WO2018043336A1 - Vehicle dispatching system - Google Patents

Vehicle dispatching system Download PDF

Info

Publication number
WO2018043336A1
WO2018043336A1 PCT/JP2017/030551 JP2017030551W WO2018043336A1 WO 2018043336 A1 WO2018043336 A1 WO 2018043336A1 JP 2017030551 W JP2017030551 W JP 2017030551W WO 2018043336 A1 WO2018043336 A1 WO 2018043336A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
field
transport vehicle
car
harvester
Prior art date
Application number
PCT/JP2017/030551
Other languages
French (fr)
Japanese (ja)
Inventor
大 杉本
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2018043336A1 publication Critical patent/WO2018043336A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the present invention relates to a vehicle allocation system, which relates to a system for efficiently allocating a vehicle for transporting a harvested product to a destination with respect to a harvester arranged in a farm field.
  • Patent Document 1 a dispatch system that efficiently distributes a plurality of transport vehicles to a plurality of fields is known (see Patent Document 1).
  • the remote dispatch server as the dispatch system described in Patent Document 1 receives the expected full time, the expected end time of harvest, and the harvester position information from each harvester, and the expected full time and end of harvest of each harvester.
  • the time earlier than the current time among the predicted times is selected as an element of the required dispatching order, which is the order in which the delivery of the transporter with respect to the harvester is preferentially required.
  • the expected harvest end time is the time when the harvesting work carried out in the corresponding field is expected to end, and is the expected harvest amount that is predicted before the start of harvesting, and the cumulative harvest amount harvested on the field. It is calculated with respect to the current time on the basis of a certain field cumulative harvest amount and a harvest rate indicating a harvest amount per unit time.
  • An object of the present invention is to provide a dispatch system of a harvester and a transporter that can efficiently perform harvesting work.
  • the invention according to claim 1 is a harvester and a transporter for setting the arrangement of harvesters for harvesting crops and dispatching a transporter for transporting the crops from the field based on information on a preset expected harvest amount.
  • the estimated harvest amount is set according to the cultivation conditions of the crop to be harvested.
  • the dispatch of the transport vehicle is corrected based on information on the actual harvest amount of the harvester.
  • the invention according to claim 3 is the vehicle allocation system according to claim 2, wherein the vehicle allocation system has information on the loading capacity of each transport vehicle in advance, acquires position information of each transport vehicle, and Based on the yield information and the load capacity information, the time when the load of the transport vehicle reaches full load is calculated, and the dispatch of the transport vehicle is determined according to the calculation result, the load capacity information, and the position information. Is to be corrected.
  • the harvester and the transporter can be efficiently dispatched after setting an appropriate expected harvest amount by using the cultivation conditions of the crop as information. Work and accompanying transportation can be carried out efficiently.
  • the dispatch of the harvester and the transporter can be operated more efficiently.
  • FIG. 1 It is a side view of a harvester. It is a top view of a harvester. It is a block diagram which shows the control system of a harvester. It is a figure which shows an example of the agricultural field information containing the information of estimated harvest amount. It is a figure explaining from the planting to the harvest of sugarcane seedlings.
  • A is the figure which shows the seed millet planted in the field
  • B is the figure which shows the sugarcane which sprouted from the seed millet
  • C is the figure which shows the sugarcane from which the side branch grew from the seed millet
  • D is a diagram showing sugarcane with side branches growing and stems growing
  • (E) is a diagram showing sugarcane grown before harvesting.
  • FIG. It is a figure explaining stocking of sugarcane.
  • A) is a diagram showing a root stock that is left in the ground and rooted
  • B) is a diagram showing a sugarcane that has sprouted from the root stock
  • C) is a sugarcane that has a side branch grown from the root stock.
  • FIG. It is a figure which shows an example of arrangement
  • FIG. 1 It is a figure which shows the condition of the dispatch of the transport vehicle at the time of 420 minutes progress including the interruption for 60 minutes from the start of a harvesting operation, ie, 16:00 shown in FIG. It is a flowchart which shows the control which corrects the dispatch of a transport vehicle based on the information of the actual harvest amount of a harvester.
  • harvester 1 As a harvester will be described with reference to FIGS.
  • front-back direction of the harvester 1 is prescribed
  • the harvesting machine 1 supports the body frame 30 on the crawler type traveling device 10 as a traveling device, and serves as a traveling unit.
  • a pair of left and right crop dividers 2 are disposed at the front of the body frame 30 via the lifting link mechanism 12.
  • the traveling device may be a wheel type.
  • Crop divider 2 pulls into the plane, causing sugar cane.
  • Side cutters 16 and 16 are provided above the pair of left and right crop dividers 2. In this way, the side cutter 16 cuts the upper portion of the ridges that are intertwined when scraped by the pair of left and right crop dividers 2.
  • the top cutter 17 protrudes forward from the upper part of the cutting part mounting frame 34, and the upper part of the sugar cane is disposed so as to be cut.
  • a scraping rotor 13, a base cutter 3, and a front transport device 4 are supported by a front transport frame 14.
  • a pair of left and right front transport frames 14 are provided, and a rear portion thereof is pivotally supported by a machine frame 30 at a front end position of a rear transport device 5 described later so as to be rotatable up and down.
  • a hydraulic cylinder is interposed between the front portion of the front conveyance frame 14 and the body frame 30, and the height of the base cutter 3 and the take-in rotor 13 can be adjusted by extending and contracting the hydraulic cylinder.
  • the crop divider 2, the side cutter 16, the base cutter 3, and the top cutter 17 serving as a cutting device are arranged in front of the traveling unit so as to protrude forward, and the weeds are cropped by the crop divider 2 to the upper part of the sugarcane cocoon.
  • Both the left and right sides are cut and scraped by the rotation of the scraping rotor 13, and the stock is cut by the base cutter 3 and at the same time the lower end (root) of the heel is flipped up.
  • the sugarcane that has been bounced up is drawn from the base into the front conveying device 4 disposed immediately after that, and is sent obliquely rearward and upward by the front conveying device 4.
  • the rear part of the front conveying device 4 is located at the front lower part of the rear conveying device 5.
  • the sugar cane after being cut by the base cutter 3 is sent rearward by the front conveying device 4, inherited by the rear conveying device 5, and conveyed obliquely rearward and upward.
  • a chopping device 6 is disposed at the rear of the rear conveying device 5.
  • the chopping device 6 includes a cutter and a jump roller.
  • the cutter has a blade blade fixed on a pair of upper and lower cutter shafts having an axial center in the left-right direction, and is chopped when the sugar cane passes between the upper and lower blade blades rotating.
  • the jumping roller fixes a jumping blade on a rotating shaft having a pair of upper and lower left and right axial centers, and is disposed above the cutter. And by rotating the upper and lower shafts in directions opposite to each other, the chopped sugar cane is forced to jump up and backward.
  • a diffusion rotor is disposed at the rear of the spring-out roller. The diffusion rotor allows sugarcane stems and leaves after being shredded to diffuse upward. In addition, it can also be set as the structure directly thrown into the wind selection apparatus 7 mentioned later, after cut
  • the wind selection device 7 includes a blower case 7a provided at the upper rear portion of the chopping device 6 and a blower 7b accommodated in the blower case 7a.
  • the lower and upper sides of the blower case 7a are opened, the lower part of the blower case 7a is communicated with the chopping device 6, and the upper side serves as a discharge port for leaves and dust.
  • the blower case 7a can be rotated about the vertical axis, and the discharge direction can be changed.
  • the blower 7b is housed in the blower case 7a with the vertical direction as the axis, and by rotating the blower 7b, a high-speed air flow from the bottom to the top is generated and diffused by the rotation of the diffusion rotor. Leaves and dust are sucked upward so that they can be discharged to the side or rear, and the heavy stem falls onto a hopper 18 provided at the lower part of the lower discharge conveyor 8.
  • the lower part of the discharge conveyor 8 is supported on a swivel base 20 provided at the rear part of the body frame 30, and the discharge conveyor 8 is supported on the swivel base 20 so as to be rotatable left and right about the vertical direction.
  • the discharge conveyor 8 can be rotated left and right by operating a hydraulic motor, and the discharge direction can be changed.
  • the transport vehicle 11 runs side by side, and the discharge direction of the discharge conveyor 8 is changed so that the discharge portion of the discharge conveyor 8 faces the loading platform 11 a of the transport vehicle 11.
  • the harvested product is discharged to the transport vehicle 11 while performing the cutting operation.
  • a harvest amount detecting means 120 is disposed on the front surface of the discharge conveyor 8, and a deflector 15 is provided at the upper exit of the rear end of the discharge conveyor 8, so that the falling direction can be changed. Yes.
  • an engine 50 is arranged above the rear part of the front conveying device 4 at the front and rear center of the body frame 30, and the engine 50 is arranged so that the crankshaft is in the left-right direction.
  • a cooling fan is provided at one end of the crankshaft to cool the intercooler 64 and the radiator 65 (both see FIG. 2), and a plurality of hydraulic pumps 66 (see FIG. 2) are linked to the other end of the crankshaft. To be driven.
  • a driving roller 111 is disposed at the lower part between the left and right conveying frames 110 and 110, a driven roller 112 is disposed at the upper part, and the left and right conveying chains 113 and 110 are disposed between the driving roller 111 and the driven roller 112. 113 is wound.
  • a partition plate 114, 114,... Is attached between the left and right transport chains 113 and 113 at a predetermined interval to form a transport body.
  • a conveyance bottom plate (not shown) serving as a conveyance surface is installed between the conveyance frames 110 and 110.
  • a slat conveyor is formed.
  • many slits are formed in a conveyance bottom plate, and it is comprised so that dust etc. can be dropped from this slit.
  • the slat conveyor can be configured by standing a partition plate on an endless belt, and the configuration is not limited.
  • the harvest amount detection means 120 serving as a harvest amount detection device for detecting the transport amount of the transported object is arranged in the transport process of the discharge conveyor 8.
  • the harvest amount detection means 120 is covered with a protective cover to prevent intrusion of dust and the like and to prevent breakage.
  • the protective cover is constituted by a shade 121, and the shade 121 covers the periphery on the opposite side (front upper side) of the harvest amount detection means 120.
  • the harvest amount detection means 120 is constituted by a distance sensor, and a laser displacement meter 122 (see FIG. 3) serves as a plurality of (in the present embodiment, five (one shown in the figure)) distance sensors in the left-right direction (discharge conveyor). 8 in the width direction) with a predetermined interval.
  • the laser displacement meter 122 detects the height (in other words, the layer thickness) of sugarcane that passes over the conveyance surface.
  • the distance sensor may be composed of an ultrasonic sensor or the like.
  • the volume of the harvested sugarcane is calculated based on the cross-sectional area obtained from each height from the conveyance surface, the conveyance speed, and the conveyance time.
  • the sugarcane that has been shredded and wind-selected is dropped onto the lower portion of the discharge conveyor 8 by the hopper 18, and is conveyed upward by the discharge conveyor 8.
  • the chopped sugarcane bundles are unwound by vibration, so that the thickness of the sugarcane bundles to be conveyed is suppressed.
  • the sugarcane volume that is, the harvested amount
  • Sugarcane is thrown into the loading platform 11a (see FIG. 2) of the transport vehicle 11 after the harvest amount is detected. That is, the amount of sugarcane harvested is detected as the amount discharged to the transport vehicle 11.
  • control device 80 of the harvester 1 will be described.
  • the harvesting machine 1 has an information network in various places so that it can exert its maximum performance. Specifically, each configuration of the harvester 1 constitutes a controller area network (CAN) that can share information with each other.
  • CAN controller area network
  • the control device 80 has a processing unit 81 formed of a microcomputer such as a CPU and a storage unit 82 such as a ROM, RAM, hard disk drive, flash memory or the like.
  • the processing unit 81 can execute a program stored in the ROM after reading the program on the RAM. Further, the control device 80 controls the operation of various components by causing the processing unit 81 to execute a control program. Specifically, transmission / reception of information at the time of communication, various input / output controls, control of arithmetic processing, and the like are performed.
  • the harvesting machine 1 includes a plurality of laser displacement meters 122 and a traveling speed sensor 102 as a configuration on the input side of the control device 80.
  • the laser displacement meter 122 detects the sugarcane layer thickness on the transport surface of the discharge conveyor 8 as the amount of sugarcane harvested.
  • the traveling speed sensor 102 detects the traveling speed of the harvester 1. A signal from each sensor is transmitted to the control device 80.
  • the traveling speed sensor 102 a sensor having a known configuration can be used.
  • the control device 80 controls each component so that the harvesting machine 1 performs a predetermined operation in the field based on the operation of the boarding operator. In other words, the operation of each component described above is controlled by the control device 80.
  • the control device 80 calculates or derives the harvest amount per unit time or the harvest amount per unit travel distance based on the traveling speed information and the harvest amount information among the transmitted signals. From the control device 80, information on the harvest amount detected by the harvest amount detection means 120 as the actual harvest amount is transmitted every predetermined time. The control device 80 calculates the yield per unit time or unit travel distance based on the detected yield. Further, the control device 80 may transmit information on the harvest amount per unit time or the harvest amount per unit travel distance every predetermined time, and transmits the accumulated harvest amount information every predetermined time. May be.
  • the control device 80 has a communication unit 83.
  • the communication unit 83 has a function of communicating with an external configuration of the harvester 1.
  • the control device 80 can communicate with a vehicle such as another harvester 1 through the communication unit 83, and further includes a communication device including the communication unit 83.
  • 80 can communicate with a transport vehicle 11 (see FIG. 2) that transports the harvest from the field, a portable terminal (not shown) possessed by a driver of the transport vehicle 11 and the like via a communication network.
  • the communication unit 83 and the mobile terminal of the control device 80 are connected to a server via a network (none is shown).
  • the network communicates information with a server, a plurality of portable terminals, a communication device of the plurality of transport vehicles 11, and a communication device of the plurality of harvesters 1.
  • a server including a server, one or more portable terminals, one or more communication devices of a transport vehicle 11, and a communication device (that is, the communication unit 83) provided in each of the one or more harvesters 1, the harvester 1,
  • the transport vehicle 11 and the mobile terminal are remotely monitored by a server.
  • the use states of the mobile terminal, the transport vehicle 11 and the harvester 1 can be confirmed on the server.
  • the usage state corresponds to a power on / off state of each mobile terminal and a key on / off state of each transport vehicle 11.
  • the harvesting machine 1 is used in a state in which the key of each harvesting machine 1 is turned on or off, the operating state of each component of the harvesting machine 1, the harvesting amount per unit time or the harvesting amount per unit travel distance.
  • the discharge amount of the harvested product to the transport vehicle 11, that is, the detection by the harvester detection means 120, and the like are applicable.
  • each transport vehicle 11, each harvester 1, and each portable terminal obtains position information using GPS.
  • a signal including each position information is transmitted to the server via each base station and the network, and the server acquires and accumulates each position information.
  • the vehicle allocation system of the present invention is based on the information transmitted from each harvester 1, each transporter 11 and each portable terminal to the server, and the position of each harvester 1, each transporter 11, and each portable terminal The usage status can be recognized.
  • the field information FI may be stored in a terminal device such as a personal computer storing a vehicle allocation system as a program or the control device 80 of each harvester 1, and each harvester 1, each transport vehicle 11, and You may store in the memory area of the server which communicates via the network with the portable terminal which the driver of each transport vehicle 11 has.
  • a terminal device such as a personal computer storing a vehicle allocation system as a program or the control device 80 of each harvester 1, and each harvester 1, each transport vehicle 11, and You may store in the memory area of the server which communicates via the network with the portable terminal which the driver of each transport vehicle 11 has.
  • FIG. 4 shows an example of the field information FI including the cultivation condition information CI.
  • the field information FI includes information on the area of each field, information on the distance between each field and the factory (specifically, sugar factory), information on the expected harvest amount in each field, and cultivation condition information CI.
  • the cultivation condition information CI is obtained by quantifying the cultivation conditions of sugarcane as a crop in each field, and is set in advance for each field.
  • the field information FI is set for the three fields A to C included in the group I.
  • Other farm fields (not shown) excluding the farm fields A to C are further divided into different groups.
  • Each group represents a grouping of harvesting operations. That is, each group is responsible for harvesting the fields A, B, and C, and a plurality of transporters dispatched to these harvesters 1A, 1B, and 1C (see FIG. 8). A combination with the car 11 is shown.
  • a plurality of harvesters 1 each responsible for harvesting each field and a plurality of transport vehicles 11 dispatched to each harvester 1 are combined.
  • the transport vehicle 11 carries the harvested product, that is, the chopped sugar cane, on the loading platform 11a and then transports it to the sugar factory.
  • the distance is the distance of the route on which the transport vehicle 11 travels as a distance connecting the factory where the harvest is accumulated and each field, but may be a linear distance.
  • the estimated harvest amount represents the total harvest amount (t / field) for each field.
  • the expected harvest amount of each field “460 t” for the field A, “210 t” for the field B, and “220 t” for the field C are input.
  • the expected harvest amount of each field is set according to the cultivation conditions of the crop to be harvested in addition to the area of the field. It should be noted that by using samples extracted for each predetermined block or line in the field, or by using satellite photographs, drones, etc., the expected harvest amount may be subdivided for each predetermined block or line. Good.
  • Cultivation condition information CI includes sugarcane harvest year information, planting position information, filter cake fertilizer information, nitrogen (N) fertilizer application amount information, medical history information, groundwater level information, Contains field environment information and soil quality information.
  • a coefficient corresponding to the planting year from the new stock is entered in the cultivation condition information CI.
  • “1” and “2” in the table represent the years in the first and second years, respectively, as the number of years since sugarcane planting.
  • the first year represents that the sugarcane to be harvested was planted from a new strain.
  • the expected yield is set to be increased.
  • straining refers to a method in which sugarcane grown from seedlings is once harvested and then germinated from the remaining root stock.
  • a substantially trapezoidal groove 91 and embankments 93 raised on both sides of the edge of the groove 91 are formed on the ground by an operation by a sugarcane transplanter (not shown). Further, seed millet 90 cut every length of one or more nodes is placed on the bottom surface 92 of the groove 91 so as to be aligned in order along the groove 91. Further, fertilizer is planted around the seed millet 90.
  • the planted seed millet 90 has roots that sprout from the soil while the roots are budding. During this cultivation period, rooting is promoted by soil cultivation and fertilization. Furthermore, as shown in FIG. 5 (C), the bud grows and side branches are generated one after the other, from the second order to the third order.
  • the stock selection is performed while removing the hakama (dead leaves) on the straw. At this time, the stock remaining after cutting is cut at a predetermined depth or a predetermined height from the ground surface.
  • root cutting is performed at the same time as stock selection. After the emergence is confirmed, root cutting is performed and further fertilization work is performed. The old roots are cut by root cutting to promote the generation of new roots, and fertilizer is applied in a streak shape at the root cutting position. During the cultivation period, the soil on both sides of the groove is brought closer to the stock side, thereby promoting rooting in the ground.
  • the sugarcane in the second year grown from the old strain can also be grown to a predetermined height as shown in FIGS. 5 (D) and 5 (E). Then, after harvesting, as in the previous year, stock selection, root cutting and cultivation are performed. In the third year, stocks are stocked, rooted, and cultivated in the same way. After harvesting sugar cane in the third year, old stocks are dug up and the transplanting operation described above is performed, and the above is repeated every predetermined number of years.
  • the number of years in which old stocks are dug up and replanted with new strains is 2 years (ie, the number of stocks is one). Alternatively, it may be four years (that is, the number of stocks is three).
  • the number of first stock placement corresponds to the strain that has been cultivated for the second year from the new strain
  • the second number of stock placement corresponds to the strain that has been cultivated for the third year from the new strain.
  • sugarcane with a harvest year of “1” corresponds to that of a new strain
  • sugarcane with a harvest year of “2” corresponds to that with the first number of stocks.
  • sugarcane whose harvest year is “3” corresponds to the second stocking.
  • the cultivation condition information CI is inputted with the coefficients set in two stages, shallow and deep, in numerical values.
  • the numerical value of the actual depth from the ground surface to the seedling may be digitized and input. In fields where sugarcane is planted and the sugarcane is expected to have a wide (high) root area in the soil, the expected yield is likely to be increased.
  • the filter cake is made by adsorbing impurities in the pressed juice to lime and bagasse.
  • the harvested sugarcane is finely crushed and squeezed with a squeezer to separate into pressed juice and bagasse.
  • bagasse refers to “squeezed” sugar cane.
  • lime is added to one “pressed juice” and heated, impurities precipitate and can be removed. Of the precipitated components, the one remaining after filtration becomes the filter cake.
  • brown sugar is produced from a “filtrate” that has been precipitated from impurities.
  • the cultivation condition information CI includes information on whether or not such a filter cake is applied to each field as fermentation compost. In fields where filter cake is applied to each strip after planting seedlings (seed millet), the expected yield is set to increase.
  • the amount of nitrogen (N) fertilizer application As the amount of nitrogen (N) fertilizer application, the amount of nitrogen fertilizer sprayed on the field is quantified and input in the cultivation condition information CI.
  • information of a constant value “60 kg / 10a”, that is, information indicating that 60 kg of nitrogen fertilizer is sprayed per 10 a (R) is input to each field.
  • the cultivation condition information CI As information on the medical history, information on whether or not the currently planted plant has a medical history is input to the cultivation condition information CI. It is set so that the expected yield is discounted in the field where a plant with a history is planted.
  • the cultivation condition information CI coefficients set in three stages of high, medium, and low are digitized and input in the cultivation condition information CI.
  • the table only “High” is described.
  • an actual numerical value of the groundwater level may be digitized and input.
  • the expected yield is set to be increased.
  • the expected yield is high when the groundwater level is high, taking into account poor growth due to moisture damage and lack of oxygen. Is set to tend to be discounted.
  • an appropriate correction value can be added to the expected yield based on the balance between the groundwater level, the field environment, and the soil quality.
  • the cultivation condition information CI is inputted with the coefficients set in three stages of excellent, good, and good values.
  • the coefficient indicating “OK” not described in the table is also included in the field environment information and the soil quality information.
  • Information on the field environment includes artificially quantified factors including the presence / absence of slopes in the field, the number of slopes, good and bad sunlight, the sea level of the field (elevated or low), the shape of the field, etc. Is entered.
  • the dispatch system determines the optimum combination of the harvester 1 and the transport vehicle 11, and the harvester 1 and the transport vehicle 11 for each field are determined. Is set up.
  • the dispatch system calculates the expected harvest amount for the entire group I, which is the sum of the expected harvest amounts for each field. Furthermore, the vehicle allocation system spends on the harvesting work according to the expected harvest amount of the entire group I and the harvesting capacity of each harvester 1 (for example, the harvesting speed per unit time or unit travel distance). The number of harvesting machines 1 required within a predetermined time is calculated.
  • the vehicle allocation system determines the number of transport vehicles 11 that can load the amount harvested by each harvester 1 within a predetermined time according to the loadable capacity of each transport vehicle 11 and the harvesting capacity of each harvester 1. Calculate every one. Information on the loading capacity of each transport vehicle 11 is input in advance in the storage area of the dispatch system. Furthermore, the vehicle allocation system sets the arrangement of the transport vehicles 11 within a predetermined time based on the distance from each field to the factory and the loadable capacity of each transport vehicle 11. In this way, the vehicle allocation system sets the arrangement of the harvester 1 and the arrangement of the transport vehicle 11 corresponding to the arrangement of the harvester 1 based on the information on the expected harvest amount.
  • FIG. 7 shows an example of the arrangement of the harvesting machines 1 set in advance for a plurality of fields and the arrangement of the transport vehicles 11 corresponding to each time.
  • FIG. 7 is an example of dispatch of the harvester 1 and the transport vehicle 11 for an arbitrary day during the harvest period.
  • each of the farm fields A, B, and C is divided into three fields. It is operated by the harvester 1 arranged one by one and seven transport vehicles 11 for transporting sugarcane harvested by each harvester 1 from the field. On that day, harvesting starts at 9 o'clock and continues until 17:30.
  • FIG. 8 shows the state of the arrangement of the transport vehicle 11 at 9 o'clock among the set placement of the transport vehicle 11.
  • Car No. 1 runs alongside the harvester 1A and is responsible for loading the crop in the field A
  • Car No. 4 runs alongside the harvester 1B and loads the harvest from the field B
  • Car No. 5 is in charge of loading harvested items in the field C along with the harvester 1C.
  • the second car waits until the next time zone inside and outside the field A
  • the third car waits until the next time zone inside and outside the field B
  • the sixth car follows the next time inside and outside the field C. Wait until the belt.
  • Car 7 is not assigned a field in charge until this time zone and the next time zone.
  • the first car is set with a time zone in which the first car moves from the field A to the factory and further from the factory to the field A.
  • a time zone in which the fourth car moves from the field B to the factory and further moves from the factory to the field A is set for the fourth car.
  • a time zone in which the fifth car moves from the field C to the factory and further moves from the factory to the field A is set.
  • the first car is set to wait in and out of the field A from 14:30. However, since the first car is set to take charge of the harvest of the field A from 16:00, the return to the field A is allowed from 14:30 to 90 minutes.
  • Car 4 is set to wait in and out of the field A from 13:00. However, since Car 4 is set to take charge of the harvest of the field A from 14:30, return to the field A is allowed between 13:00 and 90 minutes. Car No. 5 is set to take charge of the harvest of the field A from 13:00.
  • the second car inherited from the first car runs alongside the harvester 1A and takes charge of the harvest of the field A
  • the third car inherited from the fourth car is the harvester 1B.
  • Car 6 runs side by side and loads the harvest on field B
  • car 6 inherited from car 5 runs alongside harvester 1C and handles the harvest of field C.
  • Car 7 is not assigned a field in charge during this time.
  • the second car is set with a time zone in which the second car moves from the field A to the factory and further from the factory to the field B.
  • a time zone in which the third car moves from the field B to the factory and further moves from the factory to the field B is set for the third car.
  • a time zone in which the sixth car moves from the field C to the factory and further moves from the factory to the field C is set.
  • Car 2 is set to take charge of the harvest of the field B from 14:30.
  • the third car is set to wait in and out of the field B from 14:30. However, since Car 3 is set to take charge of the harvest of the field B from 16:00, return to the field B is allowed between 14:30 and 90 minutes.
  • the No. 6 car is set to take charge of the harvest of the field C from 14:30.
  • Car No. 5 returning from the factory after carrying out unloading and the like is running in parallel with the harvesting machine 1A and is responsible for loading the harvested items in the field A
  • Car No. 7 is the harvesting machine 1C. Run in parallel and take charge of the harvest of the field C.
  • the first car, the second car, the third car, and the sixth car are separated from each farm field.
  • the fourth car is waiting in and out of the field A on the premise that the return to the field A has been completed by 13:00.
  • the setting for car No. 4 is allowed to return to the field A by 14:30 as the next time zone.
  • a time zone is set for Car No. 7 where Car No. 7 moves from the field C to the factory and further moves from the factory to the field C.
  • Car 7 is set to take charge of the harvest of the field C from 16:30.
  • the field in charge in the subsequent time zone is not set in the fifth car.
  • the time zone after 90 minutes has passed since 13:00 can be used for the time for the fifth car to move from the field A to the factory and to discharge the harvest.
  • Car No. 2 returning from the factory after carrying out unloading, etc. runs in parallel with the harvesting machine 1B, takes charge of the harvest of the field B, and waits after returning from the factory.
  • Car No. 3 which had been waiting after returning from the factory after carrying out unloading, etc., was running in parallel with the harvester 1B and was responsible for loading the harvest in the field B and returned from the factory.
  • Car No. 1 that was waiting after running in parallel with the harvesting machine 1A is responsible for loading the harvested product in the field A.
  • the second car, the fourth car, the fifth car, the sixth car, and the seventh car are separated from each field. Even if Car 7 is set to run alongside the harvesting machine 1C from 16:30 and take charge of the harvest of the field C, it will return to the field C after 16:00 and earlier than 16:30. If it is, the loading can be started as soon as it returns to the field C.
  • the time zone after 90 minutes from 16:00 is allocated to the time for car 1 to move from field A to the factory, car 3 from field B to the factory, and car 7 from field C to the factory to discharge the harvest. be able to.
  • the vehicle allocation system corrects the arrangement of the harvester 1 and the arrangement of the transport vehicle 11 that have been set.
  • control for correcting the allocation of the transport vehicle 11 on the day will be described.
  • step S ⁇ b> 1 the dispatch system acquires information on the actual harvest amount and position information from each harvester 1 at predetermined time intervals.
  • step S2 the vehicle allocation system acquires position information from each transport vehicle 11 every predetermined time.
  • step S ⁇ b> 3 the vehicle allocation system, based on the acquired information on the actual harvest amount and the information on the loading capacity for each transport vehicle 11 that has been input in advance, each transport vehicle 11 that is currently in charge of loading the harvest.
  • the time when the load of the vehicle reaches full load (referred to as “full load arrival time”) is calculated.
  • step S4 the vehicle allocation system calculates the time difference between the predicted work end time of each transport vehicle 11 and the full arrival time.
  • step S5 the vehicle allocation system determines whether or not the calculated time difference is within a predetermined time.
  • the step proceeds to step S6, and when the time difference is not less than the predetermined time, the step proceeds to step S8.
  • step S6 the vehicle allocation system resets the calculated full prediction time as the work end time of each transport vehicle 11.
  • the work end time that is reset here represents a deviation before and after the return time to each field, without changing the next destination of each transport vehicle 11 on that day.
  • step S7 the dispatch system notifies each transport vehicle 11 of the reset work end time.
  • This notification may be in the form of an operator operating the harvester 1 contacting the driver of the transport vehicle 11 or the communication device of the transport vehicle 11 using the communication device or the portable terminal of the harvester 1.
  • the harvesting machine 1 is provided with a display device such as a display or an audio output device in the cabin of the harvesting machine 1. The operator can recognize that the predicted work end time has been reset by display on the display device or output of voice or the like.
  • step S8 the dispatch system allocates the next day of the transport vehicle 11 that is responsible for loading in each field based on the loadable capacity of each transport vehicle 11, the estimated load time, and the position of each transport vehicle 11. Is changed, the vehicle allocation of each transport vehicle 11 set in advance is corrected.
  • step S9 the vehicle allocation system notifies each vehicle 11 of the corrected allocation of each vehicle 11 and the calculated estimated full time.
  • this notification may be implemented only with respect to the transport vehicle 11 for which correction is requested, or may be performed with respect to each transport vehicle 11 in the corresponding group.
  • the operator who operates the harvester 1 uses the communication device or the portable terminal of the harvester 1 to contact the driver of the transport vehicle 11 or the communication device of the transport vehicle 11 as in the notification in step S7. It may be a form to do.
  • the harvesting machine 1 has a configuration for allowing the operator to recognize that the predicted work end time has been reset by the display on the display device or the output of sound or the like and that the dispatch of the transport vehicle 11 has been corrected. I have.
  • control for correcting the allocation of the transport vehicle 11 based on the information of the actual harvest amount of the harvester 1 the arrangement of the harvester 1 is corrected together with the allocation of the transport vehicle 11 according to the difference between the expected harvest amount and the actual harvest amount.
  • Control may be performed. That is, the dispatch system calculates a difference between the expected harvest amount and the actual harvest amount based on the information on the actual harvest amount transmitted from each harvesting machine 1 and the information on the expected harvest amount input in advance.
  • the allocation of the harvester 1 and the transport vehicle 11 after the next day is corrected according to the difference. It is assumed that the difference between the expected harvest amount and the actual harvest amount is a difference between each field or each group or both.
  • the allocation of the harvesting machine 1 and the transport vehicle 11 to be corrected may be from the next year onward, or may be the current day.
  • the vehicle allocation system adds information on the actual yield to the information on the field information FI, and updates the information on the field information FI.
  • the accuracy of prediction can be improved by reflecting the information of the actual harvest amount this time in the information of the field information FI used for the subsequent harvesting work.
  • the harvesting machine 1 and the transport vehicle 11 can be dispatched more accurately after improving the prediction accuracy in this way, the efficiency of the harvesting work after the next time can be further increased.
  • the dispatch system stores the dispatch information of the transport vehicle 11 that has been corrected as described above.
  • the information can always be kept up-to-date and optimal.
  • the present invention relates to the allocation of a harvester and a transporter that sets the arrangement of harvesters that harvest crops and the dispatch of a transporter that transports the crops from the field, based on information on a preset expected harvest amount. Available to the system.

