WO2018041257A1 - 一种高压齿轮流量计综合性能实验装置的液压系统及实验方法 - Google Patents
一种高压齿轮流量计综合性能实验装置的液压系统及实验方法 Download PDFInfo
- Publication number
- WO2018041257A1 WO2018041257A1 PCT/CN2017/100312 CN2017100312W WO2018041257A1 WO 2018041257 A1 WO2018041257 A1 WO 2018041257A1 CN 2017100312 W CN2017100312 W CN 2017100312W WO 2018041257 A1 WO2018041257 A1 WO 2018041257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- port
- valve
- plate type
- check valve
- type check
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B19/00—Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
Definitions
- the invention relates to a hydraulic system and an experimental method for a comprehensive performance experimental device of a high-pressure gear flowmeter, in particular to a technical field of a comprehensive performance experiment of a high-pressure gear flowmeter.
- Gear flow meters are the most accurate type in flow meters.
- volumetric flow meters for high pressure hydraulic systems generally use gear flow meters. It utilizes a rotating gear to continuously divide the fluid into a single known volume portion, measuring the flow of fluid based on the number of times the measurement chamber repeatedly fills and discharges the volume of fluid one by one.
- the general low-pressure flowmeter is installed on the oil return side of the hydraulic system, and the high-pressure flowmeter is installed on the high-pressure side of the hydraulic system. How to simulate the dynamic flow of the high-pressure hydraulic system and how to measure the dynamic flow of the high-pressure hydraulic system are always the hydraulic industry. A hot topic.
- the present invention designs "a hydraulic system and an experimental method for a high-performance gear flowmeter comprehensive performance experimental device", which can overcome the above defects and can complete different input frequencies, different system pressures, different system flows, and different medium viscosity.
- the servo valve performance experiment can complete the performance test of high-pressure gear flowmeter with different input frequency, different system pressure, different system flow, and different medium viscosity.
- the invention designs a hydraulic system and an experimental method for a high-performance gear flowmeter comprehensive performance experimental device, and the invention can complete the following experiments: (1) The performance test of the servo valve reversing valve at different input frequencies can be completed, and the The highest commutation frequency f1 max of the servo valve under the hydraulic system; the performance of the servo valve reversing valve performance under different pressures; the performance test of the servo valve reversing valve with different flow rates; (2) different loading The dynamic performance experiment of the flowmeter 1 (10) at the frequency f1 can finally obtain the highest dynamic frequency f2 max of the high-pressure gear flowmeter; the dynamic performance experiment of the high-pressure gear flowmeter under different pressures can be performed; The dynamic performance test of the high-pressure gear flowmeter; (3) According to the viscosity of the working medium of the hydraulic system, the performance test of the above servo valve and high-pressure gear flowmeter is completed under the condition that the working medium is diesel oil, hydraulic oil and water.
- the hydraulic system of the experimental device is composed of a pump source component (101) and a flowmeter dynamic performance test system component (103);
- the pump source component (101) is composed of a three-way stop valve 1 (18), a plug 1 (64), a fuel tank Assembly (206), high pressure plunger variable pump (2), filter 1 (24), high pressure tubular filter assembly 1 (202), safety valve 1 (6), tubular check valve 1 (16), machinery
- the pressure gauge (34) and the digital pressure sensor 1 (29) are composed of a high pressure tubular filter assembly 1 (202) by a check valve 1 (50), a filter 1 (51), a differential pressure switch 1 (52)
- the power supply 1 (53) and the indicator light 1 (54) are composed of a fuel tank (1), an air filter (28), a liquid temperature level gauge (35), and a hydraulic transmission medium (70);
- Flowmeter dynamic performance test system component (103) consists of servo valve reversing valve (4), signal generator (36), manual reversing valve (5), relief valve bridge oil circuit assembly (204),
- the performance test of the servo valve reversing valve at different input frequencies is completed; the servo valve reversing valve performance under different pressures is completed by adjusting the opening pressure of the direct acting relief valve 3 (8) Experiment; by adjusting the displacement of the high-pressure plunger variable pump (2), the performance test of the servo valve reversing valve with different flow rates is completed; by adjusting the output frequency of the signal generator, the flow meter 1 (10) at different input frequencies is completed.
- the dynamic performance experiment can finally obtain the highest dynamic frequency f2 max of the high-pressure gear flowmeter; by adjusting the opening pressure of the direct-acting relief valve 3 (8), the dynamic performance experiment of the high-pressure gear flowmeter under different pressures is performed; The displacement of the high-pressure plunger variable pump (2), the dynamic performance test of the high-pressure gear flowmeter under different flow rates; according to the viscosity of the working medium of the hydraulic system, under the condition that the working medium is diesel, hydraulic oil and water, Complete the performance test of the above servo valve and high pressure gear flowmeter.
- the hydraulic system and experimental method of the invention can be completed: (1) performance test of servo valve with different pressure, different flow rate and different viscosity, (2) dynamic performance experiment of high pressure gear flowmeter with different pressure, different flow rate and different viscosity, Servo valve performance experiments and dynamic performance experiments of volumetric high pressure flow meters provide new solutions and design basis.
- FIG. 1 is a hydraulic schematic of a pump source assembly (101) of the present invention.
- FIG. 2 is a hydraulic schematic of the weighing system flowmeter calibration system assembly (102) of the present invention.
- Fig. 1 Fig. 2, 1. fuel tank, 2. high pressure plunger variable pump, 3. gear pump, 9. direct acting relief valve, 11. flow meter 1, 16. tubular check valve 1, 17. Tubular check valve 2, 18. Three-way stop valve 1, 19. Three-way stop valve 2, 22. Weighing fuel tank, 23. Electronic scale, 24. Filter 1, 6. Safety valve 1, 28. Air filtration , 29. digital pressure sensor 1, 33. digital pressure sensor 2, 34. mechanical pressure gauge, 35. liquid temperature level gauge, 37. hose 1, 38. hose 2, 43. speed sensor 1, 45. Check valve 2, 46. Filter 2, 47. Differential pressure switch 2, 48. Indicator light 2, 49. Power supply 2, 50. Check valve 1, 51. Filter 1, 52. Differential pressure switch 1 53, power supply 1, 54. indicator 1, 59.
- a hydraulic system of a high-performance gear flowmeter comprehensive performance experimental device is composed of a pump source component (101) and a flowmeter dynamic performance test system component (103);
- the assembly (101) consists of a three-way stop valve 1 (18), a plug 1 (64), a fuel tank assembly (206), a high pressure plunger variable pump (2), a filter 1 (24), a high pressure tubular filter assembly 1 (202), safety valve 1 (6), tubular check valve 1 (16), mechanical pressure gauge (34), digital pressure sensor 1 (29), wherein the high pressure tubular filter assembly 1 (202) consists of One-way valve 1 (50), filter 1 (51), differential pressure switch 1 (52), power supply 1 (53), indicator light 1 (54), fuel tank assembly (206) from the fuel tank (1), air filtration (28), liquid temperature level gauge (35), hydraulic transmission medium (70); flowmeter dynamic performance test system component (103) by servo valve reversing valve (4), signal generator (36), manual Directional valve (5),
- the c port of the three-way stop valve 1 (18) is connected to the P port of the servo valve reversing valve (4); the T port of the servo valve reversing valve (4) and the P of the direct acting relief valve 3 (8)
- the mouth is connected; the T port of the direct acting relief valve 3 (8) is in communication with the port b of the filter 2 (25); the port a of the filter 2 (25) is connected to the tank assembly (206);
- the port A of the valve (4) is connected with the T port of the manual reversing valve (5); the port B of the servo valve reversing valve (4) and the b port of the double-outlet hydraulic cylinder (20) and the digital display pressure are respectively
- the port a of the sensor 4 (32) is connected; the port Y of the servo valve reversing valve (4) is blocked; the port P of the manual reversing valve (5) is blocked; the port A of the manual reversing valve (5) It is respectively connected with the port a
- the b-port of the plate type check valve 8 (15A) is in communication; the b port of the plate type check valve 1 (12) is respectively connected with the b port of the plate type check valve 2 (13) and the P of the direct acting relief valve 2 (7)
- the port is connected; the port a of the plate type check valve 2 (13) is in communication with the port b of the plate type check valve 3 (14); the port a of the plate type check valve 3 (14) is respectively connected with the direct acting relief valve 2 ( 7)
- the T port is connected, the plate type check valve 4 (15) a port is connected; the plate type check valve 5 (12A) b port and the plate type check valve 6 (13A) b port, the flow meter 1
- the port a of the (10) is connected; the port a of the plate type check valve 6 (13A) is in communication with the port b of the plate type check valve 7 (14A); the port a of the plate type check valve 7 (14A) is respectively associated with the plate type Connect to port a of
- Line 2 connects the high speed data acquisition card 1 (55) to the computer 1 (40); the displacement sensor (21) is mounted and fixed at one end of the double output rod of the double rod hydraulic cylinder (20), through the data line 3 (57) connects the high speed data acquisition card 2 (41) and the displacement sensor (21), and connects the computer 2 (42) and the high speed data acquisition card 2 (41) through the data line 4 (58).
