WO2018040581A1 - 一种中低速磁悬浮辅助作业机器人 - Google Patents

一种中低速磁悬浮辅助作业机器人 Download PDF

Info

Publication number
WO2018040581A1
WO2018040581A1 PCT/CN2017/080873 CN2017080873W WO2018040581A1 WO 2018040581 A1 WO2018040581 A1 WO 2018040581A1 CN 2017080873 W CN2017080873 W CN 2017080873W WO 2018040581 A1 WO2018040581 A1 WO 2018040581A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
robot
low speed
auxiliary
medium
Prior art date
Application number
PCT/CN2017/080873
Other languages
English (en)
French (fr)
Inventor
刘大玲
张昕
张�浩
周芃
张琨
许克亮
王东波
景晓斐
耿明
倪琍
Original Assignee
中铁第四勘察设计院集团有限公司
国开科技(武汉)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201621021750.8U external-priority patent/CN206123636U/zh
Priority claimed from CN201610786436.7A external-priority patent/CN106320112B/zh
Application filed by 中铁第四勘察设计院集团有限公司, 国开科技(武汉)有限公司 filed Critical 中铁第四勘察设计院集团有限公司
Publication of WO2018040581A1 publication Critical patent/WO2018040581A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B31/00Working rails, sleepers, baseplates, or the like, in or on the line; Machines, tools, or auxiliary devices specially designed therefor
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B35/00Applications of measuring apparatus or devices for track-building purposes
    • E01B35/02Applications of measuring apparatus or devices for track-building purposes for spacing, for cross levelling; for laying-out curves
    • E01B35/04Wheeled apparatus

