WO2018042629A1 - 画像観察装置および顕微鏡システム - Google Patents

画像観察装置および顕微鏡システム Download PDF

Info

Publication number
WO2018042629A1
WO2018042629A1 PCT/JP2016/075843 JP2016075843W WO2018042629A1 WO 2018042629 A1 WO2018042629 A1 WO 2018042629A1 JP 2016075843 W JP2016075843 W JP 2016075843W WO 2018042629 A1 WO2018042629 A1 WO 2018042629A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
unit
focus
frame
range
Prior art date
Application number
PCT/JP2016/075843
Other languages
English (en)
French (fr)
Inventor
洋子 阿部
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018536646A priority Critical patent/JPWO2018042629A1/ja
Priority to PCT/JP2016/075843 priority patent/WO2018042629A1/ja
Publication of WO2018042629A1 publication Critical patent/WO2018042629A1/ja
Priority to US16/285,513 priority patent/US10690899B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/006Optical details of the image generation focusing arrangements; selection of the plane to be imaged
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/631Graphical user interfaces [GUI] specially adapted for controlling image capture or setting capture parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • H04N23/633Control of cameras or camera modules by using electronic viewfinders for displaying additional information relating to control or operation of the camera
    • H04N23/635Region indicators; Field of view indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/676Bracketing for image capture at varying focusing conditions

