WO2018038564A1 - Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising same, and manufacturing method thereof - Google Patents

Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising same, and manufacturing method thereof Download PDF

Info

Publication number
WO2018038564A1
WO2018038564A1 PCT/KR2017/009286 KR2017009286W WO2018038564A1 WO 2018038564 A1 WO2018038564 A1 WO 2018038564A1 KR 2017009286 W KR2017009286 W KR 2017009286W WO 2018038564 A1 WO2018038564 A1 WO 2018038564A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation shielding
nanoparticles
boron
oxide nanoparticles
carbon
Prior art date
Application number
PCT/KR2017/009286
Other languages
French (fr)
Korean (ko)
Inventor
조원일
Original Assignee
주식회사 쇼나노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170051688A external-priority patent/KR20180022541A/en
Application filed by 주식회사 쇼나노 filed Critical 주식회사 쇼나노
Publication of WO2018038564A1 publication Critical patent/WO2018038564A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a carbon group-boron non-oxide nanoparticle, a radiation shielding composition comprising the same, and a method of manufacturing the same.
  • Nanotechnology is a core technology of 21st century science and technology, which is not only used to induce the technological innovation by combining with the traditional manufacturing industry, but also as a foundation technology that can further enhance future core strategic projects by integrating with advanced technologies such as IT, BT, CT, etc. It is recognized as the next generation growth engine.
  • Methods of manufacturing nanomaterials applied to such advanced technologies include laser heating, liquid phase synthesis, solid phase synthesis, and the like.
  • Liquid phase synthesis is basically a batch process, and since contact with various solvents and foreign substances is inevitably followed, impurities are difficult to synthesize high-purity nanoparticles, and in the case of laser heating, There is no contact at all, there is an advantage that can be produced nanoparticles continuously.
  • the nanoparticle synthesis apparatus using the CO2 laser pyrolysis method for supplying a raw material gas such as a laser irradiation unit, a reaction chamber, a collecting unit and a vacuum pump and monosilane into the reaction chamber. It is composed of an injection portion provided with a carrier gas supply nozzle for supplying a carrier gas, such as source gas supply nozzle and helium (He) gas.
  • a carrier gas such as source gas supply nozzle and helium (He) gas.
  • the laser beam irradiated from the laser irradiation unit is irradiated into the reaction chamber through the reflecting mirror and the lens, at this time monosilane injected into the reaction chamber through the source gas supply nozzle of the injection unit, etc.
  • the same source gas is decomposed by the heat of the laser beam, nanoparticles are formed, and the nanoparticles uniformly grown in the reaction chamber form negative pressure in the reaction chamber by a vacuum pump, thereby moving the nanoparticles out of the reaction chamber.
  • a method for synthesizing nanoparticles by irradiating laser to a source gas such as a metal oxide compound, and the synthesis method for producing silicon / germanium nanoparticles by laser pyrolysis is known, pulsed in tetramethylgermanium gas Irradiation of the laser, including the step of photolysis
  • the method for producing germanium nanoparticles is known that the yield of germanium nanoparticles is 70 to 80%, germanium antimony telluride-based, germanium bismuth telluride-based, germanium antimony selenide Germanium Bismuth Selenide, Indium Antimony Telluride, Phosphorus Bismuth telluride, indium antimony selenide, indium bismuth selenide, indium antimony germanide, gallium antimony
  • the method of manufacturing nanoparticles by the laser heating method has the advantage of manufacturing high purity nanoparticles, but the production yield of nanoparticles is low, and the environment is damaged when raw gas, which is unreacted toxic gas, is discarded as a by-product. In addition, there is a problem in that the system becomes complicated and expensive when the raw material gas that is disposed of is recovered and not reused.
  • Patent Document 0001 Korean Patent Publication No. 10-2013-0130284
  • Patent Document 0002 Korean Patent Registration No. 10-1363478
  • the present invention is to solve the above problems of the prior art, an object of the present invention is to provide a radioactive shielding composition which is economically advantageous because of excellent radiation shielding performance and a simple manufacturing process.
  • One aspect of the present invention provides a radiation shielding carbon group-boron non-oxide nanoparticle consisting of an alloy of one or more elements selected from C, Si and Ge and B.
  • the carbon-boron non-oxide nanoparticles may have a particle size of 5 to 400 nm.
  • another aspect of the present invention provides a radioactive shielding composition comprising the carbon group-boron non-oxide nanoparticles for radiation shielding, and a binder resin.
  • carbon-boron non-oxide nanoparticle refers to a particle further comprising B and at least one carbon group (Group 14) element of C, Si, and Ge, and a heterogeneous carbon group element. It may be understood as a concept including a particle alloyed with boron (B) in at least one carbon group element and a compound composed of carbon group element and boron.
  • non-oxide nanoparticle refers to a particle that substantially does not contain an element of oxygen (O), the reaction of the non-oxide nanoparticles by reaction with trace amounts of moisture and oxygen that are difficult to exclude during the manufacture of the particles It can be understood as a concept including an oxide layer formed on the surface.
  • O element of oxygen
  • silicon-boron non-oxide nanoparticles will be described as representative examples, but the nanoparticles constituting the radiation shielding composition according to the embodiment of the present invention are not limited thereto.
  • BC boron carbide
  • SiB alloy GeB
  • CSiB SiGeB
  • CGeB CSiGeB non-oxide nanoparticles and the like
  • carbon-boron non-oxide nanoparticles according to an embodiment of the present invention can be included in the carbon-boron non-oxide nanoparticles according to an embodiment of the present invention.
  • the wavelength of the CO 2 laser is matched with the absorption cross-sectional area of the source gas such as monosilane, silicon tetrachloride, etc., so that the energy is easily absorbed by the raw material molecules and the intense vibration of the molecules This breaks the Si-H bonds of the monosilane molecules and breaks them down into their respective radical forms.
  • the source gas such as monosilane, silicon tetrachloride, etc.
  • the silicon radicals thus generated develop into silicon nanoparticle nuclei by homogeneous nucleation and grow gradually by combining with surrounding silicon radicals.
  • the surrounding environment of silicon radicals the residence time in which the silicon nanoparticle nucleus stays in the reaction part is an important factor controlling the size and characteristics of the silicon nanoparticles.
  • the diborane gas is mixed during the pyrolysis of monosilane, which is a raw material gas. It can transfer energy from collision of molecules to increase the conversion rate from source gas to nanoparticles.
  • the laser is generated and irradiated by a CO 2 laser generator, and is irradiated in the form of a line beam of continuous waves having a wavelength of 10.6 ⁇ m.
  • the CO 2 laser generator preferably uses a maximum output of 50 to 60 W. However, depending on the size of the nanoparticle manufacturing apparatus or the amount of nanoparticles to be produced, a maximum output of about 6,000W laser can be used.
  • the reaction chamber may have an internal pressure of 100 to 500 torr, but is not limited thereto. If the internal pressure of the reaction chamber is less than 100torr, raw material gas decomposition may not be performed smoothly, and thus the production yield of nanoparticles may be lowered.
  • Diborane gas is excellent in absorbing the wavelength of 10.6 ⁇ m, so the energy is more efficiently transferred to monosilane as monosilane gas meets the laser and decomposes into nanoparticles, which is a large amount of Si-H bond. By cutting to increase the yield of the silicon nanoparticles.
  • Monosilane gas and diborane gas may have an explosive reaction when it receives energy from the outside and is excited.
  • the reaction process is shown in Scheme 1 below.
  • the carbon group non-oxide nanoparticles may have a size of 5 to 400 nm, preferably 10 to 100 nm, but are not limited thereto. If the size of the carbon-based non-oxide nanoparticles is less than 5nm, the production of nanometer-based particles may not be easy, and if the size of more than 400nm, the surface area of the particles may be small, a problem of performance degradation may occur.
  • Radiation generally consists of alpha rays, beta rays and gamma rays.
  • the carbon group-boron non-oxide nanoparticles are materials capable of shielding gamma rays, and are generally compounded in a binder resin through a biaxial extruder and manufactured in a sheet form to be used as a radiation shielding material.
  • the binder resin is low density polyethylene (LDPE), high density polyethylene (HDPE), polyvinyl alcohol (polyvinylalcohol, PVA), PET (polyethylene terephthalate), EPM (copolymer of ethylene and propylene), polyurethane (polyurethane) ), Polyurea, silicone resin, epoxy resin and a mixture of two or more thereof, and may be one selected from the group consisting of, preferably a silicone resin, but is not limited thereto. no.
