WO2018040487A1 - 数字信号调制方法、解调方法及装置 - Google Patents

数字信号调制方法、解调方法及装置 Download PDF

Info

Publication number
WO2018040487A1
WO2018040487A1 PCT/CN2017/071562 CN2017071562W WO2018040487A1 WO 2018040487 A1 WO2018040487 A1 WO 2018040487A1 CN 2017071562 W CN2017071562 W CN 2017071562W WO 2018040487 A1 WO2018040487 A1 WO 2018040487A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
source data
digital signal
modulated
preset
Prior art date
Application number
PCT/CN2017/071562
Other languages
English (en)
French (fr)
Inventor
谢毅华
Original Assignee
谢毅华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谢毅华 filed Critical 谢毅华
Publication of WO2018040487A1 publication Critical patent/WO2018040487A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a digital signal modulation method, a demodulation method, and a device.
  • the modulation method of digital signals usually includes amplitude modulation, frequency modulation and phase modulation.
  • the phase modulation method is divided into PSK (Phase Shift Keyin), QPSK (Quadrature Phase Shift Keying), 8PSK and 16PSK according to the number of carrier phases. Wait.
  • a digital signal modulation method includes:
  • the source data is prioritized according to the rate requirement;
  • the source data is sequentially mapped from the outer layer to the inner layer to the corresponding selected layer according to the priority of the source data from high to low;
  • the control data or the source data mapped to the corresponding layer is modulated to obtain a modulated signal of each selected layer, and the modulated digital signal is generated according to the modulated signal of each selected layer and sent to the receiving end.
  • a digital signal modulation device comprising:
  • a broadcast information sending module configured to send broadcast information to the receiving end, and receive a power dynamic range or a calling layer returned by the receiving end according to the broadcast information
  • a signal acquisition module configured to acquire a digital signal to be modulated, and obtain a plurality of source data according to the digital signal to be modulated
  • the source data sorting module is configured to obtain, according to a preset correspondence, a transmission rate requirement corresponding to the source data, where the source data with the lowest transmission rate requirement in the source data is the highest priority source data, Prioritizing the source data according to a requirement of a transmission rate requirement of the source data;
  • control data mapping module configured to generate control data according to the power dynamic range or the number of calling layers, and map the control data to an outermost layer of the preset constellation that is far from the center point;
  • a layer selection module configured to use the outermost layer as the first layer, and select the number of the calling layers from the preset constellation in order according to a direction gradually approaching a center point of the preset constellation The number of layers gets the selected layer;
  • a source data mapping module configured to start from the second layer of the selected layer, and map different source data from the outer layer to the inner layer according to the priority of the source data from high to low.
  • a multi-layer modulation module configured to acquire, according to the preset constellation diagram, a modulation mode of the selected layer, and respectively modulate control data or source data mapped to a corresponding layer by using a modulation mode of each selected layer A modulated signal of each selected layer is obtained, and the modulated digital signal is generated according to the modulated signal of each selected layer and sent to the receiving end.
  • the above digital signal modulation method and device by transmitting broadcast information to the receiving end, and receiving the power dynamic range or the calling layer returned by the receiving end according to the broadcast information, then acquiring the digital signal to be modulated, and acquiring multiple sources according to the digital signal to be modulated Data, according to the preset correspondence relationship, the transmission rate requirement corresponding to the source data is obtained, and the source data with the lowest transmission rate requirement in the source data is the highest priority source data, according to the requirement of the transmission rate of the source data.
  • the source data is prioritized; at the same time, the control data is generated according to the power dynamic range or the calling layer, and the control data is mapped to the outermost layer in the preset constellation away from the center point; the outermost layer is the first layer, according to Gradually approaching the direction of the center point of the preset constellation, sequentially selecting the same number of layers as the number of layers to be called from the preset constellation to obtain the selected layer; starting from the second layer of the selected layer, according to the source
  • the priority of the data is from high to low, and the source data is mapped from the outer layer to the inner layer to the corresponding selected layer;
  • Layer modulation scheme each selected respectively The modulation mode of the layer modulates the control data or the source data mapped to the corresponding layer to obtain a modulated signal of each selected layer, generates a modulated digital signal according to the modulated signal of each selected layer, and transmits the modulated digital signal to the receiving end.
  • the digital signal to be modulated is correspondingly modulated according to a plurality of modulation
  • a digital signal demodulation method comprising:
  • the modulation signal of the first layer is selected from the modulated digital signals according to the maximum amplitude
  • a layer in the selected layer that is farthest from the first layer is used as a last layer;
  • the direction of the center point away from the preset constellation is the outward direction, and the layer of the last layer to the outer layer is regarded as the new last layer, and the obtaining the last layer is returned.
  • a digital signal demodulating device comprising:
  • a broadcast information response module configured to receive broadcast information sent by the sending end, and return a power dynamic range or a calling layer to the sending end according to the broadcast information
  • a first layer modulation signal acquisition module configured to receive the modulated digital signal sent by the transmitting end, obtain a peak power of the modulated digital signal, obtain a maximum amplitude according to the peak power, and move away from the preset constellation
  • the outermost layer of the center point of the figure is a first layer, and the modulation signal of the first layer is selected from the modulated digital signals according to the maximum amplitude;
  • a first layer demodulation module configured to acquire a modulation mode of the first layer according to the preset constellation, and demodulate the modulated signal of the first layer according to a modulation manner of the first layer, to obtain Control data
  • a multi-layer modulation signal acquiring module configured to acquire the number of the calling layers according to the control data, and select the calling layer from the preset constellation according to a direction gradually approaching a center point of the preset constellation Having an equal number of layers to obtain a selected layer, and obtaining a modulation corresponding to the selected layer other than the first layer from the modulated digital signal according to the maximum amplitude and a preset amplitude ratio signal;
  • a last layer determining module configured to use a layer in the selected layer that is farthest from the first layer as a last layer
  • a bit error rate obtaining module configured to acquire a current bit error rate of the last layer, and obtain a current acceptable range according to the power dynamic range;
  • bit error rate detecting module configured to determine whether the current bit error rate is within the current acceptable range
  • a multi-layer demodulation module configured to acquire, according to the preset constellation diagram, a modulation mode of the selected layer except the first layer, when the current error rate is within the current acceptable range, respectively Demodulating the modulated signal of the corresponding layer by using a modulation mode of the selected layer other than the first layer to obtain corresponding source data, and generating a demodulated signal according to the source data;
  • a last layer update module configured to: when the current error rate is not within the current acceptable range, the direction away from a center point of the preset constellation is outward, and the last layer is outward
  • the layer of the layer acts as a new last layer, and controls the bit error rate acquisition module to reacquire the current bit error rate of the last layer, and obtain the current acceptable range according to the power dynamic range.
  • the above digital signal demodulation method and device receive the broadcast information sent by the transmitting end, and return the power dynamic range or the calling layer number to the transmitting end according to the broadcast information; then receive the modulated digital signal sent by the transmitting end, and obtain the modulated digital number
  • the peak power of the signal is obtained according to the peak power, and the outermost layer of the center point away from the preset constellation is taken as the first layer, and the modulated signal of the first layer is selected from the modulated digital signal according to the maximum amplitude;
  • the modulation mode of the first layer is obtained, and the modulation signal of the first layer is demodulated according to the modulation mode of the first layer to obtain control data; and the number of call layers is obtained according to the control data, and the preset layer is gradually approached.
  • the direction of the center point of the constellation diagram from the pre- Set the number of layers equal to the number of calling layers in the constellation to obtain the selected layer, and obtain the selected layer except the first layer from the modulated digital signal according to the maximum amplitude and the preset amplitude ratio.
  • Modulating the signal taking the layer farthest from the first layer in the selected layer as the last layer, obtaining the current bit error rate of the last layer, and obtaining the current acceptable range according to the power dynamic range, and judging the current bit error rate Whether it is within the current acceptable range; if yes, the modulation mode of the selected layer except the first layer is obtained according to the preset constellation diagram, and the corresponding layer is selected by using the modulation mode of the selected layer except the first layer
  • the modulated signal is demodulated to obtain corresponding source data, and a demodulated signal is generated according to the source data; if not, the direction away from the center point of the preset constellation is outward, and the last layer is outward.
  • the layer reacquires the current bit error rate of the last layer and obtains the current acceptable range according to the power dynamic range for re-detection. In this way, the number of layers to be called can be demodulated according to the current transmission state adjustment, and the demodulation efficiency is high.
  • FIG. 1 is a flow chart of a digital signal modulation method in an embodiment
  • FIG. 2 is a schematic diagram of a preset constellation diagram in an embodiment
  • FIG. 3 is a flow chart of a digital signal demodulation method in an embodiment
  • FIG. 4 is a block diagram of a module of a digital signal modulation apparatus in an embodiment
  • Figure 5 is a block diagram of a digital signal demodulating apparatus in an embodiment.
