WO2018040541A1 - 机器人结构单元、机器人及机器人构建方法 - Google Patents

机器人结构单元、机器人及机器人构建方法 Download PDF

Info

Publication number
WO2018040541A1
WO2018040541A1 PCT/CN2017/077058 CN2017077058W WO2018040541A1 WO 2018040541 A1 WO2018040541 A1 WO 2018040541A1 CN 2017077058 W CN2017077058 W CN 2017077058W WO 2018040541 A1 WO2018040541 A1 WO 2018040541A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
joint
structural
motor
structural unit
Prior art date
Application number
PCT/CN2017/077058
Other languages
English (en)
French (fr)
Inventor
徐晓东
Original Assignee
工心(上海)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工心(上海)科技有限公司 filed Critical 工心(上海)科技有限公司
Publication of WO2018040541A1 publication Critical patent/WO2018040541A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/007Means or methods for designing or fabricating manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric

Definitions

  • the present invention relates to the field of collaborative robots, and more particularly to a robot structural unit, a robot, and a robot construction method.
  • a robot structural unit for achieving the object comprising a first joint motor, a second joint motor, and a structural arm;
  • the structural arm includes a structural arm body, a first joint, and a second joint, the structural arm body including the first End and second end;
  • the first joint includes a first motor connection surface and a first body connection surface, the first body connection surface being detachably coupled to the first end of the structural arm body, the first motor connection surface and The first joint motor is detachably connected;
  • the second joint includes a second motor connection surface and a second body connection surface, the second body connection surface being detachably coupled to the second end of the structural arm body, the second motor connection surface and The second joint motor is detachably coupled.
  • the robot structural unit is further characterized in that a central axis of the first joint motor is parallel to a central axis of the second joint motor.
  • the robot structural unit is further characterized in that: the first motor connection surface is perpendicular to the first body connection surface, and the second motor connection surface is perpendicular to the second body connection surface, The first body connecting surface is parallel to the second body connecting surface.
  • the robot structural unit is further characterized in that a central axis of the first joint motor is perpendicular to a central axis of the second joint motor.
  • the robot structural unit is further characterized in that: the first motor connecting surface is parallel to the first body connecting surface, and the second motor connecting surface is perpendicular to the second body connecting surface, The first body connecting surface is parallel to the second body connecting surface.
  • the robot structural unit is further characterized in that: a first connecting member is disposed between the first joint and the structural arm body, and one side of the first connecting member is detachably connected to the first joint The other side of the first connecting member is detachably connected to the structural arm body;
  • a second connecting member is disposed between the second joint and the structural arm body, one side of the second connecting member is detachably connected to the second joint, and the other side of the second connecting member is The structural arm body is detachably connected.
  • the robot structural unit is further characterized in that the structural arm body is a profile member having a groove, and one side of the first connecting member and the second connecting member are engaged with the groove The other side of the first connecting member and the second connecting member are each provided with a threaded hole for connecting with the first joint and the second joint.
  • a robot for achieving the object includes one or more robot structural units as described above.
  • the robot is further characterized in that the robot further comprises a base or a wheel.
  • a robot construction method for achieving the stated purpose includes:
  • the configuration process ends; if the body structure of the robot does not satisfy the use requirement, the robot structural unit is changed And obtaining new characteristic parameters, inputting new characteristic parameters into the configuration software of the configuration device, and re-configuring the process until the robot's ontology structure satisfies the use requirements.
  • the robot construction method is further characterized in that the step of changing the robot structural unit comprises removing the structural arm body from the robot structural unit and replacing the structural arm body of a suitable size.
  • the positive progress of the present invention lies in that the robot disclosed in the present invention comprises a first joint motor, a second joint motor and a structural arm, and the structural arm comprises a structural arm main body, a first joint and a second joint, and the structural arm main body can be conveniently
  • the first joint motor and the second joint motor are also detachably removed from the first joint and the second joint, respectively, so that the structural arm body, the first joint, and the The two joints are arbitrarily replaced to meet the different requirements of the different performance conditions of the robot, and the flexibility of the robot is improved.
  • the robot construction method disclosed in the invention is used for constructing the body structure of the robot. During the construction process, the length of the structural arm body and the form of the first joint and the second joint can be changed at any time according to working conditions, so that the flexibility of the robot Reflected.
  • FIG. 1 is an exploded perspective view of a structural arm in accordance with an embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing a structural arm according to another embodiment of the present invention.
  • FIG. 3 is a schematic view of a vertical six-joint robot according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of a vertical six-joint robot according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a SCARA robot according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an AGV robot according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method for constructing a robot according to the present invention.
  • Figure 8 is a schematic diagram of a robot type selection interface
  • Figure 9 is a schematic diagram of the input interface of the characteristic parameters of the vertical six-joint robot in the configuration software
  • Figure 10 is a schematic diagram of the SCARA robot feature parameter input interface in the configuration software
  • Figure 11 is a schematic diagram of the input interface of the feature parameters of the Delta robot in the configuration software
  • FIG. 12 is a schematic diagram of a feature input interface of a three-wheeled AGV robot in a configuration software
  • Figure 13 is a schematic diagram of a four-wheeled AGV robot characteristic parameter input interface in the configuration software
  • Figure 14 is a schematic diagram of the input interface of the characteristic parameters of the Mecanum AGV robot in the configuration software.
  • FIGS. 1 through 14 are only examples, and are not drawn to the same scale conditions, and should not be construed as limiting the scope of protection required by the present invention.
  • the robot structural unit includes first joint motors 101a, 201a, second joint motors 101b, 201b, and structural arms;
  • the structural arms include structural arm bodies 102, 202, first joints 103, 203, and Two joints 104, 204, the structural arm bodies 102, 202 include first ends 102a, 202a and second ends 102b, 202b;
  • the first joints 103, 203 include first motor connection faces 1031, 2031 and first body connection faces 1032, 2032, and the first body connection faces 1032, 2032 and the first ends 102a, 202a of the structural arm bodies 102, 202 are detachably Connecting, the first motor connection faces 1031, 2031 are detachably connected to the first joint motors 103, 203;
  • the second joint 104, 204 includes a second motor connection surface 1041, 2041 and a second body connection surface 1042 2042, the second body connecting faces 1042, 2042 are detachably connected to the second ends 102b, 202b of the structural arm bodies 102, 202, and the second motor connecting faces 1041, 2041 are detachably connected to the second joint motors 101b, 201b.
  • the structural arms can be fabricated from a metallic material, wherein the structural arm bodies 102, 202 are preferably profiled members of aluminum alloy material to facilitate obtaining structural arm bodies 102, 202 of different lengths. If it is necessary to obtain a lighter weight structural arm, it is also possible to replace the aluminum alloy material with a carbon fiber material.
  • the structural arm bodies 102, 202 are preferably straight arms, and the structural arm bodies 102, 202 may also be curved arms under different operating conditions.
  • the detachable connection method (including the connection between the joint motor and the joint and the connection between the joint and the structural arm main body) in the present invention includes a screw connection.
  • a first connecting member 106, 206 is disposed between the first joints 103, 203 and the structural arm bodies 102, 202, and one side of the first connecting members 106, 206 is detachably connected to the first joints 103, 203, the first connection The other side of the members 106, 206 are detachably coupled to the structural arm bodies 102, 202;
  • a second connecting member 109, 209 is disposed between the second joint 104, 204 and the structural arm main body 102, 202, and one side of the second connecting member 109, 209 is detachably connected to the second joint 104, 204, and the second connecting The other side of the members 109, 209 is detachably coupled to the structural arm bodies 102, 202.
  • the structural arm bodies 102, 202 are profile members having grooves 105, 205, one side of the first connecting members 106, 206 and the second connecting members 109, 209 are engaged in the grooves 105, 205, the first connecting member
  • the other sides of the 106, 206 and second connectors 109, 209 are each provided with a threaded hole for connection with the first joints 103, 203 and the second joints 104, 204.
  • the detachable connection of the present invention also includes other easy-to-remove connections such as threaded connections, snap connections, and the like.
  • the structural arm bodies 102, 202 can be easily detached from between the first joints 103, 203 and the second joints 104, 204, while the first joint motors 103, 203 and the second joint motors 101b, 201b can also be conveniently separated from The first joints 103, 203 and the second joints 103, 203 are detached, so that the structural arm bodies 102, 202, the first joints 103, 203 and the second joints 103, 203 can be arbitrarily replaced to meet different working conditions. Different requirements for the performance of the robot, thereby improving the flexibility of the robot.
  • Figures 1, 3 and 2, 4 respectively reveal two forms of structural arms, namely parallel axis structural arms and vertical axis structural arms, in an embodiment of the present invention.
  • the central axes of the first joint motor 101a and the second joint motor 101b connected at both ends of the parallel shaft structural arm are parallel to each other, and the parallel shaft structural arm functions to secure two connected thereto. Space distance and space of the drive motor Parallelism requirements.
  • the central axes of the first joint motor 101a and the second joint motor 101b connected at both ends of the vertical axis structural arm are perpendicular to each other, and the vertical axis structural arm functions to secure two connected thereto.
  • the center axis of the motor is the line where the motor shaft is located.
  • the parallel shaft structural arm and the vertical axis structural arm can be constructed by changing the form of the first joint 3 and the second joint 4, that is, the positional relationship between the motor joint surface and the body joint surface.