Definitions

  • the invention belongs to the field of magnetic levitation industrial maintenance, and more particularly to a medium and low speed magnetic levitation auxiliary working robot.
  • Maglev traffic is a kind of low-noise and carbon-free traffic, and it is one of the important directions for the development of urban traffic in the future.
  • the medium and low speed maglev technology is to form a magnetic field closed magnetic circuit by an electromagnet mounted on the vehicle body and an F-shaped track, and the excitation current of the electromagnet is adjusted by the air gap sensor device to adjust the suction between the electromagnet and the track (to make the magnetic float
  • the gap is kept at 8 ⁇ 10mm) to keep the distance between the electromagnet and the track stable, and the train is stably suspended. Therefore, track maintenance is an important part of public works.
  • the medium and low speed magnetic levitation is mostly an elevated and open track structure, it is necessary to cooperate with the auxiliary work during the on-site maintenance process. For example, when the crack in the F rail is detected, the welding operation is required, and the welding and maintenance process is required. Auxiliary work such as lighting is required for lifting materials or equipment on the ground to the track and for operation at night.
  • auxiliary robot suitable for medium and low speed magnetic levitation to complete various auxiliary operations.
  • the middle and low-speed magnetic floating rails are mostly open structures with overhead suspension. The spacing of the sleepers is about 600mm. There is no working position on the track. It is difficult for the general robot to walk freely on the magnetic levitation track. Therefore, the research and design of the auxiliary working robot needs to be carried out. Adapt to the low-speed magnetic float of the open structure.
  • the present invention provides an auxiliary working robot, which combines the characteristics of the medium and low speed magnetic levitation itself, and is correspondingly designed for medium and low speed magnetic levitation auxiliary equipment, and its key components such as a rack,
  • the structure of the folding and bending mechanism, the auxiliary working mechanism and the autonomous cruise module and the specific setting methods are studied and designed, and the corresponding can be effectively realized.
  • the work maintenance auxiliary operation can realize the autonomous walking of the robot, and has the advantages of simple structure and convenient operation.
  • the present invention provides a medium and low speed magnetic levitation auxiliary working robot, which comprises a frame, a folding and bending mechanism, an auxiliary working mechanism and an autonomous cruise module, wherein:
  • the frame is used for installing the folding and bending mechanism, the auxiliary working mechanism and the autonomous cruise module, which spans between the two F-tracks of the medium and low speed magnetic levitation;
  • the folding and bending mechanism is provided with two groups, which are disposed at two ends of the frame and located above the F rail.
  • Each group of the folding and bending mechanism is provided with a walking wheel pair and a card wheel pair. Where the pair of traveling wheels are in contact with the upper surface of the F rail and move along the upper surface of the F rail, the two latching wheels of the pair of latching wheels are in contact with the outer and lower surfaces of the F rail, respectively And moving along the outer and lower surfaces of the F rail;
  • the auxiliary working mechanism includes an auxiliary working platform and an auxiliary working device, wherein the auxiliary working platform is installed on the rack, and the auxiliary working device is installed on the auxiliary working platform for completing auxiliary work;
  • the autonomous cruise module is mounted below the frame for enabling the auxiliary work robot to walk freely along the F-track.
  • the autonomous cruise module comprises a navigation system, a cruise calculation task control module and a ground control station communication module, the navigation system comprising an inertial navigation unit, a GPS receiving module and a walking range measuring unit, wherein the inertial navigation unit is used for Measuring a three-axis acceleration of the robot, the GPS receiving module is configured to measure a longitude, a latitude, and a height of the robot, the walking range measuring unit is configured to measure a walking mileage of the robot; the cruise computing task control module includes a cruise module and a control module, the cruise module is respectively connected to the inertial navigation unit, the GPS receiving module and the walking range measuring unit, and the data measured by the inertial navigation unit, the GPS receiving module and the walking range measuring unit are input as input signals to the cruise module.
  • the navigation system comprising an inertial navigation unit, a GPS receiving module and a walking range measuring unit, wherein the inertial navigation unit is used for Measuring a three-axis acceleration of the robot, the GPS receiving module is configured to
  • the cruise module determines the specific position of the robot according to the input signal, and feeds the specific position of the robot to the ground control station, and the control module is connected to the ground control station communication module, which is controlled according to the ground.
  • the walking command of the station communication module controls the walking of the robot.
  • the frame is further provided with a camera mounted above the frame by a telescopic rod.
  • the rack is further provided with a ranging sensor, which is specifically an ultrasonic or infrared ranging sensor, which is arranged on the front and rear sides of the rack.
  • a ranging sensor which is specifically an ultrasonic or infrared ranging sensor, which is arranged on the front and rear sides of the rack.
  • each set of the folding and bending mechanism is provided with two sets of walking wheels and two sets of clamping wheel pairs, and the two sets of walking wheels are arranged along the extending direction of the F rails, and the F rails The upper surface contacts, the two sets of card wheel pairs are also arranged along the direction in which the F rails extend, and are in contact with the outer and lower surfaces of the F rails.
  • the folding and bending mechanism includes a traveling wheel mounting plate and a card wheel folding plate, the traveling wheel mounting plate is vertically disposed and mounted on the frame, and the traveling wheel pair is installed in the Below the traveling wheel mounting plate, the card wheel folding plate is mounted on a side of the traveling wheel mounting plate by a card wheel connecting bracket, and the card wheel pair is mounted on the card wheel folding plate, and The outer side and the lower surface of the F rail are in contact.
  • the auxiliary working device includes a welding device, a lifting device, a lighting device, and a generator.
  • the lighting device comprises a lamp cap assembly and a lifting mechanism, wherein the lifting mechanism adopts a four-section telescopic cylinder as a lifting adjustment mode, and the maximum adjusting height is 3 meters, and the lamp cap assembly is composed of a 4 ⁇ 5W high-efficiency LED light bar.
  • the light coverage radius is 15m-35m, and each LED light bar can be adjusted independently by up, down, left and right angles, and the 360-degree illumination can be realized by rotation.
  • the welding device is disposed on one side of the auxiliary working platform
  • the lifting device is disposed on the other side of the auxiliary working platform
  • the generator is disposed under the auxiliary working platform .
  • the present invention is specially designed for medium and low speed magnetic levitation.
  • the auxiliary working robot completes the auxiliary operations such as the welding operation of the F-rail, equipment hoisting, night lighting, etc., and has the characteristics of small size, light structure, convenient carrying, and also has the advantages of simple structure, convenient operation, etc. It can be used when it is off track, which can be effectively used for the maintenance and safe operation of medium and low speed maglev.
