WO2018041046A1 - 负荷开关电磁机构输出特性计算方法及容差分配方法 - Google Patents
负荷开关电磁机构输出特性计算方法及容差分配方法 Download PDFInfo
- Publication number
- WO2018041046A1 WO2018041046A1 PCT/CN2017/099114 CN2017099114W WO2018041046A1 WO 2018041046 A1 WO2018041046 A1 WO 2018041046A1 CN 2017099114 W CN2017099114 W CN 2017099114W WO 2018041046 A1 WO2018041046 A1 WO 2018041046A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- load switch
- electromagnetic mechanism
- tolerance
- function
- process variable
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
Definitions
- the present disclosure relates to the field of switching technologies, for example, to a load switch electromagnetic mechanism output characteristic calculation method and a tolerance distribution method.
- the load switch is one of the core components of the electric energy meter, which functions to turn on or off the power supply, and can completely isolate the input and output and have no electrical connection with each other.
- the load switch receives the trip command and automatically cuts off the power; when the user recharges successfully, the load switch receives the closing command and automatically turns on the power.
- the application of the load switch in the electric energy meter is an important guarantee for the "charge control" function of the electric energy meter.
- the load switch of electric energy meter generally has problems of low qualification rate, poor quality consistency and high repair rate.
- the design of the product is the source of the quality, and the design defect of the product is an important cause of the quality problem of the load switch.
- the output characteristics of the product are consistent with the technical specifications of the product.
- the output characteristics of the product are distributed.
- the central value of the distribution may also deviate from the technical index of the product, and the load switch of the electric energy meter that meets the output performance test requirements obtained through screening in the production process of the product, if the key performance index is highly dispersed, in the actual operation process, With the continuation of the use time and the increase of external disturbance factors, the performance of the load switch with quality defects will rapidly decrease, and it is still difficult to ensure the reliable operation of the energy meter.
- the present disclosure provides a calculation method for output characteristics of a load switch electromagnetic mechanism, which can solve the problem of low calculation accuracy, poor timeliness and low reliability of the load switch electromagnetic mechanism; the present disclosure also provides a load switch tolerance distribution method, which can solve The electromagnetic mechanism that does not consider the load switch when distributing the tolerance of the load switch causes the problem that the tolerance distribution cannot be realized efficiently, quickly, and accurately.
- the embodiment provides a method for calculating an output characteristic of a load switch electromagnetic mechanism, which may include
- main process variable node Selecting a main process variable node according to an inflection point of the suction curve in the static characteristic of the load switch electromagnetic mechanism, and establishing a relationship characteristic relationship between the main process variable node and other process variable nodes in the adjacent region of the main process variable node An objective function, wherein the main process variable node is a process variable node that affects an output characteristic of the load switch electromagnetic mechanism;
- the output characteristic is determined by using a preset algorithm to determine an influence coefficient of a voltage and a corner in the objective function according to a preset optimization target, thereby determining an expression of an output characteristic relationship of the load switch electromagnetic mechanism, and the expression is set to calculate a load switch electromagnetic Mechanism output characteristics.
- the objective function is:
- Y (U i ', ⁇ j') represents the (U i ', ⁇ j' ) of the output characteristic of the electromagnetic load switch mechanism
- (U i ', ⁇ j ') is the process variable in a specific region a node, the specific area being selected by the selected four main process variable nodes (U i'0 , ⁇ j'0 ), (U i'1 , ⁇ j ) that affect the output characteristics of the load switch electromagnetic mechanism '0 ), (U i'0 , ⁇ j'1 ), (U i'1 , ⁇ j'1 ) are enclosed as boundary points
- An interpolation function of the weight coefficient of the main process variable node the mathematical expression of the interpolation function depends on the functional relationship between the process variable node of the load switch electromagnetic mechanism and the output characteristic, and includes the influence on the voltage U and the rotation angle ⁇ coefficient.
- the radial basis function model is:
- X' is the normalized result of the unknown parameter combination X
- X'k is the first normalized parameter combination
- c is the influence width coefficient of the center point of the basis function
- ⁇ k is the weight coefficient of the kth basis function
- is the Euclidean distance between X' and X' k .
- the calculating the static characteristics of the load switch electromagnetic mechanism comprises: parallelizing the static characteristics of the load switch electromagnetic mechanism to obtain static characteristics of the load switch electromagnetic mechanism.
- the preset algorithm includes a quantum particle swarm algorithm; the preset optimization target includes an error function minimization.
- the embodiment further provides a load switch tolerance distribution method based on the calculation method of the output characteristics of the load switch electromagnetic mechanism, which may include:
- the central value and the tolerance of the design parameters of the load switch electromagnetic mechanism are established as a function of the reliability of the load switch electromagnetic mechanism, and the tolerance of the design parameter is a functional relationship of processing feasibility, and a functional relationship between the tolerance of the design parameters and the processing cost;
- the function assigns the tolerance assignment result of the design parameters required by the preset threshold.
- the central value and tolerance of the design parameters of the load switch electromagnetic mechanism are a function of the reliability of the load switch electromagnetic mechanism:
- R i represents the reliability of the design parameter i ⁇ (1, 2, ..., n) is x i
- the stress is y i
- F i (x) is the central value of the design parameter i and the corresponding strength of the tolerance
- G i (y) is the probability density function of the design parameter i corresponding to the stress.
- the tolerance of the design parameters is a function of processing feasibility and processing cost
- F cap (X) is the processing feasibility target corresponding to the tolerance X of the n design parameters
- F cost (X) is the processing cost target corresponding to the tolerance X of n design parameters
- x, x u , x d is the tolerance, upper limit of tolerance and lower limit of tolerance of the design parameters of the lower characteristic of the electromagnetic mechanism of the load switch, respectively
- w ca and w co are respectively the weighting coefficients of different design parameters in the processing feasibility function and the processing cost function.
- the embodiment further provides a computer readable storage medium storing computer executable instructions for performing any of the above methods.
- the embodiment also provides a load switch comprising one or more processors, a memory and one or more programs, the one or more programs being stored in the memory, when executed by the one or more processors, executing Any of the above methods.
- the embodiment further provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, When the program instructions are executed by a computer, the computer is caused to perform any of the methods described above.
- the calculation method of the load switch electromagnetic mechanism provided by the present disclosure can realize high calculation precision, good timeliness and high reliability when solving the output characteristic of the load switch electromagnetic mechanism, and realize the capacity of the load switch quickly, efficiently and accurately.
- the difference distribution provides the basis; the load switch tolerance distribution method provided by the present disclosure can perform tolerance distribution by establishing a multi-objective optimization model of tolerance distribution and simulated annealing method, so that the tolerance distribution result is more accurate.
- FIG. 1 is a schematic flow chart of a method for calculating an output characteristic of a load switch electromagnetic mechanism according to an embodiment of the present invention
- FIG. 2 is a schematic flowchart of a load switch tolerance distribution method according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of hardware of a load switch according to an embodiment of the present invention.
- tolerance automatic distribution method for power meter load switch tolerance design is of great significance for improving product reliability. Carrying out tolerance distribution can improve product anti-interference by adjusting design tolerances while ensuring product performance.
- the load switch structure of the electric energy meter is divided into an electromagnetic mechanism and a contact spring mechanism, and the output characteristics thereof depend on the cooperation of the static suction reaction force.
- the generally written algorithm program is a serial program.
- the serial algorithm may take a lot of time, and parallelizing the serial algorithm can solve this problem. A problem.
- the calculation method of the load switch electromagnetic mechanism provided in this embodiment may include steps 110 - 220 .
- step 110 a physical model of the load switch electromagnetic mechanism is established according to the structural characteristics of the load switch, and the physical model includes a magnetic circuit of the load switch electromagnetic mechanism.
- step 120 a mathematical model for calculating the static magnetic field strength of the load switch is established based on the physical model of the load switch electromagnetic mechanism.
- the mathematical model includes a Poisson equation and a Laplace equation, and the corresponding MATLAB program is calculated for the physical model and the mathematical model.