  • the first motor connection surface 1031 is perpendicular to the first body connection surface 1032
  • the second motor connection surface 1041 is perpendicular to the second body connection surface 1042
  • the first body connection surface 1032 is parallel to the second body connection surface 1042.
  • the first body connecting surface 1032 is not easily identified due to the influence of the angle of the drawing, and is thus drawn in the form of a broken line.
  • the first motor connecting surface 1031 and the second motor connecting surface 1041 are provided with circular holes 108 for respectively inserting and fixing the first joint motor 101a and the second joint motor 101b, the first body connecting surface 1032 and the second body connecting surface.
  • the first motor connection surface 2031 is parallel to the first body connection surface 2032, and the second motor connection surface 2041 is perpendicular to the second body connection surface 2042, and the first body connection surface 2032 is parallel to the second body connection surface 2042. .
  • the second body connecting surface 2032 is not easily identified due to the influence of the angle of the drawing, and is thus drawn in the form of a broken line.
  • the first motor connection surface 2031 is provided with a connection flange, and the connection flange is connected to the first joint motor 201a.
  • a circular hole 208 for inserting and fixing the second joint motor 201b is opened on the second motor connecting surface 2041, and the first body connecting surface 2032 and the second body connecting surface 2042 are opened for respectively inserting and fixing the first end 202a and A square hole 207 of the second end 202b.
  • the robot of the present invention can simultaneously include a robot structural unit having a parallel shaft structural arm and a robot structural unit having a vertical axis structural arm, and the number and length of the structural arms can be determined according to the working condition of the robot. To adjust.
  • Figures 5 and 6 are two different embodiments of the robot of the present invention, and Figure 5 is a horizontal four degree of freedom joint robot SCARA employing parallel axis structural arms as shown in Figures 1 and 3.
  • Fig. 6 is an automatic guided transport robot AGV which also employs parallel shaft structural arms as shown in Figs. 1, 3, and employs two.
  • the robot disclosed by the invention comprises one or more robot structural units, and the robot structural unit can cooperate with the base 301 or the wheel 601 or other functional modules to form different forms and have different functions.
  • Possible robots such as SCARA robots, AGV robots, Delta robots, etc.
  • FIG. 7 is a flowchart of a robot construction method of the present invention, and the robot construction method includes:
  • determining the number and form of the robot structural units required by the robot according to the working condition requirements, and the form of the robot structural unit includes the lengths of the structural arm bodies 102, 202;
  • the step of changing the robot structural unit includes removing the structural arm bodies 102, 202 from the robot structural unit and replacing the structural arm bodies 102, 202 of suitable dimensions.
  • Step a comprises three sub-steps a01, a02 and a03.
  • A01 is the "configuration start” step, which involves the preparation of the configuration device and the configuration software, such as ensuring that the configuration software can run stably on the configuration device.
  • A02 is the “condition requirement” step, which includes delineating and measuring the robot workspace. Obtain data such as ambient temperature, humidity, cleanliness, etc., as well as the scope of the robot's work area and the implementation of work objectives, such as grabbing, stacking, transportation, and so on.
  • A03 is a "robot body structure design” step, which includes determining the number and form of the robot structural units, such as the number of joint motors, the form of the structural arms (parallel axis structural arms, vertical axis structural arms, lengths of structural arm bodies 102, 202) And ensure that the body structure of the robot is within the range of the work area.
  • Step b comprises two sub-steps b01, b02.
  • B01 is a "robot body structure construction" step, the step comprising the first joint motor 101a, 201a And the second joint motor 101b, 201b are respectively connected to the first joint 3 and the second joint 4, and the first joint 3 and the second joint 4 are respectively connected to the first end 2a and the second end 2b of the structural arm main body 2,
  • the robot structural unit is composed, and then the robot structural unit is spliced to form a robot body structure.
  • the B02 is a determining step of "characteristic parameters", and the characteristic parameters include feature size and quality characteristics.
  • the feature size includes the distance between the coordinate systems of the first joint motor 101a, 201a and the second joint motor 101b, 201b in the space;
  • the quality characteristics include mass characteristics of the joint motor and the structural arm, such as density, mass, moment of inertia, and the like.
  • Step c comprises two sub-steps c01, c02.
  • the C01 is a "robot type selection" step, which comprises selecting a corresponding robot type in the robot type selection interface 1001 as shown in FIG. 8.
  • the robot type mainly includes: a serial type robot, a parallel type robot, a custom robot, and an automatic guide.
  • the tandem type robot includes: the universal vertical joint N-degree-of-freedom robot N can be any natural number, a dedicated configuration robot such as a SCARA robot or the like.
  • Parallel robots include: Delta robots and the like.
  • the custom robot the user can freely set the configuration of the robot according to the actual working conditions, which can be a series or parallel mixing.
  • Automated guided vehicle AGV robots include: two-wheel drive AGV and four-wheel drive AGV.
  • C02 is a "feature parameter input” step, which includes inputting the feature parameters in the feature parameter input interface as shown in FIGS. 9 to 14.
  • FIG. 9 is a schematic diagram of a characteristic parameter input interface of a vertical six-joint robot.
  • the default robot base coordinate system and the joint first-axis coordinate system coincide, and in the illustrated posture, the first-axis coordinate system and the second-axis coordinate system
  • the Z-direction distance is 1101
  • the X-direction distance is 1102
  • the X-axis distance between the 2nd axis and the 3rd axis coordinate system is 1103
  • the 2nd axis and the 3rd axis coordinate system Y distance are 1104, and the 3rd axis and the 4th axis
  • the X-direction distance of the coordinate system is 1105
  • the Z-direction distance between the 4th and 5th axis coordinate systems is 1106,
  • the Z-direction distance between the 5th axis and the 6th axis coordinate system is 1107
  • the distance between the 6th axis and the tool coordinate system is 1108, fill in the above parameters into the input box shown on the
  • FIG. 10 is a schematic diagram of a SCARA robot characteristic parameter input interface.
  • the default robot base coordinate system coincides with the joint first axis coordinate system.
  • the first axis rotation coordinate system and the second axis rotation coordinate system The X-direction distance is 1201, the distance between the 2nd axis rotation coordinate system and the 4th axis rotation coordinate system is 1202, and the distance between the 4th axis rotation coordinate system and the workpiece coordinate system X direction is 1203, and the workpiece coordinate system is 1st.
  • the Z-direction distance of the axis rotation coordinate system is 1204. Fill in the above parameters into the input box shown on the right side of Figure 11.
  • Fig. 11 is a schematic diagram of the input interface of the characteristic parameters of the Delta robot. As shown in Fig. 11, the upper large circle radius is 1301, the active arm length is 1303, the slave arm length is 1304, and the lower small circle radius is 1302. The above parameters are filled in the input box shown on the right side of FIG.
  • FIG. 12 is a schematic diagram of a characteristic input interface of a three-wheeled AGV robot. As shown in FIG. 12, the center Y distance of the two driving wheels is 1401, the driving wheel width is 1402, and the driving wheel and the driven wheel X distance are 1403, and the wheel diameter is 1404. Fill in the above parameters into the input box shown on the right side of FIG.
  • Figure 13 is a schematic diagram of the characteristic parameter input interface of the four-wheeled AGV robot. As shown in Figure 13, the center Y distance of the two drive wheels is 1501, the drive wheel width is 1502, and the distance between the two drive wheels and the two driven wheels is 1503. The diameter is 1504, and the above parameters are filled in the input boxes designated by 1-4 shown in FIG.
  • Figure 14 is a schematic diagram of the input interface of the characteristic parameters of the McNam-type AGV robot. As shown in Fig. 14, the center distance of the drive wheel is 1601, the width of the drive wheel is 1602, the distance from the center of the drive wheel is 1603, and the diameter of the wheel is 1604. The above parameters are filled in the input box shown on the right side of FIG.
  • Step d includes four sub-steps d01, d02, d03, d04.
  • D01 is the “Robot Motion Control Parameter Tuning” step, which includes completing the online PID tuning parameters, feedforward parameters, sensor measurement filter parameters, etc. to ensure the stability, accuracy and control of each motion axis control of the robot. Rapid.
  • D02 is the “Robot Path Planning Test Run” step, which involves running the robot to complete the corresponding motion action, checking whether it is correct, and setting the reference position and stroke range protection of the robot.
  • D03 is the “Robot characteristic parameter calibration” step, which involves using a laser tracker or a coordinate measuring machine to calibrate and compensate the robot's characteristic parameters, so that the robot can obtain higher motion accuracy.
  • D04 is the “robot functional performance test and measurement” step, which includes comprehensive testing of the robot according to the working conditions to verify whether it can meet the requirements of use.
  • Step e comprises two sub-steps e01, e02.
  • E01 is the “test result judgment” step, which includes determining whether the robot meets the requirements, and if yes, sending a configuration end instruction, if not, returning to step c02, checking and confirming the characteristic parameters, and The new configuration process begins.
  • E02 is the "End of Configuration” step, which involves receiving the configuration end command and ending the robot configuration process.
  • the positive progress of the present invention lies in that the robot disclosed in the present invention comprises a first joint motor, a second joint motor and a structural arm, and the structural arm comprises a structural arm main body, a first joint and a second joint, and the structural arm main body can be conveniently
  • the first joint motor and the second joint motor are also detachably removed from the first joint and the second joint, respectively, so that the structural arm body, the first joint, and the The two joints are arbitrarily replaced to meet the different requirements of the different performance conditions of the robot, and the flexibility of the robot is improved.
  • the robot construction method disclosed in the invention is used for constructing the body structure of the robot. During the construction process, the length of the structural arm body and the form of the first joint and the second joint can be changed at any time according to working conditions, so that the robot can adapt Different working conditions reflect the flexibility of the robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种机器人结构单元,包括第一关节电机(101a、201a)、第二关节电机(101b、201b)和结构臂;结构臂包括结构臂主体(102、202)、第一接头(103、203)和第二接头(104、204),结构臂主体(102、202)、第一关节电机(101a、201a)和第二关节电机(101b、201b)可以方便地从第一接头(103、203)和第二接头(104、204)上拆下,因此可以对结构臂主体(102、202)、第一接头(103、203)和第二接头(104、204)进行任意更换,以满足不同的工况对机器人性能的不同要求,提高了机器人的柔性。还涉及一种机器人及其构建方法。