Abstract

The purpose of the present invention is to provide a harvesting machine and transport vehicle dispatching system that is capable of executing harvesting work efficiently. For said purpose, the present invention is a harvesting machine (1) and transport vehicle (11) dispatching system that sets the disposition of the harvesting machine (1), which harvests a crop, and the dispatching of the transport vehicles (11), which convey the harvest from the field, on the basis of previously set expected crop yield information, wherein the expected crop yield is set according to the cultivation conditions of the crop being harvested. Moreover, the vehicle dispatching system revises the dispatching of the transport vehicles (11) on the basis of actual crop yield information for the harvesting machine (1). Furthermore, in addition to having loading capacity information for each transport vehicle (11) beforehand, the vehicle dispatching system acquires position information for each transport vehicle (11), calculates the time that the loading of a transport vehicle (11) will reach a full load on the basis of the actual crop yield information and loading capacity information, and revises the dispatching of the transport vehicles (11) according to the results of said calculation, loading capacity information and position information.

Description

配車システムDispatch system
 本発明は、配車システムであって、圃場に配置される収穫機に対して、収穫物を目的地まで運搬する車両を効率よく配分するためのシステムに関する。 The present invention relates to a vehicle allocation system, which relates to a system for efficiently allocating a vehicle for transporting a harvested product to a destination with respect to a harvester arranged in a farm field.
 複数の圃場に複数の運搬車を効率よく配分する配車システムが、従来から公知である(特許文献1参照)。特許文献1に記載の配車システムとしての遠隔配車サーバは、満量予想時刻、収穫終了予想時刻、及び、収穫機位置情報を各収穫機から受信し、各収穫機の満量予想時刻及び収穫終了予想時刻のうちの現在時刻から早い方の時刻を、その収穫機に対する運搬車の配車が優先的に必要とされる順位である配車必要順位の要素として選択している。 Conventionally, a dispatch system that efficiently distributes a plurality of transport vehicles to a plurality of fields is known (see Patent Document 1). The remote dispatch server as the dispatch system described in Patent Document 1 receives the expected full time, the expected end time of harvest, and the harvester position information from each harvester, and the expected full time and end of harvest of each harvester. The time earlier than the current time among the predicted times is selected as an element of the required dispatching order, which is the order in which the delivery of the transporter with respect to the harvester is preferentially required.
 収穫終了予想時刻は、該当する圃場において実施される収穫作業が終了することが見込まれる時刻であり、収穫開始前に予測される収穫量である見込収穫量、圃場で収穫した累計の収穫量である圃場累計収穫量、及び、単位時間当りの収穫量を示す収穫速度に基づいて、現在時刻に対して算出される。 The expected harvest end time is the time when the harvesting work carried out in the corresponding field is expected to end, and is the expected harvest amount that is predicted before the start of harvesting, and the cumulative harvest amount harvested on the field. It is calculated with respect to the current time on the basis of a certain field cumulative harvest amount and a harvest rate indicating a harvest amount per unit time.
 このような配車システムとして、効率よく収穫作業を実施できるように、収穫機と運搬車とを効率よく配車することが望まれている。 As such a vehicle allocation system, it is desired to efficiently distribute the harvester and the transport vehicle so that the harvesting operation can be performed efficiently.
特開2015-84667号公報Japanese Patent Laying-Open No. 2015-84667
 本発明は、効率よく収穫作業を実施できる収穫機と運搬車との配車システムを提供することを目的とする。 An object of the present invention is to provide a dispatch system of a harvester and a transporter that can efficiently perform harvesting work.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems will be described.
 請求項1に係る発明は、予め設定された見込収穫量の情報に基づいて、作物を収穫する収穫機の配置と、収穫物を圃場から搬送する運搬車の配車とを設定する収穫機と運搬車との配車システムであって、前記見込収穫量は、収穫される作物の栽培条件に応じて設定されている、としたものである。 The invention according to claim 1 is a harvester and a transporter for setting the arrangement of harvesters for harvesting crops and dispatching a transporter for transporting the crops from the field based on information on a preset expected harvest amount. In the vehicle allocation system, the estimated harvest amount is set according to the cultivation conditions of the crop to be harvested.
 請求項2に係る発明は、請求項1に記載した配車システムにおいて、前記収穫機の実収穫量の情報に基づいて前記運搬車の配車を修正する、としたものである。 According to a second aspect of the present invention, in the dispatch system described in the first aspect, the dispatch of the transport vehicle is corrected based on information on the actual harvest amount of the harvester.
 請求項3に係る発明は、請求項2に記載した配車システムにおいて、当該配車システムは、各前記運搬車の積載容量の情報を予め有するとともに、各前記運搬車の位置情報を取得し、前記実収穫量の情報及び前記積載容量の情報に基づいて前記運搬車の積載が満載に達する時刻を算出し、当該算出結果と前記積載容量の情報と前記位置情報とに応じて、前記運搬車の配車を修正する、としたものである。 The invention according to claim 3 is the vehicle allocation system according to claim 2, wherein the vehicle allocation system has information on the loading capacity of each transport vehicle in advance, acquires position information of each transport vehicle, and Based on the yield information and the load capacity information, the time when the load of the transport vehicle reaches full load is calculated, and the dispatch of the transport vehicle is determined according to the calculation result, the load capacity information, and the position information. Is to be corrected.
 本発明の効果として、以下に示すような効果を奏する。 As the effects of the present invention, the following effects are obtained.
 請求項1に係る発明によれば、作物の栽培条件を情報として利用することによって適切な見込収穫量を設定したうえで、収穫機と運搬車とを効率的に配車することができるので、収穫作業及びこれに伴う運搬を効率よく実施することができる。 According to the first aspect of the invention, the harvester and the transporter can be efficiently dispatched after setting an appropriate expected harvest amount by using the cultivation conditions of the crop as information. Work and accompanying transportation can be carried out efficiently.
 請求項2に係る発明によれば、実収穫量に基づいて運搬車の配置が修正されるので、収穫機と運搬車との配車をより効率的に運用することができる。 According to the invention according to claim 2, since the arrangement of the transporter is corrected based on the actual harvest amount, the dispatch of the harvester and the transporter can be operated more efficiently.
 請求項3に係る発明によれば、積み込みを現に担当している運搬車の積載が満載に達する前に、他の運搬車を該当する圃場に配車することによって、収穫作業の中断を予防することができる。 According to the invention of claim 3, before the loading of the transport vehicle that is currently in charge of loading reaches another full transport vehicle to the corresponding field, the harvesting operation is prevented from being interrupted. Can do.
収穫機の側面図である。It is a side view of a harvester. 収穫機の平面図である。It is a top view of a harvester. 収穫機の制御システムを示すブロック図である。It is a block diagram which shows the control system of a harvester. 見込収穫量の情報を含む圃場情報の一例を示す図である。It is a figure which shows an example of the agricultural field information containing the information of estimated harvest amount. サトウキビの苗の植付から収穫までを説明する図である。(A)は圃場に植え付けられた種キビを示す図であって、(B)は種キビから萌芽したサトウキビを示す図であって、(C)は種キビから側枝が成長したサトウキビを示す図であって、(D)は側枝が成長し茎が成長したサトウキビを示す図であって、(E)は収穫前の生育したサトウキビを示す図である。It is a figure explaining from the planting to the harvest of sugarcane seedlings. (A) is the figure which shows the seed millet planted in the field, (B) is the figure which shows the sugarcane which sprouted from the seed millet, (C) is the figure which shows the sugarcane from which the side branch grew from the seed millet (D) is a diagram showing sugarcane with side branches growing and stems growing, and (E) is a diagram showing sugarcane grown before harvesting. サトウキビの株出しを説明する図である。(A)は地中に残されて根切りされた根株を示す図であって、(B)は根株から萌芽したサトウキビを示す図であって、(C)は根株から側枝が成長したサトウキビを示す図である。It is a figure explaining stocking of sugarcane. (A) is a diagram showing a root stock that is left in the ground and rooted, (B) is a diagram showing a sugarcane that has sprouted from the root stock, and (C) is a sugarcane that has a side branch grown from the root stock. FIG. 複数の圃場に対して予め設定された収穫機の配置と、これに対応する時間ごとの運搬車の配置との一例を示す図である。It is a figure which shows an example of arrangement | positioning of the harvester preset with respect to several agricultural fields, and arrangement | positioning of the conveyance vehicle for every time corresponding to this. 収穫作業の開始時、即ち、図7に示す9時時点における運搬車の配置の状況を示す図である。It is a figure which shows the condition of arrangement | positioning of the conveyance vehicle at the time of the start of a harvesting operation, ie, 9:00 shown in FIG. 収穫作業の開始から90分経過時、即ち、図7に示す10時30分時点における運搬車の配車の状況を示す図である。It is a figure which shows the condition of the dispatch of the transport vehicle when 90 minutes have passed since the start of the harvesting operation, that is, at 10:30 shown in FIG. 収穫作業の開始から60分の中断を含む240分経過時、即ち、図7に示す13時時点における運搬車の配車の状況を示す図である。It is a figure which shows the condition of the dispatch of a transport vehicle at the time of 240 minutes including 60-minute interruption from the start of a harvesting operation, ie, the time of 13:00 shown in FIG. 収穫作業の開始から60分の中断を含む330分経過時、即ち、図7に示す14時30分時点における運搬車の配車の状況を示す図である。It is a figure which shows the condition of the dispatch of the transport vehicle at the time of 330 minutes progress including the interruption for 60 minutes from the start of a harvesting operation, ie, 14:30 shown in FIG. 収穫作業の開始から60分の中断を含む420分経過時、即ち、図7に示す16時時点における運搬車の配車の状況を示す図である。It is a figure which shows the condition of the dispatch of the transport vehicle at the time of 420 minutes progress including the interruption for 60 minutes from the start of a harvesting operation, ie, 16:00 shown in FIG. 収穫機の実収穫量の情報に基づいて運搬車の配車を修正する制御を示すフローチャートである。It is a flowchart which shows the control which corrects the dispatch of a transport vehicle based on the information of the actual harvest amount of a harvester.
 まず、図1、図2より、収穫機として収穫機1(以下、収穫機1とする)の全体構造について説明する。なお、図中のF方向を前方として、収穫機1の前後方向を規定する。 First, the overall structure of a harvester 1 (hereinafter referred to as harvester 1) as a harvester will be described with reference to FIGS. In addition, the front-back direction of the harvester 1 is prescribed | regulated by making F direction in a figure into the front.
 収穫機1は、走行装置としてクローラ式走行装置10上に機体フレーム30を支持し走行部とする。機体フレーム30の前部に昇降リンク機構12を介して左右一対のクロップデバイダ2が配設される。なお、走行装置はホイル式であってもかまわない。クロップデバイダ2は、サトウキビを引き起こしながら機内に引き込む。左右一対のクロップデバイダ2の上部には、サイドカッター16・16が設けられる。こうして、サイドカッター16は左右一対のクロップデバイダ2で掻きこんだときに絡み合う稈の上部を切断するようにしている。 The harvesting machine 1 supports the body frame 30 on the crawler type traveling device 10 as a traveling device, and serves as a traveling unit. A pair of left and right crop dividers 2 are disposed at the front of the body frame 30 via the lifting link mechanism 12. The traveling device may be a wheel type. Crop divider 2 pulls into the plane, causing sugar cane. Side cutters 16 and 16 are provided above the pair of left and right crop dividers 2. In this way, the side cutter 16 cuts the upper portion of the ridges that are intertwined when scraped by the pair of left and right crop dividers 2.
 また、刈取部取付フレーム34の上部から前方にトップカッター17が突出され、サトウキビの上部を切断可能に配置している。 Also, the top cutter 17 protrudes forward from the upper part of the cutting part mounting frame 34, and the upper part of the sugar cane is disposed so as to be cut.
 クロップデバイダ2の後方には、掻込ロータ13とベースカッター3と前搬送装置4が前搬送フレーム14に支持されている。前搬送フレーム14は左右一対設けられて、後部が後述する後搬送装置5の前端位置の機体フレーム30に上下回動自在に枢支される。前搬送フレーム14の前部と機体フレーム30との間には油圧シリンダが介装されて、油圧シリンダを伸縮させることによりベースカッター3や掻込ロータ13の高さを調節可能としている。 At the rear of the crop divider 2, a scraping rotor 13, a base cutter 3, and a front transport device 4 are supported by a front transport frame 14. A pair of left and right front transport frames 14 are provided, and a rear portion thereof is pivotally supported by a machine frame 30 at a front end position of a rear transport device 5 described later so as to be rotatable up and down. A hydraulic cylinder is interposed between the front portion of the front conveyance frame 14 and the body frame 30, and the height of the base cutter 3 and the take-in rotor 13 can be adjusted by extending and contracting the hydraulic cylinder.
 こうして、走行部の前部に刈取装置となるクロップデバイダ2、サイドカッター16、ベースカッター3、トップカッター17が前方に突出するように配設され、クロップデバイダ2により分草されサトウキビの稈の上部と左右両側が切断され、掻込ロータ13の回転により掻き込まれて、株元がベースカッター3によって切断されると同時に稈の下端(根元)が跳ね上げられる。跳ね上げられたサトウキビは、その直後に配置された前搬送装置4に根元から引き込まれ、前搬送装置4によって斜め後上方に送られる。 Thus, the crop divider 2, the side cutter 16, the base cutter 3, and the top cutter 17 serving as a cutting device are arranged in front of the traveling unit so as to protrude forward, and the weeds are cropped by the crop divider 2 to the upper part of the sugarcane cocoon. Both the left and right sides are cut and scraped by the rotation of the scraping rotor 13, and the stock is cut by the base cutter 3 and at the same time the lower end (root) of the heel is flipped up. The sugarcane that has been bounced up is drawn from the base into the front conveying device 4 disposed immediately after that, and is sent obliquely rearward and upward by the front conveying device 4.
 前搬送装置4の後部は後搬送装置5の前下部に位置される。ベースカッター3により切断された後のサトウキビは、前搬送装置4により後方へ送られて後搬送装置5に受け継がれて斜め後上方に搬送される。 The rear part of the front conveying device 4 is located at the front lower part of the rear conveying device 5. The sugar cane after being cut by the base cutter 3 is sent rearward by the front conveying device 4, inherited by the rear conveying device 5, and conveyed obliquely rearward and upward.
 後搬送装置5の後部にはチョッピング装置6が配設される。チョッピング装置6はカッターと跳ね出しローラからなる。カッターは左右方向に軸心を有する上下一対のカッター軸上にブレード刃が固定され、サトウキビが回転する上下のブレード刃の間を通過するときに細断されるようにしている。跳ね出しローラは上下一対の左右方向に軸心を有する回転軸上に跳ね出し羽根を固定し、カッターの後上方に配置される。そして、上下の軸を互いに反対方向に回転させることで、細断されたサトウキビが強制的に上後方へ跳ね飛ばされるようにしている。跳ね出しローラの後部には拡散ロータが配置される。拡散ロータは細断された後のサトウキビの茎や葉が上方に拡散されるようにしている。なお、跳ね出しローラや拡散ロータを設けることなく、カッターで切断した後に直接後述する風選装置7に投入する構成とすることもできる。 A chopping device 6 is disposed at the rear of the rear conveying device 5. The chopping device 6 includes a cutter and a jump roller. The cutter has a blade blade fixed on a pair of upper and lower cutter shafts having an axial center in the left-right direction, and is chopped when the sugar cane passes between the upper and lower blade blades rotating. The jumping roller fixes a jumping blade on a rotating shaft having a pair of upper and lower left and right axial centers, and is disposed above the cutter. And by rotating the upper and lower shafts in directions opposite to each other, the chopped sugar cane is forced to jump up and backward. A diffusion rotor is disposed at the rear of the spring-out roller. The diffusion rotor allows sugarcane stems and leaves after being shredded to diffuse upward. In addition, it can also be set as the structure directly thrown into the wind selection apparatus 7 mentioned later, after cut | disconnecting with a cutter, without providing a jump roller and a spreading | diffusion rotor.
