WO2018038279A1 - 에너지 절감 방법 및 이를 적용한 fems - Google Patents

에너지 절감 방법 및 이를 적용한 fems Download PDF

Info

Publication number
WO2018038279A1
WO2018038279A1 PCT/KR2016/009303 KR2016009303W WO2018038279A1 WO 2018038279 A1 WO2018038279 A1 WO 2018038279A1 KR 2016009303 W KR2016009303 W KR 2016009303W WO 2018038279 A1 WO2018038279 A1 WO 2018038279A1
Authority
WO
WIPO (PCT)
Prior art keywords
control point
point data
data
learning
input
Prior art date
Application number
PCT/KR2016/009303
Other languages
English (en)
French (fr)
Inventor
지영민
유준재
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2018038279A1 publication Critical patent/WO2018038279A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B17/00Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to energy saving techniques required in the manufacturing industry, and more particularly to systems and methods for predicting and controlling cement lime firing process temperatures.
  • the lime calcining process is the most energy-consuming process of the cement process, which is not good in terms of energy efficiency.
  • the present invention has been made to solve the above problems, an object of the present invention, a method for easy and accurate prediction of the cement lime calcining process temperature, cement lime calcining process temperature prediction system and method using neural network learning In providing.
  • Another object of the present invention is to provide a method and system for controlling cement lime calcination process control points to maintain a constant cement lime calcination process temperature predicted based on neural network learning results.
  • Process learning method for achieving the above object, the first collection step of collecting control point data for the process; A second collecting step of collecting process data determined by the control points; And extracting a correlation between the control point data and the process data by learning the control point data and the process data.
  • the control point data may be control point data related to a cement lime firing process, and the process data may be cement lime firing process temperature data.
  • control point data relating to the cement lime firing process includes at least one of raw material input per hour, fuel input per hour, air input per hour, and facility control amount per hour.
  • the learning can be neural network learning.
  • weight and bias of the first layer of the neural network may be set to known values.
  • the process learning method includes: receiving control point data on a process; Predicting process data from input control point data based on the correlation; And adjusting the input control point data based on the prediction result.
  • the extracting step may extract correlations between each of the control point data and the measurement data, respectively.
  • the prediction step may predict the measurement data from the main control point data selected based on the extracted correlations.
  • the adjusting step adjusts the main control point data based on the prediction result.
  • the process learning system according to another embodiment of the present invention, a communication unit for collecting the control point data for the process and the process data determined by the control points; And a processor learning the control point data and the process data to extract a correlation between the control point data and the process data.
  • the process control method the step of receiving the control point data for the process; Predicting process data from input control point data based on a correlation between the control point data for the process and the process data determined by the control points; And adjusting the input control point data based on the prediction result.
  • a process control system Communication unit for receiving the control point data for the process; And predicting the process data from the input control point data based on the correlation between the control point data for the process and the process data determined by the control points, and adjusting the input control point data based on the prediction result. It includes a processor.
  • neural network learning can be used to more easily and accurately predict the temperature of the cement lime firing process.
  • the cement lime calcining process temperature is kept constant in an optimized state to enable the production of high-quality cement, as well as the process This can reduce energy consumption.
  • 1 is a view schematically showing a cement kiln
  • FIG. 2 is a diagram illustrating a neural network learning technique
  • 3 to 5 are views provided to explain the correlation derived through neural network learning
  • FIG. 8 is a block diagram of a cement lime calcination process temperature prediction system according to another embodiment of the present invention.
  • FIG. 1 is a view schematically showing a cement kiln. As shown in FIG. 1, lime cement as a raw material of cement is introduced into the cement kiln 100, and lime is discharged.
  • coal is injected into the preheater and the kiln of the cement kiln 100 as fuel, intake of the motor is made in the lower part of the kiln 100, and exhaust is made in the upper part of the kiln.
  • the kiln 100 rotates at a constant speed to increase the combustion efficiency.
  • the cement lime firing process temperature prediction system uses neural network learning to learn the correlation between the lime firing process control point data and the lime firing process temperature data.
  • the cement lime firing process temperature prediction system adjusts the firing process control points based on the learning result.
  • Figure 2 shows a neural network learning technique for this.
  • the raw material input per hour the blower revolutions per minute, the preheater coal input per hour, the kiln coal input per hour, the combustion air input motor revolutions, the kiln furnace temperature according to the kiln revolutions per minute To learn.
  • Raw material inputs per hour, blower revolutions per minute, preheater coal inputs per hour, kiln coal inputs per hour, combustion air input motor revolutions, kiln revolutions per minute, and kiln temperature all correspond to lime firing process data.
  • raw material inputs per hour except kiln temperature, preheater coal input per hour, kiln coal input per hour, combustion air input motor revolutions, blower revolutions per minute, kiln revolutions per minute can be controlled by lime firing process control points. Is different from the kiln temperature determined by the control points.