Description

机器人结构单元、机器人及机器人构建方法 技术领域
本发明涉及协作机器人领域,更具体地涉及一种机器人结构单元、机器人及机器人构建方法。
背景技术
传统的协作机器人,如机械臂,其本体结构较为固定,不可调整。例如,机械臂的关节与关节之间设置有起连接作用的结构臂,该结构臂通常采用一体成型制造,即结构臂的两端用于与电机连接的部分与结构臂是一体的,无法拆卸。这导致了机器人缺乏柔性,即无法对简单易行地对自身进行改造,以适应多种工作环境。
例如,在工厂自动化生产线领域,产品越来越呈现出“多品种中小批量”趋势,甚至需要根据客户需求进行产品定制。这就要求生产线特别是机器人设备,能够根据生产工况进行适当地调整和改造,比如调整机器人结构臂的长度、调整机器人的构型或者增减机器人的自由度。具备“柔性”的机器人系统,可以灵活地满足上述需要,大大降低生产线的改造成本,提高生产用户的经济效益。
因此,本领域需要一种能够及时并且简单地调整结构臂长度并且具有较大柔性的机器人。
发明内容
本发明的目的在于提供一种机器人结构单元,其构造简单且具有更好的系统柔性,功能可扩展性和工作任务的适应性。
本发明的目的在于提供一种机器人,包括机器人结构单元,易于调整及拼装。
本发明的目的还在于提供一种机器人构建方法,用于简单方便地实现机器人的组态过程。
为实现所述目的的机器人结构单元,包括第一关节电机、第二关节电机和结构臂;所述结构臂包括结构臂主体、第一接头和第二接头,所述结构臂主体包括第一 端和第二端;
所述第一接头包括第一电机连接面和第一主体连接面,所述第一主体连接面与所述结构臂主体的所述第一端可拆卸地连接,所述第一电机连接面与所述第一关节电机可拆卸地连接;
所述第二接头包括第二电机连接面和第二主体连接面,所述第二主体连接面与所述结构臂主体的所述第二端可拆卸地连接,所述第二电机连接面与所述第二关节电机可拆卸地连接。
所述的机器人结构单元,其进一步的特点是,所述第一关节电机的中轴线平行于所述第二关节电机的中轴线。
所述的机器人结构单元,其进一步的特点是,所述第一电机连接面垂直于所述第一主体连接面,并且所述第二电机连接面垂直于所述第二主体连接面,所述第一主体连接面平行于所述第二主体连接面。
所述的机器人结构单元,其进一步的特点是,所述第一关节电机的中轴线垂直于所述第二关节电机的中轴线。
所述的机器人结构单元,其进一步的特点是,所述第一电机连接面平行于所述第一主体连接面,并且所述第二电机连接面垂直于所述第二主体连接面,所述第一主体连接面平行于所述第二主体连接面。
所述的机器人结构单元,其进一步的特点是,所述第一接头与结构臂主体之间设置有第一连接件,所述第一连接件的一侧与所述第一接头可拆卸地连接,所述第一连接件的另一侧与所述结构臂主体可拆卸地连接;
所述第二接头与结构臂主体之间设置有第二连接件,所述第二连接件的一侧与所述第二接头可拆卸地连接,所述第二连接件的另一侧与所述结构臂主体可拆卸地连接。
所述的机器人结构单元,其进一步的特点是,所述结构臂主体为具有凹槽的型材件,所述第一连接件和所述第二连接件的一侧均卡合在所述凹槽中,所述第一连接件和所述第二连接件的另一侧均设置有螺纹孔,所述螺纹孔用于与所述第一接头和所述第二接头连接。
为实现所述目的的机器人,包括一个或者多个如上所述的机器人结构单元。
所述的机器人,其进一步的特点是,所述机器人还包括底座或车轮。
为实现所述目的的机器人构建方法,包括:
a.根据工况要求确定机器人需要的机器人结构单元的数量和形式;
b.组合所述机器人结构单元并形成机器人的本体结构;根据所述机器人的本体结构确定机器人的特征参数;
c.将所述机器人的本体结构与机器人组态设备连接,运行组态软件,并在机器人类型选择界面上根据机器人的本体结构选择机器人的类型,将所述特征参数输入到相应的特征参数输入界面中;
d.根据所述特征参数调节并测试所述机器人的本体结构的性能;
e.判断所述机器人的本体结构是否满足使用需求;若所述机器人的本体结构满足使用需求,则组态过程结束;若所述机器人的本体结构不满足使用需求,则改变所述机器人结构单元并获得新的特征参数,将新的特征参数输入到所述组态设备的所述组态软件中,重新进行组态过程,直到机器人的本体结构满足使用需求。
所述的机器人构建方法,其进一步的特点是,改变所述机器人结构单元的步骤包括将结构臂主体从机器人结构单元上拆下,并更换尺寸合适的结构臂主体。
本发明的积极进步效果在于:本发明公开的机器人,包括第一关节电机、第二关节电机和结构臂,结构臂包括结构臂主体、第一接头和第二接头,结构臂主体可以方便地从第一接头和第二接头之间拆下,第一关节电机和第二关节电机也可以方便地分别从第一接头和第二接头上拆下,因此可以对结构臂主体、第一接头和第二接头进行任意更换,以满足不同的工况对机器人性能的不同要求,提高了机器人的柔性。本发明公开的机器人构建方法,用于对机器人的本体结构进行构建,在构建过程中,可以根据工况要求随时改变结构臂主体的长度及第一接头和第二接头的形式,使得机器人的柔性得以体现。
附图说明
本发明的上述的以及其他的特征、性质和优势将通过下面结合附图和实施例的描述而变得更加明显,其中:
图1为本发明一个实施例中结构臂的分解示意图;
图2为本发明另一个实施例中结构臂的分解示意图;
图3为本发明一个实施例中垂直六关节机器人的示意图;
图4为本发明一个实施例中垂直六关节机器人的分解示意图;
图5为本发明一个实施例中SCARA机器人的示意图;
图6为本发明一个实施例中AGV机器人的示意图;
图7为本发明机器人构建方法的流程图;
图8为机器人类型选择界面示意图;
图9为组态软件中垂直六关节机器人特征参数输入界面示意图;
图10为组态软件中SCARA机器人特征参数输入界面示意图;
图11为组态软件中Delta机器人特征参数输入界面示意图;
图12为组态软件中三轮式AGV机器人特征参数输入界面示意图;
图13为组态软件中四轮式AGV机器人特征参数输入界面示意图;
图14为组态软件中麦克纳姆式AGV机器人特征参数输入界面示意图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步说明,在以下的描述中阐述了更多的细节以便于充分理解本发明,但是本发明显然能够以多种不同于此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下根据实际应用情况作类似推广、演绎,因此不应以此具体实施例的内容限制本发明的保护范围。