- the active part of the physical model of the electromagnetic mechanism adopts a Poisson equation
- the passive part adopts a Laplace equation
- the mathematical model constructed is as follows:
- the formula (1) is the Poisson equation
- the formula (2) is the Laplace equation
- A is the magnetic vector
- B is the magnetic induction
- x is the abscissa of the plane coordinate system where the physical model is located
- y is the physical model.
- ⁇ is the permeability of the medium, that is, the product of the relative permeability and the air permeability
- J is the current density.
- the above mathematical model may be obtained by an iterative method based on the two-dimensional Laplace equation and the Poisson equation, that is, using the idea of iteration to equivalent the differential equation, the process may include steps 121-124.
- the physical model When calculating the magnetic induction intensity inside the physical model, the physical model is divided into a finite number of micro-elements in the plane coordinate system, and the physical model part corresponding to the micro-element is approximated by the micro-element points corresponding to each micro-element.
- the magnetic induction or the value of the magnetic flux of each micro-element indicates the magnetic induction or the value of the magnetic flux of the physical model portion corresponding to the micro-element.
- the simple iterative method is a method of finding the differential value of a specific point by using the value of the surrounding point, ⁇ (i, j) is the value of the function represented by the point in the graph, and x and t are functions.
- the independent variables, ⁇ x and ⁇ t, can be regarded as infinitesimal variables, which are obtained according to the definition of the derivative:
- step 122 the two-dimensional conditional pull-down equation is as follows.
- step 123 the active region magnetic vector solving formula is transformed by the Poisson equation, and the Poisson equation is as follows under two-dimensional conditions.
- ⁇ is the permeability of the medium, that is, the product of the relative magnetic permeability and the air permeability, and J is the current density, which can be obtained according to the formulas (4) to (7) and the formula (11):
- step 124 a coefficient matrix Y and a coil matrix J corresponding to a plurality of nodes are established, and a mathematical model determined by the MATLAB program is calculated.
- the coefficient matrix Y in this embodiment refers to the coefficient in the Laplace equation
- the coil matrix J refers to the coefficient in the Poisson equation.
- the coefficient matrix Y is a sparse matrix of N ⁇ N order, and the data in Y is determined according to the coefficients of the iron core, the yoke iron, the armature and the air in the physical model, that is, the coefficient in front of the coordinate unknown in the formula (10), that is, the coefficient In the matrix, except that the node (i, j) is 1, and the four nodes around the node (i, j) are 1/4, the other nodes are all 0.
- the internal parameters of the coil matrix J are ⁇ J( ⁇ h) 2 except 0.
- an initial value is set for a grid point, and the initial value can be arbitrarily given, generally set to 0.
- the value of each point is sequentially calculated in a fixed order, and the surrounding point is used.
- the average of the four point values is taken as its new value.
- step 130 according to the serial program structure, a program flow chart is drawn to determine whether the calculation of each part of the flow chart is related to other parts, thereby finding a parallelizable part.
- the parallelization calculation means that when a part of the calculation is performed, the part capable of performing the parallelization calculation described above is called a parallelizable part regardless of other parts.
- step 140 the parallelization benefit of the serial algorithm is predicted by Amdahl's law to determine whether the algorithm has the value of parallelization.
- S n is the acceleration ratio of the algorithm being evaluated
- B is the percentage of the total calculation time that can not be parallelized by the execution time of the improved portion B ⁇ [0, 1]
- n is the number of processor cores
- T 0 is the computing time of the system when the processor core is used;
- T a is the total time allocated to the processor core
- T 0 is the calculation time of the system when a processor core is used.
- the allocation time of the processor core increases linearly with the increase of the number of processor cores
- T a nt
- t is the time to allocate a processor core.
- step 150 the parallelizable part of the algorithm is parallelized by the MATLAB parallelization function, and according to the mathematical model, the distribution curve of the magnetic induction intensity of the load switch electromagnetic mechanism in the static magnetic field is obtained, and the calculation is performed. Static characteristics of the load switch electromagnetic mechanism.
- step 160 according to the inflection point of the suction curve in the static characteristic of the load switch electromagnetic mechanism, the main process variable node is selected, and a process variable node in the adjacent region between the main process variable node and the main process variable node is established.
- the objective function that outputs the characteristic relationship.
- the main process variable node is a process variable node that affects an output characteristic of the load switch electromagnetic mechanism, and an output characteristic of the load switch electromagnetic mechanism may include an electromagnetic torque.
- the inflection point (U i , ⁇ j ) of the suction curve in the static characteristic of the electromagnetic mechanism of the load switch is selected as the main process variable node that affects the output characteristics of the electromagnetic mechanism of the load switch.
- the definition reflects the main process variable node and
- the objective function expression of the process characteristic relationship of the process variable node in the region adjacent to the main process variable node is:
- Y(U i' , ⁇ j' ) represents the output characteristic of the load switch electromagnetic mechanism at the point (U i' , ⁇ j' ).
- the main process variable nodes selected in this example may be (U i'0 , ⁇ j'0 ), (U i'1 , ⁇ j'0 ), (U i'0 , ⁇ j'1 ) and (U I'1 , ⁇ j'1 ), from any of the four main process variable nodes, select any process variable node (U i' , ⁇ j ' ),
- the interpolation function of the weight coefficients of the four main process variable nodes, the mathematical expression of the interpolation function depends on the functional relationship between the process variable node of the load switch electromagnetic mechanism and the output characteristic, and includes the influence on the voltage U and the rotation angle ⁇ . coefficient.
- step 170 a Latin hypercube sampling method is applied to select a first parameter combination comprising n parameters within a tolerance range of m key design parameters of the load switch electromagnetic mechanism.
- a plurality of first design parameter combinations X k (x 1k , x 2k , . . . , x mk ), k ⁇ (1, 2, . . . , n) are selected, and the electromagnetic mechanism corresponding to X k is calculated by the finite element method.
- the key design parameters may include performance parameters of the load switch electromagnetic mechanism, size parameters, and the like, and the output characteristics are also called output feature values.
- the normalization formula used for normalizing X k is the following formula (16) or formula (17).
- step 190 the basis function is selected, and the output characteristic Y kij at the plurality of process variable nodes (U i , ⁇ j ) is constructed according to the normalized parameter combination X′ k and the first parameter combination X k .
- the functional relationship of the output characteristics of the unknown parameter combination X is:
- X' is the normalized parameter combination of the unknown parameter combination X, Is the basis function; c is the influence width coefficient of the center point of the basis function, ⁇ k is the weight coefficient of the kth basis function (ie weight coefficient),
- is the parameter combination X' and the parameter combination Euclidean distance between X' k .
- the formula (18) is the output characteristic expression based on the radial basis function model to be established, that is, the radial basis function model. Through the subsequent judgment, the appropriate basis function is selected to determine the radial basis function model.
- the basis function in this embodiment can be selected from the following four commonly used basis functions.
- the four basis functions in equation (19) are Gaussian function, multi-quadratic function, inverse multi-quadratic function and log-path function from top to bottom.
- n' second design parameter combinations X k' (x 1k' , x 2k ' , ..., are reselected within the tolerance range of the m key design parameters of the load switch electromagnetic mechanism.
- the output characteristic Y k'ij , k' ⁇ (1, 2, ..., n') wherein the preset process variable node may be the four main process variable nodes in the above step 160, or may be reselected Process variable node.
- step 210 the appropriate basis function and the c value are selected by using the root mean square error and the complex correlation coefficient as indicators to determine the radial basis function model.
- the function relationship described in 190 completes the establishment of the radial basis function model and obtains the verified radial basis function model.
- the root mean square error expression in step 210 is:
- k is the sample size of the model verification and y i is the true value. Is the mean of the true values, Calculated value based on the model.
- step 220 the radial basis function model described in step 210 is substituted into the objective function reflecting the relationship between the main process variable node and the process variable node in the adjacent region of the main process variable node. That is, in the formula (15), the expression of the output characteristic relationship of the load switch electromagnetic mechanism can be obtained as follows:
- each design parameter will have a design value (ie ideal value), but given the limitation of the processing level, etc., a tolerance range is given on both sides of the design value, and the actual production parameters are Within this tolerance range, the design value is the central value of the design parameters.