 風選装置7は、チョッピング装置6の後上部に設けられるブロワケース7aと、ブロワケース7a内に収納されるブロワ7bからなる。ブロワケース7aは下方と上側方が開口され、ブロワケース7aの下部はチョッピング装置6と連通され、上側方が葉や塵等の排出口としている。ブロワケース7aは上下方向の軸心を中心に回動可能とされ、排出方向を変更可能としている。ブロワ7bは上下方向を軸心としてブロワケース7a内に収納され、ブロワ7bを回転駆動することにより、下から上方への高速空気流が発生されて拡散ロータの回転により拡散され、細断後の葉や塵を上方へ吸い込んで側方または後方に排出できるようにし、重い茎は下方の排出コンベア8の下部に設けたホッパー18上に落下する。 The wind selection device 7 includes a blower case 7a provided at the upper rear portion of the chopping device 6 and a blower 7b accommodated in the blower case 7a. The lower and upper sides of the blower case 7a are opened, the lower part of the blower case 7a is communicated with the chopping device 6, and the upper side serves as a discharge port for leaves and dust. The blower case 7a can be rotated about the vertical axis, and the discharge direction can be changed. The blower 7b is housed in the blower case 7a with the vertical direction as the axis, and by rotating the blower 7b, a high-speed air flow from the bottom to the top is generated and diffused by the rotation of the diffusion rotor. Leaves and dust are sucked upward so that they can be discharged to the side or rear, and the heavy stem falls onto a hopper 18 provided at the lower part of the lower discharge conveyor 8.
 排出コンベア8は、下部が機体フレーム30の後部に設けた旋回台20上に支持され、旋回台20に排出コンベア8が上下方向を軸心として左右回動可能に支持されている。排出コンベア8は油圧モータを作動させることにより左右回動でき、排出方向を変更可能に構成している。 The lower part of the discharge conveyor 8 is supported on a swivel base 20 provided at the rear part of the body frame 30, and the discharge conveyor 8 is supported on the swivel base 20 so as to be rotatable left and right about the vertical direction. The discharge conveyor 8 can be rotated left and right by operating a hydraulic motor, and the discharge direction can be changed.
 図2に示すように、収穫機1による収穫作業時には、運搬車11が併走し、排出コンベア8の排出部が運搬車11の荷台11aへ向くように油圧モータを作動させて排出方向を変更し、刈取作業をしながら収穫物を運搬車11へ排出するようにしている。 As shown in FIG. 2, during the harvesting operation by the harvester 1, the transport vehicle 11 runs side by side, and the discharge direction of the discharge conveyor 8 is changed so that the discharge portion of the discharge conveyor 8 faces the loading platform 11 a of the transport vehicle 11. The harvested product is discharged to the transport vehicle 11 while performing the cutting operation.
 図1に示すように、排出コンベア8の前面には、収穫量検出手段120が配置され、排出コンベア8の後端上部の出口にはデフレクタ15が設けられ、落下方向を変更可能に構成している。 As shown in FIG. 1, a harvest amount detecting means 120 is disposed on the front surface of the discharge conveyor 8, and a deflector 15 is provided at the upper exit of the rear end of the discharge conveyor 8, so that the falling direction can be changed. Yes.
 また、機体フレーム30の前後中央の前搬送装置4の後部上方には、エンジン50が配置され、エンジン50はクランク軸が左右方向となるように配置されている。クランク軸の一端側に冷却ファンを設けて、インタークーラ64やラジエータ65(何れも図2参照)を冷却できるようにし、クランク軸の他端に複数の油圧ポンプ66(図2参照)が連動連結されて、駆動されるようにしている。 Further, an engine 50 is arranged above the rear part of the front conveying device 4 at the front and rear center of the body frame 30, and the engine 50 is arranged so that the crankshaft is in the left-right direction. A cooling fan is provided at one end of the crankshaft to cool the intercooler 64 and the radiator 65 (both see FIG. 2), and a plurality of hydraulic pumps 66 (see FIG. 2) are linked to the other end of the crankshaft. To be driven.
 排出コンベア8は、左右の搬送フレーム110・110の間の下部に駆動ローラ111が配置され、上部に従動ローラ112が配置されて、駆動ローラ111と従動ローラ112の間に左右の搬送チェーン113・113が巻回される。左右の搬送チェーン113・113の間には所定間隔をあけて仕切板114・114・・・が取り付けられて搬送体が形成される。搬送フレーム110・110間に搬送面となる搬送底板(図示せず)が架設される。こうして、スラットコンベアが形成される。なお、搬送底板には多数のスリットが形成され、塵埃等をこのスリットから落下させることができるように構成している。 In the discharge conveyor 8, a driving roller 111 is disposed at the lower part between the left and right conveying frames 110 and 110, a driven roller 112 is disposed at the upper part, and the left and right conveying chains 113 and 110 are disposed between the driving roller 111 and the driven roller 112. 113 is wound. A partition plate 114, 114,... Is attached between the left and right transport chains 113 and 113 at a predetermined interval to form a transport body. A conveyance bottom plate (not shown) serving as a conveyance surface is installed between the conveyance frames 110 and 110. Thus, a slat conveyor is formed. In addition, many slits are formed in a conveyance bottom plate, and it is comprised so that dust etc. can be dropped from this slit.
 この搬送底板と仕切板114とにより囲まれた空間に搬送物となるサトウキビを収納し、搬送チェーン113を回動させることで搬送物を搬送することができる。但し、スラットコンベアは無端ベルト上に仕切板を立設して構成することも可能であり、その構成は限定するものではない。 In the space surrounded by the conveyance bottom plate and the partition plate 114, sugar cane that is to be conveyed is stored, and the conveyance chain 113 is rotated so that the conveyance can be conveyed. However, the slat conveyor can be configured by standing a partition plate on an endless belt, and the configuration is not limited.
 この排出コンベア8の搬送行程に搬送物の搬送量を検出するための収穫量検出装置となる収穫量検出手段120が配置されている。収穫量検出手段120は、周囲を塵埃等の浸入を防止するとともに、破損防止のために保護カバーにより覆われている。保護カバーはシェード121により構成され、シェード121は収穫量検出手段120の検出側と反対側(前上方側)の周囲を覆っている。 The harvest amount detection means 120 serving as a harvest amount detection device for detecting the transport amount of the transported object is arranged in the transport process of the discharge conveyor 8. The harvest amount detection means 120 is covered with a protective cover to prevent intrusion of dust and the like and to prevent breakage. The protective cover is constituted by a shade 121, and the shade 121 covers the periphery on the opposite side (front upper side) of the harvest amount detection means 120.
 収穫量検出手段120は距離センサによって構成され、複数(本実施形態では5個(図中には一つを図示))の距離センサとしてレーザ変位計122(図3参照)が左右方向(排出コンベア8の幅方向)に所定間隔をあけて配置される。レーザ変位計122は、搬送面上を通過するサトウキビの高さ(言い換えると層厚)を検知する。但し、距離センサは、超音波センサ等で構成してもよい。収穫されたサトウキビの体積は、搬送面からの各高さから得られる断面積と搬送速度と搬送時間とに基づいて算出される。 The harvest amount detection means 120 is constituted by a distance sensor, and a laser displacement meter 122 (see FIG. 3) serves as a plurality of (in the present embodiment, five (one shown in the figure)) distance sensors in the left-right direction (discharge conveyor). 8 in the width direction) with a predetermined interval. The laser displacement meter 122 detects the height (in other words, the layer thickness) of sugarcane that passes over the conveyance surface. However, the distance sensor may be composed of an ultrasonic sensor or the like. The volume of the harvested sugarcane is calculated based on the cross-sectional area obtained from each height from the conveyance surface, the conveyance speed, and the conveyance time.
 こうして、細断され風選後のサトウキビがホッパー18よって排出コンベア8の下部上に落下し、排出コンベア8によって上方へ搬送される。この上方への搬送時には、細断されたサトウキビの束が振動によって解けることによって、搬送されるサトウキビの束の層厚が抑えられる。そして、風選装置7よりも高い位置において、収穫量検出手段120によってサトウキビの体積即ち収穫量が検出される。サトウキビは、収穫量が検出された後、運搬車11の荷台11a(図2参照)に投入される。つまり、サトウキビの収穫量は、運搬車11への排出量として検出される。 Thus, the sugarcane that has been shredded and wind-selected is dropped onto the lower portion of the discharge conveyor 8 by the hopper 18, and is conveyed upward by the discharge conveyor 8. At the time of the upward conveyance, the chopped sugarcane bundles are unwound by vibration, so that the thickness of the sugarcane bundles to be conveyed is suppressed. The sugarcane volume, that is, the harvested amount, is detected by the harvested amount detecting means 120 at a position higher than the wind sorting device 7. Sugarcane is thrown into the loading platform 11a (see FIG. 2) of the transport vehicle 11 after the harvest amount is detected. That is, the amount of sugarcane harvested is detected as the amount discharged to the transport vehicle 11.
 次に、収穫機1の制御装置80について説明する。 Next, the control device 80 of the harvester 1 will be described.
 収穫機1は、最大限の性能を発揮できるよう、各所に情報ネットワークが張り巡らされている。具体的には、収穫機1の各構成が互いに情報を共有できるコントローラ・エリア・ネットワーク(CAN)を構成している。 The harvesting machine 1 has an information network in various places so that it can exert its maximum performance. Specifically, each configuration of the harvester 1 constitutes a controller area network (CAN) that can share information with each other.
 図3に示すように、制御装置80は、CPU等のマイクロコンピュータからなる処理部81と、ROM、RAM、ハードディスクドライブ、フラッシュメモリ等の記憶部82とを有している。処理部81は、ROMに格納されているプログラム等をRAM上に読み出したうえで、これを実行することができる。更に、制御装置80は、制御プログラムを処理部81が実行することにより、各種構成要素の作動制御を行う。具体的には、通信時における情報の送受信、各種の入出力制御及び演算処理の制御等を行う。 As shown in FIG. 3, the control device 80 has a processing unit 81 formed of a microcomputer such as a CPU and a storage unit 82 such as a ROM, RAM, hard disk drive, flash memory or the like. The processing unit 81 can execute a program stored in the ROM after reading the program on the RAM. Further, the control device 80 controls the operation of various components by causing the processing unit 81 to execute a control program. Specifically, transmission / reception of information at the time of communication, various input / output controls, control of arithmetic processing, and the like are performed.
 収穫機1は、制御装置80の入力側の構成として、複数のレーザ変位計122と、走行速度センサ102とを備えている。上述のように、レーザ変位計122は、サトウキビの収穫量として、排出コンベア8における搬送面上のサトウキビの層厚を検出する。走行速度センサ102は、収穫機1の走行速度を検出する。各センサからの信号は、制御装置80に送信される。なお、走行速度センサ102としては、公知の構成を有するセンサを用いることができる。 The harvesting machine 1 includes a plurality of laser displacement meters 122 and a traveling speed sensor 102 as a configuration on the input side of the control device 80. As described above, the laser displacement meter 122 detects the sugarcane layer thickness on the transport surface of the discharge conveyor 8 as the amount of sugarcane harvested. The traveling speed sensor 102 detects the traveling speed of the harvester 1. A signal from each sensor is transmitted to the control device 80. As the traveling speed sensor 102, a sensor having a known configuration can be used.
 制御装置80は、乗車するオペレータの操作に基づいて、圃場内において収穫機1が所定の作業を実施するように各構成を制御する。つまり、制御装置80により、上述の各構成の作動が制御されている。 The control device 80 controls each component so that the harvesting machine 1 performs a predetermined operation in the field based on the operation of the boarding operator. In other words, the operation of each component described above is controlled by the control device 80.
 制御装置80は、送信される信号のうち、走行速度の情報と収穫量の情報とに基づいて、単位時間当りの収穫量若しくは単位走行距離当りの収穫量を算出又は導出する。制御装置80からは、実収穫量として収穫量検出手段120によって検出された収穫量の情報が、所定時間ごとに送信される。制御装置80は、検出された収穫量に基づいて、単位時間当り又は単位走行距離当りの収穫量を算出する。また、制御装置80は、単位時間当りの収穫量若しくは単位走行距離当りの収穫量の情報を所定時間ごとに送信していてもよく、蓄積した収穫量の情報を所定時間ごとに都度送信していてもよい。 The control device 80 calculates or derives the harvest amount per unit time or the harvest amount per unit travel distance based on the traveling speed information and the harvest amount information among the transmitted signals. From the control device 80, information on the harvest amount detected by the harvest amount detection means 120 as the actual harvest amount is transmitted every predetermined time. The control device 80 calculates the yield per unit time or unit travel distance based on the detected yield. Further, the control device 80 may transmit information on the harvest amount per unit time or the harvest amount per unit travel distance every predetermined time, and transmits the accumulated harvest amount information every predetermined time. May be.
 制御装置80は、通信部83を有する。通信部83は、収穫機1の外部の構成と通信する機能を有する。制御装置80は、通信部83を通じて別の収穫機1等の車両との間で通信自在であって、更に、通信部83を含む通信機器を収穫機1が備えている場合には、制御装置80は、収穫物を圃場から搬送する運搬車11(図2参照)、運搬車11のドライバが持つ携帯端末(図示せず)等と通信ネットワークを介して通信することができる。 The control device 80 has a communication unit 83. The communication unit 83 has a function of communicating with an external configuration of the harvester 1. The control device 80 can communicate with a vehicle such as another harvester 1 through the communication unit 83, and further includes a communication device including the communication unit 83. 80 can communicate with a transport vehicle 11 (see FIG. 2) that transports the harvest from the field, a portable terminal (not shown) possessed by a driver of the transport vehicle 11 and the like via a communication network.
 制御装置80の通信部83と携帯端末とは、ネットワークを介してサーバに接続されている(何れも図示せず)。ネットワークは、サーバ、複数の携帯端末、複数の運搬車11の通信機器、及び、複数の収穫機1の通信機器と情報伝達を行う。サーバと、1以上の携帯端末と、1以上の運搬車11の通信機器と、1以上の収穫機1のそれぞれに設けられる通信機器(つまり通信部83)とを含むシステムにおいて、収穫機1、運搬車11、及び、携帯端末は、サーバに遠隔監視されている。 The communication unit 83 and the mobile terminal of the control device 80 are connected to a server via a network (none is shown). The network communicates information with a server, a plurality of portable terminals, a communication device of the plurality of transport vehicles 11, and a communication device of the plurality of harvesters 1. In a system including a server, one or more portable terminals, one or more communication devices of a transport vehicle 11, and a communication device (that is, the communication unit 83) provided in each of the one or more harvesters 1, the harvester 1, The transport vehicle 11 and the mobile terminal are remotely monitored by a server.
 このような遠隔監視によれば、携帯端末と運搬車11と収穫機1との各使用状態をサーバにおいて確認することができる。使用状態としては、各携帯端末の電源のオン又はオフの状態、各運搬車11のキーのオン又はオフの状態が該当する。また、収穫機1の使用状態としては、各収穫機1のキーのオン又はオフの状態、収穫機1の各構成の稼働状態、単位時間当りの収穫量又は単位走行距離当りの収穫量の検出、収穫物の運搬車11への排出量即ち収穫機検出手段120による検出等が該当する。 According to such remote monitoring, the use states of the mobile terminal, the transport vehicle 11 and the harvester 1 can be confirmed on the server. The usage state corresponds to a power on / off state of each mobile terminal and a key on / off state of each transport vehicle 11. In addition, the harvesting machine 1 is used in a state in which the key of each harvesting machine 1 is turned on or off, the operating state of each component of the harvesting machine 1, the harvesting amount per unit time or the harvesting amount per unit travel distance. The discharge amount of the harvested product to the transport vehicle 11, that is, the detection by the harvester detection means 120, and the like are applicable.