Definitions

  • the present invention relates to an image observation apparatus and a microscope system.
  • Patent Document 1 when the degree of focus at each position has a peak value of 2 or more, these peak values are detected as a plurality of candidate values, and a specific number of Z values are detected for each detected candidate value.
  • a plurality of omnifocal images are generated by using the stack image.
  • the present invention has been made in view of the above-described circumstances, and is an image observation apparatus and a microscope system capable of intuitively observing the structure in the depth direction of a subject having a plurality of in-focus positions in the depth direction.
  • the purpose is to provide.
  • a reference image is generated based on one or more two-dimensional images of a Z-stack image including a plurality of two-dimensional images acquired by changing the focal position in the optical axis direction of the objective lens.
  • Frame generation for generating a frame to be superimposed on the reference image having a reference image generation unit and a plurality of windows covering different small regions of the reference image on the reference image generated by the reference image generation unit Different focus on each of the window unit of the frame generated by the frame generating unit, the frame operating unit that operates to move the frame generated by the frame generating unit with respect to the reference image, and the frame generated by the frame generating unit
  • a focal range allocating unit for allocating a range, and for each of the small regions covered by the windows, each of the two-dimensional images of the region corresponding to the small region is
  • An omnifocal image generation unit that generates an omnifocal image using each of the two-dimensional images within the focal range allocated to the window, and each of the focal points based on the different focal range
  • a reference image is generated by the reference image generation unit and displayed on the display unit, and a frame having a plurality of windows covering different small regions of the reference image is provided. It is generated by the frame generation unit and is superimposed on the reference image and displayed on the display unit.
  • An omnifocal image is generated by the omnifocal image generation unit using a two-dimensional image in a different focal range assigned to each window by the focus range allocating unit, and a reference image in each window corresponds to each window The omnifocal image generated in this way is displayed by being replaced by the image replacement unit.
  • the omnifocal point corresponding to each small region is changed.
  • An image is newly generated and replaced by the image replacement unit. Accordingly, the user can observe the attention area by switching the omnifocal images in different focal ranges by simply moving the frame and changing the window portion covering the attention area.
  • the focus range can be switched without taking your eyes off the vicinity of the area of interest, compared to when observing by switching multiple omnifocal images or displaying them in parallel.
  • a position setting unit for setting any pixel position, and the pixel position set by the position setting unit A focus degree calculation unit that calculates a focus degree in each of the two-dimensional images of the Z stack image and generates a focus degree distribution; and a focus degree distribution generated by the focus degree calculation unit.
  • a Z range determination unit that determines a focus range of a plurality of patterns, and the focus range allocation unit may allocate each of the focus ranges determined by the Z range determination unit to a different window unit.
  • the focus degree calculation unit sets the focus degree at the set pixel position. Is calculated, and a distribution of the degree of focus is generated. Since the Z range determination unit determines the focus range of a plurality of patterns based on the generated distribution of the degree of focus, the attention area of the subject can be observed with an omnifocal image in the vicinity of the focus having a high degree of focus. .
  • the reference image may be an omnifocal image generated using the two-dimensional image in a focal range wider than all the focal ranges assigned by the focal range assigning unit.
  • another aspect of the present invention is a microscope system including a microscope for acquiring the Z stack image and any one of the above image observation apparatuses.
  • FIG. 1 is a block diagram illustrating an image observation apparatus and a microscope system according to an embodiment of the present invention. It is a figure explaining the Laplacian pyramid for a focus degree calculation. It is a figure which shows an example of the focus degree distribution produced
  • generated by the image observation apparatus of FIG. 2 is a flowchart illustrating a method for setting a focus peak detection range by the image observation apparatus of FIG. 1.
  • FIG. 5 is a diagram showing a focus peak search range generated by dividing the Z range in the flowchart of FIG. 4. It is a figure which shows the detection range of the focus peak set in the flowchart of FIG. It is a schematic diagram which shows an example of the Z range for every focus peak determined by the Z range determination part of the image observation apparatus of FIG.
  • the microscope system 1 acquires a Z stack image composed of a plurality of two-dimensional images of the subject O by changing the focal position in the optical axis direction of the objective lens 4.
  • a microscope 2 and an image observation device 3 for observing a Z stack image acquired by the microscope 2 are provided.
  • the microscope 2 captures the light from the object O collected by the objective lens 4, the objective lens 4 that collects the light from the object O mounted on the stage 5, and the stage 5. And an imaging unit 6 that performs the above-described processing.
  • the type of the microscope 2 may be arbitrary, but has a structure in which the relative position of the objective lens 4 and the stage 5 can be changed in the direction along the optical axis of the objective lens 4, and the focal position of the objective lens 4 is set to the subject O. On the other hand, it can be moved in the optical axis direction.
  • the microscope 2 acquires a plurality of two-dimensional images while sending the focal position of the objective lens 4 to the subject O by a minute distance in the direction of the optical axis, thereby forming a Z composed of the acquired two-dimensional images.
  • a stack image is acquired.
  • the image observation apparatus 3 receives the Z stack image acquired by the microscope 2, calculates the focus degree at each pixel position, and generates a focus degree distribution.
  • a focus calculation unit 7, an omnifocal image generation unit 8 that generates an omnifocal image based on the generated focus degree distribution, and a display unit 9 that displays the generated omnifocal image are provided.
  • the image observation apparatus 3 includes an attention position setting unit (position setting unit) 10 in which a user who has confirmed the attention position on the omnifocal image displayed on the display unit 9 sets the attention position on the omnifocal image;
  • a frame generation unit 12 that generates a frame having a plurality of windows based on information on the set position of interest and information on a focus range determined by a Z range determination unit 11 described later, and each window of the generated frame
  • a focal range allocating unit 13 for allocating different focal ranges to the unit, and an image replacing unit 14 for replacing the omnifocal image generated for each focal range with the image in the window unit in the omnifocal image generating unit (reference image generating unit) 8.
  • a frame operation unit 15 for the user to move the frame displayed on the display unit 9.
  • the focus degree calculation unit 7 is a focus degree distribution for generating a reference image that is an omnifocal image for the entire area of the two-dimensional image constituting the Z stack image, and the attention position set by the attention position setting unit 10. And the in-focus degree distribution in the pixels.
  • the focus degree calculation unit 7 uses a Laplacian pyramid that can express high frequency components such as edge information, and calculates the focus degree based on the high frequency components.
  • a digital image can be decomposed into a low-frequency component (Gaussian component) and a high-frequency component (Laplacian component), and can be expressed as a pyramid hierarchy by correlation between resolutions.
  • High frequency components can be expressed as a hierarchy of Laplacian pyramids.
  • the Laplacian pyramid is a Laplacian component that is lost when a low-frequency component is obtained from the original image, and the frequency band differs depending on the hierarchy.
  • FIG. 2 shows an example of a Laplacian pyramid.
  • LPF represents a low-pass filter
  • DS represents downsampling
  • US represents upsampling.
  • a four-layer Laplacian pyramid is constructed, and the degree of focus is calculated based on a second-layer Laplacian component that is considered to contain the edge component of the subject structure stably.
  • FIG. 2 displays three layers of the four layers. Note that the hierarchy to be used does not have to be an arbitrary hierarchy, and the Laplacian component in each band may be obtained by blending with an optimum weight based on the observation conditions and the characteristics of the subject structure. Further, the focus degree calculation method is not limited to the above method, and any known method such as a calculation method based on a transform coefficient of wavelet transform may be used.
  • the in-focus degree calculation unit 7 the in-focus degree distribution is generated by arranging the in-focus degrees calculated as described above with respect to the Z-direction position of each two-dimensional image as shown in FIG. It has become.
  • the focus degree calculation unit 7 In the generation of the reference image, the focus degree calculation unit 7 generates a focus degree distribution at all pixel positions of the two-dimensional image and sends the focus degree distribution to the omnifocal image generation unit 8.
  • the focus degree calculation unit 7 When the target position is set by the target position setting unit 10, the focus degree calculation unit 7 generates only the focus degree distribution at the pixel position of the set target position and sends it to the Z range determination unit 11. It has become.
  • the Z range determination unit 11 detects a focus peak at which the focus degree is maximized in the focus degree distribution at the target position sent from the focus degree calculation unit 7, and outputs an omnifocal image for each focus peak.
  • the focus range for generation is determined. The detection of the focus peak in the Z range determination unit 11 is performed as follows.
  • a focus peak search range Sz is set.
  • the constant N 1, and the search range Sz (N) is the entire Z range (step S1).
  • the initial search range Sz (N) is 0 to 140.
  • an analysis target distribution Az (N) is obtained (step S2). Specifically, each in-focus degree in the in-focus degree distribution is compared with a predetermined threshold value, and only an in-focus degree greater than the threshold value is set as an analysis target distribution.
  • step S6 when the number of in-focus peaks is 2 or more, the constant N is incremented (step S6), the Z range is divided into Z (N) (step S7), and the search range Sz (N) is set to Z (N ) Again (steps S8 to S11). And the process from step S2 is repeated about each reset search range Sz (N).
  • the Z range may be divided by setting the average value of the analysis target distribution Az (N) as the division position.
  • the average value is 66
  • the reset search range Sz (1) is 0 to 65
  • the search range Sz (2) is 67 to 140.
  • the method for setting the division position is not limited to this, and a peak detection function such as Fisher Distance is created from the analysis target distribution Az (N), and based on the positive / negative change state of the created peak detection function value.
  • a method of obtaining the peak start point, center point, and end point may be employed.