  • the silicone resin has excellent resilience, chemical resistance, heat resistance, flame retardancy, weather resistance, chemical resistance, hot water resistance, oil resistance, insulation, non-toxicity, strength, low temperature elasticity, and when the composition containing the silicone resin is used as a radiation shielding material. Since the tensile strength, elongation, friction fastness and the like is excellent, there is an advantage that the coated portion is not peeled off arbitrarily. In addition, the silicone resin is not only harmful to the human body, but also has a long life of the shielding material.
  • the silicone resin may be, for example, one selected from the group consisting of dimethylsiloxane, polydimethylsiloxane, polyether modified polydimethylsiloxane, oligosiloxane, and mixtures of two or more thereof.
  • the radiation shielding composition may further include one selected from the group consisting of alkaline earth metal compounds, tourmalines, metals, transition metals, lanthanides, actinides, and mixtures of two or more thereof, and more particularly, tin (Sn). ), Antimony (Sb), tellurium (Te), iodine (I), xenon (Xe), cesium (Cs), barium (Ba), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd) ), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Tolium (Tm), Ytterbium (Yb) ), Lutetium (Lu), Hafnium (Hf), Tantalum (Ta), Tungsten (W), Rhenium (Re), O
  • the radiation shielding composition according to an embodiment may further increase the shielding efficiency of beta rays, alpha rays, as well as gamma rays by further comprising one of the metals or mixtures of the metals listed in the carbon-boron non-oxide nanoparticles.
  • the carbon group non-oxide nanoparticles may be included in the form of a diluted solution and powder in a concentration of 1 to 50,000 ppm, and the content of the solution and powder may be 1 to 100 parts by weight of the binder resin. It may be 20 parts by weight.
  • Radioactive shielding composition according to an aspect of the present invention by controlling the particle size of the carbon-based non-oxide nanoparticles to a certain range and including a binder resin is excellent in radioactivity shielding performance, simple manufacturing process is advantageous in terms of productivity and economics. .
  • Silicon-boron alloy nanoparticles can be prepared according to the following Scheme 2.
  • Monosilane gas (SiH 4 ), diborane gas (B 2 H 6 ), and nitrogen are mixed and injected into the reaction chamber to irradiate a CO 2 laser beam.
  • the diborane gas acts as a catalyst gas and a source gas.
  • the energy absorbed at the wavelength of 10.6 ⁇ m is efficiently transferred to the silane gas, and the Si-H bond of the silane gas is well broken to generate silicon-boron alloy nanoparticles (SiB x -NPs).
  • diborinase is decomposed into boron and hydrogen atoms, boron alloys with silicon nanoparticles, and serves to prevent the oxidation of silicon.
  • 90% of the catalyst gas, and the catalyst gas is adjusted to the range of 10% or less of the total volume.
  • the carrier gas nitrogen is not more than 400 parts by volume compared to the raw material gas silane gas.
  • the gas flow rate is in sccm.
  • the process pressure inside the reaction chamber is set in the range of 100 to 400 Torr. In this range, silicon-boron alloy nanoparticles (SiB x -NPs) having a size of 5 to 400 nm are prepared.
  • Example 1-1 Example 1-2
  • Example 1-3 Example 1-4
  • Example 1-5 Raw material gas (sccm) 300 500 700 1000 1500 Catalyst gas (sccm) 15 36 60 80 105 Carrier gas (sccm) 400 400 400 500 500 Process pressure (Torr) 350-200 350-200 250-100 250-100 200-100 Particle size (nm) 20-30 20-30 20-30 20-30 20-30 B content (wt%) 2.5 6 9.6 12.5 16 Si content (wt%) 97.5 94 90.4 87.5 84 Atomic ratio 1:15 1: 6 1: 4 1: 3 1: 2 SiBx SiB 15 SiB 6 SiB 4 SiB 3 SiB 2
  • Silicon-germanium-boron alloy nanoparticles may be prepared according to Scheme 3 below.
  • SiH 4 monosilane
  • GeH 4 Germane
  • B 2 H 6 diborane
  • N 2 carrier gas phosphorus nitrogen
  • the mixed gas containing 400 parts by volume is supplied into the reaction chamber having an internal pressure of 80 to 400 torr, and the laser generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber through the irradiation unit.
  • the silicon-germanium-boron alloy nanoparticles (SiGeB-NPs) were prepared by irradiating for 3 hours in the form of a line beam of continuous waves of 10.6 ⁇ m.
  • the particle size of SiGeB-NPs is 5 to 400 nm.
  • Carbon-boron alloy nanoparticles can be prepared according to Scheme 4 below.
  • C 2 H 2 acetylene
  • B 2 H 6 diborane
  • N 2 carrier gaseous nitrogen
  • a mixed gas is supplied into a reaction chamber having an internal pressure of 100 to 400 torr, and a laser beam generated by a CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber through a radiator to produce a continuous wave line beam having a wavelength of 10.6 ⁇ m.
  • Line boron was irradiated for 3 hours to prepare carbon-boron alloy nanoparticles (CB x -NPs).
  • the particle size of CB x -NPs is 5-400 nm.
  • Germanium-boron alloy nanoparticles can be prepared according to Scheme 5 below.
  • a mixture of 100 parts of germane (GeH 4 ), diborane (B 2 H 6 ) 40 to 80 parts of raw material gas and 400 parts by volume of carrier gaseous nitrogen (N 2 ) through a source gas supply nozzle Gas is supplied into the reaction chamber with an internal pressure of 100 to 400 torr, and the laser beam generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber.
  • 3 hours of irradiation in the form of germanium-boron alloy nanoparticles (GeB x -NPs) was prepared.
  • the particle size of GeB x -NPs is 5 to 400 nm.
  • a radioactive shielding composition comprising (85% by weight of dimethylsiloxane, 5% by weight of nanoparticles, and 10% by weight of a silicone resin hardener) containing the carbon group-boron non-oxide nanoparticles for radioactive shielding prepared in Examples 1, 2, 3, and 4. %) was applied to the substrate with a thickness of 1.5 mm, and then semi-dried, and placed on a belt of the drying section, and dried at 120 to 180 ° C. for about 3 to 5 minutes to completely dry the substrate. Blowing cold air to harden completely and then peeling off the substrate to obtain a film type radiation shielding material (Production Examples 1-1 to 1-4).
  • Production Example 1-1 1-2 1-3 1-4 Particle Types (-NPs) SiB 4 SiGeB CB GeB Particle Concentration (%) 5 5 5 5 Silicone resin (wt%) 80 80 80 80 80 80 80 Curing agent (% by weight) 10 10 10 10 Thickness (mm) 1.5 1.5 1.5 1.5 Voltage (kvp) 100 100 100 100 100 Shielding rate (%) 99.7 99.5 89.2 89.4
  • a radioactive shielding composition (nanoparticles (10%)) comprising a comparative example (B 2 O 3 particles purchased from Aldrich) and carbon group-boron non-oxide nanoparticles for radiological shielding prepared in Examples 1, 2, 3 and 4 1mm thick 250mm x 250mm sheet was produced by hot pressing the HDPE and the chip compounded in a twin-screw extruder at 170oC (Production Examples 2-1 to 4) to shield radiation (gamma) from Cs-137 and Co-60. Performance was analyzed.
  • a radiation shielding composition (nanoparticles (10%)) comprising a comparative example (B 2 O 3 particles purchased from Aldrich) and carbon group-boron non-oxide nanoparticles for radiation shielding prepared in Examples 1, 2, 3 and 4 1mm thick 250mm x 250mm sheet was produced by hot pressing the PET and the chip compounded in a twin screw extruder at 280oC (Manufacturing Examples 3-1 ⁇ 4) to shield radiation (gamma) from Cs-137 and Co-60. Performance was analyzed.
  • Tables 3 and 4 below show the results of radiological shielding analysis for Comparative Examples, Preparation Examples 2-1 to 2-4, and Preparation Examples 3-1 to 3-4.
  • the Radiation Quality is Cs-137 and Co-60, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

One embodiment of the present invention provides carbon group-boron non-oxide nanoparticles for radiation shielding, consisting of an alloy of B and at least one element selected from among C, Si, and Ge.

Description

탄소족-보론 비산화물 나노입자, 이를 포함하는 방사능 차폐재 조성물 및 이의 제조 방법Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising the same and method for preparing same
본 발명은 탄소족-보론 비산화물 나노입자, 이를 포함하는 방사능 차폐재 조성물 및 이의 제조 방법에 관한 것이다.The present invention relates to a carbon group-boron non-oxide nanoparticle, a radiation shielding composition comprising the same, and a method of manufacturing the same.