  • the initial value can be set for the neural network. That is, the weight and bias of the first layer of the neural network can be set to a value obtained through experience or a value obtained through experiments, thereby increasing the accuracy of learning and speeding up the learning.
  • Variables and structures of hidden layers are generally set automatically through learning, but this can also be set to all / some of the values / structures obtained through experience / experiment.
  • correlations between control point data and correlations between control point data and the kiln temperature data may be extracted.
  • Each cell represents correlation coefficients between data input to the neural network in different luminance / color according to the numerical value.
  • the correlation between the parts indicated by circles in FIG. 3 is a correlation between the hourly kiln coal input amount shown in FIG. 4 and the kiln temperature shown in FIG. 5. It can be seen that both show a relatively high correlation.
  • the correlation may be derived by comparing the time unit, for example, year, month, day, and time unit, as well as extracting only an effective time period during which the control points are manipulated / changed.
  • the correlation coefficient is preferably determined by taking an absolute value, and it is also possible to calculate an error value together.
  • Figure 6 is a flow chart provided in the description of the lime calcination process learning method according to an embodiment of the present invention.
  • control point data for the lime calcination process is collected (S210), and the kiln temperature data is collected accordingly (S220).
  • the control point data collected in step S210 includes raw material input per hour, fuel input per hour (preheater coal input per hour, kiln coal input per hour), air input per hour (burning air input motor rotation speed, blower rotation per hour), kiln rotation per hour The number is included.
  • the kiln temperature collected in step S220 corresponds to the lime firing process temperature data.
  • step S240 by learning the control point data collected in step S210 and the kiln temperature data collected in step S220 (S230), a correlation between the control points and the kiln temperature is derived (S240).
  • the neural network learned by step S240 is generated, and it is possible to sort the inputs of the neural network into main control points having a high correlation coefficient with the kiln temperature, and the sorting can be performed automatically and manually.
  • control points are modeled by Gaussian process according to the kiln temperature change, so that only the control points whose correlation coefficient is higher than the reference are selected.
  • These selected control points can be automatically adjusted to optimize key control points in the lime firing process to improve product quality and optimize energy efficiency.
  • FIG. 7 is a flowchart provided to explain a method for controlling lime calcination according to another embodiment of the present invention.
  • the lime calcination process control point data is input (S310), and the kiln temperature is predicted using a neural network learned according to the procedure illustrated in FIG. 6 ( S320).
  • the prediction in operation S320 corresponds to a process of predicting the kiln temperature from the input control point data based on the correlation between the control point data and the kiln temperature.
  • control point data input as necessary S330 to optimize the kiln temperature and reduce energy consumption in the kiln.
  • step S310 only main control points need to be input, and in step S330, only the main control points need to be adjusted.
  • the cement lime calcination process temperature prediction system may be implemented as a computing system including a communication unit 410, a monitor 420, a processor 430, an input unit 440, and a storage unit 450. have.
  • the communication unit 410 is a data collection unit for receiving / input data by communicating with an external device / network
  • the input unit 440 is a unit for receiving an initial value or a set value.
  • the processor 430 performs the lime calcining process learning algorithm according to FIG. 6 and the lime calcining process control algorithm according to FIG. 7, provides the result through the monitor 420, and outputs the result through the communication unit 410. Can be sent over the network.
  • the storage unit 450 provides a storage space necessary for the processor 430 to perform the learning algorithm and the control algorithm.
  • control points for the lime firing process are exemplary and it is possible to exclude some or add / replace other kinds of control points.
  • the kiln temperature is also referring to one of the lime firing process data, it is a matter of course that the technical idea of the present invention may be applied even when it is replaced by another kind of process data.
  • the neural network learning mentioned in the above embodiments is also exemplary and may be replaced with another kind of learning.
  • the cement firing process also refers to one of various processes in the manufacturing industry.
  • the technical idea of the present invention can be applied to other types of processes and factory energy management systems (FEMSs) for the purpose of energy saving in the manufacturing industry.
  • FEMSs factory energy management systems
  • the technical idea of the present invention can be applied to a computer-readable recording medium containing a computer program for performing the functions of the apparatus and method according to the present embodiment.
  • the technical idea according to various embodiments of the present disclosure may be implemented in the form of computer readable codes recorded on a computer readable recording medium.
  • the computer-readable recording medium can be any data storage device that can be read by a computer and can store data.
  • the computer-readable recording medium may be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical disk, a hard disk drive, or the like.
  • the computer-readable code or program stored in the computer-readable recording medium may be transmitted through a network connected between the computers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • Operations Research (AREA)
  • Software Systems (AREA)
  • Educational Administration (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Automation & Control Theory (AREA)

