WO2018036227A1 - 金属结构件与同轴电缆非接触式加热锡钎焊方法 - Google Patents

金属结构件与同轴电缆非接触式加热锡钎焊方法 Download PDF

Info

Publication number
WO2018036227A1
WO2018036227A1 PCT/CN2017/085507 CN2017085507W WO2018036227A1 WO 2018036227 A1 WO2018036227 A1 WO 2018036227A1 CN 2017085507 W CN2017085507 W CN 2017085507W WO 2018036227 A1 WO2018036227 A1 WO 2018036227A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural member
metal structural
heating
coaxial cable
solder
Prior art date
Application number
PCT/CN2017/085507
Other languages
English (en)
French (fr)
Inventor
吕晓胜
郭林波
王文长
杨志勇
刘峰
卜斌龙
刘海滨
朱龙翔
Original Assignee
京信通信技术(广州)有限公司
京信通信系统(中国)有限公司
天津京信通信系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 京信通信系统(中国)有限公司, 天津京信通信系统有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2018036227A1 publication Critical patent/WO2018036227A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • B23K3/047Heating appliances electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • B23K3/087Soldering or brazing jigs, fixtures or clamping means

Definitions

  • the invention relates to the field of processing technology, in particular to a welding process of key components in the field of communication technology, in particular to a non-contact heating tin brazing method for a metal structural member and a coaxial cable.
  • the base station antenna is a key component of the coverage of the mobile communication network, and its core components are mostly composed of a metal structural member (radiation unit) and a coaxial cable solder joint.
  • a metal structural member Radiation unit
  • a coaxial cable solder joint In order to ensure good electrical connection conduction performance and structural connection stability, there is a strict requirement for solder joint consistency, solder joint penetration and mechanical strength. Therefore, the welding process parameters are quantitatively controlled to achieve product consistency. The major premise.
  • soldering iron is heated by a soldering iron, and a contact welding method is performed to contact the soldered spot to conduct heat, and at the same time, to assist the soldering wire to fill the solder, is a locally heated soldering method.
  • the welding method of the metal structural parts of the communication industry is basically also welded by this electric soldering iron. Due to the endothermic effect of the metal structural parts, in order to make the heating meet the welding requirements, high temperature transfer or long-time contact welding is required, a high-power soldering station must be selected, and the iron tip is accelerated due to high temperature for a long time.
  • the life is greatly reduced, and the uneven heating of the solder joints is inevitably unable to ensure the consistency of the soldering temperature, which results in a decrease in the reliability of the soldering quality.
  • the manual soldering method cannot guarantee the consistency of the soldering time and the amount of tin delivered, and the quality is consistent. Poor performance and inefficient operation.
  • the antenna components of the base station are mostly shaped structural parts, and the irregularities result in multi-directional welding of different product solder joints, that is, multi-dimensional solder joints exist at the same time.
  • Manual soldering iron welding requires repeated placement and positioning, and full automatic welding is required. , basically impossible.
  • the object of the present invention is to provide a non-contact heating tin brazing method for a metal structural member and a coaxial cable which improve welding efficiency and ensure welding quality.
  • the present invention provides the following technical solutions:
  • a non-contact heating tin brazing method for a metal structural member and a coaxial cable comprising an integral heating welding device having a transmission system, a heating system and a cooling system arranged in sequence along the workpiece transmission direction, the method comprising the following steps: Presetting the workpiece on the system and transferring the workpiece to the heating system, the workpiece comprising a pre-assembled structure of the metal structural member and the coaxial cable, a solder pre-set at the solder joint between the metal structural member and the coaxial cable, and The positioning jig of the pre-assembled structure is positioned; the non-contact heat radiant heating of the workpiece is performed, so that the solder at the solder joint is sufficiently melted; and the workpiece that is heated and welded is cooled, so that the solder joint is rapidly solidified.
  • the heating system is parameterized such that the heating temperature in the heating region is differentially distributed in the longitudinal direction of the metal structural member.
  • the heating temperature is "low-high-low" in the longitudinal direction of the metal structural member.
  • the heating system is parameterized such that the temperature in different positions in the horizontal direction of the heating region is differentially distributed.