  • the invention realizes that the robot can walk autonomously along the F-track by setting a folding bending mechanism and an autonomous cruise module suitable for the auxiliary working robot, and the robot can accurately locate and reliably walk through the autonomous cruise module specially designed and designed.
  • the utility model is suitable for the open structure of the medium and low speed magnetic suspension overhead suspension, and solves the problem that the auxiliary working robot can not walk on the middle and low speed magnetic levitation track without the walking position of the operator.
  • the folding and bending mechanism of the present invention is provided with two groups, which are respectively disposed at two ends of the frame.
  • the card wheel folding plate When used, the card wheel folding plate can be opened downward when the track is dropped to buckle the side edge of the F rail, and along After the end of the use, the F-rail movement can be folded upwards when it leaves the track, so as to reduce the overall volume of the walking device, and has the characteristics of convenient carrying and falling rail to work.
  • the walking wheel pair on the folding and bending mechanism of the invention is designed as a two-wheel structure, which can effectively prevent the robot from bumping when the bolt connecting the F rail and the sleeper is generated, so that the flaw detection is more accurate, and the card wheel wheel adopts the method of holding the card.
  • the card is mounted on the F rail to prevent the robot from derailing.
  • the camera of the present invention is provided with a camera, which can realize image acquisition along the track and the track, and can be mounted on the frame by lifting and lowering, and can realize multi-azimuth and multi-angle image capturing.
  • the auxiliary working robot of the invention is provided with a distance measuring sensor in front and rear, and the auxiliary working robot can automatically stop when the obstacle is encountered by the measuring distance, thereby realizing the anti-collision function of the robot.
  • FIG. 1 is a schematic structural view of a medium-low speed magnetic levitation assisted working robot according to an embodiment of the present invention
  • FIG. 2 is a rear elevational view of the medium and low speed magnetic levitation assisted working robot of the embodiment of the present invention
  • FIG. 3 is a left side view of the medium and low speed magnetic levitation assisted working robot according to the embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of an autonomous cruise module according to an embodiment of the present invention.
  • a medium and low speed magnetic levitation auxiliary working robot mainly includes a frame 11 , a folding and bending mechanism, an auxiliary working mechanism and an autonomous cruise module 7 , wherein the frame 11 serves as a supporting mechanism.
  • the folding and bending mechanism is used for installing the wheel pair to realize the movement of the auxiliary working robot on the F rail 4, and the auxiliary working mechanism is used for completing various auxiliary functions.
  • the autonomous cruise module 7 is used to implement the auxiliary work robot to autonomously cruise on the medium and low speed maglev F rail.
  • the frame 11 serves as a supporting member for other components, which is horizontally disposed and spans between the two F-tracks of the medium-low speed magnetic suspension to be detected, and is arranged in a direction perpendicular to the extending direction of the F-track.
  • the folding and bending mechanism is provided with two groups, which are respectively disposed at two ends of the frame.
  • each group of the folding and bending mechanism is provided with a walking wheel pair 5 and a card.
  • the traveling wheel pair 5 includes a pair of walking wheels that are in contact with the upper surface of the F rail and move along the upper surface of the F rail, one of which is a passive wheel and the other is a driving wheel, and the driving wheel pair is a motor wheel.
  • the walking wheel pair is designed as a two-wheel structure, which can effectively prevent the robot from bumping when the bolt connecting the F rail and the sleeper is generated, so that the flaw detection result is more accurate.
  • the card wheel set 2 includes a pair of card wheel, the two card wheels respectively contacting the outer side surface and the lower surface of the F rail, and moving along the outer side surface and the lower surface of the F rail, the card wheel The pair can ensure that the robot walks along the track and is available at the corner Differential function.
  • the card wheel pair 2 is a passive wheel with no power, which functions as a card position, a limit position and an anti-derailment.
  • each group of folding and bending mechanisms is provided with two sets of walking wheels 5 and two sets of card wheel sets 2, whereby four of the two sets of walking wheels 5 are along
  • the F-tracks are arranged in an extending direction and are movable along the F-track to reliably guide the movement of the auxiliary working robot, and the two-position latching wheel pair 2 is in contact with the side of the F-rail.
  • the latching wheels of the two sets of the latching wheel pairs 2 that are in contact with the lower surface of the F rail are arranged along the extending direction of the F rail, and along The lower surface movement of the F rail can effectively ensure the reliability of the movement of the auxiliary working robot.
  • the folding and bending mechanism includes a traveling wheel mounting plate 12 and a card wheel folding plate 3, wherein the traveling wheel mounting plate 12 is vertically disposed and mounted on the frame, and the traveling wheel pair is mounted on the traveling wheel mounting plate Below the 12, the card wheel folding plate 3 is mounted on the side of the traveling wheel mounting plate by a card wheel connecting bracket, and is wrapped around the periphery of the F rail, and then the card wheel pair is mounted on the card wheel to be folded
  • the plate 12 is arranged such that one of the card position wheels is in contact with the outer side surface of the F rail, and the other card position wheel is in contact with the lower surface of the F rail, so that the card position wheel pair is clamped on the F rail by the holding card manner, Effectively prevent the rescue robot from derailing.
  • the two sets of the folding wheel folding plates 1 are folded upwards to reduce the overall volume of the walking device.
  • the two sets of the folding wheel folding plates 1 are opened, so that the locking wheel is loaded in the F
  • the outer side and the lower surface of the rail realize the outer holding rail and the inner upward holding rail.
  • the auxiliary working mechanism includes an auxiliary working platform 14 as an installation platform of the auxiliary working device, and an auxiliary working platform 14 disposed above the frame 11 on which the auxiliary working device is mounted.
  • the auxiliary work equipment includes a lighting device, a lifting device, a welding device, and a generator.
  • the illuminating device is installed on the auxiliary working platform 14 for providing illumination for the auxiliary work, including the lamp cap assembly 16 and the lifting mechanism 15.
  • the lifting mechanism 15 selects four telescopic cylinders as the lifting and lowering mode, and the maximum height is 3 meters, and the cap assembly 16 is rotated up and down.
  • the beam illumination angle can be adjusted, the light coverage radius reaches 15-35 meters, and the lamp head assembly 16 is composed of 4 ⁇ 5W high efficiency LED light bars.
  • the field needs to adjust each lamp head separately to the top, bottom, left and right corners, and rotate to achieve 360-degree illumination.
  • the lamp head can be evenly illuminated in four directions in the lamp panel.
  • the lifting device is installed on one side of the auxiliary working platform, and is used for lifting materials, operating tools, equipment and the like on the ground to the track, mainly including a lifting device and a hoisting mechanism with a free hook function, and the lifting device is mounted on the robot bracket