需要注意的是,图1至图14均仅作为示例,其并非是按照等比例的条件绘制的,并且不应该以此作为对本发明实际要求的保护范围构成限制。
如图1至图4所示,机器人结构单元包括第一关节电机101a、201a、第二关节电机101b、201b和结构臂;结构臂包括结构臂主体102、202、第一接头103、203和第二接头104、204,结构臂主体102、202包括第一端102a、202a和第二端102b、202b;
第一接头103、203包括第一电机连接面1031、2031和第一主体连接面1032、2032,第一主体连接面1032、2032与结构臂主体102、202的第一端102a、202a可拆卸地连接,第一电机连接面1031、2031与第一关节电机103、203可拆卸地连接;
第二接头104、204包括第二电机连接面1041、2041和第二主体连接面1042、 2042,第二主体连接面1042、2042与结构臂主体102、202的第二端102b、202b可拆卸地连接,第二电机连接面1041、2041与第二关节电机101b、201b可拆卸地连接。
结构臂可由金属材料制造,其中结构臂主体102、202优选为铝合金材料制作的型材件,方便获得不同长度的结构臂主体102、202。若需要获得更加轻量的结构臂,也可以采用碳纤维的材料来替换铝合金材料。结构臂主体102、202优选为直臂,在不同的工况要求下,结构臂主体102、202也可以是曲臂。
本发明中可拆卸的连接方式(包括关节电机与接头之间的连接方式和接头与结构臂主体之间的连接方式)包括螺钉连接。第一接头103、203与结构臂主体102、202之间设置有第一连接件106、206,第一连接件106、206的一侧与第一接头103、203可拆卸地连接,第一连接件106、206的另一侧与结构臂主体102、202可拆卸地连接;
第二接头104、204与结构臂主体102、202之间设置有第二连接件109、209,第二连接件109、209的一侧与第二接头104、204可拆卸地连接,第二连接件109、209的另一侧与结构臂主体102、202可拆卸地连接。
结构臂主体102、202为具有凹槽105、205的型材件,第一连接件106、206和第二连接件109、209的一侧均卡合在凹槽105、205中,第一连接件106、206和第二连接件109、209的另一侧均设置有螺纹孔,螺纹孔用于与第一接头103、203和第二接头104、204连接。当然,本发明的可拆卸的连接方式也包括螺纹连接,卡扣连接等其他易于拆卸的连接方式。
结构臂主体102、202可以方便地从第一接头103、203和第二接头104、204之间拆下,同时第一关节电机103、203和第二关节电机101b、201b也可以方便地分别从第一接头103、203和第二接头103、203上拆下,因此可以对结构臂主体102、202、第一接头103、203和第二接头103、203进行任意更换,以满足不同的工况对机器人性能的不同要求,从而提高了机器人的柔性。
分别参考图1、3和图2、4,图1、3和图2、4分别揭示了本发明实施例中结构臂的两种形式,即平行轴结构臂和垂直轴结构臂。如图1、3所示,平行轴结构臂两端所连接的第一关节电机101a和第二关节电机101b的中轴线是相互平行的,平行轴结构臂的作用是为了保证与其连接的两个传动马达的空间距离以及空间 平行度的要求。如图2、4所示,垂直轴结构臂两端所连接的第一关节电机101a和第二关节电机101b的中轴线是相互垂直的,垂直轴结构臂的作用是为了保证与其连接的两个传动马达的空间距离以及空间垂直度的要求。电机的中轴线是指电机转轴所在的直线。
优选地,可以通过改变第一接头3和第二接头4的形式,即电机连接面和主体连接面之间的位置关系,来构成平行轴结构臂和垂直轴结构臂。
继续参考图1,第一电机连接面1031垂直于第一主体连接面1032,并且第二电机连接面1041垂直于第二主体连接面1042,第一主体连接面1032平行于第二主体连接面1042。第一主体连接面1032由于附图角度的影响不易标识,故通过虚线的形式引出。第一电机连接面1031和第二电机连接面1041上开设有用于分别插入并且固定第一关节电机101a和第二关节电机101b的圆形孔108,第一主体连接面1032和第二主体连接面1042上开设有用于分别插入并且固定第一端102a和第二端102b的方形孔107。第一端102a和第二端102b插入方形孔107后,可用螺钉将接头固定在连接件上。
继续参考图2,第一电机连接面2031平行于第一主体连接面2032,并且第二电机连接面2041垂直于第二主体连接面2042,第一主体连接面2032平行于第二主体连接面2042。第二主体连接面2032由于附图角度的影响不易标识,故通过虚线的形式引出。第一电机连接面2031上设置有连接法兰,连接法兰与第一关节电机201a连接。第二电机连接面2041上开设有用于插入并且固定第二关节电机201b的圆形孔208,第一主体连接面2032和第二主体连接面2042上开设有用于分别插入并且固定第一端202a和第二端202b的方形孔207。
从图3和图4可以得知,本发明的机器人可以同时包括具有平行轴结构臂的机器人结构单元,以及具有垂直轴结构臂的机器人结构单元,结构臂的数量及长度可以根据机器人的工况来调节。
图5和图6是本发明机器人的两个不同的实施例,图5是水平四自由度关节机器人SCARA,其采用了如图1、3所示的平行轴结构臂。图6是自动引导运输机器人AGV,其也采用了如图1、3所示的平行轴结构臂,并且采用了两个。
本发明公开的机器人包括一个或者多个机器人结构单元,并且机器人结构单元可以配合底座301或者车轮601或者其他功能模块,形成不同形态且具有不同功 能的机器人,如SCARA机器人、AGV机器人、Delta机器人等等。
图7是本发明机器人构建方法的流程图,机器人构建方法包括:
a.根据工况要求确定机器人需要的机器人结构单元的数量和形式,机器人结构单元的形式包括结构臂主体102、202的长度;
b.拼接机器人结构单元并形成机器人的本体结构;根据机器人的本体结构确定机器人的特征参数;
c.将机器人的本体结构与机器人组态设备连接,运行组态软件,并在机器人类型选择界面上根据机器人的本体结构选择机器人的类型,将特征参数输入到相应的特征参数输入界面中;
d.根据特征参数调节并测试机器人的本体结构的性能;