  • solders having different melting points are added at the solder joints on different planes.
  • the non-contact heat radiation heating step of the workpiece comprises: performing non-contact heat radiant heating on the first surface of the metal structural member on which the solder joint is distributed, so that the solder joint is cooled and then cooled to complete the surface solder joint Welding; performing secondary assembly on the workpiece on which the first surface is welded and soldering on the second surface, and then performing non-contact heating on the surface of the metal structural member to complete welding of the solder joint on the second surface of the metal structural member; Wherein, in the secondary heating welding, the temperature for controlling the heating of the second surface is lower than the temperature for heating the first surface, or the melting point of the solder at the solder joint on the first surface is higher than the melting point of the solder at the second surface soldering point, Avoid solder joints on the first side to melt during the second heat welding.
  • the method further includes a pre-assembly process of the workpiece, specifically comprising the steps of: preparing the metal structural member and pre-positioning it on the revolving fixture; and spacing the metal structural member and the coaxial cable with a certain gap Assemble and pre-tighten the two; preset the solder to the solder joint between the metal structural member and the coaxial cable.
  • the metal structural member and the coaxial cable are pre-tensioned by the clamp-on connection, and the gap between the metal structural member and the coaxial cable is less than 0.1 mm.
  • the solder is added to the solder joint between the metal structural member and the coaxial cable by a three-dimensional solder automatic adding device.
  • the method further includes the following steps, including: removing the finished finished product from the revolving jig, and returning the revolving jig through the transmission system.
  • the welding device is fixed, the solder is added and the heating and welding processes are separated, and the process subdivision is optimized, so that the automation is highly integrated, and the welding efficiency is nearly three times higher than that of the manual soldering iron. Yield increased to 99.99%.
  • Figure 1 is a schematic view of an embodiment of the present invention for heat welding of a workpiece in an integral heating and welding apparatus
  • FIG. 2 is a schematic view of another embodiment of the present invention for heat welding of a workpiece in an integral heating and welding apparatus.
  • the non-contact heating tin brazing method (hereinafter referred to as "tin brazing method") of the metal structural member and the coaxial cable of the invention mainly comprises a preset workpiece (including solder addition), a non-contact heating workpiece, a cooling workpiece, and a disassembly
  • tin brazing method mainly comprises a preset workpiece (including solder addition), a non-contact heating workpiece, a cooling workpiece, and a disassembly
  • the four steps of the workpiece are separated by fixing the welding device, soldering, heating and welding, setting up different processes and finely controlling them, facilitating the automatic completion of the welding process and realizing modular management.
  • the solder is added in the stereo soldering automatic adding device, which can realize the synchronous multi-point addition of the solder at the solder joints of many required soldering, so that the solder has accurate quantification and the solder shape is moved to ensure the welding process.
  • the flow distance of the solder is consistent.
  • the non-contact heating is performed in an integral heating welding device having a transmission system for transmitting the workpiece and sequentially providing a heating system and a cooling system along the workpiece transmission direction, and the heating system is used for 360-degree full working of the workpiece
  • the heat radiation makes the product evenly heated in each orientation and position, so that the solder on the solder joint is fully absorbed and melted, and then the solder joint between the metal structural member and the coaxial cable is wetted and flowed. Cooling is then performed so that the liquid solder at the solder joint rapidly solidifies to form the desired solder joint.
  • the integral heating and welding device of the present invention transfers heat by means of heat radiation
  • the heating elements thereof include, but are not limited to, infrared heating, heating tube heating, laser heating, and the like, and the heating orientation is not limited to upper heating, lower heating, or Heating up and down, can be heated simultaneously in multiple directions.
  • the metal structural member is taken out from the turnover box, and the product pre-position of the metal structural body is placed.