  • the upper part is fixed around, and the telescopic hoisting cable protrudes from the middle to realize the lifting of the hoisting equipment from the bottom of the bridge to the bridge, and the loading and unloading of the hoisting items is mainly done manually.
  • the robot operates the control valve according to the command, so that when the lifting device is loaded with the free hook, the hook distance is specified by the control system, and the operator is notified remotely after the operator hangs the weight within the rated load.
  • the robot controls the hoisting hydraulic controller to start the heavy object, and the stop of the starting weight is controlled remotely. The final distance is determined by the sensor detecting the position and the length of the rope.
  • the welding equipment is the content carried by the robot. It is used to perform the welding operation when the welding work is needed on site. It is convenient for the use of on-site construction personnel.
  • the welding-related equipment is also transported by the robot to the designated position. The relevant personnel can also be on the auxiliary working robot. Implement the welding operation.
  • the generator is mounted below the auxiliary work platform 14, which provides emergency power for the electrical equipment on the robot.
  • the autonomous cruise module 7 is mounted under the frame, which drives the robot movement by controlling the driving wheel movement of the walking wheel pair 5 to drive the robot to move along the F rail to realize the autonomous walking control of the robot, thereby enabling the auxiliary work of the present invention.
  • the robot is adapted to the open structure of the medium and low speed magnetic suspension overhead suspension.
  • the autonomous cruise module 7 integrates the functions of walking stability control (controlling the output torque of the two driving wheels to balance the traction of the vehicle), navigation and mission control, and has multiple mission routes. The point and speed can be set separately. It is a complete high-performance, low-cost and miniaturized orbital robot autonomous walking control system.
  • the autonomous cruise module 7 includes a navigation system, a cruise calculation task control module, and a ground control station communication module.
  • the navigation system includes an inertial navigation unit, a GPS receiving module, and a walking range measuring unit, and the inertial navigation unit is configured to measure the three axes of the robot. Acceleration (ie xyz three-way acceleration, xyz direction is set according to actual needs, such as setting the extension direction of F rail to x-axis, and F The rail extends in a direction perpendicular to the y-axis, which is perpendicular to the direction in which the F-rail extends, and is vertically distributed in the z-axis.
  • the GPS receiving module is used to measure the longitude, latitude and altitude of the robot.
  • the unit is used to measure the walking distance of the robot.
  • the cruise calculation task control module and the ground control station communication module implement data interaction, and the cruise calculation task control module can feed the specific position of the robot to the ground control station communication module, and the ground control station communication module can send instructions to the cruise calculation task control module.
  • the cruise calculation task control module mainly comprises a cruise module and a control module, the cruise module and the control module are similar to two microcomputers, and the cruise module is a cruise computer based on embedded Linux for navigation and Mission control and communication with the ground control station, the control module is a control computer for the robot's walking control, stabilization control and communication with the ground control station to realize the motion control of the mobile robot, specifically to realize the driving wheel in the walking wheel
  • the control of the servo motor realizes the movement of the driving wheel by controlling the servo motor of the driving wheel, thereby realizing the movement of the robot. It is suitable for various torque three-phase brushless motors controlled by the pulse width signal, and the control module can also realize the information of the sensor.
  • the cruise module is respectively connected to the inertial navigation unit, the GPS receiving module and the walking range measuring unit, and the data measured by the inertial navigation unit, the GPS receiving module and the walking range measuring unit are input as input signals to the cruise module, and the cruise module is input according to the input.
  • the signal determines the specific position of the robot, and feeds the specific position of the robot to the ground control station.
  • the control module is connected to the ground control station communication module, and controls the walking of the robot according to the walking instruction of the ground control station communication module.
  • the navigation system in the autonomous cruise module 7 automatically locates the coordinates of the location to be reached according to the input cruise mileage, and then the robot performs real-time matching calculation according to the travel coordinates and the location coordinates of the remote ground station communication input, and simultaneously combines the inertial navigation real-time.
  • the walking position is matched with the set coordinate position in real time, and the walking range measuring unit is used to measure the distance moved by the robot to determine the current position of the robot according to the initial value of the starting point of the robot, according to the current specific position of the robot, and then known PID matching according to the pre-programmed waypoints Calculate the direction and distance of the robot's motion to achieve autonomous cruising.
  • the speed of the cruise is calculated by the robot based on the distance to the destination.
  • the navigation system of the invention is mainly based on the range calibration, and the navigation system assisted by GPS and inertial navigation has simple control logic, compact structure and small volume, which enables the robot to walk according to the planned route of navigation.
  • the rack is also provided with a battery 8 for supplying power to the autonomous cruise module 7.
  • the autonomous cruise module 7 can also be connected to an external power source through a cable to provide the power required for the cruise module to cruise through an external power source.
  • the rack is further provided with a distance measuring sensor 6 and a camera 10, and the ranging sensor 6 is located between two F rails, which are specifically ultrasonic or infrared ranging sensors, and are arranged in an array manner to assist the operation.
  • the distance measuring sensor is arranged in front of and behind the robot. Specifically, within the safe distance range, the ranging sensor 6 detects that there is an obstacle in the traveling line, and the robot controls the electronically controlled driving unit to brake, and the safety distance is set according to different speeds. The faster the speed, the farther the safety distance is, and the flaw detection can be performed. When the robot encounters an obstacle, it automatically stops safely and realizes the anti-collision function of the robot.
  • the camera 10 is mounted above the rack, and is used for image acquisition along the track and the track, and can observe the foreign object invasion, the intrusion limit and the like, and the image is transmitted or stored locally, and the camera type is specific. It can be a 2D or 3D camera, which is mounted on the top of the rack through the telescopic rod 9, which can realize the lifting of the camera and achieve multi-angle and multi-angle shooting.
  • the autonomous cruise module 7 can receive the detection data of the ranging sensor 6 and the camera 10, and analyze the detected data to obtain the required data.
  • an external interface 13 is further disposed on the rack to realize communication communication between the robot and the remote console, and realize remote interaction of data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