  • the search range Sz (a) is set as the detection range Pz (a) (steps S12 to S14), and the detection range Pz for all the search ranges Sz (N).
  • the process from step S4 is repeated until (N) is set.
  • symbols a and b are constants.
  • the detection range Pz (N) in which the number of in-focus peaks is 0 or 1 in all the search ranges Sz (N) is determined.
  • FIG. 6 shows a case where the number of in-focus peaks is 2 in the entire Z range, and two detection ranges Pz (1) and Pz (2) are determined.
  • the Z position of the focus peak is detected for each detection range Pz (N).
  • the Z position having the maximum degree of focus is detected as the focus peak.
  • the Z range determination unit 11 determines the Z range used for generating the omnifocal image, that is, the focus range, for each detected focus peak.
  • the Z range used for generating the omnifocal image that is, the focus range, for each detected focus peak.
  • each in-focus peak detection range (patterns B and E) and two Z ranges (patterns A, C or The three Z ranges of the patterns D and F) are determined as the Z ranges used for generating the omnifocal image.
  • the omnifocal image generation unit 8 has the highest degree of focus in each focus degree distribution when the focus degree distribution at all pixel positions for generating the reference image is sent from the focus degree calculation unit 7.
  • An omnifocal image is generated by selecting a pixel value of any two-dimensional image in the Z direction to be increased and combining the pixel values selected at all pixel positions.
  • the omnifocal image generation unit 8 uses a Z stack image corresponding to each sent Z range for each focused peak. An omnifocal image is generated.
  • the method for generating the omnifocal image is basically the same as the method for generating the reference image, but differs in the Z range to be generated and the pixel range of the two-dimensional image.
  • the attention position setting unit 10 is, for example, an input device such as a mouse that moves the cursor on the image displayed on the display unit 9, and the user moves the mouse to the attention position where the user is highly interested and clicks.
  • the attention position is set.
  • the generated frame is displayed so as to be superimposed on the reference image of the display unit 9 with the attention position set by the attention position setting unit 10 as the center. Yes.
  • the generated frame information is sent to the focal range allocating unit 13.
  • the six Z ranges determined by the Z range determining unit 11 are assigned to the respective window portions of the frame.
  • the frame has, for example, a window portion of 2 rows and 3 columns, and the Z range of two detection ranges is assigned to the central window portion of each row, and the window portion of the left column has a window portion.
  • the Z range on the near side in the depth direction from the focus peak is assigned to the windows on the far side in the depth direction from the focus peak and on the right column.
  • the omnifocal image generation unit 8 receives the Z stack image, the position information of the window portion of the frame, and the information of the Z range assigned to each window portion, and for each small area corresponding to the window portion, An omnifocal image is generated using the Z range assigned to the part. Each of the generated six images is replaced with a reference image of a small area corresponding to each window in the image replacement unit 14 and displayed on the display unit 9.
  • the user can move the position of the frame displayed on the display unit 9 by the frame operation unit 15 configured by an input unit such as a mouse and a GUI, for example.
  • the frame operation unit 15 configured by an input unit such as a mouse and a GUI, for example.
  • the small area corresponding to each window changes, so that an omnifocal image is generated and updated using the position information of the new window and the Z range assigned to the window. It is like that.
  • the image observation apparatus 3 and the microscope system 1 according to the present embodiment configured as described above will be described below.
  • the subject O is mounted on the stage 5 of the microscope 2 and the objective along the optical axis direction of the objective lens 4 is shown in FIG.
  • a Z stack image is obtained by acquiring and storing a two-dimensional image of the subject O at each position while changing the relative position between the lens 4 and the stage 5 by finely feeding (Step S100).
  • the Z stack image acquired by the microscope 2 is input to the image observation device 3.
  • the focus degree distribution is generated by the focus degree calculation unit 7 for each pixel position of the two-dimensional image over the entire area of the two-dimensional image constituting the Z stack image, and the all-focus image generation is performed. Sent to part 8.
  • a pixel of any two-dimensional image in the Z direction having the maximum focus degree at each pixel position based on the input Z stack image and the focus degree distribution of all pixel positions.
  • an omnifocal image covering the entire area of the two-dimensional image is generated and displayed on the display unit 9 as a reference image (step S101).
  • the user looks at the reference image displayed on the display unit 9 and sets an attention position with high interest (step S102).
  • the coordinates of the set position of interest are sent to the focus degree calculation unit 7, and a focus degree distribution at the coordinates is generated (step S103).
  • the generated focus degree distribution is sent to the Z range determination unit 11, and the Z range determination unit 11 performs the focus peak detection range setting process, the focus peak detection process (step S ⁇ b> 104), and the detected focus peak.
  • Each Z range determination process (step S105) is performed.
  • the information is sent to the frame generation unit 12, and frames having as many windows as the number of Z ranges are generated (step S106).
  • the generated frame information is sent to the focus range allocating unit 13, and the Z range determined by the Z range determining unit 11 is allocated to each window portion of the frame one by one (step S107). Further, based on the attention position set by the attention position setting unit 10 such that the generated frame is displayed on the reference image with the attention position set by the attention position setting unit 10 as the center, the frame generation unit 12, the position of each window on the reference image is calculated.
  • the omnifocal image generation unit 8 receives the Z stack image input from the microscope 2, the position information of each window portion of the frame sent from the focus range assignment unit 13, and the information on the Z range assigned to each window portion. Then, an omnifocal image is generated from the Z stack image by using the information of the Z range assigned to the window for each small region corresponding to each window (step S108). Then, the omnifocal image generated for each window part is applied as an image in the window part of the frame by the image replacement part 14, so that the frame is superimposed on the reference image, and all the different Z ranges are applied to each window part of the frame. An image to which the focus image is applied is displayed on the display unit 9 (step S109). FIG. 10 shows an actual display example.
  • the user can move the frame with respect to the reference image by operating the frame operation unit 15 including a mouse, holding the frame displayed on the display unit 9, and dragging the frame. Since the position of each window changes when the frame moves, it is determined whether or not the frame has been moved (step S110). If the frame moves, the position information of the new window is obtained from the focus range allocating unit 13. The omnifocal image is sent to the omnifocal image generator 8, and the omnifocal image is regenerated and updated (steps S106 to S109). FIG. 11 shows an actual display example when the frame is moved. If the frame is not moved and the display is terminated (step S111), the process is terminated.
  • the user freely moves the frame displayed superimposed on the reference image on the display unit 9 and demarcates the frame by the frame. Just by making any one of the window portions coincident with the position of interest, it is possible to observe the position of interest using the omnifocal image in the Z range assigned to the window portion. As a result, there is an advantage that the structure of the subject O in the depth direction can be more intuitively observed without switching the entire image or comparing the images displayed in parallel.
  • the Z range there are three Z ranges of each detection range including the focus peak and the Z range on both sides with the focus peak as a boundary. Therefore, depending on the omnifocal image of the detection range including the focus peak , It is possible to grasp the overall image of the characteristic structure focused in the region of interest, and the structure on the far side and the near side in the depth direction than the characteristic structure can be obtained by the omnifocal images of the Z range on both sides of the focus peak. It can be easily switched and observed.
  • the omnifocal image in the Z range excluding the detection range including other in-focus peaks the structure at the in-focus peak is prevented from becoming difficult to recognize due to information of other unnecessary Z-stack images. be able to.
  • the omnifocal image using the Z range that matches the detection range is an omnifocal image in a range limited to the focus peak, and thus has an advantage that the structure of the region to be observed can be easily grasped. .
  • the user can recognize the position of interest while grasping the surrounding structure from the reference image. Can be observed.
  • the omnifocal image using the entire Z range is illustrated as the reference image displayed on the display unit 9, but the present invention is not limited to this, and shows the observation range of the subject O.
  • Any image may be used as the reference image.
  • any two-dimensional image constituting the Z stack image may be used, or an image obtained by combining two or more two-dimensional images may be used as the reference image.
  • the attention position setting unit 10 is exemplified by the user setting the attention position with the mouse, but instead, the characteristic area of the subject O is automatically detected by image recognition processing or the like. May be acquired and set as the position of interest.
  • one pixel on the reference image is set as the attention position, instead of this, an area having an arbitrary size according to the size of the structure to be observed may be set.
  • the focus degree distribution may be obtained by adding the focus degree distribution corresponding to each pixel position in the set area.
  • a pixel value at an arbitrary Z direction position may be set.
  • An arbitrary position in the Z direction may be designated in advance based on the characteristics of the subject O. For example, if the subject O is a biological subject, the user may specify the Z position where the background region exists, and if the subject O is an industrial subject, the user may specify the Z position. It may be set to the lowest position, the shooting start position, or the shooting end position.
  • the frame having the same size rectangular window as the frame is exemplified, but the present invention is not limited to this, and a frame having a window having a different shape and size is adopted. Also good. Moreover, you may enable it to change the magnitude
  • the Z range that matches the detection range may be determined more limitedly.
  • the standard deviation of the detection range in which the focus peak is detected may be calculated, and the 2 ⁇ standard deviation range centered on the focus peak may be determined as the Z range.
  • frame is not restricted to a rectangle, You may comprise by a concentric circle etc. as FIG. 12 shows.
  • the Z range is determined by the Z range determination unit 11 based on the focus degree distribution at the set position of interest. Instead, a plurality of Z ranges are stored in advance. You may use it.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

