WO2018040113A1 - 跟日太阳能系统 - Google Patents

跟日太阳能系统 Download PDF

Info

Publication number
WO2018040113A1
WO2018040113A1 PCT/CN2016/098139 CN2016098139W WO2018040113A1 WO 2018040113 A1 WO2018040113 A1 WO 2018040113A1 CN 2016098139 W CN2016098139 W CN 2016098139W WO 2018040113 A1 WO2018040113 A1 WO 2018040113A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
rotating shaft
light energy
receiving surface
energy receiving
Prior art date
Application number
PCT/CN2016/098139
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to PCT/CN2016/098139 priority Critical patent/WO2018040113A1/zh
Publication of WO2018040113A1 publication Critical patent/WO2018040113A1/zh

Links

Definitions

  • the present invention relates to the field of clean energy technologies, and in particular to a solar energy solar system capable of tracking the motion of a light source such as the sun.
  • solar energy systems have become more widely used.
  • some solar systems are equipped with solar tracking functions, which become the Achilles solar system.
  • the sun tracking function is mainly used to adjust the azimuth and attitude of the light receiving surface in the solar system as the sun's azimuth changes, so that the sun light is received as much as possible when the coverage area of the light receiving surface is limited.
  • a solar system can generally be divided into two types, single axis and double axis, and one axis represents one degree of rotational freedom.
  • a single-axis system can increase solar energy utilization by around 20%; in addition to special areas (such as the equator or north and south poles), a two-axis system can increase solar energy utilization by more than 30%.
  • a solar energy solar system comprising a light energy receiving device and a first driving mechanism.
  • the light energy receiving device comprises a first rotating shaft and two or more light energy receiving units, each light energy receiving unit has at least one light receiving surface, and each light energy receiving unit is fixed on the first rotating shaft by mechanical connection;
  • the first drive mechanism includes a power source for driving the first rotating shaft to rotate corresponding to the movement of the light source.
  • a plurality of light energy receiving units are mounted on the same first rotating shaft, and the system cost is saved by sharing the driving mechanism.
  • Multiple light energy receiving units can be vertically above the layer
  • the stacking arrangement can also be arranged side by side in the horizontal direction, or the above two mixed arrangements can be used. Since the light receiving surface is divided in each of the light energy receiving units, the area of the single light receiving surface is reduced, and the overall strength of the system is not affected.
  • the difference between the plurality of light energy receiving units in the present invention and the conventional single light energy receiving unit includes the light receiving surface in each of the light energy receiving units in the present invention. It is substantially continuous, and the light-receiving surfaces between the different units are discontinuous, and each unit has a separate mounting bracket.
  • FIG. 1 is a schematic view of a solar energy system of the first embodiment
  • FIG. 2 is a schematic view of a solar energy system of the second embodiment
  • FIG. 3 is a schematic view of a solar solar system of Embodiment 3; [0014] FIG.
  • FIG. 4 is a schematic view of a solar solar system of Embodiment 4.
  • FIG. 5 is a schematic diagram of a solar solar system of Embodiment 5.
  • FIG. 1 An embodiment of a solar energy solar system according to the present invention may refer to FIG. 1, including a light energy receiving device 1
  • the light energy receiving device 110 includes a first rotating shaft 111 and two light energy receiving units 112.
  • the rotation axis of the first rotating shaft 111 is parallel to the ground, and the two light energy receiving units 112 are fixed to the first rotating shaft by the double-layer brackets 113 stacked in the vertical direction.
  • Two light energy receiving units are exemplarily shown in this embodiment, and it is obvious that more light energy receiving units can be mounted on the shared rotating shaft.
  • a plurality of light energy receiving units may be stacked in a vertical direction in a manner similar to that of FIG. 1, which will advantageously reduce the occupation of the floor area. Although vertically arranged multi-story solar systems create shadows on the back side, this is desirable in many applications, such as riversides, seaside, parking lots on both sides of highways.
  • the plurality of light energy receiving units may also be arranged side by side in the horizontal direction, or may be formed in an array-like structure by vertical and horizontal mixing.
  • the mechanical connection structure supporting the plurality of light energy receiving units on the first rotating shaft can be designed according to the arrangement thereof, and will not be described again.
  • the first shaft can also be vertical or inclined to the ground, depending on the design and installation needs.
  • the center of gravity of the light receiving device can be dropped on the first rotating shaft, which increases the stability of the system and saves the driving force. The energy consumption of a shaft.
  • Each of the light energy receiving units 112 has a planar light receiving surface 1121, which may be, for example, a surface of a photovoltaic panel.
  • the light receiving unit may have a plurality of light receiving surfaces according to the needs of the system design, and each of the light receiving surfaces may be a flat surface or a curved surface, and the light receiving surface may be formed by a plane or a curved surface having a discontinuous curvature.
  • the light-receiving unit has a plurality of light-receiving surfaces
  • the light-receiving surface of the light source as far as possible may be referred to as a front light-receiving surface
  • the light-receiving surface provided on the side of the front light-receiving surface may be referred to as a side light-receiving surface.
  • the angle between the incident light from the light source and the central axis of the front light receiving surface is smaller than the angle between the incident light and the central axis of the side light receiving surface.
  • a collecting lens (or a cylindrical light guiding element) and a photovoltaic panel may be sequentially disposed along the incident optical path, and their light receiving surfaces may be regarded as front receiving surfaces.
  • the front light-receiving surface is provided by an element selected from the group consisting of: a photovoltaic panel, a concentrating lens (eg, a Fresnel concentrating lens), a planar mirror, a curved mirror, a reflective lens (eg, a reflective phenanthrene) Nyre lens), cylindrical light guiding element, and the like.
  • a concentrating lens eg, a Fresnel concentrating lens
  • a planar mirror eg, a curved mirror
  • a reflective lens eg, a reflective phenanthrene
  • cylindrical light guiding element e.g., cylindrical light guiding element
  • the side light receiving surface is provided by an element selected from the group consisting of a flat mirror, a curved mirror, a reflective Fresnel lens, and the like.
  • the reflecting mirror providing the side light receiving surface on at least one side of the front light receiving surface, it is possible to effectively increase the light receiving area with only a small increase in cost, thereby remarkably increasing the output power of the system.
  • the angle between the central axis of the side light receiving surface and the central axis of the front light receiving surface is preferably greater than 45 degrees. Less than 90 degrees.
  • the first driving mechanism 120 includes a power source 121 for driving the first rotating shaft to rotate in response to the movement of the light source.
  • the first rotating shaft in this embodiment is not in the traditional Japanese system. In that way, it is driven by the torque directly outputted to the rotating shaft, but driven by the thrust or the pulling force.