나노기술은 21세기 과학기술의 핵심기술로서 전통제조산업과 접목되어 기술혁신을 유도할 뿐만 아니라, IT, BT, CT 등의 첨단기술과 융합하여 미래 핵심전략사업을 한층 고도화시킬 수 있는 기반기술로서 차세대 성장동력으로 인식되고있다. 이와 같은 첨단기술 등에 적용되는 나노소재를 제조하는 방법은 레이저 가열법, 액상합성법, 고상합성법 등이 있다. 액상합성법은 기본적으로 배치공정으로 합성이 이루어지고 기타 각종 용제 및 이물질들과의 접촉이 필연적으로 따르기 때문에 불순물이 함유되어 고순도의 나노입자 합성에 어려운 문제점이 있으며, 레이저 가열법의 경우에는 불순물과의 접촉이 전혀 없고, 연속적으로 나노입자를 제조할 수 있는 장점이 있다.Nanotechnology is a core technology of 21st century science and technology, which is not only used to induce the technological innovation by combining with the traditional manufacturing industry, but also as a foundation technology that can further enhance future core strategic projects by integrating with advanced technologies such as IT, BT, CT, etc. It is recognized as the next generation growth engine. Methods of manufacturing nanomaterials applied to such advanced technologies include laser heating, liquid phase synthesis, solid phase synthesis, and the like. Liquid phase synthesis is basically a batch process, and since contact with various solvents and foreign substances is inevitably followed, impurities are difficult to synthesize high-purity nanoparticles, and in the case of laser heating, There is no contact at all, there is an advantage that can be produced nanoparticles continuously.
레이저 가열법에 의한 나노입자 제조장치를 살펴보면, CO2 레이저 열분해법을 이용한 나노입자 합성장치는 레이저조사부, 반응챔버, 포집부 및 진공 펌프와 그리고 상기 반응챔버 내로 모노실란 등과 같은 원료가스를 공급하기 위한 원료가스 공급노즐과 헬륨(He)가스 등과 같은 캐리어 가스를 공급하기 위한 캐리어 가스 공급노즐이 구비된 주입부로 구성된다. 상기 장치에 의한 나노입자의 제조과정을 설명하면, 레이저 조사부로부터 조사되는 레이저빔이 반사거울과 렌즈를 통해 반응챔버 내에 조사되고, 이때 주입부의 원료가스 공급노즐을 통해 반응챔버 내로 주입되는 모노실란 등과 같은 원료가스가 레이저빔의 열에 의해 분해되면서 나노입자가 형성되며, 이때 반응챔버 내부에서 균일하게 성장된 나노입자는 진공펌프에 의해 반응챔버 내부에 부압을 형성함으로써 반응챔버에서 빠져나오는 나노입자의 움직임을 활성화시켜 포집부를 통해 나노입자를 회수하게 된다.Looking at the nanoparticle manufacturing apparatus by the laser heating method, the nanoparticle synthesis apparatus using the CO2 laser pyrolysis method for supplying a raw material gas such as a laser irradiation unit, a reaction chamber, a collecting unit and a vacuum pump and monosilane into the reaction chamber. It is composed of an injection portion provided with a carrier gas supply nozzle for supplying a carrier gas, such as source gas supply nozzle and helium (He) gas. Referring to the manufacturing process of the nanoparticles by the above device, the laser beam irradiated from the laser irradiation unit is irradiated into the reaction chamber through the reflecting mirror and the lens, at this time monosilane injected into the reaction chamber through the source gas supply nozzle of the injection unit, etc. As the same source gas is decomposed by the heat of the laser beam, nanoparticles are formed, and the nanoparticles uniformly grown in the reaction chamber form negative pressure in the reaction chamber by a vacuum pump, thereby moving the nanoparticles out of the reaction chamber. Activated to recover the nanoparticles through the collector.
상기에서 설명한 바와 같은 레이저 가열법에 의한 나노입자 제조방법에 대한 선행기술들을 살펴보면, 레이저를 이용한 나노입자 제조방법으로 챔버 내에 공급하는 실리콘, 저마늄, 실리콘-저마늄합금, 3-5족 반도체화합물 및 금속 산화물계 화합물등의 원료가스에 레이저를 조사하여 나노입자를 합성하는 방법이 알려져있고, 레이저 열분해에 의해 실리콘/게르마늄 나노입자를 제조하기 위한 합성방법이 알려져 있으며, 테트라메틸저마늄 가스에 펄스레이저를 조사하여 광분해하는 단계를 포함하고, 저마늄 나노입자의 수득률은 70 내지 80%인 저마늄 나노입자의 제조방법이 알려져 있고, 게르마늄 안티몬 텔룰라이드계, 게르마늄 비스무스 텔룰라이드계, 게르마늄 안티몬 셀레나이드계, 게르마늄 비스무스 셀레나이드계, 인듐 안티몬 텔룰라이드계, 인듐 비스무스 텔룰라이드계, 인듐 안티몬 셀레나이드계, 인듐 비스무스 셀레나이드계, 인듐 안티몬 게르마나이드계, 갈륨 안티몬 텔룰라이드계, 갈륨 비스무스 텔룰라이드계, 갈륨 셀렌 텔루라이드계, 갈륨 안티몬 셀레나이드계, 갈륨 비스무스 셀레나이드계, 스태넘 안티몬 텔룰라이드계, 스태넘 비스무스 텔룰라이드계, 스태넘 안티몬 셀레나이드계 및 스태넘 비스무스 셀레나이드계 칼코겐화물 중에서 선택된 적어도 하나를 포함하는 벌크타깃에 레이저빔을 조사하여 나노입자를 제조하는 방법이 알려져 있다.Looking at the prior art for the method of manufacturing nanoparticles by the laser heating method as described above, the silicon, germanium, silicon-germanium alloy, group 3-5 semiconductor compound to be supplied into the chamber by the nanoparticle manufacturing method using a laser And a method for synthesizing nanoparticles by irradiating laser to a source gas such as a metal oxide compound, and the synthesis method for producing silicon / germanium nanoparticles by laser pyrolysis is known, pulsed in tetramethylgermanium gas Irradiation of the laser, including the step of photolysis, the method for producing germanium nanoparticles is known that the yield of germanium nanoparticles is 70 to 80%, germanium antimony telluride-based, germanium bismuth telluride-based, germanium antimony selenide Germanium Bismuth Selenide, Indium Antimony Telluride, Phosphorus Bismuth telluride, indium antimony selenide, indium bismuth selenide, indium antimony germanide, gallium antimony telluride, gallium bismuth telluride, gallium selenide, gallium antimony selenide, gallium bismuth Irradiating a laser beam to a bulk target including at least one selected from the group consisting of selenide, stannum antimony telluride, stannum bismuth telluride, stannum antimony selenide and stannum bismuth selenide Methods of making particles are known.
상기 레이저 가열법에 의한 나노입자를 제조하는 방법은 고순도의 나노입자를 제조할 수 있다는 장점이 있지만 나노입자의 생성수율이 낮아 미반응의 유독가스인 원료가스가 부산물로 버려질 경우 환경이 훼손되고, 또한 폐기되는 원료가스를 회수하여 반응하지 재사용하게 되면 시스템이 복잡해지고 높은 비용이 들게 되는 문제점이 있었다.The method of manufacturing nanoparticles by the laser heating method has the advantage of manufacturing high purity nanoparticles, but the production yield of nanoparticles is low, and the environment is damaged when raw gas, which is unreacted toxic gas, is discarded as a by-product. In addition, there is a problem in that the system becomes complicated and expensive when the raw material gas that is disposed of is recovered and not reused.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 0001) 한국특허공개 제10-2013-0130284호(Patent Document 0001) Korean Patent Publication No. 10-2013-0130284
(특허문헌 0002) 한국특허등록 제10-1363478호(Patent Document 0002) Korean Patent Registration No. 10-1363478
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 방사능 차폐성능이 우수하고 제조공정이 간소하여 경제적으로 유리한 방사능 차폐재 조성물을 제공하는 것이다.The present invention is to solve the above problems of the prior art, an object of the present invention is to provide a radioactive shielding composition which is economically advantageous because of excellent radiation shielding performance and a simple manufacturing process.
본 발명의 일 측면은 C, Si 및 Ge 중에서 선택된 하나 이상의 원소와 B 의 합금으로 이루어진 방사능 차폐용 탄소족-보론 비산화물 나노입자를 제공한다. One aspect of the present invention provides a radiation shielding carbon group-boron non-oxide nanoparticle consisting of an alloy of one or more elements selected from C, Si and Ge and B.
상기 탄소족-보론 비산화물 나노입자의 입도는 5 내지 400 nm일 수 있다. The carbon-boron non-oxide nanoparticles may have a particle size of 5 to 400 nm.