一种中低速磁悬浮辅助作业机器人,包括机架(11)、折叠弯折机构、辅助作业机构和自主巡航模块(7),机架(11)横跨在待检测的中低速磁悬两个F轨之间;折叠弯折机构共设有两组,其分设于机架(11)的两端,并位于F轨的上方,每组折叠弯折机构上均设置有行走轮对(5)和卡位轮对(2);辅助作业机构包括辅助作业平台(14)和辅助作业设备,其中辅助作业平台(14)安装在机架(11)上,辅助作业设备安装在该辅助作业平台(14)上,用于完成辅助作业;自主巡航模块(7)安装在机架(11)的下方,用于实现辅助作业机器人沿着F轨自由行走。该机器人可实现现场维护的辅助作业,并可实现自主巡航,具有结构简单、操作方便等优点。

Description

一种中低速磁悬浮辅助作业机器人 【技术领域】
本发明属于磁悬浮工务维护领域,更具体地,涉及一种中低速磁悬浮辅助作业机器人。
【背景技术】
磁悬浮交通是一种低噪声无碳交通,是未来城市交通发展的重要方向之一。中低速磁浮技术是通过安装在车体上的电磁铁与F型轨道相互构成磁场闭合磁路,通过气隙感应器装置调节电磁铁的励磁电流,调整电磁铁与轨道之间的吸力(使磁浮间隙保持在8~10mm),以保持电磁铁与轨道之间的距离稳定,实现列车稳定悬浮。因此,轨道维护是工务作业的重要内容。
由于中低速磁悬浮多为高架、开放式的轨道结构,在现场维护过程中,需配合进行辅助作业,例如当监测到F轨存在裂纹时,需实行焊接操作,在实行焊接及检修过程中需从地面吊装材料或设备至轨道上,以及在夜间操作时,需提供照明等辅助作业。为完成上述各项辅助作业,需研究设计一种可适用于中低速磁悬浮辅助作业机器人,以配合完成各种辅助作业。另外,中低速磁浮轨排多为高架悬空的开放式结构,轨枕间距约为600mm,轨道上无作业人员走行位置,一般的机器人难以在磁悬浮轨道上自由行走,因此,研究设计的辅助作业机器人需适应于开放式结构的中低速磁浮。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种辅助作业机器人,其中结合中低速磁悬浮自身的特点,相应设计了适用于中低速磁悬浮辅助设备,并对其关键组件如机架、折叠弯折机构、辅助作业机构和自主巡航模块的结构及其具体设置方式进行研究和设计,相应的可有效实现 工务维护辅助作业,并可实现机器人的自主行走,具有结构简单、操作方便等优点。
为实现上述目的,本发明提出了一种中低速磁悬浮辅助作业机器人,包括机架、折叠弯折机构、辅助作业机构和自主巡航模块,其中:
所述机架用于安装所述折叠弯折机构、辅助作业机构和自主巡航模块,其横跨在中低速磁悬浮两个F轨之间;
所述折叠弯折机构共设有两组,其分设于所述机架的两端,并位于F轨的上方,每组所述折叠弯折机构上均设置有行走轮对和卡位轮对,其中行走轮对与所述F轨的上表面接触,并沿着F轨的上表面移动,所述卡位轮对的两个卡位轮分别与所述F轨的外侧面和下表面接触,并沿着F轨的外侧面和下表面移动;
所述辅助作业机构包括辅助作业平台和辅助作业设备,其中所述辅助作业平台安装在所述机架上,所述辅助作业设备安装在该辅助作业平台上,用于完成辅助作业;
所述自主巡航模块安装在所述机架的下方,其用于实现辅助作业机器人沿着F轨自由行走。
作为进一步优选的,该自主巡航模块包括导航系统、巡航计算任务控制模块和地面控制站通讯模块,所述导航系统包括惯性导航单元、GPS接收模块和行走量程测量单元,所述惯性导航单元用于测量所述机器人的三轴加速度,所述GPS接收模块用于测量机器人的经度、纬度和高度,所述行走量程测量单元用于测量机器人的行走里程;所述巡航计算任务控制模块包括巡航模块和控制模块,所述巡航模块分别与所述惯性导航单元、GPS接收模块和行走量程测量单元相连,所述惯性导航单元、GPS接收模块和行走量程测量单元测量的数据作为输入信号输入至巡航模块中,该巡航模块根据输入的信号判断所述机器人的具体位置,并将机器人的具体位置反馈给地面控制站,所述控制模块与地面控制站通讯模块相连,其根据地面控 制站通讯模块的行走指令控制机器人的行走。
作为进一步优选的,所述机架上还设置有摄像机,该摄像机通过伸缩杆安装在所述机架的上方。
作为进一步优选的,所述机架上还设置有测距传感器,该测距传感器具体为超声波或红外测距传感器,其布置在所述机架的前后侧。
作为进一步优选的,每组所述折叠弯折机构上均设置有两组行走轮对和两组卡位轮对,两组行走轮对沿着所述F轨的延伸方向布置,并与F轨的上表面接触,两组卡位轮对同样沿着所述F轨的延伸方向布置,并与F轨的外侧面和下表面接触。
作为进一步优选的,所述折叠弯折机构包括行走轮安装板和卡位轮折叠板,所述行走轮安装板竖直设置并安装在所述机架上,所述行走轮对安装在所述行走轮安装板的下方,所述卡位轮折叠板通过卡位轮连接支架安装在所述行走轮安装板的侧面,所述卡位轮对安装在所述卡位轮折叠板上,并与所述F轨的外侧面和下表面接触。
作为进一步优选的,所述辅助作业设备包括焊接设备、起重设备、照明设备和发电机。
作为进一步优选的,所述照明设备包括灯头组件和升降机构,该升降机构采用四节伸缩气缸作为升降调节方式,最大调节高度为3米,所述灯头组件由4盏5W高效率LED灯条组成,其灯光覆盖半径达15米-35米,每个LED灯条能单独做上下左右角度调节,旋转实现360度全方位照明。
作为进一步优选的,所述焊接设备设于所述辅助作业平台的一侧,所述起重设备设于所述辅助作业平台的另一侧,所述发电机设于所述辅助作业平台的下方。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
1.本发明针对中低速磁悬浮的特点专门设置了适用于中低速磁悬浮的 辅助作业机器人,以完成对F轨的焊接操作、设备吊装、夜间照明等辅助作业,具有体积小、结构轻、携带方便的特点,同时还具有结构简单、操作方便等优点,可随车到达作业地点落轨即可进行使用,可有效用于中低速磁浮的工务维护和安全运营。
2.本发明通过设置适用于辅助作业机器人的折叠弯折机构和自主巡航模块,可实现机器人沿着F轨自主行走,通过专门研究设计的自主巡航模块,可实现机器人的准确定位与可靠行走,适用于中低速磁悬浮高架悬空的开放式结构,解决了中低速磁悬浮轨道上无作业人员走行位置而无法实现辅助作业机器人行走的问题。
3.本发明的折叠弯折机构共设有两组,分设于机架的两端,使用时卡位轮折叠板可在轨道落轨时向下打开以扣住F轨的侧沿,并沿着F轨运动,使用结束后,其离开轨道时可向上折起,以减小行走装置的整体体积,具有携带方便、落轨即可工作的特点。
4.本发明的折叠弯折机构上的行走轮对设计成双轮结构,可有效防止机器人通过F轨与轨枕连接的螺栓时产生颠簸,使探伤更加准确,卡位轮对采用抱卡的方式卡装在F轨上,可有效防止机器人脱轨。
5.本发明的机架的上方设置有摄像机,该摄像机可实现轨道及轨道沿线的图像采集,并且其可升降的安装在机架上,可实现多方位、多角度的图像拍摄。