- the plurality of process variable nodes are randomly selected in the area surrounded by the main process variable nodes selected in step 160 by using the Latin hypercube sampling method, and the central value of the key design parameters at the plurality of process variable nodes is calculated by the finite element method.
- the output characteristics of the load switch electromagnetic mechanism are determined by the quantum particle swarm optimization algorithm with the error function minimized as the optimization target.
- the unknown influence factor contained in the process variable voltage U and the rotation angle ⁇ According to the above-mentioned expression of the output characteristic relationship of the load switch electromagnetic mechanism, the immersion is performed on the fast calculation of the output characteristic of the load switch electromagnetic mechanism based on the radial basis function.
- the load switch tolerance distribution method provided in this embodiment may include steps 310-350.
- step 310 based on the reliability discriminant criterion and the radial basis function model, a central value of the design parameters of the load switch electromagnetic mechanism and a function between the tolerance and the reliability of the load switch product are established. Relationships, and establish a functional relationship that reflects the feasibility of processing and the tolerance of processing costs to design parameters.
- the design parameters involved in step 310 may include the key design parameters involved in step 170 above, such as the size of the magnetic material in the electromagnetic mechanism, the coil resistance, and the remanence of the permanent magnet material.
- F contact , T c , T b are the contact force, the suction time and the release time at the time of suction;
- v cb , v cc , v ca , v bb , v bc , v ba are respectively the suction and release process
- Subscripts with "req" indicate a specific requirement value;
- the central value and tolerance of the design parameters in step 310 are a function of the reliability of the load switch product as follows:
- R i represents the intensity of the key design parameters i ⁇ (1,2, ..., n) for x i
- y i is the stress load switch corresponding product reliability
- F i (x) is a critical design parameter characterizing center value i
- G i (y) is the probability density function of the stress corresponding to the key design parameter i;
- F cap (X) and F cost (X) are the processing feasibility targets and processing cost targets corresponding to the tolerance X of n key design parameters, respectively, x, x u and x d are the key features of the lower characteristics of the relay respectively.
- the tolerance of the parameter, the upper limit of the tolerance and the lower limit of the tolerance, w ca and w co are the weight coefficients occupied by the processing feasibility function and the multiple key design parameters in the cost function, respectively.
- step 320 a multi-objective optimization model including tolerance distribution of reliability index, processing feasibility, and processing cost objective function is established.
- the multi-objective optimization model of the tolerance distribution established is:
- W [w 1 , w 2 ,...,w m+2 ] is the weight coefficient of multiple objective functions in the multi-objective optimization model
- R j (X) represents the reliability target corresponding to the action process j
- R j_req (X) represents the reliability index requirement corresponding to the action process j.
- step 330 a hierarchy diagram is established to describe the relationship between the plurality of optimization objectives and related key design parameters, and the weight coefficients of the objective functions such as reliability index, processing feasibility, and processing cost are determined by the analytic hierarchy process.
- the reliability index requirements are determined from the three aspects of contact breaking speed, contact collision speed and armature collision speed.
- the machining feasibility and processing cost function are determined by the debugging parameters and machining parameters.
- the hierarchical structure diagram is established to describe multiple optimization objectives and related. The relationship between key factors.
- the relative weight coefficient of the objective function such as reliability index, processing feasibility and processing cost is determined by analytic hierarchy process. After the eigenvalues of the important scale matrix, the solution of the eigenvectors, and the product of the multiple sub-weights, a plurality of reliability targets, processing feasibility targets, and absolute weight coefficients of the processing cost targets with respect to the total targets are obtained.
- step 340 the function in the multi-objective optimization model established in step 320 is used as the objective function, and the tolerance of the key design parameter tolerance of the load switch is distributed by the simulated annealing method.
- Step 340 can include steps a-step g.
- step a the key factors involved in the tolerance allocation and their initial values are determined.
- step b an initial value of the objective function is generated and the initial temperature is determined.
- step c the temperature is lowered.
- step d the random disturbance produces a current value for a plurality of key factors and calculates an increment ⁇ of the objective function before and after the disturbance.
- step e it is judged whether ⁇ is greater than 0, and the value of the plurality of key factors after the disturbance is received in the case where ⁇ is greater than 0, and the probability of exp( ⁇ /bt k ) is accepted when ⁇ is less than or equal to 0. The value of several key factors after the disturbance.
- step f it is judged whether the Markov process is stable, step g is performed in the case where the Markov process is stable, and step d is returned in the case where the Markov process is unstable.
- step g it is determined whether the tolerance allocation scheme satisfies the requirement, and if the tolerance allocation scheme does not meet the requirement, step c-step f is repeatedly executed until the tolerance allocation scheme satisfies the requirement, and the optimization process ends, and the output tolerance is Assign results.
- step 350 according to the load switch key factor center value and the tolerance distribution result obtained in step 340, the reliability, processing feasibility and processing cost of the load switch product are calculated through the function relationship described in step 310.
- step 360 it is judged whether the comprehensive index of reliability, processing feasibility and processing cost of the load switch product satisfies the set threshold requirement, and if the comprehensive index does not satisfy the set threshold requirement, step 320-step is repeatedly executed. 350, until the comprehensive indicator of the load switch product meets the set threshold The process is completed, and the design of the high reliability load switch based on the simulated annealing method is completed, and the tolerance range of the plurality of key design parameters is obtained.
- the embodiment further provides a computer readable storage medium storing computer executable instructions for performing any of the above methods.
- FIG. 3 is a schematic diagram of a hardware structure of a load switch according to an embodiment of the present invention.
- the load switch includes: one or more processors 410 and a memory 420.
- One processor 410 is taken as an example in FIG.
- the load switch may further include an input device 430, an output device 440, and an electromagnetic mechanism 450.
- the processor 410, the memory 420, the input device 430, and the output device 440 in the load switch may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
- the input device 430 can receive input numeric or character information
- the output device 440 can include a display device such as a display screen.
- the memory 420 is a computer readable storage medium that can be used to store software programs, computer executable programs, and modules.
- the processor 410 executes various functional applications and data processing by executing software programs, instructions, and modules stored in the memory 420 to implement any of the above-described embodiments.
- the memory 420 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the load switch, and the like.
- the memory may include volatile memory such as random access memory (RAM), and may also include non-volatile memory such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
- Memory 420 can be a non-transitory computer storage medium or a transitory computer storage medium.
- Non-temporary State computer storage medium such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
- memory 420 can optionally include memory remotely located relative to processor 410, which can be connected to the load switch via a network. Examples of the above networks may include the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
- Input device 430 can be used to receive input digital or character information and to generate key signal inputs related to user settings and function control of the load switch.
- Output device 440 can include a display device such as a display screen.
- a person skilled in the art can understand that all or part of the process of implementing the above embodiment method can be completed by executing related hardware by a computer program, and the program can be stored in a non-transitory computer readable storage medium.
- the program when executed, may include the flow of an embodiment of the method as described above, wherein the non-transitory computer readable storage medium may be a magnetic disk, an optical disk, a read only memory (ROM), or a random access memory (RAM). Wait.