- the a-oil path of the three-way stop valve 1 (18) is connected to the b oil path; when the three-way stop valve 1 (18) handle is at the position B , the oil passage of the three-way stop valve 1 (18) and the oil passage of the c are connected; the oil passage plug 1 (64) of the three-way stop valve 1 (18) is blocked, and if the plug 1 (64) is opened,
- the pump source assembly (101) can then be used as an independent pump source for other hydraulic tests.
- the function of the flowmeter bridge type oil circuit assembly (203) is to ensure that the hydraulic transmission medium (70) can only flow from the port a of the flow meter 1 (10), from the port b of the flow meter 1 (10); the overflow valve bridge
- the function of the oil passage assembly (204) is to keep the hydraulic transmission medium (70) flowing only from the P port of the direct acting relief valve 2 (7) and from the T port of the direct acting relief valve 2 (7).
- the hydraulic transmission medium (70) will pass the bypass check valve 1 (50) and trigger the differential pressure switch 1 (52) so that the indicator light 1 (54) is powered by the power supply 2 (49). Power is supplied and a filter clogging alarm signal is issued.
- the safety valve 1 (6) After starting the pump source assembly (101), if the system pressure is greater than the opening pressure of the safety valve 1 (6), the safety valve 1 (6) will When it is opened, the hydraulic transmission medium (70) is returned by the oil tank (1) through the filter 1 (24), the high pressure plunger variable pump (2), the high pressure tubular filter assembly 1 (202), and the safety valve 1 (6).
- the pump source assembly (101) is used as the pump source, and the hydraulic transmission medium (70) is passed from the fuel tank (1) through the filter 1 (24),
- the high pressure plunger variable pump (2), the high pressure tubular filter assembly 1 (202), and the tubular check valve 1 (16) lead to the port a of the three-way shutoff valve 1 (18) and are used as a pump source.
- the opening pressure of the opening pressure of the safety valve 1 (6) is 2 to 31.5 MPa.
- the hydraulic system of the high-performance gear flowmeter comprehensive performance experimental device is characterized in that the hydraulic transmission medium (70) is hydraulic oil, diesel oil, emulsion and water with different viscosity coefficients.
- the hydraulic system of the experimental device of the experimental method is composed of a pump source component (101) and a flowmeter dynamic performance test system component (103);
- the pump source component (101) is composed of Three-way stop valve 1 (18), plug 1 (64), fuel tank assembly (206), high pressure plunger variable pump (2), filter 1 (24), high pressure tubular filter assembly 1 (202), safety Valve 1 (6), tubular check valve 1 (16), mechanical pressure gauge (34), digital pressure sensor 1 (29), wherein the high pressure tubular filter assembly 1 (202) is a one-way valve 1 ( 50), filter 1 (51), differential pressure switch 1 (52), power supply 1 (53), indicator light 1 (54), the fuel tank assembly (206) from the fuel tank (1), air filter (28), Liquid temperature level gauge (35), hydraulic transmission medium (70); flowmeter dynamic performance test system component (103) by servo valve reversing valve (4), signal generator (36), manual reversing valve (5 ), relief valve bridge oil circuit assembly (204), flow
- Digital pressure sensor 2 (30), digital pressure sensor 3 (31), speed sensor 1 (39), computer 1 (40), data line 1 (44), data line 2 (56), high-speed data acquisition card 1 (55) composition; overflow valve bridge type oil circuit assembly (204) from plate type check valve 1 (12), plate type check valve 2 (13), plate type check valve 3 (14), plate type check valve 4 (15), the direct-acting relief valve 2 (7); hydraulic cylinder test assembly (205) by displacement sensor (21), double-outlet hydraulic cylinder (20), digital pressure sensor 4 (32), high-speed data acquisition Card 2 (41), computer 2 (42), data line 3 (57), data line 4 (58); a port of filter 1 (24) is connected to the tank assembly (206), filter 1 (24 The port b is in communication with the port a of the high pressure plunger variable pump (2); the port b of the high pressure plunger variable pump (2) is in communication with the port a of the high pressure tube filter 1 (202); high pressure tube filtration The port b of the device 1 (202) is respectively connected with the port a of the
- the Y port of the servo valve reversing valve (4) is blocked; the P port of the manual reversing valve (5) is blocked; the A port of the manual reversing valve (5) and the plate check valve 1 (12) a port, the b port of the plate type check valve 4 (15), the port a of the digital pressure sensor 2 (30), the a port of the plate type check valve 5 (12A), the plate type check valve 8 (15A)
- the b port of the plate type is connected;
- the b port of the plate type check valve 1 (12) is respectively connected with the b port of the plate type check valve 2 (13) and the P port of the direct acting relief valve 2 (7);
- the port a of the valve 2 (13) is in communication with the port b of the plate type check valve 3 (14); the port a of the plate type check valve 3 (14) is connected to the port T of the direct acting relief valve 2 (7), respectively.
- the a port of the plate type check valve 4 (15) is connected; the port b of the plate type check valve 5 (12A) is respectively connected with the port b of the plate type check valve 6 (13A) and the port a of the flow meter 1 (10).
- a port of the plate type check valve 6 (13A) communicates with the port b of the plate type check valve 7 (14A); the port a of the plate type check valve 7 (14A) and the plate type check valve 8 (15A) respectively a port, flow meter 1 (10) b port is connected; hand
- the B port of the movable reversing valve (5) is respectively connected with the b port of the plate type check valve 7 (14A), the a port of the plate type check valve 6 (13A), the a port of the double rod hydraulic cylinder (20), and the digital pressure.
- the port a of the sensor 3 (31), the port b of the plate type check valve 3 (14), the port a of the plate type check valve 2 (13) are connected; the air filter (28) is mounted on the oil tank (1);
- the temperature level gauge (35) is mounted on the inner wall of the fuel tank (1);
- the flow meter 1 (10) converts the flow signal of the hydraulic system into a speed signal in the flow meter, and then is installed on the flow meter 1 (10).
- the speed sensor 1 (39) connects the speed sensor 1 (39) with the high speed data acquisition card 1 (55) by means of the data line 1 (44), and then the high speed data acquisition card 1 (55) through the data line 2 (56).
- the displacement sensor (21) is mounted and fixed at one end of the double output rod of the double-outlet hydraulic cylinder (20), and the high-speed data acquisition card 2 (41) is connected through the data line 3 (57) and The displacement sensor (21) is connected to the computer 2 (42) and the high speed data acquisition card 2 (41) via the data line 4 (58).
- the a-oil path of the three-way stop valve 1 (18) is connected to the b oil path; when the three-way stop valve 1 (18) handle is at the position B , the oil passage of the three-way stop valve 1 (18) and the oil passage of the c are connected; the oil passage plug 1 (64) of the three-way stop valve 1 (18) is blocked, and if the plug 1 (64) is opened,
- the pump source assembly (101) can then be used as an independent pump source for other hydraulic tests.
- the function of the flowmeter bridge type oil circuit assembly (203) is to ensure that the hydraulic transmission medium (70) can only flow from the port a of the flow meter 1 (10), from the port b of the flow meter 1 (10); the overflow valve bridge
- the function of the oil circuit assembly (204) is to maintain hydraulic transmission The medium (70) can only flow from the P port of the direct acting relief valve 2 (7) and from the T port of the direct acting relief valve 2 (7);
- the hydraulic transmission medium (70) will pass the bypass check valve 1 (50) and trigger the differential pressure switch 1 (52) so that the indicator light 1 (54) is powered by the power supply 2 (49). Power is supplied and a filter clogging alarm signal is issued.
- the safety valve 1 (6) After starting the pump source assembly (101), if the system pressure is greater than the opening pressure of the safety valve 1 (6), the safety valve 1 (6) will be opened and the hydraulic transmission medium (70) will pass through the filter 1 (1). 24), high pressure plunger variable pump (2), high pressure tubular filter assembly 1 (202), safety valve 1 (6) return to the tank (1); if the system pressure is less than the set pressure of the safety valve 1 (6)
- the pump source component (101) is used as a pump source, and the hydraulic transmission medium (70) is passed from the oil tank (1) through the filter 1 (24), the high pressure plunger variable pump (2), the high pressure tubular filter assembly 1 (202),
- the tubular check valve 1 (16) leads to the port a of the three-way shut-off valve 1 (18) and is used as a pump source.
- the dynamic performance experiment of 1(10) can finally obtain the highest dynamic frequency f2 max of the flow meter 1 (10); adjust the pressure P of the direct acting relief valve 3 (8), and the range of P varies from 0 to 31.5 MPa.
- the experimental method can be used to test the dynamic performance of the flowmeter 1 (10) under different pressures; the displacement of the high-pressure plunger variable pump (2) q, q varies from 10 to 63 ml / r, the experimental method can be different Dynamic performance test of flow meter 1 (10).
- the experimental method for a high-performance gear flowmeter comprehensive performance experimental device is characterized in that the hydraulic transmission medium (70) is a hydraulic oil, a diesel oil, an emulsion and water having different viscosity coefficients.