  • the first driving mechanism 120 further includes a driving rod 122 disposed perpendicular to the rotation axis of the first rotating shaft 111, and the power source drives the first rotating shaft to rotate by pushing or pulling the driving rod.
  • This driving method effectively reduces the driving force requirements of the power source, and can help reduce the weight, cost, and energy consumption of the system.
  • driving in a linear motion of push-pull can have a self-locking function, which helps to enhance the wind resistance of the system.
  • the output structure of the rotationally driven retractable screw 1211 is used as a power source.
  • the screw 1211 drives the end of the driving rod 122 up and down by the telescopic movement.
  • the end of the driving rod 122 has a through hole.
  • the push rod 1211 passes through the through hole and is restrained in the through hole in the push-pull direction, and is slidable in the through hole in a direction perpendicular to the push-pull direction, and the other end of the drive rod is fixedly connected
  • the bracket 113 is pushed to push the first rotating shaft 111 to rotate.
  • an appropriate driving structure can be selected according to the actual situation. As long as the rotating shaft is not directly driven by the torque, but the rotation of the rotating shaft is driven by the lever movement of the driving rod, the effect of reducing the driving force requirement can be achieved.
  • the system of the present embodiment further includes an image analyzing device 130 for determining the position of the light source by acquiring an image and controlling the operation of the first driving mechanism accordingly.
  • the image analysis method is used to determine the position of the light source, thereby calculating the angular difference between the light source and the orientation of the light energy receiving unit, or determining the optimal orientation of the light receiving surface of the light energy receiving device.
  • the so-called light source can be the sun or the strongest light source.
  • the solar body may be blocked, but the strongest light source can be obtained through the large-scale reflection surface.
  • This image-based control method is not only accurate, but also low in cost, and the image analysis device can also have the function of security monitoring.
  • the image analyzing device can control the operation of the first driving mechanism by means of wired or wireless communication (not shown). In other embodiments, the image analysis device can separately control the operation of each of the drive mechanisms when there are multiple drive mechanisms in the system.
  • the image analyzing device is fixed on the top of the bracket 113 so as to be fixedly coupled to the first rotating shaft 111, and can rotate together with the first rotating shaft.
  • the image analysis device can also be attached to a fixed portion of the system or can be independently provided. When the image analysis device is physically part of the rest of the system When separating, it is preferred to control the operation of the drive mechanism by wireless communication.
  • FIG. 2 Another embodiment of a solar energy solar system according to the present invention can be referred to FIG. 2, including a light energy receiving device 210, a first driving mechanism 220, and an image analyzing device 230.
  • the light energy receiving device 210 includes a first rotating shaft 211 and two light energy receiving units 212.
  • the planar light-receiving surface of the light-receiving unit mounted on each of the brackets is omitted in Fig. 2, and only the frame is shown.
  • the rotation axis of the first rotating shaft 211 is perpendicular to the ground, and the two light energy receiving units 212 are fixed to the first rotating shaft by the double-layer brackets 213 stacked in the vertical direction.
  • the first rotating shaft also serves as a center bracket, and the center of gravity of the light energy receiving device falls on the first rotating shaft, thereby reducing the weight of the bracket and reducing the driving force requirement.
  • the first driving mechanism 220 includes a power source 221 and a driving lever 222, and the driving lever 222 is disposed perpendicular to the rotation axis of the first rotating shaft 211.
  • the power source 221 drives the one end of the driving rod 222 to swing left and right by the telescopically moving push rod 2211.
  • the end of the driving rod 222 passes through the through hole in the pushing rod 2211, and can slide in a direction perpendicular to the pushing and pulling direction, and the driving rod The other end is fixedly connected with the first rotating shaft, thereby pushing the first rotating shaft to rotate
  • each of the light energy receiving units in this embodiment further includes a second rotating shaft 2122 that is rotatable relative to the first rotating shaft, so that the system of the embodiment has two rotations.
  • the two-axis heliosystem with degrees of freedom.
  • a light receiving surface (not shown) of each of the light energy receiving units is fixed to the second rotating shaft, and each of the second rotating shafts has a respective second driving mechanism, such as a rotating electrical machine 2123.
  • all of the second rotating shafts may also share the same second drive mechanism by providing a transmission mechanism.
  • the axis of rotation of the second shaft is perpendicular to the first axis of rotation.
  • the second driving mechanism may also preferably adopt a lever driving manner similar to that of the first driving mechanism, that is, the second rotating shaft is not directly driven by the torque, but is driven by a driving rod. Pushing or pulling the second rotating shaft to rotate, thereby achieving the effect of reducing the driving force requirement.
  • the image analyzing device 230 is independently provided, and controls the operations of the first driving mechanism and the second driving mechanism by a wireless communication method (not shown).
  • the image analysis device in this embodiment can be used by a plurality of solar energy systems The system is shared to further reduce the cost of the system.
  • FIG. 3 Another embodiment of a solar energy solar system according to the present invention can be referred to FIG. 3, including a light energy receiving device 310 and a first driving mechanism 320.
  • the light energy receiving device 310 includes a first rotating shaft 311 and four light energy receiving units 312.
  • the rotation axis of the first rotating shaft 311 is perpendicular to the ground, and the four light energy receiving units 312 are fixed to the first rotating shaft by brackets 313 arranged side by side in the horizontal direction.
  • the first rotating shaft simultaneously serves as a center bracket, and the center of gravity of the light energy receiving device falls on the first rotating shaft.
  • Each of the light energy receiving units has a planar light receiving surface 3112 and a second rotating shaft 3122, and the rotation axis of the second rotating shaft is perpendicular to the first rotating shaft.
  • the light receiving surface of each of the light energy receiving units is fixed to the second rotating shaft, and each of the second rotating shafts has a respective second driving mechanism (not shown).
  • the first driving mechanism 320 can directly drive the rotation of the first rotating shaft 310 by a conventional torque driving method, or can be driven by a driving rod (not shown) similar to that in Embodiment 1 or 2.
  • This embodiment shows a case where the light energy receiving units are arranged side by side in a horizontal manner.
  • FIG. 4 Another embodiment of a solar energy system in accordance with the present invention can be seen in reference to FIG. 4, including a light energy receiving device 410 and a first drive mechanism 420.
  • the light energy receiving device 410 includes a first rotating shaft 411 and two light energy receiving units 412.
  • the rotation axis of the first rotating shaft 411 is perpendicular to the ground, and the two light energy receiving units 412 are fixed to the first rotating shaft by the double-layer brackets 413 stacked in the vertical direction.
  • the first rotating shaft simultaneously serves as a center bracket, and the center of gravity of the light energy receiving device falls on the first rotating shaft.
