of William wear and viscoelasticity (tan ⁇ ) of the obtained vulcanized rubber sheet. Moreover, the result of having measured the contact angle with water is shown in Table 2 and FIG. Furthermore, the result of having measured the friction coefficient is shown in Table 2 and FIG.
  • Example 1 tan ⁇ was smaller than that of Comparative Example 1 (containing a surfactant). In Example 4, tan ⁇ was slightly larger than the other examples.
  • Example 1 the storage elastic modulus increased as compared with Comparative Example 1 in which a surfactant was blended. This indicates that the strength does not decrease even when polyvinyl alcohol (PVA) is blended, and this also correlates with the results of the abrasion test.
  • PVA polyvinyl alcohol
  • Example 4 the contact angle with water was the smallest in Example 4 and the wettability was good.
  • Example 4 showed the smallest friction coefficient change (inclination of ⁇ -V curve) when wet (WET). That is, the sheet of Example 4 had the most stable friction state when wet.
  • Example 6 in the case of a completely saponified polyvinyl alcohol product, the change in the friction coefficient at the time of being wet (WET) (inclination of the ⁇ -V curve) uses particles having a small particle size. Example 6 was smaller.
  • a belt was produced by the first manufacturing method described above. That is, first, a stretch layer sheet is wound around a cylindrical molding mold having a smooth surface, a processing rope is spun spirally on the stretch layer sheet, and an adhesive layer sheet and a compression layer sheet are sequentially wound. A molded body was formed. After that, a vulcanization jacket is placed on the molded body, the mold is placed on a vulcanizing can, vulcanized under predetermined vulcanization conditions, and then removed from the molding mold to form a cylindrical vulcanized rubber sleeve. Obtained.
  • the outer surface (compression layer) of the vulcanized rubber sleeve is polished with a grinding wheel at predetermined intervals to form a plurality of ribs, and then the vulcanized rubber sleeve is formed with a predetermined width in the belt longitudinal direction using a cutter. It was cut into a V-ribbed belt having 6 ribs in the width direction and a circumference of 1100 mm.
  • a vulcanized rubber sheet and a test piece were prepared from the rubber composition collected from the compression layer sheet, and the results of measuring 6% slip wear, belt torque and viscoelasticity (tan ⁇ ) are shown in Table 3.
  • Table 3 and FIG. 8 show the results of measuring the belt sounding limit angle.
  • Example had a transmission loss (torcross) smaller than that of Comparative Example 3 in which a surfactant was added, and was equivalent to Comparative Example 4 that did not contain PVA or a surfactant.
  • the belts of Examples 7 to 8 and 11 have a high sounding limit angle in both the dry state (DRY) and the wet state (WET), and the sound resistance is high. It was good. It is considered that the hydrophilicity was improved by the blending of PVA and the friction state was stabilized.
  • Table 4 shows the results of measuring the contact angle with water, the friction coefficient, the ⁇ -V characteristic (change of the friction coefficient with respect to the sliding speed), and the amount of William wear of the obtained vulcanized rubber sheet.
  • the rubber composition H is excellent in wear resistance and has a ⁇ -V characteristic smaller than that of other blends, but the friction coefficient itself is very small. Conceivable. Furthermore, since the rubber composition G has a large contact angle (poor wettability with water), it is considered that the sound resistance when wet is lowered.
  • belts were produced by the above-described manufacturing method. That is, the stretch rubber layer sheet and the adhesive rubber layer sheet are sequentially wound around the outer periphery of the mold bladder having the air supply port and the top plate, and the core wire is spirally wound around the outer peripheral surface of the adhesive rubber layer sheet. After that, a sheet for a compressed rubber layer was wound around the core wire, and a belt sleeve was attached to the mold.
  • the mold around which the belt sleeve is wound is set in the vulcanization mold, and the bladder is expanded while being heated by the heating / cooling jacket having the heating / cooling medium introduction port, so that the belt sleeve is placed in the vulcanization mold.
  • Vulcanization was performed by pressing against the peripheral surface and applying pressure.
  • the vulcanization conditions were set at 165 ° C., 1.0 MPa, and 30 minutes. At this time, a groove was formed on the outer periphery of the belt sleeve as the concavo-convex portion for molding of the vulcanization bite into the belt sleeve from the outer periphery.
  • the mold was extracted from the vulcanization mold, the vulcanization belt sleeve remaining in the vulcanization mold was cooled with a heating / cooling jacket, and then the vulcanization belt sleeve was removed from the vulcanization mold. Then, this vulcanized belt sleeve was cut so as to be cut in a circle by a cutter, thereby obtaining a V-ribbed belt having 6 ribs in the width direction and a circumferential length of 1100 mm.
  • V-ribbed belt was obtained in the same manner as in Comparative Example 6 except that a fluororesin was used instead of talc. On the surface of the compression rubber layer of the obtained V-ribbed belt, a surface layer (single layer) formed of a fluororesin was laminated.
  • Example 16 A V-ribbed belt was obtained in the same manner as in Comparative Example 8 except that the rubber composition E was used instead of the rubber composition H.
  • Example 17 A V-ribbed belt was obtained in the same manner as in Comparative Example 8 except that the rubber composition F was used instead of the rubber composition H.
  • Example 18 A V-ribbed belt was obtained in the same manner as in Comparative Example 8 except that the rubber composition D was used instead of the rubber composition H.
  • Example 19 A V-ribbed belt was obtained in the same manner as in Comparative Example 8 except that the rubber composition G was used instead of the rubber composition H.
  • Example 20 A V-ribbed belt was obtained in the same manner as in Comparative Example 6 except that PVA-B was used instead of talc. A surface layer (single layer) formed of polyvinyl alcohol was laminated on the surface of the compression rubber layer of the obtained V-ribbed belt.
  • Table 5 shows the measurement results of the sounding limit angles of the belts obtained in Comparative Examples 5 to 8 and Examples 16 to 20.
  • Comparative Examples 6 to 8 including particles other than polyvinyl alcohol on the surface layer and Comparative Example 5 not including particles have a smaller sounding limit angle when exposed to water than Examples 16 to 20, and sound resistance. Was low.
  • the friction transmission belt of the present invention can be used as a friction transmission belt such as various belts that require sound resistance, such as a V belt and a V-ribbed belt. Moreover, since the friction transmission belt of the present invention can improve the quietness at the time of flooding, it can be suitably used for a transmission device used outdoors such as an automobile, a motorcycle, an agricultural machine, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a friction transmission belt used for driving accessories of an automobile engine, etc., and specifically relates to a friction transmission belt which stabilizes the friction condition of a friction transmission surface while maintaining performance of the belt, such as fuel consumption reduction performance and wear-resistance performance, to improve sound-generation-resistance performance, and the manufacturing method thereof. The technical problem to be addressed is to provide a friction transmission belt which stabilizes the friction condition of a friction transmission surface while maintaining performance of the belt, such as the fuel consumption reduction performance and the wear-resistance performance, to improve the sound-generation-resistance performance, and the manufacturing method thereof. In order to solve the technical problem, a compressed layer (2) of the friction transmission belt (10) contains a rubber composition that contains a polymer component and a polyvinyl-alcohol-based resin.

Description

摩擦伝動ベルト及びその製造方法Friction transmission belt and manufacturing method thereof
 本発明は、自動車エンジン補機駆動などに用いられる摩擦伝動ベルトに関し、詳しくは、省燃費性や耐摩耗性などのベルト性能を維持しつつ、摩擦伝動面の摩擦状態を安定化して耐発音性を向上できる摩擦伝動ベルト、及びその製造方法に関する。 The present invention relates to a friction transmission belt used for driving an automobile engine auxiliary machine, and more specifically, while maintaining belt performance such as fuel saving and wear resistance, the friction state of the friction transmission surface is stabilized and sound generation resistance is improved. The present invention relates to a friction transmission belt capable of improving the speed and a manufacturing method thereof.
 ゴム工業分野のなかでも、特に自動車用部品においては高機能、高性能化が望まれている。このような自動車用部品に用いられるゴム製品の一つとして摩擦伝動ベルトがあり、この摩擦伝動ベルトは、例えば、自動車のエアーコンプレッサーやオルタネータなどの補機駆動の動力伝動に広く用いられている。この種のベルトとしては、リブをベルト長手方向に沿って設けたVリブドベルトが知られているが、Vリブドベルトには、省燃費性や耐摩耗性などのベルト性能に加えて、耐発音性が要求される。特に、被水時での走行では、スティック-スリップ音の発生が問題となっている。詳しくは、摩擦伝動面の濡れ性が低く、ベルトとプーリ間の水の進入状態が均一でないと、水が進入していない箇所(乾燥状態)では摩擦係数が高く、水が浸入した箇所(被水状態)では、部分的に摩擦係数が著しく低下して、摩擦状態が不安定になり、スティック-スリップ音が発生する。 In the rubber industry field, high functionality and high performance are desired especially for automotive parts. One of the rubber products used for such automobile parts is a friction transmission belt, and this friction transmission belt is widely used for power transmission for driving auxiliary equipment such as an air compressor and an alternator of an automobile. As this type of belt, a V-ribbed belt in which ribs are provided along the longitudinal direction of the belt is known, but in addition to belt performance such as fuel saving and wear resistance, the V-ribbed belt has sound generation resistance. Required. In particular, when traveling under water, the generation of stick-slip noise is a problem. Specifically, if the wettability of the friction transmission surface is low and the water ingress between the belt and the pulley is not uniform, the friction coefficient is high in the area where water has not entered (dry state), and the area where water has entered (covered) In the water state), the coefficient of friction is significantly reduced partially, the friction state becomes unstable, and a stick-slip sound is generated.
 特許文献1には、少なくとも摩擦伝動面が、エチレン・α-オレフィンエラストマー100質量部に対して界面活性剤を1~25質量部配合したゴム組成物で構成された、摩擦伝動ベルトが開示されている。この摩擦伝動ベルトは、界面活性剤を配合することで摩擦伝動面を形成するゴム(エチレン-α-オレフィンエラストマー)と水との親和性を高めることができ、スティック-スリップによる異音を低減して被水時の耐発音性を向上できる。 Patent Document 1 discloses a friction transmission belt in which at least a friction transmission surface is composed of a rubber composition in which 1 to 25 parts by mass of a surfactant is blended with 100 parts by mass of an ethylene / α-olefin elastomer. Yes. This friction transmission belt can increase the affinity between water (ethylene-α-olefin elastomer) that forms the friction transmission surface and water by adding a surfactant, reducing noise caused by stick-slip. This improves the sound resistance when wet.
 しかし、このベルトでは、摩擦伝動面に滲出した界面活性剤がベルト-プーリ間の摩擦状態を安定化するものの、ゴム中の界面活性剤の挙動が不安定であるためか、内部損失(tanδ)が増加し、トルクロスが大きくなる上に、ゴム強度が低下し、耐磨耗性を維持できない虞がある。さらに、圧縮ゴム層全体に界面活性剤が配合されている場合、圧縮ゴム層の力学特性(強度や伸びなど)が低下する虞もある。 However, in this belt, although the surfactant exuded on the friction transmission surface stabilizes the friction state between the belt and the pulley, the behavior of the surfactant in the rubber is unstable, and the internal loss (tan δ) Increases, the torcross becomes larger, the rubber strength decreases, and the wear resistance may not be maintained. Furthermore, when a surfactant is blended in the entire compressed rubber layer, the mechanical properties (such as strength and elongation) of the compressed rubber layer may be reduced.
 特許文献2には、心線のベルト底面側に圧縮ゴム層が配設された伝動ベルトにおいて、前記圧縮ゴム層に、RFL処理したゲル化可能なポリビニルアルコール繊維からなる短繊維が圧縮ゴム層表面に露出するように埋設された伝動ベルトが開示されている。この文献には、露出させたポリビニルアルコール短繊維が吸水してゲル化することにより、多量の水が入っても、水の膜が突き破られ、ベルトとプーリとの界面に発生した水層に起因するスリップによる伝動能力の低下と異音の発生を防止することが記載されている。さらに、実施例では、発音性能の評価として、2軸試験機でベルトを回転させて注水時の発音限界張力を測定している。 In Patent Document 2, in a transmission belt in which a compression rubber layer is disposed on the belt bottom surface side of a core wire, short fibers made of gelable polyvinyl alcohol fibers subjected to RFL treatment are formed on the compression rubber layer. A transmission belt embedded so as to be exposed is disclosed. In this document, the exposed polyvinyl alcohol short fiber absorbs water and gels, so even if a large amount of water enters, the water film breaks through the water layer generated at the interface between the belt and the pulley. It is described that a reduction in transmission capability and abnormal noise due to the slip caused by the slip are prevented. Further, in the examples, as an evaluation of the sound production performance, the sound production limit tension at the time of water injection is measured by rotating the belt with a biaxial testing machine.
 しかし、この伝動ベルトに含まれる短繊維は、ゲル化可能なポリビニルアルコール繊維であるため、耐発音性を向上できない。すなわち、特許文献2の実施例では、注水時の2%スリップ時の負荷を測定しているが、比較例(ナイロン短繊維配合)に比べ、負荷が大きくなり、注水時の摩擦係数は大きくなっている。しかし、実車エンジンでは、回転変動があるため、注水時の摩擦係数が高いと、スティックスリップによる発音が生じ易くなる。そのため、摩擦伝動面を形成するゴムと水との親和性を高めて、均一な水膜を形成して、注水時の摩擦係数を下げ、かつ滑り速度に対する摩擦係数の変化を小さくする必要がある。しかし、特許文献2の短繊維では、吸水してゲル化した短繊維が摩擦伝動面で突出して水膜を突き破って除去するため、均一な水膜自体を形成できず、摩擦状態を安定化することができない。そのため、回転変動がある実車エンジンでは、耐発音性が十分ではない。 However, since the short fibers contained in this transmission belt are gelable polyvinyl alcohol fibers, the sound resistance cannot be improved. That is, in the example of Patent Document 2, the load at the time of 2% slip at the time of water injection is measured, but the load becomes larger and the friction coefficient at the time of water injection becomes larger than that of the comparative example (blended nylon fiber). ing. However, in an actual vehicle engine, since there is a rotational fluctuation, if the friction coefficient at the time of water injection is high, sound generation due to stick-slip is likely to occur. For this reason, it is necessary to increase the affinity between water and the rubber that forms the friction transmission surface, to form a uniform water film, to reduce the friction coefficient during water injection, and to reduce the change in the friction coefficient with respect to the sliding speed. . However, in the short fiber of Patent Document 2, since the short fiber that has absorbed water and gelled protrudes on the friction transmission surface and breaks through the water film, the uniform water film itself cannot be formed and the friction state is stabilized. I can't. Therefore, sound resistance is not sufficient in an actual vehicle engine with rotational fluctuation.
 また、ゲル化短繊維は吸水により軟化していると推定できるが、ベルト伝動時に突出した短繊維が摩滅するため、耐摩耗性も維持できない。 Also, it can be estimated that the gelled short fibers are softened by water absorption, but the abrasion resistance cannot be maintained because the short fibers protruding during belt transmission wear away.
 さらに、短繊維は粒子に比べ圧縮ゴム層中へ分散し難く、加工性が低い。さらに、ゴム中に分散した短繊維は、ゴムとの接触面積が小さく、平滑な接触面となるため、ゴムとの接着性が低くなり、接着力向上のためレゾルシン-ホルマリン-ラテックス(RFL)処理などの表面処理が必要となる。また、短繊維が圧縮ゴム層全体に配合されているため、力学特性が低下する虞がある。 Furthermore, short fibers are harder to disperse in the compressed rubber layer than particles and have low processability. Furthermore, the short fibers dispersed in the rubber have a small contact area with the rubber and become a smooth contact surface, so that the adhesion to the rubber is reduced, and the resorcin-formalin-latex (RFL) treatment is performed to improve the adhesion. Surface treatment such as is necessary. Moreover, since the short fiber is mix | blended with the whole compression rubber layer, there exists a possibility that a mechanical characteristic may fall.
 特許文献3には、少なくとも摩擦伝動面の一部が、ゴム100質量部に対して融点又は軟化点が80℃以下の水溶性高分子を5~50質量部含有するゴム組成物で構成された摩擦伝動ベルトが開示されている。この文献には、前記水溶性高分子としては、ポリエチレンオキサイドが記載されている。 In Patent Document 3, at least a part of the friction transmission surface is composed of a rubber composition containing 5 to 50 parts by mass of a water-soluble polymer having a melting point or softening point of 80 ° C. or less with respect to 100 parts by mass of rubber. A friction transmission belt is disclosed. In this document, polyethylene oxide is described as the water-soluble polymer.
 しかし、この水溶性高分子は、ベルトの加硫時に溶融するため、圧縮ゴム層全体に分散するものの、溶融した水溶性高分子がゴムの架橋を阻害するためか、内部損失(tanδ)増大してトルクロスが大きくなる。また、水溶性高分子が圧縮ゴム層全体に配合されているため、力学特性が低下する虞もある。なお、特許文献3の実施例では、水溶性高分子としてポリビニルアルコールが配合されているが、注水時の発音限界張力が低い比較例として記載されている上に、その詳細も不明である。 However, since this water-soluble polymer melts during vulcanization of the belt, it is dispersed throughout the compressed rubber layer, but the internal loss (tan δ) increases because the melted water-soluble polymer inhibits rubber cross-linking. The torcross becomes larger. Moreover, since water-soluble polymer is mix | blended with the whole compression rubber layer, there exists a possibility that a mechanical characteristic may fall. In addition, in the Example of patent document 3, although polyvinyl alcohol is mix | blended as a water-soluble polymer, it is described as a comparative example with a low pronunciation limit tension at the time of water injection, and the details are also unknown.
 特許文献4には、プーリに接触して動力を伝える圧縮ゴム層を備え、かつ前記圧縮ゴム層が、可塑剤の含有量が相対的に多くかつ粒状の超高分子量ポリエチレン樹脂を含む表面ゴム層と、可塑剤の含有量が相対的に少ない内部ゴム層とを有する摩擦伝動ベルトが開示されている。また、特許文献5には、プーリに係合又は接触するための摩擦伝動面を有する圧縮ゴム層を備え、かつ前記摩擦伝動面にポリエチレン系樹脂で形成された滑剤が付着した摩擦伝動ベルトが開示されている。 Patent Document 4 discloses a surface rubber layer that includes a compressed rubber layer that contacts a pulley and transmits power, and that the compressed rubber layer has a relatively high plasticizer content and includes a granular ultrahigh molecular weight polyethylene resin. And a friction transmission belt having an inner rubber layer with a relatively small plasticizer content. Patent Document 5 discloses a friction transmission belt having a compression rubber layer having a friction transmission surface for engaging or contacting with a pulley, and having a lubricant formed of polyethylene resin attached to the friction transmission surface. Has been.