- the experimental method for a high-performance gear flowmeter comprehensive performance experimental device is characterized in that: according to different media of the hydraulic transmission medium (70), the experimental method can perform dynamic performance of the flowmeter 1 (10) with different medium viscosity experiment.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
一种高压齿轮流量计(10)综合性能实验装置的液压系统及实验方法;液压系统由泵源组件(101)、流量计动态性能试验系统(103)组件组成。通过调节信号发生器(36)的输出频率,完成不同输入频率下的伺服阀换向阀(4)的性能实验;通过调节直动溢流阀(9)的开启压力,完成不同压力下的伺服阀换向阀(4)性能实验;通过调节高压柱塞变量泵(2)的排量,完成不同流量的伺服阀换向阀(4)的性能实验。通过调节信号发生器(36)的输出频率,完成不同输入频率下的流量计(10)的动态性能实验,并得到高压齿轮流量计(10)的最高动态频率f 2max;通过调节直动溢流阀(9)的开启压力,做不同压力下的高压齿轮流量计(10)的动态性能实验;通过调节变量泵(2)的排量,做不同流量下的高压齿轮流量计(10)的动态性能实验。
Description
本发明涉及一种高压齿轮流量计综合性能实验装置的液压系统及实验方法,尤其涉及高压齿轮流量计综合性能实验的技术领域。
齿轮流量计,在流量仪表中是精度最高的一类,其中,用于高压液压系统的容积式流量计一般采用齿轮流量计。它利用旋转的齿轮把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该体积部分流体的次数来测量流体的流量。一般的低压流量计都安装在液压系统的回油一侧,而高压流量计安装在液压系统的高压侧,如何模拟高压液压系统的动态流量和如何测量高压液压系统的动态流量一直都是液压界的一个热点难题。
针对以上这些情况,本发明设计了“一种高压齿轮流量计综合性能实验装置的液压系统及实验方法”,可以克服以上缺陷,能够完成不同输入频率、不同系统压力、不同系统流量、不同介质粘度下的伺服阀性能实验,能够完成不同输入频率、不同系统压力、不同系统流量、不同介质粘度下的高压齿轮流量计的性能实验,
发明内容
本发明设计了一种高压齿轮流量计综合性能实验装置的液压系统及实验方法,该发明能够完成以下实验:(1)能够完成不同输入频率下的的伺服阀换向阀的性能实验,得到该液压系统下的该伺服阀的最高换向频率f1max;能够做不同压力下的伺服阀换向阀性能实验;能够做不同流量的伺服阀换向阀的性能实验;(2)能做不同加载频率f1下的流量计1(10)的动态性能实验,最终能得到高压齿轮流量计的最高动态频率f2max;能做不同压力下的高压齿轮流量计的动态性能实验;能做不同流量下的高压齿轮流量计的动态性能实验;(3)根据液压系统的工作介质粘度的不同,在工作介质是柴油、液压油和水的条件下,完成以上伺服阀、和高压齿轮流量计的性能实验。
该实验装置的液压系统由泵源组件(101)、流量计动态性能试验系统组件(103)组成;泵源组件(101)由三通截止阀1(18)、堵头1(64)、油箱组件(206)、高压柱塞变量泵(2)、过滤器1(24)、高压管式过滤器组件1(202)、安全阀1(6)、管式单向阀1(16)、机械压力表(34)、数显压力传感器1(29)组成,其中高压管式过滤器组件1(202)由单向阀1(50)、过滤器1(51)、压差开关1(52)、电源1(53)、指示灯1(54)组成,油箱组件(206)由油箱(1)、空气过滤器(28)、液温液位计(35)、液压传输介质(70)组成;流量计动态性能试验系统组件(103)由伺服阀换向阀(4)、信号发生器(36)、手动换向阀(5)、溢流阀桥式油路组件(204)、流量计桥式油路组件(203)、液压缸测试组件(205)、数显压力传感
器4(32)、直动溢流阀3(8)、过滤器2(25)、油箱组件(206)组成,流量计桥式油路组件(203)由板式单向阀5(12A)、板式单向阀6(13A)、板式单向阀7(14A)、板式单向阀8(15A)、流量计1(10)、数显压力传感器2(30)、数显压力传感器3(31)、转速传感器1(39)、电脑1(40)、数据线1(44)、数据线2(56)、高速数据采集卡1(55)组成;溢流阀桥式油路组件(204)由板式单向阀1(12)、板式单向阀2(13)、板式单向阀3(14)、板式单向阀4(15)、直动溢流阀2(7)组成;液压缸测试组件(205)由位移传感器(21)、双出杆液压缸(20)、数显压力传感器4(32)、高速数据采集卡2(41)、电脑2(42)、数据线3(57)、数据线4(58)组成。
通过调节信号发生器的输出频率,完成不同输入频率下的伺服阀换向阀的性能实验;通过调节直动溢流阀3(8)的开启压力,完成不同压力下的伺服阀换向阀性能实验;通过调节高压柱塞变量泵(2)的排量,完成不同流量的伺服阀换向阀的性能实验;通过调节信号发生器的输出频率,完成不同输入频率下的流量计1(10)的动态性能实验,最终能得到高压齿轮流量计的最高动态频率f2max;通过调节直动溢流阀3(8)的开启压力,做不同压力下的高压齿轮流量计的动态性能实验;通过调节高压柱塞变量泵(2)的排量,做不同流量下的高压齿轮流量计的动态性能实验;根据液压系统的工作介质粘度的不同,在工作介质是柴油、液压油和水的条件下,完成以上伺服阀、和高压齿轮流量计的性能实验。
本发明具有的有益效果是:
本发明的液压系统和实验方法可以完成:(1)不同压力、不同流量、不同粘度的伺服阀性能实验,(2)不同压力、不同流量、不同粘度的高压齿轮流量计的动态性能实验,为伺服阀性能实验和容积式高压流量计的动态性能实验,提供了新的解决方案和设计依据。
下面结合附图和实例对本发明做进一步说明。
图1是本发明的泵源组件(101)的液压原理图。
图2是本发明的称重法流量计标定系统组件(102)的液压原理图。
在图1、图2中,1.油箱、2.高压柱塞变量泵、3.齿轮泵、9.直动溢流阀、11.流量计1、16.管式单向阀1、17.管式单向阀2、18.三通截止阀1、19.三通截止阀2、22.称重油箱、23.电子称、24.过滤器1、6.安全阀1、28.空气过滤器、29.数显压力传感器1、33.数显压力传感器2、34.机械压力表、35.液温液位计、37.软管1、38.软管2、43.转速传感器1、45.单向阀2、46.过滤器2、47.压差开关2、48.指示灯2、49.电源2、50.单向阀1、51.过滤器1、52.压差开关1、53.电源1、54.指示灯1、59.数据线1、60.数据采集卡1、61.数据线2、62.电脑1、63.堵头1、65.液压传输介质、101.泵源组件、102.称
重法流量计标定系统组件、201.高压管式过滤器组件2、202.高压管式过滤器组件1、206.油箱组件、
如图1、2所示,一种高压齿轮流量计综合性能实验装置的液压系统,该实验装置的液压系统由泵源组件(101)、流量计动态性能试验系统组件(103)组成;泵源组件(101)由三通截止阀1(18)、堵头1(64)、油箱组件(206)、高压柱塞变量泵(2)、过滤器1(24)、高压管式过滤器组件1(202)、安全阀1(6)、管式单向阀1(16)、机械压力表(34)、数显压力传感器1(29)组成,其中高压管式过滤器组件1(202)由单向阀1(50)、过滤器1(51)、压差开关1(52)、电源1(53)、指示灯1(54)组成,油箱组件(206)由油箱(1)、空气过滤器(28)、液温液位计(35)、液压传输介质(70)组成;流量计动态性能试验系统组件(103)由伺服阀换向阀(4)、信号发生器(36)、手动换向阀(5)、溢流阀桥式油路组件(204)、流量计桥式油路组件(203)、液压缸测试组件(205)、数显压力传感器4(32)、直动溢流阀3(8)、过滤器2(25)、油箱组件(206)组成,流量计桥式油路组件(203)由板式单向阀5(12A)、板式单向阀6(13A)、板式单向阀7(14A)、板式单向阀8(15A)、流量计1(10)、数显压力传感器2(30)、数显压力传感器3(31)、转速传感器1(39)、电脑1(40)、数据线1(44)、数据线2(56)、高速数据采集卡1(55)组成;溢流阀桥式油路组件(204)由板式单向阀1(12)、板式单向阀2(13)、板式单向阀3(14)、板式单向阀4(15)、直动溢流阀2(7)组成;液压缸测试组件(205)由位移传感器(21)、双出杆液压缸(20)、数显压力传感器4(32)、高速数据采集卡2(41)、电脑2(42)、数据线3(57)、数据线4(58)组成;过滤器1(24)的a口与油箱组件(206)相连通,过滤器1(24)的b口与高压柱塞变量泵(2)的a口相连通;高压柱塞变量泵(2)的b口与高压管式过滤器1(202)的a口相连通;高压管式过滤器1(202)的b口分别与管式单向阀1(16)的a口、机械压力表(34)的a口、安全阀1(6)的P口相连通;安全阀1(6)的T口与油箱组件(206)相连通;管式单向阀1(16)的b口分别与数显压力传感器1(29)的a口、三通截止阀1(18)的a口相连通;三通截止阀1(18)的c口与伺服阀换向阀(4)的P口相连通;伺服阀换向阀(4)的T口与直动溢流阀3(8)的P口相连通;直动溢流阀3(8)的T口与过滤器2(25)的b口相连通;过滤器2(25)的a口与油箱组件(206)相连通;伺服阀换向阀(4)的A口与手动换向阀(5)的T口相连通;伺服阀换向阀(4)的B口分别与双出杆液压缸(20)的b口、数显压力传感器4(32)的a口相连通;伺服阀换向阀(4)的Y口被封堵;手动换向阀(5)的P口被封堵;手动换向阀(5)的A口分别与板式单向阀1(12)的a口、板式单向阀4(15)的b口、数显压力传感器2(30)的a口相连通、板式单向阀5(12A)的a口、