  • the hoop-type connecting member can ensure the effective and reliable fixing of the plurality of coaxial cables, so that the gap between the metal structural member and the coaxial cable is less than 0.1 mm, that is, the metal structural member 2 and the welding in FIG. 1 are ensured.
  • the gap between points 6 to ensure the consistency of the welding effect.
  • the hoop-type connecting member has high temperature resistance characteristics, and can prevent the object itself from failing due to the effect of thermal expansion and contraction; and the hoop-type connecting member has the characteristics of quick pick-and-place.
  • the metal structural member assembled with the coaxial cable is placed in a stereoscopic solder automatic adding device for solder addition.
  • the solder automatic addition device completes the simultaneous multi-point addition of solder at the solder joints of the desired solder, allowing the solder to be added with precise quantification and uniform solder shape to ensure consistent solder flow distance during soldering.
  • the pre-assembled structure composed of the metal structural member and the coaxial cable which are automatically added by the solder is placed on the revolving jig with the limit and positioning function, and is restricted and positioned by the revolving jig.
  • the turnover jig is resistant to high temperatures to ensure the reliability and flexibility of the metal structural members. Simultaneous position and positioning of multiple pre-assembled structures can be achieved on a single turnaround fixture.
  • the so-called workpiece refers to a community composed of metal structural members, coaxial cables, solder and turnover jigs.
  • the workpiece is placed on the transmission system of the integral heating and welding device 1, and transmitted to the heating system through the transmission system to heat-radiate the workpiece, so that the solder absorbs heat, melts, flows and diffuses at the solder joint, and is completed by heating and welding.
  • the workpiece is transferred to the backward cooling system to cool the workpiece to rapidly solidify the liquid solder to form the desired solder joint.
  • the finished finished product is removed from the revolving jig, and the revolving jig is returned through the transmission system, thereby completing a complete processing cycle and a small cycle.
  • the same coaxial cable and metal structural member have three solder joints 4, 5, 6 in the longitudinal direction, and three solder joints are respectively distributed in the metal structural member "low-medium-high" three
  • the solder joint 4 is a small solder joint
  • the solder joint 5 is a large solder joint.
  • the temperature difference control is performed on the heating region in the longitudinal direction, which is embodied as “low-high-low”, that is, the temperature of the solder joint 5 is higher than the solder joint 4 and the solder joint 6 temperature.
  • the welding temperature of the three-dimensional and different-sized solder joints in the three-dimensional metal structural member is differentiated.
  • this embodiment is similar to the first embodiment except that:
  • a plurality of solder joints distributed on different planes between the same coaxial cable and the metal structural member 2, in order to achieve heating of the solder joints on different planes, and during the subsequent heating and soldering process, does not affect the previous time
  • the heating system is parameterized so that the temperature in different positions in the horizontal direction of the heating region is differentially distributed.
  • the non-contact heat radiation heating step of the workpiece specifically includes:
  • the first surface of the metal structural member on which the solder joint is distributed is subjected to non-contact heat radiant heating, so that the solder joint is cooled and then cooled to complete the soldering of the surface solder joint.
  • the temperature of heating the second surface of the metal structural member 2 is higher than the temperature for heating the first surface, so as to prevent the solder joints 7 and 8 formed on the first surface from being welded during the second heating. melt.
  • solders having different melting points are added to the solder joints on different planes, so that the melting point of the solder at the solder joints 7 and 8 on the first surface is higher than the melting point of the solder at the second surface solder joints 3, 4, 5, and 6
  • the solder joints 7, 8 formed on the first surface are melted during the secondary heat welding.
  • a multi-face type revolving jig having a pre-pressing device capable of simultaneously positioning a plurality of products is adopted, and The relative position between each two metal structural members is guaranteed such that the relative positional tolerance is less than ⁇ 0.03 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