Abstract

뉴럴 네트워크 학습을 이용한 시멘트 석회 소성 공정 온도 예측 시스템 및 방법이 제공된다. 본 발명의 실시예에 따른 공정 학습 방법은, 공정에 대한 제어 포인트 데이터들을 수집하고, 제어 포인트들에 의해 결정되는 공정 데이터를 수집하며, 제어 포인트 데이터들과 공정 데이터를 학습하여 제어 포인트 데이터들과 공정 데이터 간의 상관관계를 추출한다. 이에 의해, 뉴럴 네트워크 학습을 이용하여, 시멘트 석회 소성 공정 온도를 보다 간편하고 정확하게 예측할 수 있게 된다.

Description

에너지 절감 방법 및 이를 적용한 FEMS
본 발명은 제조 산업에서 필요로 하는 에너지 절감 기술에 관한 것으로, 더욱 상세하게는 시멘트 석회 소성 공정 온도를 예측하고 제어하는 시스템 및 방법에 관한 것이다.
시멘트 석회 소성 공정에서 소성로 온도를 일정하게 유지시키는 것이 중요하다. 소성로 온도의 편차가 심해지면, 생산되는 시멘트의 품질이 떨어지게 되는 문제가 있다.
뿐만 아니라, 석회 소성 공정은 시멘트 공정 중 가장 많은 에너지가 소비되는 공정이기 때문에, 에너지 효율성 측면에서도 좋지 않다.
이와 같은 문제를 해결하기 위해서는, 소성로 온도를 예측하는 것이 필요한데, 시멘트 석회 소성 공정을 위한 제어 포인트 데이터들이 소성로 온도에 미치는 영향은 비선형적인 관계로, 이를 예측하는 것은 매우 어렵다.
따라서, 작업자/관리자의 직관 내지 시행착오를 통해 알아내고 있는 실정이다. 그러나, 시멘트 공장에는 통상 수십 개의 소성로가 마련되어 있어, 이와 같은 방식의 예측은 매우 번거롭다. 또한, 소성로의 교체가 있는 경우에는, 예측 결과가 무의미해진다는 문제도 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 시멘트 석회 소성 공정 온도의 간편하고 정확한 예측을 위한 방안으로, 뉴럴 네트워크 학습을 이용한 시멘트 석회 소성 공정 온도 예측 시스템 및 방법을 제공함에 있다.
또한, 본 발명의 다른 목적은, 뉴럴 네트워크 학습 결과를 기반으로 예측한 시멘트 석회 소성 공정 온도를 일정하게 유지시키기 위해 시멘트 석회 소성 공정 제어 포인트들을 조절하는 방법 및 시스템을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른, 공정 학습 방법은, 공정에 대한 제어 포인트 데이터들을 수집하는 제1 수집단계; 제어 포인트들에 의해 결정되는 공정 데이터를 수집하는 제2 수집단계; 및 제어 포인트 데이터들과 공정 데이터를 학습하여, 제어 포인트 데이터들과 공정 데이터 간의 상관관계를 추출하는 단계;를 포함한다.
그리고, 제어 포인트 데이터들은, 시멘트 석회 소성 공정과 관련한 제어 포인트 데이터들이고, 공정 데이터는, 시멘트 석회 소성 공정 온도 데이터일 수 있다.
또한, 시멘트 석회 소성 공정과 관련한 제어 포인트 데이터들은, 시간당 원료 투입량, 시간당 연료 투입량, 시간당 공기 투입량, 시간당 설비 제어량 중 적어도 하나를 포함
그리고, 학습은, 뉴럴 네트워크 학습일 수 있다.
또한, 뉴럴 네트워크의 첫 번째 레이어의 웨이트와 바이어스는, 기지의 값으로 설정될 수 있다.
그리고, 본 발명의 일 실시예에 따른 공정 학습 방법은, 공정에 대한 제어 포인트 데이터들을 입력받는 단계; 상관관계를 기초로, 입력된 제어 포인트 데이터들로부터 공정 데이터를 예측하는 단계; 및 예측 결과를 기초로, 입력된 제어 포인트 데이터들을 조절하는 단계;를 더 포함할 수 있다.
또한, 추출단계는, 제어 포인트 데이터들 각각과 계측 데이터 간의 상관관계들을 각각 추출할 수 있다.
그리고, 예측단계는, 추출된 상관관계들을 기초로 선별된 주요 제어 포인트 데이터들로부터 계측 데이터를 예측할 수 있다.
또한, 조절단계는, 예측 결과를 기초로, 주요 제어 포인트 데이터들을 조절한다.
