WO2018036764A1 - Kühlvorrichtung für eine batteriebaugruppe sowie einheit aus einer batteriebaugruppe und einer kühlvorrichtung - Google Patents

Kühlvorrichtung für eine batteriebaugruppe sowie einheit aus einer batteriebaugruppe und einer kühlvorrichtung Download PDF

Info

Publication number
WO2018036764A1
WO2018036764A1 PCT/EP2017/069490 EP2017069490W WO2018036764A1 WO 2018036764 A1 WO2018036764 A1 WO 2018036764A1 EP 2017069490 W EP2017069490 W EP 2017069490W WO 2018036764 A1 WO2018036764 A1 WO 2018036764A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
cooling device
battery
individual
battery assembly
Prior art date
Application number
PCT/EP2017/069490
Other languages
English (en)
French (fr)
Inventor
Nicolas Flahaut
Michael Huber
Sebastian SIERING
Jan Mysliwietz
Andreas Ring
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to CN201780028179.3A priority Critical patent/CN109075411A/zh
Publication of WO2018036764A1 publication Critical patent/WO2018036764A1/de
Priority to US16/274,738 priority patent/US11183720B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a cooling device for a battery assembly, in particular a high-voltage accumulator, an electrically driven vehicle, with a plurality of cooling lines, in which a cooling medium is guided, wherein the cooling device is adapted to transfer heat from the battery assembly to the cooling medium. Furthermore, the invention relates to a unit of a battery assembly and such a cooling device.
  • the battery assembly which is in particular a high-voltage storage, designed as a refrigerant or coolant cooling device to limit the maximum temperature of the battery assembly. Furthermore, it is crucial that a temperature spread between the individual cells or cell modules of the battery assembly is kept as low as possible.
  • a cooling device of the type mentioned that the cooling device has at least two separately formed, a battery opposite individual cooling elements, which are each supplied via a separate, the respective individual cooling element associated valve with cooling medium.
  • a battery opposite individual cooling elements which are each supplied via a separate, the respective individual cooling element associated valve with cooling medium.
  • a total of more parallel paths can be realized within the cooling device, which enables a more homogeneous cooling medium distribution and thus a more homogeneous temperature distribution within the battery assembly.
  • the embodiment of the invention is comparatively simple and inexpensive to implement.
  • battery is to be understood in this context in particular a battery module or a group of battery modules.
  • each individual cooling element is virtually a separate cooling device, which is independent of the other individual cooling elements.
  • the cooling medium flow through the individual cooling elements can preferably be regulated independently of one another. As a result, in particular temperature differences can be reliably compensated by external influences, for example by heat input from the exhaust system of a hybrid vehicle.
  • the individual cooling elements may each have one or more cooling plates. In the case of several belonging to a single cooling element cooling plates these are fluidly connected to each other, so that the cooling medium flow is regulated by all cooling plates by the individual cooling element associated valve.
  • the cooling medium is a refrigerant, which is present in particular as a two-phase mixture having a liquid and a gaseous phase. So there is a direct refrigerant cooling, in which the refrigerant flows through the individual cooling elements itself.
  • the valves are preferably self-regulating or regulated expansion valves.
  • An example of a self-regulating expansion valve is a so-called thermostatic expansion valve (TXV); controlled expansion valves include, for example, electro-thermostatic expansion valves (eTXV), electronic expansion valves (EXV), throttle valves (DMV) or shape memory alloy valves (SXV Shape Memory Valve).
  • eTXV electro-thermostatic expansion valves
  • EXV electronic expansion valves
  • DMV throttle valves
  • SXV Shape Memory Valve shape memory alloy valves
  • a unit comprising a battery assembly and a cooling device according to the invention, the battery assembly having a plurality of battery modules, each of which comprises a plurality of battery cells.
  • each individual cooling element is assigned to a battery module.
  • each individual cooling element is associated with exactly one battery module.
  • a single cooling element is assigned to a plurality of battery modules, in particular up to six battery modules. As has been shown in experiments, this ensures adequate cooling of, for example, a high-voltage accumulator, wherein the cooling device can be produced comparatively inexpensively.
  • the individual cooling elements each have a plurality of cooling plates, wherein each cooling plate is assigned to a battery module and arranged opposite to it.
  • each cooling plate is associated with exactly one battery module, whereby a particularly reliable and uniform cooling of the battery assembly is achieved.
  • the cooling plates abut in particular on an outer housing of the battery modules.
