WO2018042661A1 - ターボ用空圧式アクチュエータ - Google Patents

ターボ用空圧式アクチュエータ Download PDF

Info

Publication number
WO2018042661A1
WO2018042661A1 PCT/JP2016/076007 JP2016076007W WO2018042661A1 WO 2018042661 A1 WO2018042661 A1 WO 2018042661A1 JP 2016076007 W JP2016076007 W JP 2016076007W WO 2018042661 A1 WO2018042661 A1 WO 2018042661A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator rod
actuator
pneumatic actuator
housing
diaphragm
Prior art date
Application number
PCT/JP2016/076007
Other languages
English (en)
French (fr)
Inventor
翔太 加藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018536666A priority Critical patent/JPWO2018042661A1/ja
Priority to DE112016007198.1T priority patent/DE112016007198T5/de
Priority to CN201680088732.8A priority patent/CN109690048A/zh
Priority to PCT/JP2016/076007 priority patent/WO2018042661A1/ja
Publication of WO2018042661A1 publication Critical patent/WO2018042661A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to a turbo pneumatic actuator for driving a lever for opening and closing a wastegate valve of a turbocharger.
  • the turbocharger is configured to rotate the turbine by exhaust gas from the engine, pressurize the intake air with a compressor that rotates integrally with the turbine, and supply the pressurized air to the engine. Therefore, a wastegate valve that restricts the flow rate of the exhaust gas is provided in order to prevent an excessive increase in pressurization.
  • the wastegate valve is provided with a lever that opens and closes by turning the valve, and the end of the lever is attached with the tip of an actuator rod of a pneumatic actuator for turbo. The valve is opened and closed by swinging the lever by the linear motion of the actuator rod.
  • a conventional wastegate opening / closing device of a turbocharger includes a first and second rods and a universal joint that connects the first and second rods in order to facilitate the operation of the actuator.
  • the above-described conventional turbocharger wastegate opening / closing device includes first and second rods and a universal joint for connecting the first and second rods. Accordingly, since the number of parts increases, the waist gate opening / closing device is rattled. As a result, there is a problem that the characteristics of the wastegate opening / closing device become unstable.
  • the present invention has been made to solve the above-described problems, and controls the actuator rod by suppressing rattling of the actuator rod and stabilizing the characteristics, and by reducing sliding resistance and suppressing hysteresis.
  • An object of the present invention is to obtain a turbo pneumatic actuator that is easy to achieve.
  • the pneumatic actuator for turbo includes a case, a pressure application port provided in the case, to which pressure is applied, a housing that is pressure-bonded to face the case, the case and the housing, and an elastic body.
  • a spherical bearing is provided which is housed in a housing, slides through the outer periphery of the actuator rod through the actuator rod, and has a spherical outer peripheral surface.
  • the pneumatic actuator for turbo constructed as described above is provided with a spherical bearing having an outer peripheral surface formed into a spherical surface by penetrating the actuator rod and sliding on the outer peripheral portion of the actuator rod. It is possible to obtain a turbo pneumatic actuator that can be easily controlled by reducing the stickiness to stabilize the characteristics and suppressing the hysteresis by reducing the sliding resistance.
  • FIG. 4 is an enlarged view of a region A1 in FIG. 3, which is a cross-sectional view illustrating a state in which an actuator rod for pushing out the turbo pneumatic actuator according to Embodiment 1 of the present invention is pushed out.
  • FIG. 6 is an enlarged view of a region A2 in FIG. 5, which is a cross-sectional view illustrating a state in which an actuator rod for explaining a turbo pneumatic actuator according to Embodiment 1 of the present invention is retracted. It is a figure which shows an example of the relationship between the applied pressure (negative pressure) and actuator rod stroke in the turbocharger system by which the pneumatic actuator for turbos which concerns on Embodiment 1 of this invention is mounted. It is sectional drawing which shows the state by which the actuator rod of the pneumatic actuator for turbos supported with the conventional bearing was extruded. It is sectional drawing which shows the state by which the actuator rod of the pneumatic actuator for turbos supported with the conventional bearing was drawn.
  • FIG. 1 is a diagram showing a configuration of a turbocharger system on which a turbo pneumatic actuator according to Embodiment 1 of the present invention is mounted.
  • FIG. 2 is a view showing a structure in which the valve is opened and closed by the turbo pneumatic actuator according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing a state in which the actuator rod for explaining the turbo pneumatic actuator according to Embodiment 1 of the present invention is pushed out.