한편, 본 발명의 다른 측면은, 상기 방사능 차폐용 탄소족-보론 비산화물 나노입자, 및 바인더 수지를 포함하는 방사능 차폐재 조성물을 제공한다. On the other hand, another aspect of the present invention provides a radioactive shielding composition comprising the carbon group-boron non-oxide nanoparticles for radiation shielding, and a binder resin.
본 명세서에 사용된 용어, "탄소족-보론 비산화물 나노입자"는 C, Si 및 Ge 중 적어도 하나의 탄소족(14족) 원소와 B를 더 포함하는 입자를 의미하며, 이종의 탄소족 원소가 합금되거나 적어도 하나의 탄소족 원소에 붕소(B)가 합금된 입자및 탄소족 원소와 붕소로 이루어진 화합물를 포함하는 개념으로 이해될 수 있다.As used herein, the term "carbon-boron non-oxide nanoparticle" refers to a particle further comprising B and at least one carbon group (Group 14) element of C, Si, and Ge, and a heterogeneous carbon group element. It may be understood as a concept including a particle alloyed with boron (B) in at least one carbon group element and a compound composed of carbon group element and boron.
본 명세서에 사용된 용어, "비산화물 나노입자"는 실질적으로 산소 원소(O)를 포함하지 않는 입자를 의미하며, 입자제조시 배제하기 어려운 미량의 수분 및 산소와 반응에 의해 비산화물 나노입자의 표면에 생성된 산화물층(oxide layer)을 포함하는 개념으로 이해될 수 있다.As used herein, the term "non-oxide nanoparticle" refers to a particle that substantially does not contain an element of oxygen (O), the reaction of the non-oxide nanoparticles by reaction with trace amounts of moisture and oxygen that are difficult to exclude during the manufacture of the particles It can be understood as a concept including an oxide layer formed on the surface.
이하에서는 편의상 실리콘-보론 비산화물 나노입자를 대표 실시예로 설명하나, 본 발명의 실시예에 따른 방사능 차폐재 조성물을 이루는 나노입자는, 이에 한정되지 않는다. 예를 들면, BC(보론카바이드), SiB 합금, GeB, CSiB, SiGeB, CGeB, CSiGeB 비산화물 나노입자 등이 본 발명의 실시예에 따른 탄소족-보론 비산화물 나노입자에 포함될 수 있다. Hereinafter, for convenience, silicon-boron non-oxide nanoparticles will be described as representative examples, but the nanoparticles constituting the radiation shielding composition according to the embodiment of the present invention are not limited thereto. For example, BC (boron carbide), SiB alloy, GeB, CSiB, SiGeB, CGeB, CSiGeB non-oxide nanoparticles and the like can be included in the carbon-boron non-oxide nanoparticles according to an embodiment of the present invention.
반응챔버 내에 혼합가스를 캐리어 가스와 함께 공급하면서, 혼합가스에 CO2 레이저의 파장을 모노실란, 실리콘테트라클로라이드 등과 같은 원료가스의 흡수단면적과 일치시킴으로써 에너지가 원료분자에 쉽게 흡수되어 분자의 강렬한 진동에 의해 모노실란 분자의 Si-H 결합을 끊고 각각 라디칼 형태로 분해시킨다. While supplying the mixed gas together with the carrier gas into the reaction chamber, the wavelength of the CO 2 laser is matched with the absorption cross-sectional area of the source gas such as monosilane, silicon tetrachloride, etc., so that the energy is easily absorbed by the raw material molecules and the intense vibration of the molecules This breaks the Si-H bonds of the monosilane molecules and breaks them down into their respective radical forms.
이와 같이 생성된 실리콘 라디칼은 균일핵형성(homogeneous nucleation)에 의하여 실리콘 나노입자 핵(nuclei)으로 발전하게 되고, 주변의 실리콘 라디칼과 결합함으로써 점점 성장(growth)하게 된다.따라서, 실리콘 라디칼의 주변 환경, 실리콘 나노입자 핵이 반응부에 머물 수 있는 체류시간 등은 실리콘 나노입자의 크기 및 특성을 제어하는 중요한 요소가 된다.이때, 디보란(diborane) 가스는 원료가스인 모노실란 등이 열분해 중에 혼입되어 분자들의 충돌에 의한 에너지를 전달하여 원료가스로부터 나노입자로의 전환율을 증가시킬 수 있다.The silicon radicals thus generated develop into silicon nanoparticle nuclei by homogeneous nucleation and grow gradually by combining with surrounding silicon radicals. Thus, the surrounding environment of silicon radicals In addition, the residence time in which the silicon nanoparticle nucleus stays in the reaction part is an important factor controlling the size and characteristics of the silicon nanoparticles. In this case, the diborane gas is mixed during the pyrolysis of monosilane, which is a raw material gas. It can transfer energy from collision of molecules to increase the conversion rate from source gas to nanoparticles.
상기 레이저는 CO2 레이저 발생기에 의해 발생되어 조사되고, 파장이 10.6㎛인 연속파의 라인 빔(Line beam) 형태로 조사된다.상기 CO2 레이저 발생기는 최대출력이 50 내지 60W인 것을 사용하는 것이 바람직하나, 나노입자 제조장치의 규모나 나노입자를 생산하고자 하는 양에 따라 최대출력 약 6,000W 레이저를 사용할 수 있다.The laser is generated and irradiated by a CO 2 laser generator, and is irradiated in the form of a line beam of continuous waves having a wavelength of 10.6 μm. The CO 2 laser generator preferably uses a maximum output of 50 to 60 W. However, depending on the size of the nanoparticle manufacturing apparatus or the amount of nanoparticles to be produced, a maximum output of about 6,000W laser can be used.
상기 반응챔버는 내부 압력이 100 내지 500torr일 수 있으나, 이에 한정되는 것은 아니다. 반응챔버의 내부 압력이 100torr 미만이면 원료가스 분해가 원활이 이루어지지 않아 나노입자의 생산수율이 저하될 우려가 있고, 500torr 초과이면 제조된 나노입자가 뭉쳐져 품질이 떨어지는 문제가 발생할 수 있다.The reaction chamber may have an internal pressure of 100 to 500 torr, but is not limited thereto. If the internal pressure of the reaction chamber is less than 100torr, raw material gas decomposition may not be performed smoothly, and thus the production yield of nanoparticles may be lowered.
디보란 가스는 10.6㎛의 파장을 흡수하는 능력이 뛰어나 모노실란 가스가 상기 레이저를 만나서 분해되어 나노입자로 생성되는 과정에서 에너지가 더 효율적으로 모노실란으로 전달되고, 이는 많은 양의 Si-H 결합을 절단하여 실리콘 나노입자의 수율을 높일 수 있다.Diborane gas is excellent in absorbing the wavelength of 10.6㎛, so the energy is more efficiently transferred to monosilane as monosilane gas meets the laser and decomposes into nanoparticles, which is a large amount of Si-H bond. By cutting to increase the yield of the silicon nanoparticles.
원료가스로 사용되는 모노실란 가스의 대다수가 반응에 참여하지 못하고 버려지는 경우, 유독한 가스로 환경 오염의 문제가 있고, 비용 측면에서 바람직하지 못하다.또한, 반응에 참여하지 못한 가스를 분리하여 재활용하게 되면 시스템이 복잡해지고 그에 따라 비용이 증가하게 된다.If the majority of the monosilane gas used as the source gas is thrown away and cannot participate in the reaction, there is a problem of environmental pollution with toxic gas, and it is not preferable in terms of cost. This complicates the system and adds cost.
모노실란 가스와 디보란 가스는 외부에서 에너지를 받아 여기(excited) 상태가 되면 급격한 폭발반응을 가질 수 있다. 반응과정은 아래 반응식 1과 같다.Monosilane gas and diborane gas may have an explosive reaction when it receives energy from the outside and is excited. The reaction process is shown in Scheme 1 below.
<반응식 1><Scheme 1>
nSiH4 + mB2H6 → SinBm + (2n+3m)H2 nSiH 4 + mB 2 H 6 → Si n B m + (2n + 3m) H 2
상기 탄소족 비산화물 나노입자의 크기가 5 내지 400 nm일 수 있고, 바람직하게는 10 내지 100 nm일 수 있으나, 이에 한정되는 것은 아니다. 상기 탄소족 비산화물 나노입자의 크기가 5nm 미만이면, 나노미터 단위의 입자의 제조가 용이하지 않을 수 있고, 400nm 초과이면 입자의 표면적이 작아져 성능 저하의 문제가 발생할 수 있다.The carbon group non-oxide nanoparticles may have a size of 5 to 400 nm, preferably 10 to 100 nm, but are not limited thereto. If the size of the carbon-based non-oxide nanoparticles is less than 5nm, the production of nanometer-based particles may not be easy, and if the size of more than 400nm, the surface area of the particles may be small, a problem of performance degradation may occur.