  • the battery modules are at least partially arranged vertically one above the other in relation to the installation position in the vehicle.
  • the battery assembly is a multi-level high-voltage storage.
  • the individual cooling elements or their individual cooling plates are preferably arranged vertically one above the other, in each case in planar contact with the associated battery module.
  • a particularly compact design can be achieved if a common housing is provided, in which the battery modules of the battery assembly and the cooling device are arranged.
  • Figure 1 is a schematic representation of a unit of a battery assembly and a cooling device according to a first embodiment of the invention
  • Figure 2 is a perspective view of a cooling device according to a second embodiment of the invention.
  • FIG 3 is a perspective view of a unit according to the invention, in which the cooling device of Figure 2 is used.
  • FIG. 1 shows a unit 10 according to a first embodiment of the invention.
  • the unit 10 has a battery assembly 12, which is in particular a high-voltage storage of an electrically driven vehicle, and comprises a plurality of (here two) battery modules 14, which in turn each composed of a plurality of battery cells 16.
  • the unit 10 furthermore has a cooling device 20, which comprises a plurality of (here also two) separately formed individual cooling elements 22 which are each supplied with a cooling medium, in this case a refrigerant, via a separate valve 24 assigned to the respective individual cooling element 22.
  • each individual cooling element 22 has a cooling medium inlet 26, in which the valve 24, which is an expansion valve, is arranged.
  • the expansion valve can be made self-regulating or regulated.
  • the refrigerant used as the cooling medium is present at the cooling medium inlet 26 as a supercooled liquid and after expansion or after the expansion valve 24 in particular as a two-phase mixture of a liquid phase and a gaseous phase.
  • the cooling medium in the form of the refrigerant can be supplied to a plurality of cooling lines 28, which together form a cooling plate 30, which lies flat against a battery module 14 and against this. After the cooling medium has received heat from its associated battery module 14 via the cooling lines 28 arranged in parallel and has thereby cooled it, it can be discharged again via a cooling medium output 32 to a cooling medium circuit of the vehicle.
  • each individual cooling element 22 is associated with exactly one battery module 14, wherein no flow connection with the cooling lines 28 of the cooling line 28 of a single cooling element 22 other cooling element 22 consists. It is therefore not possible to replace the cooling medium between the two individual cooling elements 22.
  • the cooling medium flow through the individual cooling elements 22 by means of the valves 24 can be controlled independently of each other.
  • FIG. 2 shows a cooling device 20 according to a second embodiment of the invention, wherein like components bear like reference numerals and will be discussed below only the differences from the previously described embodiment.
  • the cooling device 20 according to FIG. 2 likewise has two individual cooling elements 22, which are supplied with cooling medium in the form of refrigerant via a respective associated valve 24, again a regulated or self-regulating expansion valve.
  • each individual cooling element 22 has a plurality of, namely three cooling plates 30, which are in flow connection with one another via connecting lines 34.
  • the two individual cooling elements 22 are not connected to each other in terms of flow, so that no exchange of the cooling medium or refrigerant takes place between them.
  • each of the cooling plates 30 is assigned to a battery module of a battery module designed as a high-voltage storage and is arranged opposite this battery module.
  • Each individual cooling element 22 thus cools three battery modules, the representation of which has been omitted in FIG. 2 for reasons of clarity.
  • the battery modules are arranged vertically in relation to the mounting position in the vehicle with the associated battery assembly, wherein the cooling plates 30 are each in surface contact with its associated battery module.
  • FIG. 3 shows a unit 10 according to the invention, in which the cooling device 20 according to FIG. 2 is installed.
  • the associated battery assembly is a multi-storey high-voltage storage, in each case two battery modules in both halves of the unit 10 are arranged one above the other.
  • a common housing 36 is provided, in which both the battery modules of the battery assembly and the cooling device 20 are arranged with the existing of three cooling plates 30 single cooling elements 22.
  • temperature differences can be better compensated by external influences, since the individual individual cooling elements are independently controlled by the associated valves.
  • a total of more parallel paths can be realized, which allow a more homogeneous distribution of refrigerants and thus a homogeneous temperature distribution within the battery assembly.