  • a digital signal modulation method in an embodiment includes the following steps.
  • S100 Send broadcast information to the receiving end, and receive a power dynamic range or a calling layer returned by the receiving end according to the broadcast information.
  • the power dynamic range refers to the dynamic range corresponding to the maximum power and minimum power during transmission.
  • S110 Acquire a digital signal to be modulated, and acquire a plurality of source data according to the digital signal to be modulated.
  • the digital signal to be modulated can be divided into multiple source data according to the data type or transmission requirement, and the source data of the digital signal to be modulated is obtained, so that the subsequent modulation signal can be classified and modulated.
  • different source data may be corresponding to different data types, for example, the digital signal to be modulated is a video signal, and the source data included in the video signal has audio data and image data; different source data may also be correspondingly different.
  • the data stream, for example, the digital signal to be modulated is image data, and the source data corresponding to the image data includes color block information and detailed information.
  • S120 Acquire a transmission rate requirement corresponding to the source data according to the preset correspondence, and use the source data with the lowest transmission rate requirement in the source data as the highest priority source data, according to the requirement of the transmission rate of the source data. Prioritize source data.
  • the preset correspondence relationship refers to the correspondence between the source data and the transmission rate requirement, and may also refer to the correspondence between the source data and the transmission reliability requirement; wherein the transmission reliability requirement is higher, and the transmission rate requirement of the corresponding source data is required.
  • S130 Generate control data according to the power dynamic range or the calling layer, and map the control data to an outermost layer in the preset constellation that is far from the center point.
  • the preset constellation refers to a pre-set constellation for modulating digital signals.
  • the preset constellation diagram includes a plurality of layers, each of which has a constellation point, and different layers correspond to different modulation modes, and different modulation modes correspond to different transmission rates, and the layer spacing of the constellation diagram indicates the interlayer amplitude difference.
  • the phase difference between adjacent constellation points of the same layer is equal.
  • the modulation mode corresponding to each layer of the preset constellation can be set according to actual requirements.
  • the modulation mode of the preset constellation is MPSK (multi-phase phase shift keying), and the values of different layers and M are different. Differently, the value of M is larger in the direction of gradually approaching the center point of the preset constellation.
  • the preset constellation map can be acquired before step S100.
  • the control data may be generated according to the number of calling layers according to the power dynamic range, or may be generated directly according to the number of calling layers. Obtaining the number of calling layers according to the power dynamic range may specifically classify the source data according to the power dynamic range and the transmission rate requirement of the source data, and the number of the obtained classifications is one of the calling layers, wherein the source data is classified. The source data corresponding to the transmission rate requirements belonging to the same preset rate level may be the same class. The control data is generated according to the number of call layers, thereby controlling the data carrying the information of the number of call layers.
  • the corresponding transmission channel information may be acquired according to the digital signal to be modulated, and the correspondence between the source data and the priority sequence number is obtained according to the source data after the priority ranking, according to the transmission channel information and the information.
  • the correspondence between the source data and the priority sequence number and the number of call layers generate control data.
  • the transport channel information is used to indicate a channel for transmitting the signal to be modulated;
  • the priority sequence number is used to indicate the sequence number of the priority of the corresponding source data, and the lower the sequence number, the higher the priority of the source data.
  • the signal to be modulated is a video signal;
  • the channel for transmitting the video signal is channel 1, and the video signal includes image data and audio data, so that the number of call layers is three.
  • the transmission rate requirement of the image data is higher than the transmission rate of the audio data, the priority number of the obtained audio data is 1, and the priority number of the image data is 2. Therefore, the control data corresponding to the video signal includes: the number of calling layers is 3, the transmission channel is channel 1, the priority number of the audio data is 1, and the priority number of the video data is 2.
  • S140 taking the outermost layer as the first layer, and selecting a layer equal to the number of calling layers from the preset constellation in the direction of the center point of the preset constellation to obtain the selected layer.
  • Selecting a layer from the preset constellation is selected in order. For example, the number of call layers of the video signal is 3, starting with the first layer, and the corresponding selected layer is the first layer, the second layer, and the third layer. .
  • Different source data are mapped from the outer layer to the inner layer according to the priority, that is, different source data corresponds to different modulation modes. Specifically, the higher the priority of the source data, the farther the mapped layer is from the center point of the preset constellation, and the smaller the transmission rate.
  • the audio data of the video signal has a priority number of 1, and the video data has a priority number of 2, and the audio data is mapped to the second layer, and the image data is mapped to the third layer.
  • S160 Acquire a modulation mode of the selected layer according to the preset constellation diagram, and respectively modulate the control data or the source data mapped to the corresponding layer by using a modulation mode of each selected layer to obtain a modulated signal of each selected layer.
  • the modulated digital signal is generated according to the modulated signal of each selected layer and sent to the receiving end.
  • the modulated digital signal is obtained, and the overall transmission after classification and modulation according to the transmission rate requirement of different source data can be realized.
  • the above digital signal modulation method obtains a plurality of source data according to a digital signal to be modulated, by transmitting broadcast information to a receiving end, and receiving a power dynamic range or a calling layer returned by the receiving end according to the broadcast information, and then acquiring a digital signal to be modulated, and acquiring a plurality of source data according to the digital signal to be modulated, Obtain the transmission rate requirement corresponding to the source data according to the preset correspondence, and use the source data with the lowest transmission rate requirement in the source data as the highest priority source data, according to the requirement of the transmission rate of the source data.
  • the source data is prioritized; at the same time, the control data is generated according to the power dynamic range or the calling layer, and the control data is mapped to the outermost layer in the preset constellation away from the center point; the outermost layer is the first layer, and is gradually approached Presetting the direction of the center point of the constellation, sequentially selecting the same number of layers as the number of layers to be called from the preset constellation to obtain the selected layer; starting from the second layer of the selected layer, according to the source data
  • the priority data is mapped from the outer layer to the inner layer to the corresponding selected layer in order from high to low; the selected layer is obtained according to the preset constellation diagram.
  • the control data or the source data mapped to the corresponding layer is modulated by the modulation mode of each selected layer to obtain the modulated signals of the selected layers, and the modulated signals are generated according to the modulated signals of the selected layers.
  • the digital signal is sent to the receiving end. In this way, the digital signal to be modulated is correspondingly modulated according to a plurality of modulation modes by using a preset constellation diagram, and the modulation efficiency is high.
  • the preset constellation is a circular constellation
  • the modulation mode of the i-th layer of the preset constellation is 2 i+1 PSK or 4 i PSK
  • the i-th layer and the i+1-th layer are The phase angle between the layers is or
  • the modulation mode of the outermost layer is ⁇ /4QPSK
  • the second layer is 8PSK
  • the third layer is 16PSK. It can be understood that in other embodiments, the modulation mode of the outermost layer may also be QPSK.
  • the phase angle between the layers of the i-th layer and the i+1th layer is The ratio of the amplitude of the i-th layer to the first layer of the preset constellation is:
  • i is the serial number of the layer
  • r i is the amplitude ratio of the i-th layer to the first layer.
  • the amplitude difference between the layers is limited, and the quantization region of the constellation point near the center point of the preset constellation can be increased. It can be understood that, in other embodiments, when the phase angles of the layers of the i-th layer and the i+1th layer are other expressions, the ratio of the amplitude of the i-th layer to the first layer of the preset constellation may also be Other expressions.
  • a digital signal demodulation method in an embodiment includes the following steps.
  • S200 Receive broadcast information sent by the sending end, and return a power dynamic range or a calling layer according to the broadcast information to the sending end.
  • the power dynamic range refers to the dynamic range corresponding to the maximum power and minimum power during transmission.
  • S210 Receive the modulated digital signal sent by the transmitting end, obtain the peak power of the modulated digital signal, obtain the maximum amplitude according to the peak power, and take the outermost layer of the center point away from the preset constellation as the first layer, according to The most large value selects the modulation signal of the first layer from the modulated digital signal.
  • the modulated digital signal is modulated by a plurality of modulation methods to modulate the digital signal.
  • the peak power refers to the maximum power reached in a short time, and the maximum amplitude is the modulation signal with the largest amplitude corresponding to the plurality of modulation signals of the modulated digital signal, corresponding to the modulation signal of the first layer of the preset constellation.
  • S220 Acquire a modulation mode of the first layer according to the preset constellation diagram, and demodulate the modulation signal of the first layer according to the modulation mode of the first layer to obtain control data.
  • the preset constellation is a circular constellation
  • the modulation mode of the i-th layer of the preset constellation is 2 i+1 PSK or 4 i PSK
  • the i-th layer and the i+1-th layer are The phase angle between the layers is or
  • the modulation mode of the first layer is ⁇ /4QPSK, and the modulation signal of the first layer is demodulated by using ⁇ /4QPSK. It can be understood that in other embodiments, the modulation mode of the first layer may also be QPSK.