板式单向阀8(15A)的b口相连通;板式单向阀1(12)的b口分别与板式单向阀2(13)的b口、直动溢流阀2(7)的P口相连通;板式单向阀2(13)的a口与板式单向阀3(14)的b口相连通;板式单向阀3(14)的a口分别与直动溢流阀2(7)的T口相连通、板式单向阀4(15)的a口相连通;板式单向阀5(12A)的b口分别与板式单向阀6(13A)的b口、流量计1(10)的a口相连通;板式单向阀6(13A)的a口与板式单向阀7(14A)的b口相连通;板式单向阀7(14A)的a口分别与板式单向阀8(15A)的a口、流量计1(10)的b口相连通;手动换向阀(5)的B口分别与板式单向阀7(14A)的b口、板式单向阀6(13A)的a口、双出杆液压缸(20)的a口、数显压力传感器3(31)的a口、板式单向阀3(14)的b口、板式单向阀2(13)的a口相连通;空气过滤器(28)安装在油箱(1)上;液温液位计(35)安装在油箱(1)的内壁上;流量计1(10)将液压系统的流量信号转变成流量计内的转速信号,再通过安装在流量计1(10)上的转速传感器1(39),借助于数据线1(44)将转速传感器1(39)与高速数据采集卡1(55)连通,再通过数据线2(56)将高速数据采集卡1(55)与电脑1(40)连接;位移传感器(21)安装并固定在双出杆液压缸(20)的双出杆上的一端,通过数据线3(57)连接高速数据采集卡2(41)和位移传感器(21),通过数据线4(58)连接电脑2(42)和高速数据采集卡2(41)。当三通截止阀1(18)手把位于位置A时,三通截止阀1(18)的a油路和b油路相连通;当三通截止阀1(18)手把位于位置B时,三通截止阀1(18)的a油路和c油路相连通;三通截止阀1(18)的b油路由堵头1(64)堵住,若打开堵头1(64),则泵源组件(101)能作为独立泵源供其他液压试验使用。
当伺服阀换向阀(4)的阀芯处于中位时,伺服阀换向阀(4)的P、T、A、B口互不相通;当伺服阀换向阀(4)的阀芯处于左位时,伺服阀换向阀(4)的P口与B口相通,T口与A口相通;当伺服阀换向阀(4)的阀芯处于右位时,伺服阀换向阀(4)的P口与A口相通,T口与B口相通;手动换向阀(5)的P口被封堵;当手动换向阀(5)处于右位时,手动换向阀(5)的T口与手动换向阀(5)的A口相连通;当手动换向阀(5)处于左位时,手动换向阀(5)的T口与手动换向阀(5)的B口相连通。
流量计桥式油路组件(203)的功能是保证液压传输介质(70)只能从流量计1(10)的a口流入,从流量计1(10)的b口流出;溢流阀桥式油路组件(204)的功能是保持液压传输介质(70)只能从直动溢流阀2(7)的P口流入,从直动溢流阀2(7)的T口流出。
若过滤器1(51)发生堵塞,液压传输介质(70)将经过旁路的单向阀1(50),并触发压差开关1(52)使得指示灯1(54)由电源2(49)供电并发出过滤器堵塞报警信号。
启动泵源组件(101)后,若系统压力大于安全阀1(6)的开启压力,安全阀1(6)将
被打开,液压传输介质(70)则由油箱(1)经过过滤器1(24)、高压柱塞变量泵(2)、高压管式过滤器组件1(202)、安全阀1(6)回到油箱(1);若系统压力小于安全阀1(6)的调定压力,泵源组件(101)作为泵源,液压传输介质(70)由油箱(1)经过过滤器1(24)、高压柱塞变量泵(2)、高压管式过滤器组件1(202)、管式单向阀1(16)通往三通截止阀1(18)的a口,作为泵源使用。安全阀1(6)的开启压力的开启压力为2~31.5MPa。
所述的一种高压齿轮流量计综合性能实验装置的液压系统,其特征在于:液压传输介质(70)为粘度系数不同的液压油、柴油、乳化液和水。
一种高压齿轮流量计综合性能实验装置的实验方法,该实验方法的实验装置的液压系统由泵源组件(101)、流量计动态性能试验系统组件(103)组成;泵源组件(101)由三通截止阀1(18)、堵头1(64)、油箱组件(206)、高压柱塞变量泵(2)、过滤器1(24)、高压管式过滤器组件1(202)、安全阀1(6)、管式单向阀1(16)、机械压力表(34)、数显压力传感器1(29)组成,其中高压管式过滤器组件1(202)由单向阀1(50)、过滤器1(51)、压差开关1(52)、电源1(53)、指示灯1(54)组成,油箱组件(206)由油箱(1)、空气过滤器(28)、液温液位计(35)、液压传输介质(70)组成;流量计动态性能试验系统组件(103)由伺服阀换向阀(4)、信号发生器(36)、手动换向阀(5)、溢流阀桥式油路组件(204)、流量计桥式油路组件(203)、液压缸测试组件(205)、数显压力传感器4(32)、直动溢流阀3(8)、过滤器2(25)、油箱组件(206)组成,流量计桥式油路组件(203)由板式单向阀5(12A)、板式单向阀6(13A)、板式单向阀7(14A)、板式单向阀8(15A)、流量计1(10)、数显压力传感器2(30)、数显压力传感器3(31)、转速传感器1(39)、电脑1(40)、数据线1(44)、数据线2(56)、高速数据采集卡1(55)组成;溢流阀桥式油路组件(204)由板式单向阀1(12)、板式单向阀2(13)、板式单向阀3(14)、板式单向阀4(15)、直动溢流阀2(7)组成;液压缸测试组件(205)由位移传感器(21)、双出杆液压缸(20)、数显压力传感器4(32)、高速数据采集卡2(41)、电脑2(42)、数据线3(57)、数据线4(58)组成;过滤器1(24)的a口与油箱组件(206)相连通,过滤器1(24)的b口与高压柱塞变量泵(2)的a口相连通;高压柱塞变量泵(2)的b口与高压管式过滤器1(202)的a口相连通;高压管式过滤器1(202)的b口分别与管式单向阀1(16)的a口、机械压力表(34)的a口、安全阀1(6)的P口相连通;安全阀1(6)的T口与油箱组件(206)相连通;管式单向阀1(16)的b口分别与数显压力传感器1(29)的a口、三通截止阀1(18)的a口相连通;三通截止阀1(18)的c口与伺服阀换向阀(4)的P口相连通;伺服阀换向阀(4)的T口与直动溢流阀3(8)的P口相连通;直动溢流阀3(8)的T口与过滤器2(25)的b口相连通;过滤器2(25)的a口与油箱组件(206)相连通;伺服阀换向阀(4)的A口与
手动换向阀(5)的T口相连通;伺服阀换向阀(4)的B口分别与双出杆液压缸(20)的b口、数显压力传感器4(32)的a口相连通;伺服阀换向阀(4)的Y口被封堵;手动换向阀(5)的P口被封堵;手动换向阀(5)的A口分别与板式单向阀1(12)的a口、板式单向阀4(15)的b口、数显压力传感器2(30)的a口相连通、板式单向阀5(12A)的a口、板式单向阀8(15A)的b口相连通;板式单向阀1(12)的b口分别与板式单向阀2(13)的b口、直动溢流阀2(7)的P口相连通;板式单向阀2(13)的a口与板式单向阀3(14)的b口相连通;板式单向阀3(14)的a口分别与直动溢流阀2(7)的T口相连通、板式单向阀4(15)的a口相连通;板式单向阀5(12A)的b口分别与板式单向阀6(13A)的b口、流量计1(10)的a口相连通;板式单向阀6(13A)的a口与板式单向阀7(14A)的b口相连通;板式单向阀7(14A)的a口分别与板式单向阀8(15A)的a口、流量计1(10)的b口相连通;手动换向阀(5)的B口分别与板式单向阀7(14A)的b口、板式单向阀6(13A)的a口、双出杆液压缸(20)的a口、数显压力传感器3(31)的a口、板式单向阀3(14)的b口、板式单向阀2(13)的a口相连通;空气过滤器(28)安装在油箱(1)上;液温液位计(35)安装在油箱(1)的内壁上;流量计1(10)将液压系统的流量信号转变成流量计内的转速信号,再通过安装在流量计1(10)上的转速传感器1(39),借助于数据线1(44)将转速传感器1(39)与高速数据采集卡1(55)连通,再通过数据线2(56)将高速数据采集卡1(55)与电脑1(40)连接;位移传感器(21)安装并固定在双出杆液压缸(20)的双出杆上的一端,通过数据线3(57)连接高速数据采集卡2(41)和位移传感器(21),通过数据线4(58)连接电脑2(42)和高速数据采集卡2(41)。
当三通截止阀1(18)手把位于位置A时,三通截止阀1(18)的a油路和b油路相连通;当三通截止阀1(18)手把位于位置B时,三通截止阀1(18)的a油路和c油路相连通;三通截止阀1(18)的b油路由堵头1(64)堵住,若打开堵头1(64),则泵源组件(101)能作为独立泵源供其他液压试验使用。
当伺服阀换向阀(4)的阀芯处于中位时,伺服阀换向阀(4)的P、T、A、B口互不相通;当伺服阀换向阀(4)的阀芯处于左位时,伺服阀换向阀(4)的P口与B口相通,T口与A口相通;当伺服阀换向阀(4)的阀芯处于右位时,伺服阀换向阀(4)的P口与A口相通,T口与B口相通;手动换向阀(5)的P口被封堵;当手动换向阀(5)处于右位时,手动换向阀(5)的T口与手动换向阀(5)的A口相连通;当手动换向阀(5)处于左位时,手动换向阀(5)的T口与手动换向阀(5)的B口相连通。