被写体の奥行き方向の構造を直感的に把握可能に観察することを目的として、本発明に係る画像観察装置(3)は、Zスタック画像の1以上の2次元画像に基づいて基準画像を生成する基準画像生成部(8)と、基準画像上に異なる小領域を覆う複数の窓部を有し基準画像に重畳されるフレームを生成するフレーム生成部(12)と、フレームを基準画像に対して移動させるように操作するフレーム操作部(15)と、フレームの各窓部に、異なる焦点範囲を割り当てる焦点範囲割当部(13)と、各窓部に覆われた各小領域について、各小領域に対応する領域の2次元画像の内、各窓部に割り当てられた焦点範囲内の2次元画像を用いて全焦点画像をそれぞれ生成する全焦点画像生成部(8)と、異なる焦点範囲に基づく各全焦点画像に、各窓部内の基準画像を置き換える画像置換部(14)と、基準画像、フレームおよび全焦点画像を表示する表示部(9)とを備える。

Description

画像観察装置および顕微鏡システム
 本発明は、画像観察装置および顕微鏡システムに関するものである。
 数10μm程度の焦点深度を有する顕微鏡を用いて数mm程度の被写体を観察する場合や、光軸方向に奥行きのある被写体を観察する場合に、光軸方向に焦点位置をずらしながら撮影された複数枚の画像(以下、Zスタック画像という。)を用いて、各画素位置における最大合焦度を有する画像の画素を寄せ集めることで、ほぼ全域において焦点があった全焦点画像を生成することが知られている(例えば、特許文献1参照。)。
 この特許文献1には、各位置における合焦度が2以上のピーク値を有する場合に、これらのピーク値を複数の候補値として検出し、検出された各候補値に対して特定数のZスタック画像を利用することによって複数の全焦点画像を生成している。
特開2014-21489号公報
 特許文献1の方法においては、生成された複数の全焦点画像をどのように利用するのかについて記載がない。一般には、全画角について生成された複数の全焦点画像を択一的に切り替えて、あるいは並列して表示して観察することが考えられる。しかしながら、このようにして観察する場合には、択一的に表示あるいは並列表示される複数の全焦点画像を見比べる必要があり、ユーザが被写体の奥行き方向の構造を直感的に把握することができないという問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、奥行き方向に複数の合焦を有する被写体の奥行き方向の構造を直感的に把握可能に観察することができる画像観察装置および顕微鏡システムを提供することを目的としている。
 本発明の一態様は、対物レンズの光軸方向に焦点位置を異ならせて取得された複数枚の2次元画像からなるZスタック画像の1以上の前記2次元画像に基づいて基準画像を生成する基準画像生成部と、該基準画像生成部により生成された前記基準画像上に、該基準画像の異なる小領域を覆う複数の窓部を有し前記基準画像に重畳されるフレームを生成するフレーム生成部と、該フレーム生成部により生成された前記フレームを前記基準画像に対して移動させるように操作するフレーム操作部と、前記フレーム生成部により生成された前記フレームの各前記窓部に、異なる焦点範囲を割り当てる焦点範囲割当部と、各前記窓部に覆われた各前記小領域について、各該小領域に対応する領域の前記2次元画像の内、前記焦点範囲割当部により各前記窓部に割り当てられた前記焦点範囲内の前記2次元画像を用いて全焦点画像をそれぞれ生成する全焦点画像生成部と、該全焦点画像生成部により生成された異なる前記焦点範囲に基づく各前記全焦点画像に、各前記窓部内の前記基準画像を置き換える画像置換部と、前記基準画像、前記フレームおよび前記全焦点画像を表示する表示部とを備える画像観察装置である。
 本態様によれば、Zスタック画像が入力されると、基準画像生成部により基準画像が生成されて表示部に表示されるとともに、基準画像の異なる小領域を覆う複数の窓部を有するフレームがフレーム生成部により生成されて基準画像に重畳されて表示部に表示される。焦点範囲割当部によって各窓部にそれぞれ割り当てられた異なる焦点範囲内の2次元画像を用いて全焦点画像生成部により全焦点画像が生成され、各窓部内の基準画像が、各窓部に対応して生成された全焦点画像に、画像置換部によって置き換えられて表示される。
 ユーザはフレーム操作部を操作することにより、表示部に表示されている基準画像上においてフレームを移動させることで、各窓部に対応する小領域を変化させると、各小領域に対応する全焦点画像が新たに生成されて画像置換部によって置き換えられる。これにより、ユーザは、フレームを移動して注目領域を覆う窓部を変更するだけで、異なる焦点範囲の全焦点画像を切り替えて注目領域を観察することができる。
 すなわち、複数の全焦点画像を切り替えて観察したり、並列に表示して観察したりする場合と比較して、注目領域近傍から目を離すことなく焦点範囲を切り替えることができ、被写体の奥行き方向の構造を直感的に把握することができる。
 上記態様においては、前記基準画像生成部において生成され前記表示部に表示された前記基準画像上において、いずれかの画素位置を設定する位置設定部と、該位置設定部により設定された前記画素位置における前記Zスタック画像の各前記2次元画像における合焦度を算出して合焦度の分布を生成する合焦度算出部と、該合焦度算出部により生成された合焦度の分布に基づいて、複数パターンの焦点範囲を決定するZ範囲決定部とを備え、前記焦点範囲割当部が、前記Z範囲決定部により決定された各前記焦点範囲を異なる前記窓部に割り当ててもよい。
 このようにすることで、ユーザが、表示部に表示されている基準画像上において位置設定部によっていずれかの画素位置を設定すると、合焦度算出部により、設定された画素位置における合焦度が算出されて合焦度の分布が生成される。Z範囲決定部が、生成された合焦度の分布に基づいて複数パターンの焦点範囲を決定するので、合焦度の大きい焦点近傍の全焦点画像によって、被写体の注目領域を観察することができる。
 また、上記態様においては、前記基準画像が、前記焦点範囲割当部により割り当てられる全ての前記焦点範囲より広い焦点範囲内の前記2次元画像を用いて生成された全焦点画像であってもよい。
 このようにすることで、最も広い焦点範囲内の2次元画像を用いて生成された全焦点画像が基準画像として表示されている表示部において、フレームの移動により注目領域の焦点範囲を切り替えるので、被写体の全体像を常に確認しながら、注目領域を観察することができる。これにより、被写体の全体像に対する注目領域の奥行き方向の構造をより直感的に把握することができる。
 また、本発明の他の態様は、前記Zスタック画像を取得する顕微鏡と、上記いずれかの画像観察装置とを備える顕微鏡システムである。
 本発明によれば、奥行き方向に複数の合焦を有する被写体の奥行き方向の構造を直感的に把握可能に観察することができるという効果を奏する。
本発明の一実施形態に係る画像観察装置および顕微鏡システムを示すブロック図である。 合焦度算出のためのラプラシアンピラミッドを説明する図である。 図1の画像観察装置により生成される合焦度分布の一例を示す図である。 図1の画像観察装置による合焦ピークの検出範囲を設定する方法を説明するフローチャートである。 図4のフローチャートにおいて、Z範囲が分割されることにより生成される合焦ピークの探索範囲を示す図である。 図4のフローチャートにおいて設定された合焦ピークの検出範囲を示す図である。 図1の画像観察装置のZ範囲決定部により決定される合焦ピーク毎のZ範囲の一例を示す模式図である。 図1の画像観察装置の表示部に重畳表示される基準画像とフレームの一例を示す図である。 本発明の顕微鏡システムによる画像の観察方法を説明するフローチャートである。 図1の画像観察装置の表示部に表示される画像およびフレームの実際の表示例を示す図である。 図10の表示例において、フレームを移動させた状態を示す図である。 図1の画像観察装置におけるフレームの変形例を示す図である。
 本発明の一実施形態に係る画像観察装置3および顕微鏡システム1について、図面を参照して以下に説明する。
 本実施形態に係る顕微鏡システム1は、図1に示されるように、対物レンズ4の光軸方向に焦点位置を異ならせて、被写体Oの複数枚の2次元画像からなるZスタック画像を取得する顕微鏡2と、該顕微鏡2により取得されたZスタック画像を観察する画像観察装置3とを備えている。
 顕微鏡2は、被写体Oを搭載するステージ5と、該ステージ5に搭載された被写体Oからの光を集光する対物レンズ4と、該対物レンズ4により集光された被写体Oからの光を撮影する撮像部6とを備えている。顕微鏡2の形式は任意でよいが、対物レンズ4の光軸に沿う方向に、対物レンズ4とステージ5との相対位置を変更可能な構造を有し、対物レンズ4の焦点位置を被写体Oに対して光軸方向に移動させることができるものである。