6.本发明辅助作业机器人的前后均设置有测距传感器,通过测距可使辅助作业机器人遇障碍时自动停车,实现机器人的防撞功能。
【附图说明】
图1是本发明实施例的中低速磁悬浮辅助作业机器人的结构示意图;
图2是本发明实施例的中低速磁悬浮辅助作业机器人的后视图;
图3是本发明实施例的中低速磁悬浮辅助作业机器人的左视图;
图4是本发明实施例的自主巡航模块结构框图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,本发明实施例提供的一种中低速磁悬浮辅助作业机器人,其主要包括机架11、折叠弯折机构、辅助作业机构和自主巡航模块7,其中,机架11作为支撑机构,用于固定安装折叠弯折机构和辅助作业机构,所述折叠弯折机构用于安装轮对,以实现辅助作业机器人在F轨4上的移动,所述辅助作业机构用于完成各种辅助作业,所述自主巡航模块7用于实现辅助作业机器人自主巡航于中低速磁浮F轨。通过上述各个机构的相互配合,可实现F轨监测过程中的各类辅助操作,并可实现机器人的自主行走,具有结构简单、操作方便等优点。
下面将对各个机构和部件进行详细的说明和描述。
如图1所示,机架11作为其他部件的支撑部件,其水平设置,并且横跨在待检测的中低速磁悬浮两个F轨之间,其布置方向与F轨的延伸方向垂直。
如图1-3所示,折叠弯折机构共设有两组,其分设于所述机架的两端,具体的,每组所述折叠弯折机构上均设置有行走轮对5和卡位轮对。其中,行走轮对5包括一对行走轮,其与所述F轨的上表面接触,并沿着F轨的上表面移动,其中一个是被动轮一个是主动轮,主动轮对是电机轮。该行走轮对设计成双轮结构,可有效防止机器人通过F轨与轨枕连接的螺栓时产生颠簸,使探伤结果更加准确。所述卡位轮对2包括一对卡位轮,两个卡位轮分别与所述F轨的外侧面和下表面接触,并沿着F轨的外侧面和下表面移动,该卡位轮对可保证机器人沿着轨道行走,并且在弯道处可提供 差速功能。卡位轮对2是没有动力的被动轮,起卡位、限位以及防脱轨的作用。
进一步的,本发明的实施例中每组折叠弯折机构上均设置有两组行走轮对5和两组卡位轮对2,由此两组行走轮对5中的四个行走轮沿着所述F轨的延伸方向布置,并可沿着F轨运动,对辅助作业机器人的移动进行可靠的导向,而两组卡位轮对2中的与F轨侧面接触的卡位轮沿着所述F轨的延伸方向布置,并沿着F轨的外侧面运动,两组卡位轮对2中的与F轨下表面接触的卡位轮沿着所述F轨的延伸方向布置,并沿着F轨的下表面运动,以此可有效保证辅助作业机器人移动的可靠性。
具体的,折叠弯折机构包括行走轮安装板12和卡位轮折叠板3,其中行走轮安装板12竖直设置并安装在所述机架上,所述行走轮对安装在行走轮安装板12的下方,所述卡位轮折叠板3通过卡位轮连接支架安装在所述行走轮安装板的侧面,并包覆在F轨的外围,然后将卡位轮对安装在卡位轮折叠板12上,以使其中一个卡位轮与F轨的外侧面接触,另一个卡位轮与F轨的下表面接触,以此卡位轮对采用抱卡方式卡装在F轨上,可有效的防止救援机器人脱轨。折叠弯折机构未使用时,两组卡位轮折叠板1向上折起,以减小行走装置的整体体积,使用时,两组卡位轮折叠板1打开,使卡位轮卡装在F轨的外侧面和下表面,实现外侧抱轨和内侧向上抱轨。
所述辅助作业机构包括辅助作业平台14和辅助作业设备,其中辅助作业平台14作为辅助作业设备的安装平台,其设于机架11的上方,所述辅助作业设备安装在该辅助作业平台14上,用于完成辅助作业,该辅助作业设备包括照明设备、起重设备、焊接设备和发电机。
照明设备安装在辅助作业平台14,用于为辅助作业提供照明,包括灯头组件16和升降机构15,升降机构15选用四节伸缩气缸作为升降调节方式,最大高度为3米,上下转动灯头组件16可调节光束照射角度,灯光覆盖半径达到15-35米,灯头组件16由4盏5W高效率LED灯条组成,按现 场需要将每个灯头单独做上下左右角调节,旋转实现360度全方位照明,也可将灯头在灯盘均匀布向四个方向照明。
起重设备安装在辅助作业平台的一侧,其用于吊装地面的材料、操作工具、设备等到轨道上,主要包括起重装置和具有自由落钩功能的卷扬机构,起重装置安装于机器人支架上部,四周固定,伸缩的吊装线缆从中部伸出,实现吊装设备从桥底到桥上的吊装,而吊装物品的装卸主要由人工完成。操作时,机器人根据指令通过控制器操作控制阀,使得在操作起重装置带载自由落钩时,落钩距离由控制系统指定,等到操作人员挂上额定载荷内的重物后,远程通知机器人起吊作业,机器人控制卷扬液压控制器,起动重物,起动重物的停止由远程控制,最后的距离为传感器检测到位与收绳长度共同判断停止。
焊接设备是机器人运载的内容,用于对现场需焊接作业时执行焊接操作,方便现场施工人员的使用,焊接相关的设备,也由机器人运输到指定位置,相关人员也可以在辅助作业机器人的上面实现焊接的操作。发电机安装在辅助作业平台14的下方,其为机器人上的用电设备提供应急用电。
自主巡航模块7安装在机架的下方,其通过控制行走轮对5的主动轮运动带动机器人运动,以驱动机器人沿着F轨移动,实现机器人的自主行走控制,由此使得本发明的辅助作业机器人适应于中低速磁悬浮高架悬空的开放式结构,该自主巡航模块7集成了行走稳定控制(控制两主动轮输出扭矩,使车辆牵引力平衡)、导航和任务控制等诸多功能,具有多个任务航路点,速度可单独设置,是一套完整的高性能、低成本和微型化的轨道机器人自主行走控制系统。
自主巡航模块7包括导航系统、巡航计算任务控制模块和地面控制站通讯模块,导航系统包括惯性导航单元、GPS接收模块和行走量程测量单元,所述惯性导航单元用于测量所述机器人的三轴加速度(即xyz三向加速度,xyz方向根据实际需要设定,如设定F轨的延伸方向为x轴,与F 轨延伸方向垂直,并水平分布的为y轴,与F轨延伸方向垂直,并垂直分布的为z轴),所述GPS接收模块用于测量机器人的经度、纬度和高度,所述行走量程测量单元用于测量机器人的行走里程。所述巡航计算任务控制模块与地面控制站通讯模块实现数据交互,巡航计算任务控制模块可将机器人的具体位置反馈给地面控制站通讯模块,地面控制站通讯模块可发送指令给巡航计算任务控制模块,以使机器人运行至指定位置;该巡航计算任务控制模块主要包括巡航模块和控制模块,巡航模块和控制模块类似于两个微型计算机,巡航模块是基于嵌入式Linux的巡航计算机,用于导航和任务控制以及与地面控制站的通讯,控制模块是控制计算机,用于机器人的行走控制、增稳控制及与地面控制站的通讯,实现移动机器人的运动控制,具体是实现行走轮中主动轮的伺服电机的控制,通过控制主动轮的伺服电机实现主动轮的运动,进而实现机器人的运动,其适用于脉宽信号控制的各种扭矩三相无刷电机,该控制模块还可实现传感器的信息采集(测距传感器6的数据)、图像信息采集(摄像机10的数据)及导航数据的获取。具体的,巡航模块分别与惯性导航单元、GPS接收模块和行走量程测量单元相连,惯性导航单元、GPS接收模块和行走量程测量单元测量的数据作为输入信号输入至巡航模块中,该巡航模块根据输入的信号判断所述机器人的具体位置,并将机器人的具体位置反馈给地面控制站,所述控制模块与地面控制站通讯模块相连,其根据地面控制站通讯模块的行走指令控制机器人的行走。
