WO2018035806A1 - 一种双频光源装置 - Google Patents

一种双频光源装置 Download PDF

Info

Publication number
WO2018035806A1
WO2018035806A1 PCT/CN2016/096710 CN2016096710W WO2018035806A1 WO 2018035806 A1 WO2018035806 A1 WO 2018035806A1 CN 2016096710 W CN2016096710 W CN 2016096710W WO 2018035806 A1 WO2018035806 A1 WO 2018035806A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
section
common
segment
unit
Prior art date
Application number
PCT/CN2016/096710
Other languages
English (en)
French (fr)
Inventor
文侨
梁国文
李冀
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2016/096710 priority Critical patent/WO2018035806A1/zh
Publication of WO2018035806A1 publication Critical patent/WO2018035806A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof

Definitions

  • the present invention belongs to the field of optical technologies, and in particular, to a dual-frequency light source device.
  • Precision interferometry mainly uses the laser wavelength as the "ruler” and uses the interference principle to measure various parameters such as acceleration, displacement, angular displacement and so on. Since the wavelength of light is on the order of nm, its resolution is unmatched by electrical and magnetic components.
  • Laser interferometers are widely used in precision and ultra-precision length measurement due to their unique large measurement range, high resolution and high measurement accuracy.
  • the lasers used for laser interference are mainly single-frequency lasers and dual-frequency lasers.
  • the laser measuring instrument used earlier is a single-frequency interferometer based on a single-frequency laser.
  • the interferometer is seriously affected by environmental factors, especially when the measurement environment is harsh and the measuring distance is long. Mainly because it produces a constant current signal, the attenuation of the luminescence energy, the presence of air turbulence, and the change of the background light intensity at large distances will cause the beam to shift, which inevitably causes the laser beam to The intensity changes, resulting in a drift of DC light intensity and level. Since single-frequency interferometers are largely limited by DC amplifier drift, optical receiver sensitivity, and laser power fluctuations, single-frequency laser interferometers are difficult to exploit in high-precision measurements.
  • the dual-frequency laser interferometer developed on the basis of a single-frequency laser interferometer is a heterodyne interferometer, and its most remarkable feature is the use of carrier technology to convert the measured physical quantity information into a frequency modulated or amplitude modulated signal. It overcomes the problem of DC drift of the measurement signal of ordinary single-frequency interferometer, has many advantages such as small signal noise, anti-environment interference, allowing multi-channel multiplexing of light source, etc. It is widely used in advanced manufacturing industry and nanotechnology field as distance measurement and speed measurement. , vibration measurement, shape measurement, real position measurement and control.
  • the Zeeman dual-frequency laser utilizes the Zeeman effect, which refers to the phenomenon that if the light source is placed in a magnetic field, the line from the source will split.
  • Zeeman dual-frequency laser output frequency difference is generally below 1MHz, generally not used for high-speed precision laser heterodyne interferometry.
  • the double longitudinal mode laser realizes the laser output of two longitudinal modes in one laser cavity by controlling the cavity length of the laser, etc., and the vertical mode frequency difference can reach 600MHz-lGHz (corresponding laser tube length is 150mm-250mm) .
  • the birefringence dual-frequency laser is an optical element with a birefringence effect such as quartz crystal, calcite, etc. inserted in a single longitudinal mode laser cavity, so that the laser in the cavity is split into o-light and e with different optical resonant cavity lengths.
  • these two orthogonal linearly polarized dual-frequency laser oscillating outputs have a frequency difference between 3 and 40 MHz, and the required frequency difference can be obtained by adjusting the stress of the birefringent crystal.
  • the common feature is that the laser frequency adjustment is difficult, and the frequency difference adjustment range is limited.
  • the Zeeman frequency difference can only be adjusted in a relatively small range, the double longitudinal mode.
  • the laser frequency difference can only be adjusted over a relatively large range, while the birefringence dual frequency can only be adjusted in a certain range in the middle.
  • the laser resonators of the two frequencies of these dual-frequency lasers are completely common in the geometric path, and the two frequencies interact with each other. When changing one frequency of the laser, it often affects another frequency, and is difficult to adjust the frequency.
  • An object of the present invention is to provide a dual-frequency light source device, which aims to solve the problem that the frequency adjustment range of the conventional dual-frequency light source device is small and the frequency adjustment is difficult.
  • the present invention is achieved by a dual-frequency light source device including a pumping unit, a resonant cavity unit, and a coupling unit for coupling pump light emitted by the pumping unit to the resonant cavity unit;
  • the resonant cavity unit includes a common optical path segment and a non-common optical path segment, the common optical path segment is provided with a gain medium, and the non-common optical path segment includes a first polarization segment and a second transmission that are independently transmitted and have different optical paths.
  • the dual-frequency light source apparatus further includes an output unit for outputting the first frequency laser generated by the first resonant cavity and the second frequency laser generated by the second resonant cavity.
  • the dual-frequency light source device has the following advantages: [0009] 1.
  • the dual-frequency light source device has two resonant cavities (a first resonant cavity and a second resonant cavity), and the two resonant cavities have a common part (common path optical section), and also have different parts (first The polarizing section and the second polarizing section) have different optical paths of the first polarizing section and the second polarizing section, causing the first resonant cavity and the second resonant cavity to generate different frequencies, and obtaining a dual-frequency laser, the dual-frequency light source device is different from The combination of two independent single-frequency light sources, the first resonant cavity and the second resonant cavity share the same gain medium and the same pumping unit, so that the generated dual-frequency laser can achieve heterodyne interference after being adjusted by the polarization state. It can be used for precise measurement of a variety of physical quantities, and the laser generated by two independent single-frequency lasers cannot interfere with heterodyne.
  • the dual-frequency light source device Since there is a common optical path segment, the external environment change such as temperature has substantially the same influence on the frequency of the two resonant cavities, and the difference in frequency can be offset by using the first frequency laser and the second frequency laser for heterodyne interference. This effect, therefore, the dual-frequency light source device has strong anti-interference.
  • FIG. 1 is a schematic structural view of a first dual-frequency light source device according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a second dual-frequency light source device according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a dual-frequency light source device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a dual-frequency light source device according to a third embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a first dual-frequency light source device according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a second dual-frequency light source device according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a dual-frequency light source device according to a fifth embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a dual-frequency light source device according to a sixth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a dual-frequency light source device according to a seventh embodiment of the present invention.
  • an embodiment of the present invention provides a dual-frequency light source device, including a pumping unit 10, a coupling unit 20, and a resonant cavity unit, wherein the pumping unit 10 emits pump light, and the coupling unit 20
  • the pump light is coupled to the cavity unit.
  • the resonant cavity unit includes a common optical path segment and a non-common optical path segment.
  • the common optical path segment is provided with a gain medium 30.
  • the non-common optical path segment includes a first polarization segment 401 and a second polarization segment 402 that are independently transmitted and have different optical paths.
  • the first polarization segment 401 transmits light of a first polarization direction.
  • S light is taken as an example; the second polarization segment 402 transmits light of the second polarization direction.
  • P light is taken as an example, and the S light is perpendicular to the polarization direction of the P light.
  • the common optical path segment and the first polarization segment 401 constitute a first resonant cavity, and the common optical path segment and the second polarization segment 402 constitute a second resonant cavity, the dual-frequency light source device further comprising a first for generating the first resonant cavity
  • the frequency laser and the output unit 50 of the second frequency laser output generated by the second cavity are examples of the first resonant cavity.