 また、各運搬車11と各収穫機1と各携帯端末とは、GPSを用いて位置情報を取得している。各位置情報を含む信号は、各基地局及びネットワークを介してサーバに送信され、サーバは、それぞれの位置情報を取得且つ蓄積している。本発明の配車システムは、各収穫機1と各運搬車11と各携帯端末とからサーバに送信される情報に基づいて、各収穫機1、各運搬車11、及び、各携帯端末の位置及び使用状態を認識することができる。 Also, each transport vehicle 11, each harvester 1, and each portable terminal obtains position information using GPS. A signal including each position information is transmitted to the server via each base station and the network, and the server acquires and accumulates each position information. The vehicle allocation system of the present invention is based on the information transmitted from each harvester 1, each transporter 11 and each portable terminal to the server, and the position of each harvester 1, each transporter 11, and each portable terminal The usage status can be recognized.
 次に、本発明の配車システムに予め入力されている圃場情報FIについて説明する。圃場情報FIは、プログラムとしての配車システムを格納しているパーソナルコンピュータ等の端末装置又は各収穫機1の制御装置80に格納されていてもよく、各収穫機1、各運搬車11、及び、各運搬車11のドライバが持つ携帯端末とネットワークを介して通信するサーバの記憶領域に格納されていてもよい。 Next, the field information FI input in advance in the vehicle allocation system of the present invention will be described. The field information FI may be stored in a terminal device such as a personal computer storing a vehicle allocation system as a program or the control device 80 of each harvester 1, and each harvester 1, each transport vehicle 11, and You may store in the memory area of the server which communicates via the network with the portable terminal which the driver of each transport vehicle 11 has.
 図4に、栽培条件情報CIを含む圃場情報FIの一例を示す。圃場情報FIは、各圃場の面積の情報、各圃場と工場(具体的には製糖工場)との間の距離の情報、各圃場における見込収穫量の情報、及び、栽培条件情報CIを含む。また、栽培条件情報CIは、各圃場の作物としてのサトウキビの栽培条件を数値化したものであって、圃場ごとに予め設定されている。 FIG. 4 shows an example of the field information FI including the cultivation condition information CI. The field information FI includes information on the area of each field, information on the distance between each field and the factory (specifically, sugar factory), information on the expected harvest amount in each field, and cultivation condition information CI. The cultivation condition information CI is obtained by quantifying the cultivation conditions of sugarcane as a crop in each field, and is set in advance for each field.
 本実施形態において、圃場情報FIは、グループIに含まれる圃場A~Cまでの三つの圃場に対して設定されている。各圃場A~Cを除いた図示しない他の圃場は、更に別のグループに区分けされている。各グループは、収穫作業の組分けを表している。つまり、各グループは、圃場A,B,Cの収穫を担当する各収穫機1A・1B・1C(図8参照)と、これらの収穫機1A・1B・1Cに対して配車される複数の運搬車11との組み合わせを表している。図示しない別のグループにおいても、各圃場の収穫をそれぞれ担当する複数の収穫機1と、各収穫機1に対して配車される複数の運搬車11とが組み合わさっている。 In the present embodiment, the field information FI is set for the three fields A to C included in the group I. Other farm fields (not shown) excluding the farm fields A to C are further divided into different groups. Each group represents a grouping of harvesting operations. That is, each group is responsible for harvesting the fields A, B, and C, and a plurality of transporters dispatched to these harvesters 1A, 1B, and 1C (see FIG. 8). A combination with the car 11 is shown. In another group (not shown), a plurality of harvesters 1 each responsible for harvesting each field and a plurality of transport vehicles 11 dispatched to each harvester 1 are combined.
 各圃場と工場との間の距離として、圃場Aに対しては『20km』、圃場Bに対しては『14km』、圃場Cに対しては『5km』の各情報が入力されている。運搬車11は、収穫物即ち細断されたサトウキビを荷台11aに載せたうえで製糖工場まで搬送する。なお、距離は、収穫物が集積される工場と各圃場とを結ぶ距離として、運搬車11が走行する道筋の距離であるが、直線距離であってもよい。 As the distance between each field and the factory, “20 km” for the field A, “14 km” for the field B, and “5 km” for the field C are input. The transport vehicle 11 carries the harvested product, that is, the chopped sugar cane, on the loading platform 11a and then transports it to the sugar factory. The distance is the distance of the route on which the transport vehicle 11 travels as a distance connecting the factory where the harvest is accumulated and each field, but may be a linear distance.
 各圃場の面積として、圃場Aに対しては『5.6ha(ヘクタール)』、圃場Bに対しては『3.8ha』、圃場Cに対しては『4.2ha』の各情報が入力されている。 As the area of each field, “5.6 ha (ha)” is input for the field A, “3.8 ha” for the field B, and “4.2 ha” for the field C. ing.
 見込収穫量は、圃場ごとの全体の収穫量(t/field)を表している。各圃場の見込収穫量として、圃場Aに対しては『460t』、圃場Bに対しては『210t』、圃場Cに対しては『220t』の各情報が入力されている。各圃場の見込収穫量は、圃場の面積の他に、収穫される作物の栽培条件に応じて設定されている。なお、圃場における所定のブロック若しくは条毎に抽出されるサンプルを活用し、又は、衛星写真、ドローン等を活用することによって、所定のブロック若しくは条毎に見込収穫量を細分化することにしてもよい。 The estimated harvest amount represents the total harvest amount (t / field) for each field. As the expected harvest amount of each field, “460 t” for the field A, “210 t” for the field B, and “220 t” for the field C are input. The expected harvest amount of each field is set according to the cultivation conditions of the crop to be harvested in addition to the area of the field. It should be noted that by using samples extracted for each predetermined block or line in the field, or by using satellite photographs, drones, etc., the expected harvest amount may be subdivided for each predetermined block or line. Good.
 栽培条件情報CIは、サトウキビの収穫年度の情報、植付位置の情報、フィルターケーキの施肥の有無の情報、窒素(N)肥料の施肥量の情報、病歴の有無の情報、地下水位の情報、圃場環境の情報、及び、土壌質の情報を含む。 Cultivation condition information CI includes sugarcane harvest year information, planting position information, filter cake fertilizer information, nitrogen (N) fertilizer application amount information, medical history information, groundwater level information, Contains field environment information and soil quality information.
 収穫年度の情報として、栽培条件情報CIには、新株からの植付年数に対応する係数が入力されている。表中の『1』、『2』は、それぞれサトウキビの植付からの経過年数として、1年目、2年目の年数を表している。1年目は、収穫対象のサトウキビが新株から植え付けられたものであることを表す。株出し回数が少なく、苗の植付から年数の経過が少ないサトウキビが植えられている圃場には、見込収穫量が割り増しされる傾向に設定されている。 As the harvest year information, a coefficient corresponding to the planting year from the new stock is entered in the cultivation condition information CI. “1” and “2” in the table represent the years in the first and second years, respectively, as the number of years since sugarcane planting. The first year represents that the sugarcane to be harvested was planted from a new strain. In the fields where sugarcane is planted with a small number of stockings and a few years after the seedling planting, the expected yield is set to be increased.
 以下、サトウキビの苗(種キビ)の植付と、株出しとについて説明する。株出しとは、周知のように、苗から生育したサトウキビを一旦収穫した後、残された根株から発芽させる方法のことである。 Hereafter, planting of sugarcane seedlings (seed millet) and stocking will be explained. As is well known, straining refers to a method in which sugarcane grown from seedlings is once harvested and then germinated from the remaining root stock.
 図5(A)に示すように、図示しないサトウキビ移植機による作業によって、略台形状の溝91と、溝91の縁の両側に盛り上げられた盛土93とが地面に成形される。また、一節以上の長さごとに切断されている種キビ90が、溝91に沿って順に整列するように、溝91の底面92に載置される。更に、種キビ90の周囲に肥料が蒔かれる。 As shown in FIG. 5 (A), a substantially trapezoidal groove 91 and embankments 93 raised on both sides of the edge of the groove 91 are formed on the ground by an operation by a sugarcane transplanter (not shown). Further, seed millet 90 cut every length of one or more nodes is placed on the bottom surface 92 of the groove 91 so as to be aligned in order along the groove 91. Further, fertilizer is planted around the seed millet 90.
 そして、盛土93が種キビ90の上に被せられたうえで鎮圧される。このようにして、地中において各種キビ90が溝91に沿って略一定深さに埋められる。このように新たに地中に植え付けされたサトウキビは、新株と呼ばれる。 Then, the embankment 93 is put on the seed millet 90 and then pressed. In this way, various millets 90 are buried at a substantially constant depth along the groove 91 in the ground. Sugarcane newly planted in the ground in this way is called a new strain.
 図5(B)に示すように、植え付けられた種キビ90は、根を張りつつ節部分にある芽が土中から芽吹く。この栽培期間中に、培土と施肥によって根張りが促進される。更に、図5(C)に示すように、この芽が成長して2次、3次と次々に側枝が発生する。 As shown in FIG. 5 (B), the planted seed millet 90 has roots that sprout from the soil while the roots are budding. During this cultivation period, rooting is promoted by soil cultivation and fertilization. Furthermore, as shown in FIG. 5 (C), the bud grows and side branches are generated one after the other, from the second order to the third order.
 図5(D)に示すように、次々に側枝が発生して茎が伸びていき、サトウキビは成長する。図5(E)に示すように、サトウキビは、所定高さに成長した際に、刈り取られて収穫される。 As shown in FIG. 5 (D), side branches occur one after another, the stems grow, and sugarcane grows. As shown in FIG. 5E, sugarcane is cut and harvested when it grows to a predetermined height.
 図6(A)に示すように、収穫作業後には、畦上のハカマ(枯葉)を取り除きつつ、株揃えが行われる。この際に、刈取後に残った株が、地表から所定深さ又は所定の高さで切断される。 As shown in FIG. 6 (A), after the harvesting operation, the stock selection is performed while removing the hakama (dead leaves) on the straw. At this time, the stock remaining after cutting is cut at a predetermined depth or a predetermined height from the ground surface.
 また、株揃えと同時に根切りが行われる。出芽が確認された後に、根切りが実施されて、更に施肥作業が行われる。根切りによって古い根が切断されて、新根の発生を促すとともに、根切り位置に筋状に肥料が施される。栽培期間中には、溝の両縁の土が株側に寄せられることによって、地中への根張りが促進される。 Also, root cutting is performed at the same time as stock selection. After the emergence is confirmed, root cutting is performed and further fertilization work is performed. The old roots are cut by root cutting to promote the generation of new roots, and fertilizer is applied in a streak shape at the root cutting position. During the cultivation period, the soil on both sides of the groove is brought closer to the stock side, thereby promoting rooting in the ground.
 図6(B)に示すように、この古株(根株)からも萌芽する。また、図6(C)に示すように、芽が成長して次々に側枝が発生する。このように、古株から成長した2年目のサトウキビも、図5(D)及び図5(E)に示すように所定高さまで成長させることができる。そして、成長後に収穫すると、前年と同様に、株揃えと根切りと培土とが行われる。3年目も同様に株揃えと根切りと培土とが行われ、収穫量を増大させたうえで収穫が行われる。3年目のサトウキビの収穫の後には、古株が掘り起こされて、上述の移植作業が行われて、以上が所定の年数ごとに繰り返される。 As shown in FIG. 6 (B), it will sprout from this old strain (root strain). In addition, as shown in FIG. 6C, buds grow and side branches are generated one after another. Thus, the sugarcane in the second year grown from the old strain can also be grown to a predetermined height as shown in FIGS. 5 (D) and 5 (E). Then, after harvesting, as in the previous year, stock selection, root cutting and cultivation are performed. In the third year, stocks are stocked, rooted, and cultivated in the same way. After harvesting sugar cane in the third year, old stocks are dug up and the transplanting operation described above is performed, and the above is repeated every predetermined number of years.
 なお、品種、土壌、圃場環境等、栽培条件によって、若しくは、圃場管理者の熟練度によって、古株が掘り起こされて新株に植え替えられる年数は、2年(即ち、株出し回数が1回)であってもよく又は逆に4年(即ち、株出し回数が3回)であってもよい。 Depending on the cultivation conditions such as varieties, soil, field environment, etc., or depending on the skill level of the field manager, the number of years in which old stocks are dug up and replanted with new strains is 2 years (ie, the number of stocks is one). Alternatively, it may be four years (that is, the number of stocks is three).
 1回目の株出し回数には、新株から2年目の栽培が実施された株が該当し、2回目の株出し回数には、新株から3年目の栽培が実施された株が該当する。言い換えると、収穫年度が『1』であるサトウキビは、新株のものに該当し、収穫年度が『2』であるサトウキビは、株出し回数が1回目のものに該当する。また、図示されていないが、収穫年度が『3』であるサトウキビは、株出し回数が2回目のものに該当する。 The number of first stock placement corresponds to the strain that has been cultivated for the second year from the new strain, and the second number of stock placement corresponds to the strain that has been cultivated for the third year from the new strain. In other words, sugarcane with a harvest year of “1” corresponds to that of a new strain, and sugarcane with a harvest year of “2” corresponds to that with the first number of stocks. Although not shown in the figure, sugarcane whose harvest year is “3” corresponds to the second stocking.
 また、植付位置の情報として、栽培条件情報CIには、浅、深の二段階に設定された係数が数値化されて入力されている。ただし、植付位置の情報としては、地表面から苗までの実際の深さの数値が数値化されて入力されていてもよい。サトウキビの植付位置が深く、土中の根域が広い(高い)ことが見込まれるサトウキビのある圃場には、見込収穫量が割り増しされる傾向に設定されている。 Also, as the planting position information, the cultivation condition information CI is inputted with the coefficients set in two stages, shallow and deep, in numerical values. However, as the planting position information, the numerical value of the actual depth from the ground surface to the seedling may be digitized and input. In fields where sugarcane is planted and the sugarcane is expected to have a wide (high) root area in the soil, the expected yield is likely to be increased.
 図4に示すように、栽培条件情報CIには、フィルターケーキの情報として、各圃場にフィルターケーキの施用があるか否かの情報が入力されている。 As shown in FIG. 4, in the cultivation condition information CI, information on whether or not there is application of filter cake in each field is input as filter cake information.
 フィルターケーキとは、圧搾汁中の不純物を石灰及びバガスに吸着させたものである。収穫されたサトウキビは、細かく砕かれて圧搾機で絞られることによって、圧搾汁とバガスに分離される。これらのうち、「バガス」は、サトウキビの「絞りかす」を指す。一方の「圧搾汁」に、石灰が加えられて加熱されると、不純物が沈殿し、これを除去できる。沈殿成分のうち、濾過後に残ったものがフィルターケーキとなる。周知のように、黒糖は、不純物が除去されて沈殿した「濾過液」から生成される。 The filter cake is made by adsorbing impurities in the pressed juice to lime and bagasse. The harvested sugarcane is finely crushed and squeezed with a squeezer to separate into pressed juice and bagasse. Of these, “bagasse” refers to “squeezed” sugar cane. When lime is added to one “pressed juice” and heated, impurities precipitate and can be removed. Of the precipitated components, the one remaining after filtration becomes the filter cake. As is well known, brown sugar is produced from a “filtrate” that has been precipitated from impurities.
 栽培条件情報CIは、このようなフィルターケーキが発酵堆肥として各圃場に施用されているか否かの情報を含む。苗(種キビ)の植付後にフィルターケーキが条ごとに施用されている圃場には、見込収穫量が割り増しされる傾向に設定されている。 The cultivation condition information CI includes information on whether or not such a filter cake is applied to each field as fermentation compost. In fields where filter cake is applied to each strip after planting seedlings (seed millet), the expected yield is set to increase.
 窒素(N)施肥量の情報として、栽培条件情報CIには、圃場に散布された窒素肥料の量が数値化されて入力されている。本例においては、各圃場に対して一定値『60kg/10a』の情報、即ち、10a(アール)当りに60kgの窒素肥料が散布されていることを示す情報が入力されている。 As the amount of nitrogen (N) fertilizer application, the amount of nitrogen fertilizer sprayed on the field is quantified and input in the cultivation condition information CI. In this example, information of a constant value “60 kg / 10a”, that is, information indicating that 60 kg of nitrogen fertilizer is sprayed per 10 a (R) is input to each field.
 病歴の情報として、栽培条件情報CIには、現在植わっている株に病歴があるか否かの情報が入力されている。病歴のある株が植わっている圃場には、見込収穫量が割り引かれる傾向に設定されている。 As information on the medical history, information on whether or not the currently planted plant has a medical history is input to the cultivation condition information CI. It is set so that the expected yield is discounted in the field where a plant with a history is planted.