방사선은 일반적으로 알파선, 베타선 및 감마선으로 이루어져있다. 이때, 탄소족-보론 비산화물 나노입자는 감마선을 차폐할 수 있는 물질로, 일반적으로 바인더 수지에 2축압출기를 통하여 컴파운딩을 하고 시트(Sheet) 형태로 제조하여 방사능 차폐 소재로 사용할 수 있다. Radiation generally consists of alpha rays, beta rays and gamma rays. In this case, the carbon group-boron non-oxide nanoparticles are materials capable of shielding gamma rays, and are generally compounded in a binder resin through a biaxial extruder and manufactured in a sheet form to be used as a radiation shielding material.
상기 바인더 수지는 저밀도 폴리에틸렌(lowdensity polyethylene, LDPE), 고밀도폴리에틸렌(highdensity polyethylene, HDPE), 폴리비닐알콜(polyvinylalcohol, PVA), PET(polyethylene terephthalate), EPM(copolymer of ethylene and propylene), 폴리우레탄(polyurethane), 폴리우레아(polyurea), 실리콘수지(silicon resin),에폭시수지(epoxy resin) 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있고, 바람직하게는 실리콘 수지일 수 있으나, 이에 한정되는 것은 아니다.The binder resin is low density polyethylene (LDPE), high density polyethylene (HDPE), polyvinyl alcohol (polyvinylalcohol, PVA), PET (polyethylene terephthalate), EPM (copolymer of ethylene and propylene), polyurethane (polyurethane) ), Polyurea, silicone resin, epoxy resin and a mixture of two or more thereof, and may be one selected from the group consisting of, preferably a silicone resin, but is not limited thereto. no.
상기 실리콘 수지는 뛰어난 복원력, 내화학성, 내열성, 난연성, 내후성, 내약품성, 내열수성, 내유성, 절연성, 무독성, 강도, 저온 신축성 등의 물성을 가지며, 실리콘 수지가 포함된 조성물을 방사능 차폐재로 사용할 경우 인장력, 신율, 마찰 견뢰도 등이 뛰어나기 때문에 코팅된 부분이 임의로 박리되지 않는 장점이 있다.또한, 상기 실리콘 수지는 인체에 유해하지 않을 뿐만 아니라, 차폐재의 수명이 긴 장점이 있다.The silicone resin has excellent resilience, chemical resistance, heat resistance, flame retardancy, weather resistance, chemical resistance, hot water resistance, oil resistance, insulation, non-toxicity, strength, low temperature elasticity, and when the composition containing the silicone resin is used as a radiation shielding material. Since the tensile strength, elongation, friction fastness and the like is excellent, there is an advantage that the coated portion is not peeled off arbitrarily. In addition, the silicone resin is not only harmful to the human body, but also has a long life of the shielding material.
상기 실리콘 수지는, 예를 들어, 디메틸실록산(dimethylsiloxane), 폴리디메틸실록산(polydimethylsiloxane), 폴리에테르 변성 폴리디메틸실록산, 올리고실록산 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있다.The silicone resin may be, for example, one selected from the group consisting of dimethylsiloxane, polydimethylsiloxane, polyether modified polydimethylsiloxane, oligosiloxane, and mixtures of two or more thereof.
상기 방사능 차폐재 조성물은 알칼리토금속 화합물, 전기석(tourmaline), 금속, 전이금속, 란탄족, 악티늄족 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나를 더 포함할 수 있고, 더욱 상세하게는 주석(Sn), 안티몬(Sb), 텔루르(Te), 요오드(I), 크세논(Xe), 세슘(Cs), 바륨(Ba), 란탄(La), 세륨(Ce), 프라세오디뮴(Pr), 네오디뮴(Nd), 프로메튬(Pm), 사마륨(Sm), 유로퓸(Eu), 가돌리늄(Gd), 테르븀(Tb), 디스프로슘(Dy), 홀뮴(Ho), 에르븀(Er), 톨륨(Tm), 이테르븀(Yb), 루테튬(Lu), 하프늄(Hf), 탄탈(Ta), 텅스텐(W), 레늄(Re), 오스뮴(Os), 이리듐(Ir), 백금(Pt), 금(Au), 수은(Hg), 탈륨(Tl), 납(Pb), 폴로늄(Po), 아스타틴(At), 라돈(Rn), 프랑슘(Fr), 라듐(Ra), 악티늄(Ac), 토륨(Th), 프로트악티늄(Pa), 우라늄(U), 넵투늄(Np), 플루토늄(Pu), 아메리슘(Am), 퀴륨(Cm), 버클륨(Bk), 칼리포르늄(Cf), 아인시타이늄(Es), 페르뮴(Fm), 멘델레븀(Md), 노벨륨(No), 로렌슘(Lr), 러더포듐(Rf), 더브늄(Db), 시보기움(Sg), 보륨(Bh), 하슘(Hs), 마이트너륨(Mt) 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나를 더 포함할 수 있으나, 이에 한정되는 것은 아니다.The radiation shielding composition may further include one selected from the group consisting of alkaline earth metal compounds, tourmalines, metals, transition metals, lanthanides, actinides, and mixtures of two or more thereof, and more particularly, tin (Sn). ), Antimony (Sb), tellurium (Te), iodine (I), xenon (Xe), cesium (Cs), barium (Ba), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd) ), Promethium (Pm), Samarium (Sm), Europium (Eu), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Tolium (Tm), Ytterbium (Yb) ), Lutetium (Lu), Hafnium (Hf), Tantalum (Ta), Tungsten (W), Rhenium (Re), Osmium (Os), Iridium (Ir), Platinum (Pt), Gold (Au), Mercury (Hg) ), Thallium (Tl), lead (Pb), polonium (Po), astaxin (At), radon (Rn), francium (Fr), radium (Ra), actinium (Ac), thorium (Th), protactinium ( Pa), Uranium (U), Neptunium (Np), Plutonium (Pu), Americium (Am), Curium (Cm), Berkelium (Bk), Californium (Cf), Eincitanium (Es) ), Fermium (Fm), Mendelebium (Md), Nobelium (No), Lawrencium (Lr), Rutherfordium (Rf), Dubnium (Db), Siboum (Sg), Bolium (Bh), Hassium (Hs), Methane may further include one selected from the group consisting of Mt and mixtures of two or more thereof, but is not limited thereto.
일 실시예에 따른 상기 방사능 차폐재 조성물은 탄소족-보론 비산화물 나노입자에 상기 열거한 금속 또는 금속의 혼합물 중 하나를 더 포함함으로써 감마선 뿐만 아니라 베타선,알파선의 차폐효율도 상승시킬 수 있다. The radiation shielding composition according to an embodiment may further increase the shielding efficiency of beta rays, alpha rays, as well as gamma rays by further comprising one of the metals or mixtures of the metals listed in the carbon-boron non-oxide nanoparticles.
상기 방사능 차폐재 조성물에서 상기 탄소족 비산화물 나노입자는 1~50,000ppm의 농도로 희석된 용액의 형태와 파우더 형태로 포함될 수 있고, 상기 용액 및 파우더의 함량은 상기 바인더 수지 100중량부에 대해 1~20중량부일 수 있다.In the radiation shielding composition, the carbon group non-oxide nanoparticles may be included in the form of a diluted solution and powder in a concentration of 1 to 50,000 ppm, and the content of the solution and powder may be 1 to 100 parts by weight of the binder resin. It may be 20 parts by weight.
본 발명의 다른 측면에 따르면, C, Si 및 Ge 중에서 선택된 하나 이상의 원소와 B 의 합금으로 이루어진 탄소족-보론 비산화물 나노입자를제조하는단계; 및 상기탄소족-보론비산화물나노입자,액상의 바인더 수지, 수지 경화재를 혼합하는 단계를 포함하는, 방사능 차폐재 조성물의 제조방법이 제공된다.According to another aspect of the invention, preparing a carbon group-boron non-oxide nanoparticle consisting of an alloy of one or more elements selected from C, Si and Ge and B; And mixing the carbon group-boron nonoxide nanoparticles, liquid binder resin, and a resin cured material.
본 발명의 일 측면에 따른 방사능 차폐재 조성물은, 탄소족 비산화물 나노입자의 입도를 일정 범위로 조절하고 바인더 수지를 포함함으로써 방사능 차폐성능이 우수하고, 제조공정이 간소하여 생산성, 경제성 측면에서 유리하다.Radioactive shielding composition according to an aspect of the present invention, by controlling the particle size of the carbon-based non-oxide nanoparticles to a certain range and including a binder resin is excellent in radioactivity shielding performance, simple manufacturing process is advantageous in terms of productivity and economics. .
