WO2018147684A1 - Ultraviolet-barrier material composition comprising carbon group non-oxide nanoparticles and method for producing same - Google Patents

Ultraviolet-barrier material composition comprising carbon group non-oxide nanoparticles and method for producing same Download PDF

Info

Publication number
WO2018147684A1
WO2018147684A1 PCT/KR2018/001765 KR2018001765W WO2018147684A1 WO 2018147684 A1 WO2018147684 A1 WO 2018147684A1 KR 2018001765 W KR2018001765 W KR 2018001765W WO 2018147684 A1 WO2018147684 A1 WO 2018147684A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon group
group
nanoparticles
oxide nanoparticles
sunscreen composition
Prior art date
Application number
PCT/KR2018/001765
Other languages
French (fr)
Korean (ko)
Inventor
조원일
Original Assignee
주식회사 쇼나노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180015312A external-priority patent/KR102099428B1/en
Application filed by 주식회사 쇼나노 filed Critical 주식회사 쇼나노
Publication of WO2018147684A1 publication Critical patent/WO2018147684A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to a sunscreen composition comprising a carbon group non-oxide nanoparticles and a method for producing the same, and more particularly to a sunscreen composition comprising a multi-component carbon-based nonoxide nanoparticles and a method for producing the same.
  • UV rays emitted from sunlight are the main causes of erythema, edema, freckles, and skin cancer. Recently, many studies on various skin diseases caused by ultraviolet rays have been actively conducted, and many therapeutic measures have been proposed to protect the skin from such ultraviolet rays.
  • ultraviolet rays are a kind of sunlight rays, the wavelength of 200nm ⁇ 400nm, especially ultraviolet rays from sunlight passing through the upper atmosphere to reach the surface of the earth can be classified as ultraviolet A, ultraviolet B, ultraviolet C.
  • Ultraviolet A has a wavelength of 320 ⁇ 400nm and transmits to the dermis of the skin, causing skin cancer and skin aging.UVB is absorbed just above the dermis with ultraviolet rays of 290 ⁇ 320nm, and sunburn and inflammation ). In addition, ultraviolet C is deadly to life with a wavelength of 200-290 nm, but is completely absorbed by the ozone layer. In order to block ultraviolet rays, inorganic ultraviolet scattering agents and organic ultraviolet absorbers have been used.
  • the organic UV absorber mainly absorbs ultraviolet B, which is a medium wavelength, and converts it into energy to protect the skin.
  • the inorganic UV scattering agent scatters ultraviolet rays by refracting UVA, which is mainly a long wavelength, by an inorganic material.
  • the amount of organic UV absorbers is limited due to the toxicity of organic substances. Because of this, the use of inorganic ultraviolet scattering agent is the main, titanium dioxide and zinc oxide are typically used.
  • the surface area increases while the ratio of atoms constituting the surface to the atoms present in the particles increases, so that the blocking rate of ultraviolet rays increases.
  • the particle size is reduced to nanoscale, there is a potential risk that the free radicals on the surface will adversely affect the cells or penetrate the central nervous system.
  • the present invention is to solve the above-mentioned problems of the prior art, an object of the present invention is to provide a sunscreen composition which is economically advantageous with excellent UV blocking performance and a simple manufacturing process.
  • One aspect of the present invention provides a sunscreen composition
  • a sunscreen composition comprising a carbon group non-oxide nanoparticles having an average particle size of 5 ⁇ 400nm and consisting of Si or Ge, and a binder resin.
  • Another aspect of the present invention provides a sunscreen composition having an average particle size of 5 to 400nm, comprising carbon group non-oxide nanoparticles composed of two elements of Si, Ge, and B, and a binder resin.
  • Another aspect of the present invention provides a sunscreen composition having an average particle size of 5 to 400nm, comprising carbon group non-oxide nanoparticles made of SiGeB or SiGeC, and a binder resin.
  • Another aspect of the present invention is to prepare a carbon group non-oxide nanoparticles having an average particle size of 5 ⁇ 400nm and made of Si or Ge, made of two elements of Si, Ge and B, or made of SiGeB or SiGeC ; Adding the carbon group non-oxide nanoparticles to a solvent and irradiating ultrasonic waves to prepare a carbon group nanoparticle solution; And diluting the carbon group nanoparticle solution in the solvent or binder resin solution.
  • carbon group non-oxide nanoparticle means a particle including at least one carbon group (Group 14) element of C, Si, or Ge, and heterogeneous carbon group elements are alloyed or at least one. It may be understood as a concept including particles in which boron (B) is alloyed with a carbon group element of.
  • non-oxide nanoparticle means a particle substantially free of an oxygen element (O), the oxide layer (oxide) generated on the surface of the non-oxide nanoparticles by a naturally occurring oxidation reaction (oxide) It can be understood as a concept including a layer).
  • O oxygen element
  • oxide layer oxide layer
  • the carbon group non-oxide nanoparticles in the sunscreen composition may be included in the form of a solution diluted to a concentration of 1 ⁇ 5,000ppm.
  • silicon-boron alloy nanoparticles for example, among the carbon group non-oxide nanoparticles, silicon-boron alloy nanoparticles, silicon-germanium-boron alloy nanoparticles, silicon-germanium-carbon alloy nanoparticles, and silicon-germanium alloy nanoparticles block ultraviolet rays (UV).
  • UV ultraviolet rays
  • the sunscreen composition can exert an excellent sunscreen effect and is harmless to the human body, and can be applied to various fields such as UV blocking film, lens, and fiber as well as cosmetics that contact skin. Can be.
  • it has excellent antibacterial / sterilization function, air purification function, and deodorization function, and has been applied to various fields.
  • the binder resin is low density polyethylene (LDPE), high density polyethylene (HDPE), polyvinyl alcohol (polyvinylalcohol, PVA), polyester (polyester), copolymer of ethylene and propylene (EPM), polyurethane (polyurethan) ), Polyurea, silicone resin, sillicon resin, epoxy resin, acrylic resin, alkyd resin and mixtures of two or more thereof, and preferably It may be, but is not limited to, polyurethane.
  • the polyurethane may be synthesized using a polyol and a (poly) isocyanate as a precursor, wherein the polyol is a group consisting of polycarbonate-based, polyester-based, polyacrylate-based, polyalkylene-based and mixtures of two or more thereof It may be one selected from.
  • the weight average molecular weight (Mw) of the polyol may be 50 to 5,000.
  • the polyol may include a low molecular weight crosslinking agent having a weight average molecular weight (Mw) of 20 to 500 up to 45% by weight.
  • the said polyester refers to the polyester obtained by polycondensing aromatic dicarboxylic acid and aliphatic glycol.
  • Typical polyesters include polyethylene terephthalate (PET), polyethylene-2,6-naphthalenedicarboxylate (PEN), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalenedicarboxylate
  • the polyester may also be a copolymer containing a third component.
  • the dicarboxylic acid component of the copolymerized polyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, P-oxybenzoic acid and the like).
  • glycol component ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentylglycol, etc. are mentioned as a glycol component.
  • the dicarboxylic acid component and glycol component may use 2 or more types together.
  • the sunscreen composition may include 5 to 2000ppm of the carbon group non-oxide nanoparticles based on 100 parts by weight of the binder resin.
  • the carbon group non-oxide nanoparticles may be surface-modified by one selected from the group consisting of alkoxy groups, hydroxyl groups, amino groups and combinations thereof.
  • the sunscreen composition according to an aspect of the present invention is excellent in the UV blocking performance by controlling the particle size and content of the carbon group non-oxide nanoparticles in a certain range, it is advantageous in terms of productivity and economics because the manufacturing process is simple.
  • Silicon nanoparticles can be prepared according to (1) or (2) in Scheme 1 below.
  • the internal pressure is supplied into the reaction chamber with 500torr, and the laser generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber in the form of a line beam of continuous wave having a wavelength of 10.6 ⁇ m through the laser irradiation unit. Irradiation for a time to produce a silicon nanoparticles (Si-NPs) in which the oxide layer was formed.
  • the average particle size of the silicon nanoparticles on which the oxide layer was formed was 5 to 400 nm, the thickness of the oxide layer was 0.32 nm, and the yield was 97.1%.
  • Germanium nanoparticles can be prepared according to (1) or (2) in Scheme 2 below.
  • a mixed gas containing 100 parts of Germain (GeH 4 ) source gas, 400 parts of hydrogen (H 2 ) control gas and 40 parts of sulfur hexafluoride (SF 6 ) catalyst gas is mixed. It is supplied into the reaction chamber with a pressure of 500torr, and the laser generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber in the form of a continuous beam line beam having a wavelength of 10.6 ⁇ m through the laser irradiation unit for 3 hours.
  • germanium nanoparticles (Ge-NPs) in which an oxide layer was formed were prepared.
  • the average particle size of the germanium nanoparticles having the prepared oxide layer is 5 to 400 nm, the thickness of the oxide layer is 0.47 nm, and the yield is 98.7%.
  • Silicon-germanium alloy nanoparticles can be prepared according to (1) or (2) in Scheme 3 below.
  • SiGe-NPs silicon-germanium alloy nanoparticles
  • Silicon-boron alloy nanoparticles or silicon boride nanoparticles may be prepared according to Scheme 4 below.
  • Monosilane (SiH 4 ), diborane (B 2 H 6 ), and nitrogen are mixed and injected into the reaction chamber to irradiate a CO 2 laser beam.
  • the diborane acts as a catalyst gas and a source gas, the energy absorbed at 10.6 ⁇ m wavelength is efficiently transferred to the monosilane, and the Si-H bond of the monosilane is well broken, so that the silicon-boron alloy nanoparticles (SiBx -NPs).
  • diborane is decomposed into boron and hydrogen atoms, boron alloys with silicon nanoparticles, and prevents oxidation of silicon.
  • Monosilane as a source gas is 90% or more of the total volume (volume of the raw material gas and the catalyst gas combined), and the catalyst gas is adjusted to the range of 10% or less of the total volume.
  • the carrier gas nitrogen is not more than 400 parts by volume compared to the source gas monosilane.
  • the flow rate of gas is in sccm.
  • Process pressure inside the reaction chamber is prepared by setting in the range of 100 ⁇ 400torr. In this range, silicon-boron alloy nanoparticles (SiBx-NPs) having an average particle size of 5 to 400 nm and an oxide layer thickness of 0.57 nm are prepared.
  • Silicon-germanium-boron alloy nanoparticles can be prepared according to Scheme 5 below.
  • SiH 4 monosilane
  • GeH 4 germane
  • B 2 H 6 diborane
  • a mixed gas containing 400 parts of volume is supplied into a reaction chamber having an internal pressure of 80 to 400 torr, and a laser generated by a CO 2 laser generator to a mixed gas supplied into the reaction chamber has a wavelength of 10.6 ⁇ m.
  • the average particle size of SiGeB-NPs is 5 to 400 nm, and the thickness of the oxide layer formed on the surface thereof is 0.75 nm.
  • Silicon-germanium-carbon alloy nanoparticles may be prepared according to Scheme 6 below.
  • Germanium-boron alloy nanoparticles or germanium boride nanoparticles may be prepared according to Scheme 8 below.
  • a mixed gas obtained by mixing 100 parts of germane (GeH 4 ), diborane (B 2 H 6 ), 40-80 parts, and 400 parts of nitrogen (N 2 ), carrier gas is mixed.
  • the internal pressure is supplied into the reaction chamber of 100 to 400 torr, and the laser generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber in the form of a continuous beam line beam having a wavelength of 10.6 ⁇ m through the irradiation unit. Irradiation for 3 hours to prepare germanium-boron alloy nanoparticles (GeBx-NPs).
  • the particle size of GeBx-NPs is 5-400 nm, and the thickness of the oxide layer formed on the surface is 0.52 nm.
  • the concentration when the concentration is 1 ppm or less, UV absorption hardly occurs, and when the concentration is 5000 ppm or more, the viscosity becomes too large and film coating becomes difficult.
  • the nanoparticle concentration in the sunscreen composition according to the embodiment of the present invention is 1 to 5000 ppm, preferably 5 to 2000 ppm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