 顕微鏡2は、被写体Oに対して、対物レンズ4の焦点位置を光軸方向に微小距離ずつ送りながら複数枚の2次元画像を取得することにより、取得された複数枚の2次元画像からなるZスタック画像を取得するようになっている。
 本実施形態に係る画像観察装置3は、図1に示されるように、顕微鏡2により取得されたZスタック画像が入力され、各画素位置における合焦度を算出し合焦度分布を生成する合焦度算出部7と、生成された合焦度分布に基づいて全焦点画像を生成する全焦点画像生成部8と、生成された全焦点画像を表示する表示部9とを備えている。
 また、画像観察装置3は、表示部9に表示された全焦点画像上において注目位置を確認したユーザが、全焦点画像上において注目位置を設定する注目位置設定部(位置設定部)10と、設定された注目位置の情報および後述するZ範囲決定部11により決定された焦点範囲の情報に基づいて、複数の窓部を有するフレームを生成するフレーム生成部12と、生成されたフレームの各窓部に異なる焦点範囲を割り当てる焦点範囲割当部13と、全焦点画像生成部(基準画像生成部)8において、焦点範囲毎に生成された全焦点画像を窓部内の画像と置き換える画像置換部14と、表示部9に表示されたフレームをユーザが移動させるためのフレーム操作部15とを備えている。
 合焦度算出部7は、Zスタック画像を構成する2次元画像の全域についての全焦点画像である基準画像を生成するための合焦度分布と、注目位置設定部10により設定された注目位置の画素における合焦度分布とを生成するようになっている。
 合焦度算出部7は、例えば、エッジ情報などの高周波成分を表現することができるラプラシアンピラミッドを利用して、高周波成分に基づいて合焦度を算出するようになっている。
 一般に、デジタル画像は低周波成分(ガウシアン成分)と高周波成分(ラプラシアン成分)とに分解でき、解像度間の相関によりピラミッド階層として表現できる。高周波成分はラプラシアンピラミッドの階層として表現できる。ラプラシアンピラミッドは原画像から低周波成分を得るときに失われるラプラシアン成分であり、階層によって周波数帯域が異なる。図2にラプラシアンピラミッドの一例を示す。
 図2中、LPFはローパスフィルタ、DSはダウンサンプリング、USはアップサンプリングをそれぞれ表している。
 本実施形態においては、4階層のラプラシアンピラミッドを構築し、被写体構造のエッジ成分が安定的に含まれると考えられる第2階層のラプラシアン成分に基づいて合焦度を算出している。図2は、4階層の内の3階層分を表示している。なお、利用する階層は任意の1階層である必要はなく、観察条件や被写体構造の特徴に基づいて各帯域でのラプラシアン成分を最適な重みでブレンドして求めてもよい。また、合焦度算出方法は、上記方法に限定されるものではなく、ウェーブレット変換の変換係数に基づく算出方法等、任意の公知の方法を用いてもよい。
 合焦度算出部7においては、上記により算出された合焦度を、図3に示されるように、各2次元画像のZ方向位置について配列することにより、合焦度分布を生成するようになっている。
 基準画像の生成においては、合焦度算出部7は、2次元画像の全ての画素位置において合焦度分布を生成し、全焦点画像生成部8に送るようになっている。注目位置設定部10により注目位置が設定されたときには、合焦度算出部7は、設定された注目位置の画素位置における合焦度分布のみを生成して、Z範囲決定部11に送るようになっている。
 Z範囲決定部11は、合焦度算出部7から送られてきた注目位置における合焦度分布において、合焦度が極大となる合焦ピークを検出し、各合焦ピークについて全焦点画像を生成するための焦点範囲を決定するようになっている。
 Z範囲決定部11における合焦ピークの検出は、以下のようにして行われる。
 まず、図4に示されるように、合焦ピークの探索範囲Szの設定が行われる。
 初期状態において、定数N=1であり、探索範囲Sz(N)は全Z範囲である(ステップS1)。図3に示す例では、初期の探索範囲Sz(N)は0から140である。
 次いで、解析対象分布Az(N)を求める(ステップS2)。具体的には、合焦度分布における各合焦度を所定の閾値と比較して、閾値より大きな合焦度のみを解析対象分布とする。
 そして、定数a=1として(ステップS3)、求められた解析対象分布Az(a)の分散値σ(a)を算出し(ステップS4)、分散値σ(a)が所定の閾値σ以下であるか否かを判定する(ステップS5)。分散値σが所定の閾値σ以下である場合には、合焦ピークの数が1か0であると推定でき、それ以外の場合には合焦ピークの数が2以上であると推定できる。
 したがって、合焦ピーク数が2以上の場合には、定数Nをインクリメントし(ステップS6)、Z範囲をZ(N)に分割し(ステップS7)、探索範囲Sz(N)をそれぞれZ(N)に再設定する(ステップS8からS11)。そして、再設定された各探索範囲Sz(N)について、ステップS2からの工程を繰り返す。
 Z範囲の分割は、例えば、図5に示されるように、解析対象分布Az(N)の平均値を分割位置とすればよい。この場合には、平均値は66であり、再設定される探索範囲Sz(1)は0から65、探索範囲Sz(2)は67から140となる。
 分割位置の設定方法は、これに限定されるものではなく、解析対象分布Az(N)からFisher Distanc等のピーク検出関数を作成し、作成されたピーク検出関数の値の正負の変化状況に基づいて、ピークの始点、中心点および終点を求める方法を採用してもよい。
 一方、合焦ピーク数が1以下の場合には、検出範囲Pz(a)として、探索範囲Sz(a)を設定し(ステップS12からS14)、全ての探索範囲Sz(N)について検出範囲Pz(N)が設定されるまで、ステップS4からの工程が繰り返される。図中、符号a、bは定数である。
 これにより、全ての探索範囲Sz(N)において合焦ピーク数が0または1となる検出範囲Pz(N)が決定される。図6は、全Z範囲において合焦ピーク数が2であり、2つの検出範囲Pz(1),Pz(2)が決定された場合を示している。
 次いで、各検出範囲Pz(N)について、合焦ピークのZ位置が検出される。ここでは、最大合焦度を有するZ位置を合焦ピークとして検出するようになっている。
 さらに、Z範囲決定部11は、検出された各合焦ピークについて、全焦点画像の生成に利用するZ範囲、すなわち、焦点範囲を決定するようになっている。
 図7においては、例えば、各合焦ピークに対して、各合焦ピークの検出範囲(パターンB,E)と、各合焦ピークを境界とした両側の2つのZ範囲(パターンA,CまたはパターンD,F)の3つのZ範囲を全焦点画像の生成に利用するZ範囲として決定するようになっている。
 全焦点画像生成部8は、基準画像を生成するための全ての画素位置における合焦度分布が合焦度算出部7から送られてきたときには、各合焦度分布において、合焦度が最も高くなるZ方向のいずれかの2次元画像の画素値を選択して、全ての画素位置において選択された画素値を組み合わせることにより全焦点画像を生成するようになっている。
 また、全焦点画像生成部8は、Z範囲決定部11から、複数のZ範囲が送られてきたときには、送られてきた各Z範囲に対応するZスタック画像を用いて、合焦ピーク毎に全焦点画像を生成するようになっている。全焦点画像の生成方法は、基本的に基準画像を生成する方法と同様であるが、生成するZ範囲および2次元画像の画素範囲において相違している。
 注目位置設定部10は、例えば、表示部9に表示された画像上でカーソルを移動させるマウス等の入力装置であり、ユーザが関心の高い注目位置にマウスを移動して、クリックすることにより、注目位置を設定するようになっている。
 本実施形態においては、注目位置設定部10により注目位置が設定され、該注目位置についての全焦点画像を生成するZスタック画像のZ範囲がZ範囲決定部11により決定されると、フレーム生成部12が、基準画像に重畳して表示するフレームを生成するようになっている。
 具体的には、Z範囲決定部11により、検出された合焦ピーク数が2であり、各合焦ピークについて検出範囲が3つずつ設定されているので、2×3=6個の窓部を有するフレームが生成されるようになっている。
 そして、生成されたフレームは、例えば、図8に示されるように、注目位置設定部10により設定された注目位置を中心として表示部9の基準画像上に重畳して表示されるようになっている。
 また、生成されたフレームの情報は、焦点範囲割当部13に送られる。焦点範囲割当部13においては、フレームの各窓部にZ範囲決定部11により決定された6個のZ範囲がそれぞれ割り当てられるようになっている。
 具体的には、フレームは、例えば、2行3列の窓部を有し、各行の中央の窓部には、2つの検出範囲のZ範囲がそれぞれ割り当てられ、左側の列の窓部には、合焦ピークより奥行き方向に奥側、右側の列の窓部には、合焦ピークより奥行き方向に手前側のZ範囲がそれぞれ割り当てられるようになっている。