한편, 본 발명의 다른 실시예에 따른, 공정 학습 시스템은, 공정에 대한 제어 포인트 데이터들과 제어 포인트들에 의해 결정되는 공정 데이터를 수집하는 통신부; 및 제어 포인트 데이터들과 공정 데이터를 학습하여, 제어 포인트 데이터들과 공정 데이터 간의 상관관계를 추출하는 프로세서;를 포함한다.
한편, 본 발명의 다른 실시예에 따른, 공정 제어 방법은, 공정에 대한 제어 포인트 데이터들을 입력받는 단계; 공정에 대한 제어 포인트 데이터들과 제어 포인트들에 의해 결정되는 공정 데이터 간의 상관관계를 기초로, 입력된 제어 포인트 데이터들로부터 공정 데이터를 예측하는 단계; 및 예측 결과를 기반으로 입력된 제어 포인트 데이터들을 조절하는 단계;를 포함한다.
한편, 본 발명의 다른 실시예에 따른, 공정 제어 시스템은, 공정에 대한 제어 포인트 데이터들을 입력받는 통신부; 및 공정에 대한 제어 포인트 데이터들과 제어 포인트들에 의해 결정되는 공정 데이터 간의 상관관계를 기초로 입력된 제어 포인트 데이터들로부터 공정 데이터를 예측하고, 예측 결과를 기반으로 입력된 제어 포인트 데이터들을 조절하는 프로세서;를 포함한다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따르면, 뉴럴 네트워크 학습을 이용하여, 시멘트 석회 소성 공정 온도를 보다 간편하고 정확하게 예측할 수 있게 된다.
또한, 본 발명의 실시예들에 따르면, 시멘트 석회 소성 공정 온도 예측 결과를 기초로, 시멘트 석회 소성 공정 온도를 최적화된 상태로 일정하게 유지시켜 고품질의 시멘트를 생산을 가능하게 함은 물론, 해당 공정에서의 에너지 소모를 절감할 수 있게 된다.
도 1은 시멘트 소성로를 개략적으로 나타낸 도면,
도 2는 뉴럴 네트워크 학습 기법을 나타낸 도면,
도 3 내지 도 5는 뉴럴 네트워크 학습을 통해 도출한 상관관계의 설명에 제공되는 도면들,
도 6은 본 발명의 일 실시예에 따른 석회 소성 공정 학습 방법의 설명에 제공되는 흐름도,
도 7은 본 발명의 다른 실시예에 따른 석회 소성 공정 제어 방법의 설명에 제공되는 흐름도,
도 8은 본 발명의 또 다른 실시예에 따른 시멘트 석회 소성 공정 온도 예측 시스템의 블럭도이다.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다.
도 1은 시멘트 소성로를 개략적으로 나타낸 도면이다. 도 1에 도시된 바와 같이, 시멘트 소성로(100)에는 시멘트 원료인 석회석(limestone)이 투입되고 석회(lime)가 배출된다.
그리고, 시멘트 소성로(100)의 예열기와 소성로에는 석탄이 연료(fuel)로써 투입되고, 소성로(100)의 하부에는 모터를 이용한 흡기가 이루어지며, 상부에는 송풍기를 이용한 배기가 이루어진다. 한편, 소성로(100)는 연소 효율을 높이기 위해 일정 속도로 회전한다.
본 발명의 실시예에서는, 시멘트 석회 소성 공정 온도 예측 시스템 및 방법을 제시한다.
시멘트 석회 소성 공정 온도 예측 시스템은, 뉴럴 네트워크 학습을 이용하여, 석회 소성 공정 제어 포인트 데이터들과 석회 소성 공정 온도 데이터 간의 상관관계를 학습한다.
나아가, 소성 공정 온도가 일정하게 유지되도록 하기 위해, 시멘트 석회 소성 공정 온도 예측 시스템은, 학습결과를 바탕으로 소성 공정 제어 포인트들을 조절한다.
도 2에는 이를 위한 뉴럴 네트워크 학습 기법을 나타내었다. 도 2에 도시된 바와 같이, 뉴럴 네트워크 학습에서는, 시간당 원료 투입량, 분당 송풍기 회전수, 시간당 예열기 석탄 투입량, 시간당 소성로 석탄 투입량, 연소 공기 투입 모터 회전수, 분당 소성로(Kiln) 회전수에 따른 소성로 온도를 학습한다.
시간당 원료 투입량, 분당 송풍기 회전수, 시간당 예열기 석탄 투입량, 시간당 소성로 석탄 투입량, 연소 공기 투입 모터 회전수, 분당 소성로 회전수, 소성로 온도는 모두 석회 소성 공정 데이터에 해당한다.