一种金属结构件与同轴电缆非接触式加热锡钎焊方法,包括:向传动系统上预置工件并将工件向加热系统传输,所述工件包括金属结构件(2)和同轴电缆的预装配结构、预置在金属结构件(2)与同轴电缆之间焊点处的焊料及用以定位预装配结构的周转夹具;对工件进行非接触式热辐射加热,使得焊点处的焊料充分熔融;对加热焊接完成的工件实施冷却,使得焊点被快速凝固。通过将焊接器件固定、焊料添加、加热焊接进行拆分的精细分工,有利于实现各个工序的自动化,提高焊接效率、保证焊接质量。

Description

金属结构件与同轴电缆非接触式加热锡钎焊方法 技术领域
本发明涉及加工技术领域,具体涉及通信技术领域关键部件的焊接工艺,尤其涉及一种金属结构件与同轴电缆非接触式加热锡钎焊方法。
背景技术
基站天线是移动通信网络覆盖的关键部件,其核心部件大多通过金属结构件(辐射单元)与同轴电缆锡钎焊接联接组成。为了保障良好的电气连接导通性能和结构连接稳定性,对于焊点的锡量一致性、焊点的融透性以及力学强度有着苛刻要求,因此,焊接工艺参数量化管控,是实现产品一致性的重大前提。
众所周知,传统锡钎焊接工艺由烙铁发热,对被焊点进行接触传导热量,同时辅助焊锡丝进行焊料的填充的一种接触焊接方法,是一种局部加热的焊接方法。通信行业的金属结构件的焊接方式,基本上也是采用这种电烙铁焊接。由于金属结构件的吸热效应,为了使其加热能够满足焊接需求,需要较高的温度传递或长时间接触焊接,就必须选用大功率的焊台,由于长时间高温,加速烙铁头氧化,使用寿命大幅降低,同时加剧了焊点受热不均匀无法保证焊接温度的一致性而造成焊接质量可靠性下降,另一方面,采用人工焊接方式,无法保证焊接时间及送锡量的一致性,质量一致性差,作业方式效率低下。
基站天线部件多属于异形结构件,其不规则性造成不同产品焊点多方位化,即多维度焊点大量同时存在,采用手工烙铁焊接,需反复摆放和定位,要实现其全自动化的焊接,基本上不可能。
业界也有一些新的尝试,即采用三维机械手带动烙铁进行定位焊接,可以在一定程度上解决同平面的焊点,同时解决了送锡和焊接时间的量化管控,但从原理上还是无法解决金属结构件的带来的吸热影响,产生的焊点可靠性问题。
发明内容
本发明的目的旨在提供一种提高焊接效率、保证焊接质量的金属结构件与同轴电缆非接触式加热锡钎焊方法。
为了实现上述目的,本发明提供以下技术方案:
一种金属结构件与同轴电缆非接触式加热锡钎焊方法,包括具有传动系统、沿工件传动方向依次设置的加热系统和冷却系统的整体加热焊接装置,所述方法包括以下步骤:向传动系统上预置工件并将工件向加热系统传输,所述工件包括金属结构件和同轴电缆的预装配结构、预置在金属结构件与同轴电缆之间的焊点处的焊料及用以定位预装配结构的周转夹具;对工件进行非接触式热辐射加热,使得焊点处的焊料充分熔融;对加热焊接完成的工件实施冷却,使得焊点被快速凝固。
优选地,当同一同轴电缆与金属结构件之间具有多个纵向分布的焊点时,对加热系统进行参数设置,使得加热区域内的加热温度在金属结构件纵向上呈差异化分布。
具体地,所述加热温度在金属结构件纵向上呈“低-高-低”分布。
优选地,当同一同轴电缆与金属结构件之间具有多个分布在不同平面上的焊点时,对加热系统进行参数设置,使得加热区域水平方向不同位置上的温度呈差异化分布。
优选地,当同一同轴电缆与金属结构件之间具有多个分布在不同平面上的焊点时,在不同平面上的焊点处添加熔点不同的焊料。
优选地,对工件进行非接触式热辐射加热步骤具体包括:对其上分布有焊点的金属结构件的第一面进行非接触式热辐射加热,使得焊点熔融后冷却完成该面焊点的焊接;对完成第一面焊接的工件进行二次组装及在第二面进行焊料添加,然后对金属结构件该面进行非接触式加热,完成金属结构件第二面上焊点的焊接;其中,在二次加热焊接时,控制第二面加热的温度低于对第一面加热的温度,或者第一面上焊点处的焊料熔点比第二面焊点处的焊料熔点高,以避免第一面上的焊点在第二次加热焊接时熔化。
进一步地,还包括工件的预装配工序,具体包括以下步骤:准备金属结构件并将其预定位在周转夹具上;将金属结构件与同轴电缆以一定间隙 装配,并实现二者的预紧;向金属结构件和同轴电缆之间焊点处预置焊料。
优选地,所述金属结构件与同轴电缆通过箍紧式连接件预紧,并且金属结构件与同轴电缆的间隙小于0.1mm。
优选地,通过立体型焊料自动添加设备向金属结构件和同轴电缆之间焊点处添加所述焊料。
进一步地,还包括后续步骤,具体包括:从周转夹具上取下焊接完成的成品,并通过传动系统回传周转夹具。
相比现有技术,本发明的方案具有以下优点:
1、本发明的锡钎焊方法中,将焊接器件固定、焊料添加与加热焊接工序分开,实现工序细分优化,这样更容易实现自动化的高度集成,焊接效率比手工烙铁效率提升近3倍,良率提升到99.99%。