  • Each of the light energy receiving units has a front light receiving surface 4121 and three side light receiving surfaces 4121'.
  • the side-receiving surface can be provided by an inexpensive mirror to achieve a significant increase in system efficiency at a very low cost.
  • the first driving mechanism 420 can be either a conventional torque driving method or a push-pull driving method proposed in the present invention.
  • FIG. 5 Another embodiment of a solar energy solar system according to the present invention can be referred to FIG. 5, including a light energy receiving device 510 and a first driving mechanism 520.
  • the light energy receiving device 510 includes a first rotating shaft 511 and two light energy receiving units 512.
  • the rotation axis of the first rotating shaft 511 is perpendicular to the ground, and the two light energy receiving units 512 are fixed to the first rotating shaft by the double-layer brackets 513 stacked in the vertical direction.
  • the first rotating shaft simultaneously serves as a center bracket, and the center of gravity of the light energy receiving device falls on the first rotating shaft.
  • Each of the light energy receiving units in the embodiment can be regarded as a combination of a component 5121 having a planar light receiving surface and a tapered light guiding device 5121 ′ having an inner surface as a reflecting surface, and the element 5121 is located at the tapered light guiding device.
  • the other end of the device 5121's smaller opening; the intermediate flat light receiving surface can also be regarded as the front light receiving surface, and the tapered light guiding device can be regarded as the four side light receiving surfaces.
  • Each of the light energy receiving units further includes a second rotating shaft 5122 that is driven to rotate by a respective second driving mechanism (not shown).
  • the axis is perpendicular to the first axis of rotation.
  • the element 5121 and the tapered light guiding device 512 are both fixed on the second rotating shaft.
  • the first driving mechanism 520 can employ either a conventional torque driving method or a push-pull driving method proposed in the present invention.
  • the system of the present embodiment further includes at least one vibration device 540 to achieve self-cleaning of one or more light-receiving surfaces.
  • the vibration device 540 includes a vibration element 541 and its drive circuit (not shown).
  • the vibrating member 541 is mounted on a back surface of the tapered light guiding device.
  • each of the vibrating elements can cause the entire light-receiving unit to vibrate through a mechanical connection relationship, but the light-receiving surface directly mounted on the vibrating element has a better self-cleaning effect, and therefore can be disposed on the back surface of the plurality of light-receiving surfaces according to the application needs.
  • Vibration device In other embodiments, the vibrating element may be disposed on the first rotating shaft or the multi-layer bracket such that the plurality of light receiving units share the same vibrating device.
  • the vibrating element In order to achieve a good vibration effect, the vibrating element generally operates in a resonant mode. It should be noted that the "mechanical resonance frequency" of the vibrating element during operation should not be understood as the mechanical resonance frequency of the isolated or separated vibrating element, but the mechanical resonance frequency of the vibrating element in the current installed state. Usually related to the mechanical structure to which the vibrating element is fixedly connected, it can be calculated by well-known mathematical means according to the actual device structure, or obtained by experimental measurement.
  • the driving circuit of the vibration device includes at least one inductance element and at least one capacitance element connected in series, so that the circuit resonance frequency C0C of the driving circuit can be set to a mechanical resonance frequency with the vibration element (om Matching (including the same or close).
  • the "frequency” referred to herein refers to the circular frequency ⁇
  • the vibrating device When inputting the driving signal of the driving circuit ( When the frequency of alternating current or voltage is COC, the vibrating device can work in the "double resonance" state of mechanical and circuit resonance. In the double resonance state, the power consumption of the driving circuit will be significantly reduced, thereby reducing self-cleaning. The cost of using the feature.
  • the vibration devices can be designed in different types.
  • the vibrating device may be a piezoelectric vibrating device, and the vibrating member may be a piezoelectric element (for example, a piezoelectric vibrating piece) which is connected in series in the driving circuit and serves as a capacitive element in the driving circuit; or, the vibrating device may also It is an electromagnetic vibration device, and the vibration element uses a sheet-like magnetic material which is not a part of the drive circuit, and the drive circuit excites the sheet-like magnetic material to generate vibration by the inductance element.
  • the inductive or capacitive element in the drive circuit can preferably be arranged as a parameter-adjustable element so that the drive circuit can be parameterized after installation to maintain a match with the mechanical resonant frequency.
  • the inductance element in the drive circuit can be adjusted; for the electromagnetic vibration device, the capacitance element in the drive circuit can be adjusted.
  • the external power supply that supplies the drive signal should also use an alternating power supply with an adjustable output frequency.
  • the vibration device may be manually activated, or the control circuit may be preferably configured to perform the cleaning operation in a fixed manner or in accordance with an external command or under a set condition to improve the intelligence of the self-cleaning function.
  • the control circuit can only have the control function of the fixed cleaning.
  • the control circuit can also initiate the cleaning operation according to the set conditions.
  • the setting conditions may be set weather conditions, such as rain, snow, wind, and the like.
  • the setting conditions may also be an excess of power generation, so that excess power can be used for preventive cleaning, further reducing the demand for energy consumption.
  • the setting condition may also be a cleaning process of at least one light receiving surface vibrated by the vibration device Degree.
  • the sensor can be set to determine whether the set condition is satisfied, or the communication module can be further configured to obtain an external command or a weather forecast to provide the control circuit with the required information.
  • the communication module can also be used to communicate between multiple light energy receiving devices (eg, status notification or linkage on).
  • the communication mode of the communication module can be selected from the group consisting of infrared communication, WiFi, Bluetooth communication, 3G/4G/5G communication, optical communication, and the like.
  • a conventional cleaning method may alternatively or additionally be employed.
  • a water spray pipe, a vacuum pipe or an electric brush (not shown) can be arranged.
  • the water spray pipe can be used to spray water onto the light receiving surface
  • the dust suction pipe can be used to suck foreign matter on the light receiving surface
  • the electric brush can be used for brushing the light receiving surface.
  • the control circuit controls the water spray pipe or the suction pipe to work simultaneously with the vibration device to achieve enhanced cleaning.
  • the system of the present embodiment can achieve self-cleaning, thereby maintaining high efficiency operation for a long period of time.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种跟日太阳能系统,包括光能接收装置(110)和第一驱动机构(120)。其中,光能接收装置(110)包括一第一转轴(111)和两个以上的光能接收单元(112),每个光能接收单元(112)具有至少一个受光面(1121),每个光能接收单元(112)通过机械连接方式固定在第一转轴(111)上;第一驱动机构(120)包括动力源(121),用于对应于光源的移动驱动第一转轴(111)进行旋转。多个光能接收单元(112)可以在垂直方向上层叠布置,也可以在水平方向上并排布置。由于将多个光能接收单元(112)安装在同一个第一转轴(111)上,能够共享驱动机构以节省系统成本和地面面积,且受光面分割在每个光能接收单元(112)中,不影响系统的整体强度。