하지만, 소성로 온도를 제외한 시간당 원료 투입량, 시간당 예열기 석탄 투입량, 시간당 소성로 석탄 투입량, 연소 공기 투입 모터 회전수, 분당 송풍기 회전수, 분당 소성로 회전수는, 석회 소성 공정 제어 포인트들로 조절이 가능하다는 점에서, 제어 포인트들에 의해 결정되는 소성로 온도와 차이가 있다.
한편, 뉴럴 네트워크에 대해서는 초기값 설정이 가능하다. 즉, 뉴럴 네트워크의 첫 번째 레이어의 웨이트(weight)와 바이어스(bias)를 경험을 통해 알고 있는 값이나 실험을 통해 획득한 값으로 설정하여, 학습의 정확도를 높이고 학습 속도를 빠르게 할 수 있다.
히든 레이어(hidden layer)의 변수와 구조는 학습을 통해 자동으로 설정되는 것이 일반적이지만, 이 역시도 경험/실험을 통해 획득한 값/구조로 전부/일부를 설정할 수 있다.
도 2에 도시된 뉴럴 네트워크 학습결과로부터, 제어 포인트 데이터들 간의 상관관계들은 물론, 제어 포인트 데이터들 각각과 소성로 온도 데이터 간의 상관관계들을 각각 추출할 수 있다.
도 3에는 뉴럴 네트워크 학습을 통해 도출한 상관관계들을 나타내었다. 각각의 셀들은 뉴럴 네트워크에 입력된 데이터들 간의 상관계수들을, 수치에 따라 각기 다른 휘도/색상 등으로 나타낸다.
예를 들어, 도 3에서 원형으로 표기한 부분의 상관관계는, 도 4에 도시된 시간당 소성로 석탄 투입량과 도 5에 도시된 소성로 온도의 상관관계이다. 양자는 비교적 높은 상관관계를 보이고 있음을 확인할 수 있다.
상관관계는, 정해진 시간 단위, 이를 테면, 년, 월, 일, 시간 단위로 비교하여 도출 가능함은 물론, 제어 포인트들이 조작/변경되는 유효 시구간 만을 추출하여 도출할 수도 있다.
조작/변경 발생과 결과 반영 시간에 관한 사전지식을 반영하여, 후자가 더 유의미한 상관관계를 도출할 수 있다. 또한, 상관계수는 절대값을 취해 판단하는 것이 좋으며, 에러값을 함께 산출하는 것도 가능하다.
도 6은 본 발명의 일 실시예에 따른 석회 소성 공정 학습 방법의 설명에 제공되는 흐름도이다.
석회 소성 공정 학습을 위해, 도 6에 도시된 바와 같이, 먼저 석회 소성 공정에 대한 제어 포인트 데이터들을 수집하고(S210), 그에 따른 소성로 온도 데이터를 수집한다(S220).
S210단계에서 수집되는 제어 포인트 데이터들에는, 시간당 원료 투입량, 시간당 연료 투입량(시간당 예열기 석탄 투입량, 시간당 소성로 석탄 투입량), 시간당 공기 투입량(연소 공기 투입 모터 회전수, 시간당 송풍기 회전수), 시간당 소성로 회전수가 포함된다.
S220단계에서 수집되는 소성로 온도는, 석회 소성 공정 온도 데이터에 해당한다.
다음, S210단계에서 수집된 제어 포인트 데이터들과 S220단계에서 수집된 소성로 온도 데이터들을 학습하여(S230), 제어 포인트들과 소성로 온도 간의 상관관계를 도출한다(S240).
S240단계에 의해 학습된 뉴럴 네트워크가 생성되는데, 뉴럴 네트워크의 입력들을 소성로 온도와 상관계수가 높은 주요 제어 포인트들로 선별하는 것이 가능하며, 선별은 자동과 수동 모두 가능하다.
자동 선별의 경우, 소성로 온도 변화에 따른 각 제어 포인트들의 추이를 가우시안 프로세스로 모델링하여, 상관 계수가 기준 이상인 제어 포인트들만을 선별한다.
이 선별된 제어 포인트들을 자동으로 조절하여 석회 소성 공정에 주요한 제어 포인트들을 최적화시켜 제품 품질을 향상시키고, 에너지 효율을 최적화시킬 수 있다.
도 7은 본 발명의 다른 실시예에 따른 석회 소성 공정 제어 방법의 설명에 제공되는 흐름도이다.
석회 소성 공정 제어를 위해, 도 7에 도시된 바와 같이, 먼저 석회 소성 공정 제어 포인트 데이터들을 입력 받아(S310), 도 6에 도시된 절차에 따라 학습된 뉴럴 네트워크를 이용하여 소성로 온도를 예측한다(S320).