An embodiment of the present invention provides an ultraviolet-barrier material composition comprising carbon group non-oxide nanoparticles having an average particle size of 5 to 400 nm and made of Si or Ge, and a binder resin.

Description

탄소족 비산화물 나노입자를 포함하는 자외선 차단재 조성물 및 그 제조 방법A sunscreen composition comprising carbon group non-oxide nanoparticles and a method of manufacturing the same
본 발명은 탄소족 비산화물 나노입자를 포함하는 자외선 차단재 조성물 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 다성분계 탄소족 비산화물 나노입자를 포함하는 자외선 차단재 조성물 및 그 제조 방법에 관한 것이다.The present invention relates to a sunscreen composition comprising a carbon group non-oxide nanoparticles and a method for producing the same, and more particularly to a sunscreen composition comprising a multi-component carbon-based nonoxide nanoparticles and a method for producing the same.
태양광으로부터 조사되는 자외선은 피부에 홍반이나 부종, 주근깨, 피부암 등을 일으키는 주요 원인이 되고 있다. 최근 자외선에 인한 여러가지 피부질병들에 대한 많은 연구가 활발히 진행되고 있으며, 이러한 자외선으로부터 피부를 보호하기 위해 많은 치료 수단이 제안되어 왔다.Ultraviolet rays emitted from sunlight are the main causes of erythema, edema, freckles, and skin cancer. Recently, many studies on various skin diseases caused by ultraviolet rays have been actively conducted, and many therapeutic measures have been proposed to protect the skin from such ultraviolet rays.
일반적으로, 자외선은 태양광선의 일종으로 200nm~400nm 파장의 광선으로, 특히 상층 대기권을 통과하여 지구 표면에 도달하는 햇빛으로부터 나오는 자외선들은 자외선 A, 자외선 B, 자외선 C로 분류될 수 있다.In general, ultraviolet rays are a kind of sunlight rays, the wavelength of 200nm ~ 400nm, especially ultraviolet rays from sunlight passing through the upper atmosphere to reach the surface of the earth can be classified as ultraviolet A, ultraviolet B, ultraviolet C.
자외선 A는 320~400nm 파장을 가지며 피부의 진피층까지 투과하여 피부암, 피부노화를 유발하고, 자외선 B는 290~320nm 파장의 자외선으로 진피층 바로 위까지 흡수되며, 일광화상(sunburn)과 염증반응(inflammation)을 일으킨다. 또한, 자외선 C는 200~290nm 파장으로 생명체에 치명적이지만 오존층에서 완전하게 흡수된다. 자외선을 차단하기 위해서 무기계 자외선 산란제와 유기계의 자외선 흡수제 등이 사용되어왔다. Ultraviolet A has a wavelength of 320 ~ 400nm and transmits to the dermis of the skin, causing skin cancer and skin aging.UVB is absorbed just above the dermis with ultraviolet rays of 290 ~ 320nm, and sunburn and inflammation ). In addition, ultraviolet C is deadly to life with a wavelength of 200-290 nm, but is completely absorbed by the ozone layer. In order to block ultraviolet rays, inorganic ultraviolet scattering agents and organic ultraviolet absorbers have been used.
유기계 자외선 흡수제는 주로 중파장인 자외선B를 흡수하고, 에너지로 변환시켜 피부를 보호하고 무기계 자외선 산란제는 주로 장파장인 자외선A를 무기물에 의해 굴절시켜 자외선을 산란시킨다. 하지만 유기계 자외선 흡수제는 유기물질이 가지고 있는 독성에 의해서 그 사용량이 제한적이다. 이로 인해 무기계 자외선 산란제의 사용이 주를 이루며, 이산화티탄과 산화아연이 대표적으로 사용되고 있다.The organic UV absorber mainly absorbs ultraviolet B, which is a medium wavelength, and converts it into energy to protect the skin. The inorganic UV scattering agent scatters ultraviolet rays by refracting UVA, which is mainly a long wavelength, by an inorganic material. However, the amount of organic UV absorbers is limited due to the toxicity of organic substances. Because of this, the use of inorganic ultraviolet scattering agent is the main, titanium dioxide and zinc oxide are typically used.
이산화티탄의 입자 크기가 작아질수록 입자 내부에 존재하는 원자 대비 표면을 구성하는 원자의 비율이 증가하면서 표면적은 늘어나게 되므로, 자외선의 차단율은 증가하게 된다. 하지만 입자의 크기가 나노 수준으로 작아지게 되면 표면의 활성산소에 의해서 세포에 악영향을 끼치거나 중추신경계에까지 침투할 잠재적 위험성이 존재한다. As the particle size of titanium dioxide decreases, the surface area increases while the ratio of atoms constituting the surface to the atoms present in the particles increases, so that the blocking rate of ultraviolet rays increases. However, if the particle size is reduced to nanoscale, there is a potential risk that the free radicals on the surface will adversely affect the cells or penetrate the central nervous system.
이에, 자외선 차단 특성이 우수하면서도 합리적인 비용 및 인체에 무해한 자외선 차단재 조성물의 연구가 지속적으로 필요한 실정이다.Therefore, there is a continuing need for research of a sunscreen composition having excellent UV protection properties and reasonable cost and harmless to a human body.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 자외선 차단성능이 우수하고 제조공정이 간소하여 경제적으로 유리한 자외선 차단재 조성물을 제공하는 것이다.The present invention is to solve the above-mentioned problems of the prior art, an object of the present invention is to provide a sunscreen composition which is economically advantageous with excellent UV blocking performance and a simple manufacturing process.
본 발명의 일 측면은 평균 입도가 5~400nm이고 Si 또는 Ge 로 이루어지는 탄소족 비산화물 나노입자, 및 바인더 수지를 포함하는 자외선 차단재 조성물을 제공한다. One aspect of the present invention provides a sunscreen composition comprising a carbon group non-oxide nanoparticles having an average particle size of 5 ~ 400nm and consisting of Si or Ge, and a binder resin.
본 발명의 다른 일 측면은 평균 입도가 5~400nm이고, Si, Ge 및 B 중 2개의 원소로 이루어지는 탄소족 비산화물 나노입자, 및 바인더 수지를 포함하는 자외선 차단재 조성물을 제공한다. Another aspect of the present invention provides a sunscreen composition having an average particle size of 5 to 400nm, comprising carbon group non-oxide nanoparticles composed of two elements of Si, Ge, and B, and a binder resin.
본 발명의 또 다른 일 측면은 평균 입도가 5~400nm이고, SiGeB 또는 SiGeC로 이루어지는 탄소족 비산화물 나노입자, 및 바인더 수지를 포함하는 자외선 차단재 조성물을 제공한다. Another aspect of the present invention provides a sunscreen composition having an average particle size of 5 to 400nm, comprising carbon group non-oxide nanoparticles made of SiGeB or SiGeC, and a binder resin.
본 발명의 또 다른 일 측면은 평균 입도가 5~400nm이고 Si 또는 Ge 로 이루어지거나, Si, Ge 및 B 중 2개의 원소로 이루어지거나, SiGeB 또는 SiGeC로 이루어지는 탄소족 비산화물 나노입자를 제조하는 단계; 상기 탄소족 비산화물 나노입자를 용매에 가하고 초음파를 조사하여 탄소족나노입자 용액을 제조하는 단계; 및 상기 탄소족 나노입자 용액을 상기 용매 또는 바인더 수지액에 희석시키는 단계를 포함하는, 자외선 차단재 조성물 제조 방법을 제공한다. Another aspect of the present invention is to prepare a carbon group non-oxide nanoparticles having an average particle size of 5 ~ 400nm and made of Si or Ge, made of two elements of Si, Ge and B, or made of SiGeB or SiGeC ; Adding the carbon group non-oxide nanoparticles to a solvent and irradiating ultrasonic waves to prepare a carbon group nanoparticle solution; And diluting the carbon group nanoparticle solution in the solvent or binder resin solution.