2、通过对纵向不同位置或同一水平方向不同方位进行温度的差异化控制,适应不同熔点的焊点的焊接,焊接温度均匀度高;同时由于通过程序控制温度,符合锡钎焊料的特性所需,保证了焊料的流动性及焊点形成的强度。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明的工件在整体加热焊接装置中加热焊接的一种实施方式的示意图;
图2为本发明的工件在整体加热焊接装置中加热焊接的另一种实施方式的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似 功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本发明的金属结构件与同轴电缆非接触式加热锡钎焊方法(以下简称“锡钎焊方法”),主要包括预置工件(含焊料添加)、非接触式加热工件、冷却工件、拆卸工件四大步骤,通过将焊接器件的固定、焊料添加、加热焊接进行拆分,设立不同工序并对其进行精细化管控,便于自动化完成焊接过程,实现了模块化管理。
其中,焊料添加在立体型焊料自动添加设备中进行,可实现多所需焊接的焊点处进行焊料的同步多点添加,使其焊料具有精确定量、焊料形状移至,以确保在焊接过程中焊锡的流动距离一致性。
非接触式加热在整体加热焊接装置中进行,该整体加热焊接装置具有用于传输工件的传动系统及沿工件传动方向依次设置加热系统和冷却系统,并且加热系统用于对工件进行360度全方位热辐射,使得产品的每个方位、部位都可以均匀受热,从而使焊点上的焊料充分吸热熔化,进而在金属结构件与同轴电缆之间的焊点之间进行润湿、流动,继而进行冷却使得焊点处的液体焊料快速凝固而形成所需焊点。
本发明的整体加热焊接装置采用热辐射的传递方式传热,其发热元件包括但不限于红外加热、发热管加热、激光加热等多种加热方式,并且加热方位不限于上方加热、下方加热、或上下方加热,可多方位同时加热。
实施例一
将金属结构件从周转盒中取出,并进行金属结构件本体的产品预定位摆放。
进行同轴电缆与金属结构件之间的间隙装配;确保装配到位后,采用一种箍紧式连接件,将同轴电缆固定在金属结构件上。该种箍紧式连接件预紧能保证多根同轴电缆有效可靠的固定性,使其金属结构件与同轴电缆的焊点间隙小于0.1mm,即保证图1中金属结构件2与焊点6之间的间隙,以保证焊接效果的一致性。该箍紧式连接件具备耐高温特性,可防止因物体本身因热胀冷缩的效应而失效;同时该箍紧式连接件具备快速取放的特性。
将与同轴电缆装配好的金属结构件,放到一种立体型焊料自动添加设备中进行焊料添加。该焊料自动添加设备可完成所需焊接的焊点处焊料的同步多点添加,使其焊料添加具备精确定量、焊料的形状一致,以确保在焊接过程中焊锡的流动距离一致性。
将完成焊料自动添加的金属结构件与同轴电缆组成的预装配结构放进具有限位和定位功能的周转夹具上,并通过周转夹具进行限位和定位。该周转夹具耐高温,以保证其金属结构件的固定可靠性和摆放的灵活度。并可在一个周转夹具上,实现多个预装配结构的同时限位和定位。
由此,完成工件的预装配工序。其中,所称工件指金属结构件、同轴电缆、焊料及周转夹具组成的共同体。
将上述工件置于整体加热焊接装置1的传动系统上,通过传动系统向加热系统传输以对工件进行热辐射加热,使焊料在焊点处充分吸热熔融、流动及扩散,并在加热焊接完成后向冷却系统传输工件以对工件冷却使液态的焊料快速凝固,形成所需的焊点。
在完成金属结构件与同轴电缆的焊接后,从周转夹具中取下焊接完成的成品,并通过传动系统回传周转夹具,从而完成一个完整的加工工序小循环
通过将焊接器件固定、焊料添加及加热焊接进行多工序拆分,精细的分工有利于各个工序实现自动化、模块化管理,有利于提高焊接效率、保证焊接质量。
请继续参见图1,优选地,同一同轴电缆与金属结构件在纵向上具有三个焊点4、5、6,并且三个焊点分别分布于金属结构件“低-中-高”三个位置处,并且焊点4为小焊点、焊点5为大焊点。为保证同轴电缆的绝缘介质不被熔化,对加热区域在纵向上实施温度差异化控制,具体体现为“低-高-低”,即焊点5的温度高于焊点4和焊点6的温度。通过温度的分层设置,使处于立体的金属结构件三个层次、大小不同的焊点的焊接温度呈差异化。
实施例二
参见图2,本实施例与实施例一相类似,不同之处在于:
同一同轴电缆与金属结构件2之间具有多个分布在不同平面上的焊点,为了实现对不同平面上的焊点进行加热,并且在后一次加热焊接过程中,并不会影响前一次加热焊接形成的焊点,在本实施例的加热焊接过程中,对加热系统进行参数设置,使得加热区域水平方向不同位置上的温度呈差异化分布。
由此,对工件进行非接触式热辐射加热步骤具体包括:
对其上分布有焊点的金属结构件的第一面进行非接触式热辐射加热,使得焊点熔融后冷却完成该面焊点的焊接。
对第一面焊接完成的工件进行二次组装及在第二面进行焊料添加,然后对金属结构件进行二次非接触式加热,完成金属结构件2第二面上焊点3、4、5、6的焊接。