S320단계에서의 예측은, 제어 포인트 데이터들과 소성로 온도 간의 상관관계를 기초로, 입력된 제어 포인트 데이터들로부터 소성로 온도를 예측하는 과정에 해당한다.
다음, 예측 결과를 기초로, 필요시 입력된 제어 포인트 데이터들을 조절하여(S330), 소성로 온도 최적화하고, 소성로에서의 에너지 소모를 절감한다.
도 6의 S240단계를 통해 학습된 뉴럴 네트워크에 주요 제어 포인트들만이 선별되어 있다면, S310단계에서는 주요 제어 포인트들에 대해서만 입력받으면 되고, S330단계에서도 주요 제어 포인트들에 대해서만 조절하면 된다.
도 8은 본 발명의 또 다른 실시예에 따른 시멘트 석회 소성 공정 온도 예측 시스템의 블럭도이다. 도 8에 도시된 바와 같이, 시멘트 석회 소성 공정 온도 예측 시스템은, 통신부(410), 모니터(420), 프로세서(430), 입력부(440) 및 저장부(450)를 포함하는 컴퓨팅 시스템으로 구현할 수 있다.
통신부(410)는 외부 기기/네트워크와 통신 연결하여 데이터를 수신/입력받는 데이터 수집 수단이고, 입력부(440)는 초기값, 설정값을 입력받기 위한 수단이다.
프로세서(430)는 도 6에 따른 석회 소성 공정 학습 알고리즘과 도 7에 따른 석회 소성 공정 제어 알고리즘를 수행하고, 모니터(420)를 통해 그 결과를 제공하고, 통신부(410)를 통해 그 결과를 외부 기기/네트워크로 전송할 수 있다.
저장부(450)는 프로세서(430)가 학습 알고리즘과 제어 알고리즘을 수행함에 있어 필요한 저장 공간을 제공한다.
지금까지, 뉴럴 네트워크 학습을 이용한 시멘트 석회 소성 공정 학습/제어 방법 및 이를 수행하는 시스템에 대해 바람직한 실시예들을 들어 상세히 설명하였다.
위 실시예에서, 석회 소성 공정에 대한 제어 포인트들로 언급한 것들은 모두 예시적인 것으로, 일부를 배제하거나 다른 종류의 제어 포인트들을 추가/대체하는 것이 가능하다.
또한, 소성로 온도 역시 석회 소성 공정 데이터 중 하나를 언급한 것이므로, 다른 종류의 공정 데이터로 대체되는 경우에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다.
나아가, 위 실시예들에서 언급한 뉴럴 네트워크 학습 역시, 예시적인 것이므로 다른 종류의 학습으로 대체될 수 있다.
그리고, 시멘트 소성 공정 역시 제조산업에서의 다양한 공정들 중 하나를 언급한 것이다. 다른 종류의 공정과 제조산업에서 에너지 절감 등을 목적으로 하는 FEMS(Factory Energy Management System)에 대해서도 본 발명의 기술적 사상이 적용될 수 있다.
한편, 본 실시예에 따른 장치와 방법의 기능을 수행하게 하는 컴퓨터 프로그램을 수록한 컴퓨터로 읽을 수 있는 기록매체에도 본 발명의 기술적 사상이 적용될 수 있음은 물론이다. 또한, 본 발명의 다양한 실시예에 따른 기술적 사상은 컴퓨터로 읽을 수 있는 기록매체에 기록된 컴퓨터로 읽을 수 있는 코드 형태로 구현될 수도 있다. 컴퓨터로 읽을 수 있는 기록매체는 컴퓨터에 의해 읽을 수 있고 데이터를 저장할 수 있는 어떤 데이터 저장 장치이더라도 가능하다. 예를 들어, 컴퓨터로 읽을 수 있는 기록매체는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광디스크, 하드 디스크 드라이브, 등이 될 수 있음은 물론이다. 또한, 컴퓨터로 읽을 수 있는 기록매체에 저장된 컴퓨터로 읽을 수 있는 코드 또는 프로그램은 컴퓨터간에 연결된 네트워크를 통해 전송될 수도 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구항는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.