  • the dual-frequency light source device is a dual-cavity light source, that is, a first resonant cavity and a second resonant cavity, and the two resonant cavityes have a common optical path, and there is an independent non-shared optical path, that is, the first The polarization section 401 and the second polarization section 402 have different optical paths of the first polarization section 401 and the second polarization section 402, so that the optical paths of the first resonant cavity and the second resonant cavity are different, thereby causing the two resonant cavity to be generated.
  • a first frequency laser and a second frequency laser having different frequencies.
  • the dual-frequency laser generated by the dual-frequency light source device can be used for heterodyne interference after the polarization state thereof is adjusted to be uniform, which is different from the conventional two.
  • a combination of single frequency sources can be used for heterodyne interference after the polarization state thereof is adjusted to be uniform, which is different from the conventional two.
  • the transmission mediums of the first polarization section 401 and the second polarization section 402 are the same and the lengths are different, or
  • the transmission medium of the first polarization section 401 and the second polarization section 402 is the same, the length is the same, but a crystal that changes the optical path is disposed on the first polarization section 401 or the second polarization section 402, etc., and the embodiment can be adopted but not limited.
  • the optical path difference is generated by the above means.
  • the dual-frequency light source device has two resonant cavities (a first resonant cavity and a second resonant cavity), and the two resonant cavities have a common portion (common path optical path), and also have different parts (first The polarization sections 401 and the second polarization section 402), the optical paths of the first polarization section 401 and the second polarization section 402 are different to generate different frequencies, and a dual-frequency laser is obtained.
  • the dual-frequency light source device is different from two independent single-frequency light sources.
  • Combination of the first cavity and The second resonant cavity shares the same gain medium 30 and the same pumping unit 10, so that the generated dual-frequency laser can realize heterodyne interference after its polarization state is adjusted to be uniform, and can be used for precise measurement of various physical quantities, and two The laser generated by an independent single-frequency laser cannot interfere with heterodyne.
  • the first polarization segment 401 and the second polarization segment 402 are independent of each other, so adjusting the frequency of one of the laser resonators does not affect the frequency of the other laser cavity, so the frequency is changed conveniently. , can also achieve broadband frequency adjustment range;
  • the dual-frequency light source device when the pump unit and the coupling unit are free space, the dual-frequency light source device further includes a pumping unit 10 and the coupling unit 20.
  • the collimating focusing unit 60 is configured to collimate and focus the pumping light into the coupling unit 20.
  • the type and structure of the coupling unit 20 can be reasonably selected according to the transmission medium (optical fiber or free space) of the dual-frequency light source device.
  • the resonant cavity unit of the dual-frequency light source device may be annular or linear.
  • the transmission medium of the dual-frequency laser may be an optical fiber, which is a polarization-maintaining fiber; it may be a free space, or a combination of an optical fiber and a free space, which will be described in detail below through several specific embodiments.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the dual-frequency light source device has the above basic structure, namely, the pump unit 10, the coupling unit 20, the cavity unit, the gain medium 30, and the output unit 50.
  • the common optical path segment and the non-common optical path segment form an annular resonant cavity unit and are transmitted by optical fibers.
  • the common path segment includes a first common path segment on one side of the non-common optical path segment and a second common path segment on the other side of the non-common optical path segment, and the first common path segment is connected by the first polarization splitting unit 701.
  • the second common section is connected to the other end of the first polarization section 401 and the other end of the second polarization section 402 through the second polarization splitting unit 702, wherein the first Both the polarization splitting unit 701 and the second polarization splitting unit 702 reflect the S light, transmit the P light, and further separate the S light and the P light into the first polarization segment 401 and the second polarization segment 402, respectively.
  • the path of S light and P light is confused.
  • the gain medium 30 can emit light to both sides, and the light emitted by the light medium 30 is formed through the first cavity
  • the first frequency laser forms a second frequency laser through the second cavity, and the first frequency laser and the second frequency laser are opposite in direction.
  • the gain medium 30 can also emit light to one side, wherein the S light and the P light are respectively introduced into the first resonant cavity and the second resonant cavity by the first polarization splitting unit 701 and the second polarization splitting unit 702, and the first frequency laser is The same direction as the second frequency laser.
  • the gain medium 30 can exist in two forms. First, the gain medium 30 is an independent gain device connected to the first common section or the second common section. On the fiber. Secondly, the gain medium 30 and the optical fiber of the common optical path segment are combined into one. For example, the astigmatism optical fiber with the gain function is used as the common optical path segment, and the miscellaneous optical fiber is both the gain medium and the common optical path segment. .
  • the pump light emitted by the pumping unit 10 in the embodiment enters the coupling unit 20 through the input fiber 801, and the coupling unit 20 can adopt a wavelength division multiplexer, and the coupling unit 20 is connected through the first optical fiber 802.
  • the gain medium 30, which may be the independent gain device described above, or may be combined with the first optical fiber 802 or the second optical fiber 803.
  • the two sides of the gain medium 30 are respectively connected to the first optical fiber 802 and the second optical fiber 803, and the first optical fiber 802 and the second optical fiber 803 are respectively the transmission medium of the first common path segment and the second common path segment. .
  • the first polarization section 401 and the second polarization section 402 respectively use the third optical fiber 804 and the fourth optical fiber 805 as transmission media.
  • the other end of the first optical fiber 802 is connected to one end of the third optical fiber 804 and one end of the fourth optical fiber 805 through the first polarization splitting unit 071, and is connected to the third end by the second polarization splitting unit 702 at the other end of the second optical fiber 803.
  • the other end of the optical fiber 804 and the other end of the fourth optical fiber 805, the first polarization splitting unit 701 and the second polarization splitting unit 702 reflect the S light to the third optical fiber 804 and transmit the P light to the fourth optical fiber 805.
  • the output unit 50 can be disposed on the common optical path segment, that is, on the first optical fiber 802 or the second optical fiber 803.
  • the output unit 50 adopts a unidirectional output unit, and when the first frequency laser and the second frequency laser are transmitted in opposite directions, the output unit 50 adopts the bidirectional output unit 503.
  • the output unit 50 may also be disposed on the first polarization segment 401 and the second polarization segment 402, that is, the first output unit 501 is disposed on the third optical fiber 804, and the fourth optical fiber is disposed on the fourth optical fiber.
  • a second output unit 502 is provided on the 805.
  • an isolator 90 may be disposed on each of the third optical fiber 804 and the fourth optical fiber 805.
  • the isolator may be disposed on the first optical fiber 802 or the second optical fiber 803.
  • each of the third optical fiber 804 and the fourth optical fiber 805 may be An adjustable attenuation unit 100 is provided, or an adjustable attenuation unit 100 is provided on either one.
  • a single longitudinal mode unit 110 may be disposed on the first optical fiber 802 or the second optical fiber 803, or a single longitudinal mode unit 110 may be disposed on each of the third optical fiber 804 and the fourth optical fiber 805. Used to implement a single longitudinal mode of the laser in order to achieve high coherence of the laser, even close to an ideal coherent source.
  • the single longitudinal mode unit 110 may be a narrow band filter or a unit composed of two collimating lenses and an F-P interferometer therebetween.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the dual-frequency light source device has the above basic structure, namely: pump unit 10, coupling unit 20, cavity unit, gain medium 30 and output unit 50, this embodiment The examples are not repeated.