其中,在二次加热焊接时,对金属结构件2第二面加热的温度高于对第一面加热的温度,以避免第一面上形成的焊点7、8在第二次加热焊接时熔化。
或者,在不同平面上的焊点处添加熔点不同的焊料,使得第一面上焊点7、8处的焊料熔点比第二面焊点3、4、5、6处的焊料熔点高,防止第一面上形成的焊点7、8在二次加热焊接时熔化。
为适应本实施方式的金属结构件及同轴电缆预装配结构的定位,在本实施方式中,采用具有预压装置的多面型周转夹具,该周转夹具可实现多个产品的同时定位,并且保证每两个金属结构件之间的相对位置,使得相对位置公差小于±0.03mm。
以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,包括具有传动系统、沿工件传动方向依次设置的加热系统和冷却系统的整体加热焊接装置,所述方法包括以下步骤:
    向传动系统上预置工件并将工件向加热系统传输,所述工件包括金属结构件和同轴电缆的预装配结构、预置在金属结构件与同轴电缆之间的焊点处的焊料及用以定位预装配结构的周转夹具;
    对工件进行非接触式热辐射整体加热,使得焊点处的焊料充分熔融;
    对加热焊接完成的工件实施冷却,使得焊点被快速凝固。
  2. 根据权利要求1所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,当同一同轴电缆与金属结构件之间具有多个纵向分布的焊点时,对加热系统进行参数设置,使得加热区域内的加热温度在金属结构件纵向上呈差异化分布。
  3. 根据权利要求2所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,所述加热温度在金属结构件纵向上呈“低-高-低”分布。
  4. 根据权利要求1所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,当同一同轴电缆与金属结构件之间具有多个分布在不同平面上的焊点时,对加热系统进行参数设置,使得加热区域水平方向不同位置上的温度呈差异化分布。
  5. 根据权利要求1所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,当同一同轴电缆与金属结构件之间具有多个分布在不同平面上的焊点时,在不同平面上的焊点处添加熔点不同的焊料。
  6. 根据权利要求4或5所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,对工件进行非接触式热辐射加热步骤具体包括:
    对其上分布有焊点的金属结构件的第一面进行非接触式热辐射加热,使得焊点熔融后冷却完成该面焊点的焊接;
    对完成第一面焊接的工件进行二次组装及在第二面进行焊料添加,然 后对金属结构件该面进行非接触式加热,完成金属结构件第二面上焊点的焊接;
    其中,在二次加热焊接时,控制第二面加热的温度低于对第一面加热的温度,或者第一面上焊点处的焊料熔点比第二面焊点处的焊料熔点高,以避免第一面上的焊点在第二次加热焊接时熔化。
  7. 根据权利要求1所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,还包括工件的预装配工序,具体包括以下步骤:
    准备金属结构件并将其预定位在周转夹具上;
    将金属结构件与同轴电缆间隙装配,并实现二者的预紧;
    向金属结构件和同轴电缆之间焊点处预置焊料。
  8. 根据权利要求7所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,所述金属结构件与同轴电缆通过箍紧式连接件预紧,并且金属结构件与同轴电缆的间隙小于0.1mm。
  9. 根据权利要求7所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,通过立体型焊料自动添加设备向金属结构件和同轴电缆之间焊点处添加所述焊料。
  10. 根据权利要求1所述的金属结构件与同轴电缆非接触式加热锡钎焊方法,其特征在于,还包括后续步骤,具体包括:从周转夹具上取下焊接完成的成品,并通过传动系统回传周转夹具。
PCT/CN2017/085507 2016-08-22 2017-05-23 金属结构件与同轴电缆非接触式加热锡钎焊方法 WO2018036227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610705278.8 2016-08-22
CN201610705278.8A CN106238846B (zh) 2016-08-22 2016-08-22 金属结构件与同轴电缆非接触式加热锡钎焊方法