  • FIG. 4 is an enlarged view of a region A1 in FIG.
  • FIG. 5 is a cross-sectional view showing a state where an actuator rod for retracting the turbo pneumatic actuator according to Embodiment 1 of the present invention is retracted.
  • 6 is an enlarged view of a region A2 in FIG. 5 which is a cross-sectional view showing a state in which an actuator rod for retracting the turbo pneumatic actuator according to Embodiment 1 of the present invention is retracted.
  • FIG. 5 is a cross-sectional view showing a state where an actuator rod for retracting the turbo pneumatic actuator according to Embodiment 1 of the present invention is retracted.
  • FIG. 7 is a diagram showing an example of the relationship between the applied pressure (negative pressure) and the actuator rod stroke in the turbocharger system equipped with the turbo pneumatic actuator according to Embodiment 1 of the present invention.
  • FIG. 8 is a cross-sectional view showing a state where an actuator rod of a turbo pneumatic actuator supported by a conventional bearing is pushed out.
  • FIG. 9 is a cross-sectional view showing a state in which an actuator rod of a turbo pneumatic actuator supported by a conventional bearing is retracted.
  • the turbocharger 1 includes a turbine 4 that is rotated by exhaust gas flowing through an exhaust passage 3 from the engine 2, and pressurizes air that is rotated integrally with the turbine 4 and sucked into the engine 2.
  • a compressor 6 that circulates to the intake passage 5, a valve 9 that is provided in the exhaust passage 3 to bypass a part of the exhaust gas from the exhaust bypass passage 7 to the muffler 8, and a turbo pneumatic actuator 10 that opens and closes the valve 9
  • a negative pressure pump 11 that generates a negative pressure for driving the turbo pneumatic actuator 10, and a solenoid valve that controls the negative pressure generated by the negative pressure pump 11 and applies the negative pressure to the turbo pneumatic actuator 10. 12.
  • the valve 9 is provided in the waist gate 13 which is an opening for diverting the exhaust gas flowing through the exhaust passage 3 to the exhaust bypass passage 7, and is disposed inside the exhaust bypass passage 7. .
  • the valve 9 is integrally provided with a shaft 14 rotatably supported.
  • the shaft 14 protrudes outward through a seal member (not shown) so that the exhaust gas does not leak from a hole provided in the exhaust bypass passage 7.
  • One end of the lever 15 is attached to a shaft 14 protruding from the exhaust bypass passage 7 and rotates integrally with the valve 9, and the other end of the lever 15 is pinned to the tip of an actuator rod 16 protruding from the turbo pneumatic actuator 10. It is attached flexibly by.
  • the turbo pneumatic actuator 10 includes an actuator rod 16, a case 18, a housing 19, a diaphragm 20, a spring 24, a spring holder 25, a spherical bearing 26, and a holder 28. It consists of
  • a cylindrical case 18 closed on one side and a cylindrical housing 19 also closed on one side are opposed to each other with the diaphragm 20 sandwiched therebetween.
  • a pressure chamber 21 hermetically sealed with the case 18 and the diaphragm 20 is formed.
  • the central axes of the case 18, the housing 19, and the diaphragm 20 are arranged on the same line.
  • the case 18 is made of sheet metal and is provided with a pressure application port 22 for applying a negative pressure to the pressure chamber 21.
  • the housing 19 is formed of a sheet metal, and a fixing bolt 23 for fixing the turbo pneumatic actuator 10 to the turbocharger 1 is protruded and attached.
  • the diaphragm 20 is formed in a bowl shape by an elastic body such as rubber that is elastically deformed by the pressure of the pressure chamber 21.
  • the spring 24 is disposed inside the pressure chamber 21, one end is fitted into an annular projecting portion provided in the case 18, and the other end biases the diaphragm 20 through a spring holder 25.
  • the central axis of the spring 24 is arranged on the same line as the central axis of the case 18.
  • the spring holder 25 is formed in a bowl shape whose outer shape is slightly smaller than the diaphragm 20 by sheet metal or resin, and is in close contact with the diaphragm 20.
  • the central axis of the spring holder 25 is arranged on the same line as the central axis of the diaphragm 20.
  • the end of the actuator rod 16 on the opposite side to which the lever 15 is attached is attached to the spring holder 25 with the diaphragm 20 interposed therebetween.
  • the actuator rod 16 is formed of a metal bar and protrudes from the housing 19.
  • the central axis of the actuator rod 16 is disposed on the same line as the housing 19 in a state where the actuator rod 16 is pushed out.
  • the spherical bearing 26 has a spherical body that passes through the actuator rod 16 and slides on the outer periphery of the actuator rod 16, or an outer peripheral surface that is formed into a spherical surface.
  • the axis C of the actuator rod 16 passes through the center of the spherical surface or sphere.