  • S230 Obtain the number of calling layers according to the control data, and select a layer equal to the number of calling layers from the preset constellation according to the direction of the center point of the preset constellation to obtain the selected layer, and according to the maximum amplitude. And a preset amplitude ratio is obtained from the modulated digital signal to obtain a modulated signal corresponding to the selected layer other than the first layer.
  • the control data is generated according to the number of calling layers, so the control data includes information of the number of calling layers.
  • the preset amplitude ratio is the ratio of the amplitude of the i-th layer to the first layer.
  • the phase angle between the layers of the i-th layer and the i+1th layer is The preset amplitude ratio is:
  • i is the serial number of the layer
  • r i is the amplitude ratio of the i-th layer to the first layer.
  • the amplitude difference between the layers is limited, and the quantization region of the constellation point near the center point of the preset constellation can be increased. It can be understood that, in other embodiments, when the phase angles of the layers of the i-th layer and the i+1th layer are other expressions, the ratio of the amplitude of the i-th layer to the first layer of the preset constellation may also be Other expressions.
  • S240 The layer farthest from the first layer in the selected layer is used as the last layer.
  • the third layer is taken as the last layer.
  • S250 Acquire a current bit error rate of the last layer, and obtain a current acceptable range according to the power dynamic range.
  • the current acceptable range refers to the acceptable range of the bit error rate corresponding to the power dynamic range of the current transmission; the wider the power dynamic range, the smaller the minimum error rate of the acceptable range.
  • step S260 Determine whether the current error rate is within the current acceptable range. If yes, go to step S270; if no, go to step S280.
  • S270 Acquire a modulation mode of the selected layer except the first layer according to the preset constellation diagram, and respectively demodulate the modulated signal of the corresponding layer by using a modulation mode of the selected layer except the first layer.
  • the source data generates a demodulated signal based on the source data.
  • the current bit error rate is within the current acceptable range, indicating that the bit error rate of the last layer is acceptable, and the last layer can be called for solution. Tune. At this time, each layer of the second layer to the last layer is simultaneously demodulated to obtain source data of each layer.
  • the current bit error rate is not within the current acceptable range, indicating that the last layer cannot be called for demodulation. At this point, the current bit error rate is re-detected after the outer layer is returned to a layer.
  • the power dynamic range of the channel determines the current acceptable range of the layer, thereby determining whether the current bit error rate of the layer is acceptable.
  • the current bit error rate is detected from the innermost layer corresponding to the number of calling layers until the current bit error rate corresponding to the layer is within the current acceptable range of the layer, and the second layer to the final detected picture is called.
  • the layer is demodulated, and the layer that is called according to the power dynamic range of the transmission can be adjusted to improve the demodulation efficiency.
  • the modulated digital signal is image data, and the image data includes color block information and detail information; the first layer of the preset constellation corresponds to a modulated signal of the control data; and the first layer is demodulated after the first layer is modulated.
  • the control data is obtained, and the information is obtained according to the control data: the number of calling layers is 3 layers, the second layer is a color block modulation signal of image data, and the third layer is a detail modulation signal of image data.
  • the second layer and the third layer are simultaneously called to perform demodulation of the corresponding modulated signal; if not, the second layer is returned to the detection Whether the error rate of the second layer is within the acceptable range of the second layer; if so, the second layer is called for demodulation, otherwise the demodulation is stopped.
  • the digital signal demodulation method receives the broadcast information sent by the transmitting end, and returns a power dynamic range or a calling layer according to the broadcast information to the transmitting end; then receives the modulated digital signal sent by the transmitting end, and acquires the modulated digital signal.
  • Peak power obtain the maximum amplitude according to the peak power, and take the outermost layer away from the center point of the preset constellation as the first layer, and select the first layer of the modulated signal from the modulated digital signal according to the maximum amplitude; Presetting the constellation diagram to obtain the modulation mode of the first layer, and demodulating the modulation signal of the first layer according to the modulation mode of the first layer to obtain control data; acquiring the number of calling layers according to the control data, and gradually approaching the preset constellation diagram The direction of the center point, select a layer equal to the number of call layers from the preset constellation to obtain the selected layer, and obtain the first from the modulated digital signal according to the maximum amplitude and the preset amplitude ratio.
  • the power dynamic range obtains the current acceptable range, and determines whether the current error rate is within the current acceptable range; if yes, the modulation mode of the selected layer except the first layer is obtained according to the preset constellation diagram, respectively
  • the modulation mode of the selected layer outside the layer demodulates the modulated signal corresponding to the layer to obtain the corresponding source data, and generates a demodulated signal according to the source data; if not, the center away from the preset constellation
  • the direction of the point is the outward direction, and the layer of the last layer to the outer layer is taken as the new last layer, and the last layer is reacquired.
  • the current bit error rate and the current acceptable range based on the power dynamic range for re-detection. In this way, the number of layers to be called can be demodulated according to the current transmission state adjustment
  • the digital signal modulation apparatus in an embodiment includes: a broadcast information sending module 100, a signal acquiring module 110, a source data sorting module 120, a control data mapping module 130, a layer selecting module 140, and a source data mapping. Module 150 and multi-layer modulation module 160.
  • the broadcast information sending module 100 is configured to send the broadcast information to the receiving end, and receive the power dynamic range or the calling layer returned by the receiving end according to the broadcast information.
  • the signal acquisition module 110 is configured to acquire a digital signal to be modulated, and acquire a plurality of source data according to the digital signal to be modulated.
  • the source data sorting module 120 is configured to obtain a transmission rate requirement corresponding to the source data according to the preset correspondence, and use the source data with the lowest transmission rate requirement in the source data as the highest priority source data, according to the source data.
  • the transmission rate requirements are prioritized for the source data.
  • the control data mapping module 130 is configured to generate control data according to the power dynamic range or the calling layer, and map the control data to an outermost layer in the preset constellation that is far from the center point.
  • the layer selection module 140 is configured to use the outermost layer as the first layer, and select the same number of layers as the number of calling layers from the preset constellation in the direction of the center point of the preset constellation to obtain the selected image. Floor.
  • the source data mapping module 150 is configured to start from the second layer of the selected layer, and map different source data from the outer layer to the inner layer according to the priority of the source data. Select a layer.
  • the multi-layer modulation module 160 is configured to obtain a modulation mode of the selected layer according to the preset constellation diagram, and respectively modulate the control data or the source data mapped to the corresponding layer by using the modulation mode of each selected layer to obtain each selected one.
  • the modulated signal of the layer generates a modulated digital signal according to the modulated signal of each selected layer and transmits it to the receiving end.
  • the preset constellation is a circular constellation
  • the modulation mode of the i-th layer of the preset constellation is 2 i+1 PSK or 4 i PSK
  • the i-th layer and the i+1-th layer are The phase angle between the layers is or
  • the digital signal modulating device transmits the broadcast information to the receiving end through the broadcast information transmitting module 100, and receives the power dynamic range or the calling layer returned by the receiving end according to the broadcast information, and then the signal acquiring module 110 acquires the digital signal to be modulated according to the to-be-modulated
  • the digital signal acquires a plurality of source data;
  • the source data sorting module 120 obtains a transmission rate requirement corresponding to the source data according to the preset correspondence, and the source data with the lowest transmission rate requirement in the source data is The highest priority source data, the source data is prioritized according to the transmission rate requirement of the source data;
  • the control data mapping module 130 generates control data according to the power dynamic range or the calling layer, and maps the control data to Presetting the outermost layer away from the center point in the constellation diagram;
  • the layer selection module 140 takes the outermost layer as the first layer, and sequentially selects and calls from the preset constellation according to the direction of the center point of the preset constellation diagram.
  • the equal number of layers of the layer obtains the selected layer; the source data mapping module 150 starts from the second layer of the selected layer, and sequentially sources the source data from the outer layer according to the priority of the source data. Mapping to the corresponding selected layer to the inner layer; the multi-layer modulation module 160 acquires the modulation mode of the selected layer according to the preset constellation diagram, and respectively uses the modulation mode of each selected layer to control the data mapped to the corresponding layer. Or the source data is modulated to obtain a modulated signal of each selected layer, and the modulated digital signal is generated according to the modulated signal of each selected layer and sent to the receiving end. In this way, the preset modulation constellation is used to correspondingly modulate the video signal to be modulated according to various modulation modes, and the modulation efficiency is high.
  • the digital signal demodulating apparatus in an embodiment includes a broadcast information response module 200, a first layer modulation signal acquisition module 210, a first layer demodulation module 220, a multi-layer modulation signal acquisition module 230, and a last layer.
  • the broadcast information response module 200 is configured to receive the broadcast information sent by the sender, and return a power dynamic range or a call layer according to the broadcast information to the sender.