 全焦点画像生成部8には、Zスタック画像、フレームの窓部の位置情報、および各窓部に割り当てられたZ範囲の情報が送られて、窓部に対応する小領域毎に、各窓部に割り当てられたZ範囲を用いて全焦点画像が生成される。そして、生成された6個は、それぞれ、画像置換部14において、各窓部に対応する小領域の基準画像と置き換えられ、表示部9に表示されるようになっている。
 そして、ユーザは、例えば、マウス等の入力部とGUIとにより構成されたフレーム操作部15によって、表示部9に表示されているフレームの位置を移動させることができる。フレームが移動させられると、各窓部に対応する小領域が変化するので、新たな窓部の位置情報および窓部に割り当てられたZ範囲を用いて、全焦点画像が生成され、更新されるようになっている。
 このように構成された本実施形態に係る画像観察装置3および顕微鏡システム1の作用について以下に説明する。
 本実施形態に係る顕微鏡システム1を用いて被写体Oの観察を行うには、図9に示されるように、顕微鏡2のステージ5に被写体Oを搭載し、対物レンズ4の光軸方向に沿う対物レンズ4とステージ5との相対位置を微小送りして変更しながら、各位置で被写体Oの2次元画像を取得して記憶することにより、Zスタック画像が取得される(ステップS100)。
 顕微鏡2において取得されたZスタック画像は、画像観察装置3に入力される。
 画像観察装置3においては、Zスタック画像を構成している2次元画像の全域にわたって、2次元画像の各画素位置について、合焦度算出部7により合焦度分布が生成され、全焦点画像生成部8に送られる。
 全焦点画像生成部8においては、入力されてきたZスタック画像および全画素位置の合焦度分布に基づいて、各画素位置において最大合焦度を有するZ方向のいずれかの2次元画像の画素値が抽出されて、組み合わせられることにより、2次元画像の全域にわたる全焦点画像が生成され、基準画像として表示部9に表示される(ステップS101)。
 ユーザは、表示部9に表示された基準画像を見て、関心が高い注目位置を設定する(ステップS102)。設定された注目位置の座標が合焦度算出部7に送られて、当該座標における合焦度分布が生成される(ステップS103)。
 生成された合焦度分布はZ範囲決定部11に送られ、Z範囲決定部11において、合焦ピークの検出範囲設定処理、合焦ピークの検出処理(ステップS104)および検出された合焦ピーク毎のZ範囲決定処理(ステップS105)が行われる。Z範囲決定部11においてZ範囲の数が決定されると、その情報がフレーム生成部12に送られて、Z範囲の数だけ窓部を有するフレームが生成される(ステップS106)。
 そして、生成されたフレームの情報は焦点範囲割当部13に送られてZ範囲決定部11により決定されたZ範囲が、フレームの各窓部に1つずつ割り当てられる(ステップS107)。
 また、生成されたフレームは、注目位置設定部10により設定された注目位置を中心として基準画像上に表示されるように、注目位置設定部10により設定された注目位置に基づいて、フレーム生成部12において各窓部の基準画像上の位置が算出される。
 全焦点画像生成部8は、顕微鏡2から入力されたZスタック画像および焦点範囲割当部13から送られてきたフレームの各窓部の位置情報および各窓部に割り当てられたZ範囲の情報を受け取って、各窓部に対応する小領域毎に、窓部に割り当てられたZ範囲の情報を用いてZスタック画像から全焦点画像を生成する(ステップS108)。
 そして、窓部毎に生成された全焦点画像が、フレームの窓部内の画像として画像置換部14によって当てはめられることにより、基準画像にフレームが重畳され、フレームの各窓部にZ範囲の異なる全焦点画像が当てはめられた画像が表示部9に表示される(ステップS109)。図10に実際の表示例を示す。
 ユーザは、マウスを備えるフレーム操作部15を操作して、表示部9に表示されているフレームを把持し、ドラッグすることによって、基準画像に対してフレームを移動させることができる。フレームが移動すると各窓部の位置が変化するので、フレームが移動されたか否かが判定され(ステップS110)、移動された場合には、新たな窓部の位置情報が焦点範囲割当部13から全焦点画像生成部8に送られて、全焦点画像が再生成され更新される(ステップS106からS109)。図11にフレームを移動した場合の実際の表示例を示す。
 フレームが移動されず、表示を終了する場合(ステップS111)には、処理が終了される。
 このように、本実施形態に係る画像観察装置3および顕微鏡システム1によれば、ユーザは、表示部9に、基準画像に重畳して表示されているフレームを自由に移動させて、フレームにより画定されているいずれかの窓部を注目位置に一致させるだけで、当該窓部に割り当てられているZ範囲の全焦点画像により注目位置の観察を行うことができる。その結果、画像全体を切り替えたり、並列表示された画像を見比べたりすることなく、被写体Oの奥行き方向の構造を、より直感的に観察することができるという利点がある。
 特に、Z範囲として、合焦ピークを含む各検出範囲、合焦ピークを境界とした両側のZ範囲の3つのZ範囲を用意しているので、合焦ピークを含む検出範囲の全焦点画像によって、当該注目領域において合焦する特徴的な構造の全体像を把握でき、合焦ピークの両側のZ範囲の全焦点画像によって、特徴的な構造よりも奥行き方向の奥側および手前側の構造を容易に切り替えて観察することができる。
 また、他の合焦ピークを含む検出範囲を除いたZ範囲の全焦点画像によれば、合焦ピークでの構造が、他の不要なZスタック画像の情報によって認識しにくくなることを防止することができる。また、検出範囲に一致するZ範囲を用いた全焦点画像では、合焦ピークを中心に限定した範囲での全焦点画像となるため、特に観察したい領域の構造を把握しやすくなるという利点がある。
 また、本実施形態においては、フレームの外側には、全Z範囲を用いた全焦点画像からなる基準画像が表示されているので、ユーザは、基準画像によって周囲の構造を把握しながら、注目位置の観察を行うことができる。
 なお、本実施形態においては、表示部9に表示する基準画像として、全Z範囲を用いた全焦点画像を例示したが、これに限定されるものではなく、被写体Oの観察範囲を示すものであれば任意の画像を基準画像としてもよい。例えば、Zスタック画像を構成するいずれかの2次元画像でもよいし、2以上の2次元画像を合成した画像を基準画像としてもよい。
 また、本実施形態においては、注目位置設定部10として、ユーザがマウスによって注目位置を設定するものを例示したが、これに代えて、画像認識処理などにより、被写体Oの特徴的な領域を自動的に取得し、注目位置として設定することにしてもよい。また、注目位置として、基準画像上の1画素を設定することとしたが、これに代えて、観察したい構造の大きさに応じた任意サイズの領域を設定することにしてもよい。
 この場合には、設定された領域の各画素位置に対応する合焦度分布を加算して合焦度分布を求めればよい。これにより、任意サイズの領域における主な合焦ピーク毎のZ範囲での全焦点画像による観察が可能となる。
 また、テクスチャが存在せず、合焦度の精度が低い位置については、Z方向の全ての合焦度が閾値より小さくなり、合焦ピークを検出することができない。このような位置については、任意のZ方向位置の画素値を設定すればよい。任意のZ方向位置は、被写体Oの特徴に基づいて予め指定しておけばよい。例えば、被写体Oが生物系の被写体である場合には、背景領域、工業系の被写体である場合には底面領域などが存在するZ位置をユーザが指定してもよいし、被写体Oの構造の中で最も低い位置や、撮影開始位置あるいは撮影終了位置に設定してもよい。
 また、本実施形態においては、フレームとして同じ大きさの長方形の窓部を有するものを例示したが、これに限定されるものではなく、異なる形状および大きさの窓部を有するフレームを採用してもよい。また、窓部の大きさをユーザが操作して変更することができるようにしてもよい。また、Z範囲決定部11により決定されるZ範囲についても、上記に限定されるものではなく、Z範囲の数および範囲については任意に設定することができる。
 また、検出範囲に一致するZ範囲はより限定的に決定してもよい。例えば、合焦ピークが検出された検出範囲の標準偏差を算出し、合焦ピークを中心とした2×標準偏差の範囲をZ範囲として決定してもよい。
 また、フレームの窓部は矩形に限られるものではなく、図12に示されるように同心円等によって構成してもよい。
 また、本実施形態においては、設定された注目位置における合焦度分布に基づいてZ範囲決定部11によりZ範囲を決定することとしたが、これに代えて、予め複数のZ範囲を記憶しておいて使用してもよい。
 1 顕微鏡システム
 2 顕微鏡
 3 画像観察装置
 4 対物レンズ
 7 合焦度算出部
 8 全焦点画像生成部(基準画像生成部)
 9 表示部
 10 注目位置設定部(位置設定部)
 11 Z範囲決定部
 12 フレーム生成部
 13 焦点範囲割当部
 14 画像置換部
 15 フレーム操作部