 しかし、超高分子量ポリエチレン樹脂などのポリエチレン系樹脂では、摩擦係数の低減により耐発音性や耐磨耗性が改善できるが、被水時の発音を高いレベルで抑制できない。 However, polyethylene resins such as ultra-high molecular weight polyethylene resin can improve the sound resistance and wear resistance by reducing the friction coefficient, but cannot suppress the sound generation under water at a high level.
日本国特開2008-185162号公報Japanese Unexamined Patent Publication No. 2008-185162 日本国特開2006-118661号公報Japanese Unexamined Patent Publication No. 2006-118661 日本国特開2008-157445号公報Japanese Unexamined Patent Publication No. 2008-157445 国際公開第2011/114727号International Publication No. 2011/114727 日本国特開2013-113343号公報Japanese Unexamined Patent Publication No. 2013-113343
 従って、本発明の目的は、省燃費性や耐摩耗性などのベルト性能を維持しつつ、摩擦伝動面の摩擦状態を安定化して耐発音性を向上できる摩擦伝動ベルト、及びその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a friction transmission belt capable of improving the sound resistance by stabilizing the friction state of the friction transmission surface while maintaining the belt performance such as fuel saving and wear resistance, and a method for manufacturing the same. There is to do.
 本発明の他の目的は、強度や伸びなどのベルト性能を維持しつつ、被水時における摩擦伝動面とプーリ間のスリップによる発音を抑制できる摩擦伝動ベルト及びその製造方法を提供することにある。 Another object of the present invention is to provide a friction transmission belt capable of suppressing sound generation due to slip between a friction transmission surface and a pulley during flooding while maintaining belt performance such as strength and elongation, and a method for manufacturing the same. .
 本発明のさらに他の目的は、耐摩耗性などのベルト性能を維持しつつ、耐発音性を向上できる摩擦伝動ベルト及びその製造方法を提供することにある。 Still another object of the present invention is to provide a friction transmission belt capable of improving sound resistance while maintaining belt performance such as wear resistance and a method for manufacturing the same.
 本発明者らは、前記課題を達成するため鋭意検討した結果、摩擦伝動ベルトの圧縮層を、ポリマー成分及びポリビニルアルコール系樹脂を含有するゴム組成物で形成すると、省燃費性や耐摩耗性などのベルト性能を維持しつつ、摩擦伝動面の摩擦状態を安定化して耐発音性を向上できることを見いだし、本発明を完成した。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that when the compression layer of the friction transmission belt is formed of a rubber composition containing a polymer component and a polyvinyl alcohol-based resin, fuel economy, wear resistance, etc. The present invention has been completed by finding that the sound transmission can be improved by stabilizing the friction state of the friction transmission surface while maintaining the belt performance.
 すなわち、本発明の摩擦伝動ベルトは、少なくとも一部がプーリと接触可能な伝動面を有する圧縮層を含む摩擦伝動ベルトであって、該圧縮層がポリマー成分及びポリビニルアルコール系樹脂を含む。 That is, the friction transmission belt of the present invention is a friction transmission belt including a compression layer having a transmission surface at least partially in contact with the pulley, and the compression layer includes a polymer component and a polyvinyl alcohol resin.
 前記圧縮層は、前記伝動面の表面にポリビニルアルコール系樹脂を含む表層を有することが好ましい。また、前記表層は、ポリマー成分及びポリビニルアルコール系樹脂を含むゴム組成物で形成されているか、ポリビニルアルコール系樹脂で形成されていることが好ましい。前記圧縮層は表層のみにポリビニルアルコール系樹脂を含むことが好ましい。 The compression layer preferably has a surface layer containing a polyvinyl alcohol resin on the surface of the transmission surface. Moreover, it is preferable that the said surface layer is formed with the rubber composition containing a polymer component and polyvinyl alcohol-type resin, or is formed with polyvinyl alcohol-type resin. The compressed layer preferably contains a polyvinyl alcohol-based resin only on the surface layer.
 前記ポリビニルアルコール系樹脂はポリビニルアルコール系樹脂粒子であることが好ましい。前記ポリビニルアルコール系樹脂粒子の平均アスペクト比は、10以下であることが好ましい。 The polyvinyl alcohol resin is preferably polyvinyl alcohol resin particles. The average aspect ratio of the polyvinyl alcohol resin particles is preferably 10 or less.
 前記ポリビニルアルコール系樹脂のビニルアルコール単位のケン化度は86~97モル%程度であることが好ましい。 The saponification degree of the vinyl alcohol unit of the polyvinyl alcohol resin is preferably about 86 to 97 mol%.
 前記ポリビニルアルコール系樹脂の粘度平均重合度は、300~3500程度であることが好ましい。 The polyvinyl alcohol-based resin preferably has a viscosity average polymerization degree of about 300 to 3,500.
 前記ポリビニルアルコール系樹脂の融点はベルトの加硫温度よりも高いことが好ましい。 The melting point of the polyvinyl alcohol resin is preferably higher than the vulcanization temperature of the belt.
 前記ポリビニルアルコール系樹脂の20℃における水への溶解度は、60質量%以上であることが好ましい。 The solubility of the polyvinyl alcohol resin in water at 20 ° C. is preferably 60% by mass or more.
 前記ポリビニルアルコール系樹脂は、疎水基で変性されたポリビニルアルコール系樹脂粒子であることが好ましい。 The polyvinyl alcohol resin is preferably polyvinyl alcohol resin particles modified with a hydrophobic group.
 前記圧縮層において、前記ポリビニルアルコール系樹脂の割合は、前記ポリマー成分100質量部に対して5~30質量部程度であることが好ましい。 In the compressed layer, the ratio of the polyvinyl alcohol-based resin is preferably about 5 to 30 parts by mass with respect to 100 parts by mass of the polymer component.
 前記ポリビニルアルコール系樹脂は、伝動面で分散して露出していることが好ましい。 The polyvinyl alcohol resin is preferably dispersedly exposed on the transmission surface.
 前記圧縮層はさらに補強材を含むことが好ましい。 It is preferable that the compressed layer further includes a reinforcing material.
 前記ポリマー成分はエチレン-α-オレフィンエラストマーであることが好ましい。 The polymer component is preferably an ethylene-α-olefin elastomer.
 本発明の摩擦伝動ベルトは、さらに芯体とベルト背面を形成する伸張層とを含み、前記伸張層の一方の面に前記圧縮層が形成され、かつ前記伸張層と前記圧縮層との間にベルト長手方向に沿って前記芯体が埋設されていることが好ましい。 The friction transmission belt of the present invention further includes a core and a stretch layer forming a belt back surface, the compression layer is formed on one surface of the stretch layer, and between the stretch layer and the compression layer. The core body is preferably embedded along the belt longitudinal direction.
 本発明の摩擦伝動ベルトはVリブドベルトであることが好ましい。 The friction transmission belt of the present invention is preferably a V-ribbed belt.
 また、本発明の摩擦伝動ベルトの製造方法は、
 円筒状ドラムに未加硫ゴムシートを巻き付ける圧縮層巻付工程、及び
 前記未加硫ゴムシートを金型に押し付けて加硫する加硫成形工程を含み、
 前記圧縮層巻付工程及び前記加硫成形工程のいずれかの工程で表層を形成する。
In addition, the manufacturing method of the friction transmission belt of the present invention,
A compression layer winding step of winding an unvulcanized rubber sheet around a cylindrical drum, and a vulcanization molding step of vulcanizing the unvulcanized rubber sheet against a mold,
A surface layer is formed in any one of the compressed layer winding step and the vulcanization molding step.
 前記圧縮層巻付工程において、未加硫ゴムシートとして、表層を形成するための未加硫ゴム層と圧縮層を形成するための未加硫ゴム層との積層シートを用いることが好ましい。 In the compressed layer winding step, a laminated sheet of an unvulcanized rubber layer for forming a surface layer and an unvulcanized rubber layer for forming a compressed layer is preferably used as the unvulcanized rubber sheet.
 前記圧縮層巻付工程において、未加硫ゴムシートとして、圧縮層を形成するための未加硫ゴムシートの表面にポリビニルアルコール系樹脂粒子を塗布したシートを用いることが好ましい。 In the compressed layer winding step, it is preferable to use, as the unvulcanized rubber sheet, a sheet in which polyvinyl alcohol resin particles are applied to the surface of an unvulcanized rubber sheet for forming a compressed layer.
 前記加硫成形工程において、金型として、未加硫ゴムシートとの接触面にポリビニルアルコール系樹脂粒子を塗布した金型を用いることが好ましい。  In the vulcanization molding step, it is preferable to use a mold in which polyvinyl alcohol resin particles are applied to the contact surface with the unvulcanized rubber sheet as the mold.
 本発明では、圧縮層にポリマー成分とポリビニルアルコール系樹脂とを組み合わせて含有させているため、省燃費性や耐摩耗性などのベルト性能を維持した(ゴムの架橋阻害による性能低下が起こらない)まま、摩擦伝動面の摩擦状態を安定化して耐発音性(特に被水時の耐発音性)を向上できる。特に、ポリビニルアルコール系樹脂粒子が適度に水に溶解して摩擦伝動面において均一な水膜を形成するためか、被水時における摩擦伝動面とプーリ間のスリップによる発音を抑制できる。
 また、摩擦伝動ベルトの圧縮ゴム層の伝動面の表面にポリビニルアルコール系樹脂を含む表層が積層されている場合、摩擦伝動面の摩擦状態を安定化して耐発音性(特に被水時の耐発音性)を向上できる。この場合特に、表層がポリビニルアルコール系樹脂を含むため、強度や伸びなどの力学特性を維持しつつ、ポリビニルアルコール系樹脂が適度に水に溶解して摩擦伝動面において均一な水膜を形成するためか、被水時における摩擦伝動面とプーリ間のスリップによる発音を抑制できる。
In the present invention, since the compression layer contains a combination of a polymer component and a polyvinyl alcohol-based resin, belt performance such as fuel saving and wear resistance is maintained (performance does not deteriorate due to inhibition of rubber cross-linking). As it is, the friction state of the friction transmission surface can be stabilized to improve the sound resistance (especially sound resistance when wet). In particular, the polyvinyl alcohol resin particles are appropriately dissolved in water to form a uniform water film on the friction transmission surface, or sound generation due to slip between the friction transmission surface and the pulley during water can be suppressed.
In addition, when a surface layer containing polyvinyl alcohol resin is laminated on the surface of the transmission surface of the compression rubber layer of the friction transmission belt, the friction state of the friction transmission surface is stabilized and sound resistance (especially sound resistance when wet) Property). In this case, in particular, since the surface layer contains a polyvinyl alcohol-based resin, the polyvinyl alcohol-based resin is appropriately dissolved in water to form a uniform water film on the friction transmission surface while maintaining mechanical properties such as strength and elongation. In addition, sound generation due to slip between the friction transmission surface and the pulley during flooding can be suppressed.
図1は本発明のVリブドベルトの一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of the V-ribbed belt of the present invention. 図2は本発明のVリブドベルトの他の例を示す概略断面図である。FIG. 2 is a schematic sectional view showing another example of the V-ribbed belt of the present invention. 図3は実施例での接触角の測定方法を説明するための概略図である。FIG. 3 is a schematic diagram for explaining a method of measuring a contact angle in the embodiment. 図4は実施例でのトルクロスの測定方法を説明するための概略図である。FIG. 4 is a schematic diagram for explaining a method of measuring torcross in the embodiment. 図5は実施例でのミスアライメント発音試験を説明するための概略図である。FIG. 5 is a schematic diagram for explaining a misalignment pronunciation test in the embodiment. 図6は実施例で得られた加硫ゴムシートにおける水との接触角を示すグラフである。FIG. 6 is a graph showing the contact angle with water in the vulcanized rubber sheet obtained in the example. 図7は実施例で得られた加硫ゴムシートの摩擦係数と滑り速度との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the friction coefficient and the sliding speed of the vulcanized rubber sheet obtained in the example. 図8は実施例で得られたベルトの発音限界角度を示すグラフである。FIG. 8 is a graph showing the sound generation limit angle of the belt obtained in the example.
 以下、適宜図面を参照して本発明の摩擦伝動ベルトの構造、及び本発明の摩擦伝動ベルトの製造方法について説明する。 Hereinafter, the structure of the friction transmission belt of the present invention and the method for manufacturing the friction transmission belt of the present invention will be described with reference to the drawings as appropriate.
 [摩擦伝動ベルトの構造]
 本発明の摩擦伝動ベルトは、通常、伸張層と、この伸張層の一方の面に形成された圧縮層と、前記伸張層と前記圧縮層との間にベルト長手方向に沿って埋設される芯体(心線)とを備えている。詳しくは、本発明の摩擦伝動ベルトは、外周面を形成する伸張層と、この伸張層の一方の面に形成され、内周面を形成する圧縮層と、前記伸張層と圧縮層との間に長手方向に延びて介在する芯体とを備えていてもよい。また、本発明の摩擦伝動ベルトは、伸張層と圧縮層との間に介在する接着ゴム層(接着層)をさらに有していてもよく、前記芯体は、前記接着ゴム層内に埋設してもよい。
[Structure of friction transmission belt]
The friction transmission belt of the present invention usually has a stretch layer, a compression layer formed on one surface of the stretch layer, and a core embedded along the longitudinal direction of the belt between the stretch layer and the compression layer. It has a body (heart wire). Specifically, the friction transmission belt of the present invention includes a stretch layer that forms an outer peripheral surface, a compression layer that is formed on one surface of the stretch layer and forms an inner peripheral surface, and between the stretch layer and the compression layer. And a core body extending in the longitudinal direction. The friction transmission belt of the present invention may further have an adhesive rubber layer (adhesive layer) interposed between the stretch layer and the compression layer, and the core body is embedded in the adhesive rubber layer. May be.
 本発明の摩擦伝動ベルトの種類は特に限定されず、Vベルト[ローエッジベルト(断面V字形状などの形態のローエッジベルト)、ローエッジコグドベルト(ローエッジベルトの内周側又は内周側及び外周側の双方にコグが形成されたローエッジコグドベルト)]、Vリブドベルト、平ベルトなどが例示できる。これらのベルトのうち、伝動効率の高いVリブドベルトが好ましい。 The type of the friction transmission belt of the present invention is not particularly limited, and includes a V belt [a low edge belt (a low edge belt having a V-shaped cross section, etc.), a low edge cogged belt (both the inner peripheral side or the inner peripheral side and the outer peripheral side of the low edge belt Low-edge cogged belt having a cog formed on the surface thereof]], V-ribbed belt, flat belt, and the like. Of these belts, a V-ribbed belt having high transmission efficiency is preferable.
 Vリブドベルトの形態は、特に制限されず、例えば、図1や図2に示す形態が例示される。図1は本発明の摩擦伝動ベルトの一例を示す概略断面図である。図1に示される摩擦伝動ベルト10は、ベルト下面(内周面)からベルト上面(背面)に向かって順に、圧縮層2、ベルト長手方向に芯体1を埋設した接着層4、カバー帆布(織物、編物、不織布など)で構成された伸張層5を積層した形態を有している。圧縮層2には、ベルト長手方向に伸びる複数の断面V字状の溝が形成され、この溝の間には断面V字形(逆台形)の複数のリブ3(図1に示す例では4個)が形成されおり、このリブ3の二つの傾斜面(表面)が摩擦伝動面を形成し、プーリと接して動力を伝達(摩擦伝動)する。 The form of the V-ribbed belt is not particularly limited, and for example, the form shown in FIGS. 1 and 2 is exemplified. FIG. 1 is a schematic sectional view showing an example of a friction transmission belt of the present invention. A friction transmission belt 10 shown in FIG. 1 includes a compression layer 2, an adhesive layer 4 in which a core body 1 is embedded in the belt longitudinal direction, a cover canvas (in the belt longitudinal direction) from the belt lower surface (inner circumferential surface) to the belt upper surface (back surface). The stretched layer 5 is made of a woven fabric, a knitted fabric, a non-woven fabric, or the like. A plurality of V-shaped grooves extending in the longitudinal direction of the belt are formed in the compression layer 2, and a plurality of ribs 3 (four in the example shown in FIG. 1) having a V-shaped cross section (reverse trapezoid) are formed between the grooves. ), And the two inclined surfaces (surfaces) of the rib 3 form a friction transmission surface and contact the pulley to transmit power (friction transmission).
 図2は本発明の摩擦伝動ベルトの他の例を示す概略断面図である。図2に示される摩擦伝動ベルト20は、圧縮層2の表面に表層6を有する点で、図1に示される摩擦伝動ベルト10と異なる。 FIG. 2 is a schematic sectional view showing another example of the friction transmission belt of the present invention. The friction transmission belt 20 shown in FIG. 2 is different from the friction transmission belt 10 shown in FIG. 1 in that it has a surface layer 6 on the surface of the compression layer 2.
 本発明の摩擦伝動ベルトはこの形態に限定されず、少なくとも一部がプーリと接触可能な伝動面を有する圧縮層を備えていればよく、典型的には、伸張層と圧縮層と、その間にベルト長手方向に沿って埋設される芯体とを備えていればよい。本発明の摩擦伝動ベルトにおいて、例えば、伸張層5をゴム組成物で形成してもよく、接着層4を設けることなく伸張層5と圧縮層2との間に芯体1を埋設してもよい。さらに、接着層4を圧縮層2又は伸張層5のいずれか一方に設け、芯体1を接着層4(圧縮層2側)と伸張層5との間、もしくは接着層4(伸張層5側)と圧縮層2との間に埋設する形態であってもよい。また、リブ3の表面(特に、摩擦伝動面)にパウダー状繊維(例えば、綿、ナイロン、アラミドなど)を植毛した形態でもよく、潤滑剤などをスプレー塗布する形態であってもよい。 The friction transmission belt of the present invention is not limited to this configuration, and it is sufficient that at least a part of the friction transmission belt has a compression layer having a transmission surface that can come into contact with the pulley. Typically, the stretch layer and the compression layer are interposed therebetween. What is necessary is just to provide the core body embed | buried along a belt longitudinal direction. In the friction transmission belt of the present invention, for example, the stretch layer 5 may be formed of a rubber composition, or the core body 1 may be embedded between the stretch layer 5 and the compression layer 2 without providing the adhesive layer 4. Good. Further, the adhesive layer 4 is provided on either the compression layer 2 or the stretch layer 5, and the core 1 is disposed between the adhesive layer 4 (compression layer 2 side) and the stretch layer 5, or the adhesive layer 4 (stretch layer 5 side). ) And the compression layer 2 may be embedded. Further, a form in which powdery fibers (for example, cotton, nylon, aramid, etc.) are planted on the surface of the rib 3 (particularly, a friction transmission surface) may be used, or a form in which a lubricant or the like is spray applied may be used.