- the present disclosure provides a method for calculating the output characteristics of a load switch electromagnetic mechanism and a tolerance distribution method. By establishing an output characteristic model of the load switch electromagnetic mechanism, the calculation accuracy, calculation speed and robustness of the calculation method of the electromagnetic mechanism are improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一种负荷开关电磁机构输出特性计算方法,该方法根据负荷开关的结构特点,建立负荷开关电磁机构的物理模型;根据负荷开关电磁机构的物理模型建立负荷开关电磁机构静磁场强度的数学模型,并计算负荷开关电磁机构的静态特性;根据负荷开关电磁机构的静态特性的吸力曲线以及负荷开关电磁机构的多个关键设计参数,得到径向基函数模型并带入目标函数中,得到计算负荷开关电磁机构输出特性关系的表达式。
Description
本公开涉及开关技术领域,例如涉及一种负荷开关电磁机构输出特性计算方法及容差分配方法。
负荷开关是电能表的核心部件之一,起到接通电源或断开电源的作用,并可以使输入与输出之间完全隔离、相互间无电的联系。当用户余额不足时,负荷开关接收跳闸命令,自动切断电源;当用户充值成功后,负荷开关接收合闸命令,自动接通电源。在电能表中应用负荷开关是使电能表实现“费控”功能的重要保障。
电能表用负荷开关普遍存在合格率低、质量一致性差及返修率高等问题,而产品的设计是决定其质量的源头,产品的设计缺陷是导致负荷开关出现质量问题的重要原因。在理想情况下,产品的输出特性与产品的技术指标保持一致,然而,在产品的寿命周期内,由于在产品使用过程中可能受到多种干扰因素的影响,导致产品的输出特性呈现分布特征,且分布的中心值亦可能偏离产品的技术指标,在产品生产过程中通过筛选得到的满足输出性能测试要求的电能表用负荷开关,若关键性能指标分散性较大,在实际运行过程中,随着使用时间的延续以及外界干扰因素的增加,存在质量缺陷的负荷开关性能会迅速下降,仍难以保障电能表的可靠运行。
发明内容
本公开提供一种负荷开关电磁机构输出特性计算方法,可以解决负荷开关电磁机构的计算精度低、时效性差以及可靠性低的问题;本公开还提供了一种负荷开关容差分配方法,可以解决在对负荷开关容差分配时未考虑负荷开关的电磁机构造成容差分配不能高效、快速以及准确实现的问题。
本实施例提供一种负荷开关电磁机构输出特性计算方法,可以包括,
根据负荷开关的结构特点,建立所述负荷开关电磁机构的物理模型,并根据所述负荷开关电磁机构的物理模型建立负荷开关电磁机构静磁场强度的数学模型,其中,所述物理模型包含所述负荷开关电磁机构的磁路回路,所述数学模型包括泊松方程和拉普拉斯方程;
根据所述数学模型,获取所述负荷开关电磁机构在静磁场中磁感应强度的分布曲线,并计算所述负荷开关电磁机构的静态特性;
根据所述负荷开关电磁机构静态特性中吸力曲线的拐点,选取主要过程变量节点,并建立反映所述主要过程变量节点与所述主要过程变量节点相邻区域内的其他过程变量节点输出特性关系的目标函数,其中,所述主要过程变量节点为影响所述负荷开关电磁机构输出特性的过程变量节点;
在负荷开关电磁机构多个关键设计参数的公差范围内选取多个第一设计参数组合,并通过有限元方法计算所述多个第一参数组合在所述主要过程变量节点处的输出特性;
对所述多个第一设计参数组合进行归一化处理并选取相应的基函数,根据所述第一设计参数的第一归一化参数组合、所述基函数及所述多个第一参数组合在所述主要过程变量处的输出特性,构建反映未知参数组合与对应输出特性
的函数关系;
在负荷开关电磁机构多个关键设计参数的公差范围内重新抽样选取多个第二设计参数组合,并通过有限元方法计算所述多个第二设计参数组合在预设过程变量节点处的输出特性;
将所述多个第二设计参数组合进行归一化得到的第二归一化参数组合,带入所述反映未知参数组合与对应输出特性的函数关系中,得到所述多个第二设计参数组合输出特性的计算值,将通过有限元方法计算得到的所述第二设计参数组合的输出特性作为所述第二设计参数组合的真实值,根据所述多个第二设计参数输出特性的计算值与所述真实值的均方根误差和复相关系数为指标选定合适的基函数及c值,确定径向基函数模型;以及
将得到的径向基函数模型带入所述的目标函数,在所述主要过程变量节点围成的区域内重新抽样过程变量节点,并计算所述关键设计参数取中心值时负荷开关电磁机构的输出特性,采用预设算法根据预设优化目标确定所述目标函数中电压与转角的影响系数,从而确定所述负荷开关电磁机构输出特性关系的表达式,所述表达式设置为计算负荷开关电磁机构输出特性。
可选地,所述目标函数为:
其中,Y(Ui′,αj′)表示在(Ui′,αj′)处所述负荷开关电磁机构的输出特性,(Ui′,αj′)为特定区域内的过程变量节点,所述特定区域由所述选定的影响所述负荷开关电磁机构输出特性的相邻四个主要过程变量节点(Ui′0,αj′0)、(Ui′1,αj′0)、(Ui′0,αj′1)、(Ui′1,αj′1)作为边界点所围成,为主要过程变量节点权重系数的插值函数,所述插值函数的数学表达式取决于所述负荷开关电磁机构的过程变量节
点与输出特性之间的函数关系,且包含关于电压U与转角α的影响系数。
可选地,其中所述径向基函数模型为:
可选地,所述计算所述负荷开关电磁机构的静态特性,包括:对所述负荷开关电磁机构的静态特性进行并行化计算,得到所述负荷开关电磁机构的静态特性。
可选地,所述预设算法包括量子粒子群算法;所述预设优化目标包括误差函数最小化。
本实施例还提供了基于上述任意一种负荷开关电磁机构输出特性计算方法的负荷开关容差分配方法,可以包括:
根据可靠性判别准则以及所述径向基函数模型,建立负荷开关电磁机构的设计参数的中心值及容差与所述负荷开关电磁机构的可靠度的函数关系,所述设计参数的容差与加工可行性的函数关系,及所述设计参数的容差与加工成本的函数关系;
构建所述设计参数容差分配的多目标优化模型;
利用层次分析法,确定所述多目标优化模型中的多个目标函数的权重系数;以及
基于模拟退火法来进行容差的分配,获取使所述多目标优化模型中的目标
函数满足预设阈值要求的设计参数的容差分配结果。
可选地,所述负荷开关电磁机构的设计参数的中心值及容差与负荷开关电磁机构的可靠度的函数关系为:
其中,Ri表示设计参数i∈(1,2,…,n)的强度为xi、应力为yi对应的可靠度,Fi(x)为表征设计参数i中心值及容差对应强度的概率密度函数,Gi(y)为设计参数i对应应力的概率密度函数。
可选地,所述设计参数的容差与加工可行性及加工成本的函数关系为,
其中,Fcap(X)为n个所述设计参数的容差X对应的加工可行性目标,Fcost(X)为n个设计参数的容差X对应的加工成本目标,x、xu、xd分别为所述负荷开关电磁机构的下位特性设计参数的公差、公差上限及公差下限,wca、wco分别为加工可行性函数及加工成本函数中不同设计参数的权重系数。
本实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任意一种方法。
本实施例还提供一种负荷开关,包括一个或多个处理器、存储器以及一个或多个程序,所述一个或多个程序存储在存储器中,当被一个或多个处理器执行时,执行上述任意一种方法。
本实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,
当所述程序指令被计算机执行时,使所述计算机执行上述任意一种方法。
本公开提供的负荷开关电磁机构的计算方法,在对负荷开关电磁机构的输出特性进行求解时,能够实现计算精度高、时效性好以及可靠性高,为快速、高效以及准确实现负荷开关的容差分配提供了基础;本公开提供的负荷开关容差分配方法,能够通过建立容差分配的多目标优化模型,以及模拟退火法进行容差分配,使容差分配结果更准确。
图1为本实施例提供的一种负荷开关电磁机构输出特性计算方法的流程示意图;
图2为本实施例提供的一种负荷开关容差分配方法的流程示意图;
图3为本实施例提供的一种负荷开关的硬件结构示意图。
采用容差自动分配方法进行电能表用负荷开关容差设计对提高产品可靠性具有重大意义,开展容差分配能够在保证产品性能的情况下,通过调整设计公差提高产品的抗干扰性。
电能表用负荷开关结构分为电磁机构与触簧机构,其输出特性依靠静态吸反力的配合。在计算负荷开关静态吸反力时,一般编写的算法程序都是串行的程序,当计算模型较复杂时,串行算法可能会耗费大量的时间,而将串行算法进行并行化可以解决这一问题。