본 명세서에 사용된 용어, "탄소족 비산화물 나노입자"는 C, Si, Ge 중 적어도 하나의 탄소족(14족) 원소를 포함하는 입자를 의미이며, 이종의 탄소족 원소가 합금되거나 적어도 하나의 탄소족 원소에 붕소(B)가 합금된 입자를 포함하는 개념으로 이해될 수 있다.As used herein, the term "carbon group non-oxide nanoparticle" means a particle including at least one carbon group (Group 14) element of C, Si, or Ge, and heterogeneous carbon group elements are alloyed or at least one. It may be understood as a concept including particles in which boron (B) is alloyed with a carbon group element of.
본 명세서에 사용된 용어, "비산화물 나노입자"는 실질적으로 산소 원소(O)를 포함하지 않는 입자를 의미하며, 자연적으로 발생한 산화반응에 의해 비산화물 나노입자의 표면에 생성된 산화물 층(oxide layer)을 포함하는 개념으로 이해될 수 있다.As used herein, the term "non-oxide nanoparticle" means a particle substantially free of an oxygen element (O), the oxide layer (oxide) generated on the surface of the non-oxide nanoparticles by a naturally occurring oxidation reaction (oxide) It can be understood as a concept including a layer).
상기 자외선 차단재 조성물에서 상기 탄소족 비산화물 나노입자는 1~5,000ppm의 농도로 희석된 용액의 형태로 포함될 수 있다.The carbon group non-oxide nanoparticles in the sunscreen composition may be included in the form of a solution diluted to a concentration of 1 ~ 5,000ppm.
예를 들어, 상기 탄소족 비산화물 나노입자 중 실리콘-붕소 합금 나노입자, 실리콘-게르마늄-붕소 합금 나노입자, 실리콘-게르마늄-탄소 합금 나노입자, 실리콘-게르마늄 합금 나노입자는 자외선(UV)를 차단하는 성질이 있어 상기 자외선 차단재 조성물에 포함시키는 경우 뛰어난 자외선 차단효과를 발휘할 수 있고 인체에 무해하여 UV차단크림 같은 피부에 접촉하는 화장품뿐만 아니라 UV차단기능의 필름, 렌즈, 섬유 등 다양한 분야에 응용될 수 있다. 이 외에도 항균/살균기능, 공기정화기능, 및 탈취기능이 뛰어나 다양한 분야에 응용되고 있다. For example, among the carbon group non-oxide nanoparticles, silicon-boron alloy nanoparticles, silicon-germanium-boron alloy nanoparticles, silicon-germanium-carbon alloy nanoparticles, and silicon-germanium alloy nanoparticles block ultraviolet rays (UV). When it is included in the sunscreen composition, it can exert an excellent sunscreen effect and is harmless to the human body, and can be applied to various fields such as UV blocking film, lens, and fiber as well as cosmetics that contact skin. Can be. In addition, it has excellent antibacterial / sterilization function, air purification function, and deodorization function, and has been applied to various fields.
상기 바인더 수지는 저밀도폴리에틸렌(lowdensity polyethylene, LDPE), 고밀도폴리에틸렌(highdensity polyethylene, HDPE), 폴리비닐알콜(polyvinylalcohol, PVA), 폴리에스테르(polyester), EPM(copolymer of ethylene and propylene), 폴리우레탄(polyurethan), 폴리우레아(polyurea), 실리콘 수지(sillicon resin), 에폭시 수지(epoxy resin), 아크릴 수지(acrylic resin), 알키드 수지 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있고, 바람직하게는, 폴리우레탄일 수 있으나, 이에 한정되는 것은 아니다.The binder resin is low density polyethylene (LDPE), high density polyethylene (HDPE), polyvinyl alcohol (polyvinylalcohol, PVA), polyester (polyester), copolymer of ethylene and propylene (EPM), polyurethane (polyurethan) ), Polyurea, silicone resin, sillicon resin, epoxy resin, acrylic resin, alkyd resin and mixtures of two or more thereof, and preferably It may be, but is not limited to, polyurethane.
상기 폴리우레탄은 폴리올 및 (폴리)이소시아네이트를 전구물질로 하여 합성될 수 있으며, 이 때, 폴리올은 폴리카보네이트계, 폴리에스테르계, 폴리아크릴레이트계, 폴리알킬렌계 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있다. 상기 폴리올의 중량평균분자량(Mw)은 50~5,000일 수 있다. 또한, 상기 폴리올은 중량평균분자량(Mw) 20~500인 저분자 가교제를 45중량% 이하로 포함할 수 있다. The polyurethane may be synthesized using a polyol and a (poly) isocyanate as a precursor, wherein the polyol is a group consisting of polycarbonate-based, polyester-based, polyacrylate-based, polyalkylene-based and mixtures of two or more thereof It may be one selected from. The weight average molecular weight (Mw) of the polyol may be 50 to 5,000. In addition, the polyol may include a low molecular weight crosslinking agent having a weight average molecular weight (Mw) of 20 to 500 up to 45% by weight.
상기 폴리에스테르는, 방향족 디카르복실산과 지방족 글리콜을 중축합시켜 얻은 폴리에스테르를 가리킨다. 대표적인 폴리에스테르로서는 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌-2,6-나트탈렌디카르복실레이트(PEN) 등이 있다. 상기 폴리에스테르는 제 3성분을 함유한 공중합체도 가능하다. 상기 공중합 폴리에스테르의 디카르복실산 성분으로서는, 이소프탈산, 프탈산, 테레프탈산, 2,6-나프탈렌디카르복실산, 아디프산, 세바스산, 옥시카르복실산(예를 들어, P-옥시벤조산 등)을 들 수 있고, 글리콜 성분으로서 에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜, 부탄디올, 1,4-시클로헥산디메탄올, 네오펜틸글리콜 등을 들 수 있다. 상기 디카르복실산 성분 및 글리콜 성분은 2종 이상을 병용해도 무방하다.The said polyester refers to the polyester obtained by polycondensing aromatic dicarboxylic acid and aliphatic glycol. Typical polyesters include polyethylene terephthalate (PET), polyethylene-2,6-naphthalenedicarboxylate (PEN), and the like. The polyester may also be a copolymer containing a third component. Examples of the dicarboxylic acid component of the copolymerized polyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, P-oxybenzoic acid and the like). ) And ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentylglycol, etc. are mentioned as a glycol component. The dicarboxylic acid component and glycol component may use 2 or more types together.
일 실시예에 있어서, 상기 자외선 차단재 조성물은 상기 바인더 수지 100중량부에 대해 상기 탄소족 비산화물 나노입자 5~2000ppm을 포함할 수 있다.In one embodiment, the sunscreen composition may include 5 to 2000ppm of the carbon group non-oxide nanoparticles based on 100 parts by weight of the binder resin.
일 실시예에 있어서, 상기 탄소족 비산화물 나노입자는 알콕시기, 하이드록실기, 아미노기 및 이들의 조합으로 이루어진 군에서 선택된 하나에 의해 표면 개질된 것일 수 있다.In one embodiment, the carbon group non-oxide nanoparticles may be surface-modified by one selected from the group consisting of alkoxy groups, hydroxyl groups, amino groups and combinations thereof.