Description

发明名称:跟日太阳能系统
技术领域
[0001] 本发明涉及清洁能源技术领域, 具体涉及一种能够跟踪光源 (例如太阳) 的运 动的跟日太阳能系统。
[0002] 背景技术
[0003] 随着对环境保护的日益重视, 太阳能系统得到了越来越广泛的应用。 为了提高 对太阳能的利用效率, 一些太阳能系统配备了太阳跟踪功能, 从而成为跟曰太 阳能系统。 太阳跟踪功能主要用于随着太阳方位的变化调整太阳能系统中的受 光面的方位和姿态, 以使得在受光面的覆盖面积有限的情况下, 尽可能多地接 收到太阳光。
[0004] 跟日太阳能系统通常可分为单轴和双轴两种, 一个轴代表一个旋转自由度。 通 常单轴系统可以提升 20%左右的太阳能利用率; 除了特殊地区 (例如赤道或南北 极) 以外, 双轴系统可以提升 30%以上的太阳能利用率。
[0005] 然而目前跟日太阳能系统的使用仍未普及, 原因之一是为每个受光面配置跟日 装置会显著增加系统成本。 而且, 两个独立运行的跟日装置之间需要具有一定 的间距, 以满足各自的活动空间, 这进一步增加了太阳能系统对地面面积的占 用。 而如果靠增大单个受光面的面积来提高跟日装置的性价比, 则会导致系统 整体抗风能力下降。
[0006] 发明内容
[0007] 依据本发明提供一种跟日太阳能系统, 包括光能接收装置和第一驱动机构。 其 中, 光能接收装置包括一第一转轴和两个以上的光能接收单元, 每个光能接收 单元具有至少一个受光面, 每个光能接收单元通过机械连接方式固定在第一转 轴上; 第一驱动机构包括动力源, 用于对应于光源的移动驱动第一转轴进行旋 转。
[0008] 依据本发明的跟日太阳能系统, 将多个光能接收单元安装在同一个第一转轴上 , 通过共享驱动机构来节省系统成本。 多个光能接收单元可以在垂直方向上层 叠布置, 也可以在水平方向上并排布置, 或者釆用以上两种混合的布置方式。 由于受光面分割在每个光能接收单元中, 使得单个受光面的面积减小, 不影响 系统的整体强度。
[0009] 本发明中的多个光能接收单元与传统的单个光能接收单元 (内部可以分割成很 多块) 的区别之处包括, 本发明中的每个光能接收单元之内的受光面是基本连 续的, 而不同单元之间的受光面是不连续的, 并且每个单元都具有独立的安装 支架。
[0010] 以下结合附图, 对依据本发明的具体示例进行详细说明。
[0011] 附图说明
[0012] 图 1是实施例 1的跟日太阳能系统的示意图;
[0013] 图 2是实施例 2的跟日太阳能系统的示意图;
[0014] 图 3是实施例 3的跟日太阳能系统的示意图;
[0015] 图 4是实施例 4的跟日太阳能系统的示意图;
[0016] 图 5是实施例 5的跟日太阳能系统的示意图。
[0017] 具体实施方式
[0018] 实施例 1
[0019] 依据本发明的跟日太阳能系统的一种实施方式可参考图 1, 包括光能接收装置 1
10和第一驱动机构 120。
[0020] 光能接收装置 110包括一第一转轴 111和两个光能接收单元 112。
[0021] 第一转轴 111的旋转轴线平行于地面, 两个光能接收单元 112通过在垂直方向上 层叠的双层支架 113固定在第一转轴上。
[0022] 本实施例中示例性地示出了两个光能接收单元, 显然可以在共享的转轴上安装 更多的光能接收单元。 多个光能接收单元可以采用与图 1类似的方式在垂直方向 上层叠布置, 这将有利于减少对地面面积的占用。 虽然垂直布置的多层太阳能 系统会在其背面产生阴影, 但这在很多应用场景中正是所希望的, 例如河边、 海边、 高速公路两侧的停车场等。 多个光能接收单元也可以在水平方向上并排 布置, 或者采用垂直和水平混合的方式, 形成阵列状的结构。 将多个光能接收 单元支撑在第一转轴上的机械连接结构可根据其布置方式进行设计, 不再赘述 [0023] 在其他实施方式中, 第一转轴也可以垂直或倾斜于地面, 这取决于设计和安装 的需要。 作为一种优选的实施方式, 在第一转轴的旋转轴线垂直于地面的情况 下, 可以令光能接收装置的重心落在第一转轴上, 这会增加系统的稳固性, 并 有效节省驱动第一转轴的能耗。
[0024] 每个光能接收单元 112具有一个平面受光面 1121, 例如可以是光伏板的表面。
在其他实施方式中, 根据系统设计的需要, 光能接收单元也可以有多个受光面 , 每个受光面可以是平面也可以是曲面, 由曲率不连续的平面或曲面组合成的 受光面可以视为多个受光面。 当光能接收单元有多个受光面时, 可以将尽量正 对光源的受光面称为正面受光面, 而将设置在正面受光面一侧的受光面称为侧 面受光面。 换言之, 在同一个光能接收单元中, 来自光源的入射光与正面受光 面的中心轴线的夹角小于该入射光与侧面受光面的中心轴线的夹角。 某些情况 下, 正面受光面可以有多个, 例如沿入射光路依次设置聚光透镜 (或筒状导光 元件) 和光伏板, 则他们的受光面均可视为正面受光面。
[0025] 优选地, 正面受光面由选自如下集合的元件提供: 光伏板, 聚光透镜 (例如菲 涅尔聚光透镜) , 平面反射镜, 曲面反射镜, 反射式透镜 (例如反射式菲涅尔 透镜) , 筒状导光元件等。 关于菲涅尔透镜的详细介绍可参见名称为 "菲涅尔透 镜系统", 公布日为 2016年 6月 2日, 国际公布号为 WO/2016/082097的 PCT申请, 在此不再赘述。
[0026] 优选地, 侧面受光面由选自如下集合的元件提供: 平面反射镜, 曲面反射镜, 反射式菲涅尔透镜等。 通过在正面受光面的至少一侧布置提供侧面受光面的反 射镜, 能够在只增加很少成本的情况下, 有效增加受光面积, 从而显著提高系 统的输出功率。 为了尽可能多地将侧面受光面接收的光线引导到正面受光面上 , 在同一个光能接收单元中, 侧面受光面的中心轴线与正面受光面的中心轴线 的夹角优选地大于 45度且小于 90度。
[0027] 第一驱动机构 120包括动力源 121 , 用于对应于光源的移动驱动第一转轴进行旋 转。
[0028] 作为一种优选的实施方式, 本实施例中的第一转轴并不像在传统的跟日系统中 那样, 由直接输出到转轴上的扭力来驱动, 而是以推力或拉力的方式来驱动。 具体地, 第一驱动机构 120还包括驱动杆 122, 其垂直于第一转轴 111的旋转轴线 设置, 动力源以推或者拉驱动杆的方式驱动第一转轴进行旋转。 这种驱动方式 有效降低了对动力源的驱动力的要求, 能够有助于降低系统的重量、 成本以及 能耗。 而且, 以推拉这种直线运动方式进行驱动可以具有自锁的功能, 有助于 增强系统的抗风强度。