 なお、少なくとも前記圧縮層が以下に詳細に説明するゴム組成物で形成されていればよく、前記伸張層及び接着層は、前記圧縮層と同じゴム組成物で形成されていなくてもよい。なお、伸張層及び接着層を形成するゴム組成物は、ポリビニルアルコール系樹脂粒子を含んでいる必要はない。 Note that at least the compression layer only needs to be formed of a rubber composition described in detail below, and the stretch layer and the adhesive layer may not be formed of the same rubber composition as the compression layer. Note that the rubber composition forming the stretch layer and the adhesive layer need not contain polyvinyl alcohol resin particles.
 芯体としては、特に限定されないが、通常、ベルト幅方向に所定間隔で配列した心線(撚りコード)を使用できる。心線は、高モジュラスな繊維、例えば、ポリエステル繊維(ポリアルキレンアリレート系繊維)、アラミド繊維などの合成繊維、炭素繊維などの無機繊維などが汎用され、ポリエステル繊維(ポリエチレンテレフタレート系繊維、ポリエチレンナフタレート系繊維)、アラミド繊維が好ましい。繊維はマルチフィラメント糸、例えば、繊度2000~10000デニール(特に4000~8000デニール)程度のマルチフィラメント糸であってもよい。 The core is not particularly limited, but normally, cores (twisted cords) arranged at a predetermined interval in the belt width direction can be used. For the core wire, high modulus fibers such as polyester fibers (polyalkylene arylate fibers), synthetic fibers such as aramid fibers, and inorganic fibers such as carbon fibers are widely used. Polyester fibers (polyethylene terephthalate fibers, polyethylene naphthalates) System fibers) and aramid fibers are preferred. The fiber may be a multifilament yarn, for example, a multifilament yarn having a fineness of 2000 to 10000 denier (particularly 4000 to 8000 denier).
 心線としては、通常、マルチフィラメント糸を使用した撚りコード(例えば、諸撚り、片撚り、ラング撚りなど)を使用できる。心線の平均線径(撚りコードの繊維径)は、例えば、0.5~3mm、好ましくは0.6~2mm、さらに好ましくは0.7~1.5mm程度であってもよい。心線はベルトの長手方向に埋設され、単数又は複数の心線がベルトの長手方向に平行に所定のピッチで並列的に埋設されていてもよい。 As the core wire, usually a twisted cord using multifilament yarn (for example, various twists, single twists, rung twists, etc.) can be used. The average wire diameter (fiber diameter of the twisted cord) of the core wire may be, for example, about 0.5 to 3 mm, preferably about 0.6 to 2 mm, and more preferably about 0.7 to 1.5 mm. The core wire may be embedded in the longitudinal direction of the belt, and one or a plurality of core wires may be embedded in parallel at a predetermined pitch parallel to the longitudinal direction of the belt.
 ポリマー成分との接着性を改善するため、心線は、エポキシ化合物、イソシアネート化合物などによる種々の接着処理を施した後に、伸張層と圧縮層との間(特に接着層)に埋設してもよい。 In order to improve the adhesion to the polymer component, the core wire may be embedded between the stretched layer and the compressed layer (especially the adhesive layer) after being subjected to various adhesion treatments with an epoxy compound, an isocyanate compound, or the like. .
 さらに、伸張層は補強布、例えば、織布、広角度帆布、編布、不織布などの布材(好ましくは織布)を有していてもよい。補強布は、必要であれば、前記接着処理を施し、伸張ゴム層の表面に積層してもよい。 Furthermore, the stretch layer may have a reinforcing cloth, for example, a cloth material (preferably a woven cloth) such as a woven cloth, a wide angle sail cloth, a knitted cloth or a non-woven cloth. If necessary, the reinforcing fabric may be laminated on the surface of the stretched rubber layer by performing the above-described adhesion treatment.
 [圧縮層]
 本発明の摩擦伝動ベルトは、少なくとも一部がプーリと接触可能な伝動面を有する圧縮層を備えており、この圧縮層が、ポリマー成分及びポリビニルアルコール系樹脂を含む。圧縮層は、ポリビニルアルコール系樹脂を含む表層を表面に有していてもよい。圧縮層が表層を有する場合、ポリビニルアルコール系樹脂は圧縮層全体に存在してもよく、表層のみに存在してもよい。また、表層はポリビニルアルコール系樹脂で形成された表層(単一層)であってもよく、ポリビニルアルコール系樹脂及びポリマー成分を含むゴム組成物で形成された表層(複合層)であってもよい。なお、表層については後述する。
[Compression layer]
The friction transmission belt of the present invention includes a compression layer having a transmission surface at least partially in contact with the pulley, and the compression layer includes a polymer component and a polyvinyl alcohol resin. The compression layer may have a surface layer containing a polyvinyl alcohol resin on the surface. When the compression layer has a surface layer, the polyvinyl alcohol-based resin may be present in the entire compression layer or only in the surface layer. The surface layer may be a surface layer (single layer) formed of a polyvinyl alcohol resin, or a surface layer (composite layer) formed of a rubber composition containing a polyvinyl alcohol resin and a polymer component. The surface layer will be described later.
 (ポリマー成分)
 ポリマー成分としては、公知のゴム成分及び/又はエラストマー、例えば、ジエン系ゴム[天然ゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(ニトリルゴム)、水素化ニトリルゴム(水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマーを含む)など]、エチレン-α-オレフィンエラストマー、クロロスルフォン化ポリエチレンゴム、アルキル化クロロスルフォン化ポリエチレンゴム、エピクロルヒドリンゴム、アクリル系ゴム、シリコーンゴム、ウレタンゴム、フッ素ゴムなどが例示できる。これらのポリマー成分は単独又は二種以上組み合わせて使用することができる。これらのポリマー成分のうち、有害なハロゲンを含まず、耐オゾン性、耐熱性、耐寒性を有し、経済性にも優れる点から、エチレン-α-オレフィンエラストマー(エチレン-プロピレンゴム(EPR)、エチレン-プロピレン-ジエン共重合体(EPDMなど)などのエチレン-α-オレフィン系ゴム)が好ましい。
(Polymer component)
Examples of the polymer component include known rubber components and / or elastomers such as diene rubber [natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (nitrile rubber), hydrogenated nitrile. Rubber (including mixed polymers of hydrogenated nitrile rubber and unsaturated carboxylic acid metal salt), etc.], ethylene-α-olefin elastomer, chlorosulfonated polyethylene rubber, alkylated chlorosulfonated polyethylene rubber, epichlorohydrin rubber, acrylic rubber Examples thereof include silicone rubber, urethane rubber, and fluorine rubber. These polymer components can be used alone or in combination of two or more. Among these polymer components, ethylene-α-olefin elastomers (ethylene-propylene rubber (EPR), ethylene-propylene rubber (EPR), free from harmful halogens, ozone-resistant, heat-resistant, cold-resistant, and economically superior). Ethylene-α-olefin rubbers such as ethylene-propylene-diene copolymers (EPDM, etc.) are preferred.
 (ポリビニルアルコール系樹脂)
 本発明では、ポリビニルアルコール系樹脂を前記ポリマー成分に配合することにより、研磨された摩擦伝動面で前記粒子を略均一に分散して突出せずに露出できる。ポリビニルアルコール系樹脂は粒子の形態で存在してもよい。前記ポリビニルアルコール系樹脂は水溶性であり、圧縮層の摩擦伝動面の水に対する濡れ性(ゴムと水との親和性)を向上できる。そのため、走行時に水が侵入してもベルトとプーリ間に水膜が均一に拡がり、摩擦状態を安定化して自励振動による発音を抑制できる。特に、実車エンジンのような回転変動がある場合でも、滑り速度に対する摩擦係数の変化を小さくして、スティック-スリップによる異音を低減して被水時の耐発音性を向上できる。さらに、ポリビニルアルコール系樹脂粒子は、圧縮層を形成するゴム組成物中におけるポリマー成分に対する補強材の補強効果を阻害しないため、内部損失(tanδ)を低く保持できる。
(Polyvinyl alcohol resin)
In the present invention, by blending a polyvinyl alcohol-based resin with the polymer component, the particles can be dispersed substantially uniformly on the polished friction transmission surface and exposed without protruding. The polyvinyl alcohol resin may be present in the form of particles. The polyvinyl alcohol resin is water-soluble and can improve the wettability (affinity between rubber and water) of the friction transmission surface of the compression layer with respect to water. For this reason, even if water enters during traveling, the water film spreads uniformly between the belt and the pulley, and the frictional state is stabilized to suppress sound generation due to self-excited vibration. In particular, even when there is a rotational fluctuation such as an actual vehicle engine, it is possible to reduce the change in the friction coefficient with respect to the sliding speed, to reduce the noise caused by stick-slip, and to improve the sound resistance when wet. Furthermore, since the polyvinyl alcohol-based resin particles do not hinder the reinforcing effect of the reinforcing material on the polymer component in the rubber composition forming the compression layer, the internal loss (tan δ) can be kept low.
 ポリビニルアルコール系樹脂としては、ビニルアルコール単位を主単位として含んでいればよく、ビニルアルコール単位に加えて、他の共重合性単位をさらに含んでいてもよい。 The polyvinyl alcohol resin only needs to contain a vinyl alcohol unit as a main unit, and may further contain other copolymerizable units in addition to the vinyl alcohol unit.
 他の共重合性単位を構成する単量体としては、例えば、オレフィン類(エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセンなどのα-C2-10オレフィンなど)、不飽和カルボン酸類[(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチルなどの(メタ)アクリル酸C1-6アルキルエステル、(無水)マレイン酸など]、ビニルエーテル類(メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテルなどのC1-6アルキルビニルエーテル類、エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテルなどのC2-6アルカンジオール-ビニルエーテルなど)、不飽和スルホン酸類(エチレンスルホン酸、アリルスルホン酸など)などが挙げられる。これらの単量体は、単独で又は二種以上組み合わせて使用できる。これらの単量体のうち、エチレンやプロピレンなどのα-C2-4オレフィンが汎用される。 Examples of monomers constituting other copolymerizable units include olefins (such as α-C 2-10 olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene), unsaturated carboxylic acids [ (Meth) acrylic acid, (meth) acrylic acid methyl, (meth) acrylic acid C 1-6 alkyl ester such as ethyl (meth) acrylate, (anhydrous) maleic acid, etc.], vinyl ethers (methyl vinyl ether, ethyl vinyl ether, C 1-6 alkyl vinyl ethers such as propyl vinyl ether, C 2-6 alkanediol-vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, 1,4-butanediol vinyl ether), unsaturated sulfonic acids (ethylene Sulfonic acid, allyl sulphone Etc. phosphate) and the like. These monomers can be used alone or in combination of two or more. Of these monomers, α-C 2-4 olefins such as ethylene and propylene are widely used.
 他の共重合性単位の割合は、全単位に対して50モル%以下であってもよく、例えば、0~30モル%、好ましくは0.1~20モル%、さらに好ましくは1~10モル%程度である。ポリビニルアルコール系樹脂は、ビニルアルコール単位単独で構成されたホモポリマーであってもよい。 The proportion of other copolymerizable units may be 50 mol% or less with respect to the total units, for example, 0 to 30 mol%, preferably 0.1 to 20 mol%, more preferably 1 to 10 mol. %. The polyvinyl alcohol-based resin may be a homopolymer composed of vinyl alcohol units alone.
 ポリビニルアルコール系樹脂は、ビニルアルコール単位が疎水基で変性されていてもよい。疎水基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ヘキシル基などのC1-10アルキル基、シクロヘキシル基などのシクロアルキル基、フェニル基などのアリール基などが挙げられる。これらの疎水基は、単独で又は二種以上組み合わせて使用できる。これらの疎水基のうち、エチル基やプロピル基などのC2-4アルキル基が好ましい。 In the polyvinyl alcohol resin, the vinyl alcohol unit may be modified with a hydrophobic group. Examples of the hydrophobic group include a C 1-10 alkyl group such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a hexyl group, a cycloalkyl group such as a cyclohexyl group, and an aryl group such as a phenyl group. Can be mentioned. These hydrophobic groups can be used alone or in combination of two or more. Of these hydrophobic groups, C 2-4 alkyl groups such as ethyl group and propyl group are preferred.
 本発明では、共重合性単位や疎水基の割合を調整することにより、ポリビニルアルコール系樹脂の水に対する溶解度などを調整でき、トルクロスを抑制できる。 In the present invention, by adjusting the proportion of copolymerizable units and hydrophobic groups, the solubility of polyvinyl alcohol resin in water can be adjusted, and torcross can be suppressed.
 ポリビニルアルコール系樹脂のビニルアルコール単位のケン化度は85モル%以上であってもよく、例えば85~99.7モル%、好ましくは86~97モル%、さらに好ましくは86.5~93モル%(特に86.5~89.5モル%)程度である。本発明では、摩擦伝動面で均一な水膜を形成し易い点から、97モル%以下のケン化度が好ましく、部分ケン化物(86.5~89.5モル%)が特に好ましい。完全ケン化物のケン化度は97.5モル%以上(特に98モル%以上)であってもよい。 The saponification degree of the vinyl alcohol unit of the polyvinyl alcohol resin may be 85 mol% or more, for example, 85 to 99.7 mol%, preferably 86 to 97 mol%, more preferably 86.5 to 93 mol%. (Especially 86.5 to 89.5 mol%). In the present invention, a saponification degree of 97 mol% or less is preferable and a partially saponified product (86.5 to 89.5 mol%) is particularly preferable from the viewpoint that a uniform water film can be easily formed on the friction transmission surface. The saponification degree of the completely saponified product may be 97.5 mol% or more (particularly 98 mol% or more).
 ポリビニルアルコール系樹脂の粘度平均重合度は、例えば300~3500、好ましくは400~3200、さらに好ましくは500~3000程度である。重合度が大きすぎると、摩擦伝動面で均一な水膜を形成するのが困難となり、小さすぎると、均一な分散状態や層形状、粒子形状を維持するのが困難となる虞がある。なお、本発明では、粘度平均重合度は、JIS K6726(1994)に準じた方法などで測定できる。 The viscosity average degree of polymerization of the polyvinyl alcohol resin is, for example, about 300 to 3,500, preferably about 400 to 3,200, and more preferably about 500 to 3,000. If the degree of polymerization is too large, it is difficult to form a uniform water film on the friction transmission surface, and if it is too small, it may be difficult to maintain a uniform dispersion state, layer shape, and particle shape. In the present invention, the viscosity average degree of polymerization can be measured by a method according to JIS K6726 (1994).
 ポリビニルアルコール系樹脂の融点は、ベルトの加硫温度よりも高ければよく、例えば、ベルトの加硫温度よりも10℃以上(特に50℃以上)高くてもよい。ポリビニルアルコール系樹脂の融点は、例えば、180℃以上であってもよく、例えば、180~300℃、好ましくは200~280℃、さらに好ましくは210~250℃程度であってもよい。融点が低すぎると加硫により樹脂が溶融し、ポリマー成分中に均一に分散させるのが困難となったり、層形状を維持することが困難となる虞がある。 The melting point of the polyvinyl alcohol resin only needs to be higher than the vulcanization temperature of the belt, and may be, for example, 10 ° C. or higher (particularly 50 ° C. or higher) higher than the vulcanization temperature of the belt. The melting point of the polyvinyl alcohol resin may be, for example, 180 ° C. or higher, for example, 180 to 300 ° C., preferably 200 to 280 ° C., more preferably about 210 to 250 ° C. If the melting point is too low, the resin is melted by vulcanization, and it may be difficult to uniformly disperse in the polymer component, or it may be difficult to maintain the layer shape.
 ポリビニルアルコール系樹脂の20℃における水への溶解度は5質量%以上(特に10質量%以上)であってもよく、例えば30質量%以上(特に50質量%以上)、好ましくは60質量%以上(例えば60~99質量%)、さらに好ましくは80質量%以上(例えば80~95質量%)程度であってもよい。ベルトが被水すると、走行時のベルト温度が低下するため、常温付近での溶解度が低すぎると、より低温域(例えば、常温付近)での摩擦伝動面の濡れ性が低下し、耐発音性が低下する虞がある。 The solubility of polyvinyl alcohol resin in water at 20 ° C. may be 5% by mass or more (particularly 10% by mass or more), for example, 30% by mass or more (particularly 50% by mass or more), preferably 60% by mass or more ( For example, it may be about 60 to 99% by mass), more preferably about 80% by mass or more (for example, 80 to 95% by mass). If the belt gets wet, the belt temperature during running will drop, so if the solubility near room temperature is too low, the wettability of the friction transmission surface at lower temperatures (for example, near room temperature) will be reduced, and sound resistance will be increased. May decrease.
 ポリビニルアルコール系樹脂が粒子形態の場合、粒子の個数平均粒径は、例えば、10~300μm、好ましくは15~200μm、さらに好ましくは20~100μm(例えば、50~100μm)程度である。また、ポリビニルアルコール系樹脂粒子の個数平均粒径は、耐発音性(特に被水時の耐発音性)を向上でき、かつベルト走行中の粒子の脱落や粒子-ゴム間での亀裂の発生も抑制できる点から、比較的小粒径であってもよく、例えば10~100μm、好ましくは20~80μm、さらに好ましくは30~50μm(特に35~45μm)程度であってもよい。小粒径の粒子が耐発音性を向上できる理由は、均一な分散により水に対する濡れ性が向上し、ベルト走行中の粒子の脱落や粒子-ゴム間での亀裂の発生を抑制できるためであると推定できる。粒径が大きすぎると、圧縮層の機械的特性や耐久性が低下する虞がある。一方、粒径が小さすぎると、ポリマー成分中に均一に充填、分散させるのが困難となり、耐発音性が低下する虞がある。なお、本発明では、個数平均粒径は、粒子が異方形状である場合、長径と短径との平均値で示す。 When the polyvinyl alcohol resin is in the form of particles, the number average particle diameter of the particles is, for example, about 10 to 300 μm, preferably 15 to 200 μm, and more preferably 20 to 100 μm (for example, 50 to 100 μm). In addition, the number average particle diameter of the polyvinyl alcohol resin particles can improve sound resistance (especially sound resistance when exposed to water), and drop off of particles during belt running and generation of cracks between particles and rubber. From the viewpoint of suppression, the particle size may be relatively small, for example, about 10 to 100 μm, preferably about 20 to 80 μm, more preferably about 30 to 50 μm (particularly 35 to 45 μm). The reason why small-diameter particles can improve sound resistance is that the uniform dispersion improves the wettability with water and prevents the particles from falling off and cracking between the particles and the rubber during belt running. Can be estimated. If the particle size is too large, the mechanical properties and durability of the compressed layer may be reduced. On the other hand, if the particle size is too small, it becomes difficult to uniformly fill and disperse in the polymer component, which may reduce the sound resistance. In the present invention, the number average particle diameter is represented by an average value of the major axis and the minor axis when the particles are anisotropic.