流量计桥式油路组件(203)的功能是保证液压传输介质(70)只能从流量计1(10)的a口流入,从流量计1(10)的b口流出;溢流阀桥式油路组件(204)的功能是保持液压传
输介质(70)只能从直动溢流阀2(7)的P口流入,从直动溢流阀2(7)的T口流出;
若过滤器1(51)发生堵塞,液压传输介质(70)将经过旁路的单向阀1(50),并触发压差开关1(52)使得指示灯1(54)由电源2(49)供电并发出过滤器堵塞报警信号。
启动泵源组件(101)后,若系统压力大于安全阀1(6)的开启压力,安全阀1(6)将被打开,液压传输介质(70)则由油箱(1)经过过滤器1(24)、高压柱塞变量泵(2)、高压管式过滤器组件1(202)、安全阀1(6)回到油箱(1);若系统压力小于安全阀1(6)的调定压力,泵源组件(101)作为泵源,液压传输介质(70)由油箱(1)经过过滤器1(24)、高压柱塞变量泵(2)、高压管式过滤器组件1(202)、管式单向阀1(16)通往三通截止阀1(18)的a口,作为泵源使用。
将三通截止阀1(18)手把调到位置B,启动泵源组件(101),做伺服阀换向阀性能实验;伺服阀换向阀(4)置于中位,手动换向阀(5)置于左位,通过信号发生器(36)给伺服阀换向阀(4)加载给定频率f的方波信号,方波信号的频率f取为1Hz,伺服阀换向阀(4)则按信号发生器(36)给定频率f进行换向,此时,双出杆液压缸(20)上的位移传感器(21)将伺服阀换向阀(4)换向的位移信号,通过高速数据采集卡2(41)传递到电脑2(42),通过数据采集软件显示双出杆液压缸(20)的换向频率f1,观察位移传感器(21)位移信号的波形,当换向频率f1与伺服阀换向阀(4)加载的频率f一致时,提高信号发生器(36)的加载频率f,f的变化范围为1~100Hz,做不同输入频率下的的伺服阀换向阀(4)的性能实验,得到该液压系统下的该伺服阀的最高换向频率f1max;调节直动溢流阀3(8)的压力P,P的变化范围为0~31.5MPa,做不同压力下的伺服阀换向阀(4)的性能实验;调节高压柱塞变量泵(2)的排量q,q的变化范围为10~63ml/r,做不同流量的伺服阀换向阀(4)的性能实验。
将三通截止阀1(18)手把调到位置B、手动换向阀(5)处于右位、伺服阀换向阀(4)处于中位,启动泵源组件(101),做流量计1(10)的动态性能实验;当伺服阀换向阀(4)的阀芯位于右位时,液压传输介质(70)由泵源组件(101)经三通截止阀1(18)的c口、伺服阀换向阀(4)的P口、伺服阀换向阀(4)的A口、手动换向阀(5)的T口、手动换向阀(5)的A口、由W口进入流量计桥式组件(203)和溢流阀桥式组件(204);来自主油路W口的液压传输介质(70)经支油路板式单向阀5(12A)、流量计1(10)、板式单向阀7(14A)、V口与双出杆液压缸(20)的a口相连通,再经过双出杆液压缸(20)的b口与伺服阀换向阀(4)的B口、伺服阀换向阀(4)的T口、直动溢流阀3(8)、过滤器2(25)流回油箱组件(206);通过调节直动溢流阀2(7)的压力阈值来调节通过流量计1(10)的流量大小。
将手动换向阀(5)置于右位,进行伺服阀换向阀(4)的性能实验,此时流量计桥式油
路组件(203)、液压缸测试组件(205)组成的旁路法流量测量模块并入了系统中;将信号发生器(36)发出的频率f1调节为1Hz的方波信号加载到伺服阀换向阀(4)上,模拟主油路为1Hz的动态液压信号,通过电脑,观察安装在测试流量计1(10)上的转速传感器1(39)的转速信号的跟随频率f2,若f2与f1一致,继续提高f1的频率,做不同加载频率f1的流量计1(10)的动态性能实验,最终能得到流量计1(10)的最高动态频率f2max;调节直动溢流阀3(8)的压力P,P的变化范围为0~31.5MPa,该实验方法能做不同压力下的流量计1(10)的动态性能实验;调节高压柱塞变量泵(2)的排量q,q的变化范围为10~63ml/r,该实验方法能做不同流量的流量计1(10)的动态性能实验。
所述的一种高压齿轮流量计综合性能实验装置的实验方法,其特征在于:液压传输介质(70)为粘度系数不同的液压油、柴油、乳化液和水。
所述的一种高压齿轮流量计综合性能实验装置的实验方法,其特征在于:根据液压传输介质(70)的介质的不同,该实验方法能做不同介质粘度的流量计1(10)动态性能实验。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
Claims (5)
- 一种高压齿轮流量计综合性能实验装置的液压系统,其特征在于,该实验装置的液压系统由泵源组件(101)、流量计动态性能试验系统组件(103)组成;泵源组件(101)由三通截止阀1(18)、堵头1(64)、油箱组件(206)、高压柱塞变量泵(2)、过滤器1(24)、高压管式过滤器组件1(202)、安全阀1(6)、管式单向阀1(16)、机械压力表(34)、数显压力传感器1(29)组成,其中高压管式过滤器组件1(202)由单向阀1(50)、过滤器1(51)、压差开关1(52)、电源1(53)、指示灯1(54)组成,油箱组件(206)由油箱(1)、空气过滤器(28)、液温液位计(35)、液压传输介质(70)组成;流量计动态性能试验系统组件(103)由伺服阀换向阀(4)、信号发生器(36)、手动换向阀(5)、溢流阀桥式油路组件(204)、流量计桥式油路组件(203)、液压缸测试组件(205)、数显压力传感器4(32)、直动溢流阀3(8)、过滤器2(25)、油箱组件(206)组成,流量计桥式油路组件(203)由板式单向阀5(12A)、板式单向阀6(13A)、板式单向阀7(14A)、板式单向阀8(15A)、流量计1(10)、数显压力传感器2(30)、数显压力传感器3(31)、转速传感器1(39)、电脑1(40)、数据线1(44)、数据线2(56)、高速数据采集卡1(55)组成;溢流阀桥式油路组件(204)由板式单向阀1(12)、板式单向阀2(13)、板式单向阀3(14)、板式单向阀4(15)、直动溢流阀2(7)组成;液压缸测试组件(205)由位移传感器(21)、双出杆液压缸(20)、数显压力传感器4(32)、高速数据采集卡2(41)、电脑2(42)、数据线3(57)、数据线4(58)组成;过滤器1(24)的a口与油箱组件(206)相连通,过滤器1(24)的b口与高压柱塞变量泵(2)的a口相连通;高压柱塞变量泵(2)的b口与高压管式过滤器1(202)的a口相连通;高压管式过滤器1(202)的b口分别与管式单向阀1(16)的a口、机械压力表(34)的a口、安全阀1(6)的P口相连通;安全阀1(6)的T口与油箱组件(206)相连通;管式单向阀1(16)的b口分别与数显压力传感器1(29)的a口、三通截止阀1(18)的a口相连通;三通截止阀1(18)的c口与伺服阀换向阀(4)的P口相连通;伺服阀换向阀(4)的T口与直动溢流阀3(8)的P口相连通;直动溢流阀3(8)的T口与过滤器2(25)的b口相连通;过滤器2(25)的a口与油箱组件(206)相连通;伺服阀换向阀(4)的A口与手动换向阀(5)的T口相连通;伺服阀换向阀(4)的B口分别与双出杆液压缸(20)的b口、数显压力传感器4(32)的a口相连通;伺服阀换向阀(4)的Y口被封堵;手动换向阀(5)的P口被封堵;手动换向阀(5)的A口分别与板式单向阀1(12)的a口、板式单向阀4(15)的b口、数显压力传感器2(30)的a口相连通、板式单向阀5(12A)的a口、板式单向阀8(15A)的b口相连通;板式单向阀1(12)的b口分别与板式单向阀2(13)的b口、直动溢流阀2(7)的P口相连通;板式单向阀2(13)的a口与板式单向阀3(14)的b口相连通;板 式单向阀3(14)的a口分别与直动溢流阀2(7)的T口相连通、板式单向阀4(15)的a口相连通;板式单向阀5(12A)的b口分别与板式单向阀6(13A)的b口、流量计1(10)的a口相连通;板式单向阀6(13A)的a口与板式单向阀7(14A)的b口相连通;板式单向阀7(14A)的a口分别与板式单向阀8(15A)的a口、流量计1(10)的b口相连通;手动换向阀(5)的B口分别与板式单向阀7(14A)的b口、板式单向阀6(13A)的a口、双出杆液压缸(20)的a口、数显压力传感器3(31)的a口、板式单向阀3(14)的b口、板式单向阀2(13)的a口相连通;空气过滤器(28)安装在油箱(1)上;液温液位计(35)安装在油箱(1)的内壁上;流量计1(10)将液压系统的流量信号转变成流量计内的转速信号,再通过安装在流量计1(10)上的转速传感器1(39),借助于数据线1(44)将转速传感器1(39)与高速数据采集卡1(55)连通,再通过数据线2(56)将高速数据采集卡1(55)与电脑1(40)连接;位移传感器(21)安装并固定在双出杆液压缸(20)的双出杆上的一端,通过数据线3(57)连接高速数据采集卡2(41)和位移传感器(21),通过数据线4(58)连接电脑2(42)和高速数据采集卡2(41);当三通截止阀1(18)手把位于位置A时,三通截止阀1(18)的a油路和b油路相连通;当三通截止阀1(18)手把位于位置B时,三通截止阀1(18)的a油路和c油路相连通;三通截止阀1(18)的b油路由堵头1(64)堵住,若打开堵头1(64),则泵源组件(101)作为独立泵源供其他液压试验使用;当伺服阀换向阀(4)的阀芯处于中位时,伺服阀换向阀(4)的P、T、A、B口互不相通;当伺服阀换向阀(4)的阀芯处于左位时,伺服阀换向阀(4)的P口与B口相通,T口与A口相通;当伺服阀换向阀(4)的阀芯处于右位时,伺服阀换向阀(4)的P口与A口相通,T口与B口相通;手动换向阀(5)的P口被封堵;当手动换向阀(5)处于右位时,手动换向阀(5)的T口与手动换向阀(5)的A口相连通;当手动换向阀(5)处于左位时,手动换向阀(5)的T口与手动换向阀(5)的B口相连通;流量计桥式油路组件(203)的功能是保证液压传输介质(70)只能从流量计1(10)的a口流入,从流量计1(10)的b口流出;溢流阀桥式油路组件(204)的功能是保持液压传输介质(70)只能从直动溢流阀2(7)的P口流入,从直动溢流阀2(7)的T口流出;若过滤器1(51)发生堵塞,液压传输介质(70)将经过旁路的单向阀1(50),并触发压差开关1(52)使得指示灯1(54)由电源2(49)供电并发出过滤器堵塞报警信号;启动泵源组件(101)后,若系统压力大于安全阀1(6)的开启压力,安全阀1(6)将被打开,液压传输介质(70)则由油箱(1)经过过滤器1(24)、高压柱塞变量泵(2)、 