  • the common optical path section and the non-common optical path section form a ring-shaped resonant cavity unit and are transmitted in free space. That is, the dual-frequency light source device provided by the second embodiment of the present invention is different from the dual-frequency light source device provided in the first embodiment in that the present embodiment converts the transmission medium into a free space instead of using an optical fiber. Due to the free space transmission, the coupling unit 20 can employ a two-color mirror, and a plurality of mirrors 120 are added to form an annular optical path with the dichroic mirror.
  • the gain medium 30 described above is an independent gain device.
  • the gain medium 30 employs a gain gas that is sealed by a container, the ends of which are directly butted to adjacent devices without gaps, or both ends of the container are sealed and have a free space from adjacent devices.
  • a collimation focusing unit 60 may be disposed between the pump unit 10 and the coupling unit 20.
  • the output unit 50 is preferably disposed on the common optical path, and specifically includes an output mirror 504 through which the first frequency laser and the second frequency laser are transmitted in the same direction, and can be output through the output mirror 504. If the first frequency laser and the second frequency laser are reversely transmitted, they may also be outputted at the output mirror 504. It is also possible to provide a prism 505 in one output direction of the output mirror 504, and a half-reverse half mirror 506 in the other output direction of the output mirror 504, through which the first frequency laser is reflected to the half-reverse half mirror 506, the second frequency The laser light is output directly from the output mirror 504 to the half mirror half 506, and the two laser beams are in the same direction at the half mirror half 506. Output, to be separated using ⁇ .
  • the above output mode is only a preferred scheme, and the output unit 50 may be disposed on the first polarization section 401 and the second polarization section 402.
  • an isolator 90 may be disposed on each of the first polarization segment 401 and the second polarization segment 402, or when the first frequency laser and the second frequency laser are transmitted in the same direction, The isolator 90 is disposed on the common optical path section.
  • a single longitudinal mode unit 110 may be disposed on each of the first polarization section 401 and the second polarization section 402 as in the first embodiment, or a single longitudinal mode unit 110 may be disposed in the common optical path section.
  • adjustable attenuation unit 100 may be disposed on the first polarization section 401 or the second polarization section 402 as in the first embodiment. Or an adjustable attenuation unit is disposed on each of the first polarization segment 401 and the second polarization segment 402.
  • the dual-frequency light source device has the above basic structure, namely: pump unit 10, coupling unit 20, cavity unit, gain medium 30 and output unit 50, this embodiment The examples are not repeated.
  • the common optical path segment and the non-common optical path segment form a ring-shaped resonant cavity unit, and are transported by free space and fiber. That is, the dual-frequency light source device provided by the third embodiment of the present invention is different from the dual-frequency light source device provided in the first embodiment in that the first polarization segment 401 and the second polarization segment 402 pass through the fifth optical fiber 806 and the sixth optical fiber, respectively.
  • the common optical path is transmitted through the free space
  • the gain medium 30 can be an independent gain device; or the gain medium 30 is a gain gas, the gain gas is sealed by a container, and the two ends of the container are directly connected to the phase without a gap The adjacent device, or both ends of the container, are sealed and have a free space from adjacent devices.
  • the first polarization segment 401 and the second polarization segment 402 are respectively transmitted through free space to transmit the common optical path segment through the optical fiber.
  • the coupling unit 20 preferably adopts a dichroic mirror, and a plurality of mirrors 120 are added to form an annular optical path with the dichroic mirror.
  • the coupling unit 20 may employ a wavelength division multiplexer, and add a plurality of mirrors 120 in the first polarization segment 401 and the second polarization segment 402 to form two independent optical paths.
  • the output unit 50 when the common optical path is free-space transmission, the output unit 50 can be disposed in the common optical path, and the structure is the same as that in the second embodiment, which is not described in this embodiment.
  • the output unit 50 can also be set In the first polarization section 401 and the second polarization section 402, specifically, the first output unit 501 is disposed in the first polarization section 401, and the second output unit 502 is disposed in the second polarization section 402.
  • the output unit 50 is preferably disposed in the common optical path segment, and a one-way or two-way output unit may be used.
  • the dual-frequency light source device can also be provided with an isolator 90, an adjustable attenuation unit and a single longitudinal mode unit at an appropriate position.
  • the installation position and working principle are as shown in the first embodiment or the second embodiment. , the details will not be described again.
  • the dual-frequency light source device has the above basic structure, that is, the pump unit 10, the coupling unit 20, the cavity unit, the gain medium 30, and the output unit 50, this embodiment The examples are not repeated.
  • the common optical path section and the non-common optical path section form a linear cavity unit, that is, a straight cavity structure.
  • the transmission medium is all-fiber
  • the gain medium 30 is an independent gain device or a fiber combined with the optical path of the common path.
  • the common path optical section includes a first common section and a second common section, and the pump unit 10, the coupling unit 20, the first common section, the non-common optical section, the second common section, and the output unit 50 are
  • the gain medium 30 is disposed in the first common section or the second common section.
  • the first common section is connected to one end of the first polarization section 401 and one end of the second polarization section 402 through the first polarization splitting unit 701.
  • the second common section is connected to the other end of the first polarization section 401 and the other end of the second polarization section 402 through the second polarization splitting unit 702.
  • the coupling unit 20, the first common section, the first polarization section 401, the second common section and the output unit 50 or the cavity mirror form a first cavity of a straight cavity type
  • the coupling unit 20, the first common section, and the second The polarization section 402, the second common section and the output unit 50 or the cavity mirror form a second cavity of a straight cavity type.
  • the first common path segment adopts a seventh optical fiber 808, the gain medium 30 is disposed on the seventh optical fiber 808, and the second common segment uses an eighth optical fiber 809, and the first polarization of the non-common optical path segment
  • the segment 401 adopts a ninth optical fiber 810
  • the second polarization segment 402 adopts a tenth optical fiber 811
  • one end of the ninth optical fiber 810 and the tenth optical fiber 811 is connected to the seventh optical fiber 808 through the first polarization splitting unit 701
  • the ninth optical fiber 810 and the first The other end of the ten optical fiber 811 is connected to the eighth optical fiber 809 through the second polarization splitting unit 702.
  • the first polarization splitting unit 701 and the second polarization splitting unit 702 reflect the S light to the ninth optical fiber 810 and the P light to the tenth optical fiber 811.
  • an output unit 50 is disposed at the end of the eighth optical fiber 809, and the S light and the P light respectively oscillate in the first resonant cavity and the second resonant cavity to form a laser, and the output unit 50 doubles Mirror and output.
  • the first output unit 501 and the second output unit 502 may be respectively disposed on the ninth optical fiber 810 and the tenth optical fiber 811, and the ⁇ needs to be disposed at the end of the eighth optical fiber.
  • the mirror 140 is as shown in FIG.
  • a single longitudinal mode unit 110 may be disposed on the seventh optical fiber 808 or the eighth optical fiber 809, or a single longitudinal mode unit 110 may be disposed on each of the ninth optical fiber 810 and the tenth optical fiber 811.
  • the adjustable attenuation unit 100 may be disposed on the ninth optical fiber 810 or the tenth optical fiber 811, or an adjustable attenuation unit 100 may be disposed on each of the ninth optical fiber 810 and the tenth optical fiber 811. .