  • the spherical bearing 26 is accommodated in a holding portion 27 formed in the housing 19 and is rotatably held by a holder 28.
  • the spherical bearing 26 is made of metal or resin.
  • the holding portion 27 is formed as a cylindrical convex portion on the housing 19, and has an opening slightly larger than the outer diameter of the actuator rod 16 so that the actuator rod 16 protrudes.
  • the holder 28 is provided with an opening slightly larger than the outer diameter of the actuator rod 16, and the actuator rod 16 is inserted therethrough.
  • the holder 28 is fixed to the housing 19 together with the fixing bolt 23.
  • FIG. 5 shows a state in which the actuator rod 16 is retracted in the configuration of FIG.
  • FIG. 6 shows a state in which the actuator rod 16 is retracted in the configuration of FIG.
  • the negative pressure applied to the pressure application port 22 causes the pressure chamber 21 to generate a differential pressure from the atmosphere.
  • this differential pressure exceeds the urging force of the spring 24, the diaphragm 20 is elastically deformed and pulled toward the pressure chamber 21 side.
  • the actuator rod 16 connected to the diaphragm 20 slides on the spherical bearing 27 and is drawn into the turbo pneumatic actuator 10.
  • the actuator rod 16 is flexibly attached to the lever 15 by the pin shaft 17, the lever 15 rotates the shaft 14 attached to the lever 15 by the retracting operation of the actuator rod 16.
  • the valve 9 provided integrally with the shaft 14 and the lever 15 rotate integrally to open the valve 9.
  • FIG. 7 is a graph showing an example of the transition of the stroke amount of the actuator rod 16 due to the negative pressure applied to the pressure application port 22 in the turbocharger system 1 in which the pneumatic actuator for turbo is mounted.
  • the vertical axis represents the pressure value of the applied negative pressure
  • the horizontal axis represents the amount of sucrose of the actuator rod 16.
  • the solid line represents the spherical bearing 25 of the present invention
  • the broken line represents the conventional bearing 36 shown in FIGS.
  • a broken line J1 indicates a transition from the push-out state of the actuator rod 16 to the retracted state in the conventional bearing 36, that is, a transition from the closed state to the open state of the valve 9.
  • a broken line J2 indicates a transition from the retracted state of the actuator rod 16 to the pushed-out state in the conventional bearing 36, that is, the transition of the valve 9 from the open state to the closed state.
  • a solid line K ⁇ b> 1 indicates a transition from the push-out state of the actuator rod 16 to the retracted state in the spherical bearing 25, that is, a transition from the closed state to the open state of the valve 9.
  • a solid line K2 indicates a transition from the retracted state of the actuator rod 16 to the pushed-out state in the spherical bearing 25, that is, the transition of the valve 9 from the open state to the closed state.
  • the difference between the negative pressures applied in the pulling-in operation and the pushing-out operation of the actuator rod 16 occurs as hysteresis HJ and HK, but as shown in FIG. Hysteresis is suppressed compared to.
  • the spherical surface is formed by penetrating the actuator rod and sliding on the outer peripheral portion of the actuator rod, and forming the outer peripheral surface into a spherical surface.
  • the number of parts can be reduced by configuring with one actuator rod 16 as compared with the case of connecting two rods with a universal joint. As a result, there is an effect that the characteristics can be stabilized by reducing the rattling.
  • a negative pressure is applied to the pressure application port 22, but a positive pressure may be applied.
  • turbo pneumatic actuator shown in the above-described embodiment has been described as an actuator for driving a lever for opening and closing a wastegate valve of a turbocharger, but the invention is not limited to a wastegate valve. Needless to say, the valve may be driven differently.
  • the invention of the present application can be freely combined with each embodiment, modified with any component in each embodiment, or omitted with any component in each embodiment. .
  • the turbo pneumatic actuator of the present invention can be used for opening control of a wastegate valve.
  • turbocharger system 2 engine, 3 exhaust passage, 4 turbine, 5 intake passage, 6 compressor, 7 exhaust bypass passage, 8 muffler, 9 valve, 10 turbo pneumatic actuator, 11 negative pressure pump, 12 solenoid valve, 13 Westgate, 14 shafts, 15 levers, 16 actuator rods, 17 pin shafts, 18 cases, 19 housings, 20 diaphragms, 21 pressure chambers, 22 pressure application ports, 23 fixing bolts, 24 springs, 25 spring holders, 26 spherical bearings, 27 holder, 28 holder, 36 bearing, Y runout, y angle, C axis, Cy axis, J1 broken line, J2 broken line, K1 solid line, 2 solid line, HJ hysteresis, HK hysteresis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Supercharger (AREA)

