WO2018036313A1 - 一种船舶航速测量方法 - Google Patents

一种船舶航速测量方法 Download PDF

Info

Publication number
WO2018036313A1
WO2018036313A1 PCT/CN2017/093621 CN2017093621W WO2018036313A1 WO 2018036313 A1 WO2018036313 A1 WO 2018036313A1 CN 2017093621 W CN2017093621 W CN 2017093621W WO 2018036313 A1 WO2018036313 A1 WO 2018036313A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
speed
sailing
powers
distance
Prior art date
Application number
PCT/CN2017/093621
Other languages
English (en)
French (fr)
Inventor
薛林
周静
Original Assignee
广船国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广船国际有限公司 filed Critical 广船国际有限公司
Publication of WO2018036313A1 publication Critical patent/WO2018036313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft

Definitions

  • the invention relates to the field of marine speed measurement methods for ships, in particular to a ship speed measurement method.
  • the existing ship speed measurement method is as follows: the ship speed of the ship main engine under the following four working conditions is respectively measured, and specifically, the ship host power is set to 100% MCR, 85% MCR, 70% MCR and 50% MCR, respectively. The ship will go back and forth once in the above four working conditions; take the average value of the speed of one round trip under each working condition; fit the power-speed curve according to the above four average values.
  • MCR refers to Maximum Continuous Rating, the maximum continuous output power of the host.
  • the ship needs to turn around many times during the speed measurement process
  • a ship speed measuring method comprising the following steps:
  • the ship traverses the corresponding preset distance according to at least three set powers W1, W2, W3, turns around and traverses the corresponding preset distance according to the three said set powers W3, W2, W1 to return to the initial position;
  • the preset distance includes a shifting sailing distance and a uniform sailing distance
  • the ship sequentially traverses the corresponding preset distance according to at least three set powers W1, W2, and W3, and turns the head and sequentially traverses the corresponding preset distance according to the three set powers W3, W2, and W1 to return.
  • the initial position includes:
  • the ship then traverses the corresponding preset distance according to the four set powers W1, W2, W3, W4, turns around and traverses the corresponding preset distance according to the four set powers W4, W3, W2, W1 to return to the initial position.
  • the set powers W1, W2, W3, and W4 satisfy the following condition: W1 ⁇ W2 ⁇ W3 ⁇ W4.
  • the uniform sailing distance of the ship sailing at each of the set powers is equal.
  • the uniform sailing distance is equal to 2 nautical miles.
  • the ship's draught state is flat or tail tilt not exceeding 0.5% L, and there is no heel; the wind is less than or equal to the Pu's level 3, and the sea condition is less than or equal to level 2.
  • the water depth of the sailing sea is greater than or equal to four times the ship's draft.
  • differential global positioning system is used to measure the speed value.
  • the invention has the beneficial effects that when the ship speed measurement method of the invention is used to measure the ship speed, the ship only needs to turn around once, which reduces the number of U-turns of the ship, saves measurement time, reduces measurement cost and fuel consumption, and reduces the The danger of a ship collision.
  • FIG. 1 is a view showing a measurement process of a ship speed measuring method according to the present invention.
  • the present embodiment provides a ship speed measurement method, when the ship speed measurement is performed when the following conditions are met, the ship draught state is flat or tail tilt not exceeding 0.5% L, and there is no heel; Less than or equal to Pu's level 3, sea state is less than or equal to level 2; the ship is sailing straight; the water depth of the sailing sea is greater than or equal to four times the ship's draft.
  • L refers to the length of the vertical line of the ship.
  • the length of the vertical line is the length of the first vertical line and the tail perpendicular line in the longitudinal direction of the ship during standard draught.
  • the first vertical line is the vertical draught at the junction of the first draft and the bow.
  • the line, the tail perpendicular is the vertical line made by the position of the tail rudder shaft.
  • Flat float refers to the same amount of draught in the head and tail of the ship.
  • the tail tilt refers to the amount of draught at the tail of the ship that is greater than the draft of the ship's head.
  • the heel refers to the amount of draught at both ends in the width direction of the ship, and the absence of heel means that the amount of draught at both ends in the width direction of the ship is the same.
  • the ship traverses the corresponding preset distance according to at least three set powers W1, W2, W3, turns around and traverses the corresponding preset distance according to the three said set powers W3, W2, W1 to return to the initial position. .
  • the present embodiment uses four set powers. Specifically, the ship traverses the corresponding preset distance according to the four set powers W1, W2, W3, and W4, and turns the head and sequentially navigates the corresponding preset distance according to the four set powers W4, W3, W2, and W1 to return to the preset distance. initial position.
  • the above four set powers use the above four set powers to measure the ship's speed in a round-trip flight, which can cover most of the power used by the ship during navigation, and improve the accuracy of the power-speed curve fitting.
  • the preset distance includes a shifting sailing distance and a uniform sailing distance.
  • the uniform sailing distance of the ship according to each of the set powers is equal, and the distance is small to obtain a stable speed. If the distance is too large, there is a problem of wasting fuel. After a plurality of tests, the uniform sailing distance is determined. Generally choose 2 nautical miles.
  • This embodiment uses a differential global positioning system to measure the speed value.
  • the ship speed measurement method When the ship speed measurement method is used to measure the ship speed, the ship only needs to turn around once, which reduces the number of U-turns of the ship, saves measurement time, reduces measurement cost and fuel consumption, and reduces the possibility of collision with other ships. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

一种船舶航速测量方法,包括以下步骤:船舶依次按照至少三个设定功率W1、W2、W3航行相应的预设距离,掉头并依次按照三个设定功率W3、W2、W1航行相应的预设距离以返程至初始位置;预设距离包括变速航行距离和匀速航行距离;记录每个设定功率下船舶在匀速航行距离内的航速值,并计算在每个设定功率下船舶在匀速航行距离内去程和返程所对应的航速值的平均值;根据平均值拟合功率与航速的关系曲线图。采用本方法,船舶只需掉头一次,减少了船舶掉头次数,节约了测量时间,降低了测量成本以及燃油消耗,降低了与其他船舶碰撞的危险可能性。

Description

一种船舶航速测量方法 技术领域
本发明涉及船舶海上航速测量方法领域,尤其涉及一种船舶航速测量方法。
背景技术
现有的船舶航速测量方法如下:分别测量船舶主机在如下四个工况下的航速,具体的,将船舶主机功率分别设定为100%MCR、85%MCR、70%MCR以及50%MCR,船舶在如上四个工况下依次往返一次;取每个工况下往返一次的航速的平均值;根据上述四个平均值拟合功率-航速曲线。其中,MCR指的是Maximum Continuous Rating,主机的最大持续输出功率。
采用上述方法测量船舶航速时,存在以下问题:
1.测速过程中船舶需要多次掉头;
2.试验时间长;
3.消耗较多的船舶燃油,增加试验成本;
4.增加与其他船舶碰撞的危险可能性,降低测速时的安全性能。
发明内容
本发明的目的在于提供一个船舶航速测量方法,以解决采用现有船舶航速测量方法测量船舶航速时存在的上述问题。
为达此目的,本发明采用以下技术方案:
一种船舶航速测量方法,该测量方法包括以下步骤:
船舶依次按照至少三个设定功率W1、W2、W3航行相应的预设距离,掉头并依次按照三个所述设定功率W3、W2、W1航行相应的预设距离以返程至初始位置;
所述预设距离包括变速航行距离和匀速航行距离;
记录每个设定功率下船舶在匀速航行距离内的航速值,并计算在每个设定功率下船舶在匀速航行距离内去程和返程所对应的航速值的平均值;
根据上述平均值拟合功率与航速的关系曲线图。
进一步的,所述船舶依次按照至少三个设定功率W1、W2、W3航行相应的预设距离,掉头并依次按照三个所述设定功率W3、W2、W1航行相应的预设距离以返程至初始位置包括:
船舶依次按照四个设定功率W1、W2、W3、W4航行相应的预设距离,掉头并依次按照四个设定功率W4、W3、W2、W1航行相应的预设距离以返程至初始位置。
进一步的,所述设定功率W1、W2、W3和W4满足以下条件:W1<W2<W3<W4。
进一步的,所述设定功率W1=50%MCR,设定功率W2=70%MCR,设定功率W3=85%MCR,设定功率W4=100%MCR。
进一步的,船舶按照每个所述设定功率航行的匀速航行距离相等。
进一步的,所述匀速航行距离等于2海里。
进一步的,船舶航速测量时,船舶吃水状态为平浮或尾倾不超过0.5%L,且无横倾;风力小于等于蒲氏3级,海况小于等于2级。
进一步的,船舶航速测量时,航行海域的水深大于等于船舶吃水量的四倍。
进一步的,船舶航速测量时,船舶直线航行。
进一步的,采用差分全球定位系统测量航速值。
本发明的有益效果:采用本发明所述船舶航速测量方法测量船舶航速时,船舶只需掉头一次,减小了船舶掉头次数,节约了测量时间,降低了测量成本以及燃油消耗,降低了与其他船舶碰撞的危险可能性。
附图说明
图1是本发明所述船舶航速测量方法的测量过程图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
如图1所示,本实施例提供了一种船舶航速测量方法,在满足以下条件时进行船舶航速测量时,船舶吃水状态为平浮或尾倾不超过0.5%L,且无横倾;风力小于等于蒲氏3级,海况小于等于2级;船舶直线航行;航行海域的水深大于等于船舶吃水量的四倍。
其中“L”指的是船舶的垂线间长,垂线间长是在标准吃水时,首垂线和尾垂线在船舶长度方向的长度,首垂线是首部吃水和船首交界处做的垂线,尾垂线是尾部舵轴的位置做的垂线。
平浮指的是船舶首部和尾部的吃水量相同,尾倾指的是船舶尾部的吃水量大于船舶首部的吃水量。
横倾指的是船舶宽度方向两端的吃水量,无横倾即指沿船舶宽度方向两端的吃水量相同。
在上述条件下测量船舶航速时,可通过校正风力、海况等对航速的影响,以得到理想状态下功率与航速的关系。
本实施例所述船舶航速测量方法包括以下步骤:
S1.船舶依次按照至少三个设定功率W1、W2、W3航行相应的预设距离,掉头并依次按照三个所述设定功率W3、W2、W1航行相应的预设距离以返程至初始位置。
为了提高功率-航速曲线拟合的精确度,本实施例采用四种设定功率。具体的,船舶依次按照四个设定功率W1、W2、W3、W4航行相应的预设距离,掉头并依次按照四个设定功率W4、W3、W2、W1航行相应的预设距离以返程至初始位置。
为了缩短航行距离,节约燃油消耗,优选的所述设定功率W1、W2、W3和W4满足以下条件:W1<W2<W3<W4。进一步优选的,设定功率W1=50%MCR,设定功率W2=70%MCR,设定功率W3=85%MCR,设定功率W4=100%MCR。上述四种设定功率,采用上述四种设定功率在一个往返航程中测量船舶航速,能够涵盖船舶航行时所采用的大部分的功率,提高了功率-航速曲线拟合的精确度。
在由一个设定功率切换至另一个设定功率时,船舶必然会首先经过一个变速航行过程,而后进入一个匀速航行过程。因此,所述预设距离包括变速航行距离和匀速航行距离。本实施例中,船舶按照每个所述设定功率航行的匀速航行距离相等,由于距离较小不足以得到稳定的航速,距离过大存在浪费燃油的问题,经过多次试验所述匀速航行距离一般选用2海里。
S2.记录每个设定功率下船舶在匀速航行距离内的航速值,并计算在每个设定功率下船舶在匀速航行距离内去程和返程所对应的航速值的平均值。
本实施例采用差分全球定位系统测量航速值。
S3.根据上述平均值拟合功率与航速的关系曲线图。
采用上述四个设定功率下船舶在匀速航行距离内去程和返程所对应的航速值的平均值拟合功率与航速的关系曲线图,得出理想状态下功率与航速的关系。
采用本实施所述船舶航速测量方法测量船舶航速时,船舶只需掉头一次,减小了船舶掉头次数,节约了测量时间,降低了测量成本以及燃油消耗,降低了与其他船舶碰撞的危险可能性。
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替 换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种船舶航速测量方法,其特征在于,该测量方法包括以下步骤:
    船舶依次按照至少三个设定功率W1、W2、W3航行相应的预设距离,掉头并依次按照三个所述设定功率W3、W2、W1航行相应的预设距离以返程至初始位置;
    所述预设距离包括变速航行距离和匀速航行距离;
    记录每个设定功率下船舶在匀速航行距离内的航速值,并计算在每个设定功率下船舶在匀速航行距离内去程和返程所对应的航速值的平均值;
    根据上述平均值拟合功率与航速的关系曲线图。
  2. 根据权利要求1所述的船舶航速测量方法,其特征在于,所述船舶依次按照至少三个设定功率W1、W2、W3航行相应的预设距离,掉头并依次按照三个所述设定功率W3、W2、W1航行相应的预设距离以返程至初始位置包括:
    船舶依次按照四个设定功率W1、W2、W3、W4航行相应的预设距离,掉头并依次按照四个设定功率W4、W3、W2、W1航行相应的预设距离以返程至初始位置。
  3. 根据权利要求2所述的船舶航速测量方法,其特征在于,所述设定功率W1、W2、W3和W4满足以下条件:W1<W2<W3<W4。
  4. 根据权利要求3所述的船舶航速测量方法,其特征在于,所述设定功率W1=50%MCR,设定功率W2=70%MCR,设定功率W3=85%MCR,设定功率W4=100%MCR。
  5. 根据权利要求4所述的船舶航速测量方法,其特征在于,船舶按照每个所述设定功率航行的匀速航行距离相等。
  6. 根据权利要求5所述的船舶航速测量方法,其特征在于,所述匀速航行距离等于2海里。
  7. 根据权利要求1所述的船舶航速测量方法,其特征在于,船舶航速测量时,船舶吃水状态为平浮或尾倾不超过0.5%L,且无横倾;风力小于等于蒲氏3级,海况小于等于2级。
  8. 根据权利要求7所述的船舶航速测量方法,其特征在于,船舶航速测量时,航行海域的水深大于等于船舶吃水量的四倍。
  9. 根据权利要求8所述的船舶航速测量方法,其特征在于,船舶航速测量时,船舶直线航行。
  10. 根据权利要求1所述的船舶航速测量方法,其特征在于,采用差分全球定位系统测量航速值。
PCT/CN2017/093621 2016-08-23 2017-07-20 一种船舶航速测量方法 WO2018036313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610710183.5 2016-08-23
CN201610710183.5A CN106199057B (zh) 2016-08-23 2016-08-23 一种船舶航速测量方法

Publications (1)

Publication Number Publication Date
WO2018036313A1 true WO2018036313A1 (zh) 2018-03-01

Family

ID=57523463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093621 WO2018036313A1 (zh) 2016-08-23 2017-07-20 一种船舶航速测量方法

Country Status (2)

Country Link
CN (1) CN106199057B (zh)
WO (1) WO2018036313A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113609578A (zh) * 2021-07-21 2021-11-05 上海外高桥造船有限公司 一种转首角速度预估方法、能效检测方法和系统
CN113761736A (zh) * 2021-09-02 2021-12-07 中国船舶科学研究中心 一种船用风力助推转子的节能效果评估方法
CN113984329A (zh) * 2021-09-09 2022-01-28 中国人民解放军92578部队 一种适用于水下机器人最大航速续航力试验方法
CN117805877A (zh) * 2024-03-01 2024-04-02 北京智汇空间科技有限公司 一种船用定位方法、装置、电子设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106199057B (zh) * 2016-08-23 2019-05-17 广船国际有限公司 一种船舶航速测量方法
KR101860482B1 (ko) * 2017-11-29 2018-05-23 한국해양과학기술원 수치해석을 이용한 선박의 대수속도 계측장치의 교정방법
CN111220813B (zh) * 2020-01-13 2022-01-11 广州船舶及海洋工程设计研究院(中国船舶工业集团公司第六0五研究院) 船舶的航速确定方法、续航里程确定方法、装置和系统
CN112699144B (zh) * 2020-12-31 2022-10-14 中国水产科学研究院东海水产研究所 一种运输船转载特征信息提取方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016112A1 (en) * 2000-08-02 2002-02-07 Yoshimoto Matsuda Jet-propulsive watercraft and cruising speed calculating device for watercraft
CN101957384A (zh) * 2010-05-17 2011-01-26 南通中远川崎船舶工程有限公司 船舶航速往复式测量方法
CN202421205U (zh) * 2011-12-08 2012-09-05 大连海事大学 船舶航速指示仪
CN106199057A (zh) * 2016-08-23 2016-12-07 广船国际有限公司 一种船舶航速测量方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572586B2 (ja) * 1987-03-02 1997-01-16 ヤマハ発動機株式会社 船速検出装置
CN105004527A (zh) * 2015-07-28 2015-10-28 广船国际有限公司 一种船舶的eedi试航测速验证方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016112A1 (en) * 2000-08-02 2002-02-07 Yoshimoto Matsuda Jet-propulsive watercraft and cruising speed calculating device for watercraft
CN101957384A (zh) * 2010-05-17 2011-01-26 南通中远川崎船舶工程有限公司 船舶航速往复式测量方法
CN202421205U (zh) * 2011-12-08 2012-09-05 大连海事大学 船舶航速指示仪
CN106199057A (zh) * 2016-08-23 2016-12-07 广船国际有限公司 一种船舶航速测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GU, MINGYU ET AL.: "Method of Speed Trial and Automatic Data Processing and Analysis with Computer for Transport Ships with Full-Scale", SHIPBUILDING OF CHINA, vol. 50, no. 3, 30 September 2009 (2009-09-30), ISSN: 1000-4882 *
LIN, FASHUANG: "Experiment on Ship Speed and Resistance", WUHAN SHIPBUILDING, 31 December 1994 (1994-12-31), ISSN: 1671-7953 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113609578A (zh) * 2021-07-21 2021-11-05 上海外高桥造船有限公司 一种转首角速度预估方法、能效检测方法和系统
CN113609578B (zh) * 2021-07-21 2023-12-08 上海外高桥造船有限公司 一种转首角速度预估方法、能效检测方法和系统
CN113761736A (zh) * 2021-09-02 2021-12-07 中国船舶科学研究中心 一种船用风力助推转子的节能效果评估方法
CN113761736B (zh) * 2021-09-02 2023-06-06 中国船舶科学研究中心 一种船用风力助推转子的节能效果评估方法
CN113984329A (zh) * 2021-09-09 2022-01-28 中国人民解放军92578部队 一种适用于水下机器人最大航速续航力试验方法
CN113984329B (zh) * 2021-09-09 2023-04-28 中国人民解放军92578部队 一种适用于水下机器人最大航速续航力试验方法
CN117805877A (zh) * 2024-03-01 2024-04-02 北京智汇空间科技有限公司 一种船用定位方法、装置、电子设备及存储介质
CN117805877B (zh) * 2024-03-01 2024-05-17 北京智汇空间科技有限公司 一种船用定位方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN106199057A (zh) 2016-12-07
CN106199057B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2018036313A1 (zh) 一种船舶航速测量方法
Tsujimoto et al. A practical correction method for added resistance in waves
EP3330171B1 (en) Apparatus for predicting a power consumption of a maritime vessel
Tsujimoto et al. Development of a calculation method for fuel consumption of ships in actual seas with performance evaluation
Mewis et al. Mewis duct–new developments, solutions and conclusions
CN110852619B (zh) 一种在船舶性能的评估中对海浪阻力的修正方法
JP5173989B2 (ja) 航走トリム自動変更システム
KR101863746B1 (ko) 운항선의 표준 운항 상태 선속-동력 해석 시스템
CN115600911A (zh) 一种基于设备劣化指数的船舶能效智能管理系统
KR102421464B1 (ko) 선박 에너지 효율 지표를 산출하는 시스템 및 방법, 동 방법을 컴퓨터에서 실행하기 위한 컴퓨터 프로그램이 기록된, 컴퓨터 판독 가능한 기록 매체
Tsujimoto et al. Development of a ship performance simulator in actual seas
CN111386467A (zh) 利用数值分析的船舶对水速度测量装置校准方法
KR101859671B1 (ko) 운항선의 표준운항상태 선속-동력 해석 방법
Tsujimoto et al. On a calculation of decrease of ship speed in actual seas
KR20200011125A (ko) 환경 하중을 고려한 선박의 속도 증감량 도출 시스템 및 방법과, 동 방법을 컴퓨터에서 실행하기 위한 컴퓨터 프로그램이 기록된, 컴퓨터 판독 가능한 기록 매체
King et al. Maneuvering simulations of pusher-barge systems
KR102434772B1 (ko) 선박의 시마진 도출 시스템 및 방법, 동 방법을 컴퓨터에서 실행하기 위한 컴퓨터 프로그램이 기록된, 컴퓨터 판독 가능한 기록 매체
WO2019243932A1 (en) Remote assessment of ship propeller fouling
Umeda et al. Remarks on experimental validation procedures for numerical intact stability assessment with latest examples
CN113753192A (zh) 一种船用气泡减阻系统节能效果实船测试评估方法
Shin et al. Speed-Power Performance Analysis of an Existing 8,600 TEU Container Ship using SPA (Ship Performance Analysis) Program and Discussion on Wind-Resistance Coefficients
Sasaki et al. On the model tests and design method of hybrid CRP podded propulsion system of a feeder container ship
KR20230140319A (ko) 공기윤활시스템의 성능시험 방법
Sogihara et al. Verification of calculation method on ship performance by onboard measurement
Kobayashi et al. Effects of Propeller Pitch and Number of Blades on Energy Saving of an ECO-Cap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17842736

Country of ref document: EP

Kind code of ref document: A1