[0029] 本实施例中, 示例性地釆用旋转驱动的可伸缩的螺杆 1211作为动力源的输出结 构, 螺杆 1211通过伸缩带动驱动杆 122的一端上下移动, 驱动杆 122的该端具有 一通孔, 推杆 1211从该通孔中穿过, 并在推拉方向上被限位在该通孔中, 且能 够在与推拉方向垂直的方向上在该通孔中滑动, 驱动杆的另一端固定连接到支 架 113上, 从而推动第一转轴 111旋转。 在其他实施方式中, 可根据实际情况选 择适当的驱动结构, 只要不直接以扭力驱动转轴, 而是通过驱动杆的杠杆运动 来推动转轴旋转, 即能达到降低驱动力要求的效果。
[0030] 作为一种优选的实施方式, 本实施例系统还包括图像分析装置 130, 用于通过 采集图像来确定光源的位置, 并据此控制第一驱动机构的工作。
[0031] 传统的跟日系统中通常釆用两种方式来进行太阳的跟踪: 一种是通过反馈 (例 如来自输出功率的反馈) 来判断光强最大的角度, 另一种是通过 GPS来计算太阳 方位。 而本实施例中则采用图像分析的方式来确定光源的位置, 从而计算出光 源与光能接收单元的朝向之间的角度差, 或者确定出光能接收装置的受光面的 最佳朝向。 所称光源可以是太阳或最强光源, 当系统周边地形复杂且存在大规 模反射面 (例如玻璃幕墙) 时, 太阳本体可能会被阻挡, 但是能够通过大规模 反射面获得最强光源。 这种基于影像的控制方式不仅精确, 而且成本低廉, 同 吋该图像分析装置还可兼具安全监控的功能。 图像分析装置可以通过有线或无 线通信 (未图示) 的方式控制第一驱动机构的工作。 在其他实施方式中, 当系 统中存在多个驱动机构时, 图像分析装置可分别控制每个驱动机构的工作。
[0032] 本实施例中, 图像分析装置固定在支架 113的顶部, 从而与第一转轴 111固定连 接, 能够随第一转轴一起转动。 在其他实施方式中, 图像分析装置也可以固定 在系统的固定部分上, 或者独立设置。 当图像分析装置与系统的其他部分物理 分离时, 釆用无线通信方式控制驱动机构的工作将是优选的。
[0033] 实施例 2
[0034] 依据本发明的跟日太阳能系统的另一种实施方式可参考图 2, 包括光能接收装 置 210, 第一驱动机构 220和图像分析装置 230。
[0035] 光能接收装置 210包括一第一转轴 211和两个光能接收单元 212。 清楚起见, 图 2 中省去了安装在每层支架上的光能接收单元的平面受光面, 仅示出了框架。
[0036] 第一转轴 211的旋转轴线垂直于地面, 两个光能接收单元 212通过在垂直方向上 层叠的双层支架 213固定在第一转轴上。 第一转轴同时充当为中心支架, 光能接 收装置的重心落在第一转轴上, 这样既减轻了支架的重量, 又降低了对驱动力 的要求。
[0037] 第一驱动机构 220包括动力源 221和驱动杆 222, 驱动杆 222垂直于第一转轴 211 的旋转轴线设置。 动力源 221通过伸缩运动的推杆 2211带动驱动杆 222的一端左 右摆动, 驱动杆 222的该端从推杆 2211上的通孔中穿过, 能够在与推拉方向垂直 的方向上滑动, 驱动杆的另一端与第一转轴固定连接, 从而推动第一转轴旋转
[0038] 作为一种优选的实施方式, 本实施例中的每个光能接收单元还包括一第二转轴 2122, 其能够相对于第一转轴进行旋转, 使得本实施例系统成为具有两个转动 自由度的双轴跟日系统。 每个光能接收单元的受光面 (未图示) 固定在第二转 轴上, 每个第二转轴具有各自的第二驱动机构, 例如旋转电机 2123。 在其他实 施方式中, 也可以通过设置传动机构使得所有的第二转轴共享同一第二驱动机 构。 为了使得双轴系统的角度调整能力最大化, 优选地, 第二转轴的旋转轴线 垂直于第一转轴。
[0039] 此外, 在其他实施方式中, 第二驱动机构也可优选地采用与第一驱动机构类似 的杠杆驱动方式, 即, 不通过扭力直接驱动第二转轴旋转, 而是通过一驱动杆 以推或者拉的方式驱动第二转轴进行旋转, 从而达到降低对驱动力的要求的效 果。
[0040] 图像分析装置 230独立设置, 通过无线通信方式 (未图示) 控制第一驱动机构 和第二驱动机构的工作。 本实施例中的图像分析装置可以被多个跟日太阳能系 统所共享, 从而进一步降低系统的成本。
[0041] 实施例 3
[0042] 依据本发明的跟日太阳能系统的另一种实施方式可参考图 3, 包括光能接收装 置 310和第一驱动机构 320。
[0043] 光能接收装置 310包括一第一转轴 311和四个光能接收单元 312。
[0044] 第一转轴 311的旋转轴线垂直于地面, 四个光能接收单元 312通过在水平方向上 并排布置的支架 313固定在第一转轴上。 第一转轴同时充当为中心支架, 光能接 收装置的重心落在第一转轴上。
[0045] 每个光能接收单元具有一个平面受光面 3121以及一第二转轴 3122, 第二转轴的 旋转轴线垂直于第一转轴。 每个光能接收单元的受光面固定在第二转轴上, 每 个第二转轴具有各自的第二驱动机构 (未图示) 。
[0046] 第一驱动机构 320既可釆用传统的扭力驱动方式直接驱动第一转轴 310旋转, 也 可釆用与实施例 1或 2中类似的以驱动杆驱动的方式 (未图示) 。
[0047] 本实施例示出了一种光能接收单元以水平方式并排布置的情况。
[0048] 实施例 4
[0049] 依据本发明的跟日太阳能系统的另一种实施方式可参考图 4, 包括光能接收装 置 410和第一驱动机构 420。
[0050] 光能接收装置 410包括一第一转轴 411和两个光能接收单元 412。
[0051] 第一转轴 411的旋转轴线垂直于地面, 两个光能接收单元 412通过在垂直方向上 层叠的双层支架 413固定在第一转轴上。 第一转轴同时充当为中心支架, 光能接 收装置的重心落在第一转轴上。
[0052] 每个光能接收单元具有一个正面受光面 4121以及三个侧面受光面 4121'。 侧面受 光面可以由廉价的镜面来提供, 从而以极低的成本获得系统效率的大幅提升。