 地下水位の情報として、栽培条件情報CIには、高、中、低の三段階に設定された係数が数値化されて入力されている。表中には、『高』のみが記載されている。ただし、地下水位の情報としては、地下水位の実際の数値が数値化されて入力されていてもよい。乾田状態にある圃場には、地下水位が高い場合に見込収穫量が割り増しされる傾向に設定されている。また、降雨後に水溜りが比較的長期間残るような排水が悪い圃場、又は、低地にある圃場には、湿害、酸素不足による生育不良を考慮して、地下水位が高い場合に見込収穫量が割り引かれる傾向に設定されている。このように、栽培条件情報CIによれば、地下水位と圃場環境と土壌質との兼ね合いによって、見込収穫量に適切な補正値を加えることができる。 As the groundwater level information, coefficients set in three stages of high, medium, and low are digitized and input in the cultivation condition information CI. In the table, only “High” is described. However, as the groundwater level information, an actual numerical value of the groundwater level may be digitized and input. In the field in the dry paddy field, when the groundwater level is high, the expected yield is set to be increased. Also, in fields where drainage is poor, where drainage remains for a relatively long time after rainfall, or in lowland fields, the expected yield is high when the groundwater level is high, taking into account poor growth due to moisture damage and lack of oxygen. Is set to tend to be discounted. As described above, according to the cultivation condition information CI, an appropriate correction value can be added to the expected yield based on the balance between the groundwater level, the field environment, and the soil quality.
 圃場環境の情報と土壌質の情報として、栽培条件情報CIには、優、良、可の三段階に設定された係数が数値化されて入力されている。表中に記載されていない『可』を示す係数も、圃場環境の情報と土壌質の情報とに含まれる。圃場環境の情報としては、圃場の傾斜面の有無、傾斜面の多寡、日当りの良し悪し、圃場の海抜(高台若しくは低地等)、圃場の形状等を総合して人為的に数値化された係数が入力されている。 As the field environment information and the soil quality information, the cultivation condition information CI is inputted with the coefficients set in three stages of excellent, good, and good values. The coefficient indicating “OK” not described in the table is also included in the field environment information and the soil quality information. Information on the field environment includes artificially quantified factors including the presence / absence of slopes in the field, the number of slopes, good and bad sunlight, the sea level of the field (elevated or low), the shape of the field, etc. Is entered.
 以上のように見込収穫量として予測された各圃場の収穫量に基づいて、配車システムは、収穫機1と運搬車11との最適な組み合わせを割り出し、圃場ごとの収穫機1と運搬車11との配置を設定している。 As described above, based on the harvest amount of each field predicted as the expected harvest amount, the dispatch system determines the optimum combination of the harvester 1 and the transport vehicle 11, and the harvester 1 and the transport vehicle 11 for each field are determined. Is set up.
 具体的には、配車システムは、各圃場の見込収穫量を合計したグループI全体の見込収穫量を算出する。更に、配車システムは、グループI全体の見込収穫量と、1台ごとの収穫機1が有する収穫能力(例えば、単位時間当り又は単位走行距離当りの収穫速度)とに応じて、収穫作業に費やされる所定時間内に必要な収穫機1の台数を算出する。 Specifically, the dispatch system calculates the expected harvest amount for the entire group I, which is the sum of the expected harvest amounts for each field. Furthermore, the vehicle allocation system spends on the harvesting work according to the expected harvest amount of the entire group I and the harvesting capacity of each harvester 1 (for example, the harvesting speed per unit time or unit travel distance). The number of harvesting machines 1 required within a predetermined time is calculated.
 そして、配車システムは、所定時間内に各収穫機1が収穫する量を積載できる運搬車11の台数を、各運搬車11の積載可能容量と各収穫機1の収穫能力とに応じて収穫機1ごとに算出する。各運搬車11の積載容量の情報は、予め配車システムの記憶領域に入力されている。更に、配車システムは、各圃場から工場までの距離と、各運搬車11の積載可能容量とに基づいて、所定時間内ごとの運搬車11の配置を設定する。このようにして、配車システムは、見込収穫量の情報に基づいて、収穫機1の配置、及び、収穫機1の配置に対応する運搬車11の配置を設定している。 The vehicle allocation system determines the number of transport vehicles 11 that can load the amount harvested by each harvester 1 within a predetermined time according to the loadable capacity of each transport vehicle 11 and the harvesting capacity of each harvester 1. Calculate every one. Information on the loading capacity of each transport vehicle 11 is input in advance in the storage area of the dispatch system. Furthermore, the vehicle allocation system sets the arrangement of the transport vehicles 11 within a predetermined time based on the distance from each field to the factory and the loadable capacity of each transport vehicle 11. In this way, the vehicle allocation system sets the arrangement of the harvester 1 and the arrangement of the transport vehicle 11 corresponding to the arrangement of the harvester 1 based on the information on the expected harvest amount.
 図7に、複数の圃場に対して予め設定された収穫機1の配置と、これに対応する時間ごとの運搬車11の配置との一例を示す。 FIG. 7 shows an example of the arrangement of the harvesting machines 1 set in advance for a plurality of fields and the arrangement of the transport vehicles 11 corresponding to each time.
 図7は、収穫期間の任意の一日の収穫機1と運搬車11との配車の例であって、本例は、圃場A、圃場B、圃場Cの三つの圃場に対して、各圃場に1台ずつ配置される収穫機1と、各収穫機1によって収穫されるサトウキビを圃場から搬送する7台の運搬車11とで運用される。当日は、9時に収穫作業が開始されて、17時30分まで継続される。 FIG. 7 is an example of dispatch of the harvester 1 and the transport vehicle 11 for an arbitrary day during the harvest period. In this example, each of the farm fields A, B, and C is divided into three fields. It is operated by the harvester 1 arranged one by one and seven transport vehicles 11 for transporting sugarcane harvested by each harvester 1 from the field. On that day, harvesting starts at 9 o'clock and continues until 17:30.
 本例によれば、三つの各圃場に対して、9時から10時30分までの90分の間に、1号車、4号車及び5号車の三台の運搬車11が収穫機1と併走して収穫作業を実施することが設定されている。一定速度で刈取及び収穫されるサトウキビを積載する1号車、4号車及び5号車の各積載量が、90分経過時に満載に達することが予測されている。つまり、各圃場における1号車、4号車及び5号車の作業終了時刻は、10時30分に設定されている。図8には、設定された運搬車11の配置のうち、9時における運搬車11の配置の状況を示す。 According to this example, three transport vehicles 11 of No. 1, No. 4, No. 4 and No. 5 run alongside the harvester 1 in 90 minutes from 9 o'clock to 10:30 for each of the three fields. It is set to carry out harvesting work. It is predicted that the loading capacity of No. 1, No. 4, No. 5 and No. 5 loading sugar cane harvested and harvested at a constant speed will reach full load after 90 minutes. That is, the work end time of the first car, the fourth car, and the fifth car in each field is set to 10:30. FIG. 8 shows the state of the arrangement of the transport vehicle 11 at 9 o'clock among the set placement of the transport vehicle 11.
 図8に示すように、この時間帯において、1号車は収穫機1Aと併走して圃場Aの収穫物の積載を担当し、4号車は収穫機1Bと併走して圃場Bの収穫物の積載を担当し、5号車は収穫機1Cと併走して圃場Cの収穫物の積載を担当する。 As shown in FIG. 8, during this time period, Car No. 1 runs alongside the harvester 1A and is responsible for loading the crop in the field A, and Car No. 4 runs alongside the harvester 1B and loads the harvest from the field B. Car No. 5 is in charge of loading harvested items in the field C along with the harvester 1C.
 また、この時間帯において、2号車は圃場Aの内外において次の時間帯まで待機し、3号車は圃場Bの内外において次の時間帯まで待機し、6号車は圃場Cの内外において次の時間帯まで待機する。7号車は、この時間帯及び次の時間帯まで担当の圃場が割り当てられていない。 In this time zone, the second car waits until the next time zone inside and outside the field A, the third car waits until the next time zone inside and outside the field B, and the sixth car follows the next time inside and outside the field C. Wait until the belt. Car 7 is not assigned a field in charge until this time zone and the next time zone.
 図7に示すように、9時から90分経過した後には、1号車には、圃場Aから工場まで1号車が移動し、更に工場から圃場Aまで移動する時間帯が設定されている。また、4号車には、圃場Bから工場まで4号車が移動し、更に工場から圃場Aまで移動する時間帯が設定されている。5号車には、圃場Cから工場まで5号車が移動し、更に工場から圃場Aまで移動する時間帯が設定されている。1号車は、14時30分から圃場Aの内外において待機することが設定されている。しかし、1号車は、16時から圃場Aの収穫物の積載を担当することが設定されているので、圃場Aへの帰着は、14時30分から90分の間に許容されている。4号車は、13時から圃場Aの内外において待機することが設定されている。しかし、4号車は、14時30分から圃場Aの収穫物の積載を担当することが設定されているので、圃場Aへの帰着は、13時から90分の間に許容されている。5号車は、13時から圃場Aの収穫物の積載を担当することが設定されている。 As shown in FIG. 7, after 90 minutes have passed since 9 o'clock, the first car is set with a time zone in which the first car moves from the field A to the factory and further from the factory to the field A. In addition, a time zone in which the fourth car moves from the field B to the factory and further moves from the factory to the field A is set for the fourth car. In the fifth car, a time zone in which the fifth car moves from the field C to the factory and further moves from the factory to the field A is set. The first car is set to wait in and out of the field A from 14:30. However, since the first car is set to take charge of the harvest of the field A from 16:00, the return to the field A is allowed from 14:30 to 90 minutes. Car No. 4 is set to wait in and out of the field A from 13:00. However, since Car 4 is set to take charge of the harvest of the field A from 14:30, return to the field A is allowed between 13:00 and 90 minutes. Car No. 5 is set to take charge of the harvest of the field A from 13:00.
 次の時間帯として、10時30分から12時までの90分の間に、2号車、3号車及び6号車の三台の運搬車11が収穫機1と併走して収穫作業を実施することが設定されている。一定速度で刈取及び収穫されるサトウキビを積載する2号車、3号車及び6号車の各積載量も、90分経過時に満載に達することが予測されている。図9には、設定された運搬車11の配置のうち、10時30分における運搬車11の配置の状況を示す。 As the next time zone, during the 90 minutes from 10:30 to 12:00, the three transport vehicles 11 of No. 2, No. 3, No. 6 and No. 6 will run alongside the harvester 1 and carry out harvesting work. Is set. Cars No. 2, No. 3, No. 6 and No. 6 carrying sugar cane harvested and harvested at a constant speed are also expected to reach full load after 90 minutes. In FIG. 9, the arrangement | positioning condition of the transport vehicle 11 in 10:30 is shown among arrangement | positioning of the transport vehicle 11 set.
 図9に示すように、この時間帯において、1号車から受け継いだ2号車は収穫機1Aと併走して圃場Aの収穫物の積載を担当し、4号車から受け継いだ3号車は収穫機1Bと併走して圃場Bの収穫物の積載を担当し、5号車から受け継いだ6号車は収穫機1Cと併走して圃場Cの収穫物の積載を担当する。 As shown in FIG. 9, during this time period, the second car inherited from the first car runs alongside the harvester 1A and takes charge of the harvest of the field A, and the third car inherited from the fourth car is the harvester 1B. Car 6 runs side by side and loads the harvest on field B, and car 6 inherited from car 5 runs alongside harvester 1C and handles the harvest of field C.
 また、先の時間帯において満載となった各運搬車11として、1号車、4号車、5号車は各圃場から離れて工場へ移動し、収穫物を排出する。7号車は、この時間帯も担当の圃場が割り当てられていない。 Also, as each transport vehicle 11 that was fully loaded in the previous time zone, the first car, the fourth car, and the fifth car move away from each field to the factory and discharge the harvest. Car 7 is not assigned a field in charge during this time.
 図7に示すように、10時30分から90分経過した後には、2号車には、圃場Aから工場まで2号車が移動し、更に工場から圃場Bまで移動する時間帯が設定されている。また、3号車には、圃場Bから工場まで3号車が移動し、更に工場から圃場Bまで移動する時間帯が設定されている。6号車には、圃場Cから工場まで6号車が移動し、更に工場から圃場Cまで移動する時間帯が設定されている。2号車は、14時30分から圃場Bの収穫物の積載を担当することが設定されている。3号車は、14時30分から圃場Bの内外において待機することが設定されている。しかし、3号車は、16時から圃場Bの収穫物の積載を担当することが設定されているので、圃場Bへの帰着は、14時30分から90分の間に許容されている。6号車は、14時30分から圃場Cの収穫物の積載を担当することが設定されている。 As shown in FIG. 7, after 90 minutes have passed since 10:30, the second car is set with a time zone in which the second car moves from the field A to the factory and further from the factory to the field B. In addition, a time zone in which the third car moves from the field B to the factory and further moves from the factory to the field B is set for the third car. In the sixth car, a time zone in which the sixth car moves from the field C to the factory and further moves from the factory to the field C is set. Car 2 is set to take charge of the harvest of the field B from 14:30. The third car is set to wait in and out of the field B from 14:30. However, since Car 3 is set to take charge of the harvest of the field B from 16:00, return to the field B is allowed between 14:30 and 90 minutes. The No. 6 car is set to take charge of the harvest of the field C from 14:30.
 図7に示すように、当日のタイムスケジュールにおいて、12時から13時までの一時間は、各圃場A・B・Cでの収穫作業が中断することが設定されている。 As shown in FIG. 7, in the time schedule of the day, it is set that the harvesting work in each of the fields A, B, and C is interrupted for one hour from 12:00 to 13:00.
 中断から次の時間帯として、13時から14時30分までの90分の間に、5号車及び7号車の二台の運搬車11が収穫機1と併走して収穫作業を実施することが設定されている。7号車は、圃場Cにおいて13時から収穫物の積載を担当することが設定されている。即ち、一定速度で刈取及び収穫されるサトウキビを積載する7号車の各積載量も、90分経過時に満載に達することが予測されている。圃場Bにおいては、13時から14時30分までの当該時間帯に収穫作業を中断するように設定されている。図10には、設定された運搬車11の配置のうち、13時における運搬車11の配置の状況を示す。 During the 90 minutes from 13:00 to 14:30 as the next time period after the interruption, the two transport vehicles 11 of No. 5 and No. 7 run alongside the harvester 1 and carry out harvesting work. Is set. Car 7 is set to take charge of the harvest from 13:00 on the field C. In other words, it is predicted that the loading capacity of Car No. 7 carrying sugarcane that is cut and harvested at a constant speed will reach full load after 90 minutes. In the field B, the harvesting operation is set to be interrupted during the time period from 13:00 to 14:30. In FIG. 10, the arrangement | positioning condition of the conveyance vehicle 11 in 13:00 is shown among arrangement | positioning of the conveyance vehicle 11 set.
 図10に示すように、この時間帯において、搬出等を終えて工場から戻ってくる5号車は収穫機1Aと併走して圃場Aの収穫物の積載を担当し、7号車は収穫機1Cと併走して圃場Cの収穫物の積載を担当する。 As shown in FIG. 10, during this time period, Car No. 5 returning from the factory after carrying out unloading and the like is running in parallel with the harvesting machine 1A and is responsible for loading the harvested items in the field A, and Car No. 7 is the harvesting machine 1C. Run in parallel and take charge of the harvest of the field C.
 また、先の各時間帯において満載となった各運搬車11として、1号車、2号車、3号車、及び、6号車は各圃場から離れている。図中には、13時までに圃場Aへの帰着が完了していることを前提として、圃場Aの内外において4号車が待機している。しかし、4号車に対しての設定は、次の時間帯として14時30分までに圃場Aへ帰着することが許容されている。 In addition, as each transport vehicle 11 that is fully loaded in each of the previous time zones, the first car, the second car, the third car, and the sixth car are separated from each farm field. In the figure, the fourth car is waiting in and out of the field A on the premise that the return to the field A has been completed by 13:00. However, the setting for car No. 4 is allowed to return to the field A by 14:30 as the next time zone.