具体的,自主巡航模块7内的导航系统根据输入的巡航里程,GPS自动定位到需要到达的地点坐标,然后机器人根据行走里程与远程地面站通信输入的地点坐标实时匹配运算,同时组合惯性导航实时行走的位置与所设定的坐标位置实时匹配计算,并采用行走量程测量单元测量机器人移动的距离,以根据机器人出发点的初始值确定机器人当前的位置,根据机器人当前的具体位置,然后与已知的按照事先编制的作业航点进行PID匹配计 算控制机器人的运动方向和距离,从而实现自主巡航,巡航的速度由机器人根据到达目的地的距离计算。本发明的导航系统主要是以量程标定为主,以GPS以及惯性导航为辅助的导航系统,其控制逻辑简单,结构紧凑,体积小,可使得机器人根据导航的规划路径进行行走。
所述机架上还设置有为自主巡航模块7提供电源的电池8,然而自主巡航模块7也可通过电缆与外部电源相连,通过外部电源提供巡航模块巡航所需的动力。
所述机架上还设置有测距传感器6和摄像机10,所述测距传感器6位于两个F轨之间,其具体为超声波或红外测距传感器,并以阵列的方式排布,辅助作业机器人的前后均布置该测距传感器。具体的,在安全距离范围内,测距传感器6检测到行进线路有障碍,机器人控制电控驱动单元刹车,根据速度的不同设定安全距离不同,速度越快,安全距离越远,可使探伤机器人遇障碍时自动安全停车,实现机器人的防撞功能。所述摄像机10安装在所述机架的上方,其用于对轨道及轨道的沿线进行图像采集,可对异物入侵、侵限越界等情况进行观测,图像进行实时传输或存储本地,摄像机类型具体可为2D或3D摄像机,其具体通过伸缩杆9安装在机架的上方,可实现摄像机的升降,实现多方位多角度的拍摄。其中,自主巡航模块7可接收测距传感器6和摄像机10的检测数据,并对检测数据进行分析,获得所需的数据。
此外,为了实现将机器人测得的数据及时的进行传输与保存,在所述机架上还设置有外接接口13,以实现机器人与远程控制台的通信联系,实现数据的远程交互。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种中低速磁悬浮辅助作业机器人,其特征在于,包括机架(11)、折叠弯折机构、辅助作业机构和自主巡航模块(7),其中:
    所述机架(11)用于安装所述折叠弯折机构、辅助作业机构和自主巡航模块(7),其横跨在中低速磁悬浮两个F轨之间;
    所述折叠弯折机构共设有两组,其分设于所述机架(11)的两端,并位于F轨的上方,每组所述折叠弯折机构上均设置有行走轮对(5)和卡位轮对(2),其中行走轮对(5)与所述F轨的上表面接触,并沿着F轨的上表面移动,所述卡位轮对(2)的两个卡位轮分别与所述F轨的外侧面和下表面接触,并沿着F轨的外侧面和下表面移动;
    所述辅助作业机构包括辅助作业平台(14)和辅助作业设备,其中所述辅助作业平台(14)安装在所述机架(11)上,所述辅助作业设备安装在该辅助作业平台(14)上,用于完成辅助作业;
    所述自主巡航模块(7)安装在所述机架(11)的下方,其用于实现辅助作业机器人沿着F轨自由行走。
  2. 如权利要求1所述的中低速磁悬浮辅助作业机器人,其特征在于,所述机架上还设置有摄像机(10),该摄像机(10)通过伸缩杆(9)安装在所述机架的上方。
  3. 如权利要求1或2所述的中低速磁悬浮辅助作业机器人,其特征在于,所述机架上还设置有测距传感器(6),该测距传感器(6)具体为超声波或红外测距传感器,其布置在所述机架的前后侧。
  4. 如权利要求3所述的中低速磁悬浮辅助作业机器人,其特征在于,每组所述折叠弯折机构上均设置有两组行走轮对(5)和两组卡位轮对(2),两组行走轮对(5)沿着所述F轨的延伸方向布置,并与F轨的上表面接触,两组卡位轮对(2)同样沿着所述F轨的延伸方向布置,并与F轨的外侧面 和下表面接触。
  5. 如权利要求4所述的中低速磁悬浮辅助作业机器人,其特征在于,所述折叠弯折机构包括行走轮安装板(12)和卡位轮折叠板(3),所述行走轮安装板竖直设置并安装在所述机架(11)上,所述行走轮对(5)安装在所述行走轮安装板的下方,所述卡位轮折叠板(3)通过卡位轮连接支架安装在所述行走轮安装板的侧面,所述卡位轮对(2)安装在所述卡位轮折叠板(12)上,并与所述F轨的外侧面和下表面接触。
  6. 如权利要求5所述的中低速磁悬浮辅助作业机器人,其特征在于,所述辅助作业设备包括焊接设备、起重设备、照明设备和发电机。
  7. 如权利要求6所述的中低速磁悬浮辅助作业机器人,其特征在于,所述照明设备包括灯头组件(16)和升降机构(15),该升降机构(15)采用四节伸缩气缸作为升降调节方式,最大调节高度为3米,所述灯头组件(16)由4盏5W高效率LED灯条组成,其灯光覆盖半径达15米-35米,每个LED灯条能单独做上下左右角度调节,旋转实现360度全方位照明。
  8. 如权利要求1-7任一项所述的中低速磁悬浮辅助作业机器人,其特征在于,所述焊接设备设于所述辅助作业平台(14)的一侧,所述起重设备设于所述辅助作业平台(14)的另一侧,所述发电机设于所述辅助作业平台(14)的下方。
  9. 如权利要求1所述的中低速磁悬浮辅助作业机器人,其特征在于,该自主巡航模块(7)包括导航系统、巡航计算任务控制模块和地面控制站通讯模块,所述导航系统包括惯性导航单元、GPS接收模块和行走量程测量单元,所述惯性导航单元用于测量所述机器人的三轴加速度,所述GPS接收模块用于测量机器人的经度、纬度和高度,所述行走量程测量单元用于测量机器人的行走里程;所述巡航计算任务控制模块包括巡航模块和控制模块,所述巡航模块分别与所述惯性导航单元、GPS接收模块和行走量程测 量单元相连,所述惯性导航单元、GPS接收模块和行走量程测量单元测量的数据作为输入信号输入至巡航模块中,该巡航模块根据输入的信号判断所述机器人的具体位置,并将机器人的具体位置反馈给地面控制站,所述控制模块与地面控制站通讯模块相连,其根据地面控制站通讯模块的行走指令控制机器人的行走。
PCT/CN2017/080873 2016-08-31 2017-04-18 一种中低速磁悬浮辅助作业机器人 WO2018040581A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2016107864367 2016-08-31
CN2016210217508 2016-08-31
CN201621021750.8U CN206123636U (zh) 2016-08-31 2016-08-31 一种中低速磁悬浮辅助作业机器人
CN201610786436.7A CN106320112B (zh) 2016-08-31 2016-08-31 一种中低速磁悬浮辅助作业机器人