  • the dual-frequency light source device has the above basic structure, namely: the pump unit 10, the coupling unit 20, the cavity unit, the gain medium 30, and the output unit 50, this embodiment The examples are not repeated.
  • the common optical path section and the non-common optical path section form a linear cavity unit, that is, a straight cavity structure.
  • the common path optical path segment includes only the third common path segment 130, the pumping unit 10, the coupling unit 20, the third common path segment 130, the non-common optical path segment and the output unit 50 are sequentially disposed, and the output unit 50 includes the first
  • the output unit 501 and the second output unit 502 are disposed at an end of the first polarization section 40 1
  • the second output unit 502 is disposed at an end of the second polarization section 402 .
  • the gain medium 30 is disposed in the third common path 130, and the third common path 130 is connected to one end of the first polarization segment 401 and one end of the second polarization segment 402 through the third polarization beam splitting unit 703.
  • the coupling unit 20, the third common section 130, the first polarization section 401 and the first output unit 501 constitute a first resonant cavity
  • a coupling unit 20, a third common section 130, a second polarization section 04 and a second output unit 502 constitutes a second resonant cavity.
  • the S-light is transmitted through the third polarization splitting unit 703 in the first resonant cavity, so that the P-light is transmitted in the second resonant cavity.
  • the third common section 130, the first polarization section 401, and the second polarization section 402 all use optical fibers as transmission media, or both use free space as a transmission medium, or use fiber and free space hybrid transmission.
  • the gain medium 30 is either an independent gain device or a fiber combined with the third common path 130.
  • the gain medium 30 may be an independent gain device; or a gain gas is used, the gain gas is sealed by a container, and the two ends of the container are directly connected to adjacent devices without gaps, or The ends of the container are sealed and there is a free space from adjacent devices.
  • a single longitudinal mode unit 11 may also be disposed on the first polarization segment 401 and the second polarization segment 402. 0, or a single longitudinal mode unit 110 is disposed on the third common section 130.
  • an adjustable attenuation unit may also be disposed on the first polarization segment 401 and the second polarization segment 402.
  • an adjustable attenuation unit 100 is disposed in the first polarization segment 401 or the second polarization segment 402.
  • the dual-frequency light source device has the above basic structure, that is, the pump unit 10, the coupling unit 20, the cavity unit, the gain medium 30, and the output unit 50, this embodiment The examples are not repeated.
  • the common optical path segment and the non-common optical path segment form a linear resonant cavity unit, that is, a straight cavity structure, and the transmission medium is free space.
  • the gain medium 30 uses an independent gain device; or the gain medium 30 uses a gain gas, which is sealed by a container, the two ends of the container are directly connected to adjacent devices without gaps, or both ends of the container are sealed and adjacent to each other. There is still a free space.
  • the embodiment is similar to the dual-frequency light source device provided in the fourth embodiment, and the common optical path segment includes a first common section and a second common section, and the coupling unit 20, the first common section, and the non-common light
  • the section, the second common section, and the output unit 50 are sequentially disposed, the gain medium 30 is disposed in the first common section or the second common section, and the first common section is connected to the first polarization section 401 through the first polarization splitting unit 701.
  • One end and one end of the second polarization section 402 the second common section is connected to the other end of the first polarization section 401 and the other end of the second polarization section 402 through the second polarization splitting unit 702.
  • the coupling unit 20, the first common section, the first polarization section 401, the second common section and the output unit 50 form a first cavity of a straight cavity type
  • the second common section and the output unit 50 form a second cavity of a straight cavity type.
  • the difference is that the first common section, the non-common optical section and the second common section are all transmitted in free space, and can be transmitted by air without using optical fibers.
  • a plurality of mirrors 120 are added to transmit the S light reflected by the first polarization splitting unit 701 and the second polarization splitting unit 702 according to a certain path.
  • the output unit 50 is preferably disposed in the output direction of the second polarization splitting unit 702.
  • a single longitudinal mode unit 110 may be disposed on the first polarization section 401 and the second polarization section 402, or a single longitudinal mode may be disposed on the first common section or the second common section. Unit 110.
  • the adjustable attenuation unit 100 may also be disposed on the first polarization segment 401 and the second polarization segment 402, or an adjustable attenuation unit 100 may be disposed in the first polarization segment 401 or the second polarization segment 402.
  • the dual-frequency light source device has the above basic structure, namely: pumping The unit 10, the coupling unit 20, the cavity unit, the gain medium 30, and the output unit 50 are not repeatedly described in this embodiment.
  • the common optical path segment and the non-common optical path segment form a linear cavity unit, that is, a straight cavity structure, and the transmission medium is a combination of free space and optical fiber.
  • the embodiment is similar to the dual-frequency light source device provided in the fourth embodiment, and the common optical path segment includes a first common section and a second common section, and the coupling unit 20, the first common section, and the non-common light
  • the section, the second common section, and the output unit 50 are sequentially disposed, the gain medium 30 is disposed in the first common section or the second common section, and the first common section is connected to the first polarization section 401 through the first polarization splitting unit 701.
  • One end and one end of the second polarization section 402 the second common section is connected to the other end of the first polarization section 401 and the other end of the second polarization section 402 through the second polarization splitting unit 702.
  • the coupling unit 20, the first common section, the first polarization section 401, the second common section and the output unit 50 form a first cavity of a straight cavity type
  • the second common section and the output unit 50 form a second cavity of a straight cavity type.
  • the first common section and the second common section are all transmitted in free space, that is, through air transmission, without using an optical fiber
  • the gain medium 30 is a gain device disposed in the first common section or the second common section.
  • the gain medium 30 is a gain gas which is sealed by a container, the two ends of which are directly butted to adjacent devices, or the ends of the container are sealed and there is a free space from adjacent devices.
  • the first polarization segment 401 and the second polarization segment 402 are transmitted by optical fibers.
  • the output unit 50 is preferably disposed in the output direction of the second polarization splitting unit 702. Of course, an output unit 50 may be disposed in each of the first polarization segment 401 and the second polarization segment 402.
  • the transmission medium of the first common section and the second common section may be set as an optical fiber, and the gain medium 30 is combined with the optical fiber of the first common section or the second common section.
  • One, or use an independent gain device may be set as an optical fiber, and the gain medium 30 is combined with the optical fiber of the first common section or the second common section.
  • the transmission medium of the first polarization section 401 and the second polarization section 402 is set to a free space.
  • the output unit 50 is preferably disposed in the first common section or the second common section.
  • a single longitudinal mode unit 110 may be disposed on the first polarization section 401 and the second polarization section 402, or a single longitudinal mode may be disposed on the first common section or the second common section. Unit 110.
  • the adjustable attenuation unit 100 may also be disposed on the first polarization section 401 and the second polarization section 402, or an adjustable attenuation unit 100 may be disposed in the first polarization section 401 or the second polarization section 402.
  • the dual-frequency light source device uses a special cavity unit, that is, two resonators share the same pump unit 10 and the gain medium 30, that is, lasers of different frequencies can be obtained, and the dual-frequency excitation can be adopted.
  • the light undergoes heterodyne interference.