[0053] 第一驱动机构 420既可釆用传统的扭力驱动方式也可以釆用本发明中提出的推 拉驱动方式。
[0054] 由于在每个光能接收单元的正面受光面周围还设置了侧面受光面, 能够大大提 升系统对光照角度的适应性, 因此本实施例系统只采用一个旋转自由度就能达 到很好的太阳能利用效率。 [0055] 实施例 5
[0056] 依据本发明的跟日太阳能系统的另一种实施方式可参考图 5, 包括光能接收装 置 510和第一驱动机构 520。
[0057] 光能接收装置 510包括一第一转轴 511和两个光能接收单元 512。
[0058] 第一转轴 511的旋转轴线垂直于地面, 两个光能接收单元 512通过在垂直方向上 层叠的双层支架 513固定在第一转轴上。 第一转轴同时充当为中心支架, 光能接 收装置的重心落在第一转轴上。
[0059] 本实施例中的每个光能接收单元可视为一具有平面受光面的元件 5121与一内表 面为反射面的锥形导光器件 5121 '的组合, 元件 5121位于锥形导光器件 5121 '幵口 较小的另一端; 也可将中间的平面受光面视为正面受光面, 将锥形导光器件视 为四个侧面受光面。
[0060] 每个光能接收单元还包括一第二转轴 5122, 由各自的第二驱动机构 (未图示) 驱动旋转。 轴线垂直于第一转轴。 元件 5121和锥形导光器件 512Γ均固定在第二 转轴上。
[0061] 第一驱动机构 520既可釆用传统的扭力驱动方式也可以釆用本发明中提出的推 拉驱动方式。
[0062] 作为一种优选的实施方式, 本实施例系统还包括至少一个振动装置 540, 从而 实现一个或多个受光面的自清洁。 振动装置 540包括一振动元件 541及其驱动电 路 (未图示) 。 本实施例中, 振动元件 541安装在锥形导光器件的一个背面。 显 然每个振动元件都可以通过机械连接关系使整个光能接收单元产生抖动, 但直 接安装振动元件的受光面会具有更好的自清洁效果, 因此可以根据应用的需要 在多个受光面的背面配置振动装置。 在其他实施方式中, 还可以将振动元件设 置在第一转轴或多层支架上, 使得多个光能接收单元共享同一个振动装置。
[0063] 为了达到良好的振动效果, 振动元件通常工作于共振模态。 需要注意的是, 振 动元件在工作时所具有的"机械共振频率 "不应被理解为孤立的或分离的振动元件 的机械共振频率, 而是振动元件在当前安装状态下的机械共振频率, 这通常与 振动元件所固定连接的机械结构有关, 可根据实际装置结构, 采用公知数学手 段进行计算, 或者通过实验测量来获得。 [0064] 作为一种优选的实施方式, 振动装置的驱动电路包括串联的至少一个电感元件 和至少一个电容元件, 使得能够将驱动电路的电路共振频率 C0C设置为与振动元 件的机械共振频率 (om相匹配 (包括相同或接近) 。 本文中所称"频率"均指圆频 率 ω , 对于通常采用 "次 /秒"来表示的机械运动频率 f, 可按照周知的公式 ω=2πί进 行换算。 上述特性可以被简单地表示为 c C=com=lA/(L*C), 其中 L和 C分别为与驱 动电路等效的串联 LC回路的电感值和电容值。 当输入驱动电路的驱动信号 (交 变电流或电压) 的频率为 COC时, 振动装置即可工作于机械和电路同吋共振的"双 共振"状态。 在双共振状态下, 驱动电路的功耗将明显降低, 从而降低自清洁功 能的使用成本。
[0065] 根据不同的机电转换原理, 振动装置可以被设计为不同的类型。 例如, 振动装 置可以是压电振动装置, 振动元件釆用压电元件 (例如压电振动片) , 其串联 在驱动电路中并同吋充当为驱动电路中的电容元件; 或者, 振动装置也可以是 电磁振动装置, 振动元件釆用片状受磁材料, 其不是驱动电路的一部分, 驱动 电路通过电感元件激发片状受磁材料产生振动。
[0066] 需要注意的是, 由于振动元件在工作状态下的"机械共振频率 "与安装结构有关 , 因此可能在安装后产生机械共振频率的漂移。 可以优选地将驱动电路中的电 感元件或电容元件设置为参数可调的元件, 从而在安装后能够对驱动电路进行 参数调整以保持与机械共振频率的匹配。 优选的实施方式是, 对于压电振动装 置, 可以将驱动电路中的电感元件设为可调; 对于电磁振动装置, 可以将驱动 电路中的电容元件设为可调。 相应地, 提供驱动信号的外部电源也应当采用输 出频率可调的交变电源。
[0067] 振动装置可以手动启动, 或者也可以优选地配置控制电路, 定吋地或按照外部 指令或在设定条件下启动振动装置执行淸洁操作, 以提高自淸洁功能的智能化 程度。 在简单的情况下, 控制电路可以只具备定吋清洁的控制功能。 为了更精 确地控制执行清洁操作的时机, 控制电路也可以根据设定条件来启动清洁操作 。 设定条件可以是设定的气象条件, 例如下雨、 下雪、 刮风等。 设定条件也可 以是发电过剩的情况, 从而可以利用过剩的电能进行预防性清洁, 进一步降低 对能耗的需求。 设定条件还可以是至少一个被振动装置振动的受光面的清洁程 度。 可通过设置传感器来判断设定条件是否满足, 或者通过进一步配置通信模 块来获取外部指令或天气预报来为控制电路提供所需要的信息。 通信模块除了 用于与远程的控制中心进行通信以外, 也可用于在多个光能接收装置之间进行 通信 (例如进行状态通知或联动开启) 。 通信模块的通信方式可选自红外通信 , WiFi, 蓝牙通信, 3G/4G/5G通信, 光通信等。
[0068] 除了使用振动装置来进行受光面的自清洁以外, 替代地或补充地, 也可采用传 统的清洁方式。 例如, 可配置喷水管道, 吸尘管道或电动刷子等 (未图示) 。 其中, 喷水管道可用于向受光面喷水, 吸尘管道可用于抽吸受光面上的异物, 而电动刷子可用于对受光面进行刷洗。 控制电路可控制喷水管道或吸尘管道与 振动装置同时工作以获得增强地清洁效果。
[0069] 通过配置振动装置, 本实施例系统能够实现自清洁, 从而长期保持高效率地运 行。
[0070]
[0071] 以上应用具体个例对本发明的原理及实施方式进行了阐述, 应该理解, 以上实 施方式只是用于帮助理解本发明, 而不应理解为对本发明的限制。 对于本领域 的一般技术人员, 依据本发明的思想, 可以对上述具体实施方式进行变化。 技术问题
问题的解决方案
发明的有益效果