Publications (1)

Publication Number Publication Date
WO2018040581A1 true WO2018040581A1 (zh) 2018-03-08

Family

ID=61299944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080873 WO2018040581A1 (zh) 2016-08-31 2017-04-18 一种中低速磁悬浮辅助作业机器人

Country Status (1)

Country Link
WO (1) WO2018040581A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109732620A (zh) * 2019-02-25 2019-05-10 四川国软科技发展有限责任公司 一种隧道巡检机器人
CN110617801A (zh) * 2019-09-17 2019-12-27 韶关市涵润信息科技有限公司 建筑病害巡视装置、建筑病害检测系统及其检测方法
US10998027B2 (en) 2017-07-17 2021-05-04 Micron Technology, Inc. Memory circuitry
CN113433266A (zh) * 2021-06-10 2021-09-24 山东欧齐珞信息科技有限公司 全隧道气体成分监测方法及系统
CN113873109A (zh) * 2021-08-24 2021-12-31 河北良汇科技有限公司 一种用于新鲜中药材质量追溯的智能输送监控装置及方法
CN116638231A (zh) * 2023-07-24 2023-08-25 哈尔滨空调股份有限公司 一种基于相控阵检测的空冷器焊缝焊接设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332364A1 (de) * 2003-07-17 2005-02-03 Elektrische Automatisierungs- Und Antriebstechnik Eaat Gmbh Chemnitz Berührungslose Schienenmessung
CN204059112U (zh) * 2014-04-02 2014-12-31 北京建鼎国铁工程设计有限公司 一种用于无砟轨道施工的行走在防护墙上的混凝土浇注机
CN105316986A (zh) * 2014-06-03 2016-02-10 北京星网宇达科技股份有限公司 一种基于惯性传感器与导航卫星组合的轨道参数动态检测小车
CN106320112A (zh) * 2016-08-31 2017-01-11 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮辅助作业机器人

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332364A1 (de) * 2003-07-17 2005-02-03 Elektrische Automatisierungs- Und Antriebstechnik Eaat Gmbh Chemnitz Berührungslose Schienenmessung
CN204059112U (zh) * 2014-04-02 2014-12-31 北京建鼎国铁工程设计有限公司 一种用于无砟轨道施工的行走在防护墙上的混凝土浇注机
CN105316986A (zh) * 2014-06-03 2016-02-10 北京星网宇达科技股份有限公司 一种基于惯性传感器与导航卫星组合的轨道参数动态检测小车
CN106320112A (zh) * 2016-08-31 2017-01-11 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮辅助作业机器人

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998027B2 (en) 2017-07-17 2021-05-04 Micron Technology, Inc. Memory circuitry
CN109732620A (zh) * 2019-02-25 2019-05-10 四川国软科技发展有限责任公司 一种隧道巡检机器人
CN109732620B (zh) * 2019-02-25 2023-09-15 四川国软科技集团有限公司 一种隧道巡检机器人
CN110617801A (zh) * 2019-09-17 2019-12-27 韶关市涵润信息科技有限公司 建筑病害巡视装置、建筑病害检测系统及其检测方法
CN113433266A (zh) * 2021-06-10 2021-09-24 山东欧齐珞信息科技有限公司 全隧道气体成分监测方法及系统
CN113873109A (zh) * 2021-08-24 2021-12-31 河北良汇科技有限公司 一种用于新鲜中药材质量追溯的智能输送监控装置及方法
CN116638231A (zh) * 2023-07-24 2023-08-25 哈尔滨空调股份有限公司 一种基于相控阵检测的空冷器焊缝焊接设备
CN116638231B (zh) * 2023-07-24 2023-09-22 哈尔滨空调股份有限公司 一种基于相控阵检测的空冷器焊缝焊接设备

Similar Documents

Publication Publication Date Title
WO2018040546A1 (zh) 一种中低速磁悬浮救援机器人
WO2018040581A1 (zh) 一种中低速磁悬浮辅助作业机器人
US10591927B2 (en) Smart mobile detection platform for greenhouse
WO2018076836A1 (zh) 一种空中轨道多式联运互通系统
CN110154866B (zh) 一种蚁足智能清障机器人
CN206125056U (zh) 一种中低速磁悬浮f轨探伤机器人
WO2018040580A1 (zh) 一种中低速磁悬浮破冰融雪清扫机器人
CN109591907A (zh) 一种桥墩检测用行走机构和行走方法
CN106320112B (zh) 一种中低速磁悬浮辅助作业机器人
CN106143530A (zh) 用于悬挂式单轨交通系统箱型轨道梁的巡检小车
CN104802812A (zh) 一种便携式单轨轨道梁晃动检测车、系统及方法
CN107816975A (zh) 悬挂式空铁轨道梁桥自动检测系统
US20190039863A1 (en) Crawler crane
CN205930728U (zh) 用于悬挂式单轨交通系统箱型轨道梁的巡检小车
CN110926541A (zh) 一种跨座式单轨pc轨道梁检测装置
CN212500409U (zh) 一种轻便型轨道检测装置
CN114035488B (zh) 一种基于物联网云监控技术的运架一体机电气控制系统
CN206131993U (zh) 一种中低速磁悬浮f轨检测机器人
WO2020155600A1 (zh) 一种建筑施工系统及其施工方法
CN109131430A (zh) 一种中低速磁悬浮辅助作业机器人
CN107843486A (zh) 一种基于弯沉仪的检测机器人系统
KR20140052554A (ko) 건설토목용 중량구조물 이송용 자주식 전동리프트
CN206123636U (zh) 一种中低速磁悬浮辅助作业机器人
CN207515778U (zh) 悬挂式空铁轨道桥梁自动检测系统
CN208516829U (zh) 轮胎式地铁铺轨起重机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844889

Country of ref document: EP

Kind code of ref document: A1