본 발명의 일 측면에 따른 자외선 차단재 조성물은, 탄소족 비산화물 나노입자의 입도 및 함량을 일정 범위로 조절함으로써 자외선 차단성능이 우수하고, 제조공정이 간소하여 생산성, 경제성 측면에서 유리하다.The sunscreen composition according to an aspect of the present invention is excellent in the UV blocking performance by controlling the particle size and content of the carbon group non-oxide nanoparticles in a certain range, it is advantageous in terms of productivity and economics because the manufacturing process is simple.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It is to be understood that the effects of the present invention are not limited to the above effects, and include all effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is "connected" to another part, it includes not only "directly connected" but also "indirectly connected" with another member in between. . In addition, when a part is said to "include" a certain component, this means that it may further include other components, without excluding the other components unless otherwise stated.
이하, 본 발명의 실시예에 관하여 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail.
실시예 1Example 1
실리콘 나노입자는 하기 반응식 1 중 (1) 또는 (2)에 따라 제조될 수 있다.Silicon nanoparticles can be prepared according to (1) or (2) in Scheme 1 below.
<반응식 1><Scheme 1>
(1) SiH4+SF6+N2 → Si(-S,-F)+H2+N2 (1) SiH 4 + SF 6 + N 2 → Si (-S, -F) + H 2 + N 2
(2) SiH4+N2→ Si + 2H2+N2 (2) SiH 4 + N 2 → Si + 2H 2 + N 2
원료가스 공급노즐을 통해 원료가스인 모노실란(SiH4) 100부피부, 제어가스인 질소(N2) 400부피부, 및 육불화황(SF6)촉매가스 40부피부를 혼합한 혼합가스를 내부 압력이 500torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 레이저 조사부를 통해 파장이 10.6㎛인 연속파의 라인 빔(Line Beam) 형태로 3시간 동안 조사하여 산화층이 형성된 실리콘 나노입자(Si-NPs)를 제조하였다.A mixed gas obtained by mixing 100 parts of monosilane (SiH 4 ), 400 parts of nitrogen (N 2 ), and 40 parts of sulfur hexafluoride (SF 6 ) catalyst gas, which is a source gas, is supplied through the source gas supply nozzle. The internal pressure is supplied into the reaction chamber with 500torr, and the laser generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber in the form of a line beam of continuous wave having a wavelength of 10.6㎛ through the laser irradiation unit. Irradiation for a time to produce a silicon nanoparticles (Si-NPs) in which the oxide layer was formed.
산화층이 형성된 실리콘 나노입자의 평균 입도는 5~400nm이고, 산화층의 두께는 0.32nm이며, 생성수율은 97.1%이다.The average particle size of the silicon nanoparticles on which the oxide layer was formed was 5 to 400 nm, the thickness of the oxide layer was 0.32 nm, and the yield was 97.1%.
실시예 2Example 2
게르마늄 나노입자는 하기 반응식 2 중 (1) 또는 (2)에 따라 제조될 수 있다.Germanium nanoparticles can be prepared according to (1) or (2) in Scheme 2 below.
<반응식 2><Scheme 2>
(1) 2GeH4+SF6→ S + 2Ge+6HF+H2 (1) 2GeH 4 + SF 6 → S + 2Ge + 6HF + H 2
(2) GeH4+N2→ 2Ge + 2H2+N2 (2) GeH 4 + N 2 → 2Ge + 2H 2 + N 2
원료가스 공급노즐을 통해 원료가스인 저메인(GeH4) 100부피부, 제어가스인 수소(H2) 400부피부, 및 육불화황(SF6) 촉매가스 40부피부를 혼합한 혼합가스를 내부 압력이 500torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 레이저 조사부를 통해 파장이 10.6㎛인 연속파의 라인 빔(Line Beam) 형태로 3시간 동안 조사하여 산화층이 형성된 게르마늄 나노입자(Ge-NPs)를 제조하였다.Through the source gas supply nozzle, a mixed gas containing 100 parts of Germain (GeH 4 ) source gas, 400 parts of hydrogen (H 2 ) control gas and 40 parts of sulfur hexafluoride (SF 6 ) catalyst gas is mixed. It is supplied into the reaction chamber with a pressure of 500torr, and the laser generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber in the form of a continuous beam line beam having a wavelength of 10.6㎛ through the laser irradiation unit for 3 hours. During irradiation, germanium nanoparticles (Ge-NPs) in which an oxide layer was formed were prepared.
제조된 산화층이 형성된 게르마늄 나노입자의 평균 입도는 5~400nm이고, 산화층의 두께는 0.47nm이며, 생성수율은 98.7%이다.The average particle size of the germanium nanoparticles having the prepared oxide layer is 5 to 400 nm, the thickness of the oxide layer is 0.47 nm, and the yield is 98.7%.
실시예 3Example 3
실리콘-게르마늄 합금 나노입자는 하기 반응식 3 중 (1) 또는 (2)에 따라 제조될 수 있다.Silicon-germanium alloy nanoparticles can be prepared according to (1) or (2) in Scheme 3 below.
<반응식 3><Scheme 3>
(1) SiH4+GeH4+SF6→ S + SiGe + 6HF + H2 (1) SiH 4 + GeH 4 + SF 6 → S + SiGe + 6HF + H 2
(2) SiH4+GeH4→ SiGe + 4H2 (2) SiH 4 + GeH 4 → SiGe + 4H 2
원료가스 공급노즐을 통해 원료가스인 저메인(GeH4) 100부피부(원료가스 1), 모노실란(SiH4) 100부피부(원료가스 2), 및 캐리어 가스인 질소(N2) 400부피부를 혼합한 혼합가스를 내부 압력이 100~500torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 조사부를 통해 파장이 10.6㎛인 연속파의 라인 빔(Line Beam) 형태로 3시간 동안 조사하여 실리콘-게르마늄 합금 나노입자(SiGe-NPs)를 제조하였다. SiGe-NPs의 평균 입도는 5~400nm이고, 그 표면에 형성된 산화층의 두께는 0.47nm이다.100 parts of germane (GeH 4 ) raw material gas (raw material gas 1), 100 parts of monosilane (SiH 4 ) raw material gas (raw material gas 2), and 400 parts of nitrogen (N 2 ) carrier gas through the source gas supply nozzle Is supplied to the inside of the reaction chamber of the internal pressure of 100 ~ 500torr, the continuous gas line beam having a wavelength of 10.6㎛ through the irradiation section of the laser generated by the CO 2 laser generator to the mixed gas supplied into the reaction chamber Irradiation for 3 hours in the form of (Line Beam) to prepare silicon-germanium alloy nanoparticles (SiGe-NPs). The average particle size of SiGe-NPs is 5 to 400 nm, and the thickness of the oxide layer formed on the surface thereof is 0.47 nm.
실시예 4Example 4
실리콘-붕소 합금 나노입자 또는 붕화규소 나노입자는 하기 반응식 4에 따라 제조될 수 있다.Silicon-boron alloy nanoparticles or silicon boride nanoparticles may be prepared according to Scheme 4 below.
<반응식 4><Scheme 4>
2SiH4+2B2H6+N2 → SiB4+8H2+N2 2SiH 4 + 2B 2 H 6 + N 2 → SiB 4 + 8H 2 + N 2