Claims (4)

  1.  対物レンズの光軸方向に焦点位置を異ならせて取得された複数枚の2次元画像からなるZスタック画像の1以上の前記2次元画像に基づいて基準画像を生成する基準画像生成部と、
     該基準画像生成部により生成された前記基準画像上に、該基準画像の異なる小領域を覆う複数の窓部を有し前記基準画像に重畳されるフレームを生成するフレーム生成部と、
     該フレーム生成部により生成された前記フレームを前記基準画像に対して移動させるように操作するフレーム操作部と、
     前記フレーム生成部により生成された前記フレームの各前記窓部に、異なる焦点範囲を割り当てる焦点範囲割当部と、
     各前記窓部に覆われた各前記小領域について、各該小領域に対応する領域の前記2次元画像の内、前記焦点範囲割当部により各前記窓部に割り当てられた前記焦点範囲内の前記2次元画像を用いて全焦点画像をそれぞれ生成する全焦点画像生成部と、
     該全焦点画像生成部により生成された異なる前記焦点範囲に基づく各前記全焦点画像を、各前記窓部内の前記基準画像に置き換える画像置換部と、
     前記基準画像、前記フレームおよび前記全焦点画像を表示する表示部とを備える画像観察装置。
  2.  前記基準画像生成部において生成され前記表示部に表示された前記基準画像上において、いずれかの画素位置を設定する位置設定部と、
     該位置設定部により設定された前記画素位置における前記Zスタック画像の各前記2次元画像における合焦度を算出して合焦度の分布を生成する合焦度算出部と、
     該合焦度算出部により生成された合焦度の分布に基づいて、複数パターンの焦点範囲を決定するZ範囲決定部とを備え、
     前記焦点範囲割当部が、前記Z範囲決定部により決定された各前記焦点範囲を異なる前記窓部に割り当てる請求項1に記載の画像観察装置。
  3.  前記基準画像が、前記焦点範囲割当部により割り当てられる全ての前記焦点範囲より広い焦点範囲内の前記2次元画像を用いて生成された全焦点画像である請求項1または請求項2に記載の画像観察装置。
  4.  前記Zスタック画像を取得する顕微鏡と、
     請求項1から請求項3のいずれかに記載の画像観察装置とを備える顕微鏡システム。
     