  • the first layer modulation signal acquisition module 210 is configured to receive the modulated digital signal sent by the transmitting end, obtain the peak power of the modulated digital signal, obtain the maximum amplitude according to the peak power, and take the most away from the center point of the preset constellation.
  • the outer layer is the first layer, and the modulation signal of the first layer is selected from the modulated digital signals according to the maximum amplitude.
  • the first layer demodulation module 220 is configured to obtain a modulation mode corresponding to the first layer according to the preset constellation diagram, and demodulate the modulation signal of the first layer according to the modulation mode of the first layer to obtain control data.
  • the multi-layer modulation signal acquisition module 230 is configured to acquire the number of call layers according to the control data, and select a layer equal to the number of call layers from the preset constellation diagram according to the direction of the center point of the preset constellation diagram to obtain the selected map. And modulating signals corresponding to the selected layer except the first layer are obtained from the modulated digital signal according to the maximum amplitude and the preset amplitude ratio.
  • the last layer determining module 240 is configured to use the layer farthest from the first layer in the selected layer as the last layer.
  • the bit error rate acquisition module 250 is configured to obtain a current bit error rate of the last layer, and obtain a current acceptable range according to the power dynamic range.
  • the bit error rate detection module 260 is configured to determine whether the current bit error rate is within the current acceptable range.
  • the multi-layer demodulation module 270 is configured to obtain, according to the preset constellation diagram, a modulation mode of the selected layer except the first layer when the current error rate is within the current acceptable range, respectively adopting the The modulation mode of the selected layer demodulates the modulated signal corresponding to the layer to obtain corresponding source data, and generates a demodulated signal according to the source data.
  • the last layer update module 280 is configured to use the layer of the last layer to the outer layer as the new most when the current bit error rate is not within the current acceptable range, and the direction away from the center point of the preset constellation is outward.
  • the last layer, and the control error rate acquisition module 250 reacquires the current bit error rate of the last layer, and obtains the current acceptable range according to the power dynamic range.
  • the preset constellation is a circular constellation
  • the modulation mode of the i-th layer of the preset constellation is 2 i+1 PSK or 4 i PSK
  • the i-th layer and the i+1-th layer are The phase angle of the phase shift between layers is or
  • the digital signal demodulating device receives the broadcast information sent by the transmitting end through the broadcast information response module 200, and returns the power dynamic range or the calling layer number to the transmitting end according to the broadcast information; then the first layer modulated signal acquiring module 210 receives the transmitting end and sends the broadcast information.
  • the modulated digital signal and obtain the peak power of the modulated digital signal, obtain the maximum amplitude according to the peak power, and take the outermost layer away from the center point of the preset constellation as the first layer, according to the maximum amplitude
  • the first layer of the modulation signal is selected from the digital signal; then the first layer demodulation module 220 obtains the modulation mode corresponding to the first layer according to the preset constellation diagram, and solves the modulation signal of the first layer according to the modulation mode of the first layer.
  • the multi-layer modulation signal acquisition module 230 acquires the number of calling layers according to the control data, and selects a layer equal to the number of calling layers from the preset constellation in a direction gradually approaching the center point of the preset constellation Obtaining the selected layer, and obtaining the selected layer except the first layer from the modulated digital signal according to the maximum amplitude and the preset amplitude ratio
  • the final layer determining module 240 takes the layer farthest from the first layer in the selected layer as the last layer; the error rate obtaining module 250 obtains the current bit error rate of the last layer, and according to the power dynamic range.
  • the error rate detection module 260 determines whether the current error rate is within the current acceptable range; if so, the multi-layer demodulation module 270 acquires the selected layer except the first layer according to the preset constellation map.