모노실란(SiH4),디보레인(B2H6),질소를 혼합하여 반응챔버 내부로 주입하여 CO2레이저빔을 조사시킨다. 이때, 디보레인은 촉매가스 및 원료가스로 작용하며, 10.6㎛ 파장에서 흡수한 에너지가 효율적으로 모노실란으로 전달되고, 모노실란의 Si-H 결합이 잘 끊어지도록 하여 실리콘-붕소 합금 나노입자(SiBx-NPs)를 생성시킨다.Monosilane (SiH 4 ), diborane (B 2 H 6 ), and nitrogen are mixed and injected into the reaction chamber to irradiate a CO 2 laser beam. At this time, the diborane acts as a catalyst gas and a source gas, the energy absorbed at 10.6㎛ wavelength is efficiently transferred to the monosilane, and the Si-H bond of the monosilane is well broken, so that the silicon-boron alloy nanoparticles (SiBx -NPs).
또한, 디보레인은 붕소와 수소 원자로 분해되어 붕소는 실리콘 나노입자와 합금을 이루며, 실리콘의 산화를 방지한다. 원료가스인 모노실란은 전체 부피(원료가스 및 촉매가스를 합친 부피)의 90%이상 이고, 촉매가스는 전체 부피의 10% 이하의 범위로 조절한다. 또한, 캐리어가스인 질소는 원료가스인 모노실란 대비 400 부피부를 넘지 않도록 한다. 가스의 유량은 sccm 단위를 사용한다. 반응챔버 내부의 공정압력은 100~400torr 범위로 설정하여 제조한다. 이 범위에서 평균 입도가 5~400nm이고, 산화층의 두께가 0.57nm인 실리콘-붕소 합금 나노입자(SiBx-NPs)가 제조된다.In addition, diborane is decomposed into boron and hydrogen atoms, boron alloys with silicon nanoparticles, and prevents oxidation of silicon. Monosilane as a source gas is 90% or more of the total volume (volume of the raw material gas and the catalyst gas combined), and the catalyst gas is adjusted to the range of 10% or less of the total volume. In addition, the carrier gas nitrogen is not more than 400 parts by volume compared to the source gas monosilane. The flow rate of gas is in sccm. Process pressure inside the reaction chamber is prepared by setting in the range of 100 ~ 400torr. In this range, silicon-boron alloy nanoparticles (SiBx-NPs) having an average particle size of 5 to 400 nm and an oxide layer thickness of 0.57 nm are prepared.
실시예 5Example 5
실리콘-게르마늄-붕소 합금 나노입자는 하기 반응식 5에 따라 제조될 수 있다.Silicon-germanium-boron alloy nanoparticles can be prepared according to Scheme 5 below.
<반응식 5>Scheme 5
2SiH4+2GeH4+B2H6→ 2SiGeB + 11H2 2SiH 4 + 2GeH 4 + B 2 H 6 → 2SiGeB + 11H 2
원료가스 공급노즐을 통해 원료가스인 모노실란(SiH4) 100부피부, 저메인(GeH4) 100부피부, 및 디보레인(B2H6) 40~80부피부와 캐리어가스인 질소(N2)400부피부를 혼합한 혼합가스를 내부 압력이 80~400torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 조사부를 통해 파장이 10.6㎛인 연속파의 라인 빔(Line Beam) 형태로 3시간 동안 조사하여 실리콘-게르마늄-붕소 합금 나노입자(SiGeB-NPs)를 제조하였다. SiGeB-NPs의 평균 입도는 5~400nm이고, 그 표면에 형성된 산화층의 두께는 0.75nm이다.100 parts by weight of monosilane (SiH 4 ), 100 parts by weight of germane (GeH 4 ), and diborane (B 2 H 6 ) by 40 to 80 parts by volume through the feed gas supply nozzle and nitrogen (N 2) A mixed gas containing 400 parts of volume is supplied into a reaction chamber having an internal pressure of 80 to 400 torr, and a laser generated by a CO 2 laser generator to a mixed gas supplied into the reaction chamber has a wavelength of 10.6 μm. Irradiation for 3 hours in the form of a line beam of continuous waves to produce silicon-germanium-boron alloy nanoparticles (SiGeB-NPs). The average particle size of SiGeB-NPs is 5 to 400 nm, and the thickness of the oxide layer formed on the surface thereof is 0.75 nm.
실시예 6Example 6
실리콘-게르마늄-탄소 합금 나노입자는 하기 반응식 6에 따라 제조될 수 있다.Silicon-germanium-carbon alloy nanoparticles may be prepared according to Scheme 6 below.
<반응식 6><Scheme 6>
2SiH4+2GeH4+C2H2→ 2SiGeC + 9H2 2SiH 4 + 2GeH 4 + C 2 H 2 → 2SiGeC + 9H 2
원료가스 공급노즐을 통해 원료가스인 모노실란(SiH4) 100부피부, 저메인(GeH4) 100부피부, 및 아세틸렌(C2H2) 40~80부피부와 캐리어 가스인 질소(N2) 400부피부를 혼합한 혼합가스를 내부 압력이 80~400torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 조사부를 통해 파장이 10.6㎛인 연속파의 라인 빔(Line Beam) 형태로 3시간 동안 조사하여 실리콘-게르마늄-탄소 합금 나노입자(SiGeC-NPs)를 제조하였다. SiGeC-NPs의 평균 입도는 5~400nm이고, 그 표면에 형성된 산화층의 두께는 0.68nm이다.100 parts by volume of monosilane (SiH 4 ), 100 parts by weight of germane (GeH 4 ), and 40 to 80 parts by weight of acetylene (C 2 H 2 ) and nitrogen (N 2 ) Continuous gas having a wavelength of 10.6 μm is supplied through the irradiator with a laser generated by a CO 2 laser generator to the mixed gas supplied with 400 parts by volume into a reaction chamber having an internal pressure of 80 to 400 torr. Irradiated for 3 hours in the form of a line beam (Line Beam) of silicon-germanium-carbon alloy nanoparticles (SiGeC-NPs) was prepared. The average particle size of SiGeC-NPs is 5 to 400 nm, and the thickness of the oxide layer formed on the surface thereof is 0.68 nm.
실시예 7Example 7
게르마늄-붕소 합금 나노입자 또는 붕화게르마늄 나노입자는 하기 반응식 8에 따라 제조될 수 있다.Germanium-boron alloy nanoparticles or germanium boride nanoparticles may be prepared according to Scheme 8 below.
<반응식 7>Scheme 7
2GeH4+2B2H6+N2→ GeB4+8H2+N2 2GeH 4 + 2B 2 H 6 + N 2 → GeB 4 + 8H 2 + N 2
원료가스 공급노즐을 통해 원료가스인 저메인(GeH4) 100부피부, 디보레인(B2H6) 40~80부피부, 및 캐리어가스인 질소(N2) 400부피부를 혼합한 혼합가스를 내부 압력이 100~400torr인 반응챔버 내부로 공급하고, 반응챔버 내부로 공급된 혼합가스에 CO2레이저 발생기에서 발생시킨 레이저를 조사부를 통해 파장이 10.6㎛인 연속파의 라인 빔(Line Beam) 형태로 3시간 동안 조사하여 게르마늄-붕소 합금 나노입자(GeBx-NPs)를 제조하였다. GeBx-NPs의 입도는 5~400nm이고, 그 표면에 형성된 산화층의 두께는 0.52nm이다.Through the feed gas supply nozzle, a mixed gas obtained by mixing 100 parts of germane (GeH 4 ), diborane (B 2 H 6 ), 40-80 parts, and 400 parts of nitrogen (N 2 ), carrier gas, is mixed. The internal pressure is supplied into the reaction chamber of 100 to 400 torr, and the laser generated by the CO 2 laser generator is supplied to the mixed gas supplied into the reaction chamber in the form of a continuous beam line beam having a wavelength of 10.6 μm through the irradiation unit. Irradiation for 3 hours to prepare germanium-boron alloy nanoparticles (GeBx-NPs). The particle size of GeBx-NPs is 5-400 nm, and the thickness of the oxide layer formed on the surface is 0.52 nm.
제조예 1Preparation Example 1
실시예 1 내지 7에서 제조한 탄소족 나노입자 100mg을 100ml의 증류수에 가하고 초음파를 10분 동안 조사하여 1000pm 농도의 하이드록시기로 표면 개질된 탄소족 나노입자 용액을 제조하고 이를 증류수에 희석시켜 10ppm 농도의 용액 1-1 내지 1-7을 제조하였다. 100 mg of the carbon group nanoparticles prepared in Examples 1 to 7 were added to 100 ml of distilled water and ultrasonic wave was irradiated for 10 minutes to prepare a solution of carbon group nanoparticles surface-modified with a hydroxy group at a concentration of 1000 pm and diluted in distilled water to 10 ppm concentration. Solutions 1-1 to 1-7 were prepared.