在计算得到负荷开关静态吸反力特性后开展电磁机构输出特性的计算、分
析是负荷开关容差设计的基础,该过程涉及电、磁、力多场耦合分析,通常采用有限元方法或磁路法。有限元方法计算精度高但时效性差,磁路法求解速度快,但结果精度低,在结构优化及稳健性设计等分析领域中,往往需要兼顾求解速度与计算精度两个方面,传统方法难以满足要求。快速准确的求解电磁机构输出特性是对负荷开关产品性能进行分析及优化的前提,且如果对负荷开关电磁机构的输出特性计算的不准确,将影响负荷开关容差的自动分配。
如图1所示,本实施例提供的负荷开关电磁机构的计算方法可以包括步骤110-步骤220。
在步骤110中,根据负荷开关的结构特点,建立所述负荷开关电磁机构的物理模型,所述物理模型包含负荷开关电磁机构的磁路回路。
在步骤120中,根据所述负荷开关电磁机构的物理模型,建立计算负荷开关静磁场强度的数学模型。
其中,所述数学模型包括泊松方程和拉普拉斯方程,并对所述物理模型和数学模型编写相应的MATLAB程序进行计算。
其中,上述电磁机构的物理模型中的有源部分采用泊松方程,无源部分采用拉普拉斯方程,所建的数学模型如下:
其中,公式(1)为泊松方程,公式(2)为拉普拉斯方程,A为磁矢量,B为磁感应强度,x为物理模型所在的平面坐标系的横坐标,y为物理模型所在的
平面坐标系的纵坐标,为哈密顿算子,μ为介质的磁导率,即相对磁导率与空气磁导率的乘积,J为电流密度。
在实际计算过程,上述数学模型可以是基于二维拉普拉斯方程和泊松方程的迭代法获得,即利用迭代的思想来等效微分方程,该过程可以包括步骤121-步骤124。
在对上述物理模型内部的磁感应强度进行计算时,在平面坐标系中将物理模型划分为有限个微元,以每个微元对应的微元点的来近似表示该微元对应的物理模型部分,每个微元点的磁感应强度或者磁通的值则表示该微元对应的物理模型部分的磁感应强度或者磁通的值。
在步骤121中,简单迭代法是一种利用周围点的值来求一特定点的微分值的方法,Φ(i,j)为图中的点所表示的函数的值,x和t为函数的自变量,Δx和Δt可以看作无穷小变量,则根据导数的定义可得:
步骤122中,二维条件下拉普拉斯方程如下,
Φxx+Φtt=0 (8)
据根据公式(4)~(7)及公式(8),可得:
将公式(9)进行化简可得:
公式(10)即为无源区域的磁矢量求解公式,其中,Φ(i,j)为节点(i,j)的磁矢量,i,j=1,2,…N,物理模型的边界可以被分为N×N个节点。
在步骤123中,有源区域磁矢量求解公式由泊松方程转化得到,二维条件下泊松方程如下,
Φxx+Φtt=-μJ (11)
其中,μ为介质的磁导率,即相对磁导率与空气磁导率的乘积,J为电流密度,根据公式(4)~(7)及公式(11)化简可得:
公式(12)即为有源区域的磁矢量求解公式,其中,Φ(i,j)为节点(i,j)的磁矢量,i,j=1,2,…N,物理模型的边界可以被分为N×N个节点,μ为介质的磁导率,即相对磁导率与空气磁导率的乘积,Δh为节点之间的距离,参数μ、J与上述实施例中的含义相同。
在步骤124中,建立多个节点对应的系数矩阵Y和线圈矩阵J,并编写MATLAB程序计算所确定的数学模型。
本实施例中的系数矩阵Y指的是拉普拉斯方程中的系数,线圈矩阵J指的是泊松方程中的系数。系数矩阵Y为N×N阶的稀疏矩阵,Y中的数据根据物理模型中的铁芯、轭铁、衔铁和空气的系数来确定,即公式(10)中坐标未知量前面的系数,即该矩阵中除了节点(i,j)处为1,以及节点(i,j)周围四个节
点处为1/4外,其它均为节点位置均为0。线圈矩阵J内部参数除了0就是μJ(Δh)2。
在计算时,对一网格点设一初值,这个初值可以任意给定,一般设为0,初值给定后,按固定的顺序依次计算每个点的值,用围绕该点的四个点值的平均值作为它的新值,当所有点计算完成之后,用它们的新值代替所有点原来的值,从而完成了一次迭代,根据设置的精度要求,继续进行迭代,直至达到设置的精度要求。
在步骤130中,根据串行程序结构,绘制程序流程图,判断流程图中每一部分的计算是否与其他部分相关,从而找出可并行化部分。
其中,并行化计算是指当对其中一部分进行计算时,与其他部分无关,能够进行上述并行化计算的部分称为可并行化部分。
在步骤140中,由阿姆达尔定律对串行算法的并行化效益进行预测,判断算法是否有并行化的价值。
传统的阿姆达尔定律计算公式如下,
其中,Sn为被评估的算法的加速比,B为不可被并行化改进部分的执行时间所占总的计算时间的百分比B∈[0,1],n为处理器核的个数,T0为个处理器核时系统的计算时间;
传统阿姆达尔定律并没有考虑到计算时为每个处理器核进行分配的时间,
而为处理器核分配的时间会随着处理器核数量的增加而增加,使得对算法整体计算时间的影响会越来越大。
本实施例提供了的阿姆达尔定律的修正公式如下所示,
其中,Ta为对处理器核进行分配的总时间,T0为一个处理器核时系统的计算时间,例如,处理器核的分配时间随处理器核数量的增加线性增长,Ta=n t,t为对一个处理器核进行分配的时间。
在步骤150中,利用MATLAB并行化功能将算法中可并行化部分进行并行化设计,并根据所述数学模型,获取所述负荷开关电磁机构在静磁场中磁感应强度的分布曲线,并计算所述负荷开关电磁机构的静态特性。
例如,利用MATLAB中的spmd语句将迭代算法中可并行化的部分进行并行化设计,并将并行化后的结果与并行化之前的结果进行对比,从而得出电磁机构在静磁场中磁感应强度的分布曲线,并用于求出负荷开关电磁机构的静态特性。
在步骤160中,根据所述负荷开关电磁机构静态特性中吸力曲线的拐点,选取主要过程变量节点,并建立反映所述主要过程变量节点与所述主要过程变量节点相邻区域内的过程变量节点输出特性关系的目标函数。
其中,所述主要过程变量节点为影响所述负荷开关电磁机构输出特性的过程变量节点,负荷开关电磁机构的输出特性可以包括电磁力矩。
例如,将负荷开关电磁机构静态特性中吸力曲线的拐点(Ui,αj)选定为影响负
荷开关电磁机构输出特性的主要过程变量节点,基于插值思想,定义反映所述主要过程变量节点及与所述主要过程变量节点相邻区域内的过程变量节点输出特性关系的目标函数表达式为:
其中,Y(Ui′,αj′)表示在点(Ui′,αj′)处负荷开关电磁机构的输出特性。
本实例中选定的主要过程变量节点可以为(Ui′0,αj′0)、(Ui′1,αj′0)、(Ui′0,αj′1)和(Ui′1,αj′1),从这四个主要过程变量节点所围区域内选取任意过程变量节点(Ui′,αj′),为上述四个主要过程变量节点权重系数的插值函数,该插值函数的数学表达式取决于负荷开关电磁机构的过程变量节点与输出特性之间的函数关系,且包含关于电压U与转角α的影响系数。
在步骤170中,应用拉丁超立方抽样方法,在负荷开关电磁机构m个关键设计参数的公差范围内选取包含n个参数的第一参数组合。
例如,选取多个第一设计参数组合Xk=(x1k,x2k,…,xmk),k∈(1,2,…,n),通过有限元方法计算Xk对应的电磁机构在所述多个主要过程变量节点(Ui,αj)处的多个输出特性Ykij,k∈(1,2,…,n)。其中,关键设计参数可以包括负荷开关电磁机构的性能参数以及尺寸参数等,所述输出特性又叫输出特征值。
在步骤180中,对第一参数组合Xk进行归一化处理得到归一化参数组合X′K,其中,X′k=(x′1k,x′2k,…,x′mk)。
对Xk进行归一化处理所用的归一化公式为下述公式(16)或者公式(17),
在步骤190中,选取基函数,并根据归一化参数组合X′k及第一参数组合Xk在多个过程变量节点(Ui,αj)处的输出特性Ykij,构建出可反映未知参数组合X的输出特性的函数关系为:
其中,X′为未知参数组合X的归一化参数组合,为基函数;c为基函数中心点的影响宽度系数,βk为第k个基函数的权系数(即权重系数),||X′-X′k||为参数组合X′与参数组合X′k之间的欧式距离。
其中,公式(18)为所要建立的基于径向基函数模型的输出特性表达式,也即径向基函数模型,通过后续的判断,选择合适的基函数来确定该径向基函数模型。
本实施例中的基函数可从以下四种常用的基函数中选取,
其中,公式(19)中的四种基函数从上到下分别为高斯函数、多二次函数、逆多二次函数及对数路径函数。
在步骤200中,应用拉丁超立方抽样法,在负荷开关电磁机构m个关键设计参数公差范围内重新选取n′个第二设计参数组合Xk′=(x1k′,x2k′,…,xmk′),k′∈(1,2,…,n′);通过有限元方法计算所述n′个第二设计参数组合对应的电磁机构
在预设过程变量节点(Ui,αj)处的输出特性Yk′ij,k′∈(1,2,…,n′),其中,预设过程变量节点可以为上述步骤160中的四个主要过程变量节点,也可以是重新选取的过程变量节点。
在步骤210中,以均方根误差和复相关系数为指标选定合适的基函数及c值,从而确定径向基函数模型。