Abstract

Eine Kühlvorrichtung (20) für eine Batteriebaugruppe (12), insbesondere einen Hochvoltspeicher, eines elektrisch angetriebenen Fahrzeugs, hat mehrere Kühlleitungen (28), in denen ein Kühlmedium geführt ist, wobei die Kühlvorrichtung (20) ausgebildet ist, Wärme von der Batteriebaugruppe (12) auf das Kühlmedium zu übertragen. Die Kühlvorrichtung (20) weist wenigstens zwei separat ausgebildete, einer Batterie gegenüberliegende Einzelkühlelemente (22) auf, die jeweils über ein eigenes, dem jeweiligen Einzelkühlelement (22) zugeordnetes Ventil (24) mit Kühlmedium versorgt werden. Zudem wird eine Einheit (10) aus einer Batteriebaugruppe (12) und einer Kühlvorrichtung (20) beschrieben.

Description

Kühlvorrichtung für eine Batteriebaugruppe sowie Einheit aus einer Batteriebaugruppe und einer Kühlvorrichtung
Die Erfindung betrifft eine Kühlvorrichtung für eine Batteriebaugruppe, insbesondere einen Hochvoltspeicher, eines elektrisch angetriebenen Fahrzeugs, mit mehreren Kühlleitungen, in denen ein Kühlmedium geführt ist, wobei die Kühlvorrichtung ausgebildet ist, Wärme von der Batteriebaugruppe auf das Kühlmedium zu übertragen. Weiterhin betrifft die Erfindung eine Einheit aus einer Batteriebaugruppe und einer solchen Kühlvorrichtung.
Zur Sicherung der Reichweite, Lebensdauer und abrufbaren Leistung von elektrisch angetriebenen Fahrzeugen (wie etwa Hybridfahrzeugen, Plug-in-Hybridfahrzeugen sowie rein elektrisch betriebenen Fahrzeugen) ist ein definiertes Thermomanagement der Batterien bzw. Batteriezellen bzw. Batteriemodule erforderlich. Dabei muss insbesondere gewährleistet werden, dass sich die als Akkumulatoren ausgebildeten Batterien während des Lade- und Entladevorgangs zu jeder Zeit in einem definierten Temperaturbereich befinden, da es sonst zu einer verstärkten Degradierung der Zelleigenschaften kommt, was eine vorzeitige Alterung der Akkumulatoren begünstigt, wodurch deren Lebensdauer sinkt.
Aus diesem Grund ist es nötig, im Inneren der Batteriebaugruppe, bei der es sich insbesondere um einen Hochvoltspeicher handelt, eine als Kältemittel- oder Kühlmittelkühlung ausgebildete Kühlvorrichtung zu installieren, um die maximale Temperatur der Batteriebaugruppe zu beschränken. Weiterhin ist entscheidend, dass zwischen den einzelnen Zellen bzw. Zellmodulen der Batteriebaugruppe eine Temperaturspreizung so gering wie möglich gehalten wird.
Aktuelle Bauraumvorgaben, insbesondere bei Hybridfahrzeugen, erfordern zum Teil eine mehrstöckige Anordnung der Batteriezellen bzw. Batteriemodule; darüber hinaus befinden sich die Einbauräume bei Hybridfahrzeugen oftmals in der Nähe der Abgasanlage. Dies bedingt einen zumindest teilweise asymmetrischen Wärmeeintrag in die Batteriebaugruppe und somit eine asymmetrische Aufheizung einzelner Bereiche der Batteriebaugruppe, in denen Zellen bzw. Zellmodule untergebracht sind. Da derartige Temperaturspreizungen innerhalb der Batteriebaugruppe oftmals zeitlich begrenzt sind, kann die Kühlvorrichtung für die Batteriebaugruppe nicht permanent auf die Asymmetrie ausgelegt werden. Zusätzlich ergibt sich aufgrund des mehrstöckigen Aufbaus und der Größe der Batteriebaugruppe eine hohe Anzahl an Parallelpfaden, auf die das Kühlmedium homogen aufgeteilt werden müsste, was physikalisch schwierig ist. Dies gilt insbesondere im Fall eines Kältemittels, welches nur einen sehr geringen Anteil an einer flüssigen Phase aufweist. Bei einer rein seriellen Anordnung der Kühlleitungen ist naturgemäß deren Gesamtlänge begrenzt, wodurch sich diese ebenfalls nicht für die Kühlung einer großen Batteriebaugruppe eignet. Auch eine Regelung der Kühlmedienverteilung beispielsweise über aktive Verteilaktuatoren entfällt aus Kostengründen.
Es ist daher Aufgabe der Erfindung, eine Kühlvorrichtung bereitzustellen, die bei einfacher und kostengünstiger Herstellung eine homogene Temperaturverteilung innerhalb einer Batteriebaugruppe ermöglicht und somit eine sichere und zuverlässige Kühlung der Batteriebaugruppe gewährleistet.
Gemäß einem ersten Aspekt der Erfindung ist hierzu bei einer Kühlvorrichtung der eingangs genannten Art vorgesehen, dass die Kühlvorrichtung wenigstens zwei separat ausgebildete, einer Batterie gegenüberliegende Einzelkühlelemente aufweist, die jeweils über ein eigenes, dem jeweiligen Einzelkühlelement zugeordnetes Ventil mit Kühlmedium versorgt werden. Durch die Verwendung mehrerer Einzelkühlelemente mit je einem eigenen Ventil lassen sich insgesamt mehr Parallelpfade innerhalb der Kühlvorrichtung realisieren, was eine homogenere Kühlmedienaufteilung und somit eine homogenere Temperaturverteilung innerhalb der Batteriebaugruppe ermöglicht. Zudem ist die erfindungsgemäße Ausgestaltung vergleichsweise einfach und kostengünstig realisierbar. Unter Batterie ist in diesem Zusammenhang insbesondere ein Batteriemodul bzw. eine Gruppe von Batteriemodulen zu verstehen.