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It is to be understood that the effects of the present invention are not limited to the above effects, and include all effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
이하에서는 본 발명을 설명하기로 한다.그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described. However, the present invention can be embodied in many different forms and thus is not limited to the embodiments described herein.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, it includes not only "directly connected" but also "indirectly connected" with another member in between. In addition, when a part is said to "include" a certain component, it means that it may further include other components, without excluding the other components unless otherwise stated.
이하, 본 발명의 실시예에 관하여 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail.
실시예Example 1:  One: SiBSiB 나노입자제조 Nano particle manufacturing
실리콘-붕소 합금 나노입자는 하기 반응식2에 따라 제조될 수 있다.Silicon-boron alloy nanoparticles can be prepared according to the following Scheme 2.
<반응식2><Scheme 2>
2SiH4 + 2B2H6 + N2SiB4 + 8H2 + N2 2SiH 4 + 2B 2 H 6 + N 2 SiB 4 + 8H 2 + N 2
모노실란가스(SiH4), 디보레인가스(B2H6), 질소를 혼합하여 반응챔버 내부로 주입하여 CO2레이저빔을 조사시킨다.이 때, 디보레인 가스는 촉매가스 및 원료가스로 작용하며, 10.6㎛ 파장에서 흡수한 에너지가 효율적으로 실란가스로 전달되고, 실란가스의 Si-H 결합이 잘 끊어지도록 하여 실리콘-붕소 합금 나노입자(SiBx-NPs)를 생성시킨다.Monosilane gas (SiH 4 ), diborane gas (B 2 H 6 ), and nitrogen are mixed and injected into the reaction chamber to irradiate a CO 2 laser beam. At this time, the diborane gas acts as a catalyst gas and a source gas. In addition, the energy absorbed at the wavelength of 10.6㎛ is efficiently transferred to the silane gas, and the Si-H bond of the silane gas is well broken to generate silicon-boron alloy nanoparticles (SiB x -NPs).
또한, 디보레인가스는 붕소와 수소 원자로 분해되어 붕소는 실리콘 나노입자와 합금을 이루며, 실리콘의 산화를 막아주는 역할을 한다.원료가스인 실란가스는 전체 부피(원료가스 및 촉매가스를 합친 부피)의 90%이상 이고, 촉매가스는 전체 부피의 10% 이하의 범위로 조절한다. 또한, 캐리어 가스인 질소는 원료가스인 실란가스 대비 400 부피부를 넘지 않도록 한다. 가스의 유량은 sccm 단위를 사용한다.반응챔버 내부의 공정압력은 100~400Torr 범위로 설정하여 제조한다. 이 범위에서 5~400nm 크기를 갖는 실리콘-붕소 합금 나노입자(SiBx-NPs)가 제조된다.In addition, diborinase is decomposed into boron and hydrogen atoms, boron alloys with silicon nanoparticles, and serves to prevent the oxidation of silicon. 90% of the catalyst gas, and the catalyst gas is adjusted to the range of 10% or less of the total volume. In addition, the carrier gas nitrogen is not more than 400 parts by volume compared to the raw material gas silane gas. The gas flow rate is in sccm. The process pressure inside the reaction chamber is set in the range of 100 to 400 Torr. In this range, silicon-boron alloy nanoparticles (SiB x -NPs) having a size of 5 to 400 nm are prepared.
구분division 실시예1-1Example 1-1 실시예1-2Example 1-2 실시예1-3Example 1-3 실시예1-4Example 1-4 실시예1-5Example 1-5
원료가스(sccm)Raw material gas (sccm) 300300 500500 700700 10001000 15001500
촉매가스(sccm)Catalyst gas (sccm) 1515 3636 6060 8080 105105
캐리어 가스(sccm)Carrier gas (sccm) 400400 400400 400400 500500 500500
공정압력(Torr)Process pressure (Torr) 350~200350-200 350~200350-200 250~100250-100 250~100250-100 200~100200-100
입자크기(nm)Particle size (nm) 20~3020-30 20~3020-30 20~3020-30 20~3020-30 20~3020-30
B함량(wt%)B content (wt%) 2.52.5 66 9.69.6 12.512.5 1616
Si함량(wt%)Si content (wt%) 97.597.5 9494 90.490.4 87.587.5 8484
Atomic ratioAtomic ratio 1:151:15 1:61: 6 1:41: 4 1:31: 3 1:21: 2
SiBxSiBx SiB15 SiB 15 SiB6 SiB 6 SiB4 SiB 4 SiB3 SiB 3 SiB2 SiB 2
실시예Example 2:  2: SiGeBSiGeB 나노입자제조 Nano particle manufacturing
실리콘-게르마늄-붕소 합금 나노입자는 하기 반응식3에 따라 제조될 수 있다.Silicon-germanium-boron alloy nanoparticles may be prepared according to Scheme 3 below.
<반응식3><Scheme 3>
2SiH4 + 2GeH4 + B2H6→ 2SiGeB + 11H2 2SiH 4 + 2GeH 4 + B 2 H 6 → 2SiGeB + 11H 2
원료가스 공급노즐을 통해 원료가스인 모노실란(SiH4) 100부피부, Germane(GeH4) 100부피부, 및 디보레인(diborane, B2H6)40~80부피부와 캐리어 가스인질소(N2) 400 부피부를 혼합한 혼합가스를 내부압력이80~400 torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 조사부를 통해 파장이 10.6㎛인 연속파의 라인빔(Line Beam) 형태로 3시간 동안 조사하여실 리콘-게르마늄-붕소 합금 나노입자(SiGeB-NPs)를 제조하였다. SiGeB-NPs의 입도는 5~400nm이다.100 parts of monosilane (SiH 4 ), 100 parts of Germane (GeH 4 ), diborane (B 2 H 6 ) and 40 to 80 parts of the source gas through the source gas supply nozzle and carrier gas phosphorus nitrogen ( N 2 ) The mixed gas containing 400 parts by volume is supplied into the reaction chamber having an internal pressure of 80 to 400 torr, and the laser generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber through the irradiation unit. The silicon-germanium-boron alloy nanoparticles (SiGeB-NPs) were prepared by irradiating for 3 hours in the form of a line beam of continuous waves of 10.6 μm. The particle size of SiGeB-NPs is 5 to 400 nm.
실시예 3: CB 나노입자를 포함하는 방사능 차폐재 조성물 제조Example 3 Preparation of a Radioactive Shielding Composition Comprising CB Nanoparticles
탄소-붕소 합금 나노입자는 하기 반응식4에 따라 제조될 수 있다.Carbon-boron alloy nanoparticles can be prepared according to Scheme 4 below.
<반응식4><Scheme 4>
C2H2 + 4B2H6 + N22B4C + 13H2 + N2 C 2 H 2 + 4 B 2 H 6 + N 2 2 B 4 C + 13 H 2 + N 2
원료가스 공급노즐을 통해 원료가스인 아세틸렌(C2H2) 100부피부, 및 디보레인(diborane, B2H6)40~80부피부와 캐리어 가스인질소(N2) 400 부피부를 혼합한 혼합가스를 내부압력이100~400 torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 조사부를 통해 파장이 10.6㎛인 연속파의 라인빔(Line Beam) 형태로 3시간 동안 조사하여 탄소-붕소 합금 나노입자(CBx-NPs)를 제조하였다. CBx-NPs의 입도는 5~400nm이다.100 parts by volume of acetylene (C 2 H 2 ), diborane (B 2 H 6 ) 40-80 parts by volume, and 400 parts by volume of carrier gaseous nitrogen (N 2 ) are mixed through the source gas supply nozzle. A mixed gas is supplied into a reaction chamber having an internal pressure of 100 to 400 torr, and a laser beam generated by a CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber through a radiator to produce a continuous wave line beam having a wavelength of 10.6 μm. Line boron) was irradiated for 3 hours to prepare carbon-boron alloy nanoparticles (CB x -NPs). The particle size of CB x -NPs is 5-400 nm.
실시예 4: GeB 나노입자제조Example 4 GeB Nanoparticles Preparation
게르마늄-붕소 합금 나노입자는 하기 반응식 5에 따라 제조될 수 있다.Germanium-boron alloy nanoparticles can be prepared according to Scheme 5 below.