Abstract

安定した特性と、ヒステリシスを抑制した制御が容易なターボ用空圧式アクチュエータを提供する。ターボ用空圧式アクチュエータ(10)は、圧力印加口(22)を有するケース(18)と、ケース(18)とハウジング(19)とで挟着された弾性体のダイアフラム(20)と、ダイアフラム(20)を付勢するスプリング(24)と、一端がダイアフラム(20)に取り付けられ、他端がバルブ(9)に接続されて回動するレバー(15)に取り付けられたハウジング(19)から突出するアクチュエータロッド(16)と、アクチュエータロッド(16)を貫通させてアクチュエータロッド(16)の外周部にて摺動し、外周面を球面に形成した球面軸受がハウジング(19)の保持部(27)に収納される。

Description

ターボ用空圧式アクチュエータ
 この発明は、ターボチャージャのウエストゲートバルブ開閉用のレバー等を駆動するターボ用空圧式アクチュエータに関する。
 ターボチャージャは、エンジンからの排気ガスによってタービンを回転させ、タービンと一体に回転するコンプレッサで吸気を加圧して、その加圧された空気をエンジンに供給する構成である。そのため、加圧の過上昇を防止するために排気ガスの流量を制限するウエストゲートバルブが備えられている。ウエストゲートバルブには、バルブを回動して開閉するレバーが設けられており、レバーの端部にはターボ用空圧式アクチュエータのアクチュエータロッドの先端が取り付けられている。このアクチュエータロッドの直動運動によりレバーを揺動させてバルブを開閉している。
 そこで、従来のターボチャージャのウエストゲート開閉装置は、アクチュエータの作動の円滑化を図るため、第1及び第2ロッドと、第1及び第2ロッドを連結するユニバーサルジョイントを備えて構成している。(例えば特許文献1参照)
実開平6-63834号公報
 上記した従来のターボチャージャのウエストゲート開閉装置は、第1及び第2ロッドと、第1及び第2ロッドを連結するユニバーサルジョイントを備えて構成している。従って、部品点数が増加するため、ウエストゲート開閉装置にがたつきが生じる。その結果、ウエストゲート開閉装置の特性が不安定になるという問題点があった。
 また、例えば図8及び図9に示すように、アクチュエータロッド16をハウジング19に設けた従来の軸受36よって支持する構成においては、レバー15の揺動によってアクチュエータロッド16に生じる中心軸の振れYにより摺動抵抗が増大する。そのため、アクチュエータロッド16の往復運動においてヒステリシスが発生する。その結果、ターボ用空圧式アクチュエータの制御が困難になるという問題点もあった。
 この発明は、上記した問題点を解決するためになされたものであり、アクチュエータロッドのがたつきを抑制して特性を安定させるとともに、摺動抵抗を低減してヒステリシスを抑制することにより、制御が容易なターボ用空圧式アクチュエータを得ることを目的とするものである。
 この発明に係わるターボ用空圧式アクチュエータは、ケースと、ケースに設けられ、圧力が印加される圧力印加口と、ケースに対向して圧着されたハウジングと、ケースとハウジングに挟着され、弾性体で形成されたダイアフラムと、ケースに配置されてダイアフラムを付勢するスプリングと、一端がダイアフラムに取り付けられ、他端がバルブに接続されて回動するレバーに取り付けられたハウジングから突出するアクチュエータロッドと、ハウジングに収納され、アクチュエータロッドを貫通させてアクチュエータロッドの外周部にて摺動し、外周面を球面に形成した球面軸受が設けられたものである。
 上記のように構成されたターボ用空圧式アクチェータは、アクチュエータロッドを貫通させてアクチュエータロッドの外周部にて摺動し、外周面を球面に形成した球面軸受を設けることにより、アクチュエータロッドのがたつきを低減して特性を安定させるとともに、摺動抵抗を低減してヒステリシスを抑制することによって、制御が容易なターボ用空圧式アクチュエータを得ることができるという効果を有する。