  • the modulation mode uses the modulation mode of the selected layer except the first layer to demodulate the modulated signal of the corresponding layer to obtain corresponding source data, and generates a demodulated signal according to the source data; if not, then
  • the last layer update module 280 takes the direction away from the center point of the preset constellation diagram as the outward direction, and the layer of the last layer to the outer layer as the new last layer, and controls the error rate acquisition module 250 to regain the last layer.
  • the current bit error rate and the current acceptable range based on the power dynamic range for re-detection. In this way, the number of layers to be called can be demodulated according to the current transmission state adjustment, and the demodulation efficiency is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本发明涉及一种数字信号调制方法、解调方法及装置,数字信号调制方法包括:发送广播信息至接收端并接收返回的功率动态范围或调用层数;根据获取的待调制数字信号获取信源数据;根据预设的对应关系获取信源数据对应的传输速率要求并对信源数据进行优先级排序;根据功率动态范围或调用层数生成控制数据映射到预设星座图中远离中心点的最外层;以最外层为第一层,依次从预设星座图中选取图层得到已选图层,将信源数据对应映射到已选图层;根据预设星座图获取已选图层的调制方式,分别对映射到对应图层的控制数据或信源数据进行调制得到对应的调制信号,根据调制信号生成已调数字信号并发送。如此可提高调制效率。

Description

数字信号调制方法、解调方法及装置 技术领域
本发明涉及通信技术领域,特别是涉及一种数字信号调制方法、解调方法及装置。
背景技术
数字信号的调制方式通常包括调幅、调频和调相,其中,调相方式按照载波相位的数量分为PSK(Phase Shift Keyin相移键控)、QPSK(正交相移键控)、8PSK和16PSK等。
传统的对数字信号进行传输处理过程时,一般是采用一种固定的调制方式进行调制解调,效率低。
发明内容
基于此,有必要针对上述问题,提供一种效率高的数字信号调制方法、解调方法及装置。
一种数字信号调制方法,包括:
发送广播信息至接收端,并接收所述接收端根据所述广播信息返回的功率动态范围或调用层数;
获取待调制数字信号,根据所述待调制数字信号获取多种信源数据;
根据预设的对应关系获取所述信源数据对应的传输速率要求,以所述信源数据中传输速率要求最低的信源数据为最高优先级的信源数据,按照所述信源数据的传输速率要求的高低对所述信源数据进行优先级排序;
根据所述功率动态范围或所述调用层数生成控制数据,将所述控制数据映射到预设星座图中远离中心点的最外层;
以所述最外层为第一层,按照逐渐靠近所述预设星座图的中心点的方向、依次从所述预设星座图中选取与所述调用层数相等数量的图层得到已选图层;
从所述已选图层的第二层起始,根据所述信源数据的优先级从高到低、依次将所述信源数据从外层往内层映射到对应的已选图层;
根据所述预设星座图获取所述已选图层的调制方式,分别采用各已选图层的调制方式 对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至所述接收端。
一种数字信号调制装置,包括:
广播信息发送模块,用于发送广播信息至接收端,并接收所述接收端根据所述广播信息返回的功率动态范围或调用层数;
信号获取模块,用于获取待调制数字信号,根据所述待调制数字信号获取多种信源数据;
信源数据排序模块,用于根据预设的对应关系获取所述信源数据对应的传输速率要求,以所述信源数据中传输速率要求最低的信源数据为最高优先级的信源数据,按照所述信源数据的传输速率要求的高低对所述信源数据进行优先级排序;
控制数据映射模块,用于根据所述功率动态范围或所述调用层数生成控制数据,将所述控制数据映射到预设星座图中远离中心点的最外层;
图层选取模块,用于以所述最外层为第一层,按照逐渐靠近所述预设星座图的中心点的方向、依次从所述预设星座图中选取与所述调用层数相等数量的图层得到已选图层;
信源数据映射模块,用于从所述已选图层的第二层起始,根据所述信源数据的优先级从高往低、依次将不同的信源数据从外层往内层映射到对应的已选图层;
多层调制模块,用于根据所述预设星座图获取所述已选图层的调制方式,分别采用各已选图层的调制方式对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至所述接收端。
上述数字信号调制方法和装置,通过发送广播信息至接收端,并接收接收端根据广播信息返回的功率动态范围或调用层数,然后获取待调制数字信号,根据待调制数字信号获取多种信源数据,根据预设的对应关系获取信源数据对应的传输速率要求,以信源数据中传输速率要求最低的信源数据为最高优先级的信源数据,按照信源数据的传输速率要求的高低对信源数据进行优先级排序;同时根据功率动态范围或调用层数生成控制数据,将控制数据映射到预设星座图中远离中心点的最外层;以最外层为第一层,按照逐渐靠近预设星座图的中心点的方向、依次从预设星座图中选取与调用层数相等数量的图层得到已选图层;从已选图层的第二层起始,根据信源数据的优先级从高到低依次将信源数据从外层往内层映射到对应的已选图层;根据预设星座图获取已选图层的调制方式,分别采用各已选 图层的调制方式对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至接收端。如此,采用预设星座图将待调制数字信号按照多种调制方式进行对应调制,调制效率高。
一种数字信号解调方法,包括:
接收发送端发送的广播信息,并根据所述广播信息返回功率动态范围或调用层数至所述发送端;
接收所述发送端发送的已调数字信号,并获取所述已调数字信号的峰值功率,根据所述峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据所述最大幅值从所述已调数字信号中选取所述第一层的调制信号;
根据所述预设星座图获取所述第一层的调制方式,并根据所述第一层的调制方式对所述第一层的调制信号进行解调,得到控制数据;
根据所述控制数据获取所述调用层数,按照逐渐靠近所述预设星座图的中心点的方向、从所述预设星座图中选取与所述调用层数相等数量的图层得到已选图层,并根据所述最大幅值和预设的幅值比例从所述已调数字信号中获取除所述第一层外的已选图层对应的调制信号;
将所述已选图层中距离所述第一层最远的图层作为最末层;
获取所述最末层的当前误码率,以及根据所述功率动态范围获取当前可接受范围;
判断所述当前误码率是否在所述当前可接受范围内;
若是,根据所述预设星座图获取除所述第一层外的已选图层的调制方式,分别采用除所述第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据所述信源数据生成解调信号;
若否,以远离所述预设星座图的中心点的方向为往外方向,将所述最末层往外一层的图层作为新的最末层,并返回所述获取所述最末层的当前误码率,以及根据所述功率动态范围获取当前可接受范围的步骤。
一种数字信号解调装置,包括:
广播信息应答模块,用于接收发送端发送的广播信息,并根据所述广播信息返回功率动态范围或调用层数至所述发送端;
第一层调制信号获取模块,用于接收所述发送端发送的已调数字信号,并获取所述已调数字信号的峰值功率,根据所述峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据所述最大幅值从所述已调数字信号中选取所述第一层的调制信号;
第一层解调模块,用于根据所述预设星座图获取所述第一层的调制方式,并根据所述第一层的调制方式对所述最一层的调制信号进行解调,得到控制数据;
多层调制信号获取模块,用于根据所述控制数据获取所述调用层数,按照逐渐靠近所述预设星座图的中心点的方向、从所述预设星座图中选取与所述调用层数相等数量的图层得到已选图层,并根据所述最大幅值和预设的幅值比例从所述已调数字信号中获取除所述第一层外的已选图层对应的调制信号;
最末层确定模块,用于将所述已选图层中距离所述第一层最远的图层作为最末层;
误码率获取模块,用于获取所述最末层的当前误码率,以及根据所述功率动态范围获取当前可接受范围;
误码率检测模块,用于判断所述当前误码率是否在所述当前可接受范围内;
多层解调模块,用于在所述当前误码率在所述当前可接受范围内时,根据所述预设星座图获取除所述第一层外的已选图层的调制方式,分别采用除所述第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据所述信源数据生成解调信号;
最末层更新模块,用于在所述当前误码率不在所述当前可接受范围内时,以远离所述预设星座图的中心点的方向为往外方向,将所述最末层往外一层的图层作为新的最末层,并控制所述误码率获取模块重新获取所述最末层的当前误码率,以及根据所述功率动态范围获取当前可接受范围。
上述数字信号解调方法和装置,通过接收发送端发送的广播信息,并根据广播信息返回功率动态范围或调用层数至发送端;然后接收发送端发送的已调数字信号,并获取已调数字信号的峰值功率,根据峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据最大幅值从已调数字信号中选取第一层的调制信号;然后根据预设星座图获取第一层的调制方式,并根据第一层的调制方式对第一层的调制信号进行解调,得到控制数据;根据控制数据获取调用层数,按照逐渐靠近预设星座图的中心点的方向、从预 设星座图中选取与调用层数数量相等的图层得到已选图层,并根据最大幅值和预设的幅值比例从已调数字信号中获取除第一层外的已选图层的调制信号;将已选图层中距离第一层最远的图层作为最末层,获取最末层的当前误码率,以及根据功率动态范围获取当前可接受范围,并判断当前误码率是否在当前可接受范围内;若是,则根据预设星座图获取除第一层外的已选图层的调制方式,分别采用除第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据信源数据生成解调信号;若否,则以远离预设星座图的中心点的方向为往外方向,将最末层往外一层的图层作为新的最末层,重新获取最末层的当前误码率,以及根据功率动态范围获取当前可接受范围,以便重新检测。如此,可以根据当前的传输状态调整调用的图层数量进行解调,解调效率高。
附图说明
图1为一实施例中数字信号调制方法的流程图;
图2为一实施例中预设星座图的示意图;
图3为一实施例中数字信号解调方法的流程图;
图4为一实施例中数字信号调制装置的模块框图;
图5为一实施例中数字信号解调装置的模块框图。
具体实施方式
参考图1,一实施例中的数字信号调制方法,包括如下步骤。
S100:发送广播信息至接收端,并接收接收端根据广播信息返回的功率动态范围或调用层数。
功率动态范围指传输过程中的最大功率与最小功率对应的动态范围。
S110:获取待调制数字信号,根据待调制数字信号获取多种信源数据。