<반응식 5>Scheme 5
2GeH4 + 2B2H6 + N2 GeB4 + 8H2 + N2 2GeH 4 + 2B 2 H 6 + N 2 GeB 4 + 8H 2 + N 2
원료가스공급 노즐을 통해 원료가스인Germane(GeH4) 100부피부, 및 디보레인(diborane, B2H6)40~80부피부와 캐리어 가스인질소(N2) 400 부피부를 혼합한 혼합가스를 내부압력이100~400 torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 조사부를 통해 파장이 10.6㎛인 연속파의 라인빔(Line Beam) 형태로 3시간 동안 조사하여 게르마늄-붕소 합금 나노입자(GeBx-NPs)를 제조하였다. GeBx-NPs의 입도는 5~400nm이다.A mixture of 100 parts of germane (GeH 4 ), diborane (B 2 H 6 ) 40 to 80 parts of raw material gas and 400 parts by volume of carrier gaseous nitrogen (N 2 ) through a source gas supply nozzle Gas is supplied into the reaction chamber with an internal pressure of 100 to 400 torr, and the laser beam generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber. 3 hours of irradiation in the form of germanium-boron alloy nanoparticles (GeB x -NPs) was prepared. The particle size of GeB x -NPs is 5 to 400 nm.
실험예 1Experimental Example 1
실시예 1, 2, 3,및 4에서 제조된 방사능 차폐용 탄소족-보론 비산화물 나노입자를포함하는 방사능 차폐용 조성물(디메틸실록산 85중량%,나노입자 5중량%, 및 실리콘수지경화제 10중량%)을 일정하게1.5mm의 두께로 기판에 도포한 후 반건조시키고, 이를 건조부의 벨트에 놓고 120~180℃ 에서 약 3~5분 간 가열하여 완전히 건조시켰다.완전히 건조된 기판에 송풍기를 이용하여 차가운 공기를 불어주어 완전히 경화되도록 한 후 기판에서 떼어 내어 필름 타입의 방사능 차폐재(제조예 1-1~1-4)를 얻었다.A radioactive shielding composition comprising (85% by weight of dimethylsiloxane, 5% by weight of nanoparticles, and 10% by weight of a silicone resin hardener) containing the carbon group-boron non-oxide nanoparticles for radioactive shielding prepared in Examples 1, 2, 3, and 4. %) Was applied to the substrate with a thickness of 1.5 mm, and then semi-dried, and placed on a belt of the drying section, and dried at 120 to 180 ° C. for about 3 to 5 minutes to completely dry the substrate. Blowing cold air to harden completely and then peeling off the substrate to obtain a film type radiation shielding material (Production Examples 1-1 to 1-4).
방사능 차폐재 필름의 두께를 달리한 시료를 20cm×20cm로 절단하고100kvp 전압의 방사능을 조사하여, 차폐율(%)을 측정하였다. 이 때, 방사능 차폐필름의 차폐율을 매 번 그 위치를 달리 하여 10 회 측정한 후 그 평균 차폐율(%)을 구하였다.Samples having different thicknesses of the radioactive shielding film were cut into 20 cm x 20 cm, and the radioactivity of 100kvp voltage was examined to measure shielding rate (%). At this time, the shielding rate of the radioactive shielding film was measured 10 times at different positions each time, and the average shielding rate (%) was obtained.
제조예Production Example 1-11-1 1-21-2 1-31-3 1-41-4
입자종류(-NPs)Particle Types (-NPs) SiB4 SiB 4 SiGeBSiGeB CBCB GeBGeB
입자농도(%)Particle Concentration (%) 55 55 55 55
실리콘수지(중량%)Silicone resin (wt%) 8080 8080 8080 8080
경화제(중량%)Curing agent (% by weight) 1010 1010 1010 1010
두께(mm)Thickness (mm) 1.51.5 1.51.5 1.51.5 1.51.5
전압(kvp)Voltage (kvp) 100100 100100 100100 100100
차폐율(%)Shielding rate (%) 99.799.7 99.599.5 89.289.2 89.489.4
실험예 2Experimental Example 2
비교예 (알드리치에서 구입한 B2O3입자)와 실시예 1, 2, 3 및4에서 제조된 방사능 차폐용 탄소족-보론 비산화물 나노입자를 포함하는 방사능 차폐 조성물(나노입자(10%)를 HDPE와 170oC에서 2축 압출기에서 컴파운딩 한 칩)을 핫프레스를 통하여 1mm 두께 250mm x 250mm 시트를 제작(제조예 2-1~4)하여 Cs-137과 Co-60에서 방사선(감마선) 차폐 성능을 분석하였다.A radioactive shielding composition (nanoparticles (10%)) comprising a comparative example (B 2 O 3 particles purchased from Aldrich) and carbon group-boron non-oxide nanoparticles for radiological shielding prepared in Examples 1, 2, 3 and 4 1mm thick 250mm x 250mm sheet was produced by hot pressing the HDPE and the chip compounded in a twin-screw extruder at 170oC (Production Examples 2-1 to 4) to shield radiation (gamma) from Cs-137 and Co-60. Performance was analyzed.
실험예 3Experimental Example 3
비교예(알드리치에서 구입한 B2O3입자)와실시예 1, 2, 3 및4에서 제조된 방사능 차폐용 탄소족-보론 비산화물 나노입자를 포함하는 방사능 차폐 조성물(나노입자(10%)를 PET와 280oC에서 2축 압출기에서 컴파운딩 한 칩)을 핫프레스를 통하여 1mm 두께 250mm x 250mm 시트를 제작(제조예 3-1~4)하여 Cs-137과 Co-60에서 방사선(감마선) 차폐 성능을 분석하였다.A radiation shielding composition (nanoparticles (10%)) comprising a comparative example (B 2 O 3 particles purchased from Aldrich) and carbon group-boron non-oxide nanoparticles for radiation shielding prepared in Examples 1, 2, 3 and 4 1mm thick 250mm x 250mm sheet was produced by hot pressing the PET and the chip compounded in a twin screw extruder at 280oC (Manufacturing Examples 3-1 ~ 4) to shield radiation (gamma) from Cs-137 and Co-60. Performance was analyzed.
하기 표 3 및 표 4는 비교예와 제조예 2-1 내지 2-4, 제조예 3-1 내지 3-4에 대한 방사능 차폐 분석 결과를 나타낸다. 표 8 및 표 9에서 Radiation Quality는 각각 Cs-137 및 Co-60이다. Tables 3 and 4 below show the results of radiological shielding analysis for Comparative Examples, Preparation Examples 2-1 to 2-4, and Preparation Examples 3-1 to 3-4. In Table 8 and Table 9, the Radiation Quality is Cs-137 and Co-60, respectively.
시료구분Sample classification 시료가 없는 경우의 선량률(mGy/h), CoDose rate without sample (mGy / h), Co 시료가 있는 경우의 선량률(mGy/h), CiDose rate with sample (mGy / h), Ci 감쇠율(Ci/Co)Attenuation Ratio (Ci / Co) 불확도(%)% Uncertainty
비교예((250×250×1(T)mm3)Comparative Example ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 104.6104.6 0.840.84 4.24.2
제조예2-1((250×250×1(T)mm3)Preparation Example 2-1 ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 90.590.5 0.740.74 4.14.1
제조예2-2((250×250×1(T)mm3)Preparation Example 2-2 ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 85.685.6 0.700.70 4.14.1
제조예2-3((250×250×1(T)mm3)Preparation Example 2-3 ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 86.886.8 0.690.69 3.83.8
제조예2-4((250×250×1(T)mm3)Preparation Example 2-4 ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 85.985.9 0.690.69 3.93.9
제조예3-1((250×250×1(T)mm3)Preparation Example 3-1 ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 88.488.4 0.700.70 4.04.0
제조예3-2((250×250×1(T)mm3)Manufacturing Example 3-2 ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 89.489.4 0.710.71 4.04.0
제조예3-3((250×250×1(T)mm3)Manufacturing Example 3-3 ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 88.288.2 0.700.70 4.04.0
제조예3-4((250×250×1(T)mm3)Manufacturing Example 3-4 ((250 × 250 × 1 (T) mm 3 ) 125.2125.2 89.889.8 0.720.72 4.04.0
시료구분Sample classification 시료가 없는 경우의 선량률(mGy/h), CoDose rate without sample (mGy / h), Co 시료가 있는 경우의 선량률(mGy/h), CiDose rate with sample (mGy / h), Ci 감쇠율(Ci/Co)Attenuation Ratio (Ci / Co) 불확도(%)% Uncertainty
비교예((250×250×1(T)mm3)Comparative Example ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 355.6355.6 0.920.92 6.06.0
제조예2-1((250×250×1(T)mm3)Preparation Example 2-1 ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 305.5305.5 0.790.79 6.26.2
제조예2-2((250×250×1(T)mm3)Preparation Example 2-2 ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 310.4310.4 0.810.81 5.85.8
제조예2-3((250×250×1(T)mm3)Preparation Example 2-3 ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 303.6303.6 0.790.79 5.85.8
제조예2-4((250×250×1(T)mm3)Preparation Example 2-4 ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 322.4322.4 0.830.83 5.65.6
제조예3-1((250×250×1(T)mm3)Preparation Example 3-1 ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 308.9308.9 0.800.80 5.85.8
제조예3-2((250×250×1(T)mm3)Manufacturing Example 3-2 ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 313.7313.7 0.810.81 5.65.6
제조예3-3((250×250×1(T)mm3)Manufacturing Example 3-3 ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 314.7314.7 0.810.81 5.65.6
제조예3-4((250×250×1(T)mm3)Manufacturing Example 3-4 ((250 × 250 × 1 (T) mm 3 ) 384.8384.8 318.7318.7 0.830.83 5.65.6
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다.그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it is to be understood that the embodiments described above are illustrative in all respects and are not restrictive. The components present can also be implemented in a combined form.