 ポリビニルアルコール系樹脂粒子の最大粒径は500μm以下であってもよく、例えば400μm以下、好ましくは350μm以下(例えば300μm以下)、さらに好ましくは200μm以下(特に180μm以下)であってもよい。ポリビニルアルコール系樹脂粒子の最小粒径は1μm以上であってもよく、例えば3μm以上、好ましくは5μm以上、さらに好ましくは8μm以上であってもよい。最大粒径が大きすぎると、耐発音性が低下する虞がある。 The maximum particle diameter of the polyvinyl alcohol-based resin particles may be 500 μm or less, for example, 400 μm or less, preferably 350 μm or less (for example, 300 μm or less), more preferably 200 μm or less (particularly 180 μm or less). The minimum particle size of the polyvinyl alcohol resin particles may be 1 μm or more, for example, 3 μm or more, preferably 5 μm or more, and more preferably 8 μm or more. If the maximum particle size is too large, the sound resistance may decrease.
 ポリビニルアルコール系樹脂が粒子形態の場合、粒子の平均アスペクト比(短径に対する長径の比)は、10以下(例えば1~10)であってもよく、例えば1~5、好ましくは1~3、さらに好ましくは1~2(例えば1.2~1.9)程度である。また、ポリビニルアルコール系樹脂粒子のアスペクト比は、被水時の耐発音性を向上できる点から、例えば1.5~5、好ましくは1.6~3、さらに好ましくは1.8~2.5程度であってもよい。アスペクト比が大きすぎると、圧縮層の変形時に界面へ応力集中を生じ、圧縮層の破断伸びが低下する虞がある。 When the polyvinyl alcohol-based resin is in the form of particles, the average aspect ratio (ratio of major axis to minor axis) of the particles may be 10 or less (for example, 1 to 10), for example, 1 to 5, preferably 1 to 3, More preferably, it is about 1 to 2 (for example, 1.2 to 1.9). The aspect ratio of the polyvinyl alcohol-based resin particles is, for example, 1.5 to 5, preferably 1.6 to 3, and more preferably 1.8 to 2.5, from the viewpoint of improving sound resistance when wet. It may be a degree. If the aspect ratio is too large, stress concentration occurs at the interface when the compressed layer is deformed, and the fracture elongation of the compressed layer may be reduced.
 なお、本発明では、個数平均粒径、平均アスペクト比は、50倍で撮影した走査型電子顕微鏡写真を基に寸法を計測する方法などで測定できる。 In the present invention, the number average particle diameter and the average aspect ratio can be measured by a method of measuring dimensions based on a scanning electron micrograph taken at 50 times.
 ポリビニルアルコール系樹脂が粒子形状を有している場合、圧縮層の変形時に、ゴムとポリビニルアルコールとの界面におけるせん断や引張りの応力集中が生じ難い。そのため、レゾルシン-ホルマリン-ラテックス(RFL)液などの接着成分により接着処理をしなくても、ポリマー成分中に粒子を固定できる。また、ポリビニルアルコールは水酸基(親水基)の他に酢酸基(疎水基)が存在するため、界面活性能を有し、圧縮層(又は表層)を形成するポリマー成分へ容易に均一に分散できる。 When the polyvinyl alcohol-based resin has a particle shape, shearing or tensile stress concentration at the interface between the rubber and the polyvinyl alcohol hardly occurs when the compression layer is deformed. Therefore, the particles can be fixed in the polymer component without performing an adhesion treatment with an adhesion component such as resorcin-formalin-latex (RFL) liquid. In addition, since polyvinyl alcohol has an acetic acid group (hydrophobic group) in addition to a hydroxyl group (hydrophilic group), it has a surface activity and can be easily and uniformly dispersed in a polymer component forming a compression layer (or surface layer).
 ポリビニルアルコール系樹脂(特にポリビニルアルコール系樹脂粒子)の割合は、ポリマー成分100質量部に対して、1質量部以上程度であればよく、例えば、1~50質量部、好ましくは3~40質量部(例えば5~30質量部)、さらに好ましくは5~35質量部(特に10~30質量部)程度である。また、ポリビニルアルコール系樹脂粒子の割合は、被水時の耐発音性を向上できる点からは多い方が好ましく、ポリマー成分100質量部に対して、10質量部以上が好ましく、例えば10~50質量部、好ましくは15~40質量部、さらに好ましくは20~30質量部程度であってもよい。ポリビニルアルコール系樹脂の割合が多すぎると、圧縮層の機械的特性が低下し、少なすぎると、耐発音性が低下する虞がある。 The proportion of the polyvinyl alcohol resin (particularly polyvinyl alcohol resin particles) may be about 1 part by mass or more, for example, 1 to 50 parts by mass, preferably 3 to 40 parts by mass with respect to 100 parts by mass of the polymer component. (For example, 5 to 30 parts by mass), more preferably about 5 to 35 parts by mass (particularly 10 to 30 parts by mass). Further, the ratio of the polyvinyl alcohol-based resin particles is preferably large from the viewpoint of improving sound resistance when wet, and is preferably 10 parts by mass or more, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the polymer component. Part, preferably 15 to 40 parts by weight, more preferably about 20 to 30 parts by weight. If the proportion of the polyvinyl alcohol-based resin is too large, the mechanical properties of the compression layer are deteriorated, and if it is too small, the sound resistance may be deteriorated.
 (補強材)
 圧縮層は、圧縮層の機械的強度を向上させるために、補強材を含んでいてもよい。補強材には、慣用の充填剤及び補強繊維などが含まれる。
(Reinforcing material)
The compression layer may include a reinforcing material in order to improve the mechanical strength of the compression layer. Reinforcing materials include conventional fillers and reinforcing fibers.
 充填剤としては、例えば、炭素質材料(カーボンブラック、グラファイトなど)、金属化合物又は合成セラミックス(酸化カルシウム、酸化バリウム、酸化鉄、酸化銅、酸化チタン、酸化アルミニウムなどの金属酸化物、ケイ酸カルシウムやケイ酸アルミニウムなどの金属ケイ酸塩、炭化ケイ素や炭化タングステンなどの金属炭化物、窒化チタン、窒化アルミニウム、窒化ホウ素などの金属窒化物、炭酸マグネシウムや炭酸カルシウムなどの金属炭酸塩、硫酸カルシウムや硫酸バリウムなどの金属硫酸塩など)、鉱物質材料(ゼオライト、ケイソウ土、焼成珪成土、活性白土、アルミナ、シリカ、タルク、マイカ、カオリン、セリサイト、ベントナイト、モンモリロナイト、スメクタイト、クレーなど)などが挙げられる。これらの充填剤は、単独で又は二種以上組み合わせて使用できる。充填剤の形状は、粒状、板状、不定形状などである。充填剤の個数平均一次粒径は、種類に応じて、10nm~10μm程度の範囲から適宜選択できる。これらの充填剤のうち、カーボンブラックなどの炭素質材料、シリカなどの鉱物質材料などが汎用され、カーボンブラックが好ましい。 Examples of the filler include carbonaceous materials (carbon black, graphite, etc.), metal compounds or synthetic ceramics (metal oxides such as calcium oxide, barium oxide, iron oxide, copper oxide, titanium oxide, aluminum oxide, calcium silicate) Metal silicates such as aluminum silicate, metal carbides such as silicon carbide and tungsten carbide, metal nitrides such as titanium nitride, aluminum nitride and boron nitride, metal carbonates such as magnesium carbonate and calcium carbonate, calcium sulfate and sulfuric acid Metal sulfates such as barium), mineral materials (zeolite, diatomaceous earth, calcined siliceous clay, activated clay, alumina, silica, talc, mica, kaolin, sericite, bentonite, montmorillonite, smectite, clay, etc.) Can be mentioned. These fillers can be used alone or in combination of two or more. The shape of the filler is granular, plate-like, or indefinite shape. The number average primary particle size of the filler can be appropriately selected from the range of about 10 nm to 10 μm depending on the type. Of these fillers, carbonaceous materials such as carbon black and mineral materials such as silica are widely used, and carbon black is preferred.
 カーボンブラックは、圧縮層を形成するゴム組成物の内部発熱を低く抑えて省燃費性を向上させるため、粒子径の大きいカーボンブラック、特にヨウ素吸着量が40mg/g以下の大粒子径カーボンブラックを含むのが好ましい。大粒子径カーボンブラックとしては、FEF、GPF、APF、SRF-LM、SRF-HMなどが例示できる。これらのカーボンブラックは単独で又は二種以上組み合わせて使用できる。大粒子径カーボンブラックの個数平均一次粒径は、例えば、40~200nm、好ましくは45~150nm、さらに好ましくは50~125nm程度であってもよい。 Carbon black has a large particle size, particularly a large particle size carbon black having an iodine adsorption of 40 mg / g or less in order to improve fuel economy by reducing internal heat generation of the rubber composition forming the compression layer. It is preferable to include. Examples of the large particle size carbon black include FEF, GPF, APF, SRF-LM, SRF-HM and the like. These carbon blacks can be used alone or in combination of two or more. The number average primary particle size of the large particle size carbon black may be, for example, about 40 to 200 nm, preferably about 45 to 150 nm, and more preferably about 50 to 125 nm.
 大粒子径カーボンブラックは補強効果が小さく耐摩耗性に劣るため、粒子径が小さく補強効果の高い小粒子径カーボンブラック(ヨウ素吸着量が40mg/gより高い)を併用するのが好ましい。粒子径の異なる少なくとも2種のカーボンブラックを用いることで、省燃費性(大粒子径カーボンブラックによる効果)と耐摩耗性(小粒子径カーボンブラックによる効果)とを両立させることができる。小粒子径カーボンブラックとしては、SAF、ISAF-HM、ISAF-LM、HAF-LS、HAF、HAF-HSなどが例示できる。これらのカーボンブラックは単独又は二種以上組み合わせて使用できる。小粒子径カーボンブラックの個数平均一次粒径は、40nm未満、例えば、5~38nm、好ましくは10~35nm、さらに好ましくは15~30nm程度であってもよい。 Since the large particle size carbon black has a small reinforcing effect and poor wear resistance, it is preferable to use a small particle size carbon black (iodine adsorption amount higher than 40 mg / g) having a small particle size and a high reinforcing effect. By using at least two types of carbon blacks having different particle diameters, it is possible to achieve both fuel economy (effects by large particle diameter carbon black) and wear resistance (effects by small particle diameter carbon black). Examples of the small particle size carbon black include SAF, ISAF-HM, ISAF-LM, HAF-LS, HAF, and HAF-HS. These carbon blacks can be used alone or in combination of two or more. The number average primary particle size of the small particle size carbon black may be less than 40 nm, for example, about 5 to 38 nm, preferably about 10 to 35 nm, and more preferably about 15 to 30 nm.
 なお、大粒子径カーボンブラックの平均粒子径と小粒子径カーボンブラックの平均粒子径との比率は、前者/後者=1.5/1~3/1、好ましくは1.7/1~2.7/1、さらに好ましくは1.8/1~2.5/1程度であってもよい。 The ratio between the average particle size of the large particle size carbon black and the average particle size of the small particle size carbon black is the former / the latter = 1.5 / 1 to 3/1, preferably 1.7 / 1 to 2. It may be about 7/1, more preferably about 1.8 / 1 to 2.5 / 1.
 また、大粒子径カーボンブラックと小粒子径カーボンブラックとの質量比率は、省燃費性と耐摩耗性とを両立可能な範囲、例えば、前者/後者=20/80~55/45、好ましくは25/75~50/50、さらに好ましくは30/70~50/50程度であってもよい。なお、カーボンブラックのうち、小粒子径カーボンブラックの割合が多すぎると、ゴム組成物(圧縮層)の内部発熱(tanδ)が大きくなって省燃費性が低下し、大粒子径カーボンブラックが多すぎると、補強不足により耐摩耗性が低下する。 The mass ratio of the large particle size carbon black and the small particle size carbon black is within a range where both fuel saving and wear resistance can be achieved, for example, the former / the latter = 20/80 to 55/45, preferably 25. / 75 to 50/50, more preferably about 30/70 to 50/50. If the proportion of carbon black with a small particle size is too large, the internal heat generation (tan δ) of the rubber composition (compressed layer) increases, resulting in a reduction in fuel consumption and a large amount of large particle size carbon black. If it is too high, the wear resistance is reduced due to insufficient reinforcement.
 補強繊維としては、例えば、ポリオレフィン系繊維(ポリエチレン繊維、ポリプロピレン繊維など)、ポリアミド繊維(ポリアミド6繊維、ポリアミド66繊維、ポリアミド46繊維、アラミド繊維など)、ポリエステル繊維[ポリエチレンテレフタレート(PET)繊維、ポリエチレンナフタレート(PEN)繊維などのC2-4アルキレンC6-14アリレート系繊維など]、ビニロン繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維などの合成繊維;綿、麻、羊毛などの天然繊維;炭素繊維などの無機繊維が例示できる。これらの繊維は、単独で又は二種以上組み合わせて使用できる。 Examples of reinforcing fibers include polyolefin fibers (polyethylene fibers, polypropylene fibers, etc.), polyamide fibers (polyamide 6 fibers, polyamide 66 fibers, polyamide 46 fibers, aramid fibers, etc.), polyester fibers (polyethylene terephthalate (PET) fibers, polyethylene). C 2-4 alkylene C 6-14 arylate fiber such as naphthalate (PEN) fiber], synthetic fiber such as vinylon fiber, polyparaphenylenebenzobisoxazole (PBO) fiber; natural fiber such as cotton, hemp, wool An inorganic fiber such as carbon fiber can be exemplified. These fibers can be used alone or in combination of two or more.
 これらの短繊維のうち、アラミド繊維などのポリアミド繊維、ポリエステル繊維、ビニロン繊維などから選択された少なくとも一種が好ましい。補強繊維はフィブリル化していてもよい。 Of these short fibers, at least one selected from polyamide fibers such as aramid fibers, polyester fibers, and vinylon fibers is preferable. The reinforcing fiber may be fibrillated.
 補強繊維は、通常、短繊維の形態で圧縮層に含有させてもよく、短繊維の平均長さは、例えば、0.1~20mm、好ましくは0.5~15mm、より好ましくは1~10mmであり、1~5mm(例えば、2~4mm)程度であってもよい。補強繊維の平均繊維径は、例えば1~100μm、好ましくは3~50μm、さらに好ましくは5~40μm(特に10~30μm)程度である。 The reinforcing fibers may be usually contained in the compressed layer in the form of short fibers, and the average length of the short fibers is, for example, 0.1 to 20 mm, preferably 0.5 to 15 mm, more preferably 1 to 10 mm. It may be about 1 to 5 mm (for example, 2 to 4 mm). The average fiber diameter of the reinforcing fibers is, for example, about 1 to 100 μm, preferably 3 to 50 μm, more preferably 5 to 40 μm (particularly 10 to 30 μm).
 補強材の割合は、ポリマー成分100質量部に対して40質量部以上であってもよく、例えば45~100質量部、好ましくは50~90質量部、さらに好ましくは55~80質量部(特に60~70質量部)程度である。本発明では、補強材の割合が多量でも、トルクロスを低減できる。 The proportion of the reinforcing material may be 40 parts by mass or more with respect to 100 parts by mass of the polymer component, for example, 45 to 100 parts by mass, preferably 50 to 90 parts by mass, more preferably 55 to 80 parts by mass (especially 60 parts by mass). (About 70 parts by mass). In the present invention, even if the ratio of the reinforcing material is large, the torcross can be reduced.
 充填剤の割合は、ポリマー成分100質量部に対して10質量部以上であってもよく、例えば20~100質量部、好ましくは30~90質量部、さらに好ましくは35~80質量部(特に40~70質量部)程度である。 The proportion of the filler may be 10 parts by mass or more with respect to 100 parts by mass of the polymer component, for example, 20 to 100 parts by mass, preferably 30 to 90 parts by mass, more preferably 35 to 80 parts by mass (particularly 40 parts by mass). (About 70 parts by mass).
 補強繊維の割合は、ポリマー成分100質量部に対して80質量部以下(例えば0~80質量部)であってもよく、例えば60質量部以下(例えば1~60質量部)、好ましくは50質量部以下(例えば5~50質量部)、さらに好ましくは40質量部以下(例えば10~40質量部)程度である。補強繊維の割合が多すぎると、トルクロスを低減できない虞がある。 The proportion of the reinforcing fiber may be 80 parts by mass or less (for example, 0 to 80 parts by mass) with respect to 100 parts by mass of the polymer component, for example, 60 parts by mass or less (for example, 1 to 60 parts by mass), preferably 50 parts by mass. Part or less (for example, 5 to 50 parts by mass), more preferably about 40 parts by mass or less (for example, 10 to 40 parts by mass). If the proportion of reinforcing fibers is too large, there is a possibility that the torque cross cannot be reduced.
 (他の添加剤又は配合剤)
 圧縮層は、必要により、慣用の添加剤又は配合剤を含んでいてもよい。配合剤としては、例えば、加硫剤又は架橋剤[例えば、オキシム類(キノンジオキシムなど)、グアニジン類(ジフェニルグアニジンなど)、金属酸化物(酸化マグネシウム、酸化亜鉛など)、有機過酸化物(ジアシルパーオキサイド、パーオキシエステル、ジアルキルパーオキサイドなど)など]、加硫助剤、加硫促進剤、加硫遅延剤、可塑剤、軟化剤(パラフィンオイル、ナフテン系オイルなどのオイル類など)、加工剤又は加工助剤(ステアリン酸、ステアリン酸金属塩、ワックス、パラフィンなど)、老化防止剤(芳香族アミン系、ベンズイミダゾール系老化防止剤など)、接着性改善剤[レゾルシン-ホルムアルデヒド共縮合物、ヘキサメトキシメチルメラミンなどのメラミン樹脂、これらの共縮合物(レゾルシン-メラミン-ホルムアルデヒド共縮合物など)など]、着色剤、粘着付与剤、カップリング剤(シランカップリング剤など)、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤など)、潤滑剤、難燃剤、帯電防止剤などが例示できる。これらの配合剤は単独又は二種以上組み合わせて使用でき、ポリマー成分の種類や用途、性能に応じて適宜選択して用いられる。
(Other additives or compounding agents)
The compression layer may contain a conventional additive or compounding agent as necessary. Examples of the compounding agent include a vulcanizing agent or a crosslinking agent [for example, oximes (such as quinonedioxime), guanidines (such as diphenylguanidine), metal oxides (such as magnesium oxide and zinc oxide), and organic peroxides (such as Diacyl peroxide, peroxy ester, dialkyl peroxide, etc.)], vulcanization aid, vulcanization accelerator, vulcanization retarder, plasticizer, softener (oils such as paraffin oil and naphthenic oil), Processing agents or processing aids (stearic acid, stearic acid metal salts, waxes, paraffins, etc.), anti-aging agents (aromatic amines, benzimidazole anti-aging agents, etc.), adhesion improvers (resorcin-formaldehyde cocondensates) , Melamine resins such as hexamethoxymethylmelamine, co-condensates thereof (resorcin-melamine-e Mualdehyde co-condensate, etc.), colorants, tackifiers, coupling agents (silane coupling agents, etc.), stabilizers (antioxidants, UV absorbers, heat stabilizers, etc.), lubricants, flame retardants, An antistatic agent etc. can be illustrated. These compounding agents can be used singly or in combination of two or more, and are appropriately selected and used according to the kind, application and performance of the polymer component.