この発明の実施の形態1に係るターボ用空圧式アクチュエータが搭載されるターボチャージャシステムの構成を示す図である。 この発明の実施の形態1に係るターボ用空圧式アクチュエータによってバルブが開閉される構造を示す図である。 この発明の実施の形態1に係るターボ用空圧式アクチュエータを説明するためのアクチュエータロッドが押出された状態を示す断面図である。 この発明の実施の形態1に係るターボ用空圧式アクチュエータを説明するためのアクチュエータロッドが押出された状態を示す断面図である図3におけるA1領域の拡大図である。 この発明の実施の形態1に係るターボ用空圧式アクチュエータを説明するためのアクチュエータロッドが引込まれた状態を示す断面図である。 この発明の実施の形態1に係るターボ用空圧式アクチュエータを説明するためのアクチュエータロッドが引込まれた状態を示す断面図である図5におけるA2領域の拡大図である。 この発明の実施の形態1に係るターボ用空圧式アクチュエータが搭載されたターボチャージャシステムにおける印加圧力(負圧)とアクチュエータロッドストロークとの関係の一例を示す図である。 従来の軸受にて支持したターボ用空圧式アクチュエータのアクチュエータロッドが押出された状態を示す断面図である。 従来の軸受にて支持したターボ用空圧式アクチュエータのアクチュエータロッドが引込まれた状態を示す断面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 この発明の実施の形態1におけるターボ用空圧式アクチュエータについて図1~7を用いて説明する。図1は、この発明の実施の形態1に係るターボ用空圧式アクチュエータが搭載されるターボチャージャシステムの構成を示す図である。図2は、この発明の実施の形態1に係るターボ用空圧式アクチュエータによってバルブが開閉される構造を示す図である。図3は、この発明の実施の形態1に係るターボ用空圧式アクチュエータを説明するためのアクチュエータロッドが押出された状態を示す断面図である。図4は、この発明の実施の形態1に係るターボ用空圧式アクチュエータを説明するためのアクチュエータロッドが押出された状態を示す断面図である図3におけるA1領域の拡大図である。図5は、この発明の実施の形態1に係るターボ用空圧式アクチュエータを説明するためのアクチュエータロッドが引込まれた状態を示す断面図である。図6は、この発明の実施の形態1に係るターボ用空圧式アクチュエータを説明するためのアクチュエータロッドが引込まれた状態を示す断面図である図5におけるA2領域の拡大図である。図7は、この発明の実施の形態1に係るターボ用空圧式アクチュエータが搭載されたターボチャージャシステムにおける印加圧力(負圧)とアクチュエータロッドストロークとの関係の一例を示す図である。図8は、従来の軸受にて支持したターボ用空圧式アクチュエータのアクチュエータロッドが押出された状態を示す断面図である。図9は、従来の軸受にて支持したターボ用空圧式アクチュエータのアクチュエータロッドが引込まれた状態を示す断面図である。
 図1に示すように、ターボチャージャ1は、エンジン2からの排気通路3を流通する排気ガスにより回転するタービン4と、タービン4と一体に回転して吸入した空気を加圧してエンジン2への吸入通路5へ流通させるコンプレッサ6と、排気通路3に設けられて排気ガスの一部を排気バイパス通路7からマフラ8へ迂回させるためのバルブ9と、バルブ9を開閉させるターボ用空圧式アクチュエータ10と、ターボ用空圧式アクチュエータ10を駆動させるための負圧を発生させる負圧ポンプ11、及び、負圧ポンプ11で発生させた負圧を制御してターボ用空圧式アクチュエータ10へ印加するソレノイドバルブ12とで構成されている。
 図2に示すように、バルブ9は、排気通路3を流通する排気ガスを排気バイパス通路7へ迂回させるための開口であるウエストゲート13に設けられ、排気バイパス通路7の内部に配置されている。
 バルブ9は、回動自在に軸支された軸14が一体的に設けられている。
 軸14は、排気バイパス通路7に設けられた穴から排気ガスが漏れないようにシール部材(図示せず)を介在して回動自在に外部へ突出している。
 レバー15は、一端が排気バイパス通路7から突出した軸14に取り付けられてバルブ9と一体的に回動し、他端がターボ用空圧式アクチュエータ10から突出するアクチュエータロッド16の先端にピン軸17により屈曲自在に取り付けられている。