例如,可以采用步骤180中的归一化算法,对第二设计参数组合Xk′进行归一化处理得到归一化参数组合X′k′=(x′1k′,x′2k′,…,x′mk′);将X′k′带入步骤190所述的径向基函数模型得到第二设计参数输出特性的计算值Yij(X′k′)以有限元方法计算结果Yk′ij作为第二设计参数组合输出特性的真实值,通过均方根误差RMSE和复相关系数R2两个指标选择合适的基函数及c值;将所述合适的基函数及c值代入步骤190所述的函数关系,完成径向基函数模型的建立,得到验证的径向基函数模型。
步骤210中的均方根误差表达式为:
复相关系数表达式为:
在步骤220中,将步骤210所述的径向基函数模型代入所述反映所述主要过程变量节点及与所述主要过程变量节点相邻区域内的过程变量节点输出特性关系的目标函数中,即公式(15)中,可得到负荷开关电磁机构输出特性关系的表达式如下:
在产品的设计过程中,每一项设计参数都会有一个设计值(即理想值),但是考虑到加工水平等的限制,在设计值的两侧给出一个公差范围,实际生产得到的参数在该公差范围内即可,其中,设计值即为设计参数的中心值。
采用拉丁超立方抽样法在步骤160中选取的主要过程变量节点围成的区域内随机抽取多个过程变量节点,通过有限元方法计算所述多个过程变量节点处上述关键设计参数取中心值时负荷开关电磁机构的输出特性,通过量子粒子群算法以误差函数最小化为优化目标,确定中所包含的关于过程变量电压U与转角α的未知影响系数。根据上述确定的负荷开关电磁机构输出特性关系的表达式,浸进行基于径向基函数的负荷开关电磁机构输出特性的快速计算。
在对负荷开关电磁机构进行计算完成后,对负荷开关容差进行分配,如图2所示,本实施例提供的负荷开关容差分配方法可以包括步骤310-步骤350。
在步骤310中,基于可靠性判别准则以及所述径向基函数模型,建立负荷开关电磁机构的设计参数的中心值及其容差与负荷开关产品可靠度之间的函数
关系,并建立反映加工可行性及加工成本与设计参数的容差的函数关系。
其中,还可以是根据可靠性判别准则以及“应力-强度”干涉理论,建立设计参数中心值及其容差与负荷开关产品可靠度之间的函数关系。步骤310中涉及的设计参数可以包括上述步骤170中涉及的关键设计参数,如电磁机构中磁性材料的尺寸、线圈电阻和永磁材料剩磁等参数。
上述可靠性判别准则的数学表达式如下:
其中,Fcontact、Tc、Tb分别为吸合时的接触力、吸合时间及释放时间;vc-b、vc-c、vc-a、vb-b、vb-c、vb-a分别为吸合及释放过程触点的分离初速度、触点碰撞速度及衔铁与轭铁碰撞速度。下标带“req”的均表示某特定要求值;
步骤310中的设计参数的中心值及容差与负荷开关产品可靠度的函数关系为:
其中,Ri表示关键设计参数i∈(1,2,…,n)的强度为xi、应力为yi对应的负荷开关产品可靠度;Fi(x)为表征关键设计参数i中心值及容差对应强度的概率密度函数;Gi(y)为关键设计参数i对应应力的概率密度函数;
设计参数的容差与加工可行性及加工成本的函数关系为:
其中,Fcap(X)及Fcost(X)分别为n个关键设计参数的容差X对应的加工可行性目标与加工成本目标,x、xu、xd分别为继电器的下位特性关键设计参数的公差、公差上限及公差下限,wca、wco分别为加工可行性函数及成本函数中多个关键设计参数所占据的权重系数。
在步骤320中,建立包括可靠性指标、加工可行性与加工成本目标函数的容差分配的多目标优化模型。
其中,所建立的容差分配的多目标优化模型为:
其中,W=[w1,w2,...,wm+2]为多目标优化模型中的多个目标函数的权重系数,Rj(X)表示动作过程j对应的可靠性目标,Rj_req(X)表示动作过程j对应的可靠性指标要求。
在步骤330中,建立层次结构图描述多个优化目标与相关关键设计参数之间的联带关系,通过层次分析法确定可靠性指标、加工可行性与加工成本等目标函数的权重系数。
从触点分断速度、触点碰撞速度以及衔铁碰撞速度三个方面确定可靠性指标要求,由调试参数及机械加工参数确定加工可行性及加工成本函数,建立层次结构图描述多个优化目标与相关关键因素之间的联带关系。通过层次分析法确定可靠性指标、加工可行性与加工成本等目标函数的相对权重系数。通过重要标度矩阵特征值、特征向量的求解以及多个子权重的乘积运算后,得到多个可靠性目标、加工可行性目标以及加工成本目标关于总目标的绝对权重系数。
在步骤340中,以步骤320中建立的多目标优化模型中的函数为目标函数,通过模拟退火法进行负荷开关关键设计参数容差的分配。
步骤340可以包括步骤a-步骤g。
在步骤a中,确定参与容差分配的关键因素及其初始值。
在步骤b中,产生目标函数初始值,并确定初温。
在步骤c中,降温。
在步骤d中,随机扰动产生多个关键因素的当前值,并计算扰动前后目标函数的增量Δ。
在步骤e中,判断Δ是否大于0,在Δ大于0的情况下接受扰动后的多个关键因素的值,在Δ小于或等于0的情况下,以exp(Δ/btk)的概率接受扰动后的多个关键因素的值。
在步骤f中,判断马尔可夫过程是否稳定,在马尔可夫过程稳定的情况下执行步骤g,在马尔可夫过程不稳定的情况下返回执行步骤d。
在步骤g中,判断容差分配方案是否满足要求,在容差分配方案不满足要求的情况下,重复执行步骤c-步骤f,直至容差分配方案满足要求,结束寻优过程,输出容差分配结果。
在步骤350中,根据步骤340中得到的负荷开关关键因素中心值及容差的分配结果,通过步骤310所述的函数关系,计算负荷开关产品的可靠度、加工可行性及加工成本。
在步骤360中,判断负荷开关产品的可靠度、加工可行性及加工成本的综合指标是否满足设定的阈值要求,在综合指标不满足设定的阈值要求的情况下,重复执行步骤320-步骤350,直至负荷开关产品的综合指标满足设定的阈值要
求,则流程结束,完成基于模拟退火法的高可靠性的负荷开关的设计,的得到多个关键设计参数的容差取值范围。
本实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任意一种方法。
图3为本实施例提供的一种负荷开关的硬件结构示意图,如图3所示,该负荷开关包括:一个或多个处理器410和存储器420。图3中以一个处理器410为例。
所述负荷开关还可以包括:输入装置430、输出装置440以及电磁机构450。
所述负荷开关中的处理器410、存储器420、输入装置430和输出装置440可以通过总线或者其他方式连接,图5中以通过总线连接为例。
输入装置430可以接收输入的数字或字符信息,输出装置440可以包括显示屏等显示设备。
存储器420作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块。处理器410通过运行存储在存储器420中的软件程序、指令以及模块,从而执行多种功能应用以及数据处理,以实现上述实施例中的任意一种方法。
存储器420可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据负荷开关的使用所创建的数据等。此外,存储器可以包括随机存取存储器(Random Access Memory,RAM)等易失性存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件或者其他非暂态固态存储器件。
存储器420可以是非暂态计算机存储介质或暂态计算机存储介质。该非暂
态计算机存储介质,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器420可选包括相对于处理器410远程设置的存储器,这些远程存储器可以通过网络连接至负荷开关。上述网络的实例可以包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置430可用于接收输入的数字或字符信息,以及产生与负荷开关的用户设置以及功能控制有关的键信号输入。输出装置440可包括显示屏等显示设备。
本领域普通技术人员可理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来执行相关的硬件来完成的,该程序可存储于一个非暂态计算机可读存储介质中,该程序在执行时,可包括如上述方法的实施例的流程,其中,该非暂态计算机可读存储介质可以为磁碟、光盘、只读存储记忆体(ROM)或随机存储记忆体(RAM)等。
本公开提供了一种负荷开关电磁机构输出特性计算方法及容差分配方法,通过建立负荷开关电磁机构的输出特性模型,实现提高电磁机构的计算方法的计算精度、计算速度及鲁棒性。
Claims (9)