 本発明では、ポリビニルアルコール系樹脂により、被水時の摩擦伝動面に均一な水膜を形成できる。そのため、トルクロスの低減効果の点から、圧縮層はポリビニルアルコール系樹脂以外の界面活性剤を実質的に含んでいないのが好ましく、ポリビニルアルコール系樹脂以外の界面活性剤の割合は、圧縮層を形成するゴム組成物全体に対して10質量%以下(特に1質量%以下)であってもよく、実質的に(不可避的不純物を除き)ポリビニルアルコール系樹脂以外の界面活性剤を含まないのが特に好ましい。 In the present invention, the polyvinyl alcohol resin can form a uniform water film on the frictional transmission surface when wet. Therefore, from the viewpoint of the effect of reducing torcross, it is preferable that the compression layer substantially does not contain a surfactant other than the polyvinyl alcohol resin, and the ratio of the surfactant other than the polyvinyl alcohol resin forms the compression layer. It may be 10% by mass or less (especially 1% by mass or less) with respect to the entire rubber composition, and is substantially free of surfactants other than polyvinyl alcohol resin (except for inevitable impurities). preferable.
 (圧縮層内部の損失正接)
 本発明の圧縮層は、内部の損失正接又は誘電正接(tanδ)が低いことが好ましい。損失正接(tanδ)とは、損失弾性率(E”)を貯蔵弾性率(E’)で除したものであり、振動1サイクルの間に熱として散逸(ロス)されるエネルギーと貯蔵される最大エネルギーとの比として表され、エネルギー損失の尺度となる。すなわち、tanδにより、圧縮層に加えられる振動エネルギーが熱として散逸される指標を数値化して表すことができる。従って、tanδが小さいほど散逸される熱は小さい(すなわち、内部発熱が小さくなり省燃費性が向上する)。本発明の好ましい態様では、ベルトが通常走行する温度(例えば、40~120℃の温度範囲)におけるtanδに着目し、このtanδを低く設定している。具体的には、例えば、40℃及び周波数10Hzでの圧縮層のtanδは、省燃費性を向上させるため、0.08~0.17程度の範囲から選択でき、例えば0.09~0.165、好ましくは0.095~0.16、さらに好ましくは0.1~0.15(特に0.1~0.13)程度である。
(Loss tangent inside the compression layer)
The compression layer of the present invention preferably has a low internal loss tangent or dielectric loss tangent (tan δ). The loss tangent (tan δ) is obtained by dividing the loss elastic modulus (E ″) by the storage elastic modulus (E ′), and the maximum energy stored as energy dissipated (lost) as heat during one vibration cycle. Expressed as a ratio to energy, it is a measure of energy loss, that is, tan δ can be expressed numerically as an index by which vibration energy applied to the compressed layer is dissipated as heat. In the preferred embodiment of the present invention, attention is paid to tan δ at a temperature at which the belt normally travels (for example, a temperature range of 40 to 120 ° C.). Specifically, for example, tan δ of the compression layer at 40 ° C. and a frequency of 10 Hz is 0.0% in order to improve fuel efficiency. The range can be selected from about 8 to 0.17, for example, 0.09 to 0.165, preferably 0.095 to 0.16, more preferably 0.1 to 0.15 (particularly 0.1 to 0.13). )
 [表層]
 本発明の摩擦伝動ベルトは、圧縮層が、前記伝動面の表面にポリビニルアルコール系樹脂を含む表層を有していても良い。ポリビニルアルコール系樹脂は水溶性であり、圧縮層の表面において、表層として存在することにより、圧縮層の摩擦伝動面の水に対する濡れ性(ゴムと水との親和性)を向上できる。
[Surface]
In the friction transmission belt of the present invention, the compression layer may have a surface layer containing a polyvinyl alcohol-based resin on the surface of the transmission surface. The polyvinyl alcohol-based resin is water-soluble, and can exist on the surface of the compression layer as a surface layer to improve wettability (affinity between rubber and water) of the friction transmission surface of the compression layer with respect to water.
 表層は、プーリと接触可能な伝動面に積層されていればよいが、生産性などの点から、圧縮ゴム層の表面全体(露出した表面全体)に積層されていてもよい。 The surface layer may be laminated on the transmission surface that can come into contact with the pulley, but may be laminated on the entire surface of the compressed rubber layer (entire exposed surface) from the viewpoint of productivity.
 表層は、前述のポリビニルアルコール系樹脂を含んでいればよいが、ポリビニルアルコール系樹脂で形成された表層(単一層)と、ポリビニルアルコール系樹脂及びポリマー成分を含むゴム組成物で形成された表層(複合層)とに大別できる。 The surface layer should just contain the above-mentioned polyvinyl alcohol-type resin, but the surface layer (single layer) formed with the polyvinyl alcohol-type resin and the surface layer (with the rubber composition containing a polyvinyl alcohol-type resin and a polymer component ( It can be roughly divided into a composite layer.
 複合層におけるポリマー成分としては、前述のものが挙げられる。また、複合層中ではポリビニルアルコール系樹脂は粒子の形態で存在してもよい。ポリビニルアルコール系樹脂が粒子の形態で存在する場合、伝動面で前記粒子を略均一に分散して突出せずに露出できる。さらに、複合層中において、ポリビニルアルコール系樹脂粒子の分散形態は、特に限定されず、複合層の表面に一部が露出した粒子と複合層中に完全に埋没した粒子とが混在して略均一に分散した形態であってもよく、複合層の表面に一部が露出した粒子のみが略均一に分散した形態であってもよい。前者の分散形態は、予め粒子を分散させたゴム組成物をシート化することにより容易に調製でき、後者の分散形態は、圧縮層の表面に粒子を部分的に付着させることにより容易に調製できる。 Examples of the polymer component in the composite layer include those described above. In the composite layer, the polyvinyl alcohol resin may be present in the form of particles. When the polyvinyl alcohol resin is present in the form of particles, the particles can be substantially uniformly dispersed on the transmission surface and exposed without protruding. Furthermore, in the composite layer, the dispersion form of the polyvinyl alcohol-based resin particles is not particularly limited, and the particles partially exposed on the surface of the composite layer and the particles completely embedded in the composite layer are mixed and substantially uniform. It may be in a dispersed form, or may be in a form in which only particles partially exposed on the surface of the composite layer are dispersed substantially uniformly. The former dispersion form can be easily prepared by forming a rubber composition in which particles are dispersed in advance, and the latter dispersion form can be easily prepared by partially attaching the particles to the surface of the compression layer. .
 本発明では、表層がポリビニルアルコール系樹脂を含むため、圧縮層の内部層は、ポリビニルアルコール系樹脂を含む必要はない。すなわち本発明の圧縮層は、表層のみにポリビニルアルコール系樹脂を含んでいてもよい。圧縮層の内部層がポリビニルアルコール系樹脂を含む場合、圧縮層の力学特性を維持できる点から、表層よりも低濃度でポリビニルアルコール系樹脂を含むのが好ましい。 In the present invention, since the surface layer includes a polyvinyl alcohol-based resin, the inner layer of the compression layer does not need to include a polyvinyl alcohol-based resin. That is, the compressed layer of the present invention may contain a polyvinyl alcohol resin only in the surface layer. When the inner layer of the compression layer includes a polyvinyl alcohol resin, it is preferable that the polyvinyl alcohol resin is included at a lower concentration than the surface layer from the viewpoint that the mechanical properties of the compression layer can be maintained.
 なお、表層は、前述の補強材や他の添加材、配合剤を適宜含んでいてよい。 In addition, the surface layer may appropriately contain the above-described reinforcing material, other additives, and compounding agents.
 (表層の厚み)
 表層の厚み(平均厚み)は1~1500μm程度から選択でき、単一層の場合、例えば1~500μm、好ましくは5~300μm、さらに好ましくは10~150μm程度であり、複合層の場合、例えば100~1500μm、好ましくは150~800μm、さらに好ましくは200~600μm程度である。表層の厚みが薄すぎると、耐発音性を向上する効果が低下する虞があり、耐発音性の耐久性も低下する虞がある。一方、表層の厚みが厚すぎると、圧縮層の力学特性が低下する虞がある。
(Surface thickness)
The thickness (average thickness) of the surface layer can be selected from about 1 to 1500 μm. In the case of a single layer, for example, it is about 1 to 500 μm, preferably about 5 to 300 μm, more preferably about 10 to 150 μm. The thickness is 1500 μm, preferably 150 to 800 μm, more preferably about 200 to 600 μm. If the thickness of the surface layer is too thin, the effect of improving sound resistance may be reduced, and the durability of sound resistance may also be reduced. On the other hand, if the surface layer is too thick, the mechanical properties of the compression layer may be reduced.
 本発明では、表層の平均厚みは、走査型電子顕微鏡を用いて、摩擦伝動ベルトの圧縮層部分の断面を観察して測定し、ポリビニルアルコール系樹脂を含む表層について10箇所の平均値を算出することにより求めた。 In the present invention, the average thickness of the surface layer is measured by observing the cross section of the compression layer portion of the friction transmission belt using a scanning electron microscope, and the average value of 10 positions is calculated for the surface layer containing the polyvinyl alcohol-based resin. Was determined by
 [ベルトの製造方法]
 本発明の摩擦伝動ベルトの製造方法は特に制限されず、公知又は慣用の方法が採用できる。例えば、圧縮層と、芯体が埋設された接着層と、伸張層とを、それぞれ未加硫ゴム組成物で形成して積層し、この積層体を成形型で筒状に成形し、加硫してスリーブを成形し、この加硫スリーブを所定幅にカッティングすることにより形成できる。より詳細には、以下の方法でVリブドベルトを製造できる。
[Belt manufacturing method]
The production method of the friction transmission belt of the present invention is not particularly limited, and a known or conventional method can be adopted. For example, a compression layer, an adhesive layer in which a core body is embedded, and an extension layer are formed and laminated with an unvulcanized rubber composition, and the laminate is molded into a cylindrical shape with a molding die and vulcanized. Then, the sleeve can be formed and formed by cutting the vulcanized sleeve to a predetermined width. More specifically, the V-ribbed belt can be manufactured by the following method.
 (第1の製造方法)
 先ず、表面が平滑な円筒状の成形モールドに伸張層用シートを巻きつけ、このシート上に芯体を形成する心線(撚りコードなど)を螺旋状にスピニングし、さらに接着層用シート、圧縮層用シートを順次巻き付けて成形体を作製する。その後、加硫用ジャケットを成形体の上から被せて金型(成形型)を加硫缶内に収容し、所定の加硫条件で加硫した後、成形モールドから脱型して筒状の加硫ゴムスリーブを得る。そして、この加硫ゴムスリーブの外表面(圧縮層)を研削ホイールにより研磨して複数のリブを形成した後、カッターを用いてこの加硫ゴムスリーブをベルト長手方向に所定の幅にカットしてVリブドベルトに仕上げる。なお、カットしたベルトを反転させることにより、内周面にリブ部を有する圧縮層を備えたVリブドベルトが得られる。
(First manufacturing method)
First, a stretch layer sheet is wound around a cylindrical mold having a smooth surface, and a core wire (twisted cord, etc.) that forms a core is spirally spun onto the sheet, and further, an adhesive layer sheet, compressed A layered sheet is sequentially wound to produce a molded body. Thereafter, a jacket for vulcanization is placed on the molded body, the mold (molding die) is accommodated in a vulcanizing can, vulcanized under predetermined vulcanization conditions, and then removed from the molding mold to form a cylindrical shape. A vulcanized rubber sleeve is obtained. Then, the outer surface (compression layer) of the vulcanized rubber sleeve is polished by a grinding wheel to form a plurality of ribs, and then the vulcanized rubber sleeve is cut to a predetermined width in the belt longitudinal direction using a cutter. Finish in a V-ribbed belt. By reversing the cut belt, a V-ribbed belt provided with a compression layer having a rib portion on the inner peripheral surface can be obtained.
 (第2の製造方法)
 先ず、内型として外周面に可撓性ジャケットを装着した円筒状内型を用い、外周面の可撓性ジャケットに未加硫の伸張層用シートを巻きつけ、このシート上に芯体を形成する心線を螺旋状にスピニングし、さらに未加硫の圧縮層用シートを巻き付けて積層体を作製する。次に、前記内型に装着可能な外型として、内周面に複数のリブ型が刻設された筒状外型を用い、この外型内に、前記積層体が巻き付けられた内型を、同心円状に設置する。その後、可撓性ジャケットを外型の内周面(リブ型)に向かって膨張させて積層体(圧縮層)をリブ型に圧入し、加硫する。そして、外型より内型を抜き取り、複数のリブを有する加硫ゴムスリーブを外型から脱型した後、カッターを用いて、加硫ゴムスリーブをベルト長手方向に所定の幅にカットしてVリブドベルトに仕上げる。この第2の製造方法では、伸張層、芯体、圧縮層を備えた積層体を一度に膨張させて複数のリブを有するスリーブ(又はVリブドベルト)に仕上げることができる。
(Second manufacturing method)
First, a cylindrical inner mold with a flexible jacket attached to the outer peripheral surface is used as the inner mold, and an unvulcanized stretch layer sheet is wound around the outer peripheral flexible jacket, and a core is formed on the sheet. A core is spun into a spiral shape, and an unvulcanized compressed layer sheet is wound around to produce a laminate. Next, as an outer mold that can be attached to the inner mold, a cylindrical outer mold in which a plurality of rib molds are engraved on the inner peripheral surface is used, and an inner mold in which the laminate is wound is provided in the outer mold. Install concentrically. Thereafter, the flexible jacket is expanded toward the inner peripheral surface (rib type) of the outer mold, and the laminate (compressed layer) is pressed into the rib mold and vulcanized. Then, after extracting the inner mold from the outer mold and removing the vulcanized rubber sleeve having a plurality of ribs from the outer mold, the vulcanized rubber sleeve is cut to a predetermined width in the longitudinal direction of the belt using a cutter. Finish the ribbed belt. In the second manufacturing method, a laminated body including a stretch layer, a core body, and a compression layer can be expanded at a time to be finished into a sleeve (or a V-ribbed belt) having a plurality of ribs.
 (第3の製造方法)
 第2の製造方法に関連して、例えば、特開2004-82702号公報に開示される方法(圧縮層のみを膨張させて予備成形体(半加硫状態)とし、次いで伸張層と芯体とを膨張させて前記予備成形体に圧着し、加硫一体化してVリブドベルトに仕上げる方法)を採用してもよい。
(Third production method)
In relation to the second manufacturing method, for example, the method disclosed in JP-A-2004-82702 (only the compression layer is expanded to form a preform (semi-vulcanized state), and then the stretch layer, the core body, May be expanded and pressure-bonded to the preform, and vulcanized and integrated into a V-ribbed belt).
 これらの製造方法のうち、圧縮層を研磨して摩擦伝動面に短繊維を十分に突出可能な第1の製造方法が好ましい。なお、第2及び第3の製造方法では、圧縮層をリブ型に圧入してリブを形成するため、ポリビニルアルコール系樹脂の露出量が少なくなるが、これらの方法で形成された圧縮層の伝動面を研磨又は研削してポリビニルアルコール系樹脂を露出させてもよい。 Of these production methods, the first production method is preferable, in which the compressed layer can be polished to sufficiently protrude the short fibers on the friction transmission surface. In the second and third manufacturing methods, the compression layer is press-fitted into the rib mold to form the rib, so that the exposure amount of the polyvinyl alcohol resin is reduced. However, the transmission of the compression layer formed by these methods is reduced. The surface may be polished or ground to expose the polyvinyl alcohol-based resin.
 圧縮層がポリビニルアルコール系樹脂を含む表層を有する場合、摩擦伝動ベルトの製造方法は、円筒状ドラムに未加硫ゴムシートを巻き付ける圧縮層巻付工程、及び前記未加硫ゴムシートを金型に押し付けて加硫する加硫成形工程を含む方法を採用でき、前記圧縮層巻付工程及び前記加硫成形工程のいずれかの工程で表層を形成することができる。 When the compression layer has a surface layer containing a polyvinyl alcohol-based resin, the friction transmission belt manufacturing method includes a compression layer winding step of winding an unvulcanized rubber sheet around a cylindrical drum, and the unvulcanized rubber sheet as a mold. A method including a vulcanization molding step of pressing and vulcanizing can be employed, and a surface layer can be formed in any one of the compression layer winding step and the vulcanization molding step.
 表層を形成する方法以外は、金型で成形する方法であれば、特に限定されず、慣用の方法を利用できる。慣用の方法としては、例えば、円筒状ドラムに心線を巻き付ける心線スピニング工程、巻き付けた心線の上に、未加硫ゴムシートを巻き付ける圧縮層巻付工程、前記心線及び前記未加硫ゴムシートを金型に押し付けて(金型で押圧して)加硫する加硫成形工程を含む方法を利用でき、伸張層や接着層を形成する場合は、心線スピニング工程の前工程として、円筒状の成形ドラムに装着された可撓性ジャケット(ブラダー)の上に、伸張層(ゴムシート又は補強布)を構成する部材、必要に応じて接着層を形成するゴムシートを巻き付ける工程を含んでいてもよく、巻き付けた部材の上さらに心線を螺旋状にスピニングしてもよい。具体的には前述の第2の製造方法や第3の製造方法が挙げられる。 Other than the method of forming the surface layer, any conventional method can be used without particular limitation as long as it is a method of forming with a mold. Conventional methods include, for example, a core spinning process for winding a core wire around a cylindrical drum, a compression layer winding step for winding an unvulcanized rubber sheet on the wound core wire, the core wire and the unvulcanized A method including a vulcanization molding process in which a rubber sheet is pressed against a mold (pressed with a mold) and vulcanized can be used. When forming an extension layer or an adhesive layer, as a pre-process of the core spinning process, A step of winding a member constituting a stretch layer (rubber sheet or reinforcing cloth) and a rubber sheet forming an adhesive layer as necessary on a flexible jacket (bladder) mounted on a cylindrical molding drum The core wire may be further spirally spun on the wound member. Specifically, the above-described second manufacturing method and third manufacturing method can be mentioned.