제조예 2Preparation Example 2
실시예 1 내지 7에서 제조한 탄소족 나노입자 100mg을 100ml의 에탄올에 가하고 초음파를 10분 동안 조사하여 1000pm 농도의 알콕시기로 표면 개질된 탄소족 나노입자 용액을 제조하고 이를 에탄올에 희석시켜 10ppm농도의 용액 2-1 내지 2-7을 제조하였다.100 mg of the carbon group nanoparticles prepared in Examples 1 to 7 were added to 100 ml of ethanol and irradiated with ultrasonic waves for 10 minutes to prepare a solution of carbon group nanoparticles surface-modified with an alkoxy group at a concentration of 1000 pm and diluted in ethanol to give a concentration of 10 ppm. Solutions 2-1 to 2-7 were prepared.
제조예 3Preparation Example 3
실시예 1 내지 7에서 제조한 탄소족 나노입자 100mg을 100ml의 아세트산에 가하고 초음파를 10분 동안 조사하여 1000pm 농도의 카르복실기로 표면 개질된 탄소족 나노입자 용액을 제조하고 이를 아세트산에 희석시켜 10ppm농도의 용액 3-1 내지 3-7을 제조하였다.100 mg of the carbon group nanoparticles prepared in Examples 1 to 7 were added to 100 ml of acetic acid and irradiated with ultrasonic waves for 10 minutes to prepare a solution of carbon group nanoparticles surface-modified with a carboxyl group at a concentration of 1000 pm and diluted with acetic acid to give a concentration of 10 ppm. Solutions 3-1 to 3-7 were prepared.
제조예 4Preparation Example 4
실시예 1 내지 7에서 제조한 탄소족 나노입자 100mg을 100ml의 글리세린에 가하고 초음파를 10분 동안 조사하여 1000pm 농도의 글리세릴기로 표면 개질된 탄소족 나노입자 용액을 제조하고 이를 글리세린에 희석시켜 10ppm농도의 용액 4-1 내지 4-7을 제조하였다100 mg of the carbon group nanoparticles prepared in Examples 1 to 7 was added to 100 ml of glycerin and irradiated for 10 minutes to prepare a solution of carbon group nanoparticles surface-modified with a glyceryl group at a concentration of 1000 pm and diluted in glycerin to 10 ppm concentration. Solutions 4-1 to 4-7 were prepared.
제조예 5Preparation Example 5
실시예 1 내지 7에서 제조한 탄소족 나노입자를 100mg, 300mg, 500mg을 100ml의 수용성 우레탄코팅용액에 가하고 초음파를 10분 동안 조사하여 1000pm, 3000ppm, 5000ppm의 농도의 우레탄코팅용액을 제조하였다(용액 5-1-1 내지 용액 5-7-3).100 mg, 300 mg, and 500 mg of the carbon group nanoparticles prepared in Examples 1 to 7 were added to 100 ml of a water-soluble urethane coating solution, and ultrasonic irradiation was performed for 10 minutes to prepare a urethane coating solution having a concentration of 1000 pm, 3000 ppm, and 5000 ppm (solution). 5-1-1 to solution 5-7-3).
실험예 1 Experimental Example 1
용액 1-1 내지 1-7, 용액 2-1 내지 2-7, 용액 3-1 내지 3-7, 용액 4-1 내지 4-7을 각각 5ml씩 취하여 10mm 두께의 측정셀에 가하고 UV-Vis 장비를 사용하여 400nm 파장에서 각각의 차단율을 측정하였다. 5 ml of solution 1-1 to 1-7, solution 2-1 to 2-7, solution 3-1 to 3-7, and solution 4-1 to 4-7 were each added to a measuring cell of 10 mm thickness and UV-Vis Each block was measured at 400 nm wavelength using the instrument.
용액solution 나노입자Nanoparticles 용매menstruum 400nm UV 차단율(%)400nm UV Blocking Rate (%) 비고 Remarks
1-11-1 SiSi 증류수 Distilled water 5252
1-21-2 GeGe 증류수 Distilled water 4343
1-31-3 SiGeSiGe 증류수Distilled water 4646
1-41-4 SiBSiB 증류수Distilled water 5858
1-51-5 SiGeBSiGeB 증류수Distilled water 5050
1-61-6 SiGeCSiGeC 증류수Distilled water 1515
1-71-7 GeBGeB 증류수Distilled water 4949
2-12-1 SiSi 에탄올ethanol 5454
2-22-2 GeGe 에탄올ethanol 4747
2-32-3 SiGeSiGe 에탄올ethanol 4848
2-42-4 SiBSiB 에탄올ethanol 5454
2-52-5 SiGeBSiGeB 에탄올ethanol 5353
2-62-6 SiGeCSiGeC 에탄올ethanol 1717
2-72-7 GeBGeB 에탄올ethanol 4848
3-13-1 SiSi 아세트산Acetic acid 5353
3-23-2 GeGe 아세트산Acetic acid 4343
3-33-3 SiGeSiGe 아세트산Acetic acid 4545
3-43-4 SiBSiB 아세트산Acetic acid 5555
3-53-5 SiGeBSiGeB 아세트산Acetic acid 5353
3-63-6 SiGeCSiGeC 아세트산Acetic acid 1414
3-73-7 GeBGeB 아세트산Acetic acid 1515
4-14-1 SiSi 글리세린glycerin 5050
4-24-2 GeGe 글리세린glycerin 4545
4-34-3 SiGeSiGe 글리세린glycerin 4646
4-44-4 SiBSiB 글리세린glycerin 5757
4-54-5 SiGeBSiGeB 글리세린glycerin 5252
4-64-6 SiGeCSiGeC 글리세린glycerin 1515
4-74-7 GeBGeB 글리세린glycerin 5252
실험예 2Experimental Example 2
제조예 5에서 제조한 1000ppm, 3000ppm, 5000ppm 농도의 용액들을 PET 필름에 10um의 두께로 스프레이 코팅한 후 UV-Vis 장비를 사용하여 400nm 파장에서 각각의 차단율을 측정하였다. 1000 ppm, 3000ppm, 5000ppm solution prepared in Preparation Example 5 was spray-coated to a PET film with a thickness of 10um and then measured the blocking rate at 400nm wavelength using a UV-Vis equipment.
용액solution 나노입자Nanoparticles 농도density 400nm UV 차단율(%)400nm UV Blocking Rate (%) 비고 Remarks
5-1-15-1-1 SiSi 1,000ppm 1,000 ppm 2323
5-1-25-1-2 SiSi 3,000ppm3,000 ppm 6464
5-1-35-1-3 SiSi 5,000ppm5,000 ppm 100100
5-2-15-2-1 GeGe 1,000ppm 1,000 ppm 2020
5-2-25-2-2 GeGe 3,000ppm3,000 ppm 5858
5-2-35-2-3 GeGe 5,000ppm5,000 ppm 9898
5-3-15-3-1 SiGeSiGe 1,000ppm 1,000 ppm 2020
5-3-25-3-2 SiGeSiGe 3,000ppm3,000 ppm 6262
5-3-35-3-3 SiGeSiGe 5,000ppm5,000 ppm 100100
5-4-15-4-1 SiBSiB 1,000ppm 1,000 ppm 2929
5-4-25-4-2 SiBSiB 3,000ppm3,000 ppm 7272
5-4-35-4-3 SiBSiB 5,000ppm5,000 ppm 100100
5-5-15-5-1 SiGeBSiGeB 1,000ppm 1,000 ppm 2929
5-5-25-5-2 SiGeBSiGeB 3,000ppm3,000 ppm 7070
5-5-35-5-3 SiGeBSiGeB 5,000ppm5,000 ppm 100100
5-6-15-6-1 SiGeCSiGeC 1,000ppm 1,000 ppm 88
5-6-25-6-2 SiGeCSiGeC 3,000ppm3,000 ppm 3030
5-6-35-6-3 SiGeCSiGeC 5,000ppm5,000 ppm 4848
5-7-15-7-1 GeBGeB 1,000ppm 1,000 ppm 2323
5-7-25-7-2 GeBGeB 3,000ppm3,000 ppm 6868
5-7-35-7-3 GeBGeB 5,000ppm5,000 ppm 100100
참고적으로, 농도가 1ppm 이하면 UV 흡수가 거의 일어나지 않고, 농도가 5000ppm 이상이면 점도가 너무 커져서 필름 코팅이 어려워진다. For reference, when the concentration is 1 ppm or less, UV absorption hardly occurs, and when the concentration is 5000 ppm or more, the viscosity becomes too large and film coating becomes difficult.
따라서, 본 발명의 실시예에 따른 자외선 차단재 조성물에 있어서의 나노입자 농도는 1~5000ppm, 바람직하게는, 5~2000ppm이다. Therefore, the nanoparticle concentration in the sunscreen composition according to the embodiment of the present invention is 1 to 5000 ppm, preferably 5 to 2000 ppm.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the invention is indicated by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the invention.