  • the frequency adjustment is easy, the adjustment range is large, and the anti-interference is strong.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种双频光源装置,包括泵浦单元(10)、耦合单元(20)及谐振腔单元;谐振腔单元包括共程光路段和非共程光路段,共程光路段设有增益介质(30),非共程光路段包括独立传输且光程不同的第一偏振段(401)和第二偏振段(402),第一偏振段(401)和第二偏振段(402)传输的激光偏振方向不同;共程光路段和第一偏振段(401)构成第一谐振腔,共程光路段和第二偏振段(402)构成第二谐振腔;双频光源装置还包括用于将第一谐振腔产生的第一频率激光和第二谐振腔产生的第二频率激光输出的输出单元(50)。该双频光源装置采用特殊的谐振腔单元,两个谐振腔共用相同泵浦单元(10)和增益介质(30),既能够获得不同频率激光,又可采用该双频激光进行外差干涉,其频率调节容易,调节范围大,且抗干扰性强。

Description

一种双频光源装置 技术领域
[0001] 本发明属于光学技术领域, 特别涉及一种双频光源装置。
背景技术
[0002] 激光技术的发展有力的推动了光通信、 非线性光学、 高分辨光学等领域的发展 , 尤其在精密干涉测量方面占据了很大优势。 精密干涉测量主要以激光波长作 为"尺子", 利用干涉原理来测定各种参量, 如加速度、 位移、 角位移等等。 由于 光波长为 nm数量级, 因此其分辨精度是电学、 磁学元件无法比拟的。 激光干涉 仪以其特有的大测量范围、 高分辨率和高测量精度等优点, 在精密和超精密测 长领域获得了广泛的应用。 激光干涉使用的激光器主要为单频激光器和双频激 光器。 较早使用的激光测量仪器是以单频激光为基础的单频干涉仪, 但该干涉 仪受环境因素的影响比较严重, 尤其是在测量环境恶劣、 测量距离较长吋受影 响更为突出。 主要是因为它产生的是一直流信号,在大距离测量吋光能的衰减、 空气湍流的存在、 背景光强的变化等对激光束的干扰都会使光束发生偏移, 不 可避免的使激光束强度发生变化, 从而导致直流光强和电平的漂移。 由于单频 干涉仪在测量吋很大程度上受直流放大器的漂移、 光接收器灵敏度和激光功率 起伏的限制, 因此单频激光干涉仪在高精度测量中是很难利用的。
[0003] 在单频激光干涉仪的基础上发展起来的双频激光干涉仪是一种外差干涉仪, 其 最显著的特点是利用载波技术将被测物理量信息转换成调频或调幅信号, 它克 服了普通单频干涉仪测量信号直流漂移的问题, 具有信号噪声小、 抗环境干扰 、 允许光源多通道复用等诸多优点, 被广泛应用于先进制造行业和纳米技术领 域作为距离测量、 速度测量、 振动测量、 形貌测量, 实吋位置测控等。
[0004] 目前使用的双频激光器主要有塞曼双频激光、 双纵模双频激光以及清华大学张 书练教授课题组提出的双折射率双频激光。 塞曼双频激光利用塞曼效应, 该效 应是指若把光源放在磁场中, 光源发出的谱线将发生分裂的这种现象。 塞曼双 频激光器输出频差一般在 1MHz以下, 一般不用于高速精密激光外差干涉测量。 双纵模激光器是通过控制激光器的腔长等, 实现在一个激光谐振腔中输出两个 纵模频率的激光, 纵模频差可达 600MHz-lGHz (对应的激光管长度为 150mm-250 mm)。 双折射双频激光为在单纵模激光谐振腔内, 插入一块具有双折射效应的光 学元件如石英晶体、 方解石等等, 使得腔内的激光分裂成具有不同光学谐振腔 长的 o光和 e光, 这两束正交线偏振的双频激光振荡输出, 其频差为 3-40MHZ之间 , 可通过调节双折射晶体的应力得到所需的频差。
[0005] 在上述的三种双频激光器中, 其共同特点为激光频率调整难度较大, 且频率差 调整范围较有限, 比如塞曼的频差只能在比较小的范围调节, 双纵模激光频差 只能在比较大的范围调节, 而双折射双频只能在中间某个范围调节。 另外, 这 些双频激光器的两个频率的激光谐振腔在几何路径上完全共程, 两个频率相互 影响, 在改变激光器的一个频率吋, 往往对另外一个频率造成影响, 不易调频 技术问题
[0006] 本发明的目的在于提供一种双频光源装置, 旨在解决传统双频光源装置频率调 节范围小、 频率调节困难的问题。
问题的解决方案
技术解决方案
[0007] 本发明是这样实现的, 一种双频光源装置, 包括泵浦单元、 谐振腔单元以及用 于将所述泵浦单元发出的泵浦光耦合至所述谐振腔单元的耦合单元; 所述谐振 腔单元包括共程光路段和非共程光路段, 所述共程光路段设有增益介质, 所述 非共程光路段包括独立传输且光程不同的第一偏振段和第二偏振段, 所述第一 偏振段和第二偏振段传输的激光偏振方向不同; 所述共程光路段和所述第一偏 振段构成第一谐振腔, 所述共程光路段和所述第二偏振段构成第二谐振腔; 所 述双频光源装置还包括用于将所述第一谐振腔产生的第一频率激光和所述第二 谐振腔产生的第二频率激光输出的输出单元。
发明的有益效果
有益效果
[0008] 本发明提供的双频光源装置具有如下优点: [0009] 1、 该双频光源装置存在两个谐振腔 (第一谐振腔和第二谐振腔) , 这两个谐 振腔有共同的部分 (共程光路段) , 也有不同的部分 (第一偏振段和第二偏振 段) , 第一偏振段和第二偏振段的光程不同, 导致第一谐振腔和第二谐振腔产 生不同的频率, 获得双频激光, 该双频光源装置不同于两个独立的单频光源的 组合, 第一谐振腔和第二谐振腔共用相同的增益介质、 相同的泵浦单元, 因此 产生的双频激光在经过偏振态调整一致后能够实现外差干涉, 可用于多种物理 量的精密测量, 而两个独立的单频激光产生的激光不能发生外差干涉。
[0010] 2、 由于存在非共程光路, 第一偏振段和第二偏振段相互独立, 因此调整其中 一个激光谐振腔的频率不会影响另外一个激光谐振腔的频率, 因此改变频率便 捷, 还能实现宽带的频率调节范围;
[0011] 由于存在共程光路段, 使得温度等外界环境变化对两个谐振腔的频率影响基本 相同, 在利用第一频率激光和第二频率激光进行外差干涉吋, 其频率差值可以 抵消这种影响, 因此该双频光源装置具有较强的抗干扰性。
对附图的简要说明
附图说明
[0012] 图 1是本发明第一实施例提供的第一种双频光源装置结构示意图;
[0013] 图 2是本发明第一实施例提供的第二种双频光源装置结构示意图;
[0014] 图 3是本发明第二实施例提供的一种双频光源装置结构示意图;
[0015] 图 4是本发明第三实施例提供的一种双频光源装置结构示意图;
[0016] 图 5是本发明第四实施例提供的第一种双频光源装置结构示意图;
[0017] 图 6是本发明第四实施例提供的第二种双频光源装置结构示意图;
[0018] 图 7是本发明第五实施例提供的一种双频光源装置结构示意图;
[0019] 图 8是本发明第六实施例提供的一种双频光源装置结构示意图;
[0020] 图 9是本发明第七实施例提供的一种双频光源装置结构示意图。
本发明的实施方式