 図3が示すように、ターボ用空圧式アクチュエータ10は、アクチュエータロッド16と、ケース18と、ハウジング19と、ダイアフラム20と、スプリング24と、スプリングホルダ25と、球面軸受26、及び、ホルダ28とで構成されている。
 ターボ用空圧式アクチュエータ10は、片側が閉じた円筒状のケース18と、同じく片側が閉じた円筒状のハウジング19とが開口側を対向してダイアフラム20を挟み込んでかしめられている。これにより、ケース18とダイアフラム20とて気密された圧力室21が形成されている。また、ケース18、ハウジング19、及び、ダイアフラム20の中心軸は同一線上に配置されている。
 ケース18は、板金で形成されており、圧力室21へ負圧を印加する圧力印加口22が設けられている。
 ハウジング19は、板金で形成されており、ターボ用空圧式アクチュエータ10をターボチャージャ1に固定するための固定ボルト23が突出して取り付けられている。
 ダイアフラム20は、圧力室21の圧力により弾性変形するゴムなどの弾性体によって椀状に形成されている。
 スプリング24は、圧力室21の内部に配置され、片端がケース18に設けられた円環状の突出部に嵌め込まれ、他端がスプリングホルダ25を介在してダイアフラム20を付勢している。また、スプリング24の中心軸はケース18の中心軸と同一線上に配置されている。
 スプリングホルダ25は、板金又は樹脂によって外形がダイアフラム20より若干小さい椀状に形成され、ダイアフラム20に密接されている。また、スプリングホルダ25の中心軸はダイアフラム20の中心軸と同一線上に配置されている。
 このスプリングホルダ25には、レバー15が取り付けられた反対側のアクチュエータロッド16の端部が、ダイアフラム20を挟着して取り付けられている。
 アクチュエータロッド16は、金属の棒材で形成されてハウジング19から突出している。また、アクチュエータロッド16の中心軸はアクチュエータロッド16が押し出された状態において、ハウジング19と同一線上に配置されている。
 図4が示すように、球面軸受26は、アクチュエータロッド16を貫通させてアクチュエータロッド16の外周部にて摺動させる球体、又は、外周面が球面に形成されている。また、アクチュエータロッド16の軸心Cは、球面または球体の中心を貫通している。
 この球面軸受26は、ハウジング19に形成された保持部27に収納されて、ホルダ28によって回転自在に保持されている。
 また、球面軸受26は金属又は樹脂などで形成される。
 保持部27は、ハウジング19に円筒状の凸部として形成され、アクチュエータロッド16の外径より若干大きな開口が突設されて、アクチュエータロッド16が突出している。
 ホルダ28は、アクチュエータロッド16の外径より若干大きな開口が突設されて、アクチュエータロッド16が挿通している。また、ホルダ28は、ハウジング19に固定ボルト23と一緒に固定される。
 図5は、図3の構成において、アクチュエータロッド16が引込まれた状態を示している。
 図6は、図4の構成において、アクチュエータロッド16が引込まれた状態を示している。
 次に、このように構成されたターボ用空圧式アクチュエータにおける作用について図3から図6を用いて説明する。圧力印加口22に印加された負圧は、圧力室21に大気との差圧を発生させる。この差圧がスプリング24の付勢力を超えると、ダイアフラム20が弾性変形して圧力室21の側へ引き寄せられる。そして、ダイアフラム20に接続されたアクチュエータロッド16が、球面軸受27を摺動してターボ用空圧式アクチュエータ10の内部へ引き込まれる。その結果、アクチュエータロッド16はピン軸17によりレバー15に屈曲自在に取り付けられているので、レバー15はアクチュエータロッド16の引き込み動作によりレバー15に取り付けられた軸14を回転させる。これにより、軸14が一体的に設けられたバルブ9とレバー15とが一体的に回動してバルブ9が開かれる。
 圧力印加口22に印加された負圧が解除されると、スプリング24の付勢力によってダイアフラム20の弾性変形は元に戻される。そして、ダイアフラム20に接続されたアクチュエータロッド16は、ターボ用空圧式アクチュエータ10から押し出される。その結果、レバー15は反対方向へ回動される。これにより、バルブ9が閉じられる。
 したがって、アクチュエータロッド16の往復運動により、アクチュエータロッド16の先端は揺動するので、その先端には中心軸の振れYが生じる。この振れYは、球面軸受26が角度yの回転をすることによって、アクチュエータロッド16の中心軸を軸心Cから軸心Cyへ傾くことにより吸収される。
 図7は、ターボ用空圧式アクチュエータが搭載されたターボチャージャシステム1における圧力印加口22に印加された負圧によるアクチュエータロッド16のストローク量の遷移の一例を示すグラフである。縦軸は印加された負圧の圧力値、横軸はアクチュエータロッド16のストロース量を示す。ここで、実線が本発明の球面軸受25、破線が図8及び図9で示す従来の軸受36を示す。破線J1は従来の軸受36においてアクチュエータロッド16の押し出し状態から引き込み状態への遷移、すなわち、バルブ9の閉状態から開状態への遷移を示す。破線J2は従来の軸受36においてアクチュエータロッド16の引き込み状態から押し出し状態への遷移、すなわち、バルブ9の開状態から閉状態への遷移を示す。実線K1は球面軸受25においてアクチュエータロッド16の押し出し状態から引き込み状態への遷移、すなわち、バルブ9の閉状態から開状態への遷移を示す。実線K2は球面軸受25においてアクチュエータロッド16の引き込み状態から押し出し状態への遷移、すなわち、バルブ9の開状態から閉状態への遷移を示す。アクチュエータロッド16の引き込み動作と押し出し動作において印加する負圧の差異がヒステリシスHJ、HKとして発生するが、図7が示すように、本発明の球面軸受25のヒステリシスHKは従来の軸受36のヒステリシスHJと比べてヒステリシスが抑制される。
 以上述べたように、この実施の形態1にて示したターボ用空圧式アクチュエータにあっては、アクチュエータロッドを貫通させてアクチュエータロッドの外周部にて摺動し、外周面を球面に形成した球面軸受を設けることにより、従来の軸受36を用いる場合に比べて、摺動抵抗を低減してヒステリシスを抑制できる。その結果、制御が容易にできるという効果を奏する。
 また、実施の形態1におけるターボ用空圧式アクチュエータにあっては、1本のアクチュエータロッド16で構成することにより、2本のロッドをユニバーサルジョイントで連結する場合に比べて、部品点数を削減できる。その結果、がたつきを低減して特性を安定させることができるという効果を奏する。
 さらに、部品点数を削減できるので、安価となり、また、信頼性、組立性及びメンテナンス性も向上させることができる効果も奏する。
 なお、上記した実施の形態1では、圧力印加口22へは負圧が印加されるものとしたが、正圧であっても良い。
 ところで、上記した実施の形態に示したターボ用空圧式アクチュエータは、ターボチャージャのウエストゲートバルブ開閉用のレバー等を駆動するアクチュエータとして説明したが、ウエストゲートバルブに限られるものではなく、ウエストゲートバルブとは異なるバルブを駆動するものであっても良いことは言うまでもない。
 また、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 本発明のターボ用空圧式アクチュエータは、ウエストゲートバルブの開度制御に用いることができる。
 1 ターボチャージャシステム、 2 エンジン、 3 排気通路、 4 タービン、 5 吸気通路、 6 コンプレッサ、 7 排気バイパス通路、 8 マフラ、 9 バルブ、 10 ターボ用空圧式アクチュエータ、 11 負圧ポンプ、 12 ソレノイドバルブ、 13 ウエストゲート、 14 軸、 15 レバー、 16 アクチュエータロッド、 17 ピン軸、 18 ケース、 19 ハウジング、 20 ダイアフラム、 21 圧力室、 22 圧力印加口、 23 固定ボルト、 24 スプリング、 25 スプリングホルダ、 26 球面軸受、 27 保持部、 28 ホルダ、 36 軸受、 Y 振れ、 y 角度、C 軸心、 Cy 軸心、 J1 破線、 J2 破線、 K1 実線、 K2 実線、 HJ ヒステリシス、 HK ヒステリシス

Claims (2)

  1.  ケースと、
     前記ケースに設けられ、圧力が印加される圧力印加口と、
     前記ケースに対向して圧着されたハウジングと、
     前記ケースと前記ハウジングに挟着され、弾性体で形成されたダイアフラムと、
     前記ケースに配置されて前記ダイアフラムを付勢するスプリングと、
     一端が前記ダイアフラムに取り付けられ、他端が前記バルブに接続されて回動するレバーに取り付けられた前記ハウジングから突出するアクチュエータロッドと、
     前記ハウジングに収納され、前記アクチュエータロッドを貫通させて前記アクチュエータロッドの外周部にて摺動し、外周面を球面に形成した球面軸受と、
     を備えたターボ用空圧式アクチュエータ。
  2.  前記球面軸受が球体であること
     を特徴とする請求項1に記載のターボ用空圧式アクチュエータ。
PCT/JP2016/076007 2016-09-05 2016-09-05 ターボ用空圧式アクチュエータ WO2018042661A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018536666A JPWO2018042661A1 (ja) 2016-09-05 2016-09-05 ターボ用空圧式アクチュエータ
DE112016007198.1T DE112016007198T5 (de) 2016-09-05 2016-09-05 Pneumatik-Aktuator für einen Turbolader
CN201680088732.8A CN109690048A (zh) 2016-09-05 2016-09-05 涡轮用气压式致动器
PCT/JP2016/076007 WO2018042661A1 (ja) 2016-09-05 2016-09-05 ターボ用空圧式アクチュエータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/076007 WO2018042661A1 (ja) 2016-09-05 2016-09-05 ターボ用空圧式アクチュエータ

Publications (1)

Publication Number Publication Date
WO2018042661A1 true WO2018042661A1 (ja) 2018-03-08

Family

ID=61300281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076007 WO2018042661A1 (ja) 2016-09-05 2016-09-05 ターボ用空圧式アクチュエータ

Country Status (4)

Country Link
JP (1) JPWO2018042661A1 (ja)
CN (1) CN109690048A (ja)
DE (1) DE112016007198T5 (ja)
WO (1) WO2018042661A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109026355A (zh) * 2018-09-29 2018-12-18 潍柴动力股份有限公司 一种废气控制装置及发动机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54175133U (ja) * 1978-05-30 1979-12-11
JPS5720530U (ja) * 1980-07-10 1982-02-02
JPH0663834U (ja) * 1993-02-15 1994-09-09 三菱自動車工業株式会社 ターボチャージャのウエストゲート開閉装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175133U (ja) * 1982-05-18 1983-11-22 石川島播磨重工業株式会社 過給機のウエストゲ−ト弁開閉用アクチユエ−タ
JPH0326327Y2 (ja) * 1985-09-09 1991-06-07
JPS63177319U (ja) * 1987-04-22 1988-11-17
JPH0738722Y2 (ja) * 1988-11-10 1995-09-06 エヌオーケー株式会社 ダイアフラムアクチュエータ
GB9124030D0 (en) * 1991-11-12 1992-01-02 Johnson Electric Sa A self-aligning bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54175133U (ja) * 1978-05-30 1979-12-11
JPS5720530U (ja) * 1980-07-10 1982-02-02
JPH0663834U (ja) * 1993-02-15 1994-09-09 三菱自動車工業株式会社 ターボチャージャのウエストゲート開閉装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109026355A (zh) * 2018-09-29 2018-12-18 潍柴动力股份有限公司 一种废气控制装置及发动机

Also Published As

Publication number Publication date
DE112016007198T5 (de) 2019-05-29
CN109690048A (zh) 2019-04-26
JPWO2018042661A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
US9631628B2 (en) Turbocharger
JP5752244B2 (ja) 内燃機関用のブローオフバルブ
CA1111322A (en) Turbocharger control actuator
KR20150023663A (ko) 배기가스 터보차저
KR20150028821A (ko) 배기가스 터보차저
US10215089B2 (en) Variable-flow-rate valve mechanism and turbocharger
US20070257219A1 (en) Double diaphragm actuator
US9309805B2 (en) Turbocharger
US11519290B2 (en) Spring washer for a variable flow rate valve mechanism
CN108138648B (zh) 用于涡轮增压器的旁通阀
US11333065B2 (en) Variable flow rate valve mechanism and turbocharger
US9964223B2 (en) Bleed valves for gas turbine engines
WO2018042661A1 (ja) ターボ用空圧式アクチュエータ
JP2016186241A (ja) バルブ装置
EP3473831B1 (en) Wastegate valve assembly with biasing members
US11286844B2 (en) Valve assembly for a charging device
CN108495982B (zh) 用于涡轮增压器的运动学上顺应的连杆机构
CN109154203B (zh) 涡轮机装置
JP6098144B2 (ja) 可変流量バルブ及び過給装置
JP7486271B2 (ja) スイングバルブ
JP2015113782A (ja) バルブ装置
JP2019163722A (ja) ターボ用空圧式アクチュエータ
KR20170123193A (ko) 웨이스트게이트 유닛
JP2016023682A (ja) バルブ
JP2018204640A (ja) ポペット弁および排気ガス再循環バルブ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018536666

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915216

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16915216

Country of ref document: EP

Kind code of ref document: A1