Claims (8)

  1. 평균 입도가 5~400nm이고 Si 또는 Ge 로 이루어지는 탄소족 비산화물 나노입자, 및 바인더 수지를 포함하는 자외선 차단재 조성물. A sunscreen composition comprising a carbon group non-oxide nanoparticle having an average particle size of 5 to 400 nm and consisting of Si or Ge, and a binder resin.
  2. 평균 입도가 5~400nm이고, Si, Ge 및 B 중 2개의 원소로 이루어지는 탄소족 비산화물 나노입자, 및 바인더 수지를 포함하는 자외선 차단재 조성물. A sunscreen composition having an average particle size of 5 to 400 nm and comprising carbon group non-oxide nanoparticles composed of two elements of Si, Ge, and B, and a binder resin.
  3. 평균 입도가 5~400nm이고, SiGeB 또는 SiGeC로 이루어지는 탄소족 비산화물 나노입자, 및 바인더 수지를 포함하는 자외선 차단재 조성물. A sunscreen composition having an average particle size of 5 to 400 nm and comprising carbon group non-oxide nanoparticles composed of SiGeB or SiGeC, and a binder resin.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 자외선 차단재 조성물은 상기 바인더 수지 100중량부에 대해 상기 탄소족 비산화물 나노입자 5~2000ppm을 포함하는 자외선 차단재 조성물.The sunscreen composition is a sunscreen composition comprising 5 to 2000ppm of the carbon group non-oxide nanoparticles based on 100 parts by weight of the binder resin.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,
    상기 탄소족 비산화물 나노입자는 하이드록시기, 알콕시기, 카르복실기, 글리세릴기 및 이들의 조합으로 이루어진 군에서 선택된 하나에 의해 표면 개질된 것인 자외선 차단재 조성물.The carbon group non-oxide nanoparticles are surface-modified by one selected from the group consisting of a hydroxyl group, an alkoxy group, a carboxyl group, a glyceryl group and combinations thereof.
  6. 평균 입도가 5~400nm이고 Si 또는 Ge 로 이루어지거나, Si, Ge 및 B 중 2개의 원소로 이루어지거나, SiGeB 또는 SiGeC로 이루어지는 탄소족 비산화물 나노입자를 제조하는 단계; Preparing a carbon group non-oxide nanoparticle having an average particle size of 5 to 400 nm and consisting of Si or Ge, consisting of two elements of Si, Ge, and B, or consisting of SiGeB or SiGeC;
    상기 탄소족 비산화물 나노입자를 용매에 가하고 초음파를 조사하여 탄소족나노입자 용액을 제조하는 단계; Adding the carbon group non-oxide nanoparticles to a solvent and irradiating ultrasonic waves to prepare a carbon group nanoparticle solution;
    상기 탄소족 나노입자 용액을 상기 용매 또는 바인더 수지액에 희석시키는 단계를 포함하는, 자외선 차단재 조성물 제조 방법. And diluting the carbon group nanoparticle solution in the solvent or binder resin solution.
  7. 제6항에 있어서, The method of claim 6,
    상기 용매는 증류수, 알콜, 지방산 중 적어도 하나이고, 바인더 수지는 우레탄, 아크릴, PE왁스 중 하나인, 자외선 차단재 조성물 제조 방법. The solvent is at least one of distilled water, alcohol, fatty acid, the binder resin is one of urethane, acrylic, PE wax, sunscreen composition manufacturing method.
  8. 제6항에 있어서, The method of claim 6,
    상기 탄소족나노입자 용액을 제조하는 단계는, Preparing the carbon group nanoparticles solution,
    상기 초음파 조사를 통해 상기 탄소족 비산화물 나노입자를 하이드록시기, 알콕시기, 카르복실기, 글리세릴기 및 이들의 조합으로 이루어진 군에서 선택된 하나로 표면 개질하는 단계를 포함하는, 자외선 차단재 조성물 제조 방법.Surface modification of the carbon group non-oxide nanoparticles by one selected from the group consisting of a hydroxyl group, an alkoxy group, a carboxyl group, a glyceryl group, and combinations thereof through the ultrasonic irradiation, sunscreen composition manufacturing method.
PCT/KR2018/001765 2017-02-10 2018-02-09 Ultraviolet-barrier material composition comprising carbon group non-oxide nanoparticles and method for producing same WO2018147684A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2017-0018964 2017-02-10
KR20170018964 2017-02-10
KR20170053994 2017-04-26
KR10-2017-0053994 2017-04-26
KR1020180015312A KR102099428B1 (en) 2017-02-10 2018-02-07 A composition for intercepting ultraviolet comprising carbon group non-oxide nanoparticles and manufacturing method thereof
KR10-2018-0015312 2018-02-07