 表層を形成する方法は、このような慣用の方法において、圧縮層巻付工程及び加硫成形工程のいずれかの工程に組み込むことができ、例えば、(1)圧縮層巻付工程において、未加硫ゴムシートとして、表層を形成するための未加硫ゴム層(ゴム組成物)と圧縮層を形成するための未加硫ゴム層との積層シートを用いる方法、(2)圧縮層巻付工程において、未加硫ゴムシートとして、圧縮層を形成するための未加硫ゴムシートの表面にポリビニルアルコール系樹脂粒子を塗布したシートを用いる方法、(3)加硫成形工程において、金型として、未加硫ゴムシートとの接触面にポリビニルアルコール系樹脂を塗布した金型を用いる方法などが挙げられる。 The method for forming the surface layer can be incorporated into any one of the compression layer winding step and the vulcanization molding step in such a conventional method. For example, (1) in the compression layer winding step, A method using a laminated sheet of an unvulcanized rubber layer (rubber composition) for forming a surface layer and an unvulcanized rubber layer for forming a compression layer as a vulcanized rubber sheet, (2) a compression layer winding step In the method of using a sheet in which polyvinyl alcohol resin particles are applied to the surface of an unvulcanized rubber sheet for forming a compression layer as an unvulcanized rubber sheet, (3) In the vulcanization molding step, as a mold, Examples thereof include a method using a mold in which a polyvinyl alcohol resin is applied to the contact surface with the unvulcanized rubber sheet.
 方法(1)において、積層シートの作製方法は、特に限定されず、慣用の方法を利用でき、例えば、圧延などにより別個に作製した各々の未加硫シートを積層してもよく、共押出で成形した積層シートであってもよい。方法(1)では、通常、ポリビニルアルコール系樹脂を含むゴム組成物で表層を作製できるため、表面に一部が露出した粒子と層中に完全に埋没した粒子とが混在して略均一に分散した形態を有する複合層を容易に形成できる。 In the method (1), the production method of the laminated sheet is not particularly limited, and a conventional method can be used. For example, each unvulcanized sheet produced separately by rolling or the like may be laminated, It may be a molded laminated sheet. In the method (1), since the surface layer can be usually produced with a rubber composition containing a polyvinyl alcohol-based resin, particles partially exposed on the surface and particles completely buried in the layer are mixed and dispersed almost uniformly. A composite layer having the above shape can be easily formed.
 方法(2)及び(3)において、ポリビニルアルコール系樹脂は、樹脂(樹脂粒子)自体を塗布又は付着させてもよく、溶媒中に樹脂(樹脂粒子)を分散させた液状組成物を塗布してもよい。 In the methods (2) and (3), the polyvinyl alcohol-based resin may be applied or adhered to the resin (resin particles) itself, or a liquid composition in which the resin (resin particles) is dispersed in a solvent. Also good.
 塗布方法としては、慣用の方法、例えば、コーター法、流延法、ディップ法、スプレー法、スピナー法などが挙げられる。これらの方法のうち、コーター法やスプレー法などが汎用される。なお、必要であれば、塗布液は複数回に亘り塗布してもよい。 Application methods include conventional methods such as coater method, casting method, dipping method, spray method, spinner method and the like. Of these methods, the coater method and the spray method are widely used. If necessary, the coating solution may be applied a plurality of times.
 液状組成物を構成する溶媒としては、例えば、水、アルコール類(例えば、エタノール、イソプロパノールなどのアルカノール類など)、炭化水素類(例えば、トルエン、キシレンなどの芳香族炭化水素類)、エーテル類(例えば、ジエチルエーテルなどの鎖状エーテル;ジオキサン、テトラヒドロフランなどの環状エーテル)、ケトン類(例えば、アセトン、メチルエチルケトンなどの鎖状ケトン;シクロヘキサノンなどの環状ケトン)、エステル類(例えば、酢酸エチルなどの酢酸エステル)、セロソルブ類(メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなど)、カルビトール類などの汎用の溶媒が挙げられる。これらの溶媒は、単独で又は混合溶媒としてもよい。これらの溶媒は用途に応じて選択でき、例えば、水及び/又はアルコール類を用いて、均一な単一層を形成してもよく、他の溶媒を用いて、粒子形状を維持した複合層を形成してもよい。 Examples of the solvent constituting the liquid composition include water, alcohols (for example, alkanols such as ethanol and isopropanol), hydrocarbons (for example, aromatic hydrocarbons such as toluene and xylene), ethers ( For example, chain ethers such as diethyl ether; cyclic ethers such as dioxane and tetrahydrofuran), ketones (for example, chain ketones such as acetone and methyl ethyl ketone; cyclic ketones such as cyclohexanone), esters (for example, acetic acid such as ethyl acetate) Ester), cellosolves (methyl cellosolve, ethyl cellosolve, butyl cellosolve, etc.), and general-purpose solvents such as carbitols. These solvents may be used alone or as a mixed solvent. These solvents can be selected depending on the application. For example, water and / or alcohols may be used to form a uniform single layer, or other solvents may be used to form a composite layer that maintains the particle shape. May be.
 方法(2)及び(3)では、塗布厚みや液状組成物の固形分濃度を大きくすることにより、単一層を容易に形成でき、樹脂(樹脂粒子)自体を伝動面に部分的に散布したり、液状組成物の固形分濃度を小さくすることにより、表面に一部が露出した樹脂粒子のみが略均一に分散した形態を有する複合層を容易に形成できる。 In the methods (2) and (3), by increasing the coating thickness and the solid content concentration of the liquid composition, a single layer can be easily formed, and the resin (resin particles) itself can be partially dispersed on the transmission surface. By reducing the solid content concentration of the liquid composition, it is possible to easily form a composite layer having a form in which only resin particles partially exposed on the surface are dispersed substantially uniformly.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例で用いた圧縮層の材料の詳細と、測定した評価項目の評価方法を以下に示す。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In addition, the detail of the material of the compression layer used in the Example and the evaluation method of the measured evaluation item are shown below.
 [圧縮層の材料]
 EPDM:三井化学(株)製「EPT2060M」
 PVA-A:ポリビニルアルコール完全ケン化品、ケン化度98.7~99.7モル%、粘度平均重合度1700、電気化学工業(株)製「デンカポバールK-17C」
 PVA-B:ポリビニルアルコール部分ケン化品、ケン化度86.5~89.5モル%、粘度平均重合度600、電気化学工業(株)製「デンカポバールB-05S」
 PVA-C:ポリビニルアルコール疎水基変性品、ケン化度93.0~97.0モル%、粘度平均重合度1700、疎水基の種類:アルキル基、電気化学工業(株)製「デンカポバールF-300S」
 PVA-D:ポリビニルアルコール完全ケン化品、ケン化度99モル%以上、粘度平均重合度1700、電気化学工業(株)製「デンカポバールK-177」
 超高分子量ポリエチレン(PE):ヘキサインダストリー社製「GUR4150」、平均粒径80μm、融点135℃
 フッ素樹脂(PTFE):旭硝子(株)製「フルオンG190」、平均粒径25μm
 ステアリン酸:日油(株)製「ステアリン酸つばき」
 酸化亜鉛:正同化学工業(株)製「酸化亜鉛3種」
 界面活性剤:ポリオキシアルキレンアルキルエーテル、日本乳化剤(株)製「ニューコール2308-LY」
 カーボンブラックHAF:東海カーボン(株)製「シースト3」、平均粒径28nm
 カーボンブラックGPF:東海カーボン(株)製「シーストV」、平均粒径62nm
 タルク:富士タルク工業(株)製「RL217」、メディアン径20μm
 ナイロン短繊維:66ナイロン、平均繊維径27μm、平均繊維長3mm
 綿短繊維:デニム、平均繊維径13μm、平均繊維長6mm
 ビニロン短繊維:平均繊維径26μm、平均繊維長6mm
 有機過酸化物:ジクミルパーオキサイド
 共架橋剤:ジベンゾイル・キノンジオキシム、大内新興化学工業(株)製「バルノックDMG」
 老化防止剤A:ジフェニルアミン系老化防止剤(大内新興化学工業(株)製「ノクラックCD」)
 老化防止剤B:メルカプトベンゾイミダゾール系老化防止剤(大内新興化学工業(株)製「ノクラックMB」)。
 軟化剤(パラフィンオイル):出光興産(株)製「ダイアナプロセスオイル」
 有機過酸化物:ジクミルパーオキサイド。
[Compression layer material]
EPDM: “EPT2060M” manufactured by Mitsui Chemicals, Inc.
PVA-A: Completely saponified product of polyvinyl alcohol, saponification degree 98.7 to 99.7 mol%, viscosity average polymerization degree 1700, Denkapoval K-17C manufactured by Denki Kagaku Kogyo Co., Ltd.
PVA-B: partially saponified polyvinyl alcohol, degree of saponification of 86.5 to 89.5 mol%, viscosity average polymerization degree of 600, “Denkapoval B-05S” manufactured by Denki Kagaku Kogyo Co., Ltd.
PVA-C: polyvinyl alcohol hydrophobic group-modified product, saponification degree 93.0 to 97.0 mol%, viscosity average polymerization degree 1700, type of hydrophobic group: alkyl group, Denkapoval F- manufactured by Denki Kagaku Kogyo Co., Ltd. 300S "
PVA-D: Completely saponified product of polyvinyl alcohol, saponification degree 99 mol% or more, viscosity average polymerization degree 1700, Denkapoval K-177 manufactured by Denki Kagaku Kogyo Co., Ltd.
Ultra high molecular weight polyethylene (PE): “GUR4150” manufactured by Hexa Industry, average particle size of 80 μm, melting point of 135 ° C.
Fluororesin (PTFE): “Fluon G190” manufactured by Asahi Glass Co., Ltd., average particle size 25 μm
Stearic acid: Tsubaki stearic acid manufactured by NOF Corporation
Zinc oxide: “Zinc oxide 3 types” manufactured by Shodo Chemical Industry Co., Ltd.
Surfactant: Polyoxyalkylene alkyl ether, “New Coal 2308-LY” manufactured by Nippon Emulsifier Co., Ltd.
Carbon black HAF: “Seast 3” manufactured by Tokai Carbon Co., Ltd., average particle size 28 nm
Carbon Black GPF: “Seast V” manufactured by Tokai Carbon Co., Ltd., average particle size 62 nm
Talc: “RL217” manufactured by Fuji Talc Kogyo Co., Ltd., median diameter 20 μm
Nylon short fiber: 66 nylon, average fiber diameter 27 μm, average fiber length 3 mm
Cotton short fiber: Denim, average fiber diameter 13μm, average fiber length 6mm
Vinylon short fibers: average fiber diameter 26 μm, average fiber length 6 mm
Organic peroxide: Dicumyl peroxide Co-crosslinking agent: Dibenzoyl quinone dioxime, “Barunok DMG” manufactured by Ouchi Shinsei Chemical Co., Ltd.
Anti-aging agent A: Diphenylamine-based anti-aging agent (“NOCRACK CD” manufactured by Ouchi Shinsei Chemical Co., Ltd.)
Anti-aging agent B: Mercaptobenzimidazole type anti-aging agent (“NOCRACK MB” manufactured by Ouchi Shinsei Chemical Co., Ltd.).
Softener (paraffin oil): “Diana Process Oil” manufactured by Idemitsu Kosan Co., Ltd.
Organic peroxide: Dicumyl peroxide.
 [ウイリアム摩耗量]
 加硫ゴムシートを用いて、JIS K6264(1993)に準じて測定した。
[William wear]
It measured according to JISK6264 (1993) using the vulcanized rubber sheet.
 [粘弾性(tanδ)]
 加硫ゴムシートから試験片を採取し、試験片とした。試験片は厚さ2.0mm、幅4.0mm、長さは40mmである。そして、粘弾性測定装置(上島製作所製「VR-7121」)のチャックに、チャック間距離15mmで試験片をチャックして固定し、初期歪(静的歪)2.0%を与え、周波数10Hz、動的歪1.0%(すなわち、前記初期歪2.0%を中心位置又は基準位置として長手方向に±1.0%の歪みを付与しつつ)、昇温速度1℃/分で25℃、40℃、100℃でのtanδ(損失正接)を求めた。
[Viscoelasticity (tan δ)]
A test piece was collected from the vulcanized rubber sheet and used as a test piece. The test piece has a thickness of 2.0 mm, a width of 4.0 mm, and a length of 40 mm. Then, the test piece was chucked and fixed to the chuck of the viscoelasticity measuring apparatus (“VR-7121” manufactured by Ueshima Seisakusho Co., Ltd.) with a distance between chucks of 15 mm, giving an initial strain (static strain) of 2.0%, and a frequency of 10 Hz. Dynamic strain of 1.0% (that is, while applying a strain of ± 1.0% in the longitudinal direction with the initial strain of 2.0% as a central position or a reference position), 25 at a heating rate of 1 ° C./min The tan δ (loss tangent) at 40 ° C., 100 ° C. was determined.
 [接触角]
 加硫ゴムシートの表面と水との接触角θ(水滴の接線と表面とがなす角)は、図3に示すように、表面に水を滴下した水滴の投影写真から、θ/2法を用いて以下の式より求めることができる。
[Contact angle]
As shown in FIG. 3, the contact angle θ between the surface of the vulcanized rubber sheet and water (the angle formed by the tangent of the water droplet and the surface) is calculated using the θ / 2 method from a projection photograph of water droplets dropped on the surface. And can be obtained from the following equation.
   θ=2θ …(1)
   tanθ=h/r → θ=tan-1(h/r) …(2)
(式中、θは、表面に対して、水滴の端点(図3では左端点)と頂点とを結ぶ直線の角度であり、hは水滴の高さ、rは水滴の半径を示す。)
 式(2)を式(1)に代入して、以下の式(3)が得られる。
θ = 2θ 1 (1)
tan θ 1 = h / r → θ 1 = tan −1 (h / r) (2)
(In the formula, θ 1 is the angle of a straight line connecting the end point (left end point in FIG. 3) and the apex of the water drop to the surface, h is the height of the water drop, and r is the radius of the water drop.)
By substituting equation (2) into equation (1), the following equation (3) is obtained.
   θ=2tan-1(h/r) …(3)
 接触角の測定は、全自動接触角計(協和界面科学(株)製「CA-W型」)を用いて滴下した水滴の投影写真からrとhを測定し、式(3)を用いて算出した。測定は滴下直後(1秒後)及び60秒後の接触角を算出した。接触角θが小さいほど表面は水との親和性に優れている。
θ = 2 tan −1 (h / r) (3)
The contact angle is measured by measuring r and h from the projected photograph of the dropped water using a fully automatic contact angle meter (“CA-W type” manufactured by Kyowa Interface Science Co., Ltd.), and using equation (3). Calculated. The measurement calculated the contact angle immediately after dropping (after 1 second) and after 60 seconds. The smaller the contact angle θ, the better the surface has affinity with water.
 [摩擦係数]
 加硫ゴムシートから直径8mm×厚さ2mmの円板状試験片を採取し、ピンオンディスク摩擦係数測定装置を用いて、摩擦力を測定し、摩擦係数を算出した。詳しくは、表面粗さRaが0.8μmである相手材(SUS304)により荷重2.192kgf/cmで試験片を押し付けて、30ml/分の水量で測定するときのみ試験片に水をかけて注水しながら、摩擦速度0~2.0m/秒で摩擦力を測定し、摩擦速度(相手材に対する滑り速度)に対する摩擦係数の曲線の傾き(μ-V特性)を最小二乗法により算出した。なお、この傾きは、滑り速度に対する摩擦係数の変化を表す。
[Coefficient of friction]
A disk-shaped test piece having a diameter of 8 mm and a thickness of 2 mm was collected from the vulcanized rubber sheet, and the frictional force was measured using a pin-on-disk friction coefficient measuring device to calculate the friction coefficient. Specifically, the test piece is pressed with a load of 2.192 kgf / cm 2 with a counterpart material (SUS304) having a surface roughness Ra of 0.8 μm, and water is applied to the test piece only when measuring at a water volume of 30 ml / min. Friction force was measured at a friction speed of 0 to 2.0 m / sec while pouring water, and the slope of the coefficient of friction curve (μ-V characteristic) with respect to the friction speed (sliding speed with respect to the counterpart material) was calculated by the method of least squares. In addition, this inclination represents the change of the friction coefficient with respect to the sliding speed.
 [6%スリップ摩耗]
 駆動プーリ(直径80mm)、従動プーリ(直径80mm)、テンションプーリ(直径120mm)を順に配置した試験機の各プーリにVリブドベルトを掛架し、ベルトのテンションプーリへの巻き付け角度を90°とし、室温条件下で、駆動プーリの回転数を3000rpm、従動プーリのトルクを9.8N・m、ベルトスリップ率が6%となるようベルト張力を自動調整しながら24時間走行させた。そして、走行試験前後のベルト重量を測定し、ベルト重量減量(走行前ベルト重量-走行後ベルト重量)を走行前ベルト重量で除したものを、摩耗率として算出した。
[6% slip wear]
A V-ribbed belt is hung on each pulley of a testing machine in which a driving pulley (diameter 80 mm), a driven pulley (diameter 80 mm), and a tension pulley (diameter 120 mm) are arranged in order, and the winding angle of the belt around the tension pulley is 90 °. Under room temperature conditions, the belt was run for 24 hours while automatically adjusting the belt tension so that the rotational speed of the driving pulley was 3000 rpm, the torque of the driven pulley was 9.8 N · m, and the belt slip ratio was 6%. The belt weight before and after the running test was measured, and the belt weight loss (belt weight before running−belt weight after running) divided by the belt weight before running was calculated as the wear rate.