待调制数字信号按照数据类型或传输要求可以分为多种信源数据,通过获取待调制数字信号的信源数据,方便后续对待调制信号进行分类调制处理。具体地,不同的信源数据可以是对应不同的数据类型,如,待调制数字信号为视频信号,视频信号包括的信源数据有音频数据和影像数据;不同的信源数据也可以是对应不同的数据流,如,待调制数字信号为影像数据,对应影像数据的信源数据有包括色块信息和细节信息。
S120:根据预设的对应关系获取信源数据对应的传输速率要求,以信源数据中传输速率要求最低的信源数据为最高优先级的信源数据,按照信源数据的传输速率要求的高低对信源数据进行优先级排序。
预设的对应关系指信源数据与传输速率要求的对应关系,也可以是指信源数据与传输可靠性要求的对应关系;其中,传输可靠性要求越高,对应信源数据的传输速率要求越低。通过对信源数据进行优先级排序,传输速率要求越低的信源数据,优先级越高。
S130:根据功率动态范围或调用层数生成控制数据,将控制数据映射到预设星座图中远离中心点的最外层。
预设星座图指预先设置的用于调制数字信号的星座图。预设星座图包括多个图层,每一个图层上设有星座点,不同图层对应不同的调制方式,不同的调制方式对应的传输速率不同,星座图的图层间距表示层间幅度差,同一图层相邻星座点之间的相位差相等。预设星座图各图层对应的调制方式可以根据实际需求设置,本实施例中,预设星座图的调制方式为MPSK(多进制相移键控),不同的图层,M的取值不同,按照逐渐靠近预设星座图的中心点的方向,M的取值越大。预设星座图可以在步骤S100之前获取。
控制数据可以是根据功率动态范围获取调用层数后,根据调用层数生成,也可以是直接根据调用层数生成。根据功率动态范围获取调用层数具体可以是根据功率动态范围和信源数据的传输速率要求对信源数据进行分类,得到的分类数量加一即为调用层数,其中对信源数据进行分类,可以是将属于同一个预设速率等级的传输速率要求对应的信源数据作为同一类。通过根据调用层数生成控制数据,从而控制数据携带有调用层数的信息。
可以理解,在其他实施例中,还可以根据待调制数字信号获取对应的传输信道信息,根据优先级排序之后的信源数据得到信源数据与优先级序号的对应关系,根据传输信道信息、信源数据与优先级序号的对应关系以及调用层数生成控制数据。其中,传输信道信息用于指示传输待调制信号的信道;优先级序号用于表示对应信源数据的优先级的序号,序号越低,表示信源数据的优先级越高。例如,待调制信号为视频信号;传输视频信号的信道为信道1,视频信号包括影像数据和音频数据,因此,可得到调用层数为3。影像数据的传输速率要求比音频数据的传输速率要求高,得到音频数据的优先级序号为1,影像数据的优先级序号为2。因此,对应视频信号的控制数据包括的信息为:调用层数为3,传输信道为信道1,音频数据的优先级序号为1,影像数据的优先级序号为2。
S140:以最外层为第一层,按照逐渐靠近预设星座图的中心点的方向、依次从预设星座图中选取与调用层数相等数量的图层得到已选图层。
从预设星座图选取图层为按照顺序选取,例如,视频信号的调用层数为3,以第一层为起始、对应的已选图层为第一层、第二层和第三层。
S150:从已选图层的第二层起始,根据信源数据的优先级从高到低、依次将信源数据从外层往内层映射到对应的已选图层。
不同的信源数据按照优先级从外层往内层映射到不同的层次,即不同的信源数据对应不同的调制方式。具体地,优先级越高的信源数据,映射的图层距离预设星座图的中心点越远,传输速率越小。例如,视频信号的音频数据的优先级序号为1,影像数据的优先级序号为2,则音频数据映射到第二层,影像数据映射到第三层。
S160:根据预设星座图获取已选图层的调制方式,分别采用各已选图层的调制方式对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至接收端。
通过分别采用各图层的方式调制各图层的信源数据,得到已调数字信号,可实现根据不同的信源数据的传输速率要求实现分类调制后整体传输。
上述数字信号调制方法,通过发送广播信息至接收端,并接收接收端根据广播信息返回的功率动态范围或调用层数,然后获取待调制数字信号,根据待调制数字信号获取多种信源数据,根据预设的对应关系获取信源数据对应的传输速率要求,以信源数据中传输速率要求最低的信源数据为最高优先级的信源数据,按照信源数据的传输速率要求的高低对信源数据进行优先级排序;同时根据功率动态范围或调用层数生成控制数据,将控制数据映射到预设星座图中远离中心点的最外层;以最外层为第一层,按照逐渐靠近预设星座图的中心点的方向、依次从预设星座图中选取与调用层数相等数量的图层得到已选图层;从已选图层的第二层起始,根据信源数据的优先级从高到低依次将信源数据从外层往内层映射到对应的已选图层;根据预设星座图获取已选图层的调制方式,分别采用各已选图层的调制方式对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至接收端。如此,采用预设星座图将待调制数字信号按照多种调制方式进行对应调制,调制效率高。
在一实施例中,预设星座图为圆形星座图,预设星座图的第i层对应的调制方式为2i+1PSK或4iPSK,且第i层和第i+1层的层间错开的相位角为
Figure PCTCN2017071562-appb-000001
Figure PCTCN2017071562-appb-000002
通过在图层与调制方式的对应关系中引入指数函数,可以获得更清晰的量化区域边界。
参考图2,本实施例中,预设星座图上,最外层的调制方式为π/4QPSK,第二层为8PSK,第三层为16PSK。可以理解,在其他实施例中,最外层的调制方式也可以为QPSK。
在一实施例中,第i层和第i+1层的层间错开的相位角为
Figure PCTCN2017071562-appb-000003
预设星座图的第i层与第一层的幅值比例为:
Figure PCTCN2017071562-appb-000004
其中,i为图层的序号,ri为第i层与第一层的幅值比例。
通过设置第i层与第一层的幅值比例关系,对各图层间的幅值差进行限定,可以增加靠近预设星座图的中心点处星座点的量化区域。可以理解,在其他实施例中,第i层和第i+1层的层间错开的相位角为其他表达式时,预设星座图的第i层与第一层的幅值比例也可以为其他表达式。
参考图3,一实施例中的数字信号解调方法,包括如下步骤。
S200:接收发送端发送的广播信息,并根据广播信息返回功率动态范围或调用层数至发送端。
功率动态范围指传输过程中的最大功率与最小功率对应的动态范围。
S210:接收发送端发送的已调数字信号,并获取已调数字信号的峰值功率,根据峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据最大幅值从已调数字信号中选取第一层的调制信号。
已调数字信号由多种调制方式对待调制数字信号进行调制得到。峰值功率指短时间内达到的最大功率,最大幅值为已调数字信号的多种调制信号中对应的幅值最大的调制信号,对应为预设星座图的第一层的调制信号。
S220:根据预设星座图获取第一层的调制方式,并根据第一层的调制方式对第一层的调制信号进行解调,得到控制数据。
不同图层对应不同的调制方式,不同的调制方式对应的传输速率不同。在一实施例中,预设星座图为圆形星座图,预设星座图的第i层对应的调制方式为2i+1PSK或4iPSK,且第 i层和第i+1层的层间错开的相位角为
Figure PCTCN2017071562-appb-000005
Figure PCTCN2017071562-appb-000006
通过在图层与调制方式的对应关系中引入指数函数,可以获得更清晰的量化区域边界。
本实施例中,第一层的调制方式为π/4QPSK,采用π/4QPSK对第一层的调制信号进行解调。可以理解,在其他实施例中,第一层的调制方式还可以为QPSK。
S230:根据控制数据获取调用层数,按照逐渐靠近预设星座图的中心点的方向、从预设星座图中选取与调用层数相等数量的图层得到已选图层,并根据最大幅值和预设的幅值比例从已调数字信号中获取除第一层外的已选图层对应的调制信号。
发送端调制时,根据调用层数生成控制数据,因此控制数据包括调用层数的信息。
预设的幅值比例为第i层与第一层的幅值比例。在一实施例中,第i层和第i+1层的层间错开的相位角为
Figure PCTCN2017071562-appb-000007
预设的幅值比例为:
Figure PCTCN2017071562-appb-000008
其中,i为图层的序号,ri为第i层与第一层的幅值比例。
通过设置第i层与第一层的幅值比例关系,对各图层间的幅值差进行限定,可以增加靠近预设星座图的中心点处星座点的量化区域。可以理解,在其他实施例中,第i层和第i+1层的层间错开的相位角为其他表达式时,预设星座图的第i层与第一层的幅值比例也可以为其他表达式。
S240:将已选图层中距离第一层最远的图层作为最末层。
例如,已选图层包括第二层和第三层,则将第三层作为最末层。
S250:获取最末层的当前误码率,以及根据功率动态范围获取当前可接受范围。
当前可接受范围,指信道在当前传输的功率动态范围对应的误码率可接受范围;功率动态范围越宽,可接受范围的最低误码率越小。
S260:判断当前误码率是否在当前可接受范围内。若是,则执行步骤S270;若否,则执行步骤S280。
S270:根据预设星座图获取除第一层外的已选图层的调制方式,分别采用除第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据信源数据生成解调信号。
当前误码率在当前可接受范围内,表示最末层的误码率可接受,可调用最末层进行解 调。此时,同时调用第二层到最末层的各图层进行解调,得到各图层的信源数据。
S280:以远离预设星座图的中心点的方向为往外方向,将最末层往外一层的图层作为新的最末层,并返回步骤S250。
当前误码率不在当前可接受范围内,表示不可调用最末层进行解调。此时,往外层退回一个图层之后重新检测当前误码率。
信道的功率动态范围决定图层的当前可接受范围,从而决定图层的当前误码率是否可接受。通过从调用层数对应的最里层开始进行当前误码率的检测,直到图层对应的当前误码率在图层对应的当前可接受范围内,此时调用第二层到最终检测的图层进行解调,可以实现根据传输的功率动态范围调整调用的图层,提高解调效率。例如,已调数字信号为影像数据,影像数据包括色块信息和细节信息;预设星座图第一层对应为控制数据的调制信号;采用第一层的调制方式对第一层进行解调之后得到控制数据,根据控制数据获取信息:调用层数为3层,第二层为影像数据的色块调制信号,第三层为影像数据的细节调制信号。首先检测第三层的当前误码率是否在第三层的可接受范围内,若是则同时调用第二层和第三层进行对应调制信号的解调;若否,则退回第二层,检测第二层的误码率是否在第二层的可接受范围内;若是,则调用第二层进行解调,否则停止解调。
上述数字信号解调方法,通过接收发送端发送的广播信息,并根据广播信息返回功率动态范围或调用层数至发送端;然后接收发送端发送的已调数字信号,并获取已调数字信号的峰值功率,根据峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据最大幅值从已调数字信号中选取第一层的调制信号;然后根据预设星座图获取第一层的调制方式,并根据第一层的调制方式对第一层的调制信号进行解调,得到控制数据;根据控制数据获取调用层数,按照逐渐靠近预设星座图的中心点的方向、从预设星座图中选取与调用层数数量相等的图层得到已选图层,并根据最大幅值和预设的幅值比例从已调数字信号中获取除第一层外的已选图层的调制信号;将已选图层中距离第一层最远的图层作为最末层,获取最末层的当前误码率,以及根据功率动态范围获取当前可接受范围,并判断当前误码率是否在当前可接受范围内;若是,则根据预设星座图获取除第一层外的已选图层的调制方式,分别采用除第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据信源数据生成解调信号;若否,则以远离预设星座图的中心点的方向为往外方向,将最末层往外一层的图层作为新的最末层,重新获取最末层 的当前误码率,以及根据功率动态范围获取当前可接受范围,以便重新检测。如此,可以根据当前的传输状态调整调用的图层数量进行解调,解调效率高。