Publications (1)

Publication Number Publication Date
WO2018036227A1 true WO2018036227A1 (zh) 2018-03-01

Family

ID=57596290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085507 WO2018036227A1 (zh) 2016-08-22 2017-05-23 金属结构件与同轴电缆非接触式加热锡钎焊方法

Country Status (2)

Country Link
CN (1) CN106238846B (zh)
WO (1) WO2018036227A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106238846B (zh) * 2016-08-22 2019-12-27 京信通信技术(广州)有限公司 金属结构件与同轴电缆非接触式加热锡钎焊方法
CN106238848B (zh) * 2016-08-22 2019-12-27 京信通信技术(广州)有限公司 金属结构件与pcb非接触式加热锡钎焊方法
CN111935918A (zh) * 2019-05-13 2020-11-13 台湾爱司帝科技股份有限公司 应用于固接led的高周波加热装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160652A (ja) * 2008-01-08 2009-07-23 Fec:Kk 高周波誘導加熱装置及び高周波誘導コイルと磁性体による加熱方法
CN101557066A (zh) * 2009-05-22 2009-10-14 中国电子科技集团公司第三十八研究所 用于同轴传输线的深腔内导体连接的高频感应钎焊方法
CN102350552A (zh) * 2011-09-19 2012-02-15 哈尔滨工业大学深圳研究生院 一种电缆屏蔽层与壳体的钎焊方法
CN103008817A (zh) * 2012-12-03 2013-04-03 深圳深蓝精机有限公司 自动钎焊机
JP2014165022A (ja) * 2013-02-25 2014-09-08 Advanced-Connectek Inc 誘導加熱装置
CN204353607U (zh) * 2014-11-26 2015-05-27 摩比天线技术(深圳)有限公司 焊接装置
CN105798412A (zh) * 2016-05-17 2016-07-27 中国海洋大学 一种管路钎焊的方法
CN106112166A (zh) * 2016-08-22 2016-11-16 京信通信技术(广州)有限公司 金属件与同轴电缆焊接的自动化系统及实现方法
CN106238846A (zh) * 2016-08-22 2016-12-21 京信通信技术(广州)有限公司 金属结构件与同轴电缆非接触式加热锡钎焊方法
CN106238848A (zh) * 2016-08-22 2016-12-21 京信通信技术(广州)有限公司 金属结构件与pcb非接触式加热锡钎焊方法
CN106270864A (zh) * 2016-08-22 2017-01-04 京信通信技术(广州)有限公司 金属结构件与五金件非接触式加热锡钎焊方法
CN205996345U (zh) * 2016-08-22 2017-03-08 京信通信技术(广州)有限公司 金属件与同轴电缆焊接的自动化系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166450A (ja) * 2006-12-27 2008-07-17 Matsushita Electric Ind Co Ltd リフローはんだ付け装置、リフローはんだ付け方法
TW201230910A (en) * 2011-01-11 2012-07-16 Hon Hai Prec Ind Co Ltd The method of manufacturing the LED lightbar and the equipment thereof
CN103286408B (zh) * 2012-02-24 2017-03-01 联想企业解决方案(新加坡)私人有限公司 一种热源系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009160652A (ja) * 2008-01-08 2009-07-23 Fec:Kk 高周波誘導加熱装置及び高周波誘導コイルと磁性体による加熱方法
CN101557066A (zh) * 2009-05-22 2009-10-14 中国电子科技集团公司第三十八研究所 用于同轴传输线的深腔内导体连接的高频感应钎焊方法
CN102350552A (zh) * 2011-09-19 2012-02-15 哈尔滨工业大学深圳研究生院 一种电缆屏蔽层与壳体的钎焊方法
CN103008817A (zh) * 2012-12-03 2013-04-03 深圳深蓝精机有限公司 自动钎焊机
JP2014165022A (ja) * 2013-02-25 2014-09-08 Advanced-Connectek Inc 誘導加熱装置
CN204353607U (zh) * 2014-11-26 2015-05-27 摩比天线技术(深圳)有限公司 焊接装置
CN105798412A (zh) * 2016-05-17 2016-07-27 中国海洋大学 一种管路钎焊的方法
CN106112166A (zh) * 2016-08-22 2016-11-16 京信通信技术(广州)有限公司 金属件与同轴电缆焊接的自动化系统及实现方法
CN106238846A (zh) * 2016-08-22 2016-12-21 京信通信技术(广州)有限公司 金属结构件与同轴电缆非接触式加热锡钎焊方法
CN106238848A (zh) * 2016-08-22 2016-12-21 京信通信技术(广州)有限公司 金属结构件与pcb非接触式加热锡钎焊方法
CN106270864A (zh) * 2016-08-22 2017-01-04 京信通信技术(广州)有限公司 金属结构件与五金件非接触式加热锡钎焊方法
CN205996345U (zh) * 2016-08-22 2017-03-08 京信通信技术(广州)有限公司 金属件与同轴电缆焊接的自动化系统