Gemäß einer bevorzugten Ausführungsform besteht zwischen den Kühlleitungen eines Einzelkühlelementes keine Strömungsverbindung mit den Kühlleitungen des anderen Einzelkühlelementes. Es ist also zwischen den Einzelkühlelementen kein Austausch von Kühlmedium möglich, wodurch jedes Einzelkühlelement quasi eine eigene Kühlvorrichtung darstellt, die unabhängig von den weiteren Einzelkühlelementen ist.
Vorzugsweise ist der Kühlmedienfluss durch die Einzelkühlelemente unabhängig voneinander regelbar. Dadurch lassen sich insbesondere Temperaturunterschiede durch äußere Einflüsse, beispielsweise durch Wärmeeintrag aus der Abgasanlage eines Hybridfahrzeugs, zuverlässig ausgleichen.
Dabei können die Einzelkühlelemente jeweils eine oder mehrere Kühlplatten aufweisen. Im Falle mehrerer zu einem Einzelkühlelement gehörender Kühlplatten sind diese strömungsmäßig miteinander verbunden, so dass der Kühlmedienfluss durch alle Kühlplatten durch das dem Einzelkühlelement zugeordnete Ventil geregelt wird.
Gemäß einer bevorzugten Ausgestaltung handelt es sich bei dem Kühlmedium um ein Kältemittel, das insbesondere als zweiphasiges Gemisch mit einer flüssigen und einer gasförmigen Phase vorliegt. Es liegt also eine Direktkältemittelkühlung vor, bei der das Kältemittel selbst die Einzelkühlelemente durchströmt.
Alternativ wäre es denkbar, als Kühlmedium beispielsweise Wasser zu verwenden, das mittels eines Wärmetauschers die aufgenommene Wärme an ein Kältemittel abgibt. Auch eine reine Kühlmittelkühlung ist theoretisch möglich.
Bei den Ventilen handelt es sich bevorzugt um selbstregelnde oder geregelte Expansionsventile. Ein Beispiel für ein selbstregelndes Expansionsventil ist ein sogenanntes thermostatisches Expansionsventil (TXV); als geregelte Expansionsventile kommen beispielsweise elektro-thermostatische Expansionsventile (eTXV), elektronische Expansionsventile (EXV), Drossel-Magnetventile (DMV) oder mittels einer Formgedächtnislegierung betriebene Ventile (SXV Shape Memory Valve) infrage.
Die eingangs gestellte Aufgabe wird ebenso gelöst durch eine Einheit aus einer Batteriebaugruppe sowie einer erfindungsgemäßen Kühlvorrichtung, wobei die Batteriebaugruppe mehrere Batteriemodule aufweist, die jeweils mehrere Batteriezellen umfassen. Durch die Verwendung mehrerer (d.h. wenigstens zweier) Einzelkühlelemente lassen sich Temperaturunterschiede in der Batteriebaugruppe durch äußere Einflüsse besser ausgleichen, insbesondere wenn die einzelnen Einzelkühlelemente unabhängig voneinander regelbar sind. Zudem lassen sich mehr Parallelpfade realisieren, was eine homogenere Kühlmedienaufteilung und damit eine homogene Temperaturverteilung innerhalb der Batteriebaugruppe ermöglicht.
Gemäß einer ersten bevorzugten Ausgestaltung ist jedes Einzelkühlelement einem Batteriemodul zugeordnet. Insbesondere ist jedes Einzelkühlelement genau einem Batteriemodul zugeordnet. Dadurch wird eine besonders zuverlässige und individuell regelbare Kühlung erreicht.
Alternativ, insbesondere bei einer Hochleistungsbatteriebaugruppe mit vielen Batteriemodulen, ist es möglich, dass ein Einzelkühlelement mehreren Batteriemodulen, insbesondere bis zu sechs Batteriemodulen, zugeordnet ist. Wie sich in Versuchen gezeigt hat, ist dadurch eine ausreichende Kühlung beispielsweise eines Hochvoltspeichers sichergestellt, wobei die Kühlvorrichtung vergleichsweise kostengünstig herstellbar ist.
In einer Weiterbildung weisen die Einzelkühlelemente jeweils mehrere Kühlplatten auf, wobei jede Kühlplatte einem Batteriemodul zugeordnet und ihm gegenüberliegend angeordnet ist. Insbesondere ist jede Kühlplatte genau einem Batteriemodul zugeordnet, wodurch eine besonders zuverlässige und gleichmäßige Kühlung der Batteriebaugruppe erreicht wird. Dabei liegen die Kühlplatten insbesondere an einem Außengehäuse der Batteriemodule an.
In einer bevorzugten Ausführungsform, die sich durch einen besonders platzsparenden Aufbau auszeichnet, sind die Batteriemodule bezogen auf die Einbaulage im Fahrzeug zumindest teilweise vertikal übereinander angeordnet. Insbesondere handelt es sich bei der Batteriebaugruppe um einen mehrstöckigen Hochvoltspeicher. Bei dieser Ausgestaltung sind auch die Einzelkühlelemente bzw. deren einzelne Kühlplatten vorzugsweise vertikal übereinander angeordnet, und zwar jeweils in flächigem Kontakt mit dem zugeordneten Batteriemodul.
Ein besonders kompakter Aufbau lässt sich erreichen, wenn ein gemeinsames Gehäuse vorgesehen ist, in dem die Batteriemodule der Batteriebaugruppe sowie die Kühlvorrichtung angeordnet sind.
Weitere Merkmale und Vorteile ergeben sich aus der nachfolgenden Beschreibung mehrerer bevorzugter Ausführungsformen anhand der beigefügten Zeichnungen. In diesen zeigt: Figur 1 eine schematische Darstellung einer Einheit aus einer Batteriebaugruppe sowie einer Kühlvorrichtung gemäß einer ersten Ausführungsform der Erfindung;
Figur 2 eine perspektivische Ansicht einer Kühlvorrichtung gemäß einer zweiten Ausführungsform der Erfindung; und
Figur 3 eine perspektivische Ansicht einer erfindungsgemäßen Einheit, in der die Kühlvorrichtung aus Figur 2 zum Einsatz kommt.
Figur 1 zeigt eine Einheit 10 gemäß einer ersten Ausführungsform der Erfindung. Die Einheit 10 weist eine Batteriebaugruppe 12 auf, bei der es sich insbesondere um einen Hochvoltspeicher eines elektrisch angetriebenen Fahrzeugs handelt, und umfasst mehrere (hier zwei) Batteriemodule 14, die sich ihrerseits aus jeweils mehreren Batteriezellen 16 zusammensetzen.
Die Einheit 10 weist weiterhin eine Kühlvorrichtung 20 auf, die mehrere (hier ebenfalls zwei) separat ausgebildete Einzelkühlelemente 22 umfasst, die jeweils über ein eigenes, dem jeweiligen Einzelkühlelement 22 zugeordnetes Ventil 24 mit einem Kühlmedium, hier einem Kältemittel, versorgt werden. Zu diesem Zweck weist jedes Einzelkühlelement 22 einen Kühlmedieneingang 26 auf, in dem das Ventil 24, bei dem es sich um ein Expansionsventil handelt, angeordnet ist. Das Expansionsventil kann dabei selbstregelnd oder geregelt ausgeführt sein. Das als Kühlmedium eingesetzte Kältemittel liegt am Kühlmedieneingang 26 als unterkühlte Flüssigkeit und nach Expansion bzw. nach dem Expansionsventil 24 insbesondere als Zweiphasengemisch aus einer flüssigen Phase und einer gasförmigen Phase vor.
Über den jeweiligen Kühlmedieneingang 26 und das Ventil 24 ist das Kühlmedium in Form des Kältemittels mehreren Kühlleitungen 28 zuführbar, die zusammen eine Kühlplatte 30 bilden, die einem Batteriemodul 14 gegenüber und an diesem flächig anliegt. Nachdem das Kühlmedium über die parallel angeordneten Kühlleitungen 28 Wärme von seinem zugeordneten Batteriemodul 14 aufgenommen und dieses dadurch gekühlt hat, ist es über einen Kühlmedienausgang 32 wieder an einen Kühlmedienkreislauf des Fahrzeugs abgebbar.
Wie aus Figur 1 hervorgeht, ist jedes Einzelkühlelement 22 genau einem Batteriemodul 14 zugeordnet, wobei zwischen den Kühlleitungen 28 eines Einzelkühlelements 22 keine Strömungsverbindung mit den Kühlleitungen 28 des anderen Kühlelements 22 besteht. Es ist also kein Austausch des Kühlmediums zwischen den beiden Einzelkühlelementen 22 möglich. Darüber hinaus ist der Kühlmedienfluss durch die Einzelkühlelemente 22 mit Hilfe der Ventile 24 unabhängig voneinander regelbar.
Figur 2 zeigt eine Kühlvorrichtung 20 gemäß einer zweiten Ausführungsform der Erfindung, wobei gleiche Bauteile gleiche Bezugszeichen tragen und im Folgenden lediglich auf die Unterschiede zur bisher beschriebenen Ausführungsform eingegangen wird.
Die Kühlvorrichtung 20 gemäß Figur 2 weist ebenfalls zwei Einzelkühlelemente 22 auf, die über ein jeweils zugeordnetes Ventil 24, auch hier wieder ein geregeltes oder selbstregelndes Expansionsventil, mit Kühlmedium in Form von Kältemittel versorgt werden. Im Gegensatz zur Ausgestaltung gemäß Figur 1 hat hier jedoch jedes Einzelkühlelement 22 mehrere, nämlich drei Kühlplatten 30, die über Verbindungsleitungen 34 miteinander in Strömungsverbindung stehen. Die beiden Einzelkühlelemente 22 jedoch sind untereinander strömungsmäßig nicht verbunden, so dass kein Austausch des Kühlmediums bzw. Kältemittels zwischen ihnen stattfindet.
Bei der Ausgestaltung gemäß Figur 2 ist jede der Kühlplatten 30 einem Batteriemodul einer als Hochvoltspeicher ausgebildeten Batteriebaugruppe zugeordnet und diesem Batteriemodul gegenüberliegend angeordnet. Jedes Einzelkühlelement 22 kühlt somit drei Batteriemodule, auf deren Darstellung in Figur 2 aus Gründen der Übersichtlichkeit verzichtet wurde. Wie auch je zwei der drei Kühlplatten 30 jedes Einzelkühlelements 22 in Figur 2 sind bei der zugeordneten Batteriebaugruppe die Batteriemodule bezogen auf die Einbaulage im Fahrzeug teilweise vertikal übereinander angeordnet, wobei sich die Kühlplatten 30 jeweils in flächigem Kontakt mit ihrem zugeordneten Batteriemodul befinden.
Figur 3 zeigt eine erfindungsgemäße Einheit 10, in der die Kühlvorrichtung 20 gemäß Figur 2 verbaut ist. Bei der zugehörigen Batteriebaugruppe handelt es sich um einen mehrstöckigen Hochvoltspeicher, bei dem jeweils zwei Batteriemodule in beiden Hälften der Einheit 10 übereinander angeordnet sind. Es ist ein gemeinsames Gehäuse 36 vorgesehen, in dem sowohl die Batteriemodule der Batteriebaugruppe sowie die Kühlvorrichtung 20 mit den aus je drei Kühlplatten 30 bestehenden Einzelkühlelementen 22 angeordnet sind. Mit der erfindungsgemäßen Ausgestaltung lassen sich Temperaturunterschiede durch äußere Einflüsse besser ausgleichen, da die einzelnen Einzelkühlelemente durch die zugeordneten Ventile unabhängig voneinander geregelt werden. Darüber hinaus lassen sich insgesamt mehr Parallelpfade realisieren, die eine homogenere Kältemittelaufteilung und somit eine homogene Temperaturverteilung innerhalb der Batteriebaugruppe ermöglichen.

Claims

Patentansprüche
1 . Kühlvorrichtung für eine Batteriebaugruppe (12), insbesondere einen Hochvoltspeicher, eines elektrisch angetriebenen Fahrzeugs, mit mehreren Kühlleitungen (28), in denen ein Kühlmedium geführt ist, wobei die Kühlvorrichtung (20) ausgebildet ist, Wärme von der Batteriebaugruppe (12) auf das Kühlmedium zu übertragen, dadurch gekennzeichnet, dass die Kühlvorrichtung (20) wenigstens zwei separat ausgebildete, einer Batterie gegenüberliegende Einzelkühlelemente (22) aufweist, die jeweils über ein eigenes, dem jeweiligen Einzelkühlelement (22) zugeordnetes Ventil (24) mit Kühlmedium versorgt werden.
2. Kühlvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass zwischen den Kühlleitungen (28) der Einzelkühlelemente (22) keine Strömungsverbindung mit den Kühlleitungen (28) des anderen Einzelkühlelements (22) besteht.
3. Kühlvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kühlmedienfluss durch die Einzelkühlelemente (22) unabhängig voneinander regelbar ist.
4. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einzelkühlelemente (22) jeweils eine oder mehrere Kühlplatten (30) aufweisen.
5. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Kühlmedium um ein Kältemittel handelt, das insbesondere als zweiphasiges Gemisch mit einer flüssigen und einer gasförmigen Phase vorliegt.
6. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei den Ventilen (24) um selbstregelnde oder geregelte Expansionsventile handelt.
7. Einheit aus einer Batteriebaugruppe (12) und einer Kühlvorrichtung (20) nach einem der vorhergehenden Ansprüche, wobei die Batteriebaugruppe (12) mehrere Batteriemodule (14) aufweist, die jeweils mehrere Batteriezellen (16) umfassen.
8. Einheit nach Anspruch 7, dadurch gekennzeichnet, dass jedes Einzelkühlelement (22) einem Batteriemodul (14) zugeordnet ist.
9. Einheit nach Anspruch 7, dadurch gekennzeichnet, dass ein Einzelkühlelement (22) mehreren Batteriemodulen (14), insbesondere bis zu 6 Batteriemodulen (14), zugeordnet ist.
10. Einheit nach Anspruch 9, dadurch gekennzeichnet, dass die Einzelkühlelemente (22) jeweils mehrere Kühlplatten (30) aufweisen, wobei jede Kühlplatte (30) einem Batteriemodul (14) zugeordnet und ihm gegenüberliegend angeordnet ist.
1 1 . Einheit nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Batteriemodule (14) bezogen auf die Einbaulage im Fahrzeug zumindest teilweise vertikal übereinander angeordnet sind.
12. Einheit nach einem der Ansprüche 7 bis 1 1 , dadurch gekennzeichnet, dass ein gemeinsames Gehäuse (36) vorgesehen ist, in dem die Batteriemodule (14) der Batteriebaugruppe (12) sowie die Kühlvorrichtung (20) angeordnet sind.
PCT/EP2017/069490 2016-08-23 2017-08-02 Kühlvorrichtung für eine batteriebaugruppe sowie einheit aus einer batteriebaugruppe und einer kühlvorrichtung WO2018036764A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780028179.3A CN109075411A (zh) 2016-08-23 2017-08-02 用于电池组件的冷却装置以及包括电池组件和冷却装置的单元
US16/274,738 US11183720B2 (en) 2016-08-23 2019-02-13 Cooling device for a battery assembly, and unit including a battery assembly and a cooling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016215851.1 2016-08-23
DE102016215851.1A DE102016215851A1 (de) 2016-08-23 2016-08-23 Kühlvorrichtung für eine Batteriebaugruppe sowie Einheit aus einer Batteriebaugruppe und einer Kühlvorrichtung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/274,738 Continuation US11183720B2 (en) 2016-08-23 2019-02-13 Cooling device for a battery assembly, and unit including a battery assembly and a cooling device

Publications (1)

Publication Number Publication Date
WO2018036764A1 true WO2018036764A1 (de) 2018-03-01

Family

ID=59677196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/069490 WO2018036764A1 (de) 2016-08-23 2017-08-02 Kühlvorrichtung für eine batteriebaugruppe sowie einheit aus einer batteriebaugruppe und einer kühlvorrichtung

Country Status (4)

Country Link
US (1) US11183720B2 (de)
CN (1) CN109075411A (de)
DE (1) DE102016215851A1 (de)
WO (1) WO2018036764A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205876A1 (de) * 2018-04-18 2019-10-24 Audi Ag Kühlvorrichtung für eine Batterie, Kraftfahrzeug und Verfahren zum Kühlen einer Batterie
CN111384470A (zh) * 2020-02-21 2020-07-07 威睿电动汽车技术(苏州)有限公司 一种电池包冷却系统及车辆
DE102019213757B3 (de) * 2019-09-10 2021-02-11 Edag Engineering Gmbh Kühlkreisvorrichtung und batterieeinrichtung
DE102020209925A1 (de) 2020-08-06 2022-02-10 Volkswagen Aktiengesellschaft Kühlanordnung für eine Batterie eines Kraftfahrzeugs und Verfahren zur Kühlung einer Batterie eines Kraftfahrzeugs
EP3998669A1 (de) * 2021-02-19 2022-05-18 Lilium eAircraft GmbH Batteriemodul mit wärmeverwaltungssystem
DE102021126471A1 (de) 2021-10-13 2023-04-13 Audi Aktiengesellschaft Kühlanordnung, Kraftfahrzeugbatterie und Verfahren zum Betreiben von Kühleinheiten
CN115863838A (zh) * 2023-01-12 2023-03-28 北京集度科技有限公司 热管理系统、电池装置、车辆、充电装置以及充电热管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010025525A1 (de) * 2009-06-30 2011-01-05 Siemens Aktiengesellschaft Verfahren zur Kühlung von Batteriepacks und in Module unterteiltes Batteriepack
DE102009035480A1 (de) * 2009-07-31 2011-02-03 Daimler Ag Batterie zur Speicherung von elektrischer Energie
EP2637248A1 (de) * 2012-03-09 2013-09-11 Hitachi Ltd. Batteriesystem und Temperatursteuerungsverfahren dafür
DE102012209306A1 (de) * 2012-06-01 2013-12-05 Robert Bosch Gmbh Kühlsystem für Batteriezellen
US20150082821A1 (en) * 2013-09-24 2015-03-26 MAHLE Behr GmbH & Co. KG Cooling device for a battery system, in particular of a motor vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262794A1 (en) * 2010-04-21 2011-10-27 Jihyoung Yoon Battery pack and cooling system for a battery pack
KR101340365B1 (ko) 2012-11-22 2013-12-11 자동차부품연구원 배터리 온도 조절 장치
CN203071196U (zh) * 2013-02-05 2013-07-17 安徽安凯汽车股份有限公司 一种电动汽车动力电池并联式水冷装置
DE102013216513A1 (de) 2013-08-21 2015-02-26 Volkswagen Aktiengesellschaft Vorrichtung zur Konditionierung eines Batteriepacks
DE102013225523A1 (de) * 2013-12-11 2015-06-11 Bayerische Motoren Werke Aktiengesellschaft Kühlelement
JP6322724B2 (ja) * 2014-12-04 2018-05-09 本田技研工業株式会社 車両用電源装置及び冷却回路
DE102015215253A1 (de) 2015-08-11 2017-02-16 Bayerische Motoren Werke Aktiengesellschaft Kühlvorrichtung für Energiespeicher
CN205211815U (zh) * 2015-12-07 2016-05-04 北汽福田汽车股份有限公司 一种电池箱及具有其的电池包装置和电动车辆
CN205429111U (zh) * 2016-02-22 2016-08-03 迪吉亚节能科技股份有限公司 锂电池导热模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010025525A1 (de) * 2009-06-30 2011-01-05 Siemens Aktiengesellschaft Verfahren zur Kühlung von Batteriepacks und in Module unterteiltes Batteriepack
DE102009035480A1 (de) * 2009-07-31 2011-02-03 Daimler Ag Batterie zur Speicherung von elektrischer Energie
EP2637248A1 (de) * 2012-03-09 2013-09-11 Hitachi Ltd. Batteriesystem und Temperatursteuerungsverfahren dafür
DE102012209306A1 (de) * 2012-06-01 2013-12-05 Robert Bosch Gmbh Kühlsystem für Batteriezellen
US20150082821A1 (en) * 2013-09-24 2015-03-26 MAHLE Behr GmbH & Co. KG Cooling device for a battery system, in particular of a motor vehicle

Also Published As

Publication number Publication date
DE102016215851A1 (de) 2018-03-01
US20190181518A1 (en) 2019-06-13
CN109075411A (zh) 2018-12-21
US11183720B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2018036764A1 (de) Kühlvorrichtung für eine batteriebaugruppe sowie einheit aus einer batteriebaugruppe und einer kühlvorrichtung
EP3444135B1 (de) Kreislaufsystem für ein brennstoffzellen-fahrzeug
EP3080851B1 (de) Batteriesystem sowie batteriemodul
DE102013219200A1 (de) Kühleinrichtung für ein Batteriesystem, insbesondere eines Kraftfahrzeugs
WO2019096696A1 (de) Kühlsystem für ein kraftfahrzeug und kraftfahrzeug mit einem solchen kühlsystem
EP2780958B1 (de) Batteriesystem mit einem temperierkörper enthaltend einen temperierkanal und einen bypass sowie kraftfahrzeug welches das batteriesystem enthält
EP2854212A1 (de) Heiz- und Kühlvorrichtung für eine Batterie
EP2769426A1 (de) Vorrichtung zur spannungsversorgung
DE102014106954A1 (de) Vorrichtung zum Heizen und Kühlen eines Batteriepakets
DE112007002809T5 (de) Elektrisches Leistungszuführsystem
EP3125355A1 (de) Vorrichtung für ein fahrzeug, insbesondere für ein nutzfahrzeug
EP1667862B1 (de) Aufdachklimaanlage für ein fahrzeug, insbesondere einen omnibus
WO2020099229A1 (de) Brennstoffzellenvorrichtung und verfahren zum kühlen eines brennstoffzellensystems
DE102015215253A1 (de) Kühlvorrichtung für Energiespeicher
DE102011107075B4 (de) Batteriemodul
EP3739276A1 (de) Wärmetauscher und kreislaufsystem zum temperieren
WO2013041387A1 (de) Batteriegehäuse, insbesondere für lithium-ionen-zellen, mit einem temperiermittelverteilsystem, batterie und kraftfahrzeug
EP2442390B1 (de) Batterie mit verminderter Brandgefahr
DE102011080975A1 (de) Batteriemodul mit Luftkühlung sowie Kraftfahrzeug
DE102018203537A1 (de) Verfahren zur Kühlung einer Traktionsbatterie eines elektrisch antreibbaren Fahrzeugs sowie Kühlanordnung zur Durchführung des Verfahrens
DE10152233A1 (de) Brennstoffzellensystem
DE102018213547A1 (de) Kühleinheit für eine Kühlvorrichtung zum Kühlen einer Batterie, Kühlvorrichtung und Kraftfahrzeug
DE102018100394A1 (de) Batteriemodul
DE102019205575A1 (de) Vorrichtung zur Kühlung einer Fahrzeugbatterie
DE102018006412A1 (de) Temperiereinheit für eine Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17754639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17754639

Country of ref document: EP

Kind code of ref document: A1