e.判断机器人的本体结构是否满足使用需求;若机器人的本体结构满足使用需求,则组态过程结束;若机器人的本体结构不满足使用需求,则改变机器人结构单元并获得新的特征参数,将新的特征参数输入到组态设备的组态软件中,重新进行组态过程,直到机器人的本体结构满足使用需求。
其中,改变机器人结构单元的步骤包括将结构臂主体102、202从机器人结构单元上拆下,并更换尺寸合适的结构臂主体102、202。
步骤a包括三个子步骤a01、a02和a03。
a01为“组态开始”步骤,该步骤包括组态设备及组态软件的准备工作,比如确保组态软件能够在组态设备上稳定运行。
a02为“工况要求”步骤,该步骤包括对机器人工作空间进行划定和测量。获得诸如环境温度、湿度、洁净度等数据,以及机器人工作区域的范围和工作目标的实现方式,如抓取、堆叠、运输等等方式。
a03为“机器人本体结构设计”步骤,该步骤包括确定机器人结构单元的数量和形式,如关节电机数量,结构臂形式(平行轴结构臂、垂直轴结构臂、结构臂主体102、202的长度),并且确保机器人的本体结构位于工作区域的范围内。
步骤b包括两个子步骤b01、b02。
b01为“机器人本体结构构建”步骤,该步骤包括将第一关节电机101a、201a 和第二关节电机101b、201b分别与第一接头3和第二接头4连接,并将第一接头3和第二接头4分别与结构臂主体2的第一端2a和第二端2b连接,组成机器人结构单元,然后拼接机器人结构单元,组成机器人本体结构。
b02为“特征参数”的确定步骤,特征参数包括特征尺寸和质量特性。特征尺寸包括空间内第一关节电机101a、201a和第二关节电机101b、201b坐标系之间的距离;质量特性包括关节电机和结构臂的质量特性,如密度、质量、转动惯量等数据。
步骤c包括两个子步骤c01、c02。
c01为“机器人类型选择”步骤,该步骤包括在如图8所示的机器人类型选择界面1001中选择相应的机器人类型,机器人类型主要包括:串联型机器人、并联型机器人、自定义机器人、自动引导车机器人AGV等,在机器人类型选择界面中,分别点击相应的按钮可以进入对应的下级界面,进行下一步组态。串联型机器人包括:通用垂直关节N自由度机器人N可以是任意自然数,专用构型机器人,例如:SCARA机器人等。并联机器人中包含:Delta型机器人等。在自定义型机器人中,用户可以根据实际工况自由设定机器人的构型,可以是串联或者并联的混合。自动引导车AGV机器人包括:两轮驱动型AGV和四轮驱动型AGV。
c02为“特征参数输入”步骤,该步骤包括在如图9至图14所示的特征参数输入界面中,输入特征参数。
图9为垂直六关节机器人特征参数输入界面示意图,如图9所示,默认机器人基坐标系与关节第1轴坐标系重合,在图示姿态下,第1轴坐标系与第2轴坐标系Z向距离为1101,X向距离为1102,第2轴与第3轴坐标系的X向距离为1103,第2轴与第3轴坐标系Y向距离为1104,第3轴与第4轴坐标系的X向距离为1105,第4轴与第5轴坐标系的Z向距离为1106,第5轴与第6轴坐标系的Z向距离为1107,第6轴与工具坐标系距离为1108,将上述各参数填写到图11右侧所示的输入框内。
图10为SCARA机器人特征参数输入界面示意图,如图10所示,默认机器人基坐标系与关节第1轴坐标系重合,在图示姿态下,第1轴旋转坐标系与第2轴旋转坐标系X向距离为1201,第2轴旋转坐标系与第4轴旋转坐标系X向距离为1202,第4轴旋转坐标系与工件坐标系X向距离为1203,工件坐标系与第1 轴旋转坐标系的Z向距离为1204。将上述各参数填写到图11右侧所示的输入框内。
图11为Delta机器人特征参数输入界面示意图,如图11所示,上部大圆半径为1301,主动臂长度为1303,从动臂长度为1304,下部小圆半径为1302。将上述各参数填写到附图13右侧所示的输入框内。
图12为三轮式AGV机器人特征参数输入界面示意图,如图12所示,两驱动轮中心Y向距离为1401,驱动轮宽度为1402,驱动轮与从动轮X向距离为1403,轮子直径为1404,将上述各参数填写到如图12右侧所示的输入框内。
图13为四轮式AGV机器人特征参数输入界面示意图,如图13所示,两驱动轮中心Y向距离为1501,驱动轮宽度为1502,两驱动轮与两从动轮X向距离为1503,轮子直径为1504,将上述各参数填写到附图13所示的1-4指定的输入框内。
图14为麦克纳姆式AGV机器人特征参数输入界面示意图,如图14所示,驱动轮中心Y向距离为1601,驱动轮宽度为1602,驱动轮中心X向距离为1603,轮子直径为1604,将上述各参数填写到附图14右侧所示的输入框内。
步骤d包括四个子步骤d01、d02、d03、d04。
d01为“机器人运动控制参数整定”步骤,该步骤包括完成机器人各运动轴的反馈PID参数,前馈参数,传感器测量滤波器参数等在线整定,保证机器人各运动轴控制的稳定性、准确性和快速性。
d02为“机器人路径规划试运行”步骤,该步骤包括运行机器人完成相应的运动动作,检查其是否正确,并设置机器人的参考基准位置和行程范围保护。
d03为“机器人特征参数标定”步骤,该步骤包括使用激光跟踪仪或者三坐标测量机等测量设备,对机器人特征参数进行标定和补偿,使机器人获得较高的运动精度。
d04为“机器人功能性能测试与测量”步骤,该步骤包括按照工况要求对机器人进行全面的检测,以验证其是否能够满足使用要求。
步骤e包括两个子步骤e01、e02。
e01为“测试结果判断”步骤,该步骤包括判断机器人是否满足要求,若满足则发送组态结束指令,若不满足,则返回到c02步,检查并确认特征参数,并重 新开始组态过程。
e02为“组态结束”步骤,该步骤包括接收组态结束指令,结束机器人组态过程。
本发明的积极进步效果在于:本发明公开的机器人,包括第一关节电机、第二关节电机和结构臂,结构臂包括结构臂主体、第一接头和第二接头,结构臂主体可以方便地从第一接头和第二接头之间拆下,第一关节电机和第二关节电机也可以方便地分别从第一接头和第二接头上拆下,因此可以对结构臂主体、第一接头和第二接头进行任意更换,以满足不同的工况对机器人性能的不同要求,提高了机器人的柔性。本发明公开的机器人构建方法,用于对机器人的本体结构进行构建,在构建过程中,可以根据工况要求随时改变结构臂主体的长度及第一接头和第二接头的形式,使得机器人能够适应不同的工况,体现出机器人的柔性。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化及修饰,均落入本发明权利要求所界定的保护范围之内。