Also Published As

Publication number Publication date
CN106238846A (zh) 2016-12-21
CN106238846B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2018036202A1 (zh) 金属结构件与pcb非接触式加热锡钎焊方法
WO2018036227A1 (zh) 金属结构件与同轴电缆非接触式加热锡钎焊方法
WO2018036213A1 (zh) 金属件与同轴电缆焊接的自动化系统及实现方法
WO2018036187A1 (zh) 金属结构件与五金件非接触式加热锡钎焊方法
WO2018036208A1 (zh) 金属件与同轴电缆的焊接系统和焊接方法
CN108436234B (zh) 一种大热导率失配金属材料双热源协同焊接方法及装置
CN109365942A (zh) 自动焊锡设备及其控制方法
CN105033421A (zh) 异种金属电弧胶焊连接系统及方法
CN106112179A (zh) 整体加热焊接设备及方法
CN109048019A (zh) 一种用于铜铝复合排的焊接工艺
CN104028870A (zh) 用于复合介质基板上的天线子的高频感应钎焊方法
CN108856942B (zh) 一种汽车顶篷高速激光钎焊的方法
CN104625281A (zh) 屏蔽电机转子铜端环与铜条接头焊接方法
CN104400209A (zh) 一种铜铝导电排对接或对接加叠接的焊接方法
JP2017103452A (ja) 予備半田成形システムおよび方法
CN104319010A (zh) 一种复合铜排导电层的焊接方法及复合铜排
CN105108259A (zh) 一种锌电解阴极导电头铜和铝异质金属复合方法
CN103998171A (zh) 用于连接工件的方法和连接装置
CN104625394A (zh) 用于金属复合板焊接的单轴肩搅拌头
CN105945481B (zh) 一种半导体的自动生产方法
CN114054880B (zh) 串列双激光光束对白车身顶棚与侧围间的填丝钎焊工艺
CN106493575A (zh) 一种套接空心铜管的高频感应激光复合焊接方法及装置
CN212239515U (zh) 一种金属件间的恒温锡焊系统
CN106180944B (zh) 基站天线的锡钎焊接方法
CN114769926B (zh) 一种可调焊盘及焊接工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842652

Country of ref document: EP

Kind code of ref document: A1