Publications (1)

Publication Number Publication Date
WO2018147684A1 true WO2018147684A1 (en) 2018-08-16

Family

ID=63107008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001765 WO2018147684A1 (en) 2017-02-10 2018-02-09 Ultraviolet-barrier material composition comprising carbon group non-oxide nanoparticles and method for producing same

Country Status (1)

Country Link
WO (1) WO2018147684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020142282A3 (en) * 2018-12-31 2020-10-15 Dow Silicones Corporation Composition for personal care, method of preparing the composition, and treatment method involving the composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510496A (en) * 1996-11-15 2001-07-31 バイエル・アクチエンゲゼルシヤフト UV light absorbers, matrices comprising UV light absorbers, methods of blocking UV radiation, and uses of UV light absorbers
JP2005314408A (en) * 2004-03-31 2005-11-10 Shiseido Co Ltd Ultraviolet light absorber and luminescent agent containing silicon cluster or germanium cluster, and skin care preparation for external use, using the same cluster
JP2009137902A (en) * 2007-12-07 2009-06-25 Kao Corp Ultraviolet protective agent and sunscreen cosmetic
JP2010100673A (en) * 2008-10-21 2010-05-06 Kao Corp Ultraviolet protective agent
JP2014205805A (en) * 2013-04-15 2014-10-30 花王株式会社 Ultraviolet protective agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510496A (en) * 1996-11-15 2001-07-31 バイエル・アクチエンゲゼルシヤフト UV light absorbers, matrices comprising UV light absorbers, methods of blocking UV radiation, and uses of UV light absorbers
JP2005314408A (en) * 2004-03-31 2005-11-10 Shiseido Co Ltd Ultraviolet light absorber and luminescent agent containing silicon cluster or germanium cluster, and skin care preparation for external use, using the same cluster
JP2009137902A (en) * 2007-12-07 2009-06-25 Kao Corp Ultraviolet protective agent and sunscreen cosmetic
JP2010100673A (en) * 2008-10-21 2010-05-06 Kao Corp Ultraviolet protective agent
JP2014205805A (en) * 2013-04-15 2014-10-30 花王株式会社 Ultraviolet protective agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020142282A3 (en) * 2018-12-31 2020-10-15 Dow Silicones Corporation Composition for personal care, method of preparing the composition, and treatment method involving the composition

Similar Documents

Publication Publication Date Title
EP1544256B1 (en) Aluminium oxide coated titanium dioxide particles and methods of preparing the same in presence of a densifying agent
KR101061289B1 (en) Cosmetic composition containing inorganic powder
WO2012082118A1 (en) Ir-activated photoelectric systems
ES2075746T3 (en) PARTICLES OF TITANIUM OXIDE AND METHOD TO PRODUCE THEM.
ATE391547T1 (en) AIR PURIFICATION SYSTEM COMPRISING A CATALYST AND A LIGHT SOURCE
WO2018147684A1 (en) Ultraviolet-barrier material composition comprising carbon group non-oxide nanoparticles and method for producing same
KR20180110960A (en) ROS-inhibiting, UV-screening composite particles and the use thereof
EP3578616B1 (en) Antimicrobial polymer coating composition and antimicrobial polymer film
KR20100042785A (en) Method of decomposing antibacterial agents by vacuum ultraviolet
KR102099428B1 (en) A composition for intercepting ultraviolet comprising carbon group non-oxide nanoparticles and manufacturing method thereof
KR102049367B1 (en) Carbon nitride-nanoclay composite, method for preparing the same, and uv blocking agent including the same
KR101396276B1 (en) UV Protecting Cosmetic Composition Comprising Titania Nano Sheet and Manufacturing Method Thereof
KR102633174B1 (en) Air filter and air purifier
KR20120049077A (en) Hybrid titanium dioxide nano composites and uv protecting cosmetic composite contained thereof
KR101827725B1 (en) An deodoreant composition comprising carbon group non-oxide nanoparticles
KR20120033593A (en) Composite dispersion for sun screnn and manufacturing method thereof
KR20180022541A (en) Carbon group-boron non-oxide nanoparticles, radiation shielding composition comprising the same and manufacturing method thereof
Vallejo-Montesinos et al. Passivation of titanium oxide in polyethylene matrices using polyelectrolytes as titanium dioxide surface coating
KR101369129B1 (en) UV Protecting Cosmetic Composition Comprising Titania Nano Tube and Manufacturing Method Thereof
CN113584627B (en) Application of carbon quantum dots in preparation of sun-proof textile material
TWI748520B (en) Ozone generator
KR20200016699A (en) An electromagnetic wave shielding composition comprising carbon group non-oxide nanoparticles
KR102466309B1 (en) Metal frame coating agent for furniture
US20170368736A1 (en) White polyester film and method for manufacturing same, solar cell back sheet, and solar cell module
CN117679314A (en) Composite particle, preparation method and sun-screening application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18750798

Country of ref document: EP

Kind code of ref document: A1