- 一种负荷开关电磁机构输出特性计算方法,包括,根据负荷开关的结构特点,建立所述负荷开关电磁机构的物理模型,并根据所述负荷开关电磁机构的物理模型建立负荷开关电磁机构静磁场强度的数学模型,其中,所述物理模型包含所述负荷开关电磁机构的磁路回路,所述数学模型包括泊松方程和拉普拉斯方程;根据所述数学模型,获取所述负荷开关电磁机构在静磁场中磁感应强度的分布曲线,并计算所述负荷开关电磁机构的静态特性;根据所述负荷开关电磁机构静态特性中吸力曲线的拐点,选取主要过程变量节点,并建立反映所述主要过程变量节点与所述主要过程变量节点相邻区域内的其他过程变量节点输出特性关系的目标函数,其中,所述主要过程变量节点为影响所述负荷开关电磁机构输出特性的过程变量节点;在负荷开关电磁机构多个关键设计参数的公差范围内选取多个第一设计参数组合,并通过有限元方法计算所述多个第一参数组合在所述主要过程变量节点处的输出特性;对所述多个第一设计参数组合进行归一化处理并选取相应的基函数,根据所述第一设计参数的第一归一化参数组合、所述基函数及所述多个第一参数组合在所述主要过程变量处的输出特性,构建反映未知参数组合与对应输出特性的函数关系;在负荷开关电磁机构多个关键设计参数的公差范围内重新抽样选取多个第二设计参数组合,并通过有限元方法计算所述多个第二设计参数组合在预设过程变量节点处的输出特性;将所述多个第二设计参数组合进行归一化得到的第二归一化参数组合,带入所述反映未知参数组合与对应输出特性的函数关系中,得到所述多个第二设 计参数组合输出特性的计算值,将通过有限元方法计算得到的所述第二设计参数组合的输出特性作为所述第二设计参数组合的真实值,根据所述多个第二设计参数输出特性的所述计算值与所述真实值的均方根误差和复相关系数为指标选定合适的基函数及c值,确定径向基函数模型;以及将得到的径向基函数模型带入所述的目标函数,在所述主要过程变量节点围成的区域内重新抽样过程变量节点,并计算所述关键设计参数取中心值时负荷开关电磁机构的输出特性,采用预设算法根据预设优化目标确定所述目标函数中电压与转角的影响系数,从而确定所述负荷开关电磁机构输出特性关系的表达式,所述表达式设置为计算负荷开关电磁机构输出特性。
- 根据权利要求1所述的方法,其中,所述计算所述负荷开关电磁机构的静态特性,包括:对所述负荷开关电磁机构的静态特性进行并行化计算,得到所述负荷开关电磁机构的静态特性。
- 根据权利要求1所述的方法,其中,所述预设算法包括量子粒子群算法;所述预设优化目标包括误差函数最小化。
- 一种基于权利要求1-5任一项所述的负荷开关电磁机构输出特性计算方法的负荷开关容差分配方法,包括:根据可靠性判别准则以及所述径向基函数模型,建立负荷开关电磁机构的设计参数的中心值及容差与所述负荷开关电磁机构的可靠度的函数关系,所述设计参数的容差与加工可行性的函数关系,及所述设计参数的容差与加工成本的函数关系;构建所述设计参数容差分配的多目标优化模型;利用层次分析法,确定所述多目标优化模型中的多个目标函数的权重系数;以及基于模拟退火法来进行容差的分配,获取使所述多目标优化模型中的目标函数满足预设阈值要求的设计参数的容差分配结果。
- 一种计算机可读存储介质,存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被计算机执行时实现如权利要求1-8中任一所述的方法。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610744478.4 | 2016-08-27 | ||
CN201610743608.2 | 2016-08-27 | ||
CN201610744478.4A CN106227982A (zh) | 2016-08-27 | 2016-08-27 | 一种电磁继电器静态特性计算方法及装置 |
CN201610743608.2A CN106339548A (zh) | 2016-08-27 | 2016-08-27 | 一种容差自动分配方法及可靠性强的负荷开关设计方法 |
CN201610757589.9A CN106250658B (zh) | 2016-08-29 | 2016-08-29 | 基于径向基函数的负荷开关电磁机构快速计算方法 |
CN201610757589.9 | 2016-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018041046A1 true WO2018041046A1 (zh) | 2018-03-08 |
Family
ID=61300062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/099114 WO2018041046A1 (zh) | 2016-08-27 | 2017-08-25 | 负荷开关电磁机构输出特性计算方法及容差分配方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018041046A1 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110083987A (zh) * | 2019-05-21 | 2019-08-02 | 国网湖南省电力有限公司 | 智能电能表内置负荷开关静态反力分析方法、系统及介质 |
CN110399668A (zh) * | 2019-07-17 | 2019-11-01 | 西安工业大学 | 一种快速准确地求解电磁装置输出特性的方法 |
CN111722174A (zh) * | 2020-05-31 | 2020-09-29 | 宁夏隆基宁光仪表股份有限公司 | 一种应用量子粒子群算法实现电能表异常诊断系统及方法 |
CN112036055A (zh) * | 2020-07-15 | 2020-12-04 | 成都飞机工业(集团)有限责任公司 | 一种基于仿真技术的锥面配合零件容差分配方法 |
CN113536639A (zh) * | 2021-07-22 | 2021-10-22 | 福州大学 | 一种批量智能电磁开关混联扩容优化配置方法及系统 |
CN113779852A (zh) * | 2021-09-29 | 2021-12-10 | 北京航空航天大学 | 一种定量评估参数随机扰动对产品疲劳寿命分布影响的方法 |
CN114188934A (zh) * | 2022-01-14 | 2022-03-15 | 国网河北省电力有限公司经济技术研究院 | 一种双环控制直流系统扰动稳定分析模型构建方法及装置 |
CN115130249A (zh) * | 2022-08-03 | 2022-09-30 | 哈尔滨工业大学 | 一种综合考虑制造成本和质量损失的继电器容差设计方法 |
CN115203860A (zh) * | 2022-08-03 | 2022-10-18 | 哈尔滨工业大学 | 一种考虑制造成本的极化继电器容差自动分配方法 |
CN116124460A (zh) * | 2022-12-26 | 2023-05-16 | 江西理工大学 | 一种基于健康指标构建的轴承寿命预测方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101571885A (zh) * | 2009-06-12 | 2009-11-04 | 哈尔滨工业大学 | 电磁继电器静、动态特性快速计算方法 |
CN103226629A (zh) * | 2013-03-25 | 2013-07-31 | 哈尔滨工业大学 | 继电器批次产品吸合时间一致性控制方法 |
CN103323770A (zh) * | 2013-05-23 | 2013-09-25 | 国家电网公司 | 高压断路器机械特性检测与故障诊断装置 |
CN106227982A (zh) * | 2016-08-27 | 2016-12-14 | 国网冀北电力有限公司电力科学研究院 | 一种电磁继电器静态特性计算方法及装置 |
CN106250658A (zh) * | 2016-08-29 | 2016-12-21 | 国网冀北电力有限公司电力科学研究院 | 基于径向基函数的负荷开关电磁机构快速计算方法 |
CN106339548A (zh) * | 2016-08-27 | 2017-01-18 | 国网冀北电力有限公司电力科学研究院 | 一种容差自动分配方法及可靠性强的负荷开关设计方法 |
-
2017
- 2017-08-25 WO PCT/CN2017/099114 patent/WO2018041046A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101571885A (zh) * | 2009-06-12 | 2009-11-04 | 哈尔滨工业大学 | 电磁继电器静、动态特性快速计算方法 |
CN103226629A (zh) * | 2013-03-25 | 2013-07-31 | 哈尔滨工业大学 | 继电器批次产品吸合时间一致性控制方法 |
CN103323770A (zh) * | 2013-05-23 | 2013-09-25 | 国家电网公司 | 高压断路器机械特性检测与故障诊断装置 |