Claims

[权利要求 1] 一种跟日太阳能系统, 其特征在于, 包括
光能接收装置, 其包括一第一转轴和两个以上的光能接收单元, 每个 光能接收单元具有至少一个受光面, 每个光能接收单元通过机械连接 方式固定在第一转轴上; 以及
第一驱动机构, 其包括动力源, 用于对应于光源的移动驱动第一转轴 进行旋转。
[权利要求 2] 如权利要求 1所述的系统, 其特征在于,
第一驱动机构还包括驱动杆, 其垂直于第一转轴的旋转轴线设置, 所 述动力源以推或者拉所述驱动杆的方式驱动第一转轴进行旋转。
[权利要求 3] 如权利要求 1所述的系统, 其特征在于,
第一转轴的旋转轴线平行或垂直于地面,
在第一转轴的旋转轴线垂直于地面的情况下, 所述光能接收装置的重 心落在第一转轴上。
[权利要求 4] 如权利要求 1至 3任意一项所述的系统, 其特征在于,
每个光能接收单元还包括一第二转轴, 其能够相对于第一转轴进行旋 转, 所述光能接收单元的受光面固定在第二转轴上, 每个第二转轴具 有各自的第二驱动机构或者共享同一第二驱动机构。
[权利要求 5] 如权利要求 4所述的系统, 其特征在于, 包括如下特征中的至少一个 第二转轴的旋转轴线垂直于第一转轴;
第二驱动机构以推或者拉的方式驱动第二转轴进行旋转。
[权利要求 6] 如权利要求 1至 5任意一项所述的系统, 其特征在于,
还包括图像分析装置, 用于通过采集图像来确定所述光源的位置, 并 据此控制第一驱动机构的工作。
[权利要求 7] 如权利要求 6在引述权利要求 4或 5时所述的系统, 其特征在于, 所述图像分析装置还用于控制第二驱动机构的工作。
[权利要求 8] 如权利要求 6或 7所述的系统, 其特征在于, 所述图像分析装置固定在所述系统的固定部分上, 或者固定在所述系 统的一个转轴上, 或者独立设置。
[权利要求 9] 如权利要求 1至 8任意一项所述的系统, 其特征在于,
还包括至少一个振动装置, 其包括一振动元件及其驱动电路, 所述振动元件工作于共振模态, 所述振动元件与至少一个受光面机械 连接以带动其进行振动,
所述驱动电路包括串联的至少一个电感元件和至少一个电容元件, 所 述驱动电路的电路共振频率与所述振动元件的机械共振频率相匹配。
[权利要求 10] 如权利要求 9所述的系统, 其特征在于,
所述振动装置为压电振动装置, 所述振动元件为压电元件, 其充当为 所述驱动电路中的电容元件; 或者,
所述振动装置为电磁振动装置, 所述振动元件为片状受磁材料, 所述 驱动电路通过电感元件激发所述振动元件产生振动。
[权利要求 11] 如权利要求 9所述的系统, 其特征在于,
所述电感元件或电容元件为参数可调的元件。
[权利要求 12] 如权利要求 8至 11任意一项所述的系统, 其特征在于, 还包括如下配 置中的至少一个:
控制电路, 用于定时地或按照外部指令或在设定条件下启动所述振动 装置执行淸洁操作, 所述设定条件选自: 设定的气象条件, 发电过剩 的情况, 至少一个被所述振动装置振动的受光面的清洁程度; 喷水管道, 用于向至少一个被所述振动装置振动的受光面喷水, 所述 喷水管道与所述振动装置同吋工作;
吸尘管道, 用于抽吸至少一个被所述振动装置振动的受光面上的异物 , 所述吸尘管道与所述振动装置同吋工作;
电动刷子, 用于对所述装置中的至少一个受光面进行刷洗。
[权利要求 13] 如权利要求 1至 12任意一项所述的系统, 其特征在于,
每个光能接收单元具有一个正面受光面, 所述正面受光面由选自如下 集合的元件提供: 光伏板, 聚光透镜, 平面反射镜, 曲面反射镜, 反 射式透镜, 筒状导光元件。
[权利要求 14] 如权利要求 13所述的系统, 其特征在于,
至少一个光能接收单元还包括至少一个侧面受光面, 其设置在该光能 接收单元的正面受光面的一侧, 所述侧面受光面由选自如下集合的元 件提供: 平面反射镜, 曲面反射镜, 反射式菲涅尔透镜。
[权利要求 15] 如权利要求 14所述的系统, 其特征在于, 在同一个光能接收单元中, 侧面受光面的中心轴线与正面受光面的中心轴线的夹角大于 45度且小 于 90度。
PCT/CN2016/098139 2016-09-05 2016-09-05 跟日太阳能系统 WO2018040113A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098139 WO2018040113A1 (zh) 2016-09-05 2016-09-05 跟日太阳能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098139 WO2018040113A1 (zh) 2016-09-05 2016-09-05 跟日太阳能系统

Publications (1)

Publication Number Publication Date
WO2018040113A1 true WO2018040113A1 (zh) 2018-03-08

Family

ID=61299696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098139 WO2018040113A1 (zh) 2016-09-05 2016-09-05 跟日太阳能系统