高压管式过滤器组件1(202)、安全阀1(6)回到油箱(1);若系统压力小于安全阀1(6)的调定压力,泵源组件(101)作为泵源,液压传输介质(70)由油箱(1)经过过滤器1(24)、高压柱塞变量泵(2)、高压管式过滤器组件1(202)、管式单向阀1(16)通往三通截止阀1(18)的a口,作为泵源使用;安全阀1(6)的开启压力的开启压力为2~31.5MPa。
- 根据权利要求1所述的一种高压齿轮流量计综合性能实验装置的液压系统,其特征在于:液压传输介质(70)为粘度系数不同的液压油、柴油、乳化液和水。
- 一种高压齿轮流量计综合性能实验装置的实验方法,其特征在于,该实验方法的实验装置的液压系统由泵源组件(101)、流量计动态性能试验系统组件(103)组成;泵源组件(101)由三通截止阀1(18)、堵头1(64)、油箱组件(206)、高压柱塞变量泵(2)、过滤器1(24)、高压管式过滤器组件1(202)、安全阀1(6)、管式单向阀1(16)、机械压力表(34)、数显压力传感器1(29)组成,其中高压管式过滤器组件1(202)由单向阀1(50)、过滤器1(51)、压差开关1(52)、电源1(53)、指示灯1(54)组成,油箱组件(206)由油箱(1)、空气过滤器(28)、液温液位计(35)、液压传输介质(70)组成;流量计动态性能试验系统组件(103)由伺服阀换向阀(4)、信号发生器(36)、手动换向阀(5)、溢流阀桥式油路组件(204)、流量计桥式油路组件(203)、液压缸测试组件(205)、数显压力传感器4(32)、直动溢流阀3(8)、过滤器2(25)、油箱组件(206)组成,流量计桥式油路组件(203)由板式单向阀5(12A)、板式单向阀6(13A)、板式单向阀7(14A)、板式单向阀8(15A)、流量计1(10)、数显压力传感器2(30)、数显压力传感器3(31)、转速传感器1(39)、电脑1(40)、数据线1(44)、数据线2(56)、高速数据采集卡1(55)组成;溢流阀桥式油路组件(204)由板式单向阀1(12)、板式单向阀2(13)、板式单向阀3(14)、板式单向阀4(15)、直动溢流阀2(7)组成;液压缸测试组件(205)由位移传感器(21)、双出杆液压缸(20)、数显压力传感器4(32)、高速数据采集卡2(41)、电脑2(42)、数据线3(57)、数据线4(58)组成;过滤器1(24)的a口与油箱组件(206)相连通,过滤器1(24)的b口与高压柱塞变量泵(2)的a口相连通;高压柱塞变量泵(2)的b口与高压管式过滤器1(202)的a口相连通;高压管式过滤器1(202)的b口分别与管式单向阀1(16)的a口、机械压力表(34)的a口、安全阀1(6)的P口相连通;安全阀1(6)的T口与油箱组件(206)相连通;管式单向阀1(16)的b口分别与数显压力传感器1(29)的a口、三通截止阀1(18)的a口相连通;三通截止阀1(18)的c口与伺服阀换向阀(4)的P口相连通;伺服阀换向阀(4)的T口与直动溢流阀3(8)的P口相连通;直动溢流阀3(8)的T口与过滤器2(25)的b口相连通;过滤器2(25)的a口与油箱组件(206)相连通;伺服阀换向阀(4)的A口与手动换向阀(5)的T口相连 通;伺服阀换向阀(4)的B口分别与双出杆液压缸(20)的b口、数显压力传感器4(32)的a口相连通;伺服阀换向阀(4)的Y口被封堵;手动换向阀(5)的P口被封堵;手动换向阀(5)的A口分别与板式单向阀1(12)的a口、板式单向阀4(15)的b口、数显压力传感器2(30)的a口相连通、板式单向阀5(12A)的a口、板式单向阀8(15A)的b口相连通;板式单向阀1(12)的b口分别与板式单向阀2(13)的b口、直动溢流阀2(7)的P口相连通;板式单向阀2(13)的a口与板式单向阀3(14)的b口相连通;板式单向阀3(14)的a口分别与直动溢流阀2(7)的T口相连通、板式单向阀4(15)的a口相连通;板式单向阀5(12A)的b口分别与板式单向阀6(13A)的b口、流量计1(10)的a口相连通;板式单向阀6(13A)的a口与板式单向阀7(14A)的b口相连通;板式单向阀7(14A)的a口分别与板式单向阀8(15A)的a口、流量计1(10)的b口相连通;手动换向阀(5)的B口分别与板式单向阀7(14A)的b口、板式单向阀6(13A)的a口、双出杆液压缸(20)的a口、数显压力传感器3(31)的a口、板式单向阀3(14)的b口、板式单向阀2(13)的a口相连通;空气过滤器(28)安装在油箱(1)上;液温液位计(35)安装在油箱(1)的内壁上;流量计1(10)将液压系统的流量信号转变成流量计内的转速信号,再通过安装在流量计1(10)上的转速传感器1(39),借助于数据线1(44)将转速传感器1(39)与高速数据采集卡1(55)连通,再通过数据线2(56)将高速数据采集卡1(55)与电脑1(40)连接;位移传感器(21)安装并固定在双出杆液压缸(20)的双出杆上的一端,通过数据线3(57)连接高速数据采集卡2(41)和位移传感器(21),通过数据线4(58)连接电脑2(42)和高速数据采集卡2(41);当三通截止阀1(18)手把位于位置A时,三通截止阀1(18)的a油路和b油路相连通;当三通截止阀1(18)手把位于位置B时,三通截止阀1(18)的a油路和c油路相连通;三通截止阀1(18)的b油路由堵头1(64)堵住,若打开堵头1(64),则泵源组件(101)作为独立泵源供其他液压试验使用;当伺服阀换向阀(4)的阀芯处于中位时,伺服阀换向阀(4)的P、T、A、B口互不相通;当伺服阀换向阀(4)的阀芯处于左位时,伺服阀换向阀(4)的P口与B口相通,T口与A口相通;当伺服阀换向阀(4)的阀芯处于右位时,伺服阀换向阀(4)的P口与A口相通,T口与B口相通;手动换向阀(5)的P口被封堵;当手动换向阀(5)处于右位时,手动换向阀(5)的T口与手动换向阀(5)的A口相连通;当手动换向阀(5)处于左位时,手动换向阀(5)的T口与手动换向阀(5)的B口相连通;流量计桥式油路组件(203)的功能是保证液压传输介质(70)只能从流量计1(10)的a口流入,从流量计1(10)的b口流出;溢流阀桥式油路组件(204)的功能是保持液 压传输介质(70)只能从直动溢流阀2(7)的P口流入,从直动溢流阀2(7)的T口流出;若过滤器1(51)发生堵塞,液压传输介质(70)将经过旁路的单向阀1(50),并触发压差开关1(52)使得指示灯1(54)由电源2(49)供电并发出过滤器堵塞报警信号;启动泵源组件(101)后,若系统压力大于安全阀1(6)的开启压力,安全阀1(6)将被打开,液压传输介质(70)则由油箱(1)经过过滤器1(24)、高压柱塞变量泵(2)、高压管式过滤器组件1(202)、安全阀1(6)回到油箱(1);若系统压力小于安全阀1(6)的调定压力,泵源组件(101)作为泵源,液压传输介质(70)由油箱(1)经过过滤器1(24)、高压柱塞变量泵(2)、高压管式过滤器组件1(202)、管式单向阀1(16)通往三通截止阀1(18)的a口,作为泵源使用;将三通截止阀1(18)手把调到位置B,启动泵源组件(101),做伺服阀换向阀性能实验;伺服阀换向阀(4)置于中位,手动换向阀(5)置于左位,通过信号发生器(36)给伺服阀换向阀(4)加载给定频率f的方波信号,方波信号的频率f取为1Hz,伺服阀换向阀(4)则按信号发生器(36)给定频率f进行换向,此时,双出杆液压缸(20)上的位移传感器(21)将伺服阀换向阀(4)换向的位移信号,通过高速数据采集卡2(41)传递到电脑2(42),通过数据采集软件显示双出杆液压缸(20)的换向频率f1,观察位移传感器(21)位移信号的波形,当换向频率f1与伺服阀换向阀(4)加载的频率f一致时,提高信号发生器(36)的加载频率f,f的变化范围为1~100Hz,做不同输入频率下的的伺服阀换向阀(4)的性能实验,得到该液压系统下的该伺服阀的最高换向频率f1max;调节直动溢流阀3(8)的压力P,P的变化范围为0~31.5MPa,做不同压力下的伺服阀换向阀(4)的性能实验;调节高压柱塞变量泵(2)的排量q,q的变化范围为10~63ml/r,做不同流量的伺服阀换向阀(4)的性能实验;将三通截止阀1(18)手把调到位置B、手动换向阀(5)处于右位、伺服阀换向阀(4)处于中位,启动泵源组件(101),做流量计1(10)的动态性能实验;当伺服阀换向阀(4)的阀芯位于右位时,液压传输介质(70)由泵源组件(101)经三通截止阀1(18)的c口、伺服阀换向阀(4)的P口、伺服阀换向阀(4)的A口、手动换向阀(5)的T口、手动换向阀(5)的A口、由W口进入流量计桥式组件(203)和溢流阀桥式组件(204);来自主油路W口的液压传输介质(70)经支油路板式单向阀5(12A)、流量计1(10)、板式单向阀7(14A)、V口与双出杆液压缸(20)的a口相连通,再经过双出杆液压缸(20)的b口与伺服阀换向阀(4)的B口、伺服阀换向阀(4)的T口、直动溢流阀3(8)、过滤器2(25)流回油箱组件(206);通过调节直动溢流阀2(7)的压力阈值来调节通过流 