 [トルクロス(伝達ロス)]
 図4に示すように、直径55mmの駆動(Dr)プーリと、直径55mmの従動(Dn)プーリとで構成される2軸走行試験機にVリブドベルトを掛架し、500N/ベルト1本の張力でVリブドベルトに所定の初張力を付与し、従動プーリ無負荷で駆動プーリを2000rpmで回転させたときの駆動トルクと従動トルクとの差をトルクロスとして算出した。なお、この測定で求まるトルクロスは、Vリブドベルトに起因するトルクロス以外に、試験機の軸受けに起因するトルクロスも含まれている。そのため、ベルトとしてのトルクロスが実質0と考えられる金属ベルト(材質:マルエージング鋼)を予め走行させ、その駆動トルクと従動トルクとの差を軸受けに起因するトルクロス(軸受け損失)として求めた。そしてVリブドベルトを走行させて算出したトルクロス(ベルトと軸受けの二つに起因するトルクロス)から軸受けに起因するトルクロス(軸受け損失)を差し引いた値を、ベルト単体に起因するトルクロスとして求めた。なお、上記トルクロス(軸受け損失)は所定の初張力で金属ベルトを走行させたときのトルクロス(例えば、初張力500N/ベルト1本でVリブドベルトを走行させた場合、この初張力で金属ベルトを走行させたときのトルクロスが軸受け損失となる)である。このVリブドベルトのトルクロスが小さいほど省燃費性に優れている。
[Torcross (Transmission loss)]
As shown in FIG. 4, a V-ribbed belt is hung on a two-axis running tester composed of a 55 mm diameter drive (Dr) pulley and a 55 mm diameter driven (Dn) pulley, and a tension of 500 N / belt. Then, a predetermined initial tension was applied to the V-ribbed belt, and the difference between the driving torque and the driven torque when the driving pulley was rotated at 2000 rpm with no driven pulley loaded was calculated as the torque cross. In addition, the torque cross obtained by this measurement includes the torque cross resulting from the bearing of the testing machine in addition to the torque cross resulting from the V-ribbed belt. Therefore, a metal belt (material: maraging steel) in which the torque cross as the belt is considered to be substantially 0 was run in advance, and the difference between the driving torque and the driven torque was obtained as the torque cross (bearing loss) caused by the bearing. Then, a value obtained by subtracting the torque cross (bearing loss) caused by the bearing from the torque cross (torque resulting from the two of the belt and the bearing) calculated by running the V-ribbed belt was obtained as the torque cross resulting from the belt alone. The torcross (bearing loss) is the torcross when the metal belt is run at a predetermined initial tension (for example, when a V-ribbed belt is run at an initial tension of 500 N / one belt, the metal belt is run at this initial tension. The torcross when it is made a bearing loss). The smaller the torque cross of this V-ribbed belt, the better the fuel economy.
 [発音限界角度試験:ミスアライメント発音試験]
 ミスアライメント発音評価試験(発音限界角度)は、直径101mmの駆動プーリ(Dr.)、直径70mmのアイドラープーリ(IDL1)、直径120mmのミスアライメントプーリ(W/P)、直径70mmのアイドラープーリ(IDL2)、直径61mmのテンションプーリ(Ten)、直径70mmのアイドラープーリ(IDL3)を順に配置した図5にレイアウトを示す試験機を用いて行った。アイドラープーリ(IDL1)とミスアライメントプーリの軸離(スパン長)を135mmに設定し、全てのプーリが同一平面上(ミスアライメントの角度0°)に位置するように調整した。
[Sounding limit angle test: Misalignment pronunciation test]
The misalignment sound generation evaluation test (sound generation limit angle) includes a 101 mm diameter drive pulley (Dr.), a 70 mm diameter idler pulley (IDL1), a 120 mm diameter misalignment pulley (W / P), and a 70 mm diameter idler pulley (IDL2). ), A tension pulley (Ten) having a diameter of 61 mm, and an idler pulley (IDL3) having a diameter of 70 mm were arranged in this order, and the test was performed using a testing machine whose layout is shown in FIG. The axis separation (span length) of the idler pulley (IDL1) and the misalignment pulley was set to 135 mm, and all the pulleys were adjusted to be located on the same plane (misalignment angle 0 °).
 すなわち、試験機の各プーリにVリブドベルトを懸架し、室温条件下で、駆動プーリの回転数が1000rpm、ベルト張力が6kgf/Rib(リブ)となるように張力を付与し、駆動プーリの出口付近においてVリブドベルトの摩擦伝動面に定期的(約30秒間隔)に5ccの水を注水して、ミスアライメント(ミスアライメントプーリを各プーリに対し手前側にずらす)でベルトを走行させた時の発音(ミスアライメントプーリの入口付近)が発生するときの角度(発音限界角度)を求めた。発音限界角度が大きいほど静粛性に優れている。なお、通常、3°付近でベルトがプーリからはずれて(すなわち、リブずれとなり)正常に動力伝達しない状態になる。 That is, a V-ribbed belt is suspended on each pulley of the test machine, and tension is applied so that the rotational speed of the drive pulley is 1000 rpm and the belt tension is 6 kgf / Rib (rib) under room temperature conditions. When 5 cc of water is periodically poured into the friction transmission surface of the V-ribbed belt (approximately every 30 seconds) and the belt is driven by misalignment (the misalignment pulley is shifted toward the front). The angle (pronunciation limit angle) at the time of occurrence (near the misalignment pulley entrance) was determined. The greater the pronunciation limit angle, the better the silence. Normally, at around 3 °, the belt is detached from the pulley (that is, the rib is displaced), and the power is not normally transmitted.
 [ポリビニルアルコール樹脂粒子の形状]
 走査型電子顕微鏡((株)キーエンス製「VE-7800」)を用いて、原料のポリビニルアルコール樹脂粒子を、倍率50倍にて撮影後、画像解析ソフトを使用して、ポリビニルアルコール樹脂粒子の粒径(長径及び短径)を測定し、ポリビニルアルコール樹脂粒子の平均粒径及びアスペクト比を算出した。結果を表1に示す。
[Shape of polyvinyl alcohol resin particles]
Using a scanning electron microscope ("VE-7800" manufactured by Keyence Co., Ltd.), the polyvinyl alcohol resin particles as raw materials were photographed at a magnification of 50 times, and then the particles of the polyvinyl alcohol resin particles were used using image analysis software. The diameter (major axis and minor axis) was measured, and the average particle diameter and aspect ratio of the polyvinyl alcohol resin particles were calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [比較例1~2及び実施例1~5]
 表2に示すゴム組成物をバンバリーミキサーでゴム練りし、この練りゴムをカレンダーロールに通して所定厚みの未加硫圧延ゴムシートを作製した。得られたシートの所定寸法を採取した後、165℃及び30分間の加硫条件でプレス加硫し、加硫ゴムシートを作製した。
[Comparative Examples 1-2 and Examples 1-5]
The rubber composition shown in Table 2 was kneaded with a Banbury mixer, and the kneaded rubber was passed through a calender roll to prepare an unvulcanized rolled rubber sheet having a predetermined thickness. After collecting predetermined dimensions of the obtained sheet, press vulcanization was performed under vulcanization conditions of 165 ° C. and 30 minutes to prepare a vulcanized rubber sheet.
 得られた加硫ゴムシートについて、ウイリアム摩耗量及び粘弾性(tanδ)を測定した結果を表2に示す。また、水との接触角を測定した結果を表2及び図6に示す。さらに、摩擦係数を測定した結果を表2及び図7に示す。 Table 2 shows the results of measuring the amount of William wear and viscoelasticity (tan δ) of the obtained vulcanized rubber sheet. Moreover, the result of having measured the contact angle with water is shown in Table 2 and FIG. Furthermore, the result of having measured the friction coefficient is shown in Table 2 and FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、実施例1~6は比較例よりウイリアム摩耗量が減少した。 As is clear from the results in Table 2, the amount of William wear in Examples 1 to 6 was smaller than that in the comparative example.
 また、実施例1~6は、比較例1(界面活性剤配合)に比べ、tanδが小さくなった。なお、実施例4は他の実施例よりややtanδが大きかった。 In Examples 1 to 6, tan δ was smaller than that of Comparative Example 1 (containing a surfactant). In Example 4, tan δ was slightly larger than the other examples.
 また、実施例1~6は、界面活性剤を配合した比較例1よりも貯蔵弾性率が増加した。これは、ポリビニルアルコール(PVA)を配合しても強度が低下しないことを示し、摩耗試験の結果とも相関していた。 Further, in Examples 1 to 6, the storage elastic modulus increased as compared with Comparative Example 1 in which a surfactant was blended. This indicates that the strength does not decrease even when polyvinyl alcohol (PVA) is blended, and this also correlates with the results of the abrasion test.
 また、表2及び図6の結果から明らかなように、水との接触角も実施例4が最も小さく、濡れ性が良好であった。 Further, as apparent from the results of Table 2 and FIG. 6, the contact angle with water was the smallest in Example 4 and the wettability was good.
 さらに、表2及び図7の結果から明らかなように、被水時(WET)での摩擦係数変化(μ-V曲線の傾き)は実施例4が最も小さかった。すなわち、実施例4のシートは、被水時の摩擦状態が最も安定していた。 Furthermore, as is clear from the results of Table 2 and FIG. 7, Example 4 showed the smallest friction coefficient change (inclination of μ-V curve) when wet (WET). That is, the sheet of Example 4 had the most stable friction state when wet.
 また、実施例3と実施例6との比較から、ポリビニルアルコール完全ケン化品では、被水時(WET)での摩擦係数変化(μ-V曲線の傾き)は、小粒径の粒子を用いた実施例6の方が小さかった。 Further, from comparison between Example 3 and Example 6, in the case of a completely saponified polyvinyl alcohol product, the change in the friction coefficient at the time of being wet (WET) (inclination of the μ-V curve) uses particles having a small particle size. Example 6 was smaller.
 [比較例3~4及び実施例7~15]
 表3に示すゴム組成物をバンバリーミキサーでゴム練りし、この練りゴムをカレンダーロールに通して所定厚みの未加硫圧延ゴムシート(圧縮層用シート)を作製した。また、表3に示すゴム組成物において、短繊維、界面活性剤及びポリビニルアルコール(PVA)を含まないゴム組成物を用い、圧縮層用シートと同様の方法で接着層用シート及び伸張層用シートを作製した。
[Comparative Examples 3 to 4 and Examples 7 to 15]
The rubber composition shown in Table 3 was kneaded with a Banbury mixer, and the kneaded rubber was passed through a calender roll to prepare an unvulcanized rolled rubber sheet (sheet for compression layer) having a predetermined thickness. Further, in the rubber composition shown in Table 3, a rubber composition containing no short fibers, a surfactant and polyvinyl alcohol (PVA) is used, and a sheet for an adhesive layer and a sheet for an extension layer are formed in the same manner as the sheet for a compression layer. Was made.
 次に、これらのシートを用いて、前述の第1の製造方法によりベルトを作製した。すなわち、先ず、表面が平滑な円筒状成形モールドに伸張層用シートを巻きつけ、この伸張層用シート上に処理ロープを螺旋状にスピニングし、接着層用シート、圧縮層用シートを順次巻き付けて成形体を形成した。その後、加硫用ジャケットを成形体の上から被せて金型を加硫缶に設置し、所定の加硫条件で加硫した後、成形モールドから脱型して筒状の加硫ゴムスリーブを得た。そして、この加硫ゴムスリーブの外面(圧縮層)を研削ホイールにより所定の間隔で研磨して複数のリブを形成した後、カッターを用いて、加硫ゴムスリーブをベルト長手方向に所定の幅でカットして、幅方向のリブ数が6個、周長が1100mmのVリブドベルトに仕上げた。 Next, using these sheets, a belt was produced by the first manufacturing method described above. That is, first, a stretch layer sheet is wound around a cylindrical molding mold having a smooth surface, a processing rope is spun spirally on the stretch layer sheet, and an adhesive layer sheet and a compression layer sheet are sequentially wound. A molded body was formed. After that, a vulcanization jacket is placed on the molded body, the mold is placed on a vulcanizing can, vulcanized under predetermined vulcanization conditions, and then removed from the molding mold to form a cylindrical vulcanized rubber sleeve. Obtained. Then, the outer surface (compression layer) of the vulcanized rubber sleeve is polished with a grinding wheel at predetermined intervals to form a plurality of ribs, and then the vulcanized rubber sleeve is formed with a predetermined width in the belt longitudinal direction using a cutter. It was cut into a V-ribbed belt having 6 ribs in the width direction and a circumference of 1100 mm.
 さらに、圧縮層用シートから採取したゴム組成物から加硫ゴムシート及び試験片を作製し、6%スリップ摩耗、ベルトトルクロス及び粘弾性(tanδ)を測定した結果を表3に示す。また、ベルトの発音限界角度を測定した結果を表3及び図8に示す。 Further, a vulcanized rubber sheet and a test piece were prepared from the rubber composition collected from the compression layer sheet, and the results of measuring 6% slip wear, belt torque and viscoelasticity (tan δ) are shown in Table 3. Table 3 and FIG. 8 show the results of measuring the belt sounding limit angle.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から明らかなように、実施例は比較例より6%スリップ摩耗量が減少した。 As is clear from the results in Table 3, the amount of slip wear in the example was 6% less than that in the comparative example.
 また、実施例は、界面活性剤を配合した比較例3よりも伝達ロス(トルクロス)が小さく、PVAや界面活性剤を含まない比較例4と同等であった。 Moreover, the Example had a transmission loss (torcross) smaller than that of Comparative Example 3 in which a surfactant was added, and was equivalent to Comparative Example 4 that did not contain PVA or a surfactant.
 また、表3及び図8の結果から明らかなように、乾燥状態(DRY)及び被水状態(WET)の両方で実施例7~8及び11のベルトの発音限界角度が高く、耐発音性が良好であった。PVAの配合により親水性が向上し、摩擦状態が安定化したためと考えられる。 Further, as apparent from the results of Table 3 and FIG. 8, the belts of Examples 7 to 8 and 11 have a high sounding limit angle in both the dry state (DRY) and the wet state (WET), and the sound resistance is high. It was good. It is considered that the hydrophilicity was improved by the blending of PVA and the friction state was stabilized.
 また、表3の結果から明らかなように、実施例のtanδは、比較例3より小さく、比較例4よりやや大きかった。すなわち、PVAを配合しても界面活性剤の配合ほどもtanδが増加しないことを示しており、伝達ロスの結果とも相関していた。 As is clear from the results in Table 3, the tan δ of the example was smaller than that of Comparative Example 3 and slightly larger than that of Comparative Example 4. That is, even if PVA was blended, tan δ was not increased as much as the blend of surfactant, and was correlated with the result of transmission loss.
 さらに、表3の結果から明らかなように、実施例は、比較例3、4に比べ、貯蔵弾性率が増加した。すなわち、PVAを配合しても強度低下が起きていないことを示しており、摩耗試験の結果とも相関していた。 Furthermore, as is clear from the results in Table 3, the storage modulus increased in Examples compared to Comparative Examples 3 and 4. That is, even if PVA was blended, it was shown that the strength did not decrease, and was correlated with the result of the wear test.
 また、実施例の結果から明らかなように、PVAの配合量が多い方が被水時の発音限界角度が大きくなり、耐発音性に優れていた。 Further, as is clear from the results of the examples, the larger the amount of PVA, the greater the sounding limit angle when wet, and the sound resistance was excellent.
 [比較例5~8、実施例16~20]
 [ゴム層の調製]
 圧縮ゴム層及び表層として、表4に示すゴム組成物をバンバリーミキサーでゴム練りし、この練りゴムをカレンダーロールに通して所定厚みの未加硫圧延ゴムシートを作製した。得られたシートの所定寸法を採取した後、165℃及び30分間の加硫条件でプレス加硫し、加硫ゴムシートを作製した。
[Comparative Examples 5 to 8, Examples 16 to 20]
[Preparation of rubber layer]
As a compressed rubber layer and a surface layer, the rubber composition shown in Table 4 was kneaded with a Banbury mixer, and the kneaded rubber was passed through a calender roll to prepare an unvulcanized rolled rubber sheet having a predetermined thickness. After collecting predetermined dimensions of the obtained sheet, press vulcanization was performed under vulcanization conditions of 165 ° C. and 30 minutes to prepare a vulcanized rubber sheet.
 得られた加硫ゴムシートについて、水との接触角、摩擦係数、μ-V特性(摩擦係数の滑り速度に対する変化)、ウイリアム摩耗量を測定した結果を表4に示す。 Table 4 shows the results of measuring the contact angle with water, the friction coefficient, the μ-V characteristic (change of the friction coefficient with respect to the sliding speed), and the amount of William wear of the obtained vulcanized rubber sheet.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4の結果から明らかなように、PVA樹脂粒子を配合したゴム組成物B~Gは、PVA樹脂粒子を含まないゴム組成物Aに比べると、水との濡れ性が向上し、摩擦係数変化(μ-V曲線の傾き)が小さくなった。 As is clear from the results in Table 4, the rubber compositions B to G containing the PVA resin particles have improved wettability with water and changed the friction coefficient compared to the rubber composition A containing no PVA resin particles. (The slope of the μ-V curve) became smaller.
 一方、ゴム組成物Hは、耐磨耗性に優れ、μ-V特性は他の配合より小さいが、摩擦係数自体が非常に小さいため、ベルトの伝動面に用いた場合、伝達性能が低くなると考えられる。さらに、ゴム組成物Gは、接触角が大きい(水との濡れ性が悪い)ため、被水時の耐発音性が低下すると考えられる。 On the other hand, the rubber composition H is excellent in wear resistance and has a μ-V characteristic smaller than that of other blends, but the friction coefficient itself is very small. Conceivable. Furthermore, since the rubber composition G has a large contact angle (poor wettability with water), it is considered that the sound resistance when wet is lowered.
 [比較例5]
 表4のゴム組成物Aをバンバリーミキサーでゴム練りし、この練りゴムをカレンダーロールに通して厚み2.3mmの未加硫圧延ゴムシート(圧縮ゴム層用シート)を作製した。また、ゴム組成物Aを用い、圧縮ゴム層用シートと同様の方法で厚み0.3mmの接着ゴム層用シート及び厚み0.5mmの伸張ゴム層用シートを作製した。
[Comparative Example 5]
The rubber composition A in Table 4 was kneaded with a Banbury mixer, and the kneaded rubber was passed through a calender roll to produce a 2.3 mm thick unvulcanized rolled rubber sheet (compression rubber layer sheet). Further, by using the rubber composition A, an adhesive rubber layer sheet having a thickness of 0.3 mm and an extended rubber layer sheet having a thickness of 0.5 mm were prepared in the same manner as the compressed rubber layer sheet.
 次に、これらのシートを用いて、前述の製造方法によりベルトを作製した。すなわち、エアー供給口及び天板を備えた金型のブラダーの外周に、伸張ゴム層用シート及び接着ゴム層用シートを順次巻き付け、接着ゴム層用シートの外周面に心線をスパイラル状に巻き付けた後、さらにこの心線の上に圧縮ゴム層用シートを巻き付け、金型にベルトスリーブを装着した。 Next, using these sheets, belts were produced by the above-described manufacturing method. That is, the stretch rubber layer sheet and the adhesive rubber layer sheet are sequentially wound around the outer periphery of the mold bladder having the air supply port and the top plate, and the core wire is spirally wound around the outer peripheral surface of the adhesive rubber layer sheet. After that, a sheet for a compressed rubber layer was wound around the core wire, and a belt sleeve was attached to the mold.