参考图4,一实施例中的数字信号调制装置,包括:广播信息发送模块100、信号获取模块110、信源数据排序模块120、控制数据映射模块130、图层选取模块140、信源数据映射模块150和多层调制模块160。
广播信息发送模块100用于发送广播信息至接收端,并接收接收端根据广播信息返回的功率动态范围或调用层数。
信号获取模块110用于获取待调制数字信号,根据待调制数字信号获取多种信源数据。
信源数据排序模块120用于根据预设的对应关系获取信源数据对应的传输速率要求,以信源数据中传输速率要求最低的信源数据为最高优先级的信源数据,按照信源数据的传输速率要求的高低对信源数据进行优先级排序。
控制数据映射模块130用于根据功率动态范围或调用层数生成控制数据,将控制数据映射到预设星座图中远离中心点的最外层。
图层选取模块140用于以最外层为第一层,按照逐渐靠近预设星座图的中心点的方向、依次从预设星座图中选取与调用层数相等数量的图层得到已选图层。
信源数据映射模块150用于从已选图层的第二层起始,根据信源数据的优先级从高往低、依次将不同的信源数据从外层往内层映射到对应的已选图层。
多层调制模块160用于根据预设星座图获取已选图层的调制方式,分别采用各已选图层的调制方式对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至接收端。
在一实施例中,预设星座图为圆形星座图,预设星座图的第i层对应的调制方式为2i+1PSK或4iPSK,且第i层和第i+1层的层间错开的相位角为
Figure PCTCN2017071562-appb-000009
Figure PCTCN2017071562-appb-000010
上述数字信号调制装置,通过广播信息发送模块100发送广播信息至接收端,并接收接收端根据广播信息返回的功率动态范围或调用层数,然后信号获取模块110获取待调制数字信号,根据待调制数字信号获取多种信源数据;信源数据排序模块120根据预设的对应关系获取信源数据对应的传输速率要求,以信源数据中传输速率要求最低的信源数据为 最高优先级的信源数据,按照信源数据的传输速率要求的高低对信源数据进行优先级排序;同时控制数据映射模块130根据功率动态范围或调用层数生成控制数据,将控制数据映射到预设星座图中远离中心点的最外层;图层选取模块140以最外层为第一层,按照逐渐靠近预设星座图的中心点的方向、依次从预设星座图中选取与调用层数相等数量的图层得到已选图层;信源数据映射模块150从已选图层的第二层起始,根据信源数据的优先级从高到低依次将信源数据从外层往内层映射到对应的已选图层;多层调制模块160根据预设星座图获取已选图层的调制方式,分别采用各已选图层的调制方式对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至接收端。如此,采用预设星座图将待调制视频信号按照多种调制方式进行对应调制,调制效率高。
参考图5,一实施例中的数字信号解调装置,包括广播信息应答模块200、第一层调制信号获取模块210、第一层解调模块220、多层调制信号获取模块230、最末层确定模块240、误码率获取模块250、误码率检测模块260、多层解调模块270和最末层更新模块280。
广播信息应答模块200用于接收发送端发送的广播信息,并根据广播信息返回功率动态范围或调用层数至发送端。
第一层调制信号获取模块210用于接收发送端发送的已调数字信号,并获取已调数字信号的峰值功率,根据峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据最大幅值从已调数字信号中选取第一层的调制信号。
第一层解调模块220用于根据预设星座图获取第一层对应的调制方式,并根据第一层的调制方式对最一层的调制信号进行解调,得到控制数据。
多层调制信号获取模块230用于根据控制数据获取调用层数,按照逐渐靠近预设星座图的中心点的方向、从预设星座图中选取与调用层数相等数量的图层得到已选图层,并根据最大幅值和预设的幅值比例从已调数字信号中获取除第一层外的已选图层对应的调制信号。
最末层确定模块240用于将已选图层中距离第一层最远的图层作为最末层。
误码率获取模块250用于获取最末层的当前误码率,以及根据功率动态范围获取当前可接受范围。
误码率检测模块260用于判断当前误码率是否在当前可接受范围内。
多层解调模块270用于在当前误码率在当前可接受范围内时,根据预设星座图获取除第一层外的已选图层的调制方式,分别采用除第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据信源数据生成解调信号。
最末层更新模块280用于在当前误码率不在当前可接受范围内时,以远离预设星座图的中心点的方向为往外方向,将最末层往外一层的图层作为新的最末层,并控制误码率获取模块250重新获取最末层的当前误码率,以及根据功率动态范围获取当前可接受范围。
在一实施例中,预设星座图为圆形星座图,预设星座图的第i层对应的调制方式为2i+1PSK或4iPSK,且第i层和第i+1层的层间相位错开的相位角为
Figure PCTCN2017071562-appb-000011
Figure PCTCN2017071562-appb-000012
上述数字信号解调装置,通过广播信息应答模块200接收发送端发送的广播信息,并根据广播信息返回功率动态范围或调用层数至发送端;然后第一层调制信号获取模块210接收发送端发送的已调数字信号,并获取已调数字信号的峰值功率,根据峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据最大幅值从已调数字信号中选取第一层的调制信号;然后第一层解调模块220根据预设星座图获取第一层对应的调制方式,并根据第一层的调制方式对第一层的调制信号进行解调,得到控制数据;多层调制信号获取模块230根据控制数据获取调用层数,按照逐渐靠近预设星座图的中心点的方向、从预设星座图中选取与调用层数数量相等的图层得到已选图层,并根据最大幅值和预设的幅值比例从已调数字信号中获取除第一层外的已选图层的调制信号;最末层确定模块240将已选图层中距离第一层最远的图层作为最末层;误码率获取模块250获取最末层的当前误码率,以及根据功率动态范围获取当前可接受范围;误码率检测模块260判断当前误码率是否在当前可接受范围内;若是,则多层解调模块270根据预设星座图获取除第一层外的已选图层的调制方式,分别采用除第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据信源数据生成解调信号;若否,则最末层更新模块280以远离预设星座图的中心点的方向为往外方向,将最末层往外一层的图层作为新的最末层,控制误码率获取模块250重新获取最末层的当前误码率,以及根据功率动态范围获取当前可接受范围,以便重新检测。如此,可以根据当前的传输状态调整调用的图层数量进行解调,解调效率高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种数字信号调制方法,其特征在于,包括:
    发送广播信息至接收端,并接收所述接收端根据所述广播信息返回的功率动态范围或调用层数;
    获取待调制数字信号,根据所述待调制数字信号获取多种信源数据;
    根据预设的对应关系获取所述信源数据对应的传输速率要求,以所述信源数据中传输速率要求最低的信源数据为最高优先级的信源数据,按照所述信源数据的传输速率要求的高低对所述信源数据进行优先级排序;
    根据所述功率动态范围或所述调用层数生成控制数据,将所述控制数据映射到预设星座图中远离中心点的最外层;
    以所述最外层为第一层,按照逐渐靠近所述预设星座图的中心点的方向、依次从所述预设星座图中选取与所述调用层数相等数量的图层得到已选图层;
    从所述已选图层的第二层起始,根据所述信源数据的优先级从高到低、依次将所述信源数据从外层往内层映射到对应的已选图层;
    根据所述预设星座图获取所述已选图层的调制方式,分别采用各已选图层的调制方式对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至所述接收端。
  2. 根据权利要求1所述的数字信号调制方法,其特征在于,所述预设星座图为圆形星座图,所述预设星座图的第i层对应的调制方式为2i+1PSK或4iPSK,且第i层和第i+1层的层间错开的相位角为
    Figure PCTCN2017071562-appb-100001
    Figure PCTCN2017071562-appb-100002
  3. 根据权利要求2所述的数字信号调制方法,其特征在于,所述第i层和第i+1层的层间错开的相位角为
    Figure PCTCN2017071562-appb-100003
    所述预设星座图的第i层与所述第一层的幅值比例为:
    Figure PCTCN2017071562-appb-100004
    其中,i为图层的序号,ri为第i层与所述第一层的幅值比例。
  4. 一种数字信号解调方法,其特征在于,包括:
    接收发送端发送的广播信息,并根据所述广播信息返回功率动态范围或调用层数至所 述发送端;
    接收所述发送端发送的已调数字信号,并获取所述已调数字信号的峰值功率,根据所述峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据所述最大幅值从所述已调数字信号中选取所述第一层的调制信号;
    根据所述预设星座图获取所述第一层的调制方式,并根据所述第一层的调制方式对所述第一层的调制信号进行解调,得到控制数据;
    根据所述控制数据获取所述调用层数,按照逐渐靠近所述预设星座图的中心点的方向、从所述预设星座图中选取与所述调用层数相等数量的图层得到已选图层,并根据所述最大幅值和预设的幅值比例从所述已调数字信号中获取除所述第一层外的已选图层对应的调制信号;
    将所述已选图层中距离所述第一层最远的图层作为最末层;
    获取所述最末层的当前误码率,以及根据所述功率动态范围获取当前可接受范围;
    判断所述当前误码率是否在所述当前可接受范围内;
    若是,根据所述预设星座图获取除所述第一层外的已选图层的调制方式,分别采用除所述第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据所述信源数据生成解调信号;
    若否,以远离所述预设星座图的中心点的方向为往外方向,将所述最末层往外一层的图层作为新的最末层,并返回所述获取所述最末层的当前误码率,以及根据所述功率动态范围获取当前可接受范围的步骤。
  5. 根据权利要求4所述的数字信号解调方法,其特征在于,所述预设星座图为圆形星座图,所述预设星座图的第i层对应的调制方式为2i+1PSK或4iPSK,且第i层和第i+1层的层间相位错开的相位角为
    Figure PCTCN2017071562-appb-100005
    Figure PCTCN2017071562-appb-100006
  6. 根据权利要求5所述的数字信号调制方法,其特征在于,所述第i层和第i+1层的层间错开的相位角为
    Figure PCTCN2017071562-appb-100007
    所述预设的幅值比例为第i层与所述第一层的幅值比例,所述预设的幅值比例为:
    Figure PCTCN2017071562-appb-100008
    其中,i为图层的序号,ri为第i层与所述第一层的幅值比例。
  7. 一种数字信号调制装置,其特征在于,包括:
    广播信息发送模块,用于发送广播信息至接收端,并接收所述接收端根据所述广播信息返回的功率动态范围或调用层数;
    信号获取模块,用于获取待调制数字信号,根据所述待调制数字信号获取多种信源数据;
    信源数据排序模块,用于根据预设的对应关系获取所述信源数据对应的传输速率要求,以所述信源数据中传输速率要求最低的信源数据为最高优先级的信源数据,按照所述信源数据的传输速率要求的高低对所述信源数据进行优先级排序;