[0021] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0022] 以下结合具体实施例对本发明的具体实现进行详细描述:
[0023] 请参考图 1, 本发明实施例提供一种双频光源装置, 包括泵浦单元 10、 耦合单 元 20, 以及谐振腔单元, 其中, 泵浦单元 10发出泵浦光, 耦合单元 20将泵浦光 耦合至谐振腔单元。 谐振腔单元包括共程光路段和非共程光路段。 该共程光路 段设有增益介质 30, 非共程光路段包括独立传输且光程不同的第一偏振段 401和 第二偏振段 402, 第一偏振段 401传输第一种偏振方向的光, 本实施例以 S光为例 ; 第二偏振段 402传输第二种偏振方向的光, 本实施例以 P光为例, S光与 P光的 偏振方向垂直。 共程光路段和第一偏振段 401构成第一谐振腔, 共程光路段和第 二偏振段 402构成第二谐振腔, 该双频光源装置还包括用于将第一谐振腔产生的 第一频率激光和第二谐振腔产生的第二频率激光输出的输出单元 50。
[0024] 该双频光源装置是一种双谐振腔光源, 即第一谐振腔和第二谐振腔, 而这两个 谐振腔存在一段共用光路, 还存在一段独立的非共用光路, 即第一偏振段 401和 第二偏振段 402, 由于第一偏振段 401和第二偏振段 402的光程不同, 使第一谐振 腔和第二谐振腔的光程不同, 进而使得这两个谐振腔产生频率不同的第一频率 激光和第二频率激光。 又由于这两个谐振腔共用同一增益介质 30和泵浦单元 10 , 使得该双频光源装置产生的双频激光在其偏振态被调整为一致后可用于外差 干涉, 不同于传统的两个单频光源的组合。
[0025] 具体地, 使第一偏振段 401和第二偏振段 402形成一定的光程差的手段有很多, 例如第一偏振段 401和第二偏振段 402的传输介质相同而长度不同, 或者第一偏 振段 401和第二偏振段 402的传输介质相同, 长度相同但是在第一偏振段 401或第 二偏振段 402上设置一改变光程的晶体等等, 本实施例可以采用但不局限于通过 上述手段产生光程差。
[0026] 本发明实施例提供的双频光源装置具有如下优点:
[0027] 1.该双频光源装置存在两个谐振腔 (第一谐振腔和第二谐振腔) , 这两个谐 振腔有共同的部分 (共程光路段) , 也有不同的部分 (第一偏振段 401和第二偏 振段 402) , 第一偏振段 401和第二偏振段 402的光程不同产生不同的频率, 获得 双频激光, 该双频光源装置不同于两个独立的单频光源的组合, 第一谐振腔和 第二谐振腔共用相同的增益介质 30、 相同的泵浦单元 10, 因此产生的双频激光 在其偏振态被调整为一致后能够实现外差干涉, 可用于多种物理量的精密测量 , 而两个独立的单频激光产生的激光不能发生外差干涉。
[0028] 2.由于存在非共程光路, 第一偏振段 401和第二偏振段 402相互独立, 因此调 整其中一个激光谐振腔的频率不会影响另外一个激光谐振腔的频率, 因此改变 频率便捷, 还能实现宽带的频率调节范围;
[0029] 3.由于存在共程光路段, 使得温度等外界环境变化对两个谐振腔的频率影响 基本相同, 在利用第一频率激光和第二频率激光进行外差干涉吋, 其频率差值 可以抵消这种影响, 因此该双频光源装置具有较强的抗干扰性。
[0030] 作为本发明实施例的一种改进方案, 如图 3, 当泵浦单元和耦合单元之间为自 由空间吋, 双频光源装置还包括设置于泵浦单元 10和耦合单元 20之间的准直聚 焦单元 60, 用于将泵浦光准直并聚焦到耦合单元 20中。 具体地, 该耦合单元 20 的类型和结构可以根据该双频光源装置的传输介质 (光纤或自由空间) 合理选 择。
[0031] 进一步地, 该双频光源装置的谐振腔单元可以是环形的, 也可以是线形的。 双 频激光的传输媒介可以是光纤, 该光纤为保偏光纤; 也可以是自由空间, 或者 是光纤和自由空间的组合, 以下通过几个具体的实施例进行详细的说明。
[0032] 实施例一:
[0033] 如图 1, 在本发明第一实施例中, 双频光源装置具有上述基本结构, 即: 泵浦 单元 10、 耦合单元 20、 谐振腔单元、 增益介质 30和输出单元 50, 本实施例不进 行重复说明。 在本实施例中, 共程光路段和非共程光路段形成环形的谐振腔单 元, 且采用光纤传输。 共程光路段包括位于非共程光路段一侧的第一共程段和 位于非共程光路段另一侧的第二共程段, 第一共程段通过第一偏振分光单元 701 连接第一偏振段 401的一端和第二偏振段 402的一端, 第二共程段通过第二偏振 分光单元 702连接第一偏振段 401的另一端和第二偏振段 402的另一端, 其中的第 一偏振分光单元 701和第二偏振分光单元 702均对 S光进行反射, 对 P光进行透射 , 进而将 S光和 P光分离, 分别进入第一偏振段 401和第二偏振段 402, 不会使 S光 和 P光的路径混淆。 增益介质 30可以向两侧发光, 其发出的光经第一谐振腔形成 第一频率激光, 经第二谐振腔形成第二频率激光, 此吋第一频率激光和第二频 率激光方向相反。 增益介质 30也可以向一侧发光, 其中的 S光和 P光由上述第一 偏振分光单元 701和第二偏振分光单元 702分别导入第一谐振腔和第二谐振腔, 此吋第一频率激光和第二频率激光方向相同。
[0034] 在本实施例的全光纤光路中, 增益介质 30的存在形式可有两种, 其一, 增益介 质 30为一独立的增益器件, 连接于第一共程段或者第二共程段的光纤上。 其二 , 增益介质 30和共程光路段的光纤两者合二为一, 如采用具有增益功能的惨杂 光纤为共程光路段吋, 惨杂光纤既为增益介质, 又是共程光路段。
[0035] 进一步地, 本实施例中的泵浦单元 10发出的泵浦光通过输入光纤 801进入耦合 单元 20, 该耦合单元 20可以采用波分复用器, 耦合单元 20通过第一光纤 802连接 增益介质 30, 该增益介质 30可以是上述的独立增益器件, 或者是和第一光纤 802 或者和第二光纤 803合二为一。 当采用增益器件吋, 增益介质 30的两侧分别连接 第一光纤 802和第二光纤 803, 该第一光纤 802和第二光纤 803分别为第一共程段 和第二共程段的传输媒介。 第一偏振段 401和第二偏振段 402分别采用第三光纤 8 04和第四光纤 805作为传输媒介。 第一光纤 802的另一端通过第一偏振分光单元 7 01连接着第三光纤 804的一端和第四光纤 805的一端, 在第二光纤 803的另一端通 过第二偏振分光单元 702连接着第三光纤 804的另一端和第四光纤 805的另一端, 第一偏振分光单元 701和第二偏振分光单元 702将 S光反射至第三光纤 804, 将 P光 透射至第四光纤 805。
[0036] 在本实施例中, 如图 1, 输出单元 50可以设置于共程光路段, 即设置于第一光 纤 802或者第二光纤 803上。 当第一频率激光和第二频率激光传输方向相同吋, 输出单元 50采用单向输出单元, 当第一频率激光和第二频率激光传输方向相反 吋, 输出单元 50采用双向输出单元 503。