CN106227982A (zh) * | 2016-08-27 | 2016-12-14 | 国网冀北电力有限公司电力科学研究院 | 一种电磁继电器静态特性计算方法及装置 |
CN106339548A (zh) * | 2016-08-27 | 2017-01-18 | 国网冀北电力有限公司电力科学研究院 | 一种容差自动分配方法及可靠性强的负荷开关设计方法 |
CN106250658A (zh) * | 2016-08-29 | 2016-12-21 | 国网冀北电力有限公司电力科学研究院 | 基于径向基函数的负荷开关电磁机构快速计算方法 |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110083987A (zh) * | 2019-05-21 | 2019-08-02 | 国网湖南省电力有限公司 | 智能电能表内置负荷开关静态反力分析方法、系统及介质 |
CN110083987B (zh) * | 2019-05-21 | 2023-04-28 | 国网湖南省电力有限公司 | 智能电能表内置负荷开关静态反力分析方法、系统及介质 |
CN110399668A (zh) * | 2019-07-17 | 2019-11-01 | 西安工业大学 | 一种快速准确地求解电磁装置输出特性的方法 |
CN110399668B (zh) * | 2019-07-17 | 2023-05-16 | 西安工业大学 | 一种快速准确地求解电磁装置输出特性的方法 |
CN111722174A (zh) * | 2020-05-31 | 2020-09-29 | 宁夏隆基宁光仪表股份有限公司 | 一种应用量子粒子群算法实现电能表异常诊断系统及方法 |
CN112036055B (zh) * | 2020-07-15 | 2022-07-15 | 成都飞机工业(集团)有限责任公司 | 一种基于仿真技术的锥面配合零件容差分配方法 |
CN112036055A (zh) * | 2020-07-15 | 2020-12-04 | 成都飞机工业(集团)有限责任公司 | 一种基于仿真技术的锥面配合零件容差分配方法 |
CN113536639A (zh) * | 2021-07-22 | 2021-10-22 | 福州大学 | 一种批量智能电磁开关混联扩容优化配置方法及系统 |
CN113536639B (zh) * | 2021-07-22 | 2023-09-29 | 福州大学 | 一种批量智能电磁开关混联扩容优化配置方法及系统 |
CN113779852A (zh) * | 2021-09-29 | 2021-12-10 | 北京航空航天大学 | 一种定量评估参数随机扰动对产品疲劳寿命分布影响的方法 |
CN113779852B (zh) * | 2021-09-29 | 2023-05-23 | 北京航空航天大学 | 一种定量评估参数随机扰动对产品疲劳寿命分布影响的方法 |
CN114188934A (zh) * | 2022-01-14 | 2022-03-15 | 国网河北省电力有限公司经济技术研究院 | 一种双环控制直流系统扰动稳定分析模型构建方法及装置 |
CN114188934B (zh) * | 2022-01-14 | 2023-10-13 | 国网河北省电力有限公司经济技术研究院 | 一种双环控制直流系统扰动稳定分析模型构建方法及装置 |
CN115130249A (zh) * | 2022-08-03 | 2022-09-30 | 哈尔滨工业大学 | 一种综合考虑制造成本和质量损失的继电器容差设计方法 |
CN115203860A (zh) * | 2022-08-03 | 2022-10-18 | 哈尔滨工业大学 | 一种考虑制造成本的极化继电器容差自动分配方法 |
CN115130249B (zh) * | 2022-08-03 | 2024-04-12 | 哈尔滨工业大学 | 一种综合考虑制造成本和质量损失的继电器容差设计方法 |
CN115203860B (zh) * | 2022-08-03 | 2024-04-16 | 哈尔滨工业大学 | 一种考虑制造成本的极化继电器容差自动分配方法 |
CN116124460A (zh) * | 2022-12-26 | 2023-05-16 | 江西理工大学 | 一种基于健康指标构建的轴承寿命预测方法及系统 |
CN116124460B (zh) * | 2022-12-26 | 2024-01-30 | 江西理工大学 | 一种基于健康指标构建的轴承寿命预测方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018041046A1 (zh) | 负荷开关电磁机构输出特性计算方法及容差分配方法 | |
CN109063780B (zh) | 变压器局部放电识别方法 | |
CN110291621A (zh) | 用于识别集成电路缺陷的方法和系统 | |
CN111566566A (zh) | 半导体制造的度量和制程控制 | |
Wu et al. | Weighted H∞ filtering of switched systems with time-varying delay: average dwell time approach | |
Ma et al. | Sequential Monte Carlo implementation of cardinality balanced multi‐target multi‐Bernoulli filter for extended target tracking | |
CN116822452B (zh) | 芯片布局优化方法及相关设备 | |
CN110291384A (zh) | 用于集成电路的缺陷预测的方法和系统 | |
CN115019128B (zh) | 图像生成模型训练方法、图像生成方法及相关装置 | |
Zhang et al. | Enhanced cognition‐driven formulation of space mapping for equal‐ripple optimisation of microwave filters | |
CN109345041A (zh) | 一种利用威布尔分布与arma结合的设备故障率预测方法 | |
WO2024179409A1 (zh) | 三维工业异常检测方法、装置、存储介质及电子设备 | |
CN106250658B (zh) | 基于径向基函数的负荷开关电磁机构快速计算方法 | |
Larbi et al. | Analysis of parameter variability in integrated devices by partial least squares regression | |
CN116205113B (zh) | 一种永磁同步直线电机稳健性优化方法及系统 | |
JP2021166284A (ja) | 3次元情報の決定 | |
Zhang et al. | Modeling sampling strategy optimization by machine learning based analysis | |
Fotouhi et al. | A study on battery model parametrisation problem-application-oriented trade-offs between accuracy and simplicity | |
Owrang et al. | Model selection for high-dimensional data | |
US11340977B2 (en) | Predictive analytics for failure detection | |
CN112733951B (zh) | 一种断路器机械缺陷诊断的多信息决策权重分配融合方法 | |
CN115860055B (zh) | 性能确定方法、性能优化方法、装置、电子设备以及介质 | |
JP7574939B2 (ja) | 推定モデル訓練装置、推定モデル訓練方法、認識装置、認識方法、及びプログラム | |
CN117253209B (zh) | 自动驾驶点云检测方法、装置、通信设备及存储介质 | |
CN118732550A (zh) | 一种电力设备的巡检方法、装置、设备、介质及程序产品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17845348 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17845348 Country of ref document: EP Kind code of ref document: A1 |