量计1(10)的流量大小;将手动换向阀(5)置于右位,进行伺服阀换向阀(4)的性能实验,此时流量计桥式油路组件(203)、液压缸测试组件(205)组成的旁路法流量测量模块并入了系统中;将信号发生器(36)发出的频率f1调节为1Hz的方波信号加载到伺服阀换向阀(4)上,模拟主油路为1Hz的动态液压信号,通过电脑,观察安装在测试流量计1(10)上的转速传感器1(39)的转速信号的跟随频率f2,若f2与f1一致,继续提高f1的频率,做不同加载频率f1的流量计1(10)的动态性能实验,最终得到流量计1(10)的最高动态频率f2max;调节直动溢流阀3(8)的压力P,P的变化范围为0~31.5MPa,该实验方法做不同压力下的流量计1(10)的动态性能实验;调节高压柱塞变量泵(2)的排量q,q的变化范围为10~63ml/r,该实验方法做不同流量的流量计1(10)的动态性能实验。
- 根据权利要求3所述的一种高压齿轮流量计综合性能实验装置的实验方法,其特征在于:液压传输介质(70)为粘度系数不同的液压油、柴油、乳化液和水。
- 根据权利要求3所述的一种高压齿轮流量计综合性能实验装置的实验方法,其特征在于:根据液压传输介质(70)的介质的不同,该实验方法做不同介质粘度的流量计1(10)动态性能实验。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610802878.6A CN106197569A (zh) | 2016-09-05 | 2016-09-05 | 一种高压齿轮流量计综合性能实验装置的液压系统及实验方法 |
CN201610802878.6 | 2016-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018041257A1 true WO2018041257A1 (zh) | 2018-03-08 |
Family
ID=58068082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/100312 WO2018041257A1 (zh) | 2016-09-05 | 2017-09-04 | 一种高压齿轮流量计综合性能实验装置的液压系统及实验方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106197569A (zh) |
WO (1) | WO2018041257A1 (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109443716A (zh) * | 2018-09-30 | 2019-03-08 | 儒拉玛特自动化技术(苏州)有限公司 | 液压测试装置 |
CN109696308A (zh) * | 2019-03-06 | 2019-04-30 | 中国航空综合技术研究所 | 振动环境下航空作动器加载试验装置及其加载方法 |
CN111256974A (zh) * | 2020-03-09 | 2020-06-09 | 沈阳晨光弗泰波纹管有限公司 | 一种膨胀节疲劳试验气液两用智能压力平衡装置 |
CN111458113A (zh) * | 2019-01-22 | 2020-07-28 | 宁波奕力电磁技术有限公司 | Cdc减震器电磁阀的测试系统 |
CN111735633A (zh) * | 2020-06-10 | 2020-10-02 | 中国航发北京航科发动机控制系统科技有限公司 | 一种燃油电控调节器压力载荷加载和应变在线测试系统 |
CN112033658A (zh) * | 2020-09-03 | 2020-12-04 | 西南石油大学 | 一种钻井牵引机器人支撑机构测试系统及方法 |
CN114088380A (zh) * | 2021-11-02 | 2022-02-25 | 蚌埠液力机械有限公司 | 一种管路防爆阀和限速阀复合型试验系统及其试验方法 |
CN114152435A (zh) * | 2021-12-30 | 2022-03-08 | 温州升望气动工具有限公司 | 一种全自动千斤顶动载检测机 |
CN114594028A (zh) * | 2022-02-23 | 2022-06-07 | 一拖(洛阳)福莱格车身有限公司 | 一种电磁换向阀控制油液清洗与检测系统及检测方法 |
CN114838034A (zh) * | 2022-05-13 | 2022-08-02 | 海洋石油工程股份有限公司 | 一种液压电气可配置的多功能水下控制模块测试台 |
CN115111152A (zh) * | 2022-07-05 | 2022-09-27 | 杭州久益机械股份有限公司 | 用于车载无油螺杆压缩机的性能测试台 |
CN115405589A (zh) * | 2022-10-12 | 2022-11-29 | 沈阳飞机工业(集团)有限公司 | 全自动电液伺服液压测试试验台 |
CN116877540A (zh) * | 2023-08-17 | 2023-10-13 | 驰耐特石油科技(成都)有限公司 | 一种单井节能型液压抽油机 |
CN116880352A (zh) * | 2023-09-07 | 2023-10-13 | 山东万里红信息技术有限公司 | 基于状态感知的打包设备自动控制系统及方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106197569A (zh) * | 2016-09-05 | 2016-12-07 | 安徽理工大学 | 一种高压齿轮流量计综合性能实验装置的液压系统及实验方法 |
CN114278634B (zh) * | 2021-12-16 | 2024-05-17 | 南京晨光集团有限责任公司 | 一种高温燃油伺服流量计量特性试验系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040111224A1 (en) * | 2000-11-06 | 2004-06-10 | Masahiro Akutsu | Memory defect remedy analyzing method and memory test instrument |
CN101813109A (zh) * | 2010-04-02 | 2010-08-25 | 山东电力研究院 | 伺服阀测试系统 |
CN201569454U (zh) * | 2009-12-18 | 2010-09-01 | 辽宁电力控制技术有限公司 | 伺服阀流量测试系统 |
CN102435232A (zh) * | 2011-09-05 | 2012-05-02 | 沈阳黎明航空发动机(集团)有限责任公司 | 一种发动机叶片内腔流量试验设备 |
CN106197569A (zh) * | 2016-09-05 | 2016-12-07 | 安徽理工大学 | 一种高压齿轮流量计综合性能实验装置的液压系统及实验方法 |
CN206192412U (zh) * | 2016-09-05 | 2017-05-24 | 安徽理工大学 | 一种高压齿轮流量计综合性能实验装置的液压系统 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4903529A (en) * | 1988-10-07 | 1990-02-27 | Westinghouse Electric Corp. | Valve system analyzer |
JP2966556B2 (ja) * | 1991-03-29 | 1999-10-25 | 三菱重工業株式会社 | アクチュエータ |
DE19645699A1 (de) * | 1996-11-06 | 1998-05-07 | Schloemann Siemag Ag | Hydrostatisches Getriebe |
JP4164675B2 (ja) * | 2003-12-04 | 2008-10-15 | 株式会社Ihi | サーボ弁特性測定装置 |
US7281431B2 (en) * | 2005-09-07 | 2007-10-16 | The Boeing Company | Velocity feedback compensation for force control systems |
JP2007154983A (ja) * | 2005-12-05 | 2007-06-21 | Sumitomo Precision Prod Co Ltd | 油圧機器と負荷機器と降着装置試験機器 |