Claims (11)

  1. 一种机器人结构单元,其特征在于,包括第一关节电机(101a、201a)、第二关节电机(101b、201b)和结构臂;所述结构臂包括结构臂主体(102、202)、第一接头(103、203)和第二接头(104、204),所述结构臂主体(102、202)包括第一端(102a、202a)和第二端(102b、202b);
    所述第一接头(103、203)包括第一电机连接面(1031、2031)和第一主体连接面(1032、2032),所述第一主体连接面(1032、2032)与所述结构臂主体(102、202)的所述第一端(102a、202a)可拆卸地连接,所述第一电机连接面(1031、2031)与所述第一关节电机(103、203)可拆卸地连接;
    所述第二接头(104、204)包括第二电机连接面(1041、2041)和第二主体连接面(1042、2042),所述第二主体连接面(1042、2042)与所述结构臂主体(102、202)的所述第二端(102b、202b)可拆卸地连接,所述第二电机连接面(1041、2041)与所述第二关节电机(101b、201b)可拆卸地连接。
  2. 如权利要求1所述的机器人结构单元,其特征在于,所述第一关节电机(101a、201a)的中轴线平行于所述第二关节电机(101b、201b)的中轴线。
  3. 如权利要求2所述的机器人结构单元,其特征在于,所述第一电机连接面(1031、2031)垂直于所述第一主体连接面(1032、2032),并且所述第二电机连接面(1041、2041)垂直于所述第二主体连接面(1042、2042),所述第一主体连接面(1032、2032)平行于所述第二主体连接面(1042、2042)。
  4. 如权利要求1所述的机器人结构单元,其特征在于,所述第一关节电机(101a、201a)的中轴线垂直于所述第二关节电机(101b、201b)的中轴线。
  5. 如权利要求4所述的机器人结构单元,其特征在于,所述第一电机连接面(1031、2031)平行于所述第一主体连接面(1032、2032),并且所述第二电机连接面(1041、2041)垂直于所述第二主体连接面(1042、2042),所述第一主 体连接面(1032、2032)平行于所述第二主体连接面(1042、2042)。
  6. 如权利要求1所述的机器人结构单元,其特征在于,所述第一接头(103、203)与结构臂主体(102、202)之间设置有第一连接件(106、206),所述第一连接件(106、206)的一侧与所述第一接头(103、203)可拆卸地连接,所述第一连接件(106、206)的另一侧与所述结构臂主体(102、202)可拆卸地连接;
    所述第二接头(104、204)与结构臂主体(102、202)之间设置有第二连接件(109、209),所述第二连接件(109、209)的一侧与所述第二接头(104、204)可拆卸地连接,所述第二连接件(109、209)的另一侧与所述结构臂主体(102、202)可拆卸地连接。
  7. 如权利要求6所述的机器人结构单元,其特征在于,所述结构臂主体(102、202)为具有凹槽(105、205)的型材件,所述第一连接件(106、206)和所述第二连接件(109、209)的一侧均卡合在所述凹槽(105、205)中,所述第一连接件(106、206)和所述第二连接件(109、209)的另一侧均设置有螺纹孔,所述螺纹孔用于与所述第一接头(103、203)和所述第二接头(104、204)连接。
  8. 一种机器人,其特征在于,包括一个或者多个如权利要求1至7中任意一项权利要求所述的机器人结构单元。
  9. 如权利要求8所述的机器人,其特征在于,所述机器人还包括底座(301)或车轮(601)。
  10. 一种机器人构建方法,其特征在于,所述机器人构建方法包括:
    a.根据工况要求确定机器人需要的机器人结构单元的数量和形式,所述机器人结构单元的形式包括结构臂主体(102、202)的长度;
    b.拼接所述机器人结构单元并形成机器人的本体结构;根据所述机器人的本体结构确定机器人的特征参数;
    c.将所述机器人的本体结构与机器人组态设备连接,运行组态软件,并在机 器人类型选择界面上根据机器人的本体结构选择机器人的类型,将所述特征参数输入到相应的特征参数输入界面中;
    d.根据所述特征参数调节并测试所述机器人的本体结构的性能;
    e.判断所述机器人的本体结构是否满足使用需求;若所述机器人的本体结构满足使用需求,则组态过程结束;若所述机器人的本体结构不满足使用需求,则改变所述机器人结构单元并获得新的特征参数,将新的特征参数输入到所述组态设备的所述组态软件中,重新进行组态过程,直到机器人的本体结构满足使用需求。
  11. 如权利要求10所述的机器人构建方法,其特征在于,改变所述机器人结构单元的步骤包括将结构臂主体(102、202)从机器人结构单元上拆下,并更换尺寸合适的结构臂主体(102、202)。
PCT/CN2017/077058 2016-08-31 2017-03-17 机器人结构单元、机器人及机器人构建方法 WO2018040541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610786982.0 2016-08-31
CN201610786982.0A CN107199557A (zh) 2016-08-31 2016-08-31 机器人结构单元、机器人及机器人构建方法