Claims (6)

  1. C, Si 및 Ge 중에서 선택된 하나 이상의 원소와 B 의 합금으로 이루어진 방사능 차폐용 탄소족-보론 비산화물 나노입자.A carbon group-boron non-oxide nanoparticle for radioactive shielding, comprising an alloy of B with at least one element selected from C, Si, and Ge.
  2. 제1항에 있어서,The method of claim 1,
    상기 탄소족-보론 비산화물 나노입자의 입도는 5 내지 400 nm인, 방사능 차폐재 조성물.The particle size of the carbon-boron non-oxide nanoparticles is 5 to 400 nm, the radiation shielding composition.
  3. C, Si 및 Ge 중에서 선택된 하나 이상의 원소와 B 의 합금으로 이루어진 방사능 차폐용 탄소족-보론 비산화물 나노입자, 및 바인더 수지를 포함하는, 방사능 차폐재 조성물.A radiation shielding composition comprising carbon group-boron non-oxide nanoparticles for radiation shielding, comprising a alloy of B and at least one element selected from C, Si, and Ge.
  4. 제3항에 있어서,The method of claim 3,
    상기 바인더 수지는 저밀도폴리에틸렌(lowdensity polyethylene, LDPE), 고밀도폴리에틸렌(highdensity polyethylene, HDPE), 폴리비닐알콜(polyvinylalcohol, PVA), PET(polyethylene terephthalate), EPM(copolymer of ethylene and propylene), 폴리우레탄(polyurethane), 폴리우레아(polyurea), 실리콘수지(silicon resin),에폭시수지(epoxy resin) 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나인, 방사능 차폐재 조성물.The binder resin is low density polyethylene (LDPE), high density polyethylene (HDPE), polyvinyl alcohol (polyvinylalcohol, PVA), PET (polyethylene terephthalate), EPM (copolymer of ethylene and propylene), polyurethane (polyurethane) ), Polyurea, silicone resin, epoxy resin and one or more selected from the group consisting of a mixture of two or more, the radiation shielding composition.
  5. 제3항에 있어서,The method of claim 3,
    상기 방사능 차폐재 조성물은 알칼리토금속 화합물, 전기석(tourmaline), 금속, 전이금속, 란탄족, 악티늄족 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나를 더 포함하는, 방사능 차폐재 조성물.The radiation shielding composition further comprises one selected from the group consisting of alkaline earth metal compounds, tourmaline, metals, transition metals, lanthanides, actinides and mixtures of two or more thereof.
  6. C, Si 및 Ge 중에서 선택된 하나 이상의 원소와 B 의 합금으로 이루어진 탄소족-보론 비산화물 나노입자를 제조하는 단계; 및Preparing carbon-boron non-oxide nanoparticles composed of an alloy of B and at least one element selected from C, Si, and Ge; And
    상기 탄소족-보론 비산화물 나노입자, 액상의 바인더 수지 및 수지 경화재를 혼합하는 단계를 포함하는, 방사능 차폐재 조성물의 제조방법. Comprising the step of mixing the carbon-boron non-oxide nanoparticles, a liquid binder resin and a resin cured material, a method of producing a radiation shielding composition.
PCT/KR2017/009286 2016-08-24 2017-08-24 Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising same, and manufacturing method thereof WO2018038564A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160107746 2016-08-24
KR10-2016-0107746 2016-08-24
KR10-2017-0051688 2017-04-21
KR1020170051688A KR20180022541A (en) 2016-08-24 2017-04-21 Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising the same and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2018038564A1 true WO2018038564A1 (en) 2018-03-01

Family

ID=61246137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009286 WO2018038564A1 (en) 2016-08-24 2017-08-24 Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising same, and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2018038564A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310929A (en) * 2000-04-28 2001-11-06 Sanoya Sangyo Kk Epoxy resin composition capable of shielding neutron and transparent shielding moldings made of the cured epoxy resin composition
US20100263766A1 (en) * 2009-04-20 2010-10-21 Cheng Kiong Saw Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys
US20110203704A1 (en) * 2007-04-06 2011-08-25 California Institute Of Technology Bulk metallic glass matrix composites
KR20140070639A (en) * 2011-09-29 2014-06-10 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Radiation shielding structures
KR20140139867A (en) * 2013-05-28 2014-12-08 (주)동원엔텍 Radiation shielding meterial including tungsten or boron nano-particles and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310929A (en) * 2000-04-28 2001-11-06 Sanoya Sangyo Kk Epoxy resin composition capable of shielding neutron and transparent shielding moldings made of the cured epoxy resin composition
US20110203704A1 (en) * 2007-04-06 2011-08-25 California Institute Of Technology Bulk metallic glass matrix composites
US20100263766A1 (en) * 2009-04-20 2010-10-21 Cheng Kiong Saw Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys
KR20140070639A (en) * 2011-09-29 2014-06-10 크루서블 인텔렉츄얼 프라퍼티 엘엘씨. Radiation shielding structures
KR20140139867A (en) * 2013-05-28 2014-12-08 (주)동원엔텍 Radiation shielding meterial including tungsten or boron nano-particles and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1581586B1 (en) Functionalized carbon nanotube-polymer composites and interactions with radiation
KR20130114583A (en) Boron nitride and boron nitride nanotube materials for radiation shielding
TW201432714A (en) Radiation absorbing material and method for manufacturing the same and radiation shielding composite material and method for manufacturing the same
US9359479B2 (en) Methods of using boron-containing additives as silicon carbide crosslinking agents
KR20180022541A (en) Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising the same and manufacturing method thereof
He et al. Complete‐lifecycle‐available, lightweight and flexible hierarchical structured Bi2WO6/WO3/PAN nanofibrous membrane for X‐Ray shielding and photocatalytic degradation
WO2018038564A1 (en) Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising same, and manufacturing method thereof
Abdolahzadeh et al. Preparation and characterization of nano WO3/Bi2O3/GO and BaSO4/GO dispersed HDPE composites for X-ray shielding application
EP2899176A1 (en) Ceramic structure
WO2018038566A1 (en) Radiation shielding composition comprising boron nanoparticles, and manufacturing method thereof
Cui et al. Crystal plane engineering of MAPbI 3 in epoxy-based materials for superior gamma-ray shielding performance
JP2019206455A (en) Hexagonal crystal boron nitride powder and method for producing the same
Dag et al. Germanium nanoclusters: Chemical vapor deposition of digermane in zeolite Y and mordenite
CA2974590A1 (en) Alpha/beta radiation shielding materials
KR102114825B1 (en) Method of manufacturing composite material for nuclear radiation shielding
KR102559070B1 (en) Sealant Composition with Radiation Shielding Function, and Method for Manufacturing the Same
KR20200016697A (en) Radiation shielding composition comprising boron nanoparticles and method for producing the same
WO2022139258A1 (en) Method for manufacturing plastic-based radiation-shielding body, radiation-shielding body thereof, and radiation shielding apparatus using same
KR20190075006A (en) A radiation shielding compositioncomprisingcarbon group non-oxide nanoparticles and manufacturing method thereof
CN87107407A (en) The treatment process of the by product that produces during irradiation ammonification waste gas
Bukhvalova et al. Bismuth and thorium fluorides as efficient X-ray radiation shielding materials
Cui et al. Construction of MAPbBr3/EP composites with blocking path for high-performance gamma-rays shielding
KR20200016699A (en) An electromagnetic wave shielding composition comprising carbon group non-oxide nanoparticles
WO2018147684A1 (en) Ultraviolet-barrier material composition comprising carbon group non-oxide nanoparticles and method for producing same
Xu et al. DLP–printable hyperbranched polyborosilazane for microwave absorbing SiBCN (O) ceramic metastructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843984

Country of ref document: EP

Kind code of ref document: A1