    控制数据映射模块,用于根据所述功率动态范围或所述调用层数生成控制数据,将所述控制数据映射到预设星座图中远离中心点的最外层;
    图层选取模块,用于以所述最外层为第一层,按照逐渐靠近所述预设星座图的中心点的方向、依次从所述预设星座图中选取与所述调用层数相等数量的图层得到已选图层;
    信源数据映射模块,用于从所述已选图层的第二层起始,根据所述信源数据的优先级从高往低、依次将不同的信源数据从外层往内层映射到对应的已选图层;
    多层调制模块,用于根据所述预设星座图获取所述已选图层的调制方式,分别采用各已选图层的调制方式对映射到对应图层的控制数据或信源数据进行调制得到各已选图层的调制信号,根据各已选图层的调制信号生成已调数字信号并发送至所述接收端。
  8. 根据权利要求7所述的数字信号调制装置,其特征在于,所述预设星座图为圆形星座图,所述预设星座图的第i层对应的调制方式为2i+1PSK或4iPSK,且第i层和第i+1层的层间错开的相位角为
    Figure PCTCN2017071562-appb-100009
    Figure PCTCN2017071562-appb-100010
  9. 一种数字信号解调装置,其特征在于,包括:
    广播信息应答模块,用于接收发送端发送的广播信息,并根据所述广播信息返回功率动态范围或调用层数至所述发送端;
    第一层调制信号获取模块,用于接收所述发送端发送的已调数字信号,并获取所述已调数字信号的峰值功率,根据所述峰值功率获取最大幅值,并以远离预设星座图的中心点的最外层为第一层,根据所述最大幅值从所述已调数字信号中选取所述第一层的调制信号;
    第一层解调模块,用于根据所述预设星座图获取所述第一层的调制方式,并根据所述第一层的调制方式对所述最一层的调制信号进行解调,得到控制数据;
    多层调制信号获取模块,用于根据所述控制数据获取所述调用层数,按照逐渐靠近所述预设星座图的中心点的方向、从所述预设星座图中选取与所述调用层数相等数量的图层得到已选图层,并根据所述最大幅值和预设的幅值比例从所述已调数字信号中获取除所述第一层外的已选图层对应的调制信号;
    最末层确定模块,用于将所述已选图层中距离所述第一层最远的图层作为最末层;
    误码率获取模块,用于获取所述最末层的当前误码率,以及根据所述功率动态范围获取当前可接受范围;
    误码率检测模块,用于判断所述当前误码率是否在所述当前可接受范围内;
    多层解调模块,用于在所述当前误码率在所述当前可接受范围内时,根据所述预设星座图获取除所述第一层外的已选图层的调制方式,分别采用除所述第一层外的已选图层的调制方式将对应图层的已调信号进行解调得到对应的信源数据,根据所述信源数据生成解调信号;
    最末层更新模块,用于在所述当前误码率不在所述当前可接受范围内时,以远离所述预设星座图的中心点的方向为往外方向,将所述最末层往外一层的图层作为新的最末层,并控制所述误码率获取模块重新获取所述最末层的当前误码率,以及根据所述功率动态范围获取当前可接受范围。
  10. 根据权利要求9所述的数字信号解调装置,其特征在于,所述预设星座图为圆形星座图,所述预设星座图的第i层对应的调制方式为2i+1PSK或4iPSK,且第i层和第i+1层的层间相位错开的相位角为
    Figure PCTCN2017071562-appb-100011
    Figure PCTCN2017071562-appb-100012
PCT/CN2017/071562 2016-08-31 2017-01-18 数字信号调制方法、解调方法及装置 WO2018040487A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610795593.4A CN107786478B (zh) 2016-08-31 2016-08-31 数字信号调制方法、解调方法及装置
CN201610795593.4 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040487A1 true WO2018040487A1 (zh) 2018-03-08

Family

ID=61299937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071562 WO2018040487A1 (zh) 2016-08-31 2017-01-18 数字信号调制方法、解调方法及装置

Country Status (2)

Country Link
CN (1) CN107786478B (zh)
WO (1) WO2018040487A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003812B (zh) * 2019-05-27 2021-12-24 华为技术有限公司 一种信号调制方法、装置和系统
CN113325788B (zh) * 2021-08-03 2021-10-01 成都沃特塞恩电子技术有限公司 应用于加速器的高精度幅相检测的功率源控制系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867438A (zh) * 2009-04-20 2010-10-20 清华大学 自适应分配多级速率方法和多级速率自适应配置器
CN102833043A (zh) * 2012-08-25 2012-12-19 华南理工大学 空分复用多天线系统基于旋转星座图的编解码方法
US9258085B2 (en) * 2013-07-08 2016-02-09 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving signal in broadcasting and communication systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707584B (zh) * 2006-11-08 2012-07-04 北京新岸线移动多媒体技术有限公司 在t-mmb系统中应用分层调制技术的方法
US9237084B2 (en) * 2012-11-09 2016-01-12 Cisco Technology, Inc. Apparatus, system, and method for providing energy management, profiles, and message blocks in a cable service environment
CN104618295A (zh) * 2015-02-06 2015-05-13 上海交通大学 基于灵活带宽分配的正交频分多址无源光网络
CN104735017B (zh) * 2015-03-25 2018-04-13 华南理工大学 一种非正交多载波数字调制与解调方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867438A (zh) * 2009-04-20 2010-10-20 清华大学 自适应分配多级速率方法和多级速率自适应配置器
CN102833043A (zh) * 2012-08-25 2012-12-19 华南理工大学 空分复用多天线系统基于旋转星座图的编解码方法
US9258085B2 (en) * 2013-07-08 2016-02-09 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving signal in broadcasting and communication systems

Also Published As

Publication number Publication date
CN107786478A (zh) 2018-03-09
CN107786478B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN109155726B (zh) 信息传输方法、装置、系统及存储介质
JP5199285B2 (ja) 無線通信システムにおけるシグナリングの送信及び受信
US8331252B2 (en) Apparatus, method and computer program product for signaling modulation and coding scheme
US7912487B2 (en) Mobile communication system, base station, terminal device, and transmission control method
US8670774B2 (en) Systems and methods for uplink control resource allocation
KR101060778B1 (ko) 무선 통신들에서의 제어 채널 시그널링
US20060203713A1 (en) Efficient signal transmission methods and apparatus using a shared transmission resource
US20050099992A1 (en) Data communication control system, transmitter, and transmitting method
EP1531560A1 (en) Radio communication base station device, radio communication mobile station device, and radio communication method
EP2064912B1 (en) A method of improving throughput in a system including persistent assignments
JP6450777B2 (ja) 信号伝送方法及び装置
JP2001094526A (ja) 通信方法および通信装置
JP2008061214A (ja) 無線送信機、無線受信機、無線通信システム、及び無線信号制御方法
US10097308B2 (en) Link adaptation in wireless communications
EP1867125A1 (en) Transmission methods and apparatus combining pulse position modulation and hierarchical modulation
CN111263454B (zh) 传输块大小确定方法和终端设备
JP2006203404A (ja) 無線通信装置および無線通信方法
EP1052821A2 (en) Multicarrier receiver with detection of constellation size
JP2002044168A (ja) 通信端末装置、基地局装置および通信方法
JP3902560B2 (ja) チャネル割当方法ならびにそれを利用した基地局装置および通信システム
WO2018058635A1 (zh) 一种控制信号发射的方法和装置
WO2018040487A1 (zh) 数字信号调制方法、解调方法及装置
KR101002554B1 (ko) 국부 및 분산 할당 다중화 및 제어
WO2004068758A1 (ja) マルチキャリア送信装置、マルチキャリア受信装置 及びマルチキャリア無線通信方法
JP2022533350A (ja) 制御情報伝送方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844798

Country of ref document: EP

Kind code of ref document: A1