PCT/JP2016/075843 2016-09-02 2016-09-02 画像観察装置および顕微鏡システム WO2018042629A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018536646A JPWO2018042629A1 (ja) 2016-09-02 2016-09-02 画像観察装置および顕微鏡システム
PCT/JP2016/075843 WO2018042629A1 (ja) 2016-09-02 2016-09-02 画像観察装置および顕微鏡システム
US16/285,513 US10690899B2 (en) 2016-09-02 2019-02-26 Image observation device and microscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/075843 WO2018042629A1 (ja) 2016-09-02 2016-09-02 画像観察装置および顕微鏡システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/285,513 Continuation US10690899B2 (en) 2016-09-02 2019-02-26 Image observation device and microscope system

Publications (1)

Publication Number Publication Date
WO2018042629A1 true WO2018042629A1 (ja) 2018-03-08

Family

ID=61300368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075843 WO2018042629A1 (ja) 2016-09-02 2016-09-02 画像観察装置および顕微鏡システム

Country Status (3)

Country Link
US (1) US10690899B2 (ja)
JP (1) JPWO2018042629A1 (ja)
WO (1) WO2018042629A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071505A1 (en) * 2009-12-11 2011-06-16 Mds Analytical Technologies (Us) Inc. Integrated data visualization for multi-dimensional microscopy
JP2013080144A (ja) * 2011-10-05 2013-05-02 Sony Corp 画像取得装置、画像取得方法、およびコンピュータプログラム
JP2013088530A (ja) * 2011-10-14 2013-05-13 Keyence Corp 拡大観察装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3867143B2 (ja) 2003-06-25 2007-01-10 独立行政法人産業技術総合研究所 三次元顕微鏡システムおよび画像表示方法
DE102011075809A1 (de) * 2011-05-13 2012-11-15 Carl Zeiss Microimaging Gmbh Verfahren und Vorrichtung zum Festlegen eines z-Bereiches in einer Probe, in dem ein z-Stapel der Probe mittels eines Mikroskops aufzunehmen ist
US9942534B2 (en) 2011-12-20 2018-04-10 Olympus Corporation Image processing system and microscope system including the same
JP5965638B2 (ja) 2011-12-27 2016-08-10 オリンパス株式会社 画像処理システムを備えた顕微鏡システム
US8988520B2 (en) 2012-07-19 2015-03-24 Sony Corporation Method and apparatus for improving depth of field (DOF) in microscopy
US8818117B2 (en) 2012-07-19 2014-08-26 Sony Corporation Method and apparatus for compressing Z-stack microscopy images
JP2016051167A (ja) * 2014-08-29 2016-04-11 キヤノン株式会社 画像取得装置およびその制御方法
US9939623B2 (en) * 2015-10-19 2018-04-10 Molecular Devices, Llc Microscope system with transillumination-based autofocusing for photoluminescence imaging
JP6799924B2 (ja) * 2016-02-16 2020-12-16 株式会社Screenホールディングス 細胞観察装置および細胞観察方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071505A1 (en) * 2009-12-11 2011-06-16 Mds Analytical Technologies (Us) Inc. Integrated data visualization for multi-dimensional microscopy
JP2013080144A (ja) * 2011-10-05 2013-05-02 Sony Corp 画像取得装置、画像取得方法、およびコンピュータプログラム
JP2013088530A (ja) * 2011-10-14 2013-05-13 Keyence Corp 拡大観察装置

Also Published As

Publication number Publication date
US20190196168A1 (en) 2019-06-27
JPWO2018042629A1 (ja) 2019-06-24
US10690899B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
JP6011862B2 (ja) 3次元画像撮影装置及び3次元画像撮影方法
JP6609291B2 (ja) デジタル病理画像の焦点面を自動調節する方法
CN103426147B (zh) 图像处理装置、图像拾取装置和图像处理方法
CN104101294B (zh) 分析装置、分析程序以及分析系统
EP3420393B1 (en) System for generating a synthetic 2d image with an enhanced depth of field of a biological sample
JP6804584B2 (ja) 画像のプライバシー領域内の画像データに適用されるぼかし度のための方法、装置およびシステム
JP5464279B2 (ja) 画像処理装置、そのプログラム、および画像処理方法
JP2020057391A (ja) 画像セグメント化を使用した物体追跡
KR20110095797A (ko) 화상 처리 장치 및 화상 처리 프로그램
CN114424102A (zh) 用于在自动聚焦系统中使用的图像处理装置和方法
WO2014109095A1 (ja) 撮像装置、顕微鏡システム及び撮像方法
JP2015108837A (ja) 画像処理装置及び画像処理方法
JP6577397B2 (ja) 画像解析装置、画像解析方法、画像解析プログラム、および画像解析システム
JP2019515362A (ja) 多次元データの画像分析のためのシステムおよび方法
WO2018042629A1 (ja) 画像観察装置および顕微鏡システム
US8841614B1 (en) Sample structure analyzing method, transmission electron microscope, and computer-readable non-transitory recording medium
Garud et al. Brightness preserving contrast enhancement in digital pathology
WO2017032096A1 (en) Method for predicting stereoscopic depth and apparatus thereof
JP6105987B2 (ja) 画像処理装置及びその制御方法
Nguyen et al. Autofocusing of fluorescent microscopic images through deep learning convolutional neural networks
EP3244367B1 (en) Image-acquisition apparatus
Aslantas et al. Multi focus image fusion by differential evolution algorithm
JP2016212813A (ja) 画像処理装置、画像処理方法、及びプログラム
JP5668027B2 (ja) 全焦点画像生成方法、全焦点画像生成装置、全焦点画像生成プログラム、被写体高さ情報取得方法、被写体高さ情報取得装置及び被写体高さ情報取得プログラム
CN111433594B (zh) 拍摄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16915189

Country of ref document: EP

Kind code of ref document: A1