 図7に示すように、13時から90分経過した後には、7号車には、圃場Cから工場まで7号車が移動し、更に工場から圃場Cまで移動する時間帯が設定されている。7号車は、16時30分から圃場Cの収穫物の積載を担当することが設定されている。13時から90分経過した後には、5号車に以降の時間帯における担当の圃場は設定されていない。13時から90分経過した後の時間帯を、5号車は圃場Aから工場まで移動し、収穫物を排出する時間に充てることができる。 As shown in FIG. 7, after 90 minutes have passed since 13:00, a time zone is set for Car No. 7 where Car No. 7 moves from the field C to the factory and further moves from the factory to the field C. Car 7 is set to take charge of the harvest of the field C from 16:30. After 90 minutes have passed since 13:00, the field in charge in the subsequent time zone is not set in the fifth car. The time zone after 90 minutes has passed since 13:00 can be used for the time for the fifth car to move from the field A to the factory and to discharge the harvest.
 更に次の時間帯として、14時30分から16時までの90分の間に、2号車、4号車及び6号車の三台の運搬車11が収穫機1と併走して収穫作業を実施することが設定されている。図11には、設定された運搬車11の配置のうち、14時30分における運搬車11の配置の状況を示す。 Furthermore, as the next time zone, during the 90 minutes from 14:30 to 16:00, three transport vehicles 11 of No. 2, No. 4, No. 6 and No. 6 will run alongside the harvester 1 and carry out harvesting work. Is set. In FIG. 11, the arrangement | positioning condition of the conveyance vehicle 11 in 14:30 is shown among arrangement | positioning of the conveyance vehicle 11 set.
 図11に示すように、この時間帯において、搬出等を終えて工場から戻ってくる2号車は収穫機1Bと併走して圃場Bの収穫物の積載を担当し、工場から戻った後に待機していた4号車は収穫機1Aと併走して圃場Aの収穫物の積載を担当し、工場から戻ってくる6号車は収穫機1Cと併走して圃場Cの収穫物の積載を担当する。 As shown in FIG. 11, during this time period, Car No. 2 returning from the factory after carrying out unloading, etc. runs in parallel with the harvesting machine 1B, takes charge of the harvest of the field B, and waits after returning from the factory. Car No. 4, which was running alongside the harvesting machine 1A, was responsible for loading the harvest on the field A, and car No. 6 returning from the factory was running alongside the harvesting machine 1C and was responsible for loading the harvesting on the field C.
 また、先の各時間帯において満載となった各運搬車11として、5号車及び7号車は各圃場から離れて工場へ移動し、収穫物を排出する。図中には、14時30分までに、圃場A又は圃場Bへの帰着が完了していることを前提として、圃場Aの内外において1号車が待機し、また、圃場Bの内外において3号車が待機している。しかし、それぞれ、1号車と3号車とに対しての設定は、次の時間帯として16時までに圃場A又は圃場Bへ帰着することが許容されている。 In addition, as each transport vehicle 11 that is fully loaded in each of the previous time zones, Car No. 5 and Car No. 7 move away from each field to the factory and discharge the harvest. In the figure, on the assumption that the return to the field A or the field B is completed by 14:30, the first car stands by inside and outside the field A, and the third car inside and outside the field B. Is waiting. However, the settings for the first car and the third car are permitted to return to the field A or the field B by 16:00 as the next time zone.
 図7に示すように、14時30分から90分経過した後には、2号車、4号車及び6号車に以降の時間帯における担当の圃場は設定されていない。14時30分から90分経過した後の時間帯を、2号車は圃場Bから工場まで、4号車は圃場Aから工場まで、6号車は圃場Cから工場まで移動し、収穫物を排出する時間に充てることができる。 As shown in FIG. 7, after 90 minutes have passed since 14:30, the fields in charge in the subsequent time zones are not set for the second car, the fourth car, and the sixth car. After 90 minutes from 14:30, the time for Car 2 to move from field B to the factory, Car 4 from field A to the factory, and Car 6 from field C to the factory to drain the harvest Can be used.
 更にまた次の時間帯として、16時から17時30分までの90分の間に、1号車及び3号車の二台の運搬車11が収穫機1と併走して収穫作業を実施することが設定されている。また、16時30分から7号車が収穫機1と併走して収穫作業を実施することが設定されている。図12には、設定された運搬車11の配置のうち、16時における運搬車11の配置の状況を示す。 Furthermore, as the next time zone, two transport vehicles 11 of No. 1 and No. 3 carry out the harvesting work in parallel with the harvester 1 during 90 minutes from 16:00 to 17:30. Is set. In addition, it is set that Car No. 7 runs alongside the harvester 1 from 16:30 to carry out the harvesting operation. In FIG. 12, the arrangement | positioning condition of the conveyance vehicle 11 in 16:00 is shown among arrangement | positioning of the conveyance vehicle 11 set.
 図12に示すように、この時間帯において、搬出等を終えて工場から戻った後に待機していた3号車は収穫機1Bと併走して圃場Bの収穫物の積載を担当し、工場から戻った後に待機していた1号車は収穫機1Aと併走して圃場Aの収穫物の積載を担当する。 As shown in FIG. 12, during this time period, Car No. 3, which had been waiting after returning from the factory after carrying out unloading, etc., was running in parallel with the harvester 1B and was responsible for loading the harvest in the field B and returned from the factory. Car No. 1 that was waiting after running in parallel with the harvesting machine 1A is responsible for loading the harvested product in the field A.
 また、先の各時間帯において満載となった各運搬車11として、2号車、4号車、5号車、6号車、及び、7号車は各圃場から離れている。7号車は、16時30分から収穫機1Cと併走して圃場Cの収穫物の積載を担当することが設定されているとしても、16時以降且つ16時30分よりも早く圃場Cに戻っている場合には、圃場Cに帰着した次第、積載を開始することができる。 In addition, as the transport vehicles 11 that are fully loaded in each of the previous time zones, the second car, the fourth car, the fifth car, the sixth car, and the seventh car are separated from each field. Even if Car 7 is set to run alongside the harvesting machine 1C from 16:30 and take charge of the harvest of the field C, it will return to the field C after 16:00 and earlier than 16:30. If it is, the loading can be started as soon as it returns to the field C.
 図7に示すように、16時から90分経過した後、また、16時30分から60分経過した後には、1号車、3号車及び7号車に以降の時間帯における担当の圃場は設定されていない。16時から90分経過した後の時間帯を、1号車は圃場Aから工場まで、3号車は圃場Bから工場まで、7号車は圃場Cから工場まで移動し、収穫物を排出する時間に充てることができる。 As shown in FIG. 7, after 90 minutes have passed since 16:00, and after 60 minutes have passed since 16:30, the fields in charge in the subsequent time zones have been set for the first car, the third car, and the seventh car. Absent. The time zone after 90 minutes from 16:00 is allocated to the time for car 1 to move from field A to the factory, car 3 from field B to the factory, and car 7 from field C to the factory to discharge the harvest. be able to.
 以上のように設定された収穫機1の配置及び運搬車11の配置に対して、実際に刈取及び収穫作業が実施される場合に見込収穫量と実収穫量との間に差が生じる事態が発生する。このようなときには、配車システムは、設定した収穫機1の配置及び運搬車11の配置を修正する。以下、収穫機1の実収穫量の情報に基づいて、当日における運搬車11の配車を修正する制御について説明する。 There is a situation where a difference occurs between the expected harvest amount and the actual harvest amount when the harvesting and harvesting operations are actually performed with respect to the arrangement of the harvesting machine 1 and the arrangement of the transport vehicle 11 set as described above. appear. In such a case, the vehicle allocation system corrects the arrangement of the harvester 1 and the arrangement of the transport vehicle 11 that have been set. Hereinafter, based on the information on the actual harvest amount of the harvester 1, control for correcting the allocation of the transport vehicle 11 on the day will be described.
 図13に示すように、ステップS1において、配車システムは、実収穫量の情報と位置情報とを所定時間ごとに各収穫機1から取得する。 As shown in FIG. 13, in step S <b> 1, the dispatch system acquires information on the actual harvest amount and position information from each harvester 1 at predetermined time intervals.
 ステップS2において、配車システムは、位置情報を所定時間ごとに各運搬車11から取得する。 In step S2, the vehicle allocation system acquires position information from each transport vehicle 11 every predetermined time.
 ステップS3において、配車システムは、取得した実収穫量の情報と、予め入力されている運搬車11ごとの積載容量の情報とに基づいて、収穫物の積載を現に担当している各運搬車11の積載が満載に達する時刻(『満載到達時刻』という)を算出する。 In step S <b> 3, the vehicle allocation system, based on the acquired information on the actual harvest amount and the information on the loading capacity for each transport vehicle 11 that has been input in advance, each transport vehicle 11 that is currently in charge of loading the harvest. The time when the load of the vehicle reaches full load (referred to as “full load arrival time”) is calculated.
 ステップS4において、配車システムは、予測した各運搬車11の作業終了時刻と満載到達時刻との時間差を算出する。 In step S4, the vehicle allocation system calculates the time difference between the predicted work end time of each transport vehicle 11 and the full arrival time.
 ステップS5において、配車システムは、算出した時間差が所定の時間内であるか否かを判定する。ここで、時間差が所定の時間内である場合にはステップS6にステップが移行し、時間差が所定の時間以上である場合にはステップS8にステップが移行する。 In step S5, the vehicle allocation system determines whether or not the calculated time difference is within a predetermined time. Here, when the time difference is within the predetermined time, the step proceeds to step S6, and when the time difference is not less than the predetermined time, the step proceeds to step S8.
 ステップS6において、配車システムは、算出した満量予測時刻を各運搬車11の作業終了時刻としてリセットする。ここでリセットされる作業終了時刻は、当日における各運搬車11の次の行先を変更するまでもなく、各圃場への帰着時間の前後のずれを表している。 In step S6, the vehicle allocation system resets the calculated full prediction time as the work end time of each transport vehicle 11. The work end time that is reset here represents a deviation before and after the return time to each field, without changing the next destination of each transport vehicle 11 on that day.
 ステップS7において、配車システムは、リセットした作業終了時刻を各運搬車11に通知する。なお、この通知は、収穫機1を操縦するオペレータが、収穫機1の通信機器又は携帯端末を用いて、運搬車11のドライバ又は運搬車11の通信機器に連絡する形態であってもよい。例えば、収穫機1は、収穫機1のキャビン内にディスプレイ等の表示装置、又は、音声出力装置が設置されている。オペレータは、表示装置による表示、又は、音声等の出力によって、予測された作業終了時刻がリセットされたことを認識することができる。 In step S7, the dispatch system notifies each transport vehicle 11 of the reset work end time. This notification may be in the form of an operator operating the harvester 1 contacting the driver of the transport vehicle 11 or the communication device of the transport vehicle 11 using the communication device or the portable terminal of the harvester 1. For example, the harvesting machine 1 is provided with a display device such as a display or an audio output device in the cabin of the harvesting machine 1. The operator can recognize that the predicted work end time has been reset by display on the display device or output of voice or the like.
 一方、ステップS8において、配車システムは、各運搬車11の積載可能容量と満載予測時刻と各運搬車11の位置とに基づいて、次に各圃場において積載を担当する運搬車11の当日の配車を変更することにより、予め設定された各運搬車11の配車を修正する。 On the other hand, in step S8, the dispatch system allocates the next day of the transport vehicle 11 that is responsible for loading in each field based on the loadable capacity of each transport vehicle 11, the estimated load time, and the position of each transport vehicle 11. Is changed, the vehicle allocation of each transport vehicle 11 set in advance is corrected.
 ステップS9において、配車システムは、修正した各運搬車11の配車と算出した満量予測時刻とを各運搬車11に通知する。なお、この通知は、修正が要求された運搬車11に対してのみ実施されていてもよく、該当するグループ中の各運搬車11に対して実施されていてもよい。また、この通知は、ステップS7の通知のように、収穫機1を操縦するオペレータが、収穫機1の通信機器又は携帯端末を用いて、運搬車11のドライバ又は運搬車11の通信機器に連絡する形態であってもよい。収穫機1は、表示装置による表示、又は、音声等の出力によって、予測された作業終了時刻がリセットされたことと、運搬車11の配車が修正されたことをオペレータに認識させるための構成を備えている。 In step S9, the vehicle allocation system notifies each vehicle 11 of the corrected allocation of each vehicle 11 and the calculated estimated full time. In addition, this notification may be implemented only with respect to the transport vehicle 11 for which correction is requested, or may be performed with respect to each transport vehicle 11 in the corresponding group. In addition, as in the notification in step S7, the operator who operates the harvester 1 uses the communication device or the portable terminal of the harvester 1 to contact the driver of the transport vehicle 11 or the communication device of the transport vehicle 11 as in the notification in step S7. It may be a form to do. The harvesting machine 1 has a configuration for allowing the operator to recognize that the predicted work end time has been reset by the display on the display device or the output of sound or the like and that the dispatch of the transport vehicle 11 has been corrected. I have.
 収穫機1の実収穫量の情報に基づいて運搬車11の配車を修正する制御としては、見込収穫量と実収穫量との差に応じて運搬車11の配車とともに収穫機1の配置を修正する制御であってもよい。つまり、配車システムは、各収穫機1から送信される実収穫量の情報と、予め入力された見込収穫量の情報とに基づいて、見込収穫量と実収穫量との差を算出し、算出した差に応じて翌日以降の収穫機1と運搬車11との配車を修正する。なお、見込収穫量と実収穫量との差とは、圃場ごと若しくはグループごとの何れか又は両方の差であるとする。また、修正される収穫機1と運搬車11との配車は、翌年以降のものであってもよく、当日のものであってもよい。 As control for correcting the allocation of the transport vehicle 11 based on the information of the actual harvest amount of the harvester 1, the arrangement of the harvester 1 is corrected together with the allocation of the transport vehicle 11 according to the difference between the expected harvest amount and the actual harvest amount. Control may be performed. That is, the dispatch system calculates a difference between the expected harvest amount and the actual harvest amount based on the information on the actual harvest amount transmitted from each harvesting machine 1 and the information on the expected harvest amount input in advance. The allocation of the harvester 1 and the transport vehicle 11 after the next day is corrected according to the difference. It is assumed that the difference between the expected harvest amount and the actual harvest amount is a difference between each field or each group or both. In addition, the allocation of the harvesting machine 1 and the transport vehicle 11 to be corrected may be from the next year onward, or may be the current day.
 配車システムは、実収穫量の情報を圃場情報FIの情報に追加して、圃場情報FIの情報を更新する。このように、次回以降の収穫作業に用いられる圃場情報FIの情報に今回の実際の収穫量の情報を反映することによって、予測精度の向上を図ることができる。更に、このように予測精度を向上させたうえで収穫機1と運搬車11とをより的確に配車できるので、次回以降の収穫作業の効率をより高めることができる。 The vehicle allocation system adds information on the actual yield to the information on the field information FI, and updates the information on the field information FI. Thus, the accuracy of prediction can be improved by reflecting the information of the actual harvest amount this time in the information of the field information FI used for the subsequent harvesting work. Furthermore, since the harvesting machine 1 and the transport vehicle 11 can be dispatched more accurately after improving the prediction accuracy in this way, the efficiency of the harvesting work after the next time can be further increased.
 また、配車システムは、上述のように各々修正した運搬車11の配車の情報を保存している。このように、修正された運搬車11の配車の情報を保存且つ更新することにより、当該情報を常に最新且つ最適に維持できる。 In addition, the dispatch system stores the dispatch information of the transport vehicle 11 that has been corrected as described above. Thus, by storing and updating the information on the allocation of the modified transport vehicle 11, the information can always be kept up-to-date and optimal.
 本発明は、予め設定された見込収穫量の情報に基づいて、作物を収穫する収穫機の配置と、収穫物を圃場から搬送する運搬車の配車とを設定する収穫機と運搬車との配車システムに利用可能である。 The present invention relates to the allocation of a harvester and a transporter that sets the arrangement of harvesters that harvest crops and the dispatch of a transporter that transports the crops from the field, based on information on a preset expected harvest amount. Available to the system.
 1     収穫機
 11    運搬車
 CI    栽培条件情報
 FI    圃場情報
1 Harvester 11 Transport Vehicle CI Cultivation Condition Information FI Field Information