[0037] 在本实施例中, 如图 2, 输出单元 50也可以设置于第一偏振段 401和第二偏振段 402, 即在第三光纤 804上设置第一输出单元 501, 在第四光纤 805上设置第二输 出单元 502。
[0038] 进一步参考图 1, 为了进一步防止第一频率激光和第二频率激光受到逆向激光 的干扰, 可以在第三光纤 804和第四光纤 805上各设一个隔离器 90。 当第一频率 激光和第二频率激光同向传输吋, 隔离器还可以设置于第一光纤 802或者第二光 纤 803上。
[0039] 在本实施例中, 激光在谐振腔中传输会有损耗, 为了避免第一谐振腔和第二谐 振腔的光功率相差过大, 可以在第三光纤 804和第四光纤 805上各设置一个可调 衰减单元 100, 或者在二者之一上设置一个可调衰减单元 100。
[0040] 在本实施例中, 还可以在第一光纤 802或第二光纤 803上设置单纵模单元 110, 或者在第三光纤 804和第四光纤 805上各设置一单纵模单元 110, 用于实现激光器 的单纵模, 以便实现激光的高相干性, 甚至接近于理想相干光源。 该单纵模单 元 110可以是窄带滤波器, 也可以是由两个准直透镜和二者之间的 F-P干涉仪构成 的单元。
[0041] 实施例二:
[0042] 如图 3, 在本发明第二实施例中, 双频光源装置具有上述基本结构, 即: 泵浦 单元 10、 耦合单元 20、 谐振腔单元、 增益介质 30和输出单元 50, 本实施例不进 行重复说明。 在本实施例中, 共程光路段和非共程光路段形成环形的谐振腔单 元, 且采用自由空间传输。 即, 本发明第二实施例提供的双频光源装置与实施 例一提供的双频光源装置不同的是, 本实施例将传输媒介变换为自由空间, 而 不是采用光纤。 由于采用自由空间传输, 上述耦合单元 20可采用双色镜, 并且 增加若干个反射镜 120与该双色镜形成环形光路。 上述增益介质 30为独立的增益 器件。 或者, 增益介质 30采用增益气体, 该增益气体由一容器密封, 该容器的 两端直接无间隙对接于相邻器件, 或者, 该容器的两端密封且距离相邻器件还 有一段自由空间。
[0043] 进一步地, 还可以在泵浦单元 10和耦合单元 20之间设置准直聚焦单元 60。
[0044] 在输出方面, 优选在共程光路上设置输出单元 50, 具体可以包括一输出镜 504 , 当第一频率激光和第二频率激光同向传输吋, 可以通过该输出镜 504输出。 若 第一频率激光和第二频率激光反向传输吋, 也可以在输出镜 504输出。 还可以在 输出镜 504的一个输出方向设置棱镜 505, 在该输出镜 504的另一输出方向设置半 反半透镜 506, 第一频率激光经过该棱镜 505反射至半反半透镜 506, 第二频率激 光由输出镜 504直接向半反半透镜 506输出, 两束激光于半反半透镜 506处同方向 输出, 待使用吋进行分离。
[0045] 当然, 以上输出方式仅是优选方案, 也可以在第一偏振段 401和第二偏振段 402 上设置输出单元 50。
[0046] 与上述实施例一相同地, 还可以在第一偏振段 401和第二偏振段 402上各设一隔 离器 90, 或者当第一频率激光和第二频率激光同向传输吋, 于共程光路段上设 置隔离器 90。
[0047] 进一步地, 还可以如实施例一在第一偏振段 401和第二偏振段 402上各设置一单 纵模单元 110, 或者在共程光路段设置一单纵模单元 110。
[0048] 进一步地, 还可以如实施例一在第一偏振段 401或者第二偏振段 402上设置可调 衰减单元 100。 或者在第一偏振段 401和第二偏振段 402上各设置一可调衰减单元
100。
[0049] 实施例三:
[0050] 如图 4, 在本发明第三实施例中, 双频光源装置具有上述基本结构, 即: 泵浦 单元 10、 耦合单元 20、 谐振腔单元、 增益介质 30和输出单元 50, 本实施例不进 行重复说明。 在本实施例中, 共程光路段和非共程光路段形成环形的谐振腔单 元, 且采用自由空间和光纤混合传输。 即, 本发明第三实施例提供的双频光源 装置与实施例一提供的双频光源装置不同的是, 使第一偏振段 401和第二偏振段 402分别通过第五光纤 806和第六光纤 807传输, 使共程光路段通过自由空间传输 , 增益介质 30可以为独立的增益器件; 或者增益介质 30采用增益气体, 该增益 气体由一容器密封, 该容器的两端直接无间隙对接于相邻器件, 或者该容器的 两端密封且距离相邻器件还有一段自由空间。 或者, 使第一偏振段 401和第二偏 振段 402分别通过自由空间传输, 使共程光路段通过光纤传输。 当共程光路段采 用自由空间传输吋, 耦合单元 20优选采用双色镜, 并增加若干个反射镜 120与该 双色镜形成环形光路。 当共程光路段采用光纤传输吋, 耦合单元 20可以采用波 分复用器, 并在第一偏振段 401和第二偏振段 402中增加若干反射镜 120以形成两 条独立光路。
[0051] 关于输出方面, 当共程光路段为自由空间传输吋, 输出单元 50可以设置于共程 光路段, 其结构同实施例二所述, 本实施例不再赘述。 输出单元 50也可以设置 于第一偏振段 401和第二偏振段 402, 具体地, 在第一偏振段 401设置第一输出单 元 501, 在第二偏振段 402设置第二输出单元 502。 当共程光路段为光纤传输吋, 输出单元 50优选设置在共程光路段, 采用一个单向或双向输出单元即可。
[0052] 同上述实施例一所示, 该双频光源装置还可以在适当位置设置隔离器 90、 可调 衰减单元和单纵模单元, 其设置位置和工作原理如实施例一或二所示, 具体不 再赘述。
[0053] 細:
[0054] 如图 5, 在本发明第四实施例中, 双频光源装置具有上述基本结构, 即: 泵浦 单元 10、 耦合单元 20、 谐振腔单元、 增益介质 30和输出单元 50, 本实施例不进 行重复说明。 在本实施例中, 共程光路段和非共程光路段形成线形的谐振腔单 元, 即直腔结构。 且传输媒介为全光纤, 增益介质 30采用独立增益器件或者与 共程光路段的光纤合二为一。 其中, 共程光路段包括第一共程段和第二共程段 , 泵浦单元 10、 耦合单元 20、 第一共程段、 非共程光路段、 第二共程段和输出 单元 50依序设置, 增益介质 30设置于第一共程段或者第二共程段, 第一共程段 通过第一偏振分光单元 701连接第一偏振段 401的一端和第二偏振段 402的一端, 第二共程段通过第二偏振分光单元 702连接第一偏振段 401的另一端和第二偏振 段 402的另一端。 耦合单元 20、 第一共程段、 第一偏振段 401、 第二共程段和输 出单元 50或腔镜形成直腔型的第一谐振腔, 耦合单元 20、 第一共程段、 第二偏 振段 402、 第二共程段和输出单元 50或腔镜形成直腔型的第二谐振腔。