CN101183050B (zh) * | 2007-11-30 | 2010-06-16 | 北京理工大学 | 一种位移测量的电液伺服阀动态性能测试方法 |
CN106226161A (zh) * | 2009-05-22 | 2016-12-14 | 国际计测器株式会社 | 油压系统和万能试验装置 |
CN201636132U (zh) * | 2010-04-02 | 2010-11-17 | 山东电力研究院 | 伺服阀测试系统的液压装置 |
KR101385112B1 (ko) * | 2013-03-11 | 2014-04-14 | 주식회사 에네스지 | 컨트롤타입 유압엑츄에이터용 테스트블럭 |
CN204716667U (zh) * | 2015-06-04 | 2015-10-21 | 宁波恒力液压股份有限公司 | 伺服阀动静态性能测试的液压综合试验台 |
-
2016
- 2016-09-05 CN CN201610802878.6A patent/CN106197569A/zh active Pending
-
2017
- 2017-09-04 WO PCT/CN2017/100312 patent/WO2018041257A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040111224A1 (en) * | 2000-11-06 | 2004-06-10 | Masahiro Akutsu | Memory defect remedy analyzing method and memory test instrument |
CN201569454U (zh) * | 2009-12-18 | 2010-09-01 | 辽宁电力控制技术有限公司 | 伺服阀流量测试系统 |
CN101813109A (zh) * | 2010-04-02 | 2010-08-25 | 山东电力研究院 | 伺服阀测试系统 |
CN102435232A (zh) * | 2011-09-05 | 2012-05-02 | 沈阳黎明航空发动机(集团)有限责任公司 | 一种发动机叶片内腔流量试验设备 |
CN106197569A (zh) * | 2016-09-05 | 2016-12-07 | 安徽理工大学 | 一种高压齿轮流量计综合性能实验装置的液压系统及实验方法 |
CN206192412U (zh) * | 2016-09-05 | 2017-05-24 | 安徽理工大学 | 一种高压齿轮流量计综合性能实验装置的液压系统 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109443716A (zh) * | 2018-09-30 | 2019-03-08 | 儒拉玛特自动化技术(苏州)有限公司 | 液压测试装置 |
CN111458113A (zh) * | 2019-01-22 | 2020-07-28 | 宁波奕力电磁技术有限公司 | Cdc减震器电磁阀的测试系统 |
CN109696308B (zh) * | 2019-03-06 | 2023-09-15 | 中国航空综合技术研究所 | 振动环境下航空作动器加载试验装置及其加载方法 |
CN109696308A (zh) * | 2019-03-06 | 2019-04-30 | 中国航空综合技术研究所 | 振动环境下航空作动器加载试验装置及其加载方法 |
CN111256974A (zh) * | 2020-03-09 | 2020-06-09 | 沈阳晨光弗泰波纹管有限公司 | 一种膨胀节疲劳试验气液两用智能压力平衡装置 |
CN111735633A (zh) * | 2020-06-10 | 2020-10-02 | 中国航发北京航科发动机控制系统科技有限公司 | 一种燃油电控调节器压力载荷加载和应变在线测试系统 |
CN112033658A (zh) * | 2020-09-03 | 2020-12-04 | 西南石油大学 | 一种钻井牵引机器人支撑机构测试系统及方法 |
CN114088380A (zh) * | 2021-11-02 | 2022-02-25 | 蚌埠液力机械有限公司 | 一种管路防爆阀和限速阀复合型试验系统及其试验方法 |
CN114152435A (zh) * | 2021-12-30 | 2022-03-08 | 温州升望气动工具有限公司 | 一种全自动千斤顶动载检测机 |
CN114594028A (zh) * | 2022-02-23 | 2022-06-07 | 一拖(洛阳)福莱格车身有限公司 | 一种电磁换向阀控制油液清洗与检测系统及检测方法 |
CN114838034A (zh) * | 2022-05-13 | 2022-08-02 | 海洋石油工程股份有限公司 | 一种液压电气可配置的多功能水下控制模块测试台 |
CN115111152A (zh) * | 2022-07-05 | 2022-09-27 | 杭州久益机械股份有限公司 | 用于车载无油螺杆压缩机的性能测试台 |
CN115111152B (zh) * | 2022-07-05 | 2023-06-30 | 杭州久益机械股份有限公司 | 用于车载无油螺杆压缩机的性能测试台 |
CN115405589A (zh) * | 2022-10-12 | 2022-11-29 | 沈阳飞机工业(集团)有限公司 | 全自动电液伺服液压测试试验台 |
CN116877540A (zh) * | 2023-08-17 | 2023-10-13 | 驰耐特石油科技(成都)有限公司 | 一种单井节能型液压抽油机 |
CN116880352A (zh) * | 2023-09-07 | 2023-10-13 | 山东万里红信息技术有限公司 | 基于状态感知的打包设备自动控制系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106197569A (zh) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018041257A1 (zh) | 一种高压齿轮流量计综合性能实验装置的液压系统及实验方法 | |
CN201732147U (zh) | 气体继电器通用校验装置 | |
CN104359661B (zh) | 通用阀门性能试验装置 | |
CN203321939U (zh) | 液压缸内泄漏复合检测系统 | |
CN101349608A (zh) | 一种压力容器气密性检测方法和装置 | |
CN106762595B (zh) | 负载敏感泵试验系统 | |
CN209069746U (zh) | 一种高精度低压水压测试台 | |
CN106197623A (zh) | 一种基于称重法的容积式高压流量计标定液压系统及实验方法 | |
CN104481938A (zh) | 一种压差回路液压系统 | |
CN212513605U (zh) | 一种流量流阻测量试验系统 | |
CN203572617U (zh) | 用于对测量液体压力的传感器进行检验的测试装置 | |
CN201507434U (zh) | 实验室纯水器纯水泵测试装置 | |
CN111043105A (zh) | 一种大功率液压综合试验台及其试验方法 | |
CN206192412U (zh) | 一种高压齿轮流量计综合性能实验装置的液压系统 | |
CN213838891U (zh) | 一种叶片泵用流量压力测试装置 | |
CN202149102U (zh) | 新型液压阀试验台装置 | |
CN210513586U (zh) | 上游泵送密封试验系统 | |
RU155978U1 (ru) | Устройство для определения фазовых проницаемостей | |
LU100669B1 (en) | A Hydraulic System and Test Method of Integrated Performance Test Device for High-Pressure Gear Flowmeter | |
CN201513718U (zh) | 用于液体流量快速精确计量的管路结构 | |
CN206074093U (zh) | 一种基于称重法的容积式高压流量计标定液压系统 | |
CN210948639U (zh) | 多相流计量橇装 | |
RU2612684C1 (ru) | Устройство для определения технического состояния насоса | |
RU149336U1 (ru) | Устройство для определения технического состояния насоса | |
RU2244855C1 (ru) | Способ определения кавитационных характеристик насосов и стенд для его осуществления |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17845559 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17845559 Country of ref document: EP Kind code of ref document: A1 |