Claims (12)

  1. 공정에 대한 제어 포인트 데이터들을 수집하는 제1 수집단계;
    제어 포인트들에 의해 결정되는 공정 데이터를 수집하는 제2 수집단계;
    제어 포인트 데이터들과 공정 데이터를 학습하여, 제어 포인트 데이터들과 공정 데이터 간의 상관관계를 추출하는 단계;를 포함하는 것을 특징으로 하는 공정 학습 방법.
  2. 청구항 1에 있어서,
    제어 포인트 데이터들은,
    시멘트 석회 소성 공정과 관련한 제어 포인트 데이터들이고,
    공정 데이터는,
    시멘트 석회 소성 공정 온도 데이터인 것을 특징으로 하는 공정 학습 방법.
  3. 청구항 2에 있어서,
    시멘트 석회 소성 공정과 관련한 제어 포인트 데이터들은,
    시간당 원료 투입량, 시간당 연료 투입량, 시간당 공기 투입량, 시간당 설비 제어량 중 적어도 하나를 포함하는 것을 특징으로 하는 공정 학습 방법.
  4. 청구항 1에 있어서,
    학습은,
    뉴럴 네트워크 학습인 것을 특징으로 하는 공정 학습 방법.
  5. 청구항 1에 있어서,
    뉴럴 네트워크의 첫 번째 레이어의 웨이트와 바이어스는,
    기지의 값으로 설정되는 것을 특징으로 하는 공정 학습 방법.
  6. 청구항 1에 있어서,
    공정에 대한 제어 포인트 데이터들을 입력받는 단계;
    상관관계를 기초로, 입력된 제어 포인트 데이터들로부터 공정 데이터를 예측하는 단계;
    예측 결과를 기초로, 입력된 제어 포인트 데이터들을 조절하는 단계;를 더 포함하는 것을 특징으로 하는 공정 학습 방법.
  7. 청구항 6에 있어서,
    추출단계는,
    제어 포인트 데이터들 각각과 계측 데이터 간의 상관관계들을 각각 추출하는 것을 특징으로 하는 공정 학습 방법.
  8. 청구항 7에 있어서,
    예측단계는,
    추출된 상관관계들을 기초로 선별된 주요 제어 포인트 데이터들로부터 계측 데이터를 예측하는 것을 특징으로 하는 공정 학습 방법.
  9. 청구항 8에 있어서,
    조절단계는,
    예측 결과를 기초로, 주요 제어 포인트 데이터들을 조절하는 것을 특징으로 하는 공정 학습 방법.
  10. 공정에 대한 제어 포인트 데이터들과 제어 포인트들에 의해 결정되는 공정 데이터를 수집하는 통신부; 및
    제어 포인트 데이터들과 공정 데이터를 학습하여, 제어 포인트 데이터들과 공정 데이터 간의 상관관계를 추출하는 프로세서;를 포함하는 것을 특징으로 하는 공정 학습 시스템.
  11. 공정에 대한 제어 포인트 데이터들을 입력받는 단계;
    공정에 대한 제어 포인트 데이터들과 제어 포인트들에 의해 결정되는 공정 데이터 간의 상관관계를 기초로, 입력된 제어 포인트 데이터들로부터 공정 데이터를 예측하는 단계;
    예측 결과를 기반으로 입력된 제어 포인트 데이터들을 조절하는 단계;를 포함하는 것을 특징으로 하는 공정 제어 방법.
  12. 공정에 대한 제어 포인트 데이터들을 입력받는 통신부; 및
    공정에 대한 제어 포인트 데이터들과 제어 포인트들에 의해 결정되는 공정 데이터 간의 상관관계를 기초로 입력된 제어 포인트 데이터들로부터 공정 데이터를 예측하고, 예측 결과를 기반으로 입력된 제어 포인트 데이터들을 조절하는 프로세서;를 포함하는 것을 특징으로 하는 공정 제어 시스템.
PCT/KR2016/009303 2016-08-23 2016-08-23 에너지 절감 방법 및 이를 적용한 fems WO2018038279A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160106798A KR20180022030A (ko) 2016-08-23 2016-08-23 뉴럴 네트워크 학습을 이용한 시멘트 석회 소성 공정 온도 예측 시스템 및 방법
KR10-2016-0106798 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018038279A1 true WO2018038279A1 (ko) 2018-03-01

Family

ID=61246110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009303 WO2018038279A1 (ko) 2016-08-23 2016-08-23 에너지 절감 방법 및 이를 적용한 fems

Country Status (2)