 さらに、ベルトスリーブを巻き付けた前記金型を加硫型内にセットし、加熱・冷却媒体導入口を備えた加熱・冷却ジャケットで加熱しながら、ブラダーを膨張させ、ベルトスリーブを加硫型の内周面に押し付けて加圧することによって加硫した。加硫の条件は165℃、1.0MPa、30分間に設定した。このとき、加硫型の成形用凹凸部がベルトスリーブに外周から食い込むことによって、ベルトスリーブの外周に溝が成形された。 Further, the mold around which the belt sleeve is wound is set in the vulcanization mold, and the bladder is expanded while being heated by the heating / cooling jacket having the heating / cooling medium introduction port, so that the belt sleeve is placed in the vulcanization mold. Vulcanization was performed by pressing against the peripheral surface and applying pressure. The vulcanization conditions were set at 165 ° C., 1.0 MPa, and 30 minutes. At this time, a groove was formed on the outer periphery of the belt sleeve as the concavo-convex portion for molding of the vulcanization bite into the belt sleeve from the outer periphery.
 次に、加硫型から金型を抜き出し、加硫型内に残る加硫ベルトスリーブを加熱・冷却ジャケットで冷却した後、加硫ベルトスリーブを加硫型から取り出した。そして、この加硫ベルトスリーブをカッターにより輪切りするように切断することによって、幅方向のリブ数が6個、周長が1100mmのVリブドベルトを得た。 Next, the mold was extracted from the vulcanization mold, the vulcanization belt sleeve remaining in the vulcanization mold was cooled with a heating / cooling jacket, and then the vulcanization belt sleeve was removed from the vulcanization mold. Then, this vulcanized belt sleeve was cut so as to be cut in a circle by a cutter, thereby obtaining a V-ribbed belt having 6 ribs in the width direction and a circumferential length of 1100 mm.
 [比較例6]
 圧縮ゴム層用シートを巻き付けた後、粉体塗装装置を用いて、吹付け量100g/mの条件で、タルクを吹き付け、タルクが付着した側が外側になるように心線の上に巻き付ける以外は比較例5と同様にしてVリブドベルトを得た。得られたVリブドベルトの圧縮ゴム層の表面には、タルクで形成された表層(単一層)が積層されていた。
[Comparative Example 6]
After winding the compressed rubber layer sheet, use a powder coating device to spray talc under the condition of spraying amount of 100 g / m 2 , and wind it around the core wire so that the side with talc attached is outside Obtained a V-ribbed belt in the same manner as in Comparative Example 5. A surface layer (single layer) formed of talc was laminated on the surface of the compression rubber layer of the obtained V-ribbed belt.
 [比較例7]
 タルクの代わりにフッ素樹脂を用いる以外は比較例6と同様にしてVリブドベルトを得た。得られたVリブドベルトの圧縮ゴム層の表面には、フッ素樹脂で形成された表層(単一層)が積層されていた。
[Comparative Example 7]
A V-ribbed belt was obtained in the same manner as in Comparative Example 6 except that a fluororesin was used instead of talc. On the surface of the compression rubber layer of the obtained V-ribbed belt, a surface layer (single layer) formed of a fluororesin was laminated.
 [比較例8]
 ゴム組成物Aとゴム組成物Hとを用いて、各々別個に圧延機で圧延したシート(ゴム組成物Aを圧延したシートの厚み1.7mm、ゴム組成物Hを圧延したシートの厚み0.6mm)を重ね合わせて積層シートを得た。ゴム組成物Hで形成された層が外側になるように心線の上に巻き付ける以外は比較例5と同様にしてVリブドベルトを得た。
[Comparative Example 8]
Each of the rubber composition A and the rubber composition H was separately rolled with a rolling mill (the thickness of the sheet obtained by rolling the rubber composition A is 1.7 mm, the thickness of the sheet obtained by rolling the rubber composition H is 0.00 mm. 6 mm) was laminated to obtain a laminated sheet. A V-ribbed belt was obtained in the same manner as in Comparative Example 5 except that the layer formed of the rubber composition H was wound around the core so that the layer was on the outside.
 [実施例16]
 ゴム組成物Hの代わりにゴム組成物Eを用いる以外は比較例8と同様にしてVリブドベルトを得た。
[Example 16]
A V-ribbed belt was obtained in the same manner as in Comparative Example 8 except that the rubber composition E was used instead of the rubber composition H.
 [実施例17]
 ゴム組成物Hの代わりにゴム組成物Fを用いる以外は比較例8と同様にしてVリブドベルトを得た。
[Example 17]
A V-ribbed belt was obtained in the same manner as in Comparative Example 8 except that the rubber composition F was used instead of the rubber composition H.
 [実施例18]
 ゴム組成物Hの代わりにゴム組成物Dを用いる以外は比較例8と同様にしてVリブドベルトを得た。
[Example 18]
A V-ribbed belt was obtained in the same manner as in Comparative Example 8 except that the rubber composition D was used instead of the rubber composition H.
 [実施例19]
 ゴム組成物Hの代わりにゴム組成物Gを用いる以外は比較例8と同様にしてVリブドベルトを得た。
[Example 19]
A V-ribbed belt was obtained in the same manner as in Comparative Example 8 except that the rubber composition G was used instead of the rubber composition H.
 [実施例20]
 タルクの代わりにPVA-Bを用いる以外は比較例6と同様にしてVリブドベルトを得た。得られたVリブドベルトの圧縮ゴム層の表面には、ポリビニルアルコールで形成された表層(単一層)が積層されていた。
[Example 20]
A V-ribbed belt was obtained in the same manner as in Comparative Example 6 except that PVA-B was used instead of talc. A surface layer (single layer) formed of polyvinyl alcohol was laminated on the surface of the compression rubber layer of the obtained V-ribbed belt.
 比較例5~8及び実施例16~20で得られたベルトの発音限界角度を測定した結果を表5に示す。 Table 5 shows the measurement results of the sounding limit angles of the belts obtained in Comparative Examples 5 to 8 and Examples 16 to 20.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5の結果から明らかなように、表層にポリビニルアルコールを含む実施例16~20は、比較例5~8に比べて、被水時の発音限界角度が高く、耐発音性が向上した。 As is apparent from the results in Table 5, Examples 16 to 20 containing polyvinyl alcohol in the surface layer had a higher sounding limit angle when exposed to water and improved sound resistance compared to Comparative Examples 5 to 8.
 これに対して、表層にポリビニルアルコール以外の粒子を含む比較例6~8及び粒子を含まない比較例5は、実施例16~20に比べ、被水時の発音限界角度が小さく、耐発音性が低かった。 On the other hand, Comparative Examples 6 to 8 including particles other than polyvinyl alcohol on the surface layer and Comparative Example 5 not including particles have a smaller sounding limit angle when exposed to water than Examples 16 to 20, and sound resistance. Was low.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって明らかである。
 本出願は、2014年10月31日出願の日本特許出願2014-223772、2014年12月25日付出願の日本特許出願2014-262804、及び2015年10月22日出願の日本特許出願2015-208209に基づくものであり、それらの内容はここに参照として取り込まれる。
Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the invention.
This application is incorporated in Japanese Patent Application No. 2014-223772 filed on October 31, 2014, Japanese Patent Application No. 2014-262804 filed on December 25, 2014, and Japanese Patent Application No. 2015-208209 filed on October 22, 2015. The contents of which are incorporated herein by reference.
 本発明の摩擦伝動ベルトは、耐発音性が求められる種々のベルト、例えば、Vベルト、Vリブドベルトなどの摩擦伝動ベルトとして利用できる。また、本発明の摩擦伝動ベルトは、被水時の静音性を改善できるため、自動車、自動二輪車、農業機械など屋外で使用される伝動装置にも好適に利用できる。 The friction transmission belt of the present invention can be used as a friction transmission belt such as various belts that require sound resistance, such as a V belt and a V-ribbed belt. Moreover, since the friction transmission belt of the present invention can improve the quietness at the time of flooding, it can be suitably used for a transmission device used outdoors such as an automobile, a motorcycle, an agricultural machine, and the like.
 1…芯体
 2…圧縮層
 3…リブ
 4…接着層
 5…伸張層
 6…表層
DESCRIPTION OF SYMBOLS 1 ... Core body 2 ... Compression layer 3 ... Rib 4 ... Adhesive layer 5 ... Stretch layer 6 ... Surface layer

Claims (22)

  1.  少なくとも一部がプーリと接触可能な伝動面を有する圧縮層を含む摩擦伝動ベルトであって、該圧縮層がポリマー成分及びポリビニルアルコール系樹脂を含む、摩擦伝動ベルト。 A friction transmission belt including a compression layer having a transmission surface at least partially in contact with the pulley, the compression layer including a polymer component and a polyvinyl alcohol resin.
  2.  前記圧縮層が、前記伝動面の表面にポリビニルアルコール系樹脂を含む表層を有する、請求項1に記載の摩擦伝動ベルト。 The friction transmission belt according to claim 1, wherein the compression layer has a surface layer containing a polyvinyl alcohol resin on a surface of the transmission surface.
  3.  前記表層が、ポリマー成分及びポリビニルアルコール系樹脂を含むゴム組成物で形成されている、請求項2に記載の摩擦伝動ベルト。 The friction transmission belt according to claim 2, wherein the surface layer is formed of a rubber composition containing a polymer component and a polyvinyl alcohol resin.
  4.  前記表層が、ポリビニルアルコール系樹脂で形成されている、請求項2に記載の摩擦伝動ベルト。 The friction transmission belt according to claim 2, wherein the surface layer is formed of a polyvinyl alcohol-based resin.
  5.  前記圧縮層が、表層のみにポリビニルアルコール系樹脂を含む、請求項2~4のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 2 to 4, wherein the compression layer includes a polyvinyl alcohol-based resin only in a surface layer.
  6.  前記ポリビニルアルコール系樹脂が、ポリビニルアルコール系樹脂粒子である、請求項1~5のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 5, wherein the polyvinyl alcohol resin is polyvinyl alcohol resin particles.
  7.  前記ポリビニルアルコール系樹脂粒子の平均アスペクト比が10以下である請求項6に記載の摩擦伝動ベルト。 The friction transmission belt according to claim 6, wherein the polyvinyl alcohol-based resin particles have an average aspect ratio of 10 or less.
  8.  前記ポリビニルアルコール系樹脂のビニルアルコール単位のケン化度が86~97モル%である、請求項1~7のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 7, wherein the saponification degree of the vinyl alcohol unit of the polyvinyl alcohol resin is 86 to 97 mol%.
  9.  前記ポリビニルアルコール系樹脂の粘度平均重合度が300~3500である、請求項1~8のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 8, wherein the polyvinyl alcohol-based resin has a viscosity average polymerization degree of 300 to 3,500.
  10.  前記ポリビニルアルコール系樹脂の融点がベルトの加硫温度よりも高い、請求項1~9のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 9, wherein the melting point of the polyvinyl alcohol resin is higher than a vulcanization temperature of the belt.
  11.  前記ポリビニルアルコール系樹脂の20℃における水への溶解度が60質量%以上である、請求項1~10のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 10, wherein the polyvinyl alcohol resin has a solubility in water at 20 ° C of 60% by mass or more.
  12.  前記ポリビニルアルコール系樹脂が、疎水基で変性されたポリビニルアルコール系樹脂粒子である、請求項1~11のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 11, wherein the polyvinyl alcohol resin is polyvinyl alcohol resin particles modified with a hydrophobic group.
  13.  前記圧縮層において、前記ポリビニルアルコール系樹脂の割合が、前記ポリマー成分100質量部に対して5~30質量部である、請求項1、6~12のいずれか一項に記載の摩擦伝動ベルト。 13. The friction transmission belt according to claim 1, wherein a ratio of the polyvinyl alcohol resin in the compressed layer is 5 to 30 parts by mass with respect to 100 parts by mass of the polymer component.
  14.  前記ポリビニルアルコール系樹脂が、伝動面で分散して露出している、請求項1~13のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 13, wherein the polyvinyl alcohol-based resin is dispersedly exposed on the transmission surface.
  15.  前記圧縮層がさらに補強材を含む、請求項1~14のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 14, wherein the compression layer further includes a reinforcing material.
  16.  前記ポリマー成分がエチレン-α-オレフィンエラストマーである、請求項1~15のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 15, wherein the polymer component is an ethylene-α-olefin elastomer.
  17.  さらに芯体とベルト背面を形成する伸張層とを含み、前記伸張層の一方の面に前記圧縮層が形成され、かつ前記伸張層と前記圧縮層との間にベルト長手方向に沿って前記芯体が埋設されている、請求項1~16のいずれか一項に記載の摩擦伝動ベルト。 And further comprising a core and a stretch layer forming a belt back surface, wherein the compression layer is formed on one surface of the stretch layer, and the core along the longitudinal direction of the belt between the stretch layer and the compression layer. The friction transmission belt according to any one of claims 1 to 16, wherein the body is embedded.
  18.  Vリブドベルトである、請求項1~17のいずれか一項に記載の摩擦伝動ベルト。 The friction transmission belt according to any one of claims 1 to 17, which is a V-ribbed belt.
  19.  円筒状ドラムに未加硫ゴムシートを巻き付ける圧縮層巻付工程、及び
     前記未加硫ゴムシートを金型に押し付けて加硫する加硫成形工程を含み、
     前記圧縮層巻付工程及び前記加硫成形工程のいずれかの工程で表層を形成する、請求項2~5のいずれか一項に記載の摩擦伝動ベルトの製造方法。
    A compression layer winding step of winding an unvulcanized rubber sheet around a cylindrical drum, and a vulcanization molding step of vulcanizing the unvulcanized rubber sheet against a mold,
    The method for producing a friction transmission belt according to any one of claims 2 to 5, wherein a surface layer is formed in any one of the compression layer winding step and the vulcanization molding step.
  20.  前記圧縮層巻付工程において、未加硫ゴムシートとして、表層を形成するための未加硫ゴム層と圧縮層を形成するための未加硫ゴム層との積層シートを用いる、請求項19記載の製造方法。 20. In the compressed layer winding step, a laminated sheet of an unvulcanized rubber layer for forming a surface layer and an unvulcanized rubber layer for forming a compressed layer is used as the unvulcanized rubber sheet. Manufacturing method.
  21.  前記圧縮層巻付工程において、未加硫ゴムシートとして、圧縮層を形成するための未加硫ゴムシートの表面にポリビニルアルコール系樹脂を塗布したシートを用いる、請求項19記載の製造方法。 The manufacturing method according to claim 19, wherein in the compressed layer winding step, a sheet obtained by applying a polyvinyl alcohol-based resin to the surface of an unvulcanized rubber sheet for forming a compressed layer is used as the unvulcanized rubber sheet.
  22.  前記加硫成形工程において、金型として、未加硫ゴムシートとの接触面にポリビニルアルコール系樹脂を塗布した金型を用いる、請求項19記載の製造方法。
     
     
    The manufacturing method according to claim 19, wherein in the vulcanization molding step, a mold in which a polyvinyl alcohol resin is applied to a contact surface with an unvulcanized rubber sheet is used as a mold.

PCT/JP2015/080842 2014-10-31 2015-10-30 Friction transmission belt and manufacturing method thereof WO2016068337A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580059231.2A CN107002818B (en) 2014-10-31 2015-10-30 Friction belt for power transmission and its manufacturing method
US15/523,125 US10508712B2 (en) 2014-10-31 2015-10-30 Friction transmission belt and manufacturing method thereof
EP15854588.9A EP3214338B1 (en) 2014-10-31 2015-10-30 Friction transmission belt and manufacturing method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014223772 2014-10-31
JP2014-223772 2014-10-31
JP2014-262804 2014-12-25
JP2014262804 2014-12-25
JP2015208209A JP6175113B2 (en) 2014-10-31 2015-10-22 Friction transmission belt
JP2015-208209 2015-10-22

Publications (1)

Publication Number Publication Date
WO2016068337A1 true WO2016068337A1 (en) 2016-05-06

Family

ID=55857669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080842 WO2016068337A1 (en) 2014-10-31 2015-10-30 Friction transmission belt and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2016068337A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133207A1 (en) * 2015-08-12 2017-02-22 Denka Company Limited Binder for glass paper
CN111207181A (en) * 2019-08-21 2020-05-29 宁波丰茂远东橡胶有限公司 Colored wedge grinding belt and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162897A (en) * 2002-07-30 2004-06-10 Mitsuboshi Belting Ltd V-ribbed belt and its manufacturing method
JP2008082538A (en) * 2006-09-01 2008-04-10 Mitsuboshi Belting Ltd Power transmission belt and its manufacturing method
JP2008156806A (en) * 2006-11-27 2008-07-10 Central Glass Co Ltd Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
JP2014167347A (en) * 2013-01-30 2014-09-11 Mitsuboshi Belting Ltd Friction transmission belt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004162897A (en) * 2002-07-30 2004-06-10 Mitsuboshi Belting Ltd V-ribbed belt and its manufacturing method
JP2008082538A (en) * 2006-09-01 2008-04-10 Mitsuboshi Belting Ltd Power transmission belt and its manufacturing method
JP2008156806A (en) * 2006-11-27 2008-07-10 Central Glass Co Ltd Coating liquid for covering glass fiber and rubber-reinforcing glass fiber using same
JP2014167347A (en) * 2013-01-30 2014-09-11 Mitsuboshi Belting Ltd Friction transmission belt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3133207A1 (en) * 2015-08-12 2017-02-22 Denka Company Limited Binder for glass paper
US11673979B2 (en) 2015-08-12 2023-06-13 Denki Kagaku Kogyo Kabushiki Kaisha Binder for glass paper
CN111207181A (en) * 2019-08-21 2020-05-29 宁波丰茂远东橡胶有限公司 Colored wedge grinding belt and preparation method thereof

Similar Documents

Publication Publication Date Title
US10508712B2 (en) Friction transmission belt and manufacturing method thereof
JP5997712B2 (en) Friction transmission belt
JP6553687B2 (en) V-ribbed belt and its use
JP6055430B2 (en) Transmission belt
JP6674061B2 (en) V-ribbed belt and its use
JP6291470B2 (en) Friction transmission belt and manufacturing method thereof
WO2013105191A1 (en) Friction transmission belt, manufacturing method thereof, and belt transmission device
US20190390047A1 (en) Transmission Belt
JP5926543B2 (en) Friction transmission belt and manufacturing method thereof
WO2017110784A1 (en) Friction drive belt
WO2009150803A1 (en) Friction transmission belt and belt transmission device using the same
WO2016068337A1 (en) Friction transmission belt and manufacturing method thereof
JP6175113B2 (en) Friction transmission belt
JP6748002B2 (en) Friction transmission belt and manufacturing method thereof
JP6306267B2 (en) Friction transmission belt
JP2017116100A (en) Friction transmission belt
WO2018043355A1 (en) V-ribbed belt and use thereof
WO2019208740A1 (en) V-ribbed belt and application thereof
JP6849850B1 (en) Rubber composition and friction transmission belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854588

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015854588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15523125

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE