WO2018037833A1 - ポリ-ガンマ-グルタミン酸の生産方法 - Google Patents
ポリ-ガンマ-グルタミン酸の生産方法 Download PDFInfo
- Publication number
- WO2018037833A1 WO2018037833A1 PCT/JP2017/027488 JP2017027488W WO2018037833A1 WO 2018037833 A1 WO2018037833 A1 WO 2018037833A1 JP 2017027488 W JP2017027488 W JP 2017027488W WO 2018037833 A1 WO2018037833 A1 WO 2018037833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bacillus subtilis
- pga
- glutamic acid
- medium
- concentration
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/74—Synthetic polymeric materials
- A61K31/785—Polymers containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/742—Spore-forming bacteria, e.g. Bacillus coagulans, Bacillus subtilis, clostridium or Lactobacillus sporogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/88—Polyamides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/96—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
- A61K8/99—Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from microorganisms other than algae or fungi, e.g. protozoa or bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/07—Bacillus
- C12R2001/125—Bacillus subtilis ; Hay bacillus; Grass bacillus
Definitions
- the present invention relates to a method for producing poly-gamma-glutamic acid and Bacillus subtilis used therefor.
- Poly-gamma-glutamic acid (also referred to as “ ⁇ -polyglutamic acid”, hereinafter also referred to as “PGA” in this specification) is a glutamic acid carboxyl group and an ⁇ amino group that are linked by a peptide bond.
- High molecular compound. PGA is known as a viscous substance produced by Bacillus subtilis var. Natto and has recently attracted attention as a new polymer material due to various properties.
- Non-Patent Document 1 discloses that high molecular weight PGA having a molecular weight exceeding 2,000,000 has antitumor activity as compared with PGA having a molecular weight of 100,000. It is described as high.
- Non-Patent Document 2 describes that PGA having a molecular weight of 500,000 and a higher molecular weight of 2,000,000 has high lipid metabolism control activity.
- the microorganisms produce PGA, Bacillus (Bacillus) Bacillus subtilis is a bacteria, Bacillus natto that is related species, Bacillus subtilis, cheonggukjang (Bacillus subtilis var.
- Patent Literature 1 and Non-Patent Literature 3 describe that a Bacillus subtilis jungguchan strain having salt tolerance produces about 1,000,000 PGA. And this Bacillus subtilis jungguchan strain is reduced in molecular weight of produced PGA to about 10,000 to 200,000 under the condition that the sodium chloride concentration exceeds 10% (w / v). It is described.
- Patent Document 2 describes that PGA is produced by culturing a natto strain in a medium containing soy sauce cake, soy sauce brewed product, and the like containing sodium chloride. The Bacillus subtilis strain described in Patent Document 2 is described in Non-Patent Document 4 that the PGA-producing ability decreases as the concentration of sodium chloride contained in the medium increases.
- Natto bacteria produce PGA with an optical isomer ratio (D / L ratio) of glutamic acid of about 80/20 to 50/50.
- D / L ratio optical isomer ratio of glutamic acid
- foods containing Bacillus natto are abundant in Japan and their safety is guaranteed. Therefore, among the above strains, PGA produced by Bacillus natto is suitable for food, cosmetics or pharmaceutical applications.
- JP 2002-233391 A JP-A-8-242880
- the present invention is identified by accession number NITE BP-02276, accession number NITE BP-02277, accession number NITE BP-02278, accession number NITE BP-02279, accession number NITE BP-02280, or accession number NITE BP-02281
- the present invention relates to a method for producing PGA by culturing Bacillus subtilis.
- the present invention is identified by accession number NITE BP-02276, accession number NITE BP-02277, accession number NITE BP-02278, accession number NITE BP-02279, accession number NITE BP-02280, or accession number NITE BP-02281.
- Patent Documents 1 and 2 and Non-Patent Documents 3 and 4 can produce PGA.
- PGA with antitumor activity and lipid metabolism control activity and molecular weight exceeding 2,000,000 is highly viscous, high-molecular-weight PGA is efficiently produced in Bacillus bacteria and related species. It is difficult to do.
- a method for reducing the viscosity of the medium include a method of containing a salt such as sodium chloride contained in the medium at a high concentration.
- the produced PGA when the concentration of sodium chloride contained in the culture medium is increased in Bacillus bacteria or related species, the produced PGA generally has a low molecular weight or decreases productivity. Therefore, it has been difficult to produce PGA having a molecular weight exceeding 300,000 under high salt concentration conditions in Bacillus bacteria and related species.
- the present invention relates to providing a method for producing PGA, which can reduce the load on the production process of PGA and can produce high molecular weight PGA.
- the present invention also relates to providing Bacillus subtilis having high salt concentration tolerance and high molecular weight PGA producing ability under high salt concentration conditions.
- the present inventors diligently studied for the production method of PGA and the provision of Bacillus subtilis. As a result, Bacillus subtilis having high salt concentration tolerance and high molecular weight PGA production ability under high salt concentration conditions was found. And when this Bacillus subtilis was culture
- the Bacillus subtilis of the present invention has a high salt concentration tolerance and a high molecular weight PGA producing ability under high salt concentration conditions. Therefore, high molecular weight PGA can be produced by culturing the Bacillus subtilis of the present invention. Furthermore, by culturing the Bacillus subtilis of the present invention under a high salt concentration condition, PGA can be efficiently produced without imposing a load on the PGA production process.
- subtilis means a microorganism that can be classified as Bacillus subtilis and has PGA-producing ability from the bacteriological properties and the analysis result of the base sequence of 16S rRNA gene.
- the Bacillus subtilis of the present invention has a high salt concentration tolerance and a high molecular weight PGA producing ability under high salt concentration conditions. Therefore, the Bacillus subtilis of the present invention is classified as Bacillus natto. Under conditions of high salt concentration, PGA produced by Bacillus subtilis of the present invention has a higher molecular weight than PGA produced by conventional Bacillus natto. Furthermore, the Bacillus subtilis of this invention is excellent in tolerance with respect to a high concentration salt compared with the conventional Bacillus natto which has PGA production ability. High molecular weight PGA can be produced by culturing Bacillus subtilis of the present invention under appropriate conditions.
- a high molecular weight PGA can be produced without imposing a load on the PGA production process. Moreover, it can also be adjusted to a desired molecular weight by reducing the molecular weight of the obtained PGA.
- PGA molecular weight of the obtained PGA.
- PGA obtained by heat treatment under acidic conditions or treatment with PGA degrading enzyme is then used.
- the molecular weight of PGA can be adjusted to a desired range.
- “molecular weight” described in the present specification is synonymous with “weight average molecular weight”.
- the salt concentration notation “% (w / v)” or “M”, the medium component concentration notation “% (w / v)” or “(g / L)”, and the PGA concentration notation “(g / “L)” is the concentration at room temperature.
- the Bacillus subtilis of the present invention is a Bacillus subtilis having a high salt concentration tolerance, and is a Bacillus subtilis capable of growing in an LB medium in which the sodium chloride concentration is adjusted to 12% (w / v) (2.05 M equivalent, room temperature) or more. is there.
- known natto bacteria having PGA-producing ability do not have resistance to high salt concentration and cannot grow on LB medium having a sodium chloride concentration of 12% (w / v) or higher.
- the Bacillus subtilis of the present invention has a high salt concentration tolerance and can grow even in an LB medium having a sodium chloride concentration of 12% (w / v) or more.
- the upper limit of the sodium chloride concentration at which Bacillus subtilis of the present invention can grow is 16 to 17% (w / v) (equivalent to 2.74 to 2.91 M) under conditions using TSB medium, and under the conditions using LB medium. 15% (w / v) (corresponding to 2.57M).
- “being able to grow in an LB medium adjusted to a sodium chloride concentration of 12% (w / v) or higher” means that the number of inoculated cells is cultured under conditions where the sodium chloride concentration is 12% (w / v) or higher. Means to increase.
- “growth” can be relatively calculated by measuring the absorbance (OD600) of the culture solution before and after the culture and increasing the absorbance.
- the Bacillus subtilis of the present invention has a high molecular weight PGA producing ability. Specifically, when cultured under a high salt concentration condition with a sodium chloride concentration of 10% (w / v) (equivalent to 1.71 M, room temperature), it has the ability to produce PGA with a molecular weight of 300,000 or more.
- the molecular weight of PGA produced by the Bacillus subtilis of the present invention is more preferably 500,000 or more, more preferably 1,000,000 or more, 2,000,000 or more is more preferable, 5,000,000 or more is more preferable, and 10,000,000 or more is more preferable.
- the upper limit is usually 50,000,000.
- PGA having a molecular weight of 300,000 or more under high salt concentration conditions specifically means that it contains 10% (w / v) sodium chloride and is a nutrient source necessary for growth.
- PGA having a molecular weight of 300,000 or more is at least 0.1 g / L / 3 days, preferably 0.5 g / L / 3 days, more preferably 1. It means producing 0 g / L / 3 days or more, more preferably 5.0 g / L / 3 days or more.
- the medium to be used may or may not contain glutamic acid as a PGA substrate.
- the Bacillus subtilis of the present invention preferably has a 16S rRNA gene consisting of the base sequence represented by SEQ ID NO: 7 or 8.
- the Bacillus subtilis of the present invention preferably has a nucleotide sequence of 99.75% or more, more preferably 99.85% or more, more preferably 99.90% or more, with the nucleotide sequence represented by SEQ ID NO: 7 or 8.
- It preferably has a 16S rRNA gene consisting of a sequence.
- the Bacillus subtilis of the present invention is preferably 16S consisting of a base sequence that is deleted, substituted, inserted, or added, preferably 1 to 3, more preferably 1 base in the base sequence represented by SEQ ID NO: 7 or 8.
- the base sequence represented by SEQ ID NO: 7 is the base sequence of 16S rRNA gene possessed by Bacillus subtilis KSM-FFA610 strain.
- the base sequence represented by SEQ ID NO: 8 is the base sequence of 16S rRNA gene possessed by Bacillus subtilis KSM-FFB553 strain.
- the identity of the nucleotide sequence is determined in “BLAST” in the menu “Nucleotide” of the public database NCBI (National Center for Biotechnology Information, http://www.ncbi.nlm.gov/). It can be calculated using “Basic BLAST”.
- Genetyx-Win gene information processing software, manufactured by Genetics
- the homology of the base sequence can also be calculated by performing analysis with a unit size (k-tuple) of 6.
- the Bacillus subtilis of the present invention preferably has the mycological properties shown in Table 1 below.
- the Bacillus subtilis of the present invention is preferably Bacillus subtilis (1) or (2) shown below.
- the bacteriological properties described in Table 1 are shown, and the identity with the base sequence shown by SEQ ID NO: 7 and the base sequence shown by SEQ ID NO: 7 is preferably 99.75% or more, more preferably 99 .85% or more, more preferably 99.90% or more, or preferably 1 to 3, more preferably 1 base deletion, substitution, insertion or addition in the base sequence represented by SEQ ID NO: 7.
- Bacillus subtilis KSM-FFA610 strain was established on June 2, 2016, at the National Institute of Technology and Evaluation Technology for Microorganisms (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). Deposited under the deposit number NITE BP-02276.
- the Bacillus subtilis KSM-FFA610 strain was obtained by the present inventors in the applicant's laboratory (Tochigi Prefecture, Japan) around June 2012.
- Bacillus subtilis KSM-FFA631 strain was registered with NITE BP-02277 on June 2, 2016 at the Japan Institute for Product Evaluation Technology Patent Microorganism Depositary (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). As deposited.
- the Bacillus subtilis KSM-FFA631 strain was obtained by the present inventors in the applicant's laboratory (Tochigi Prefecture, Japan) around June 2012.
- Bacillus subtilis KSM-FFB406 strain was registered as NITE BP-02278 on June 2, 2016 at the Japan Institute for Product Evaluation Technology Patent Microorganism Depositary Center (2-5-8, Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). As deposited.
- Bacillus subtilis KSM-FFB406 strain was obtained by the present inventors in the applicant's laboratory (Tochigi Prefecture, Japan) around June 2013. Also, Bacillus subtilis KSM-FFB425 strain was registered with NITE BP-02279 on June 2, 2016 at the National Institute of Technology and Evaluation for Microorganisms (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture). As deposited. The Bacillus subtilis KSM-FFB425 strain was obtained by the present inventors in the applicant's laboratory (Tochigi Prefecture, Japan) around June 2013.
- Bacillus subtilis KSM-FFB540 strain has been registered with NITE BP-02280 on June 2, 2016 at the National Institute for Product Evaluation Technology Patent Microorganisms Deposit Center (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). As deposited.
- the Bacillus subtilis KSM-FFB540 strain was obtained by the present inventors in the applicant's laboratory (Tochigi Prefecture, Japan) around July 2013.
- Bacillus subtilis KSM-FFB553 strain was registered with the NITE BP-02281 as the accession number NITE BP-02281 on June 2, 2016 at the Patent Microorganism Depositary Center for Product Evaluation Technology (2-5-8, Kazusa Kamashi, Kisarazu City, Chiba Prefecture).
- the Bacillus subtilis KSM-FFB553 strain was obtained by the present inventors in the applicant's laboratory (Tochigi Prefecture, Japan) around July 2013.
- the Bacillus subtilis of the present invention is a wild-type microorganism, is classified as Bacillus subtilis, and has the ability to produce PGA, which is a characteristic of Bacillus natto.
- the Bacillus subtilis of the present invention can be isolated and obtained by performing the following methods and combinations thereof. Specifically, a microorganism that appears on the agar medium is obtained by suspending a commercially available food sample or an environmental sample such as soil in physiological saline, and applying it to the agar medium and subjecting it to stationary culture. can do. In the pharmaceutical or food PGA, the separation source is preferably a food sample. Microorganisms are purified by painting the microorganisms on the agar medium on a new agar medium or diluting the above suspension sample with an appropriate diluent such as physiological saline and then on the agar medium. The method of making a single colony appear by smearing is mentioned.
- Bacillus subtilis As a method for efficiently obtaining Bacillus subtilis, since the Bacillus subtilis is a spore fungus, the above-mentioned sample is heat-treated in advance, a method utilizing differences in assimilation of nutrient sources such as sugar, and production of viscous substances around the colony The method of confirming is mentioned. Moreover, as a method for obtaining microorganisms having high salt concentration tolerance, a method of isolating microorganisms in advance on an agar medium containing a high concentration of salt, and good growth on a liquid medium containing a high concentration of salt are shown. For example, a method for selecting microorganisms.
- a method for obtaining a microorganism that does not require glutamic acid for PGA production a method for obtaining a microorganism that forms a viscous colony in an agar medium without glutamic acid, culture using a liquid medium without glutamic acid. And a method for obtaining a microorganism that produces high molecular weight PGA in a culture solution.
- the PGA production method of the present invention produces PGA using the Bacillus subtilis of the present invention described above.
- the Bacillus subtilis of the present invention has resistance to high-concentration salts as compared to conventional Bacillus natto. Therefore, in order to produce PGA using the Bacillus subtilis of the present invention, a medium having a higher salt concentration than usual can be used.
- a polymer electrolyte becomes a polymer ion in an aqueous solution and dissociates from a counter ion. Due to this dissociation, a strong electrostatic field is generated, and counterions agglomerate in the vicinity by this electrostatic force. As a result, the counter ion activity is markedly reduced.
- the form of single-stranded polymer ions is mainly governed by electrostatic interaction, and it is assumed that significant shrinkage occurs due to an increase in salt concentration (Masashi Kawaguchi, Polymer, Vol. 53, p. 716). -718, 2004). Therefore, also in the behavior of the polymer electrolyte PGA in the aqueous solution, the viscosity of the aqueous solution can be reduced by increasing the salt concentration in the medium. In addition, a liquid with high viscosity and low fluidity reduces the efficiency of movement of dissolved oxygen molecules, so more aeration and agitation are necessary to ensure the oxygen supply capacity necessary for the growth of aerobic microorganisms. Occurs.
- the Bacillus subtilis of the present invention is cultured in an appropriate medium, and the PGA produced outside the cells is recovered from the medium.
- a medium containing saccharides such as glycerin, glucose, fructose, maltose, sucrose, xylose, mannose, galactose and starch as a carbon source for producing PGA can be used.
- the culture medium which contains various organic acids, such as a citric acid and an acetic acid, or its salt, glutamic acid or its salt, etc. as a carbon source for producing PGA can be used.
- a carbon source for producing PGA one of the carbon sources may be used, or two or more thereof may be used in combination.
- the medium used in the method for producing PGA of the present invention may contain various natural products such as soybean protein, nitrogen sources such as amino acids, polypeptone, tryptone, ammonium chloride, ammonium sulfate, ammonium nitrate and urea.
- nitrogen sources such as amino acids, polypeptone, tryptone, ammonium chloride, ammonium sulfate, ammonium nitrate and urea.
- nitrogen sources such as amino acids, polypeptone, tryptone, ammonium chloride, ammonium sulfate, ammonium nitrate and urea.
- nitrogen sources such as amino acids, polypeptone, tryptone, ammonium chloride, ammonium sulfate, ammonium nitrate and urea.
- one of the nitrogen sources may be used, or two or more thereof may be used in combination.
- the medium used in the present invention may be a synthetic medium or a natural medium.
- glutamic acid or a salt thereof can be added to the medium.
- the concentration of glutamic acid or a salt thereof in the medium can be set as appropriate.
- the concentration of glutamic acid or its salt in the medium is preferably 0.005 g / L or more, more preferably 0.05 g / L or more, more preferably 0.1 g / L or more, and 5 g / L or more is more preferable.
- the upper limit is preferably 600 g / L or less, more preferably 500 g / L or less, more preferably 400 g / L or less, and more preferably 300 g / L from the viewpoint of avoiding the precipitation of glutamic acid and other medium components in the medium. The following is more preferable.
- the Bacillus subtilis of the present invention can produce PGA using an inorganic nitrogen source and a substance other than glutamic acid such as glucose and glycerin as a carbon source even in the absence of glutamic acid.
- Glutamic acid can be produced by fermentation using biomass as a raw material, and is used as a food material or feed.
- Microorganisms that can efficiently produce PGA, which is a useful polymer material without using glutamic acid as a raw material, are beneficial from the viewpoint of avoiding competition with food or from the viewpoint of industrial production costs. Conceivable.
- Bacillus subtilis of the present invention in a medium that does not contain glutamic acid and contains an inexpensive nitrogen source other than glutamic acid and a carbon source to produce PGA does not compete with food production, and from the viewpoint of production cost preferable.
- the type of salt contained in the medium can be set as appropriate.
- Examples thereof include sodium chloride and potassium chloride which are monovalent metal salts, and calcium chloride, magnesium chloride, calcium carbonate, magnesium carbonate, calcium sulfate and magnesium sulfate which are divalent metal salts.
- the salt concentration in a culture medium can be set suitably.
- a monovalent metal salt 0.01M or more is preferable, 0.1M or more is more preferable, 0.5M or more is more preferable, and 1.0M or more is more preferable.
- the upper limit is preferably a concentration that does not inhibit cell growth or PGA production, specifically 2.5 M or less, more preferably 2.0 M or less, and even more preferably 1.75 M or less.
- 0.01M or more is preferable, 0.1M or more is more preferable, 0.5M or more is more preferable, and 1.0M or more is more preferable.
- the upper limit is preferably a concentration that does not inhibit cell growth or PGA production, specifically 2.0 M or less, more preferably 1.75 M or less, and more preferably 1.5 M or less.
- cultivation can be made into a desired range by adjusting the salt concentration in a culture medium.
- the medium viscosity can be measured by a B-type viscometer suitable for measuring the viscosity of a non-Newtonian liquid.
- the culture conditions for the Bacillus subtilis can be appropriately selected depending on the Bacillus subtilis used.
- the optimum temperature is preferably 20 ° C. or higher, preferably 25 ° C. or higher, more preferably 30 ° C. or higher.
- the upper limit is preferably 50 ° C., more preferably 45 ° C., more preferably 40 ° C.
- the optimum pH is preferably 5 or more, preferably 5.5 or more, more preferably 6.5 or more.
- the upper limit is preferably 8, more preferably 7.5, and more preferably 7.
- the culture time is 0.5 days or more, preferably 1 day or more, more preferably 3 days or more after inoculation.
- the culture method is not particularly limited, and examples include shaking culture, stirring culture, aeration culture, and stationary culture.
- the method for removing the bacterial cells is not particularly limited, and examples thereof include a centrifugal separation method, a removal method using microfiltration and an ultrafiltration membrane, a sedimentation removal using a flocculant, and a dialysis method. Moreover, you may use combining these methods suitably. Moreover, there is no restriction
- the target PGA can be isolated and recovered.
- the Bacillus subtilis of the present invention has excellent PGA productivity even under conditions of high salt concentration, and can produce high molecular weight PGA.
- the production amount of PGA according to the present invention is preferably 0.1 g / 3 days or more, more preferably 0.5 g / 3 days or more, more preferably 1.0 g / 3 days or more, and 5.0 g / 3 per liter of the medium. More than a day is more preferable.
- Bacillus subtilis of the present invention When the Bacillus subtilis of the present invention is cultured under conditions of a sodium chloride concentration of 7.3% (w / v) (equivalent to 1.25 M) such that the productivity of PGA in the Bacillus natto standard strain is reduced, In a condition containing 8% (w / v) of sodium glutamate monohydrate, a production amount of 10 g / 3 days or more per liter of the medium is desirable.
- the Bacillus subtilis of the present invention produces high molecular weight PGA under conditions where the salt concentration is 0 to less than 10% (w / v). In addition, the Bacillus subtilis of the present invention can produce an equivalent high molecular weight PGA even under conditions where the salt concentration is 10% or more (w / v).
- the molecular weight of PGA produced when the Bacillus subtilis of the present invention is cultured under conditions where the sodium chloride concentration is 10% (w / v) or more is 300,000 or more, preferably 500,000 or more, more preferably It is 1,000,000 or more, more preferably 2,000,000 or more, more preferably 5,000,000 or more, more preferably 10,000,000 or more.
- the upper limit is 50,000,000, preferably 40,000,000, more preferably 35,000,000.
- the PGA produced by the present invention can be used for various applications such as cosmetics, pharmaceuticals, foods, water purification agents, water retention materials, thickeners and the like.
- the Bacillus subtilis of the present invention is classified as Bacillus natto.
- PGA which Bacillus subtilis of this invention produces is high molecular weight compared with PGA which other microorganisms produce. Therefore, the PGA produced by the Bacillus subtilis of the present invention can be suitably used for applications such as cosmetics, pharmaceuticals and foods having antitumor activity and lipid metabolism control activity.
- the present invention further discloses the following method and Bacillus subtilis.
- the Bacillus subtilis has a sodium chloride concentration of 12% (w / v) (corresponding to 2.05M, room temperature) or more, preferably 12% (w / v) or more and 16 to 17% (w / v) or less. Preferably, it has a high salt concentration tolerance capable of growing in an LB medium adjusted to 12% (w / v) or more and 15% (w / v) or less, and a sodium chloride concentration of 10% (w / v) (1.71M
- the method according to ⁇ 1>, wherein the PGA-producing ability has a weight-average molecular weight of 300,000 or more when cultured under the conditions of substantially room temperature.
- the PGA produced by Bacillus subtilis has a weight average molecular weight of 300,000 or more, preferably 500,000 or more, more preferably 1 , 000,000 or more, more preferably 2,000,000 or more, more preferably 5,000,000 or more, more preferably 10,000,000 or more, and preferably 50,000,000 or less.
- the Bacillus subtilis When the Bacillus subtilis is cultured under a condition where the sodium chloride concentration is 10% (w / v) or more, the Bacillus subtilis has a PGA content of 0.1 g / L / 3 days or more, preferably 0.5 g / L / The method according to any one of ⁇ 1> to ⁇ 3>, wherein the production is performed for 3 days or more, more preferably 1.0 g / L / 3 days or more, more preferably 5.0 g / L / 3 days or more.
- ⁇ 5> The identity of the Bacillus subtilis with the nucleotide sequence represented by SEQ ID NO: 7 or 8, preferably 99.75% or more, more preferably 99.85% or more, with the nucleotide sequence represented by SEQ ID NO: 7 or 8. More preferably 99.90% or more of the base sequence, or preferably 1 to 3, more preferably 1 base deletion, substitution, insertion or addition in the base sequence represented by SEQ ID NO: 7 or 8.
- ⁇ 6> The method according to any one of ⁇ 1> to ⁇ 5>, wherein the Bacillus subtilis exhibits the mycological properties described in Table 1.
- ⁇ 7> At least one selected from the group consisting of glycerin, glucose, fructose, maltose, sucrose, xylose, mannose, galactose, starch, citric acid or a salt thereof, acetic acid or a salt thereof, and glutamic acid or a salt thereof, preferably The Bacillus subtilis is cultured in a medium containing, as a carbon source, at least one selected from the group consisting of glycerin, glucose, maltose, and glutamic acid or a salt thereof, according to any one of ⁇ 1> to ⁇ 6> above Method.
- ⁇ 8> The method according to any one of ⁇ 1> to ⁇ 7>, wherein the Bacillus subtilis is cultured in a medium containing glutamic acid or a salt thereof.
- concentration of glutamic acid or a salt thereof in the medium is 0.005 g / L or more, preferably 0.05 g / L or more, more preferably 0.1 g / L or more, more preferably 0.5 g / L or more.
- the method according to the above ⁇ 8> which is 600 g / L or less, preferably 500 g / L or less, more preferably 400 g / L or less, and more preferably 300 g / L or less.
- ⁇ 10> The method according to any one of ⁇ 1> to ⁇ 7>, wherein the Bacillus subtilis is cultured in the absence of glutamic acid.
- the Bacillus subtilis is cultured in a medium containing at least one salt selected from the group consisting of magnesium chloride.
- the salt is a monovalent metal salt, and the concentration of the salt in the medium is 0.1 M or more, more preferably 0.5 M or more, more preferably 1.0 M or more, and preferably 2.0 M.
- the salt is a divalent metal salt, and the concentration of the salt in the medium is 0.1 M or more, more preferably 0.5 M or more, more preferably 1.0 M or more, and preferably 2.0 M.
- the method according to the above ⁇ 11> or ⁇ 12> which is more preferably 1.75M or less, more preferably 1.5M or less.
- ⁇ 15> The method according to any one of ⁇ 1> to ⁇ 14>, wherein the culture period of the Bacillus subtilis is 0.5 days or longer, preferably 1 day or longer, more preferably 3 days or longer.
- the Bacillus subtilis is cultured, and 0.1 g / 3 days or more, preferably 0.5 g / 3 days or more, more preferably 1.0 g / 3 days or more, more preferably 5.0 g / day, per liter of the medium.
- the weight average molecular weight of the PGA to be produced is 300,000 or more, preferably 500,000 or more, more preferably 1,000,000 or more, more preferably 2,000,000 or more, more preferably 5, ⁇ 16> description above, which is 000,000 or more, more preferably 10,000,000 or more, and 50,000,000 or less, preferably 40,000,000 or less, more preferably 35,000,000 or less. the method of.
- the weight average molecular weight is 300,000 or more, preferably 500,000 or more, more preferably 1,000,000 or more, more preferably Produces PGA of 2,000,000 or more, more preferably 5,000,000 or more, more preferably 10,000,000 or more, and preferably 50,000,000 or less, ⁇ 18> or ⁇ B. subtilis according to 19>.
- PGA When PGA is cultured under conditions of sodium chloride concentration of 10% (w / v) or more, PGA is 0.1 g / L / 3 days or more, preferably 0.5 g / L / 3 days or more, more preferably 1
- the nucleotide sequence represented by SEQ ID NO: 7 or 8 and the identity with the nucleotide sequence represented by SEQ ID NO: 7 or 8 are preferably 99.75% or more, more preferably 99.85% or more, and most preferably 99.
- ⁇ 24> A method for adjusting the molecular weight of PGA, wherein the PGA produced by the method according to any one of ⁇ 1> to ⁇ 17> is reduced in molecular weight and adjusted to a desired molecular weight.
- Test Example 1 Method for Acquiring Spore-Forming Microorganisms About 5 g of food samples such as commercially available pickles, miso, fermented seasonings, or natto are aseptically collected in a 15 mL conical tube (product code 352096, manufactured by BD (Becton Dickinson) Falcon). Then, a 1% (w / v) sodium chloride aqueous solution (sterilized) of twice the weight was added to this sample. These were pressed against the vibration surface of a touch mixer (MT-31 type, manufactured by Yamato Kagaku), suspended so as to be mixed uniformly, and the sample was subjected to a heat treatment at 80 ° C. for 10 minutes.
- MT-31 type manufactured by Yamato Kagaku
- LB agar medium sodium chloride shown in Tables 3 to 6
- the LB agar medium (LB + 10% NaCl medium) adjusted to a final concentration of 10%
- the modified GAM agar medium (trade name: “Nissui”, manufactured by Nissui Pharmaceutical), and the M + Yex agar medium) were smeared.
- These agar mediums were subjected to static culture at 30 ° C. for 2 to 5 days, and the growth and morphology of microorganisms on the agar medium were observed.
- Test Example 2 Selection method for Bacillus subtilis (1) The strain obtained in Test Example 1 (preserved frozen at ⁇ 80 ° C.) was streaked on a LB agar medium using a sterilized platinum ear (product code 254410, manufactured by Nunc). These were subjected to stationary culture at 30 ° C. for 1 day, and the growth of each strain was confirmed visually. Next, each strain grown on the LB agar medium was inoculated into a M + Yex agar medium using a pre-sterilized toothpick, and this was subjected to stationary culture at 30 ° C. for 1 day, and the growth of each strain was visually confirmed. Was done.
- the strains grown on the M + Yex agar medium were inoculated to the M / glucose utilization determination plate shown in Table 7 and the M / tagatose utilization determination plate shown in Table 8, respectively, at 37 ° C. for 1 to 3 days.
- the sample was subjected to stationary culture.
- the growth on the assimilation determination plate is visually observed, colony formation as an index of growth is present in the M / glucose utilization determination plate, and colony formation is observed in the M / tagatose utilization determination plate.
- Bacterial strains with no bacterium were selected as candidate strains of Bacillus subtilis.
- Test Example 3 Selection method for Bacillus subtilis (2) PCR was performed using the glycerol stock sample prepared in Test Example 1 diluted 30-fold with 1 mM TE buffer (pH 8.0) as a template, using primer 27f and primer 1525r shown in Table 2, and 16S A DNA fragment having an rRNA gene region of about 1.5 kb was amplified.
- TaKaRa LA Taq manufactured by Takara Bio Inc.
- the template DNA was denatured at 95 ° C. for 5 minutes, followed by 30 cycles of 95 ° C. for 1 minute, 55 ° C. for 30 seconds, 72 ° C. for 2 minutes, and constant temperature at 72 ° C. for 2 minutes.
- the DNA base sequence of 550 bp was determined for the obtained 16S rRNA gene region DNA fragment of about 1.5 kb using the primer 27f shown in Table 2.
- Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) was used, and the samples were prepared according to the attached protocol. Montage SEQ kit (manufactured by MILLIPORE) was used for sample purification before analysis. Subsequently, the prepared sequence sample was subjected to sequence analysis using a DNA sequencer (trade name: ABI 3100 Genetic Analyzer, manufactured by Applied Biosystems) to determine the base sequence.
- Sequence homology search uses “Basic BLAST” in “BLAST” in the menu “Nucleotide” of the public database NCBI (National Center for Biotechnology Information, http://www.ncbi.nlm.gov/) “Nucleotide blast” was selected from the BLAST program.
- a homology search was performed by specifying "Reference genomic sequences (refseq_genomics)" as the database to be searched and "Highly similar sequences (megablast)” as the selection program.
- Bacillus subtilis was the most homologous strain in this test example, and the above sequence was determined 550 bp and the corresponding sequence of Bacillus subtilis standard strain ( Bacillus subtilis DSM 10 strain). A strain having a homology of 98.9% or more was selected as a Bacillus subtilis candidate strain.
- Test Example 4 Selection Method for Bacillus subtilis that Produces PGA Under Glutamic Acid-Free Conditions From the cryopreserved sample estimated as Bacillus subtilis in Test Examples 2 and 3, frozen bacteria using a sterilized platinum ear (product code 254410, manufactured by Nunc) The body was collected, inoculated into 5 mL of LB liquid medium, and subjected to shaking culture at 30 ° C. for 24 hours.
- PGA contained in the culture supernatant was quantified by the method shown in Measurement Example 1 below.
- a strain in which an elution fraction of a polymer substance having UV 210 nm absorption derived from PGA was detected was selected as a Bacillus subtilis candidate strain capable of producing PGA without adding glutamic acid. .
- Test Example 5 Selection method of Bacillus subtilis having high salt concentration tolerance (1) Inferior Bacillus subtilis in Test Examples 2 and 3, and a cryopreserved sample of the strain selected as a PGA-producing Bacillus subtilis candidate strain in Test Example 4, and an independent administrative agency prepared in the same procedure as in Test Example 1 LB + 10 so that a cryopreserved sample of a known natto standard strain (NBRC 16449 strain, NBRC 3336 strain, NBRC 3936 strain) obtained from National Institute for Product Evaluation Technology is 1 ⁇ 10 3 to 1 ⁇ 10 4 cells / mL % NaCl liquid medium was inoculated and subjected to shaking culture at 37 ° C. for 24 hours.
- a known natto standard strain NBRC 16449 strain, NBRC 3336 strain, NBRC 3936 strain
- the culture solution sample is appropriately diluted with a 1% (w / v) aqueous sodium chloride solution, and a growth index is measured using a spectrophotometer (trade name: U-2900, manufactured by Hitachi High-Technologies Corporation).
- the absorbance at 600 nm (OD600) of the culture broth was measured.
- OD600 nm
- 6 strains in which an increase in absorbance was observed were selected as Bacillus subtilis strains having high salt concentration tolerance and high molecular weight PGA production ability under high salt concentration conditions.
- Test example 6 Evaluation test method of growth limit salt concentration of Bacillus subtilis candidate strains Natto bacillus NBRC 3336 strain as a standard strain and Bacillus subtilis candidate strains under the same conditions as in Test Example 4 using LB liquid medium was prepared. Next, the final concentration of sodium chloride is 10% (w / v), 12% (w / v), 13% (w / v), 14% (w / v), 15% (w / v), and An LB medium having a concentration of 16% (w / v) was prepared, and the seed culture solution was inoculated so that the initial absorbance was 0.05, followed by shaking culture at 37 ° C. for 2 days.
- the culture solution is collected over time, and the culture solution sample is appropriately diluted with a sodium chloride aqueous solution (sodium chloride aqueous solution having the same concentration as the medium used), and a spectrophotometer (U-2900, manufactured by Hitachi High-Technologies Corporation). ) was used to measure the absorbance at 600 nm (OD600) of the culture medium serving as an indicator of growth.
- a sodium chloride aqueous solution sodium chloride aqueous solution having the same concentration as the medium used
- a spectrophotometer U-2900, manufactured by Hitachi High-Technologies Corporation.
- Test Example 7 Confirmation Test for Growth Limit Salt Concentration of Selected Bacillus subtilis
- a seed culture of Bacillus subtilis candidate strain having high salt concentration tolerance was prepared under the same conditions as in Test Example 5 using LB + 10% NaCl liquid medium.
- the final concentration of sodium chloride is 10% (w / v), 12% (w / v), 14% (w / v), 15% (w / v), 16% (w / v), 17
- the TSB medium produced by Trypticase Soy broth, Becton, and Dickinson Company) in% (w / v), 18% (w / v), 19% (w / v), or 20% (w / v)
- the seed culture solution was inoculated so that the initial absorbance was 0.1 and subjected to shaking culture at 37 ° C.
- the culture solution sample was collected on the second day of the culture, diluted appropriately with a 10% (w / v) aqueous sodium chloride solution, and a spectrophotometer (U-2900, manufactured by Hitachi High-Technologies Corporation). Was used to measure the absorbance at 600 nm (OD600) of the culture solution serving as an indicator of growth.
- the growth limit concentration of the strain was determined up to the salt concentration condition where the absorbance of the culture solution on the second day of culture was at least twice that at the time of seed culture inoculation.
- Test Example 8 Confirmation Test of Optimum Salt Concentration of Selected Bacillus subtilis
- a Bacillus subtilis candidate strain having a high salt concentration tolerance was prepared using LB + 10% NaCl liquid medium under the same conditions as in Test Example 5. .
- sodium chloride is not added, final concentration 1% (w / v), 2 (w / v), 3 (w / v), 4 (w / v), 5 (w / v), 6 (w / V), 7% (w / v), 8% (w / v), and 10% (w / v) TSB media were prepared, and this was added to a 96-well round bottom microplate (model number 3870-096, 200 ⁇ L of each well was dispensed into IWAKI.
- the seed culture solution was inoculated so that the initial absorbance of each well would be 0.05, and using a biomicroplate reader (HiTS-S2 type, Synics) for 24 hours of shaking culture at 37 ° C. Provided.
- the biomicroplate reader was shaken at 150 rpm, and the absorbance at 600 nm (OD600) was measured over time at intervals of 30 minutes using an interference filter. From the obtained absorbance value, the increase in absorbance per unit time was calculated, and this was used as the cell growth rate ( ⁇ OD600 / hr) to determine the maximum cell growth rate during the culture test.
- the salt concentration from the maximum value (maximum value ⁇ 0.2) of the cell growth rate ( ⁇ OD600 / hr) was determined as the optimum growth salt concentration.
- Example 1 Characteristics of selected Bacillus subtilis Bacillus subtilis strains having high salt concentration tolerance and producing PGA obtained by the methods shown in Test Examples 1 to 8 (Bacillus subtilis KSM-FFA610 strain, Bacillus subtilis KSM-FFA631 strain) Tables 9 to 13 show the growth characteristics of Bacillus subtilis KSM-FFB406, Bacillus subtilis KSM-FFB425, Bacillus subtilis KSM-FFB540, and Bacillus subtilis KSM-FFB553).
- Table 9 shows the results of Test Example 5. As shown in Table 9, when cultured in an LB liquid medium containing a high concentration of sodium chloride, the absorbance of the control Bacillus natto standard strain was below the detection limit and no growth was observed. In contrast, among the Bacillus subtilis strains selected in Test Examples 2 to 4, strains having an absorbance (OD600) exceeding 0.5 (corresponding to 1 ⁇ 10 7 cells / mL) were found under the test conditions shown in Test Example 5. From the above results, it was confirmed that the Bacillus subtilis strain of the present invention is a high salt concentration resistant strain that can be grown at a salt concentration that cannot be grown with a standard strain of Bacillus natto.
- the absorbance of the control natto standard strain (NBRC 3336 strain) was about 0.5.
- all the Bacillus subtilis strains of the present invention exhibited numerical values exceeding 2.0.
- the control Bacillus natto standard strain shows no cell growth, whereas the Bacillus subtilis strain of the present invention has a numerical value exceeding 0.5. showed that. From the above results, it was confirmed that the Bacillus subtilis candidate strain of the present invention is a strain having higher salt concentration tolerance than the Bacillus natto standard strain.
- Table 12 shows the results of Test Example 7.
- the Bacillus subtilis strain of the present invention has an absorbance on the second day of culture, and the KSM-FFA631 and KSM-FFB406 strains have a final sodium chloride concentration of 16%.
- W / v KSM-FFB425, KSM-FFB540 and KSM-FFB553 were 17% (w / v), and KSM-FFA610 was 18% (w / v).
- the value was twice or more. From the above results, it was confirmed that the Bacillus subtilis strain of the present invention has a growth limit concentration of sodium chloride of 16 to 18% (w / v) in the growth limit salt concentration confirmation test using TSB medium.
- Table 13 shows the results of Test Example 8.
- the Bacillus subtilis strain of the present invention was added under conditions where sodium chloride concentration was not added to a final concentration of 6% (w / v) (room temperature) in a test of optimum salt concentration using TSB medium.
- the cell growth rate ( ⁇ OD600 / hr) was 0.3 to 0.5. From the above results, in the test for confirming the optimum salt concentration of Bacillus subtilis selected using the TSB medium of the Bacillus subtilis strain of the present invention, the optimum concentration of sodium chloride was 0-5 for the Bacillus subtilis KSM-FFA610 strain.
- Example 2 Bacteriological and bacterial species identification based on 16S rRNA gene base sequence analysis
- Bacillus subtilis strains Bacillus subtilis KSM-FFA610, Bacillus subtilis KSM-FFA631, Bacillus subtilis KSM-FFB406, Bacillus subtilis KSM-FFB425) Strains of Bacillus subtilis KSM-FFB540 and Bacillus subtilis KSM-FFB553).
- the results are shown in Table 14.
- the Bacillus subtilis strain the bacterial species identification based on the base sequence analysis of 16S rRNA gene was performed from the following measurement example 4. The results are shown in Table 15.
- Bacillus subtilis KSM-FFA610 strain was registered as NITE BP-02276 on June 2, 2016 at the National Institute of Technology and Evaluation for Patents Microbiology (2-5-8, Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). As deposited. Also, Bacillus subtilis KSM-FFA631 strain was registered with NITE BP-02277 on June 2, 2016 at the Japan Institute for Product Evaluation Technology Patent Microorganism Depositary (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). As deposited.
- Bacillus subtilis KSM-FFB406 strain was registered as NITE BP-02278 on June 2, 2016 at the Japan Institute for Product Evaluation Technology Patent Microorganism Depositary Center (2-5-8, Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). As deposited. Also, Bacillus subtilis KSM-FFB425 strain was registered with NITE BP-02279 on June 2, 2016 at the National Institute of Technology and Evaluation for Microorganisms (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture). As deposited.
- Bacillus subtilis KSM-FFB540 strain has been registered with NITE BP-02280 on June 2, 2016 at the National Institute for Product Evaluation Technology Patent Microorganisms Deposit Center (2-5-8 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture). As deposited. Furthermore, Bacillus subtilis KSM-FFB553 strain was registered with the NITE BP-02281 as the accession number NITE BP-02281 on June 2, 2016 at the Patent Microorganism Depositary Center for Product Evaluation Technology (2-5-8, Kazusa Kamashi, Kisarazu City, Chiba Prefecture). As deposited.
- Example 3 PGA productivity evaluation under high salt addition conditions (1) With the known natto standard strains (NBRC 3336 strain and NBRC 16449 strain) as controls, the Bacillus subtilis strains of the present invention (KSM-FFA610 strain, KSM-FFA631 strain, KSM-FFB406 strain, KSM-FFB425 strain, KSM-FFB540 strain) And KSM-FFB553 strain), PGA productivity under high salt concentration conditions was evaluated. Using a cryopreserved sample of the above strain shown in Test Example 1 and a cryopreserved sample of a Bacillus natto standard strain prepared in the same procedure, using an LB liquid medium under the same culture conditions as in Test Example 4, 30 ° C.
- PGA productivity evaluation medium medium composition: 8.0% glucose, 8.0% sodium glutamate monohydrate, 1.25% yeast extract, 1.0% ammonium sulfate, 0.2% magnesium sulfate heptahydrate, 0.003% manganese sulfate.4-5 hydrate, 0.7% dipotassium hydrogen phosphate, 0.35% potassium dihydrogen phosphate, and 7.3% Sodium chloride (equivalent to 1.25M) or 10.2% sodium chloride (equivalent to 1.75M)] was inoculated with 1% (v / v). This medium was subjected to shaking culture at 37 ° C. for 72 hours. After completion of the culture, PGA contained in the culture supernatant was quantified by the method described in Measurement Example 1 below. The results are shown in Table 16.
- the Bacillus subtilis strain of the present invention exhibits excellent PGA productivity even under conditions of high salt concentration, as compared with the Bacillus natto standard strain. Moreover, the Bacillus subtilis strain of the present invention can produce PGA even under conditions that contain a high concentration of sodium chloride that cannot grow with a standard strain of Bacillus natto and cannot produce PGA. From the above results, it was determined that the Bacillus subtilis of the present invention is a Bacillus subtilis having high salt concentration tolerance.
- Example 4 PGA productivity evaluation under high salt addition conditions (2) Using the Bacillus subtilis strain KSM-FFB553 of the present invention, PGA productivity was evaluated under the condition of a high concentration of monovalent metal salt.
- a seed culture solution was prepared in the same manner as in Test Example 4, and 30 mL of PGA productivity evaluation medium [medium composition: 8.0% glucose, 8.0% sodium glutamate monohydrate, 1.25%] Yeast extract, 1.0% ammonium sulfate, 0.2% magnesium sulfate 7 hydrate, 0.003% manganese sulfate 4-5 hydrate, 0.7% dipotassium hydrogen phosphate, 0.35% phosphorus Potassium dihydrogen acid and sodium chloride were inoculated in 1% (v / v) to 10.2% (equivalent to 1.75M) or 11.2% potassium chloride (equivalent to 1.5M)]. These were subjected to shaking culture at 37 ° C. for 72 hours. After completion of the culture, PGA contained in the culture supernatant was quantified by
- Example 5 Evaluation of PGA Productivity under High Salt Addition Conditions (3) Using the Bacillus subtilis strain KSM-FFB553 of the present invention, PGA productivity was evaluated under the condition of high concentration of divalent metal salt.
- a seed culture solution was prepared in the same manner as in Test Example 4, and 30 mL of PGA productivity evaluation medium [medium composition: 8.0% glucose, 8.0% sodium glutamate monohydrate, 1.25%] Yeast extract, 1.0% ammonium sulfate, 0.2% magnesium sulfate 7 hydrate, 0.003% manganese sulfate 4-5 hydrate, 0.7% dipotassium hydrogen phosphate, 0.35% phosphorus Potassium dihydrogen acid and 10.2% magnesium chloride hexahydrate (equivalent to 0.5M) or 7.4% calcium chloride dihydrate (equivalent to 0.5M)] to 1% (v / v ) Inoculated. These were subjected to shaking culture at 37 ° C. for 72 hours. After completion of the culture, PGA contained in the
- Example 6 Measurement of molecular weight of PGA (1) The molecular weight of PGA produced by the Bacillus subtilis strains of the present invention (KSM-FFA610 strain, KSM-FFA631 strain, KSM-FFB406 strain, KSM-FFB425 strain, KSM-FFB540 strain, and KSM-FFB553 strain) was measured.
- a seed culture solution was prepared in the same manner as in Test Example 5 and 30 mL of a productivity evaluation medium [medium composition: 8.0% glucose, 8.0% sodium glutamate monohydrate, 1.25% yeast] Extract, 1.0% ammonium sulfate, 0.2% magnesium sulfate, heptahydrate, 0.003% manganese sulfate, 4-5 hydrate, 0.7% dipotassium hydrogen phosphate, 0.35% phosphoric acid Potassium dihydrogen, 10.2% sodium chloride (equivalent to 1.75M)] was inoculated with 1% (v / v). This medium was subjected to shaking culture at 37 ° C. for 72 hours. After completion of the culture, the molecular weight of PGA contained in the supernatant of the culture solution was measured by the method described in Measurement Example 1 below. The results are shown in Table 19.
- the Bacillus subtilis strain of the present invention can produce high molecular weight PGA even under conditions where a high-concentration salt is added such that it cannot grow with the standard Bacillus natto strain. Furthermore, it was confirmed that a high molecular weight PGA can be produced by using the high salt concentration resistant strain of the present invention.
- Example 7 Measurement of molecular weight of PGA (2) Using the Bacillus subtilis strain KSM-FFB553 of the present invention shown in Example 1, the molecular weight of PGA produced under a high concentration of monovalent or divalent metal salt was evaluated.
- a seed culture solution was prepared in the same manner as in Test Example 4, and 30 mL of PGA productivity evaluation medium [medium composition: 8.0% glucose, 8.0% sodium glutamate monohydrate, 1.25%] Yeast extract, 1.0% ammonium sulfate, 0.2% magnesium sulfate 7 hydrate, 0.003% manganese sulfate 4-5 hydrate, 0.7% dipotassium hydrogen phosphate, 0.35% phosphorus Potassium dihydrogen acid and 11.2% potassium chloride (equivalent to 1.5M), 10.2% magnesium chloride hexahydrate (equivalent to 0.5M) or 7.4% calcium chloride dihydrate (0 .1M (v / v) was inoculated.
- Bacillus subtilis strain of the present invention can produce high molecular weight PGA under conditions where the monovalent or divalent metal salt is at a high concentration.
- Example 8 Evaluation of PGA Productivity under No Glutamic Acid Conditions
- Bacillus subtilis strains of the present invention KSM-FFA610 strain, KSM-FFA631 strain, KSM-FFB406 strain, KSM-FFB425 strain, KSM-FFB540 strain, and KSM-FFB553 strain
- KSM-FFA610 strain, KSM-FFA631 strain, KSM-FFB406 strain, KSM-FFB425 strain, KSM-FFB540 strain, and KSM-FFB553 strain was used to evaluate PGA productivity under conditions of high salt concentration and no addition of glutamic acid.
- a seed culture solution was prepared in the same manner as in Test Example 5, and this was added to 30 mL of a PGA productivity evaluation medium [medium composition: 8.0% glycerol, 0.5% yeast extract, 1.0% ammonium sulfate, 0.2 % Magnesium sulfate heptahydrate, 0.003% manganese sulfate.4-5 hydrate, 0.7% dipotassium hydrogen phosphate, 0.35% potassium dihydrogen phosphate, 7.3% sodium chloride ( 1.25M equivalent)] was inoculated with 1% (v / v). This medium was subjected to shaking culture at 37 ° C. for 72 hours. After completion of the cultivation, PGA contained in the culture supernatant was quantified by the method described in Measurement Example 1 below, and the molecular weight was measured. The results are shown in Table 21.
- Bacillus subtilis strain of the present invention can produce high molecular weight PGA even under the condition where glutamic acid is not added.
- PGA Meltachi Food Material
- concentration test a calibration curve was prepared using PGA (Meiji Food Material) with a molecular weight of 880,000.
- polyglutamic acids with different molecular weights Wako Pure Chemical Industries 1622-1411 and 162-21401; SIGMA-ALDRICH P-) whose weight average molecular weights were determined in advance using Pullulan Shodex STANDARD P-82 (Showa Denko). 4886 and P-4761; Meiji Food Materia (molecular weight 880,000)).
- the mixture was subjected to centrifugation at 3,000 rpm for 30 minutes (himac CF7D2 type, manufactured by Hitachi Koki Co., Ltd.) to collect the precipitate fraction.
- the obtained precipitate fraction was dissolved again in 2 mL of distilled water, and the precipitate fraction by the addition of ethanol was prepared again and collected.
- the collected sample was dissolved in 2 mL of distilled water, and 0.5 mL was transferred to a test tube with a screw cap (model number ST-13M, manufactured by JEOL Rika Glass), and 0.5 mL of concentrated hydrochloric acid was added. After stirring, nitrogen was sealed, and heat treatment was performed at 105 to 110 ° C. for 16 hours.
- the obtained hydrolyzed sample was appropriately diluted, and various amino acids in the sample were analyzed and glutamic acid was quantified using a fully automatic amino acid analyzer (L-8900, manufactured by Hitachi High-Technologies Corporation). Further, using an L-glutamic acid measurement kit (Yamasa Soy Sauce), the amount of L-glutamic acid was measured according to the method described in the protocol attached to the kit. In the measurement using a fully automatic amino acid analyzer, the total amount of optically active isomers (D / L) is obtained as a quantitative result, and the difference obtained by subtracting the quantitative result obtained from the L-glutamic acid measurement kit from this is the amount of D-glutamic acid. It was.
- the optical isomer ratio (D / L) of glutamic acid of the polymer substance recovered from the culture solution samples of KSM-FFA610 strain, KSM-FFB425 strain, KSM-FFB540 strain, and KSM-FFB553 strain was 68. / 32, 67/33, 69/31, and 67/33.
- the polymer substance in the culture supernatant was determined to be PGA.
- the D / L ratio of PGA produced by the selected Bacillus subtilis strain having high salt concentration tolerance of the present invention was equivalent to the D / L ratio of PGA produced by a known standard Bacillus natto strain.
- the obtained PGA sample (Mw 5,000 k) was dissolved in distilled water and a 1.25 M sodium chloride aqueous solution so as to be 4% (w / w) and 8% (w / w). About 40 mL of these were each transferred to a glass screw tube (model No. 7 or No. 8, Marum) or a polypropylene 50 mL centrifuge tube (model 227 261, manufactured by greiner bio-one) so as not to generate bubbles. Using a B type viscometer (TVB-15 type, manufactured by Toki Sangyo), sample temperature 20 to 25 ° C.
- TVB-15 type manufactured by Toki Sangyo
- each base sequence obtained was fragmented into one using GENETYX ATSQ ver2.01 (manufactured by Genetics).
- Sequence homology search uses “Basic BLAST” in “BLAST” in the menu “Nucleotide” of the public database NCBI (National Center for Biotechnology Information, http://www.ncbi.nlm.gov/) From the BLAST program, “nucleotide blast” was selected.
- the reference strain with the highest homology was selected by specifying “Reference genomic sequences (refseq_genomics) as the database to be searched and“ Highly similar sequences (megablast) ”as the selection program, followed by the 16S rRNA gene of the selected reference strain.
- the 16S rRNA gene sequence of the Bacillus subtilis candidate strain having a high salt concentration tolerance determined above is sequenced using GENETYX Ver.13 (Genetics). Homology analysis was performed and homology (%) was calculated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Cosmetics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
受託番号NITE BP-02276、受託番号NITE BP-02277、受託番号NITE BP-02278、受託番号NITE BP-02279、受託番号NITE BP-02280、又は受託番号NITE BP-02281で特定される枯草菌(Bacillus subtilis)を培養してポリ-ガンマ-グルタミン酸を生産する方法。
Description
本発明は、ポリ-ガンマ-グルタミン酸の生産方法、及びこれに用いる枯草菌(Bacillus subtilis)に関する。
ポリ-ガンマ-グルタミン酸(「γ-ポリグルタミン酸」とも呼称される。以下、本明細書において「PGA」ともいう。)は、グルタミン酸のγ位のカルボキシル基とα位のアミノ基がペプチド結合によって結合した高分子化合物である。PGAは、納豆菌(Bacillus subtilis var.natto)が産生する粘性物質として知られており、種々の性質から近年新たな高分子素材として注目されている。
高分子量のPGAが示す性質に関して、例えば、非特許文献1には、分子量が100,000のPGAと比較し、分子量が2,000,000を超えるような高分子量のPGAは、抗腫瘍活性が高いことが記載されている。また、非特許文献2には、分子量が500,000及びより高分子量の2,000,000のPGAが、高い脂質代謝制御活性を有することが記載されている。
高分子量のPGAが示す性質に関して、例えば、非特許文献1には、分子量が100,000のPGAと比較し、分子量が2,000,000を超えるような高分子量のPGAは、抗腫瘍活性が高いことが記載されている。また、非特許文献2には、分子量が500,000及びより高分子量の2,000,000のPGAが、高い脂質代謝制御活性を有することが記載されている。
PGAを産生する微生物としては、バチルス(Bacillus)属細菌である枯草菌、その近縁種である納豆菌、バチルス・サブティリス・チョングッチャン(Bacillus subtilis var. chungkookjang)、バチルス・リケニフォルミス(Bacillus licheniformis)、バチルス・アミロリケファシエンス(Bacillus amyloliquefaciens)、バチルス・メガテリウム(Bacillus megaterium)、バチルス・アンスラシス(Bacillus anthracis)、及びバチルス・ハロデュランス(Bacillus halodurans)、並びに好塩古細菌であるナトリアルバ・エジプチアキア(Natrialba aegyptiaca)が挙げられる。そして、これらの微生物が産生するPGAの生産量や分子量は、菌株の種類や培養条件によって異なることが知られている。
例えば、特許文献1や非特許文献3には、耐塩性を有するバチルス・サブティリス・チョングッチャン株が、1,000,000程度のPGAを生産することが記載されている。そして、このバチルス・サブティリス・チョングッチャン株は、塩化ナトリウム濃度が10%(w/v)を超える条件下では、生産されるPGAの分子量が10,000~200,000程度まで低分子化することが記載されている。
また、特許文献2には、塩化ナトリウムが含まれる醤油麹、醤油醸造物などを含有する培地で、納豆菌株を培養し、PGAを生産することが記載されている。特許文献2に記載されたバチルス・サブティリス株は、培地に含まれる塩化ナトリウム濃度が上昇するとPGA生産能が低下すると非特許文献4に記載されている。
例えば、特許文献1や非特許文献3には、耐塩性を有するバチルス・サブティリス・チョングッチャン株が、1,000,000程度のPGAを生産することが記載されている。そして、このバチルス・サブティリス・チョングッチャン株は、塩化ナトリウム濃度が10%(w/v)を超える条件下では、生産されるPGAの分子量が10,000~200,000程度まで低分子化することが記載されている。
また、特許文献2には、塩化ナトリウムが含まれる醤油麹、醤油醸造物などを含有する培地で、納豆菌株を培養し、PGAを生産することが記載されている。特許文献2に記載されたバチルス・サブティリス株は、培地に含まれる塩化ナトリウム濃度が上昇するとPGA生産能が低下すると非特許文献4に記載されている。
納豆菌は、グルタミン酸の光学異性体比(D/L比)が80/20~50/50程度のPGAを生産する。また納豆菌を含む食品は、日本国内では豊富に食され、その安全性が担保されている。よって、上記菌株のなかでも納豆菌が生産するPGAは、食品、化粧品、あるいは医薬品用途に適している。
The Chemical Record, 2005, vol. 5, p. 352-366
J. Microbiol. Biotechnol., 2011, vol.21, p. 766-775
Appl. Microbiol. Biotechnol., 2001, vol. 57, p. 764-769
Bioscience, Biotechnology, and Biochemistry, 1997, vol. 61(10), p. 1684-1687
本発明は、受託番号NITE BP-02276、受託番号NITE BP-02277、受託番号NITE BP-02278、受託番号NITE BP-02279、受託番号NITE BP-02280、又は受託番号NITE BP-02281で特定される枯草菌を培養してPGAを生産する方法に関する。
さらに本発明は、受託番号NITE BP-02276、受託番号NITE BP-02277、受託番号NITE BP-02278、受託番号NITE BP-02279、受託番号NITE BP-02280、又は受託番号NITE BP-02281で特定される枯草菌に関する。
本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
さらに本発明は、受託番号NITE BP-02276、受託番号NITE BP-02277、受託番号NITE BP-02278、受託番号NITE BP-02279、受託番号NITE BP-02280、又は受託番号NITE BP-02281で特定される枯草菌に関する。
本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
前述のように、特許文献1及び2、並びに非特許文献3及び4に記載の微生物は、PGAを生産することが可能である。しかし、抗腫瘍活性や脂質代謝制御活性を有する、分子量が2,000,000を超えるようなPGAは高粘性であるため、バチルス属細菌やその近縁種において、高分子量のPGAを効率良く生産することは困難である。
一方、PGAを効率よく生産するには、生産プロセスにおける負荷を軽減する必要がある。ここで、生産プロセスにおける負荷を軽減する手段の1つとして、培地の粘度を低減することが考えられる。粘度が低減すると、培養工程においては、酸素や基質の拡散効率が向上し、生産効率の向上が期待できる。さらに、分離回収工程においては、ろ過や遠心分離等の効率向上も期待される。
培地の粘度を低減する方法として、培地に含まれる塩化ナトリウムなどの塩を高濃度で含有させる方法が挙げられる。しかし、前述のように、バチルス属細菌やその近縁種において培地に含まれる塩化ナトリウムの濃度が上昇すると、生産されるPGAは一般的に低分子量化する、あるいは生産性が低下する。
よって、バチルス属細菌やその近縁種において、高塩濃度条件下で分子量が300,000を超えるようなPGAの生産は、これまで困難であった。
培地の粘度を低減する方法として、培地に含まれる塩化ナトリウムなどの塩を高濃度で含有させる方法が挙げられる。しかし、前述のように、バチルス属細菌やその近縁種において培地に含まれる塩化ナトリウムの濃度が上昇すると、生産されるPGAは一般的に低分子量化する、あるいは生産性が低下する。
よって、バチルス属細菌やその近縁種において、高塩濃度条件下で分子量が300,000を超えるようなPGAの生産は、これまで困難であった。
そこで本発明は、PGAの生産プロセスに対する負荷を軽減し、且つ、高分子量のPGAの生産が可能な、PGAの生産方法を提供することに関する。
また本発明は、高塩濃度耐性、及び高塩濃度条件下での高分子量のPGA生産能を有する枯草菌を提供することに関する。
また本発明は、高塩濃度耐性、及び高塩濃度条件下での高分子量のPGA生産能を有する枯草菌を提供することに関する。
本発明者らは、上記PGAの生産方法及び枯草菌の提供のために鋭意検討を行った。その結果、高塩濃度耐性、及び高塩濃度条件下での高分子量のPGA生産能を有する枯草菌を見出した。そして、この枯草菌を高塩濃度条件下で培養したとき、高分子量のPGA生産が実現できるとともに、PGAの生産プロセスに対する負荷を軽減できることを見出した。
本発明はこれらの知見に基づき完成されるに至ったものである。
本発明はこれらの知見に基づき完成されるに至ったものである。
本発明の枯草菌は、高塩濃度耐性、及び高塩濃度条件下での高分子量のPGA生産能を有する。
よって、本発明の枯草菌を培養することで、高分子量のPGAを生産することができる。さらに、本発明の枯草菌を高塩濃度条件下で培養することで、PGAの生産プロセスに対して負荷をかけることなく、PGAを効率よく生産することができる。
よって、本発明の枯草菌を培養することで、高分子量のPGAを生産することができる。さらに、本発明の枯草菌を高塩濃度条件下で培養することで、PGAの生産プロセスに対して負荷をかけることなく、PGAを効率よく生産することができる。
本明細書において「納豆菌」とは、菌学的性質、及び16S rRNA遺伝子の塩基配列の解析結果から、枯草菌と分類でき、且つPGA生産能を有する微生物を意味する。
本発明の枯草菌は、高塩濃度耐性、及び高塩濃度条件下での高分子量のPGA生産能を有する。よって、本発明の枯草菌は納豆菌に分類される。高塩濃度条件下では、本発明の枯草菌が生産するPGAは、従来の納豆菌が生産するPGAと比較して、分子量が大きい。さらに本発明の枯草菌は、PGA生産能を有する従来の納豆菌と比較して、高濃度の塩に対する耐性に優れる。
本発明の枯草菌を適当な条件下で培養することで、高分子量のPGAを生産することができる。特に、本発明の枯草菌を高塩濃度条件下で培養することで、PGAの生産プロセスに対して負荷をかけることなく、高分子量のPGAを生産することができる。
また、得られたPGAを低分子化することで所望の分子量に調整することもできる。例えば、本発明の枯草菌を適切な条件下で培養することで、高分子量のPGAを生産させ、これを酸性条件下で加熱処理、あるいはPGA分解酵素を用いた処理などによって得られたPGAを低分子量化し、PGAの分子量を所望の範囲に調整することができる。ここで、本明細書に記載する「分子量」は、「重量平均分子量」と同義である。また、塩濃度の表記「%(w/v)」又は「M」、培地成分濃度の表記「%(w/v)」又は「(g/L)」、及びPGA濃度の表記「(g/L)」はいずれも、室温における濃度である。
以下、本発明について詳細に説明する。
本発明の枯草菌を適当な条件下で培養することで、高分子量のPGAを生産することができる。特に、本発明の枯草菌を高塩濃度条件下で培養することで、PGAの生産プロセスに対して負荷をかけることなく、高分子量のPGAを生産することができる。
また、得られたPGAを低分子化することで所望の分子量に調整することもできる。例えば、本発明の枯草菌を適切な条件下で培養することで、高分子量のPGAを生産させ、これを酸性条件下で加熱処理、あるいはPGA分解酵素を用いた処理などによって得られたPGAを低分子量化し、PGAの分子量を所望の範囲に調整することができる。ここで、本明細書に記載する「分子量」は、「重量平均分子量」と同義である。また、塩濃度の表記「%(w/v)」又は「M」、培地成分濃度の表記「%(w/v)」又は「(g/L)」、及びPGA濃度の表記「(g/L)」はいずれも、室温における濃度である。
以下、本発明について詳細に説明する。
本発明の枯草菌は、高塩濃度耐性を有する枯草菌であり、塩化ナトリウム濃度を12%(w/v)(2.05M相当、室温)以上に調整したLB培地において増殖可能な枯草菌である。
後述の実施例でも示すように、PGA生産能を有する公知の納豆菌は、高塩濃度に対する耐性を有さず、塩化ナトリウム濃度12%(w/v)以上のLB培地では増殖することはできない。これに対して本発明の枯草菌は、高塩濃度耐性を有し、塩化ナトリウム濃度12%(w/v)以上のLB培地においても、増殖することができる。本発明の枯草菌が増殖できる塩化ナトリウム濃度の上限値は、TSB培地を用いた条件において16~17%(w/v)(2.74~2.91M相当)、LB培地を用いた条件において15%(w/v)(2.57M相当)である。
ここで、「塩化ナトリウム濃度12%(w/v)以上に調整したLB培地において増殖可能」とは、接種した細胞数が、塩化ナトリウム濃度12%(w/v)以上の条件において、培養により増加することを意味する。尚、本明細書において「増殖」は、培養前後の培養液の吸光度(OD600)を測定し、吸光度の増大により相対的に算出できる。
後述の実施例でも示すように、PGA生産能を有する公知の納豆菌は、高塩濃度に対する耐性を有さず、塩化ナトリウム濃度12%(w/v)以上のLB培地では増殖することはできない。これに対して本発明の枯草菌は、高塩濃度耐性を有し、塩化ナトリウム濃度12%(w/v)以上のLB培地においても、増殖することができる。本発明の枯草菌が増殖できる塩化ナトリウム濃度の上限値は、TSB培地を用いた条件において16~17%(w/v)(2.74~2.91M相当)、LB培地を用いた条件において15%(w/v)(2.57M相当)である。
ここで、「塩化ナトリウム濃度12%(w/v)以上に調整したLB培地において増殖可能」とは、接種した細胞数が、塩化ナトリウム濃度12%(w/v)以上の条件において、培養により増加することを意味する。尚、本明細書において「増殖」は、培養前後の培養液の吸光度(OD600)を測定し、吸光度の増大により相対的に算出できる。
さらに、本発明の枯草菌は、高分子量のPGA生産能を有する。具体的には、塩化ナトリウム濃度10%(w/v)(1.71M相当、室温)の高塩濃度条件下で培養したとき、分子量が300,000以上のPGAの生産能を有する。塩化ナトリウム濃度が10%(w/v)の条件下で培養したとき、本発明の枯草菌が生産するPGAの分子量は、500,000以上がより好ましく、1,000,000以上がより好ましく、2,000,000以上がより好ましく、5,000,000以上がより好ましく、10,000,000以上がより好ましい。また、その上限値は、通常50,000,000である。
尚、「高塩濃度条件下で分子量が300,000以上のPGAの生産能を有する」とは、具体的には、塩化ナトリウムを10%(w/v)含有し、増殖に必要な栄養源、ミネラルを含有する培地を用いて培養したとき、分子量が300,000以上のPGAを少なくとも0.1g/L/3日以上、好ましくは0.5g/L/3日以上、より好ましくは1.0g/L/3日以上、より好ましくは5.0g/L/3日以上生産することを意味する。また、使用する培地には、PGAの基質となるグルタミン酸は含有しても、含有しなくともよい。さらに、グルタミン酸ナトリウム・1水和物を8%(w/v)(1.37M相当)含有する培地で培養した場合では10g/L以上、グルタミン酸を含有しない場合では0.3g/L以上、のPGAが生産できることが好ましい。
尚、「高塩濃度条件下で分子量が300,000以上のPGAの生産能を有する」とは、具体的には、塩化ナトリウムを10%(w/v)含有し、増殖に必要な栄養源、ミネラルを含有する培地を用いて培養したとき、分子量が300,000以上のPGAを少なくとも0.1g/L/3日以上、好ましくは0.5g/L/3日以上、より好ましくは1.0g/L/3日以上、より好ましくは5.0g/L/3日以上生産することを意味する。また、使用する培地には、PGAの基質となるグルタミン酸は含有しても、含有しなくともよい。さらに、グルタミン酸ナトリウム・1水和物を8%(w/v)(1.37M相当)含有する培地で培養した場合では10g/L以上、グルタミン酸を含有しない場合では0.3g/L以上、のPGAが生産できることが好ましい。
本発明の枯草菌は、配列番号7又は8で示される塩基配列からなる16S rRNA遺伝子を有することが好ましい。あるいは、本発明の枯草菌は配列番号7又は8で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、より好ましくは99.90%以上の塩基配列からなる16S rRNA遺伝子を有することが好ましい。あるいは、本発明の枯草菌は、配列番号7又は8で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入又は付加された塩基配列からなる16S rRNA遺伝子を有することが好ましい。
ここで、配列番号7で示される塩基配列は、枯草菌KSM-FFA610株が有する16S rRNA遺伝子の塩基配列である。また、配列番号8で示される塩基配列は、枯草菌KSM-FFB553株が有する16S rRNA遺伝子の塩基配列である。
ここで本発明において、塩基配列の同一性は、公開されたデータベースNCBI(National Center for Biotechnology Information、http://www.ncbi.nlm.gov/)のメニュー”Nucleotide”内の”BLAST”のなかにある”Basic BLAST”を用い算出できる。あるいは、Genetyx-Win(遺伝子情報処理ソフトウェア、ゼネティックス製)のホモロジー解析プログラムを用いて、Unit size(k-tuple)を6として解析を行うことにより塩基配列の相同性を算出することもできる。
ここで、配列番号7で示される塩基配列は、枯草菌KSM-FFA610株が有する16S rRNA遺伝子の塩基配列である。また、配列番号8で示される塩基配列は、枯草菌KSM-FFB553株が有する16S rRNA遺伝子の塩基配列である。
ここで本発明において、塩基配列の同一性は、公開されたデータベースNCBI(National Center for Biotechnology Information、http://www.ncbi.nlm.gov/)のメニュー”Nucleotide”内の”BLAST”のなかにある”Basic BLAST”を用い算出できる。あるいは、Genetyx-Win(遺伝子情報処理ソフトウェア、ゼネティックス製)のホモロジー解析プログラムを用いて、Unit size(k-tuple)を6として解析を行うことにより塩基配列の相同性を算出することもできる。
本発明の枯草菌は、下記表1に示す菌学的性質を有することが好ましい。
本発明の枯草菌は、下記に示す枯草菌(1)又は(2)が好ましい。
(1)表1に記載の菌学的性質を示し、且つ配列番号7で示される塩基配列、配列番号7で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、より好ましくは99.90%以上の塩基配列、又は配列番号7で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する枯草菌。
(2)表1に記載の菌学的性質を示し、且つ配列番号8で示される塩基配列、配列番号8で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、より好ましくは99.90%以上の塩基配列、又は配列番号8で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する枯草菌。
(1)表1に記載の菌学的性質を示し、且つ配列番号7で示される塩基配列、配列番号7で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、より好ましくは99.90%以上の塩基配列、又は配列番号7で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する枯草菌。
(2)表1に記載の菌学的性質を示し、且つ配列番号8で示される塩基配列、配列番号8で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、より好ましくは99.90%以上の塩基配列、又は配列番号8で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する枯草菌。
本発明の枯草菌のうち、枯草菌KSM-FFA610株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02276として寄託された。枯草菌KSM-FFA610株は、本発明者らが、2012年6月頃、出願人の実験室(日本国栃木県)で入手した。
また、枯草菌KSM-FFA631株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02277として寄託された。枯草菌KSM-FFA631株は、本発明者らが、2012年6月頃、出願人の実験室(日本国栃木県)で入手した。
また、枯草菌KSM-FFB406株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02278として寄託された。枯草菌KSM-FFB406株は、本発明者らが、2013年6月頃、出願人の実験室(日本国栃木県)で入手した。
また、枯草菌KSM-FFB425株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02279として寄託された。枯草菌KSM-FFB425株は、本発明者らが、2013年6月頃、出願人の実験室(日本国栃木県)で入手した。
また、枯草菌KSM-FFB540株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02280として寄託された。枯草菌KSM-FFB540株は、本発明者らが、2013年7月頃、出願人の実験室(日本国栃木県)で入手した。
さらに、枯草菌KSM-FFB553株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02281として寄託された。枯草菌KSM-FFB553株は、本発明者らが、2013年7月頃、出願人の実験室(日本国栃木県)で入手した。
尚、本発明の枯草菌はいずれも野生型の微生物であり、枯草菌に分類され、納豆菌の特徴であるPGA生産能を有する。
また、枯草菌KSM-FFA631株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02277として寄託された。枯草菌KSM-FFA631株は、本発明者らが、2012年6月頃、出願人の実験室(日本国栃木県)で入手した。
また、枯草菌KSM-FFB406株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02278として寄託された。枯草菌KSM-FFB406株は、本発明者らが、2013年6月頃、出願人の実験室(日本国栃木県)で入手した。
また、枯草菌KSM-FFB425株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02279として寄託された。枯草菌KSM-FFB425株は、本発明者らが、2013年6月頃、出願人の実験室(日本国栃木県)で入手した。
また、枯草菌KSM-FFB540株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02280として寄託された。枯草菌KSM-FFB540株は、本発明者らが、2013年7月頃、出願人の実験室(日本国栃木県)で入手した。
さらに、枯草菌KSM-FFB553株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02281として寄託された。枯草菌KSM-FFB553株は、本発明者らが、2013年7月頃、出願人の実験室(日本国栃木県)で入手した。
尚、本発明の枯草菌はいずれも野生型の微生物であり、枯草菌に分類され、納豆菌の特徴であるPGA生産能を有する。
本発明の枯草菌は、以下の方法、及びそれらを組合せて行うことより、単離、取得することができる。
具体的には、市販の食品試料、あるいは土壌などの環境試料を生理食塩水に懸濁し、これを寒天培地に塗沫して静置培養に供することで、寒天培地上に出現する微生物を取得することができる。尚、医薬品又は食品用PGAにおいては、その分離源を食品試料とすることが好ましい。微生物の純化は、寒天培地上の微生物を新たな寒天培地に画線塗沫する、あるいは、生理食塩水などの適当な希釈液を用いて、上記の懸濁試料を希釈した後に、寒天培地上に塗沫することで、単一コロニーを出現させるといった方法が挙げられる。
枯草菌を効率よく取得する方法としては、枯草菌が芽胞菌であることから上記試料を予め熱処理する方法、糖など栄養源の資化性の差異を利用する方法、コロニー周囲の粘性物質の生産を確認する方法などが挙げられる。また、高塩濃度耐性を有する微生物の取得方法としては、予め高濃度の塩を含有する寒天培地にて微生物を単離する方法、高濃度の塩を含有する液体培地にて良好な生育を示す微生物を選抜する方法などが挙げられる。
またさらに、グルタミン酸をPGA生産に必要としない微生物を取得する方法としては、グルタミン酸非添加の寒天培地において、粘調なコロニーを形成する微生物を取得する方法、グルタミン酸非添加の液体培地を用いた培養において、培養液中に高分子量のPGAを生産する微生物を取得する方法、などが挙げられる。
具体的には、市販の食品試料、あるいは土壌などの環境試料を生理食塩水に懸濁し、これを寒天培地に塗沫して静置培養に供することで、寒天培地上に出現する微生物を取得することができる。尚、医薬品又は食品用PGAにおいては、その分離源を食品試料とすることが好ましい。微生物の純化は、寒天培地上の微生物を新たな寒天培地に画線塗沫する、あるいは、生理食塩水などの適当な希釈液を用いて、上記の懸濁試料を希釈した後に、寒天培地上に塗沫することで、単一コロニーを出現させるといった方法が挙げられる。
枯草菌を効率よく取得する方法としては、枯草菌が芽胞菌であることから上記試料を予め熱処理する方法、糖など栄養源の資化性の差異を利用する方法、コロニー周囲の粘性物質の生産を確認する方法などが挙げられる。また、高塩濃度耐性を有する微生物の取得方法としては、予め高濃度の塩を含有する寒天培地にて微生物を単離する方法、高濃度の塩を含有する液体培地にて良好な生育を示す微生物を選抜する方法などが挙げられる。
またさらに、グルタミン酸をPGA生産に必要としない微生物を取得する方法としては、グルタミン酸非添加の寒天培地において、粘調なコロニーを形成する微生物を取得する方法、グルタミン酸非添加の液体培地を用いた培養において、培養液中に高分子量のPGAを生産する微生物を取得する方法、などが挙げられる。
本発明のPGAの生産方法は、前述した本発明の枯草菌を用いてPGAの生産を行う。
前述したように、本発明の枯草菌は、従来の納豆菌と比較して、高濃度塩に対する耐性を有する。そのため、本発明の枯草菌を用いてPGAを生産するために、通常よりも塩濃度の高い培地を使用することができる。
一般に、高分子の電解質は水溶液中では高分子のイオンとなり対イオンとの解離が起こる。この解離により強い静電場が生じるため、この静電気力により周辺に対イオンが凝集する。その結果、対イオン活量の顕著な低下が生じるとされる。また、高分子イオン一本鎖の形態はおもに静電的な相互作用によって支配され、塩濃度の増加により顕著な収縮が生じることが想定される(川口正剛,高分子,53巻,p.716-718,2004年)。これ故に、高分子電解質であるPGAの水溶液中の挙動においても、培地中の塩濃度を上昇させることにより水溶液の粘度を低減することができる。また、粘性が高く、流動性が低い液体では、溶存する酸素分子の移動効率が低下するため、好気性微生物の生育に必要な酸素供給能を確保するには、より多くの通気撹拌を行なう必要が生じる。また、このような多くの通気撹拌を伴う発酵槽を用いた培養系においては、培養液の粘度が高い場合には発泡が生じ、培養が困難になることが想定される。またさらに、流動性が低い液体試料は、製造工程における移送効率が悪く、なかでも、遠心分離による菌体除去、精密ろ過、あるいは限外ろ過といった膜処理における透過性が著しく低下すると想定される。よって、本発明のPGAの生産方法によれば、水溶液中で高粘性を発現する高分子電解質であるPGAの製造プロセスにおける負荷を低減できる。
前述したように、本発明の枯草菌は、従来の納豆菌と比較して、高濃度塩に対する耐性を有する。そのため、本発明の枯草菌を用いてPGAを生産するために、通常よりも塩濃度の高い培地を使用することができる。
一般に、高分子の電解質は水溶液中では高分子のイオンとなり対イオンとの解離が起こる。この解離により強い静電場が生じるため、この静電気力により周辺に対イオンが凝集する。その結果、対イオン活量の顕著な低下が生じるとされる。また、高分子イオン一本鎖の形態はおもに静電的な相互作用によって支配され、塩濃度の増加により顕著な収縮が生じることが想定される(川口正剛,高分子,53巻,p.716-718,2004年)。これ故に、高分子電解質であるPGAの水溶液中の挙動においても、培地中の塩濃度を上昇させることにより水溶液の粘度を低減することができる。また、粘性が高く、流動性が低い液体では、溶存する酸素分子の移動効率が低下するため、好気性微生物の生育に必要な酸素供給能を確保するには、より多くの通気撹拌を行なう必要が生じる。また、このような多くの通気撹拌を伴う発酵槽を用いた培養系においては、培養液の粘度が高い場合には発泡が生じ、培養が困難になることが想定される。またさらに、流動性が低い液体試料は、製造工程における移送効率が悪く、なかでも、遠心分離による菌体除去、精密ろ過、あるいは限外ろ過といった膜処理における透過性が著しく低下すると想定される。よって、本発明のPGAの生産方法によれば、水溶液中で高粘性を発現する高分子電解質であるPGAの製造プロセスにおける負荷を低減できる。
本発明の枯草菌を用いてPGAを生産する際には、適切な培地において本発明の枯草菌を培養し、菌体外に生産されたPGAを培地から回収する。
培地としては、グリセリン、グルコース、フルクトース、マルトース、シュークロース、キシロース、マンノース、ガラクトース、デンプンなどの糖類を、PGAを生産するための炭素源として含む培地を使用することができる。また、クエン酸、酢酸などの各種有機酸又はその塩、並びにグルタミン酸又はその塩などを、PGAを生産するための炭素源として含む培地を使用することができる。
本発明のPGAの生産方法において、PGAを生産するための炭素源としては、前記炭素源のうち1種を用いてもよいし、2種以上を組合せて用いてもよい。
培地としては、グリセリン、グルコース、フルクトース、マルトース、シュークロース、キシロース、マンノース、ガラクトース、デンプンなどの糖類を、PGAを生産するための炭素源として含む培地を使用することができる。また、クエン酸、酢酸などの各種有機酸又はその塩、並びにグルタミン酸又はその塩などを、PGAを生産するための炭素源として含む培地を使用することができる。
本発明のPGAの生産方法において、PGAを生産するための炭素源としては、前記炭素源のうち1種を用いてもよいし、2種以上を組合せて用いてもよい。
本発明のPGAの生産方法で用いる培地には、必要により、各種大豆タンパクなどの天然物、アミノ酸、ポリペプトン、トリプトン、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウムや尿素などの窒素源などを含有させてもよい。本発明で用いることができる窒素源としては、前記窒素源のうち1種を用いてもよいし、2種以上を組合せて用いてもよい。
本発明で用いる培地は、合成培地でもよいし、天然培地でもよい。
本発明で用いる培地は、合成培地でもよいし、天然培地でもよい。
PGAの生産性をより向上させる点から、前記培地にグルタミン酸又はその塩を添加することができる。
培地中のグルタミン酸又はその塩の濃度は適宜設定することができる。例えば、培地中のグルタミン酸又はその塩の濃度(グルタミン酸換算)は、好ましくは0.005g/L以上が好ましく、0.05g/L以上がより好ましく、0.1g/L以上がより好ましく、0.5g/L以上がより好ましい。またその上限値は、培地中でのグルタミン酸やその他の培地成分の析出を回避する観点から、600g/L以下が好ましく、500g/L以下がより好ましく、400g/L以下がより好ましく、300g/L以下がより好ましい。
培地中のグルタミン酸又はその塩の濃度は適宜設定することができる。例えば、培地中のグルタミン酸又はその塩の濃度(グルタミン酸換算)は、好ましくは0.005g/L以上が好ましく、0.05g/L以上がより好ましく、0.1g/L以上がより好ましく、0.5g/L以上がより好ましい。またその上限値は、培地中でのグルタミン酸やその他の培地成分の析出を回避する観点から、600g/L以下が好ましく、500g/L以下がより好ましく、400g/L以下がより好ましく、300g/L以下がより好ましい。
本発明の枯草菌は、グルタミン酸の非存在下であっても、無機の窒素源と、グルコース、グリセリン等のグルタミン酸以外の物質を炭素源としてPGAの生産が可能である。
グルタミン酸は、バイオマスを原料とする発酵法により生産することができ、食品素材、又は飼料として利用されている。このようなグルタミン酸を原料に使用せず、有用な高分子素材であるPGAを効率良く生産できる微生物は、食糧との競合を避けるといった視点、あるいは工業的な生産コストの視点からも有益であると考えられる。
従って、グルタミン酸を含まず、グルタミン酸以外の安価な窒素源、及び炭素源を含む培地で本発明の枯草菌を培養し、PGAを生産することは、食糧生産と競合せず、生産コストの観点から好ましい。
グルタミン酸は、バイオマスを原料とする発酵法により生産することができ、食品素材、又は飼料として利用されている。このようなグルタミン酸を原料に使用せず、有用な高分子素材であるPGAを効率良く生産できる微生物は、食糧との競合を避けるといった視点、あるいは工業的な生産コストの視点からも有益であると考えられる。
従って、グルタミン酸を含まず、グルタミン酸以外の安価な窒素源、及び炭素源を含む培地で本発明の枯草菌を培養し、PGAを生産することは、食糧生産と競合せず、生産コストの観点から好ましい。
培地に含まれる塩の種類は、適宜設定することができる。例えば、1価の金属塩である塩化ナトリウム、塩化カリウム、または、2価の金属塩である塩化カルシウム、塩化マグネシウム、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、硫酸マグネシウムなどが挙げられる。このうち、塩化ナトリウム、塩化カリウム、塩化カルシウム、及び塩化マグネシウムからなる群より選ばれる少なくとも1種を使用することが好ましい。
また、培地中の塩濃度は適宜設定することができる。
例えば、1価の金属塩の場合は、0.01M以上が好ましく、0.1M以上がより好ましく、0.5M以上がより好ましく、1.0M以上がより好ましい。また、その上限値は、細胞増殖、あるいはPGA生産を阻害しない濃度が好ましく、具体的には2.5M以下がより好ましく、2.0M以下がより好ましく、1.75M以下がより好ましい。
また例えば、2価の金属塩の場合は、0.01M以上が好ましく、0.1M以上がより好ましく、0.5M以上がより好ましく、1.0M以上がより好ましい。また、その上限値は、細胞増殖、あるいはPGA生産を阻害しない濃度が好ましく、具体的には2.0M以下が好ましく、1.75M以下がより好ましく、1.5M以下がより好ましい。
尚、使用する培地、及び培養後の培養液の粘度は、培地中の塩濃度を調整することで、所望の範囲にすることができる。尚、本発明において培地の粘度の測定方法は、非ニュートン性液体の粘性測定に適したB型粘度計により行なうことができる。
例えば、1価の金属塩の場合は、0.01M以上が好ましく、0.1M以上がより好ましく、0.5M以上がより好ましく、1.0M以上がより好ましい。また、その上限値は、細胞増殖、あるいはPGA生産を阻害しない濃度が好ましく、具体的には2.5M以下がより好ましく、2.0M以下がより好ましく、1.75M以下がより好ましい。
また例えば、2価の金属塩の場合は、0.01M以上が好ましく、0.1M以上がより好ましく、0.5M以上がより好ましく、1.0M以上がより好ましい。また、その上限値は、細胞増殖、あるいはPGA生産を阻害しない濃度が好ましく、具体的には2.0M以下が好ましく、1.75M以下がより好ましく、1.5M以下がより好ましい。
尚、使用する培地、及び培養後の培養液の粘度は、培地中の塩濃度を調整することで、所望の範囲にすることができる。尚、本発明において培地の粘度の測定方法は、非ニュートン性液体の粘性測定に適したB型粘度計により行なうことができる。
前記枯草菌の培養条件は、使用する枯草菌等に応じて適宜選択することができる。具体的には、至適温度は、好ましくは20℃以上、好ましくは25℃以上、より好ましくは30℃以上、である。その上限値は、好ましくは50℃、より好ましくは45℃、より好ましくは40℃である。至適pHは、好ましくは5以上、好ましくは5.5以上、より好ましくは6.5以上、である。その上限値は、好ましくは8、より好ましくは7.5、より好ましくは7である。
また、培養時間は、種菌接種後、0.5日以上、好ましくは1日以上、より好ましくは3日以上である。培養方法に特に制限はないが、振とう培養、攪拌培養、通気培養、静置培養などが挙げられる。
また、培養時間は、種菌接種後、0.5日以上、好ましくは1日以上、より好ましくは3日以上である。培養方法に特に制限はないが、振とう培養、攪拌培養、通気培養、静置培養などが挙げられる。
培地中に蓄積されたPGAを回収する際は、PGAを生産させた枯草菌の菌体を除去する必要がある。菌体を除去する方法としては特に制限はなく、遠心分離法、精密ろ過や限外ろ過膜を用いた除去法、凝集剤を用いた沈降除去、透析法などが挙げられる。また、これら方法を適宜組み合わせて用いても良い。
また、培養液からPGAを分離する方法についても特に制限はなく、生産された物質を単離、回収する際に用いられる通常の方法で行うことができる。例えば、アセトン、メタール、あるいはエタノールなどの有機溶媒沈殿、ゲルろ過カラム、あるいはイオン交換カラムによるクロマト分画、さらに、PGAの等電点付近にpHを調整する酸沈殿による分離、電気透析法などにより、目的のPGAを単離、回収することができる。
また、培養液からPGAを分離する方法についても特に制限はなく、生産された物質を単離、回収する際に用いられる通常の方法で行うことができる。例えば、アセトン、メタール、あるいはエタノールなどの有機溶媒沈殿、ゲルろ過カラム、あるいはイオン交換カラムによるクロマト分画、さらに、PGAの等電点付近にpHを調整する酸沈殿による分離、電気透析法などにより、目的のPGAを単離、回収することができる。
本発明の枯草菌は高塩濃度の条件においても優れたPGA生産性を有しており、且つ高分子量のPGAが生産できる。本発明によるPGAの生産量は、培地1L当たり、0.1g/3日以上が好ましく、0.5g/3日以上がより好ましく、1.0g/3日以上がより好ましく、5.0g/3日以上がより好ましい。
本発明の枯草菌を、納豆菌標準株ではPGAの生産性が低下するような塩化ナトリウム濃度7.3%(w/v)(1.25M相当)の条件で培養した場合、PGAの基質となるグルタミン酸ナトリウム・1水和物を8%(w/v)含有する条件においては、培地1L当たり10g/3日以上の生産量が望ましい。
また、納豆菌標準株では生育が困難となるような塩化ナトリウム濃度10.2%(w/v)(1.75M相当)にて培養した場合、PGAの基質となるグルタミン酸ナトリウム・1水和物を8%(w/v)含有する条件では、培地1L当たり0.5g/3日以上の生産量が望ましい。またさらに、納豆菌標準株ではPGAの生産が望めないような塩化ナトリウム濃度7.3%(w/v)の条件で、且つPGAの基質となるグルタミン酸が存在しない条件にて本発明の枯草菌を培養した場合、培地1L当たり0.1g/3日間以上の生産量が望ましい。
本発明の枯草菌を、納豆菌標準株ではPGAの生産性が低下するような塩化ナトリウム濃度7.3%(w/v)(1.25M相当)の条件で培養した場合、PGAの基質となるグルタミン酸ナトリウム・1水和物を8%(w/v)含有する条件においては、培地1L当たり10g/3日以上の生産量が望ましい。
また、納豆菌標準株では生育が困難となるような塩化ナトリウム濃度10.2%(w/v)(1.75M相当)にて培養した場合、PGAの基質となるグルタミン酸ナトリウム・1水和物を8%(w/v)含有する条件では、培地1L当たり0.5g/3日以上の生産量が望ましい。またさらに、納豆菌標準株ではPGAの生産が望めないような塩化ナトリウム濃度7.3%(w/v)の条件で、且つPGAの基質となるグルタミン酸が存在しない条件にて本発明の枯草菌を培養した場合、培地1L当たり0.1g/3日間以上の生産量が望ましい。
本発明の枯草菌は、塩濃度が0~10%未満(w/v)の条件において高分子量のPGAを生産する。また本発明の枯草菌は、塩濃度が10%以上(w/v)の条件においても同等の高分子量のPGAを生産することができる。
本発明の枯草菌を、塩化ナトリウム濃度が10%(w/v)以上の条件にて培養した場合に生産されるPGAの分子量は、300,000以上、好ましくは500,000以上、より好ましくは1,000,000以上、より好ましくは2,000,000以上、より好ましくは5,000,000以上、より好ましくは10,000,000以上である。またその上限値は、50,000,000、好ましくは40,000,000、より好ましくは35,000,000である。
本発明の枯草菌を、塩化ナトリウム濃度が10%(w/v)以上の条件にて培養した場合に生産されるPGAの分子量は、300,000以上、好ましくは500,000以上、より好ましくは1,000,000以上、より好ましくは2,000,000以上、より好ましくは5,000,000以上、より好ましくは10,000,000以上である。またその上限値は、50,000,000、好ましくは40,000,000、より好ましくは35,000,000である。
本発明により生産されたPGAは、化粧品、医薬品、食品、水質浄化剤、保水材料、増粘剤などの様々な用途に使用することができる。
特に、本発明の枯草菌は納豆菌に分類される。そして、本発明の枯草菌が生産するPGAは、他の微生物が生産するPGAと比較して高分子量である。よって、本発明の枯草菌が生産するPGAは、抗腫瘍活性や脂質代謝制御活性を有する化粧品、医薬品、食品などの用途に、好適に使用することができる。
特に、本発明の枯草菌は納豆菌に分類される。そして、本発明の枯草菌が生産するPGAは、他の微生物が生産するPGAと比較して高分子量である。よって、本発明の枯草菌が生産するPGAは、抗腫瘍活性や脂質代謝制御活性を有する化粧品、医薬品、食品などの用途に、好適に使用することができる。
上述した実施形態に関し、本発明はさらに以下の方法及び枯草菌を開示する。
<1>受託番号NITE BP-02276、受託番号NITE BP-02277、受託番号NITE BP-02278、受託番号NITE BP-02279、受託番号NITE BP-02280、又は受託番号NITE BP-02281で特定される枯草菌を培養してPGAを生産する方法。
<2>前記枯草菌が、塩化ナトリウム濃度12%(w/v)(2.05M相当、室温)以上、好ましくは12%(w/v)以上16~17%(w/v)以下、より好ましくは12%(w/v)以上15%(w/v)以下、に調整したLB培地において増殖可能な高塩濃度耐性を有し、塩化ナトリウム濃度10%(w/v)(1.71M相当、室温)の条件下で培養したとき、重量平均分子量が300,000以上のPGA生産能を有する、前記<1>記載の方法。
<3>塩化ナトリウム濃度が10%(w/v)の条件下で培養したとき、前記枯草菌が生産するPGAの重量平均分子量が300,000以上、好ましくは500,000以上、より好ましくは1,000,000以上、より好ましくは2,000,000以上、より好ましくは5,000,000以上、より好ましくは10,000,000以上、であり、好ましくは50,000,000以下、である、前記<1>又は<2>項記載の方法。
<4>前記枯草菌を塩化ナトリウム濃度10%(w/v)以上の条件下で培養したとき、前記枯草菌がPGAを0.1g/L/3日以上、好ましくは0.5g/L/3日以上、より好ましくは1.0g/L/3日以上、より好ましくは5.0g/L/3日以上、生産する、前記<1>~<3>のいずれか1記載の方法。
<5>前記枯草菌が、配列番号7若しくは8で示される塩基配列、配列番号7若しくは8で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、より好ましくは99.90%以上の塩基配列、又は配列番号7若しくは8で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する、前記<1>~<4>のいずれか1記載の方法。
<6>前記枯草菌が、前記表1に記載の菌学的性質を示す、前記<1>~<5>のいずれか1記載の方法。
<3>塩化ナトリウム濃度が10%(w/v)の条件下で培養したとき、前記枯草菌が生産するPGAの重量平均分子量が300,000以上、好ましくは500,000以上、より好ましくは1,000,000以上、より好ましくは2,000,000以上、より好ましくは5,000,000以上、より好ましくは10,000,000以上、であり、好ましくは50,000,000以下、である、前記<1>又は<2>項記載の方法。
<4>前記枯草菌を塩化ナトリウム濃度10%(w/v)以上の条件下で培養したとき、前記枯草菌がPGAを0.1g/L/3日以上、好ましくは0.5g/L/3日以上、より好ましくは1.0g/L/3日以上、より好ましくは5.0g/L/3日以上、生産する、前記<1>~<3>のいずれか1記載の方法。
<5>前記枯草菌が、配列番号7若しくは8で示される塩基配列、配列番号7若しくは8で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、より好ましくは99.90%以上の塩基配列、又は配列番号7若しくは8で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する、前記<1>~<4>のいずれか1記載の方法。
<6>前記枯草菌が、前記表1に記載の菌学的性質を示す、前記<1>~<5>のいずれか1記載の方法。
<7>グリセリン、グルコース、フルクトース、マルトース、シュークロース、キシロース、マンノース、ガラクトース、デンプン、クエン酸若しくはその塩、酢酸若しくはその塩、並びにグルタミン酸若しくはその塩からなる群より選ばれる少なくとも1種、好ましくはグリセリン、グルコース、マルトース、並びにグルタミン酸若しくはその塩からなる群より選ばれる少なくとも1種、を炭素源として含有する培地で前記枯草菌を培養する、前記<1>~<6>のいずれか1記載の方法。
<8>グルタミン酸又はその塩を含有する培地で前記枯草菌を培養する、前記<1>~<7>のいずれか1記載の方法。
<9>前記培地におけるグルタミン酸又はその塩の濃度が、0.005g/L以上、好ましくは0.05g/L以上、より好ましくは0.1g/L以上、より好ましくは0.5g/L以上であり、600g/L以下、好ましくは500g/L以下、より好ましくは400g/L以下、より好ましくは300g/L以下、である、前記<8>記載の方法。
<10>グルタミン酸の非存在下で前記枯草菌を培養する、前記<1>~<7>のいずれか1記載の方法。
<11>塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、及び硫酸マグネシウムからなる群より選ばれる少なくとも1種の塩、好ましくは、塩化ナトリウム、塩化カリウム、塩化カルシウム、及び塩化マグネシウムからなる群より選ばれる少なくとも1種の塩、を含有する培地で前記枯草菌を培養する、前記<1>~<10>のいずれか1記載の方法。
<12>前記培地における前記塩の濃度が0.01M以上2.5M以下である、前記<11>記載の方法。
<13>前記塩が1価の金属塩であり、前記培地における前記塩の濃度が0.1M以上、より好ましくは0.5M以上、より好ましくは1.0M以上、また、好ましくは2.0M以下、より好ましくは1.75M以下である、前記<11>又は<12>記載の方法。
<14>前記塩が2価の金属塩であり、前記培地における前記塩の濃度が0.1M以上、より好ましくは0.5M以上、より好ましくは1.0M以上、また、好ましくは2.0M以下、より好ましくは1.75M以下、より好ましくは1.5M以下である、前記<11>又は<12>記載の方法。
<15>前記枯草菌の培養期間が、0.5日以上、好ましくは1日以上、より好ましくは3日以上である、前記<1>~<14>のいずれか1記載の方法。
<8>グルタミン酸又はその塩を含有する培地で前記枯草菌を培養する、前記<1>~<7>のいずれか1記載の方法。
<9>前記培地におけるグルタミン酸又はその塩の濃度が、0.005g/L以上、好ましくは0.05g/L以上、より好ましくは0.1g/L以上、より好ましくは0.5g/L以上であり、600g/L以下、好ましくは500g/L以下、より好ましくは400g/L以下、より好ましくは300g/L以下、である、前記<8>記載の方法。
<10>グルタミン酸の非存在下で前記枯草菌を培養する、前記<1>~<7>のいずれか1記載の方法。
<11>塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸カルシウム、炭酸マグネシウム、硫酸カルシウム、及び硫酸マグネシウムからなる群より選ばれる少なくとも1種の塩、好ましくは、塩化ナトリウム、塩化カリウム、塩化カルシウム、及び塩化マグネシウムからなる群より選ばれる少なくとも1種の塩、を含有する培地で前記枯草菌を培養する、前記<1>~<10>のいずれか1記載の方法。
<12>前記培地における前記塩の濃度が0.01M以上2.5M以下である、前記<11>記載の方法。
<13>前記塩が1価の金属塩であり、前記培地における前記塩の濃度が0.1M以上、より好ましくは0.5M以上、より好ましくは1.0M以上、また、好ましくは2.0M以下、より好ましくは1.75M以下である、前記<11>又は<12>記載の方法。
<14>前記塩が2価の金属塩であり、前記培地における前記塩の濃度が0.1M以上、より好ましくは0.5M以上、より好ましくは1.0M以上、また、好ましくは2.0M以下、より好ましくは1.75M以下、より好ましくは1.5M以下である、前記<11>又は<12>記載の方法。
<15>前記枯草菌の培養期間が、0.5日以上、好ましくは1日以上、より好ましくは3日以上である、前記<1>~<14>のいずれか1記載の方法。
<16>前記枯草菌を培養し、培地1L当たり、0.1g/3日以上、好ましくは0.5g/3日以上、より好ましくは1.0g/3日以上、より好ましくは5.0g/3日以上、でPGAを生産する、前記<1>~<15>のいずれか1記載の方法。
<17>生産される前記PGAの重量平均分子量が300,000以上、好ましくは500,000以上、より好ましくは1,000,000以上、より好ましくは2,000,000以上、より好ましくは5,000,000以上、より好ましくは10,000,000以上、また、50,000,000以下、好ましくは40,000,000以下、より好ましくは35,000,000以下である、前記<16>記載の方法。
<17>生産される前記PGAの重量平均分子量が300,000以上、好ましくは500,000以上、より好ましくは1,000,000以上、より好ましくは2,000,000以上、より好ましくは5,000,000以上、より好ましくは10,000,000以上、また、50,000,000以下、好ましくは40,000,000以下、より好ましくは35,000,000以下である、前記<16>記載の方法。
<18>受託番号NITE BP-02276、受託番号NITE BP-02277、受託番号NITE BP-02278、受託番号NITE BP-02279、受託番号NITE BP-02280、又は受託番号NITE BP-02281で特定される枯草菌。
<19>塩化ナトリウム濃度12%(w/v)以上、好ましくは12%(w/v)以上17%(w/v)以下、より好ましくは12%(w/v)以上15%(w/v)以下に調整したLB培地において増殖可能であり、塩化ナトリウム濃度10%(w/v)の条件下で培養したとき、重量平均分子量が300,000以上のPGA生産能を有する、前記<18>項記載の枯草菌。
<20>塩化ナトリウム濃度が10%(w/v)の条件下で培養したとき、重量平均分子量が300,000以上、好ましくは500,000以上、より好ましくは1,000,000以上、より好ましくは2,000,000以上、より好ましくは5,000,000以上、より好ましくは10,000,000以上、また、好ましくは50,000,000以下のPGAを生産する、前記<18>又は<19>記載の枯草菌。
<21>塩化ナトリウム濃度10%(w/v)以上の条件下で培養したとき、PGAを0.1g/L/3日以上、好ましくは0.5g/L/3日以上、より好ましくは1.0g/L/3日以上、より好ましくは5.0g/L/3日以上生産する、前記<18>~<20>のいずれか1記載の枯草菌。
<22>配列番号7若しくは8で示される塩基配列、配列番号7若しくは8で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、最も好ましくは99.90%以上の塩基配列、又は配列番号7若しくは8で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する、前記<18>~<21>のいずれか1記載の枯草菌。
<23>前記表1に記載の菌学的性質を示す、前記<18>~<22>のいずれか1記載の枯草菌。
<20>塩化ナトリウム濃度が10%(w/v)の条件下で培養したとき、重量平均分子量が300,000以上、好ましくは500,000以上、より好ましくは1,000,000以上、より好ましくは2,000,000以上、より好ましくは5,000,000以上、より好ましくは10,000,000以上、また、好ましくは50,000,000以下のPGAを生産する、前記<18>又は<19>記載の枯草菌。
<21>塩化ナトリウム濃度10%(w/v)以上の条件下で培養したとき、PGAを0.1g/L/3日以上、好ましくは0.5g/L/3日以上、より好ましくは1.0g/L/3日以上、より好ましくは5.0g/L/3日以上生産する、前記<18>~<20>のいずれか1記載の枯草菌。
<22>配列番号7若しくは8で示される塩基配列、配列番号7若しくは8で示される塩基配列との同一性が好ましくは99.75%以上、より好ましくは99.85%以上、最も好ましくは99.90%以上の塩基配列、又は配列番号7若しくは8で示される塩基配列において好ましくは1~3個、より好ましくは1個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する、前記<18>~<21>のいずれか1記載の枯草菌。
<23>前記表1に記載の菌学的性質を示す、前記<18>~<22>のいずれか1記載の枯草菌。
<24>前記<1>~<17>のいずれか1記載の方法により生産したPGAを低分子化し、所望の分子量に調整する、PGAの分子量調整方法。
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。また、製造元を記載しない試薬には、一般に入手可能な試薬を使用することができる。
ここで、本実施例で用いるプライマーの塩基配列を表2に示す。
ここで、本実施例で用いるプライマーの塩基配列を表2に示す。
試験例1 芽胞形成微生物の取得法
市販の漬物、味噌、発酵調味料、あるいは納豆などの食品試料約5gを15mL容コニカルチューブ(製品コード352096、BD(ベクトンディッキンソン) Falcon製)に無菌的に採取し、この試料に対して2倍重量の1%(w/v)塩化ナトリウム水溶液(滅菌処理済)を加えた。これらをタッチミキサー(MT-31型、ヤマト科学製)の振動面に押し当て、均一に混ざるよう懸濁し、試料を80℃にて10分間の加熱処理に供した。続いて、これら試料を1%(w/v)塩化ナトリウム水溶液(滅菌処理済)にて適宜段階的に希釈し、それぞれを表3~6に示す微生物検出用培地(LB寒天培地、塩化ナトリウムを終濃度10%に調整したLB寒天培地(LB+10%NaCl培地)、変法GAM寒天培地(商品名:「ニッスイ」、日水製薬製)、及びM+Yex寒天培地)へ塗沫した。
これら寒天培地を30℃にて2~5日間の静置培養に供し、寒天培地上での微生物の増殖及び形態を観察した。続いて、これら各寒天培地に出現した単一コロニーを複数選抜し、増殖が確認できたものと同種の寒天培地にて画線塗沫を行ない、出現させた単一コロニーを純化株とした。さらに、この純化株を同種の寒天培地にて増殖させ、得られた菌体を20%(w/v)グリセロールを含有するLB液体培地へ懸濁し、-80℃にて凍結保存した。
市販の漬物、味噌、発酵調味料、あるいは納豆などの食品試料約5gを15mL容コニカルチューブ(製品コード352096、BD(ベクトンディッキンソン) Falcon製)に無菌的に採取し、この試料に対して2倍重量の1%(w/v)塩化ナトリウム水溶液(滅菌処理済)を加えた。これらをタッチミキサー(MT-31型、ヤマト科学製)の振動面に押し当て、均一に混ざるよう懸濁し、試料を80℃にて10分間の加熱処理に供した。続いて、これら試料を1%(w/v)塩化ナトリウム水溶液(滅菌処理済)にて適宜段階的に希釈し、それぞれを表3~6に示す微生物検出用培地(LB寒天培地、塩化ナトリウムを終濃度10%に調整したLB寒天培地(LB+10%NaCl培地)、変法GAM寒天培地(商品名:「ニッスイ」、日水製薬製)、及びM+Yex寒天培地)へ塗沫した。
これら寒天培地を30℃にて2~5日間の静置培養に供し、寒天培地上での微生物の増殖及び形態を観察した。続いて、これら各寒天培地に出現した単一コロニーを複数選抜し、増殖が確認できたものと同種の寒天培地にて画線塗沫を行ない、出現させた単一コロニーを純化株とした。さらに、この純化株を同種の寒天培地にて増殖させ、得られた菌体を20%(w/v)グリセロールを含有するLB液体培地へ懸濁し、-80℃にて凍結保存した。
試験例2 枯草菌の選抜法(1)
試験例1で取得した菌株(-80℃凍結保存試料)を滅菌済み白金耳(製品コード254410、Nunc製)にてLB寒天培地に画線塗沫した。これらを30℃にて1日間の静置培養に供し、各菌株の生育を目視にて確認した。
次に、LB寒天培地上に生育した各菌株を予め滅菌した爪楊枝を用いてM+Yex寒天培地に接種し、これを30℃にて1日間の静置培養に供し、目視にて各菌株の生育確認を行なった。
試験例1で取得した菌株(-80℃凍結保存試料)を滅菌済み白金耳(製品コード254410、Nunc製)にてLB寒天培地に画線塗沫した。これらを30℃にて1日間の静置培養に供し、各菌株の生育を目視にて確認した。
次に、LB寒天培地上に生育した各菌株を予め滅菌した爪楊枝を用いてM+Yex寒天培地に接種し、これを30℃にて1日間の静置培養に供し、目視にて各菌株の生育確認を行なった。
続いて、M+Yex寒天培地上に生育した菌株を、表7に示すM/グルコース資化判定プレート、及び表8に示すM/タガトース資化判定プレートへそれぞれ接種し、37℃にて1~3日間の静置培養に供した。
本試験例では、資化判定プレート上での生育を目視にて観察し、生育の指標であるコロニー形成がM/グルコース資化判定プレートでは有り、且つM/タガトース資化判定プレートにおいてはコロニー形成がない菌株を枯草菌候補株として選抜した。
本試験例では、資化判定プレート上での生育を目視にて観察し、生育の指標であるコロニー形成がM/グルコース資化判定プレートでは有り、且つM/タガトース資化判定プレートにおいてはコロニー形成がない菌株を枯草菌候補株として選抜した。
試験例3 枯草菌の選抜法(2)
試験例1で調製したグリセロール保存試料を、1mM TE緩衝液(pH8.0)にて30倍に希釈したものを鋳型とし、表2に示すプライマー27f及びプライマー1525rを使用してPCRを行い、16S rRNA遺伝子領域約1.5kbのDNA断片を増幅した。DNAポリメラーゼは、TaKaRa LA Taq(タカラバイオ製)を用いた。95℃で5分間、鋳型DNAを変性させた後、95℃で1分間、55℃で30秒間、72℃で2分間を1サイクルとして30サイクル行い、さらに72℃で2分間恒温した。
試験例1で調製したグリセロール保存試料を、1mM TE緩衝液(pH8.0)にて30倍に希釈したものを鋳型とし、表2に示すプライマー27f及びプライマー1525rを使用してPCRを行い、16S rRNA遺伝子領域約1.5kbのDNA断片を増幅した。DNAポリメラーゼは、TaKaRa LA Taq(タカラバイオ製)を用いた。95℃で5分間、鋳型DNAを変性させた後、95℃で1分間、55℃で30秒間、72℃で2分間を1サイクルとして30サイクル行い、さらに72℃で2分間恒温した。
得られた16S rRNA遺伝子領域約1.5kbのDNA断片について、表2に示すプライマー27fを用い、550bpのDNA塩基配列の決定を行った。
尚、シークエンス解析試料の調製には、Big Dye Terminator v3.1 Cycle Sequencing Kit(アプライド バイオシステムズ製)を用い、添付プロトコールに従い試料調製を行った。解析前の試料精製には、Montage SEQ kit(MILLIPORE製)を使用した。続いて、調製したシークエンス試料はDNAシークエンサー(商品名:ABI 3100 Genetic Analyzer、アプライドバイオシステムズ製)を用いて配列解析を行い、塩基配列を決定した。
配列の相同性検索は、公開データベースNCBI(National Center for Biotechnology Information、http://www.ncbi.nlm.gov/)のメニュー”Nucleotide”内の”BLAST”のなかにある”Basic BLAST”を用い、BLASTプログラムから”nucleotide blast”を選択した。検索対象のデータベースに”Reference genomic sequences(refseq_genomics)、選択プログラムに”Highly similar sequences(megablast)”を指定し相同性検索を行った。
尚、シークエンス解析試料の調製には、Big Dye Terminator v3.1 Cycle Sequencing Kit(アプライド バイオシステムズ製)を用い、添付プロトコールに従い試料調製を行った。解析前の試料精製には、Montage SEQ kit(MILLIPORE製)を使用した。続いて、調製したシークエンス試料はDNAシークエンサー(商品名:ABI 3100 Genetic Analyzer、アプライドバイオシステムズ製)を用いて配列解析を行い、塩基配列を決定した。
配列の相同性検索は、公開データベースNCBI(National Center for Biotechnology Information、http://www.ncbi.nlm.gov/)のメニュー”Nucleotide”内の”BLAST”のなかにある”Basic BLAST”を用い、BLASTプログラムから”nucleotide blast”を選択した。検索対象のデータベースに”Reference genomic sequences(refseq_genomics)、選択プログラムに”Highly similar sequences(megablast)”を指定し相同性検索を行った。
得られた結果から、本試験例において最も相同性が高い菌株として枯草菌と判定され、且つ上記配列を決定した550bpとこれに相当する枯草菌標準株(Bacillus subtilis DSM 10株)の配列との相同性が98.9%以上である菌株を枯草菌候補株として選抜した。
試験例4 グルタミン酸非添加条件でPGAを生産する枯草菌の選抜法
試験例2及び3にて枯草菌と推定した凍結保存試料より、滅菌済み白金耳(製品コード254410、Nunc製)にて凍結菌体を採取し、これを5mLのLB液体培地へ接種し、30℃にて24時間の振盪培養に供した。これを種培養液として、30mLのグルタミン酸非添加PGA生産用培地[培地組成:7.5%グルコース、1.8%塩化アンモニウム、0.5%酵母エキス、0.035%硫酸マグネシウム・7水和物、0.005%硫酸マンガン・4-5水和物、100mM 3-モルホリノプロパンスルホン酸(3-Morpholinopropanesulfonic acid、水酸化カリウムにてpH7.0に調整、同仁化学研究所製)]に1%(v/v)接種し、この培地を37℃にて72時間の振盪培養に供した。
培養終了後、培養液の上清に含まれるPGAを下記測定例1に示す方法にて定量した。その結果、培養液上清中において、PGAに由来するUV210nmの吸収を有する高分子物質の溶出画分が検出された菌株を、グルタミン酸非添加条件でPGAが生産可能な枯草菌候補株として選抜した。
試験例2及び3にて枯草菌と推定した凍結保存試料より、滅菌済み白金耳(製品コード254410、Nunc製)にて凍結菌体を採取し、これを5mLのLB液体培地へ接種し、30℃にて24時間の振盪培養に供した。これを種培養液として、30mLのグルタミン酸非添加PGA生産用培地[培地組成:7.5%グルコース、1.8%塩化アンモニウム、0.5%酵母エキス、0.035%硫酸マグネシウム・7水和物、0.005%硫酸マンガン・4-5水和物、100mM 3-モルホリノプロパンスルホン酸(3-Morpholinopropanesulfonic acid、水酸化カリウムにてpH7.0に調整、同仁化学研究所製)]に1%(v/v)接種し、この培地を37℃にて72時間の振盪培養に供した。
培養終了後、培養液の上清に含まれるPGAを下記測定例1に示す方法にて定量した。その結果、培養液上清中において、PGAに由来するUV210nmの吸収を有する高分子物質の溶出画分が検出された菌株を、グルタミン酸非添加条件でPGAが生産可能な枯草菌候補株として選抜した。
試験例5 高塩濃度耐性を有する枯草菌の選抜法(1)
試験例2及び3にて枯草菌と推定し、さらに、試験例4においてPGA生産枯草菌候補株して選抜した株の凍結保存試料と、試験例1と同様の手順にて調製した独立行政法人製品評価技術基盤機構より入手した公知の納豆菌標準株(NBRC 16449株、NBRC 3336株、NBRC 3936株)の凍結保存試料を、1×103~1×104cell/mLとなるようにLB+10%NaCl液体培地に接種し、37℃で24時間の振盪培養に供した。この振盪培養の後、培養液試料を1%(w/v)塩化ナトリウム水溶液にて適宜希釈し、分光光度計(商品名:U-2900型、日立ハイテクノロジーズ製)を用いて、増殖の指標となる培養液の吸光度600nm(OD600)を測定した。
その結果、納豆菌標準株では吸光度の増加が認められなかった。本試験条件において、吸光度の増加が認められた菌株6株を、高塩濃度耐性と高塩濃度条件下での高分子量のPGA生産能を有する枯草菌株として選抜した。
試験例2及び3にて枯草菌と推定し、さらに、試験例4においてPGA生産枯草菌候補株して選抜した株の凍結保存試料と、試験例1と同様の手順にて調製した独立行政法人製品評価技術基盤機構より入手した公知の納豆菌標準株(NBRC 16449株、NBRC 3336株、NBRC 3936株)の凍結保存試料を、1×103~1×104cell/mLとなるようにLB+10%NaCl液体培地に接種し、37℃で24時間の振盪培養に供した。この振盪培養の後、培養液試料を1%(w/v)塩化ナトリウム水溶液にて適宜希釈し、分光光度計(商品名:U-2900型、日立ハイテクノロジーズ製)を用いて、増殖の指標となる培養液の吸光度600nm(OD600)を測定した。
その結果、納豆菌標準株では吸光度の増加が認められなかった。本試験条件において、吸光度の増加が認められた菌株6株を、高塩濃度耐性と高塩濃度条件下での高分子量のPGA生産能を有する枯草菌株として選抜した。
試験例6 枯草菌候補株の生育限界塩濃度の評価試験法
標準株としての納豆菌NBRC 3336株と、枯草菌候補株を試験例4と同様の条件にて、LB液体培地を用いて種培養を調製した。
次に、塩化ナトリウムの終濃度を10%(w/v)、12%(w/v)、13%(w/v)、14%(w/v)、15%(w/v)、及び16%(w/v)としたLB培地を調製し、これに初発の吸光度が0.05となるように前記の種培養液を接種し、37℃にて2日間の振盪培養に供した。この振盪培養において経時的に培養液を採取し、培養液試料を塩化ナトリウム水溶液(使用培地と同濃度の塩化ナトリウム水溶液)にて適宜希釈し、分光光度計(U-2900型、日立ハイテクノロジーズ製)を用いて、増殖の指標となる培養液の吸光度600nm(OD600)を測定した。
標準株としての納豆菌NBRC 3336株と、枯草菌候補株を試験例4と同様の条件にて、LB液体培地を用いて種培養を調製した。
次に、塩化ナトリウムの終濃度を10%(w/v)、12%(w/v)、13%(w/v)、14%(w/v)、15%(w/v)、及び16%(w/v)としたLB培地を調製し、これに初発の吸光度が0.05となるように前記の種培養液を接種し、37℃にて2日間の振盪培養に供した。この振盪培養において経時的に培養液を採取し、培養液試料を塩化ナトリウム水溶液(使用培地と同濃度の塩化ナトリウム水溶液)にて適宜希釈し、分光光度計(U-2900型、日立ハイテクノロジーズ製)を用いて、増殖の指標となる培養液の吸光度600nm(OD600)を測定した。
試験例7 選抜した枯草菌の生育限界塩濃度の確認試験
高塩濃度耐性を有する枯草菌候補株を、LB+10%NaCl液体培地を用いて試験例5と同様の条件にて種培養を調製した。
次に、塩化ナトリウムの終濃度を10%(w/v)、12%(w/v)、14%(w/v)、15%(w/v)、16%(w/v)、17%(w/v)、18%(w/v)、19%(w/v)、又は20%(w/v)としたTSB培地(Trypticase Soy broth、Becton, and Dickinson Company製)に、上記種培養液を初発吸光度が0.1となるように接種し、37℃にて2日間の振盪培養に供した。振盪培養を行った後、培養開始2日目に培養液試料を採取し、10%(w/v)塩化ナトリウム水溶液にて適宜希釈し、分光光度計(U-2900型、日立ハイテクノロジーズ製)を用いて、増殖の指標となる培養液の吸光度600nm(OD600)を測定した。
本試験例では、培養2日目の培養液の吸光度が、種培養接種時の2倍以上となった塩濃度条件までを菌株の生育限界濃度と判定した。
高塩濃度耐性を有する枯草菌候補株を、LB+10%NaCl液体培地を用いて試験例5と同様の条件にて種培養を調製した。
次に、塩化ナトリウムの終濃度を10%(w/v)、12%(w/v)、14%(w/v)、15%(w/v)、16%(w/v)、17%(w/v)、18%(w/v)、19%(w/v)、又は20%(w/v)としたTSB培地(Trypticase Soy broth、Becton, and Dickinson Company製)に、上記種培養液を初発吸光度が0.1となるように接種し、37℃にて2日間の振盪培養に供した。振盪培養を行った後、培養開始2日目に培養液試料を採取し、10%(w/v)塩化ナトリウム水溶液にて適宜希釈し、分光光度計(U-2900型、日立ハイテクノロジーズ製)を用いて、増殖の指標となる培養液の吸光度600nm(OD600)を測定した。
本試験例では、培養2日目の培養液の吸光度が、種培養接種時の2倍以上となった塩濃度条件までを菌株の生育限界濃度と判定した。
試験例8 選抜した枯草菌の生育至適塩濃度の確認試験
高塩濃度耐性を有する枯草菌候補株を、LB+10%NaCl液体培地を用いて試験例5と同様の条件にて種培養を調製した。
次に、塩化ナトリウムを無添加、終濃度1%(w/v)、2(w/v)、3(w/v)、4(w/v)、5(w/v)、6(w/v)、7%(w/v)、8%(w/v)、及び10%(w/v)としたTSB培地を調製し、これを96ウェル丸底マイクロプレート(型番3870-096、IWAKI製)に各ウェル200μL分注した。これに、上記種培養液を各ウェルの初発吸光度が0.05となるように接種し、バイオマイクロプレートリーダー(HiTS-S2型、サイニクス製)を用い、37℃にて24時間の振盪培養に供した。
バイオマイクロプレートリーダーは、150rpmにて振盪を行ない、干渉フィルターにより600nmの吸光度(OD600)を30分間隔で経時的に測定した。得られた吸光度の値より、単位時間当たりの吸光度の増加を算出し、これを菌体増殖速度(ΔOD600/hr)として、培養試験中の最大の菌体増殖速度を求めた。
本試験例では、菌体増殖速度(ΔOD600/hr)が、最大値から(最大値-0.2)までの塩濃度を生育至適塩濃度と判定した。
高塩濃度耐性を有する枯草菌候補株を、LB+10%NaCl液体培地を用いて試験例5と同様の条件にて種培養を調製した。
次に、塩化ナトリウムを無添加、終濃度1%(w/v)、2(w/v)、3(w/v)、4(w/v)、5(w/v)、6(w/v)、7%(w/v)、8%(w/v)、及び10%(w/v)としたTSB培地を調製し、これを96ウェル丸底マイクロプレート(型番3870-096、IWAKI製)に各ウェル200μL分注した。これに、上記種培養液を各ウェルの初発吸光度が0.05となるように接種し、バイオマイクロプレートリーダー(HiTS-S2型、サイニクス製)を用い、37℃にて24時間の振盪培養に供した。
バイオマイクロプレートリーダーは、150rpmにて振盪を行ない、干渉フィルターにより600nmの吸光度(OD600)を30分間隔で経時的に測定した。得られた吸光度の値より、単位時間当たりの吸光度の増加を算出し、これを菌体増殖速度(ΔOD600/hr)として、培養試験中の最大の菌体増殖速度を求めた。
本試験例では、菌体増殖速度(ΔOD600/hr)が、最大値から(最大値-0.2)までの塩濃度を生育至適塩濃度と判定した。
実施例1 選抜した枯草菌の特徴
試験例1~8に示す方法にて取得した、高塩濃度耐性を有し、PGAを生産する枯草菌株(枯草菌KSM-FFA610株、枯草菌KSM-FFA631株、枯草菌KSM-FFB406株、枯草菌KSM-FFB425株、枯草菌KSM-FFB540株、枯草菌KSM-FFB553株)の生育特性を、表9~13に示す。
試験例1~8に示す方法にて取得した、高塩濃度耐性を有し、PGAを生産する枯草菌株(枯草菌KSM-FFA610株、枯草菌KSM-FFA631株、枯草菌KSM-FFB406株、枯草菌KSM-FFB425株、枯草菌KSM-FFB540株、枯草菌KSM-FFB553株)の生育特性を、表9~13に示す。
表9は、試験例5の結果を示す。
表9に示すように、高濃度の塩化ナトリウムを含有するLB液体培地で培養した場合、対照とする納豆菌標準株では、吸光度が検出限界以下となり増殖が認められなかった。これに対し、試験例2~4で選抜した枯草菌株において、試験例5に示す試験条件において吸光度(OD600)が0.5(1×107 cell/mL相当)を超える菌株を見出した。
以上の結果から、本発明の枯草菌株は、納豆菌標準株では増殖できない塩濃度において増殖可能な高塩濃度耐性株であることが確認された。
表9に示すように、高濃度の塩化ナトリウムを含有するLB液体培地で培養した場合、対照とする納豆菌標準株では、吸光度が検出限界以下となり増殖が認められなかった。これに対し、試験例2~4で選抜した枯草菌株において、試験例5に示す試験条件において吸光度(OD600)が0.5(1×107 cell/mL相当)を超える菌株を見出した。
以上の結果から、本発明の枯草菌株は、納豆菌標準株では増殖できない塩濃度において増殖可能な高塩濃度耐性株であることが確認された。
表10及び11は試験例6の結果を示す。
表10に示すように、培養1日目において塩化ナトリウム終濃度10%(w/v)の条件では、対照とする納豆菌標準株(NBRC 3336株)は吸光度が約0.5であったのに対し、本発明の枯草菌株はいずれも吸光度が2.0を超える数値を示した。
また、塩化ナトリウム終濃度13%(w/v)の条件において、対照とする納豆菌標準株は菌体増殖が認められないのに対し、本発明の枯草菌株は吸光度が0.5を超える数値を示した。
以上の結果より、本発明の枯草菌候補株は、納豆菌標準株と比べて、高い塩濃度耐性を有する株であることが確認された。
また、塩化ナトリウム終濃度13%(w/v)の条件において、対照とする納豆菌標準株は菌体増殖が認められないのに対し、本発明の枯草菌株は吸光度が0.5を超える数値を示した。
以上の結果より、本発明の枯草菌候補株は、納豆菌標準株と比べて、高い塩濃度耐性を有する株であることが確認された。
表11に示すように、培養2日目において塩化ナトリウム終濃度13%(w/v)の条件では、対照とする納豆菌標準株では菌体増殖が認められないのに対し、本発明の枯草菌候補株はいずれも吸光度が1.5を超える数値を示した。
さらに、本発明の枯草菌株は、塩化ナトリウム終濃度が14%(w/v)の条件において、吸光度が0.5を超える数値を示した。
以上の結果より、本発明の枯草菌候補株は、納豆菌標準株と比べて、高い塩濃度耐性を有する株であることが確認された。
さらに、本発明の枯草菌株は、塩化ナトリウム終濃度が14%(w/v)の条件において、吸光度が0.5を超える数値を示した。
以上の結果より、本発明の枯草菌候補株は、納豆菌標準株と比べて、高い塩濃度耐性を有する株であることが確認された。
表12は試験例7の結果を示す。
表12に示すように、TSB培地を用いた高塩濃生育試験において、本発明の枯草菌株は、培養2日目における吸光度が、KSM-FFA631株及びKSM-FFB406株は塩化ナトリウム終濃度16%(w/v)、KSM-FFB425株、KSM-FFB540株及びKSM-FFB553株は17%(w/v)、KSM-FFA610株は18%(w/v)の条件において、種培養接種時の2倍以上の値であった。
以上の結果より、本発明の枯草菌株は、TSB培地を用いた生育限界塩濃度の確認試験において、塩化ナトリウムの生育限界濃度が16~18%(w/v)であることが確認された。
表12に示すように、TSB培地を用いた高塩濃生育試験において、本発明の枯草菌株は、培養2日目における吸光度が、KSM-FFA631株及びKSM-FFB406株は塩化ナトリウム終濃度16%(w/v)、KSM-FFB425株、KSM-FFB540株及びKSM-FFB553株は17%(w/v)、KSM-FFA610株は18%(w/v)の条件において、種培養接種時の2倍以上の値であった。
以上の結果より、本発明の枯草菌株は、TSB培地を用いた生育限界塩濃度の確認試験において、塩化ナトリウムの生育限界濃度が16~18%(w/v)であることが確認された。
表13は試験例8の結果を示す。
表13に示すように、本発明の枯草菌株はTSB培地を用いた生育至適塩濃度の試験において、塩化ナトリウム濃度が無添加~終濃度6%(w/v)(室温)までの添加条件において、菌体増殖速度(ΔOD600/hr)が0.3~0.5の値であった。
以上の結果より、本発明の枯草菌株のTSB培地を用いた選抜した枯草菌の生育至適塩濃度の確認試験において、塩化ナトリウムの生育至適濃度は、枯草菌KSM-FFA610株では0~5%(w/v)、枯草菌KSM-FFA631株では0~4%(w/v)、枯草菌KSM-FFB406株では0~5%(w/v)、枯草菌KSM-FFB425株では0~4%(w/v)、枯草菌KSM-FFB540株では0~5%(w/v)、枯草菌KSM-FFB553株では0~5%(w/v)であることが確認された。
表13に示すように、本発明の枯草菌株はTSB培地を用いた生育至適塩濃度の試験において、塩化ナトリウム濃度が無添加~終濃度6%(w/v)(室温)までの添加条件において、菌体増殖速度(ΔOD600/hr)が0.3~0.5の値であった。
以上の結果より、本発明の枯草菌株のTSB培地を用いた選抜した枯草菌の生育至適塩濃度の確認試験において、塩化ナトリウムの生育至適濃度は、枯草菌KSM-FFA610株では0~5%(w/v)、枯草菌KSM-FFA631株では0~4%(w/v)、枯草菌KSM-FFB406株では0~5%(w/v)、枯草菌KSM-FFB425株では0~4%(w/v)、枯草菌KSM-FFB540株では0~5%(w/v)、枯草菌KSM-FFB553株では0~5%(w/v)であることが確認された。
実施例2 菌学的、及び16S rRNA遺伝子の塩基配列解析に基づく菌種同定
前記枯草菌株(枯草菌KSM-FFA610株、枯草菌KSM-FFA631株、枯草菌KSM-FFB406株、枯草菌KSM-FFB425株、枯草菌KSM-FFB540株、枯草菌KSM-FFB553株)の菌学的性質を検討した。その結果を表14に示す。
さらに、前記枯草菌株について、下記測定例4より、16S rRNA遺伝子の塩基配列解析に基づく菌種同定を行った。その結果を表15に示す。
前記枯草菌株(枯草菌KSM-FFA610株、枯草菌KSM-FFA631株、枯草菌KSM-FFB406株、枯草菌KSM-FFB425株、枯草菌KSM-FFB540株、枯草菌KSM-FFB553株)の菌学的性質を検討した。その結果を表14に示す。
さらに、前記枯草菌株について、下記測定例4より、16S rRNA遺伝子の塩基配列解析に基づく菌種同定を行った。その結果を表15に示す。
表14に示すように、前記枯草菌株はすべて枯草菌の菌学的性質を有することを確認した。
表15に示すように、16S rRNA遺伝子の塩基配列に基づく相同性解析の結果、前記菌株は全て枯草菌DSM 10株と99.9%以上の相同性の高い16S rRNA遺伝子の塩基配列を有することが明らかとなった。
従って、前記枯草菌株は、菌学的な性質と併せ、16S rRNA遺伝子の塩基配列の解析結果より、枯草菌であると判断した。
従って、前記枯草菌株は、菌学的な性質と併せ、16S rRNA遺伝子の塩基配列の解析結果より、枯草菌であると判断した。
尚、枯草菌KSM-FFA610株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02276として寄託された。
また、枯草菌KSM-FFA631株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02277として寄託された。
また、枯草菌KSM-FFB406株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02278として寄託された。
また、枯草菌KSM-FFB425株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02279として寄託された。
また、枯草菌KSM-FFB540株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02280として寄託された。
さらに、枯草菌KSM-FFB553株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02281として寄託された。
また、枯草菌KSM-FFA631株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02277として寄託された。
また、枯草菌KSM-FFB406株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02278として寄託された。
また、枯草菌KSM-FFB425株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02279として寄託された。
また、枯草菌KSM-FFB540株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02280として寄託された。
さらに、枯草菌KSM-FFB553株は、2016年6月2日付で独立行政法人製品評価技術基盤機構 特許微生物寄託センター(千葉県木更津市かずさ鎌足2-5-8)に受託番号NITE BP-02281として寄託された。
実施例3 高濃度塩添加条件でのPGA生産性評価(1)
公知の納豆菌標準株(NBRC 3336株、及びNBRC 16449株)を対照として、本発明の枯草菌株(KSM-FFA610株、KSM-FFA631株、KSM-FFB406株、KSM-FFB425株、KSM-FFB540株、及びKSM-FFB553株)を用いて、高塩濃度条件でのPGA生産性を評価した。
試験例1に示した上記菌株の凍結保存試料、及び同様の手順にて調製した納豆菌標準株の凍結保存試料を用い、試験例4と同様の培養条件にてLB液体培地を用い、30℃にて24時間の振盪培養に供した。これを種培養液として、30mLのPGA生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、並びに7.3%塩化ナトリウム(1.25M相当)又は10.2%塩化ナトリウム(1.75M相当)]に1%(v/v)接種した。この培地を37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAを定量した。その結果を表16に示す。
公知の納豆菌標準株(NBRC 3336株、及びNBRC 16449株)を対照として、本発明の枯草菌株(KSM-FFA610株、KSM-FFA631株、KSM-FFB406株、KSM-FFB425株、KSM-FFB540株、及びKSM-FFB553株)を用いて、高塩濃度条件でのPGA生産性を評価した。
試験例1に示した上記菌株の凍結保存試料、及び同様の手順にて調製した納豆菌標準株の凍結保存試料を用い、試験例4と同様の培養条件にてLB液体培地を用い、30℃にて24時間の振盪培養に供した。これを種培養液として、30mLのPGA生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、並びに7.3%塩化ナトリウム(1.25M相当)又は10.2%塩化ナトリウム(1.75M相当)]に1%(v/v)接種した。この培地を37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAを定量した。その結果を表16に示す。
表16に示すように、本発明の枯草菌株は、納豆菌標準株と比較して、高塩濃度の条件であっても、優れたPGA生産性を示す。また、納豆菌標準株では生育できずPGAが生産できないような高濃度の塩化ナトリウムを含有する条件であっても、本発明の枯草菌株はPGAが生産可能である。
以上の結果より、本発明の枯草菌は、高塩濃度耐性を有する枯草菌であると判断した。
以上の結果より、本発明の枯草菌は、高塩濃度耐性を有する枯草菌であると判断した。
実施例4 高濃度塩添加条件でのPGA生産性評価(2)
本発明の枯草菌株 KSM-FFB553株を用いて、1価の金属塩が高濃度の条件にてPGA生産性を評価した。
試験例4と同様の方法により種培養液を調製し、これを30mLのPGA生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、並びに塩化ナトリウムを10.2%(1.75M相当)又は塩化カリウム11.2%(1.5M相当)]に、1%(v/v)接種した。これらを37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液上清に含まれるPGAを定量した。その結果を表17に示す。
本発明の枯草菌株 KSM-FFB553株を用いて、1価の金属塩が高濃度の条件にてPGA生産性を評価した。
試験例4と同様の方法により種培養液を調製し、これを30mLのPGA生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、並びに塩化ナトリウムを10.2%(1.75M相当)又は塩化カリウム11.2%(1.5M相当)]に、1%(v/v)接種した。これらを37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液上清に含まれるPGAを定量した。その結果を表17に示す。
表17に示すように、本発明の枯草菌株は、1価の金属塩が高濃度の条件であっても、優れたPGA生産性を示すことが確認された。
実施例5 高濃度塩添加条件でのPGA生産性評価(3)
本発明の枯草菌株 KSM-FFB553株を用いて、2価の金属塩が高濃度の条件にてPGA生産性を評価した。
試験例4と同様の方法により種培養液を調製し、これを30mLのPGA生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、並びに10.2%塩化マグネシウム・6水和物(0.5M相当)又は7.4%塩化カルシウム・2水和物(0.5M相当)]に、1%(v/v)接種した。これらを37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAを定量した。その結果を表18に示す。
本発明の枯草菌株 KSM-FFB553株を用いて、2価の金属塩が高濃度の条件にてPGA生産性を評価した。
試験例4と同様の方法により種培養液を調製し、これを30mLのPGA生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、並びに10.2%塩化マグネシウム・6水和物(0.5M相当)又は7.4%塩化カルシウム・2水和物(0.5M相当)]に、1%(v/v)接種した。これらを37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAを定量した。その結果を表18に示す。
表18に示すように、本発明の枯草菌株は、2価の金属塩が高濃度の条件であっても、優れたPGA生産性を示すことが確認された。
実施例6 PGAの分子量の測定(1)
本発明の枯草菌株(KSM-FFA610株、KSM-FFA631株、KSM-FFB406株、KSM-FFB425株、KSM-FFB540株、及びKSM-FFB553株)が生産するPGAの分子量を測定した。
試験例5と同様の方法により種培養液を調製し、これを30mLの生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、10.2%塩化ナトリウム(1.75M相当)]に、1%(v/v)接種した。この培地を37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAの分子量を測定した。その結果を表19に示す。
本発明の枯草菌株(KSM-FFA610株、KSM-FFA631株、KSM-FFB406株、KSM-FFB425株、KSM-FFB540株、及びKSM-FFB553株)が生産するPGAの分子量を測定した。
試験例5と同様の方法により種培養液を調製し、これを30mLの生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、10.2%塩化ナトリウム(1.75M相当)]に、1%(v/v)接種した。この培地を37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAの分子量を測定した。その結果を表19に示す。
表19に示すように、本発明の枯草菌株は、納豆菌標準株では生育できないような高濃度の塩を添加した条件下であっても、高分子量のPGAが生産できることが確認された。またさらに、本発明の高塩濃度耐性株を用いることで、高分子量のPGAが生産できることが確認された。
実施例7 PGAの分子量の測定(2)
実施例1に示す本発明の枯草菌株KSM-FFB553株を用いて、1価又は2価の金属塩が高濃度の条件にて生産するPGAの分子量を評価した。
試験例4と同様の方法により種培養液を調製し、これを30mLのPGA生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、並びに11.2%塩化カリウム(1.5M相当)、10.2%塩化マグネシウム・6水和物(0.5M相当)若しくは7.4%塩化カルシウム・2水和物(0.5M相当)]に、1%(v/v)接種した。これを37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAの分子量を測定した。その結果を表20に示す。
実施例1に示す本発明の枯草菌株KSM-FFB553株を用いて、1価又は2価の金属塩が高濃度の条件にて生産するPGAの分子量を評価した。
試験例4と同様の方法により種培養液を調製し、これを30mLのPGA生産性評価培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、1.25%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、並びに11.2%塩化カリウム(1.5M相当)、10.2%塩化マグネシウム・6水和物(0.5M相当)若しくは7.4%塩化カルシウム・2水和物(0.5M相当)]に、1%(v/v)接種した。これを37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAの分子量を測定した。その結果を表20に示す。
表20に示すように、本発明の枯草菌株は、1価又は2価の金属塩が高濃度の条件下において、高分子量のPGAが生産できることが確認された。
実施例8 グルタミン酸非添加条件でのPGA生産性評価
本発明の枯草菌株(KSM-FFA610株、KSM-FFA631株、KSM-FFB406株、KSM-FFB425株、KSM-FFB540株、及びKSM-FFB553株)を用いて、高塩濃度、且つグルタミン酸非添加の条件でPGA生産性を評価した。
試験例5と同様の方法により種培養液を調製し、これを30mLのPGA生産性評価培地[培地組成:8.0%グリセロール、0.5%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、7.3%塩化ナトリウム(1.25M相当)]に、1%(v/v)接種した。この培地を37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAを定量し、分子量を測定した。その結果を表21に示す。
本発明の枯草菌株(KSM-FFA610株、KSM-FFA631株、KSM-FFB406株、KSM-FFB425株、KSM-FFB540株、及びKSM-FFB553株)を用いて、高塩濃度、且つグルタミン酸非添加の条件でPGA生産性を評価した。
試験例5と同様の方法により種培養液を調製し、これを30mLのPGA生産性評価培地[培地組成:8.0%グリセロール、0.5%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム、7.3%塩化ナトリウム(1.25M相当)]に、1%(v/v)接種した。この培地を37℃にて72時間の振盪培養に供した。
培養終了後、下記測定例1記載の方法にて、培養液の上清に含まれるPGAを定量し、分子量を測定した。その結果を表21に示す。
表21に示すように、本発明の枯草菌株は、グルタミン酸の非添加の条件であっても、高分子量のPGAが生産できることが確認された。
[測定例1]PGAの定量法、及び分子量測定法
PGAの定量、及び分子量の測定には、高速液体クロマトグラフィー装置を使用した。
[HPLC装置構成]
送液ポンプ:L-6200型、日立製作所製
オートサンプラー:AS-4000型、日立製作所製
カラムオーブン:L-5020型、日立製作所製
UV検出計:L-4250型、日立製作所製
クロマトデータ解析装置:D-2500型、日立製作所
PGAの定量、及び分子量の測定には、高速液体クロマトグラフィー装置を使用した。
[HPLC装置構成]
送液ポンプ:L-6200型、日立製作所製
オートサンプラー:AS-4000型、日立製作所製
カラムオーブン:L-5020型、日立製作所製
UV検出計:L-4250型、日立製作所製
クロマトデータ解析装置:D-2500型、日立製作所
分析カラムは、排除限界の異なる親水性ポリマー用ゲルろ過カラム TSKgel G6000PWXL(7.8mm I.D.×30cm、東ソー製)、及びTSKgel G4000PWXL(7.8mm I.D.×30cm、東ソー製)を使用した。これらをタンデムに連結し、分析カラムの直前にはガードカラムTSK guardcolumn PWXL(6.0mm I.D.×4.0cm、東ソー)を接続して用いた。
分析は、溶離液は0.1M硫酸ナトリウムとし、流速1.0mL/分、カラム温度50℃、溶出ピークは検出波長210nmにて測定を行った。また、サンプルの前処理には、0.1M硫酸ナトリウムにて適宜希釈した培養液上清試料を、0.45μmデュラポア膜(型番MULTI SCREEN MNHV45、MILLIPORE製)にてフィルターろ過を行った。
分析は、溶離液は0.1M硫酸ナトリウムとし、流速1.0mL/分、カラム温度50℃、溶出ピークは検出波長210nmにて測定を行った。また、サンプルの前処理には、0.1M硫酸ナトリウムにて適宜希釈した培養液上清試料を、0.45μmデュラポア膜(型番MULTI SCREEN MNHV45、MILLIPORE製)にてフィルターろ過を行った。
濃度検定には分子量880,000のPGA(明治フードマテリア)を用いて検量線を作成した。また分子量検定には、プルラン Shodex STANDARD P-82(昭和電工)を用いて予め重量平均分子量を求めた各種分子量の異なるポリグルタミン酸(和光純薬工業162-21411及び162-21401;SIGMA-ALDRICH P-4886及びP-4761;明治フードマテリア(分子量880,000))を用いた。
[測定例2]培養液上清試料中の高分子物質の同定法
実施例4において得られた培養終了後の培養液試料を、14,800rpmにて30分間の遠心分離(himac CR21GIII型、日立工機製)に供し、菌体除去した上清試料を回収した。次に、これら上清試料1~10mLをポリプロピレン製50mL容遠心チューブ(型番227 261、greiner bio-one製)に移し入れ、この上清試料量に対して2倍容のエタノールを加えて転倒混合したのち、-30℃にて一晩恒温放置した。その後、3,000rpmにて30分間の遠心分離(himac CF7D2型、日立工機製)に供し、沈殿画分を回収した。得られた沈澱画分を2mLの蒸留水に再度溶解し、再度、上記エタノール添加による沈殿画分を調製し、これを回収した。続いて、回収した試料を2mLの蒸留水に溶解し、これをスクリューキャップ付き試験管(型番ST-13M、日本電子理化硝子製)に0.5mL移し入れたのち、0.5mLの濃塩酸を加え攪拌後、窒素封入し、105~110℃にて16時間加熱処理を行った。加熱処理後、窒素気流下で塩酸及び水分を留去し(約6時間)、得られた乾固物を加水分解試料とした。
尚、PGA標品として市販PGA(分子量880,000、明治フードマテリア)、加水分解試料の対照として、L-Glutamic acid及びD-Glutamic acid(和光純薬工業社製)を使用した。
実施例4において得られた培養終了後の培養液試料を、14,800rpmにて30分間の遠心分離(himac CR21GIII型、日立工機製)に供し、菌体除去した上清試料を回収した。次に、これら上清試料1~10mLをポリプロピレン製50mL容遠心チューブ(型番227 261、greiner bio-one製)に移し入れ、この上清試料量に対して2倍容のエタノールを加えて転倒混合したのち、-30℃にて一晩恒温放置した。その後、3,000rpmにて30分間の遠心分離(himac CF7D2型、日立工機製)に供し、沈殿画分を回収した。得られた沈澱画分を2mLの蒸留水に再度溶解し、再度、上記エタノール添加による沈殿画分を調製し、これを回収した。続いて、回収した試料を2mLの蒸留水に溶解し、これをスクリューキャップ付き試験管(型番ST-13M、日本電子理化硝子製)に0.5mL移し入れたのち、0.5mLの濃塩酸を加え攪拌後、窒素封入し、105~110℃にて16時間加熱処理を行った。加熱処理後、窒素気流下で塩酸及び水分を留去し(約6時間)、得られた乾固物を加水分解試料とした。
尚、PGA標品として市販PGA(分子量880,000、明治フードマテリア)、加水分解試料の対照として、L-Glutamic acid及びD-Glutamic acid(和光純薬工業社製)を使用した。
続いて、得られた加水分解試料を適宜希釈して、全自動アミノ酸分析装置(L-8900型、日立ハイテクノロジーズ製)にて試料中の各種アミノ酸分析、及びグルタミン酸の定量を行った。また、L-グルタミン酸測定キット(ヤマサ醤油)を用い、キット添付のプロトコール記載の方法に準じ、L-グルタミン酸量の測定を行った。全自動アミノ酸分析装置による測定では、光学活性異性体(D/L)の総量を定量結果として得て、これよりL-グルタミン酸測定キットにて得られた定量結果を差し引いた差分をD-グルタミン酸量とした。
測定の結果、KSM-FFA610株、KSM-FFB425株、KSM-FFB540株、及びKSM-FFB553株の培養液試料より回収した高分子物質のグルタミン酸の光学異性体比(D/L)はそれぞれ、68/32、67/33、69/31、及び67/33であった。
また、上記全自動アミノ酸分析装置による測定において、グルタミン酸以外のアミノ酸が検出されなかったことから、培養上清中の高分子物質はPGAと判定した。またさらに、上記選抜した本発明の高塩濃度耐性を有する枯草菌株の生産したPGAのD/L比は、公知の納豆菌標準株が生産するPGAのD/L比と同等と判断した。
また、上記全自動アミノ酸分析装置による測定において、グルタミン酸以外のアミノ酸が検出されなかったことから、培養上清中の高分子物質はPGAと判定した。またさらに、上記選抜した本発明の高塩濃度耐性を有する枯草菌株の生産したPGAのD/L比は、公知の納豆菌標準株が生産するPGAのD/L比と同等と判断した。
[測定例3] PGA溶液の粘度測定法
前記菌株のうちKSM-FFB553株を用い、PGA調製用培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、0.5%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム]に、1%(v/v)にて調製した培養液試料より、酸沈殿による回収、次にエタノール沈殿による精製回収、および凍結乾燥によりPGA乾燥粉末を調製した。続いて、得られたPGA試料(Mw5,000k)を4%(w/w)、8%(w/w)となるように、蒸留水、及び1.25M塩化ナトリウム水溶液にて溶解した。これら約40mLをそれぞれガラス製スクリュー管(型番No.7、またはNo.8、マルエム製)、あるいはポリプロピレン製50mL容遠心チューブ(型番227 261、greiner bio-one製)に気泡が生じないよう移し入れ、B型粘度計(TVB-15型、東機産業製)を使用して、試料温度20~25℃(室温)、測定時間60秒(オートストップモード)、ローター回転速度60rpm、M2ローターを用いて測定した。尚、上記測定条件における測定値が上限を超えた試料は、回転数を30rpm、あるいは、使用ローターをM3、M4に適宜変更して測定した。
測定の結果、PGA4%(w/w)の試料において、塩を添加しない試料の粘度がは380mPa・sであったのに対し、塩を添加した試料では60mPa・sであった。また、PGA8%(w/w)試料において、塩を添加しない試料は粘度が1,480mPa・sであったのに対し、塩を添加した試料では450mPa・sであった。
上記測定結果から、塩添加によるPGA試料の粘度低減効果を確認した。
前記菌株のうちKSM-FFB553株を用い、PGA調製用培地[培地組成:8.0%グルコース、8.0%グルタミン酸ナトリウム・1水和物、0.5%酵母エキス、1.0%硫酸アンモニウム、0.2%硫酸マグネシウム・7水和物、0.003%硫酸マンガン・4-5水和物、0.7%リン酸水素二カリウム、0.35%リン酸二水素カリウム]に、1%(v/v)にて調製した培養液試料より、酸沈殿による回収、次にエタノール沈殿による精製回収、および凍結乾燥によりPGA乾燥粉末を調製した。続いて、得られたPGA試料(Mw5,000k)を4%(w/w)、8%(w/w)となるように、蒸留水、及び1.25M塩化ナトリウム水溶液にて溶解した。これら約40mLをそれぞれガラス製スクリュー管(型番No.7、またはNo.8、マルエム製)、あるいはポリプロピレン製50mL容遠心チューブ(型番227 261、greiner bio-one製)に気泡が生じないよう移し入れ、B型粘度計(TVB-15型、東機産業製)を使用して、試料温度20~25℃(室温)、測定時間60秒(オートストップモード)、ローター回転速度60rpm、M2ローターを用いて測定した。尚、上記測定条件における測定値が上限を超えた試料は、回転数を30rpm、あるいは、使用ローターをM3、M4に適宜変更して測定した。
測定の結果、PGA4%(w/w)の試料において、塩を添加しない試料の粘度がは380mPa・sであったのに対し、塩を添加した試料では60mPa・sであった。また、PGA8%(w/w)試料において、塩を添加しない試料は粘度が1,480mPa・sであったのに対し、塩を添加した試料では450mPa・sであった。
上記測定結果から、塩添加によるPGA試料の粘度低減効果を確認した。
[測定例4] 16S rRNA遺伝子塩基配列に基づく菌種同定解析法
16S rRNA遺伝子の塩基配列による菌種同定は以下の実験手順により行った。
試験例2と同様に、凍結保存菌体よりPCR用の鋳型試料を調製し、表2に示すプライマー27f及びプライマー1525rを使用してPCRを行い、16S rRNA遺伝子領域約1.5kbのDNA断片を増幅した。DNAポリメラーゼは、TaKaRa LA Taq(タカラバイオ製)を用いた。95℃で5分間、鋳型DNAを変性させた後、95℃で1分間、55℃で30秒間、72℃で2分間を1サイクルとして30サイクル行い、さらに72℃で2分間恒温した。
得られた16S rRNA遺伝子領域のDNA断片について、表2に示すプライマー27f、プライマーf2L(-)、プライマー926f、プライマーrE1L、プライマーr2L’、及びプライマー1525rをそれぞれシークエンス用プライマーとして用い、DNA塩基配列の解析を行った。尚、シークエンス解析試料の調製には、Big Dye Terminator v3.1 Cycle Sequencing Kit(アプライド バイオシステムズ製)を用い、添付プロトコールに従い試料調製を行った。解析前の試料精製には、Montage SEQ kit(MILLIPORE製)を使用した。
調製したシークエンス試料は、DNAシークエンサー(商品名:ABI 3100 Genetic Analyzer、アプライドバイオシステムズ製)を用いて配列解析を行い、塩基配列を決定した。
16S rRNA遺伝子の塩基配列による菌種同定は以下の実験手順により行った。
試験例2と同様に、凍結保存菌体よりPCR用の鋳型試料を調製し、表2に示すプライマー27f及びプライマー1525rを使用してPCRを行い、16S rRNA遺伝子領域約1.5kbのDNA断片を増幅した。DNAポリメラーゼは、TaKaRa LA Taq(タカラバイオ製)を用いた。95℃で5分間、鋳型DNAを変性させた後、95℃で1分間、55℃で30秒間、72℃で2分間を1サイクルとして30サイクル行い、さらに72℃で2分間恒温した。
得られた16S rRNA遺伝子領域のDNA断片について、表2に示すプライマー27f、プライマーf2L(-)、プライマー926f、プライマーrE1L、プライマーr2L’、及びプライマー1525rをそれぞれシークエンス用プライマーとして用い、DNA塩基配列の解析を行った。尚、シークエンス解析試料の調製には、Big Dye Terminator v3.1 Cycle Sequencing Kit(アプライド バイオシステムズ製)を用い、添付プロトコールに従い試料調製を行った。解析前の試料精製には、Montage SEQ kit(MILLIPORE製)を使用した。
調製したシークエンス試料は、DNAシークエンサー(商品名:ABI 3100 Genetic Analyzer、アプライドバイオシステムズ製)を用いて配列解析を行い、塩基配列を決定した。
続いて、得られた各塩基配列をGENETYX ATSQ ver2.01(ゼネティックス製)を用いて1断片化した。配列の相同性検索は、公開データベースNCBI(National Center for Biotechnology Information、http://www.ncbi.nlm.gov/)のメニュー”Nucleotide”内の”BLAST”のなかにある”Basic BLAST”を用い、BLASTプログラムから”nucleotide blast”を選択した。検索対象のデータベースに”Reference genomic sequences(refseq_genomics)、選択プログラムに”Highly similar sequences(megablast)”を指定し、相同率の最も高い標準株を選定した。続いて、選定した基準株の16S rRNA遺伝子配列と上記の配列決定した高塩濃度耐性を有する枯草菌候補株の16S rRNA遺伝子配列をGENETYX Ver.13(ゼネティックス製)を用いて、“Nucleotide vs Nucleotide Homology”メニューにより、塩基配列対塩基配列の相同性解析を実施し、相同性(%)を算出した。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
本願は、2016年8月25日に日本国で特許出願された特願2016-165099に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
Claims (24)
- 受託番号NITE BP-02276、受託番号NITE BP-02277、受託番号NITE BP-02278、受託番号NITE BP-02279、受託番号NITE BP-02280、又は受託番号NITE BP-02281で特定される枯草菌(Bacillus subtilis)を培養してポリ-ガンマ-グルタミン酸を生産する方法。
- 前記枯草菌が、塩化ナトリウム濃度12%(w/v)以上に調整したLB培地において増殖可能な高塩濃度耐性を有し、塩化ナトリウム濃度10%(w/v)の条件下で培養したとき、重量平均分子量が300,000以上のポリ-ガンマ-グルタミン酸生産能を有する、請求項1記載の方法。
- 塩化ナトリウム濃度が10%(w/v)の条件下で培養したとき、前記枯草菌が生産するポリ-ガンマ-グルタミン酸の重量平均分子量が1,000,000以上50,000,000以下である、請求項1又は2項記載の方法。
- 前記枯草菌を塩化ナトリウム濃度10%(w/v)以上の条件下で培養したとき、前記枯草菌がポリ-ガンマ-グルタミン酸を0.5g/L/3日以上生産する、請求項1~3のいずれか1記載の方法。
- 前記枯草菌が、配列番号7若しくは8で示される塩基配列との同一性が99.75%以上の塩基配列、又は配列番号7若しくは8で示される塩基配列において1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する、請求項1~4のいずれか1記載の方法。
- グリセリン、グルコース、マルトース、並びにグルタミン酸若しくはその塩からなる群より選ばれる少なくとも1種を炭素源として含有する培地で前記枯草菌を培養する、請求項1~6のいずれか1記載の方法。
- グルタミン酸又はその塩を含有する培地で前記枯草菌を培養する、請求項1~7のいずれか1記載の方法。
- 前記培地におけるグルタミン酸又はその塩の濃度が、0.005g/L以上600g/L以下である、請求項8記載の方法。
- グルタミン酸の非存在下で前記枯草菌を培養する、請求項1~7のいずれか1記載の方法。
- 塩化ナトリウム、塩化カリウム、塩化カルシウム、及び塩化マグネシウムからなる群より選ばれる少なくとも1種の塩を含有する培地で前記枯草菌を培養する、請求項1~10のいずれか1項記載の方法。
- 前記培地における前記塩の濃度が、0.01M以上2.5M以下である、請求項11記載の方法。
- 前記塩が1価の金属塩であり、前記培地における前記塩の濃度が1.0M以上2.0M以下である、請求項11又は12記載の方法。
- 前記塩が2価の金属塩であり、前記培地における前記塩の濃度が0.1M以上1.5M以下である、請求項11又は12記載の方法。
- 前記枯草菌の培養期間が1日以上である、請求項1~14のいずれか1記載の方法。
- 前記枯草菌を培養し、培地1L当たり0.5g/3日以上でPGAを生産する、請求項1~15のいずれか1記載の方法。
- 生産される前記ポリ-ガンマ-グルタミン酸の重量平均分子量が300,000以上50,000,000以下である、請求項1~16のいずれか1項記載の方法。
- 受託番号NITE BP-02276、受託番号NITE BP-02277、受託番号NITE BP-02278、受託番号NITE BP-02279、受託番号NITE BP-02280、又は受託番号NITE BP-02281で特定される枯草菌(Bacillus subtilis)。
- 塩化ナトリウム濃度12%(w/v)以上に調整したLB培地において増殖可能であり、塩化ナトリウム濃度10%(w/v)の条件下で培養したとき、重量平均分子量が300,000以上のポリ-ガンマ-グルタミン酸生産能を有する、請求項18記載の枯草菌。
- 塩化ナトリウム濃度が10%(w/v)の条件下で培養したとき、重量平均分子量が1,000,000以上50,000,000以下のポリ-ガンマ-グルタミン酸を生産する、請求項18又は19記載の枯草菌。
- 塩化ナトリウム濃度10%(w/v)以上の条件下で培養したとき、ポリ-ガンマ-グルタミン酸を0.5g/L/3日以上生産する、請求項18~20のいずれか1記載の枯草菌。
- 配列番号7若しくは8で示される塩基配列との同一性が99.75%以上の塩基配列、又は配列番号7若しくは8で示される塩基配列において1~3個の塩基の欠失、置換、挿入若しくは付加された塩基配列、からなる16S rRNA遺伝子を有する、請求項18~21のいずれか1記載の枯草菌。
- 請求項1~17のいずれか1記載の方法により生産したポリ-ガンマ-グルタミン酸を低分子化し、所望の分子量に調整する、ポリ-ガンマ-グルタミン酸の分子量調整方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780034466.5A CN109477123B (zh) | 2016-08-25 | 2017-07-28 | 聚-γ-谷氨酸的生产方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-165099 | 2016-08-25 | ||
JP2016165099A JP6371810B2 (ja) | 2016-08-25 | 2016-08-25 | ポリ−ガンマ−グルタミン酸の生産方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018037833A1 true WO2018037833A1 (ja) | 2018-03-01 |
Family
ID=61245757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027488 WO2018037833A1 (ja) | 2016-08-25 | 2017-07-28 | ポリ-ガンマ-グルタミン酸の生産方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6371810B2 (ja) |
CN (1) | CN109477123B (ja) |
TW (1) | TWI653335B (ja) |
WO (1) | WO2018037833A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110747240A (zh) * | 2019-12-01 | 2020-02-04 | 内蒙古阜丰生物科技有限公司 | 一种聚谷氨酸的发酵工艺 |
CN113583895A (zh) * | 2021-06-28 | 2021-11-02 | 杨凌未来中科环保科技有限公司 | 一株枯草芽孢杆菌、有机肥、生产方法及应用 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110904012B (zh) * | 2019-12-19 | 2021-09-24 | 华熙生物科技股份有限公司 | 一株枯草芽孢杆菌及其在生产γ-聚谷氨酸中的应用 |
CN115786177B (zh) * | 2021-11-11 | 2024-08-09 | 华中农业大学 | 一种解淀粉芽胞杆菌dt5及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002233391A (ja) * | 2001-01-11 | 2002-08-20 | Bioleaders Corp | 高分子量のポリ−γ−グルタミン酸を生産する耐塩性バチルスズブチリスチョングッチャン株 |
WO2008133226A1 (ja) * | 2007-04-25 | 2008-11-06 | Mizkan Group Corporation | 新規納豆菌、及び該納豆菌を用いて製造された柔らかい納豆 |
JP2015070834A (ja) * | 2013-09-03 | 2015-04-16 | 花王株式会社 | ポリ−ガンマ−グルタミン酸の生産方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3547839B2 (ja) * | 1995-03-14 | 2004-07-28 | キッコーマン株式会社 | ガンマーポリグルタミン酸の生産法 |
KR100399091B1 (en) * | 2002-07-10 | 2003-09-22 | Bioleaders Corp | Macromolecular weight poly(gamma-glutamic acid) and its use |
CN101875910A (zh) * | 2010-04-20 | 2010-11-03 | 山东省食品发酵工业研究设计院 | 一株产γ-聚谷氨酸的解淀粉芽孢杆菌 |
CN101948785B (zh) * | 2010-08-31 | 2012-06-13 | 南京医科大学 | 一株γ-聚谷氨酸产生菌及利用其制备γ-聚谷氨酸及其盐的方法 |
CN104087628A (zh) * | 2014-04-28 | 2014-10-08 | 广西大学 | 一种降低γ-聚谷氨酸发酵液粘度的方法 |
-
2016
- 2016-08-25 JP JP2016165099A patent/JP6371810B2/ja active Active
-
2017
- 2017-07-28 WO PCT/JP2017/027488 patent/WO2018037833A1/ja active Application Filing
- 2017-07-28 CN CN201780034466.5A patent/CN109477123B/zh active Active
- 2017-08-14 TW TW106127472A patent/TWI653335B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002233391A (ja) * | 2001-01-11 | 2002-08-20 | Bioleaders Corp | 高分子量のポリ−γ−グルタミン酸を生産する耐塩性バチルスズブチリスチョングッチャン株 |
WO2008133226A1 (ja) * | 2007-04-25 | 2008-11-06 | Mizkan Group Corporation | 新規納豆菌、及び該納豆菌を用いて製造された柔らかい納豆 |
JP2015070834A (ja) * | 2013-09-03 | 2015-04-16 | 花王株式会社 | ポリ−ガンマ−グルタミン酸の生産方法 |
Non-Patent Citations (2)
Title |
---|
ASHIUCHI M. ET AL.: "Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence", APPL. MICROBIOL. BIOTECHNOL., vol. 57, 2001, pages 764 - 769, XP055141785 * |
YIN L. ET AL.: "Global microarray analysis of alkaliphilic halotolerant bacterium Bacillus sp. N16-5 salt stress adaptation", PLOS ONE, vol. 10, no. 6, 2015, pages e0128649, XP055467712 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110747240A (zh) * | 2019-12-01 | 2020-02-04 | 内蒙古阜丰生物科技有限公司 | 一种聚谷氨酸的发酵工艺 |
CN113583895A (zh) * | 2021-06-28 | 2021-11-02 | 杨凌未来中科环保科技有限公司 | 一株枯草芽孢杆菌、有机肥、生产方法及应用 |
CN113583895B (zh) * | 2021-06-28 | 2023-02-17 | 杨凌未来中科环保科技有限公司 | 一株枯草芽孢杆菌、有机肥、生产方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
JP2018029546A (ja) | 2018-03-01 |
TWI653335B (zh) | 2019-03-11 |
JP6371810B2 (ja) | 2018-08-08 |
CN109477123A (zh) | 2019-03-15 |
CN109477123B (zh) | 2020-07-10 |
TW201812014A (zh) | 2018-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100500796B1 (ko) | 고분자량의 폴리-감마-글루탐산을 생산하는 내염성 균주 바실러스 서브틸리스 청국장 | |
US10975177B2 (en) | Process for producing a polyacrylamide solution with increased viscosity | |
JP6371810B2 (ja) | ポリ−ガンマ−グルタミン酸の生産方法 | |
Zhao et al. | Production of ultra-high molecular weight poly-γ-glutamic acid with Bacillus licheniformis P-104 and characterization of its flocculation properties | |
Buthelezi et al. | Production and characterization of bioflocculants from bacteria isolated from wastewater treatment plant in South Africa | |
Da Silva et al. | Production and optimization of poly-γ-glutamic acid by Bacillus subtilis BL53 isolated from the Amazonian environment | |
CN103649312A (zh) | 改良型腈水合酶 | |
JP6489013B2 (ja) | 改良型ニトリルヒドラターゼ | |
Shankar et al. | Screening of exopolysaccharide producing bacterium Frateuria aurentia from elephant dung | |
CN111057695A (zh) | 一种腈水解酶及其制备方法和应用 | |
JP2017195861A (ja) | 枯草菌変異株及びその利用 | |
KR100670166B1 (ko) | 폴리감마글루탐산을 생산하는 신규 바실러스 서브틸리스ch-10 균주와 이를 이용한 폴리감마글루탐산의 제조방법 | |
Simova et al. | Exopolysaccharides produced by mixed culture of yeast Rhodotorula rubra GED10 and yogurt bacteria (Streptococcus thermophilus 13a+ Lactobacillus bulgaricus 2‐11) | |
KR102265998B1 (ko) | 폴리-감마-글루탐산의 생산 방법 | |
JP2013188176A (ja) | 新規微生物およびその変異株並びにそれを用いた多糖類の製造方法 | |
Bajaj et al. | Sequential optimization Approach for Enhanced production of poly (γ-glutamic acid) from Newly Isolated Bacillus subtilis | |
CN111778179B (zh) | 降解乳酸的原玻璃蝇节杆菌及其用途 | |
Miri et al. | Medium optimization for exopolysaccharides production by Bacillus Zhangzhouensis BZ 16 strain isolated from Khnifiss Lagoon | |
CN105985939B (zh) | 一种聚羟基烷酸颗粒降解酶其用途及(r)-3hb生产方法 | |
JP5669039B2 (ja) | ポリ−γ―グルタミン酸高生産性納豆菌株および該株を用いて製造したポリ−γ−グルタミン酸および納豆 | |
Cosa et al. | A marine bacterium, Oceanobacillus sp. Pinky, isolated from Algoa Bay sediment produces a thermostable glycoprotein flocculant | |
KR100618035B1 (ko) | 바실러스 서브틸리스 bs62 유래의 폴리(감마글루탐산)생산방법 및 그로부터 생산된 폴리(감마글루탐산) | |
JP5588578B2 (ja) | 担子菌酵母変異体 | |
RU2539033C1 (ru) | РЕКОМБИНАНТНЫЙ ШТАММ БАКТЕРИЙ Rhodococcus rhodochrous, ОБЛАДАЮЩИЙ КОНСТИТУТИВНОЙ АЦИЛИРУЮЩЕЙ АКТИВНОСТЬЮ, И СПОСОБ СИНТЕЗА N-ЗАМЕЩЕННЫХ АКРИЛАМИДОВ С ИСПОЛЬЗОВАНИЕМ ЭТОГО ШТАММА В КАЧЕСТВЕ БИОКАТАЛИЗАТОРА | |
Sung et al. | Symbiobacterium toebii sp. nov., commensal thermophile isolated from Korean compost |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17843319 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17843319 Country of ref document: EP Kind code of ref document: A1 |