Country Link
KR (1) KR20180022030A (ko)
WO (1) WO2018038279A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110282645A (zh) * 2019-06-21 2019-09-27 广西大学 一种氧化铝焙烧过程操作参数优化方法
CN113219871A (zh) * 2021-05-07 2021-08-06 淮阴工学院 一种养护室环境参数检测系统
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102649791B1 (ko) * 2023-01-31 2024-03-21 주식회사 인이지 폴리머(Polymer)의 품질 예측 및 제어 시스템을 구현하기 위한 전자 장치 및 이의 제어 방법
KR102655731B1 (ko) * 2023-07-25 2024-04-16 주식회사 인이지 산업 공정 예측 및 제어 시스템을 구현하기 위한 전자 장치 및 이의 제어 방법
CN118026558A (zh) * 2024-01-25 2024-05-14 北川中联水泥有限公司 一种基于物联网的水泥煅烧对流循环抽风监测管理系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242503A (ja) * 1998-02-25 1999-09-07 Hitachi Ltd プラント運転制御支援システム
US20040029299A1 (en) * 2002-07-29 2004-02-12 Pasadyn Alexander J. Dynamic targeting for a process control system
JP2008171362A (ja) * 2007-01-15 2008-07-24 Nomura Research Institute Ltd システム設計支援装置
KR20150043170A (ko) * 2013-10-14 2015-04-22 주식회사 포스코아이씨티 에너지 관리 시스템 및 에너지 관리 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242503A (ja) * 1998-02-25 1999-09-07 Hitachi Ltd プラント運転制御支援システム
US20040029299A1 (en) * 2002-07-29 2004-02-12 Pasadyn Alexander J. Dynamic targeting for a process control system
JP2008171362A (ja) * 2007-01-15 2008-07-24 Nomura Research Institute Ltd システム設計支援装置
KR20150043170A (ko) * 2013-10-14 2015-04-22 주식회사 포스코아이씨티 에너지 관리 시스템 및 에너지 관리 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, MIN GOO ET AL.: "Fuel Consumption Prediction Model of Vehicle Using Neural Networks", PROCEEDINGS OF INFORMATION AND CONTROL SYMPOSIUM, October 2010 (2010-10-01), pages 167 - 168 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11875371B1 (en) 2017-04-24 2024-01-16 Skyline Products, Inc. Price optimization system
CN110282645A (zh) * 2019-06-21 2019-09-27 广西大学 一种氧化铝焙烧过程操作参数优化方法
CN113219871A (zh) * 2021-05-07 2021-08-06 淮阴工学院 一种养护室环境参数检测系统

Also Published As

Publication number Publication date
KR20180022030A (ko) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2018038279A1 (ko) 에너지 절감 방법 및 이를 적용한 fems
WO2018106005A1 (ko) 뉴럴 네트워크를 이용한 질병의 진단 시스템 및 그 방법
CN1224720C (zh) 一种利用智能控制系统控制高炉冶炼的方法
WO2023287064A1 (ko) 이상 데이터 자동 검출 및 자동 라벨링 기술을 이용한 학습 데이터베이스 구축 방법 및 시스템
CN108763550B (zh) 高炉大数据应用系统
CN105925750A (zh) 一种基于神经网络的炼钢终点预测方法
WO2020106018A1 (ko) 가열로 모니터링 시스템 및 방법
CN108647481A (zh) 一种回转窑烧成带温度软测量方法
WO2021230660A1 (ko) 크라우드소싱 기반 프로젝트의 기능요소 및 난이도에 기반한 작업자 풀 자동 생성 방법 및 장치
US20050137995A1 (en) Method for regulating a thermodynamic process by means of neural networks
CN1403594A (zh) 智能控制高炉冶炼的系统
CN112633292A (zh) 一种金属表面氧化层温度测量方法
WO2024014789A1 (ko) 차트축감지방법 및 장치
WO2015020361A1 (ko) 페트리넷과 발사 추천기에 기반한 최적화 시스템 및 구현 방법
CN117093822A (zh) 基于产业知识图谱的产业大脑数据分析平台
Flotzinger et al. Building inspection toolkit: Unified evaluation and strong baselines for damage recognition
WO2015141871A1 (ko) 능동형 다차원 건설 공정 관리 방법
JP6341550B1 (ja) 工事現場画像判定装置及び工事現場画像判定プログラム
CN114236104B (zh) 游离氧化钙测量方法、装置、设备、介质及产品
CN115482196A (zh) 一种基于多源信息融合的烧结混料水分在线软测量方法及系统
JP7466823B2 (ja) プロセス管理の支援装置、支援方法、支援プログラムおよび支援システム
Trofimov et al. Generalized structure of an intelligent control system for technological objects and experience of its use
WO2023101182A1 (ko) 신재료를 추천하는 강화된 리버스 학습 방법 및 시스템
US12050441B2 (en) Method for controlling a process within a system, particularly a combustion process in a boiler or furnace
WO2017111539A1 (ko) 철강공정 수식모델 관리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914258

Country of ref document: EP

Kind code of ref document: A1