Country Status (1)

Country Link
WO (1) WO2018040113A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226406A (zh) * 2008-01-15 2008-07-23 郭卫平 一种基于gps和gis的太阳跟踪系统及其实现方法
CN101997453A (zh) * 2009-08-24 2011-03-30 廖恒俊 用于太阳能板的双轴式太阳追踪器系统与装置
CN102195524A (zh) * 2010-03-18 2011-09-21 波音公司 具有风向标的太阳能系统
CN105042890A (zh) * 2010-08-03 2015-11-11 太阳能公司 相对排的线性集中器构造
CN105466049A (zh) * 2015-12-31 2016-04-06 海宁伊满阁太阳能科技有限公司 带电动装置运行轨道的集热系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226406A (zh) * 2008-01-15 2008-07-23 郭卫平 一种基于gps和gis的太阳跟踪系统及其实现方法
CN101997453A (zh) * 2009-08-24 2011-03-30 廖恒俊 用于太阳能板的双轴式太阳追踪器系统与装置
CN102195524A (zh) * 2010-03-18 2011-09-21 波音公司 具有风向标的太阳能系统
CN105042890A (zh) * 2010-08-03 2015-11-11 太阳能公司 相对排的线性集中器构造
CN105466049A (zh) * 2015-12-31 2016-04-06 海宁伊满阁太阳能科技有限公司 带电动装置运行轨道的集热系统

Similar Documents

Publication Publication Date Title
US10498288B2 (en) Waterless cleaning system and method for solar trackers using an autonomous robot
US10498287B2 (en) Waterless cleaning system and method for solar trackers using an autonomous robot
CN102089964B (zh) 用于大尺寸束控制应用的多轴、大倾角、晶片级微镜阵列
US10985691B1 (en) Waterless cleaning system and method for solar trackers using an autonomous robot
KR100874575B1 (ko) 태양광집광기용 태양위치추적 장치
KR101264846B1 (ko) 태양광 트랙커 및 태양광 발전장치
JP2010190566A (ja) 二体型太陽エネルギ収集システム
WO2005019723A1 (fr) Dispositif d'eclairage directionnel reflechissant comportant des reflecteurs planaires
US11201583B2 (en) Waterless cleaning system and method for solar trackers using an autonomous robot
KR101948880B1 (ko) 태양광 및 태양열을 이용하는 발전기
TWI464354B (zh) 太陽能電池裝置
WO2018040113A1 (zh) 跟日太阳能系统
KR101918717B1 (ko) 태양광모듈의 틸팅 장치
US20040261786A1 (en) Solar energy conversion system
WO2018119994A1 (zh) 聚光太阳能装置
KR101482183B1 (ko) 태양추적집광장치
KR100996634B1 (ko) 복합 링크절 경위대식 가대 구조의 추적형 채광 장치
KR20110009023U (ko) 태양광 발전기용 집광장치
KR20150146037A (ko) 태양광 센서와 감속수단을 갖는 자연채광장치
KR101616974B1 (ko) 태양광 집광장치
KR102483107B1 (ko) 슬라이딩 구조를 이용하여 집광부의 각도 조절이 가능한 태양광 집광 장치
JP3186282U (ja) 水平2軸太陽追尾システム構造
CN203490538U (zh) 太阳能电池板跟踪装置
WO2018023836A1 (zh) 一种太阳能聚光器
JP2013199847A (ja) 太陽追尾装置及び該太陽追尾装置を備えたソーラー発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914678

Country of ref document: EP

Kind code of ref document: A1