Publications (1)

Publication Number Publication Date
WO2018040541A1 true WO2018040541A1 (zh) 2018-03-08

Family

ID=59904768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077058 WO2018040541A1 (zh) 2016-08-31 2017-03-17 机器人结构单元、机器人及机器人构建方法

Country Status (2)

Country Link
CN (1) CN107199557A (zh)
WO (1) WO2018040541A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019178172A1 (en) * 2018-03-14 2019-09-19 Fedex Corporate Services, Inc. A modular autonomous bot apparatus assembly for transporting an item being shipped
WO2019174912A1 (de) * 2018-03-15 2019-09-19 Igus Gmbh Manipulator mit gelenken und multifunktionsprofil hierfür
US10618185B2 (en) 2016-11-28 2020-04-14 Fanuc Corporation Connection structure
US20220379462A1 (en) * 2021-05-26 2022-12-01 Amazon Technologies, Inc. Modular robotic linkages
US11548171B2 (en) 2019-10-30 2023-01-10 Industrial Technology Research Institute Robot arm, mechanical assembly and assembly method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990839A (en) * 1988-12-09 1991-02-05 Schonlau William J Modular robotic system
WO2008049641A1 (de) * 2006-10-27 2008-05-02 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Motorantreibbare gelenk-glied-einheit für roboterfinger oder roboterarme und system hierfür
CN102395449A (zh) * 2009-04-15 2012-03-28 Abb研究有限公司 用于机器人臂的设备
CN203752149U (zh) * 2014-03-25 2014-08-06 宁波摩科机器人科技有限公司 六轴机器人
CN104768716A (zh) * 2012-10-31 2015-07-08 株式会社乐博特思 驱动器组件
CN205111421U (zh) * 2015-11-06 2016-03-30 广东伊雪松机器人设备有限公司 手臂机器人

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101290B (zh) * 2009-12-18 2012-09-26 中国科学院沈阳自动化研究所 一种模块化可重构机器人
CN102441894A (zh) * 2010-10-11 2012-05-09 鸿富锦精密工业(深圳)有限公司 机器人臂部件
JP5472283B2 (ja) * 2011-12-21 2014-04-16 株式会社安川電機 ロボットのアーム構造およびロボット
US10086509B2 (en) * 2013-03-14 2018-10-02 Elytra Technologies Llc Device and method for controlled motion of a tool
CN104626139A (zh) * 2014-12-22 2015-05-20 湖南省金函数科技有限公司 一种组态机器人
CN104858892B (zh) * 2015-06-11 2017-03-01 佛山市南海区广工大数控装备协同创新研究院 基于智能机械臂的模块化机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990839A (en) * 1988-12-09 1991-02-05 Schonlau William J Modular robotic system
WO2008049641A1 (de) * 2006-10-27 2008-05-02 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Motorantreibbare gelenk-glied-einheit für roboterfinger oder roboterarme und system hierfür
CN102395449A (zh) * 2009-04-15 2012-03-28 Abb研究有限公司 用于机器人臂的设备
CN104768716A (zh) * 2012-10-31 2015-07-08 株式会社乐博特思 驱动器组件
CN203752149U (zh) * 2014-03-25 2014-08-06 宁波摩科机器人科技有限公司 六轴机器人
CN205111421U (zh) * 2015-11-06 2016-03-30 广东伊雪松机器人设备有限公司 手臂机器人

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618185B2 (en) 2016-11-28 2020-04-14 Fanuc Corporation Connection structure
EP3765332A4 (en) * 2018-03-14 2022-03-09 Fedex Corporate Services, Inc. MODULAR AUTONOMOUS ROBOT DEVICE ASSEMBLY FOR TRANSPORTING AN ITEM IN SHIPPING
US11027420B2 (en) 2018-03-14 2021-06-08 Fedex Corporate Services, Inc. Modular cargo storage apparatus for use on a base platform of a modular autonomous bot apparatus that transports an item being shipped
CN111918791A (zh) * 2018-03-14 2020-11-10 联邦快递服务公司 用于运输被装运物品的模块化自主机器人设备组件
US11900747B2 (en) 2018-03-14 2024-02-13 Fedex Corporate Services, Inc. Apparatus, systems, and methods for performing a dispatched logistics operation for a deliverable item from a hold-at-location logistics facility using a modular autonomous bot apparatus assembly, a dispatch server and an enhanced remotely actuated logistics receptacle apparatus
US11331790B2 (en) 2018-03-14 2022-05-17 Fedex Corporate Services, Inc. Methods of performing a dispatched medical logistics operation related to a diagnosis kit for treating a patient and using a modular autonomous bot apparatus assembly and a dispatch server
US11842590B2 (en) 2018-03-14 2023-12-12 Fedex Corporate Services, Inc. Detachable modular mobile autonomy control module for a modular autonomous bot apparatus that transports an item being shipped
US11027419B2 (en) 2018-03-14 2021-06-08 Fedex Corporate Services, Inc. Modular auxiliary power module for a modular autonomous bot apparatus that transports an item being shipped
US11783657B2 (en) 2018-03-14 2023-10-10 Fedex Corporate Services, Inc. Apparatus and systems of a modular autonomous cart apparatus assembly for transporting an item being shipped
US11704954B2 (en) 2018-03-14 2023-07-18 Fedex Corporate Services, Inc. Methods and systems for navigating to a designated shipping location as part of a multi-leg logistics operations using a wireless node network and multiple node-enabled autonomous transport vehicles in the network
US11478924B2 (en) 2018-03-14 2022-10-25 Fedex Corporate Services, Inc. Modular auxiliary power module for a modular autonomous bot apparatus that transports an item being shipped
US11090802B2 (en) 2018-03-14 2021-08-17 Fedex Corporate Services, Inc. Modular multiple mobility base assembly apparatus for transporting an item being shipped
US11117255B2 (en) 2018-03-14 2021-09-14 Fedex Corporate Services, Inc. Apparatus and systems of a modular autonomous cart apparatus assembly for transporting an item being shipped
US11135717B2 (en) 2018-03-14 2021-10-05 Fedex Corporate Services, Inc. Detachable modular mobile autonomy control module for a modular autonomous bot apparatus that transports an item being shipped
US11224969B2 (en) 2018-03-14 2022-01-18 Fedex Corporate Services, Inc. Modular autonomous bot apparatus assembly for transporting an item being shipped
US11235457B2 (en) 2018-03-14 2022-02-01 Fedex Corporate Services, Inc. Modular autonomous bot apparatus assembly for transporting an item being shipped
WO2019178172A1 (en) * 2018-03-14 2019-09-19 Fedex Corporate Services, Inc. A modular autonomous bot apparatus assembly for transporting an item being shipped
US10875174B2 (en) 2018-03-14 2020-12-29 Fedex Corporate Services, Inc. Modular autonomous bot apparatus assembly for transporting an item being shipped
US11699316B2 (en) 2018-03-14 2023-07-11 Fedex Corporate Services, Inc. Modular mobility base for a modular autonomous logistics vehicle transport apparatus
US11077551B2 (en) 2018-03-14 2021-08-03 Fedex Corporate Services, Inc. Modular mobility base for a modular autonomous logistics vehicle transport apparatus
CN111918791B (zh) * 2018-03-14 2022-11-01 联邦快递服务公司 用于运输被装运物品的模块化自主机器人设备组件
US11491641B2 (en) 2018-03-14 2022-11-08 Fedex Corporate Services, Inc. Methods of performing an inventory management related dispatched logistics operation for an inventory item and using a modular autonomous bot apparatus assembly and a dispatch server
US11491643B2 (en) 2018-03-14 2022-11-08 Fedex Corporate Services, Inc. Methods of performing a dispatched consumer-to-store logistics operation related to an item being replaced using a modular autonomous bot apparatus assembly and a dispatch server
US11491642B2 (en) 2018-03-14 2022-11-08 Fedex Corporate Services, Inc. Methods of performing a dispatched store-to-consumer logistics operation for an ordered item and using a modular autonomous bot apparatus assembly and a dispatch server
US11679494B2 (en) 2018-03-14 2023-06-20 Fedex Corporate Services, Inc. Modular multiple mobility base assembly apparatus for transporting an item being shipped
US11682253B2 (en) 2018-03-14 2023-06-20 Fedex Corporate Services, Inc. Modular cargo storage apparatus for use on a base platform of a modular autonomous bot apparatus that transports an item being shipped
JP7217285B2 (ja) 2018-03-15 2023-02-02 イグス ゲゼルシャフト ミット ベシュレンクター ハフトゥング 多機能プロファイル部材および関節を有するマニピュレータ
WO2019174912A1 (de) * 2018-03-15 2019-09-19 Igus Gmbh Manipulator mit gelenken und multifunktionsprofil hierfür
JP2021518274A (ja) * 2018-03-15 2021-08-02 イグス ゲゼルシャフト ミット ベシュレンクター ハフトゥング 関節を有するマニピュレータおよびその多機能プロファイル部材
KR102425149B1 (ko) 2018-03-15 2022-07-27 이구스 게엠베하 동일한 조인트 및 다기능 프로파일 부재를 갖는 매니퓰레이터
CN112368115A (zh) * 2018-03-15 2021-02-12 易格斯有限公司 具有关节和用于此的多功能型材的操纵器
KR20200128434A (ko) * 2018-03-15 2020-11-12 이구스 게엠베하 동일한 조인트 및 다기능 프로파일 부재를 갖는 매니퓰레이터
US11548171B2 (en) 2019-10-30 2023-01-10 Industrial Technology Research Institute Robot arm, mechanical assembly and assembly method thereof
US20220379462A1 (en) * 2021-05-26 2022-12-01 Amazon Technologies, Inc. Modular robotic linkages
US11926048B2 (en) * 2021-05-26 2024-03-12 Amazon Technologies, Inc. Modular robotic linkages

Also Published As

Publication number Publication date
CN107199557A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2018040541A1 (zh) 机器人结构单元、机器人及机器人构建方法
US20170254709A1 (en) Force/torque sensor, apparatus and method for robot teaching and operation
EP2547490B1 (en) Calibration of a base coordinate system for an industrial robot
KR20180090623A (ko) 스킬 기반 로봇 프로그래밍 장치 및 방법
KR20160149290A (ko) 로봇을 프로그래밍하기 위한 방법 및 시스템
WO2016185590A1 (ja) 多軸機械装置シミュレータ、運転指令装置の設計支援装置、電動機制御装置の設計支援装置及び電動機の容量選定装置
AU2014311922A1 (en) Method and system for determination of at least one property of a manipulator
Li et al. A flexible manufacturing assembly system with deep reinforcement learning
Salmi et al. Human-robot collaboration and sensor-based robots in industrial applications and construction
KR20180069031A (ko) 로봇의 다이렉트 교시방법
CN107553492A (zh) 基于赫兹弹性模型的机器人主动力柔顺销孔对接装配方法
Xiao et al. A STEP-compliant industrial robot data model for robot off-line programming systems
Jonsson et al. On force control for assembly and deburring of castings
CN116523119A (zh) 一种面向个性化在制品定制生产线的数字孪生系统及方法
Li et al. A virtual repulsive potential field algorithm of posture trajectory planning for precision improvement in robotic multi-axis milling
Wang et al. Design of a two-step calibration method of kinematic parameters for serial robots
Sugita et al. Development of robot teaching support devices to automate deburring and finishing works in casting
Bellakehal et al. Force/position control of parallel robots using exteroceptive pose measurements
Wildgrube et al. Semantic mates: Intuitive geometric constraints for efficient assembly specifications
Haage et al. On Cognitive RobotWoodworking in SMErobotics
Chang et al. Cyber-physical-robotic System (CPRS)-based Modeling and Execution of Assembly Tasks.
Kirkpatrick Digital Twins in Advanced Manufacturing to Enhance Manufacturing Efficiency
Farel et al. Challenges in sustainable manufacturing with industrial and collaborative robots: A case study
KR102591942B1 (ko) 강성 모델과 절삭력 모델을 이용한 로봇 제어 방법 및 장치
Syrjänen Task level robot programming: Background, methods and current state

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844849

Country of ref document: EP

Kind code of ref document: A1