Claims (3)

  1.  予め設定された見込収穫量の情報に基づいて、作物を収穫する収穫機の配置と、収穫物を圃場から搬送する運搬車の配車とを設定する収穫機と運搬車との配車システムであって、
     前記見込収穫量は、収穫される作物の栽培条件に応じて設定されている、ことを特徴とする配車システム。
    It is a dispatching system between a harvester and a transporter that sets the arrangement of the harvester that harvests the crop and the dispatch of the transporter that transports the crop from the field based on the information of the expected harvest amount that is set in advance. ,
    The dispatch system is characterized in that the estimated harvest amount is set according to the cultivation conditions of the crop to be harvested.
  2.  前記収穫機の実収穫量の情報に基づいて前記運搬車の配車を修正する、ことを特徴とする請求項1に記載の配車システム。 The vehicle allocation system according to claim 1, wherein the vehicle allocation is corrected based on information on an actual harvest amount of the harvester.
  3.  当該配車システムは、各前記運搬車の積載容量の情報を予め有するとともに、各前記運搬車の位置情報を取得し、
     前記実収穫量の情報及び前記積載容量の情報に基づいて前記運搬車の積載が満載に達する時刻を算出し、当該算出結果と前記積載容量の情報と前記位置情報とに応じて、前記運搬車の配車を修正する、ことを特徴とする請求項2に記載の配車システム。
    The vehicle allocation system has information on the loading capacity of each transport vehicle in advance, and acquires position information of each transport vehicle,
    Based on the information on the actual yield and the information on the load capacity, the time when the load of the transport vehicle reaches full load is calculated, and the transport vehicle is determined according to the calculation result, the information on the load capacity, and the position information. The vehicle allocation system according to claim 2, wherein the vehicle allocation is corrected.
PCT/JP2017/030551 2016-09-01 2017-08-25 Vehicle dispatching system WO2018043336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-171250 2016-09-01
JP2016171250A JP2018033407A (en) 2016-09-01 2016-09-01 Vehicle allocation system

Publications (1)

Publication Number Publication Date
WO2018043336A1 true WO2018043336A1 (en) 2018-03-08

Family

ID=61301843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030551 WO2018043336A1 (en) 2016-09-01 2017-08-25 Vehicle dispatching system

Country Status (2)

Country Link
JP (1) JP2018033407A (en)
WO (1) WO2018043336A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099776A1 (en) * 2007-10-16 2009-04-16 Kapadi Mangesh D System and method for sugarcane yield estimation
JP2015084667A (en) * 2013-10-28 2015-05-07 ヤンマー株式会社 Remote vehicle allocation server
WO2016178268A1 (en) * 2015-05-01 2016-11-10 株式会社日立製作所 Farm field management apparatus, farm field management method, and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090099776A1 (en) * 2007-10-16 2009-04-16 Kapadi Mangesh D System and method for sugarcane yield estimation
JP2015084667A (en) * 2013-10-28 2015-05-07 ヤンマー株式会社 Remote vehicle allocation server
WO2016178268A1 (en) * 2015-05-01 2016-11-10 株式会社日立製作所 Farm field management apparatus, farm field management method, and storage medium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AKACHI, OKINAWA PREFECTURAL AGRICULTURAL RESEARCH CENTER KENYU HOKOKU, vol. 9, 2015, pages 1 - 14 *
KRIENGKRI KAEWTRAKULPONG ET AL.: "Mechanization for the Improvement of the Sugarcane Harvesting and Transportation System in Thailand -A Case Study in Udon Thani Province", JOURNAL OF THE JAPANESE SOCIETY OF AGRICULTURAL MACHINERY, vol. 70, no. 2, March 2008 (2008-03-01), pages 51 - 61 *
PREECHA KAPETCH ET AL.: "Calibration and testing two models for estimating sugarcane yield in the Northeast of Thailand", JAPAN RAINWATER CATCHMENT SYSTEM ASSOCIATION DAI 21 KAI KENKYU HAPPYOKAI KOEN YOSHISHU, November 2013 (2013-11-01), pages 13 - 18 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system

Also Published As

Publication number Publication date
JP2018033407A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
WO2018043336A1 (en) Vehicle dispatching system
CN202818956U (en) Potato combine harvester
KR20160014950A (en) Tractor trailed type welsh onion harvester
CN209806464U (en) Swather suitable for crops with different plant heights
RU2421974C1 (en) Combine to harvest technical crops
KR20160025861A (en) Bulbous plant harvesting machine
CN108738631B (en) Combined machine for excavating peanuts and recycling residual films
KR101330093B1 (en) Spinach harvester
KR101232269B1 (en) Dual Type Bean Cutter
JP2009142226A (en) Leaf vegetable harvester
RU2498553C2 (en) Combine for harvesting sorghum
US20050050874A1 (en) Windrow machine and harvesting method
CN104396435A (en) Inhead type bending threshing half feed combine harvester header
CN202931783U (en) Potato combined harvester
JP2017205079A (en) Foliage processing machine
CN204350636U (en) The ceding of Taiwan of overhead bending threshing half feed combine harvester
CN208624114U (en) Peanut excavates and residual film recovery combine machine
CN202931785U (en) Potato harvester
Wanjura et al. Harvesting
CN201194485Y (en) Self-walk type maize harvester
CN111010929A (en) Farming breeding device
JP2008079520A (en) Harvesting apparatus or adjustment apparatus for agricultural crops
BRPI1001087B1 (en) BASIC CUTTING SYSTEM COUPLED TO PICTURE CANE HARVESTERS, SYSTEM TO AUTOMATICALLY AND EFFICIENTLY CONTROL THE SYNCHRONISM OF BASIC CUTTING SPEEDS, CARRIER ROLLS AND SPEED STICKERS STICKERS FOR AUTOMATIC AND EFFICIENT CONTROL OF SIZE CONTROL
CN104137695A (en) Vertical cutting device of millet combine harvester
KR101466280B1 (en) Reaping machine for farm products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846341

Country of ref document: EP

Kind code of ref document: A1