[0055] 进一步地, 上述第一共程段采用第七光纤 808, 增益介质 30设置于第七光纤 808 上, 上述第二共程段采用第八光纤 809, 非共程光路段的第一偏振段 401采用第 九光纤 810, 第二偏振段 402采用第十光纤 811, 第九光纤 810和第十光纤 811的一 端通过第一偏振分光单元 701连接于第七光纤 808, 第九光纤 810和第十光纤 811 的另一端通过第二偏振分光单元 702连接于第八光纤 809。
[0056] 在本实施例中, 第一偏振分光单元 701和第二偏振分光单元 702将 S光反射至第 九光纤 810, 将 P光透射至第十光纤 811。
[0057] 在图 5所示的双频光源装置中, 在第八光纤 809末端设置输出单元 50, S光和 P光 分别在第一谐振腔和第二谐振腔振荡形成激光, 输出单元 50兼作腔镜和输出。 [0058] 在另一实施例中, 如图 6, 可以在第九光纤 810和第十光纤 811上分别设置第一 输出单元 501和第二输出单元 502, 此吋需要在第八光纤的末端设置腔镜 140, 如 图 6。
[0059] 在本实施例中, 还可以在第七光纤 808或者第八光纤 809上设置单纵模单元 110 , 或者在第九光纤 810和第十光纤 811上各设一单纵模单元 110。
[0060] 在本实施例中, 还可以在第九光纤 810或者第十光纤 811上设置可调衰减单元 10 0, 或者在第九光纤 810和第十光纤 811上各设一可调衰减单元 100。
[0061] 仞 1 :
[0062] 如图 7, 在本发明第五实施例中, 双频光源装置具有上述基本结构, 即: 泵浦 单元 10、 耦合单元 20、 谐振腔单元、 增益介质 30和输出单元 50, 本实施例不进 行重复说明。 在本实施例中, 共程光路段和非共程光路段形成线形的谐振腔单 元, 即直腔结构。 其中, 共程光路段仅包括第三共程段 130, 泵浦单元 10、 耦合 单元 20、 第三共程段 130、 非共程光路段和输出单元 50依序设置, 输出单元 50包 括第一输出单元 501和第二输出单元 502, 第一输出单元 501设置于第一偏振段 40 1的端部, 第二输出单元 502设置于第二偏振段 402的端部。 增益介质 30设置于第 三共程段 130, 第三共程段 130通过第三偏振分光单元 703连接第一偏振段 401的 一端和第二偏振段 402的一端。 耦合单元 20、 第三共程段 130、 第一偏振段 401和 第一输出单元 501构成第一谐振腔, 耦合单元 20、 第三共程段 130、 第二偏振段 4 02和第二输出单元 502构成第二谐振腔。 通过第三偏振分光单元 703可使 S光在第 一谐振腔中传输, 使 P光在第二谐振腔中传输。
[0063] 进一步地, 上述第三共程段 130、 第一偏振段 401和第二偏振段 402均采用光纤 作为传输媒介, 或者均采用自由空间作为传输媒介, 或者采用光纤和自由空间 混合传输。 当第三共程段 130采用光纤传输吋, 增益介质 30采用独立增益器件或 者与第三共程段 130的光纤合二为一。 当第三共程段 130采用自由空间传输吋, 增益介质 30可采用独立增益器件; 或者采用增益气体, 该增益气体由一容器密 封, 该容器的两端直接无间隙对接于相邻器件, 或者该容器的两端密封且距离 相邻器件还有一段自由空间。
[0064] 在本实施例中, 还可以在第一偏振段 401和第二偏振段 402上设置单纵模单元 11 0, 或者在第三共程段 130上设一单纵模单元 110。
[0065] 在本实施例中, 还可以在第一偏振段 401和第二偏振段 402上设置可调衰减单元
100, 或者, 在第一偏振段 401或第二偏振段 402设一可调衰减单元 100。
[0066] 实施例六:
[0067] 如图 8, 在本发明第六实施例中, 双频光源装置具有上述基本结构, 即: 泵浦 单元 10、 耦合单元 20、 谐振腔单元、 增益介质 30和输出单元 50, 本实施例不进 行重复说明。 在本实施例中, 共程光路段和非共程光路段形成线形的谐振腔单 元, 即直腔结构, 且传输媒介为自由空间。 增益介质 30采用独立增益器件; 或 者增益介质 30采用增益气体, 该增益气体由一容器密封, 该容器的两端直接无 间隙对接于相邻器件, 或者该容器的两端密封且距离相邻器件还有一段自由空 间。 具体地, 本实施例与实施例四提供的双频光源装置类似, 其共程光路段包 括第一共程段和第二共程段, 耦合单元 20、 第一共程段、 非共程光路段、 第二 共程段和输出单元 50依序设置, 增益介质 30设置于第一共程段或者第二共程段 , 第一共程段通过第一偏振分光单元 701连接第一偏振段 401的一端和第二偏振 段 402的一端, 第二共程段通过第二偏振分光单元 702连接第一偏振段 401的另一 端和第二偏振段 402的另一端。 耦合单元 20、 第一共程段、 第一偏振段 401、 第 二共程段和输出单元 50形成直腔型的第一谐振腔, 耦合单元 20、 第一共程段、 第二偏振段 402、 第二共程段和输出单元 50形成直腔型的第二谐振腔。 区别在于 , 第一共程段、 非共程光路段和第二共程段均采用自由空间传输, 即可通过空 气传输, 而不需采用光纤。 在本实施例中, 需增加若干反射镜 120, 使第一偏振 分光单元 701和第二偏振分光单元 702反射的 S光按照一定的路径传输。 输出单元 50优选设置于第二偏振分光单元 702的输出方向。
[0068] 同样地, 本实施例也可以在第一偏振段 401和第二偏振段 402上设置单纵模单 元 110, 或者在第一共程段或第二共程段上设一单纵模单元 110。
[0069] 还可以在第一偏振段 401和第二偏振段 402上设置可调衰减单元 100, 或者, 在 第一偏振段 401或第二偏振段 402设一可调衰减单元 100。
[0070] 仞 I七:
[0071] 如图 9, 在本发明第七实施例中, 双频光源装置具有上述基本结构, 即: 泵浦 单元 10、 耦合单元 20、 谐振腔单元、 增益介质 30和输出单元 50, 本实施例不进 行重复说明。 在本实施例中, 共程光路段和非共程光路段形成线形的谐振腔单 元, 即直腔结构, 且传输媒介为自由空间和光纤的组合。 具体地, 本实施例与 实施例四提供的双频光源装置类似, 其共程光路段包括第一共程段和第二共程 段, 耦合单元 20、 第一共程段、 非共程光路段、 第二共程段和输出单元 50依序 设置, 增益介质 30设置于第一共程段或者第二共程段, 第一共程段通过第一偏 振分光单元 701连接第一偏振段 401的一端和第二偏振段 402的一端, 第二共程段 通过第二偏振分光单元 702连接第一偏振段 401的另一端和第二偏振段 402的另一 端。 耦合单元 20、 第一共程段、 第一偏振段 401、 第二共程段和输出单元 50形成 直腔型的第一谐振腔, 耦合单元 20、 第一共程段、 第二偏振段 402、 第二共程段 和输出单元 50形成直腔型的第二谐振腔。 区别在于, 第一共程段和第二共程段 均采用自由空间传输, 即可通过空气传输, 而不需采用光纤, 增益介质 30为设 置在第一共程段或第二共程段的增益器件。 或者增益介质 30采用增益气体, 该 增益气体由一容器密封, 该容器的两端直接无间隙对接于相邻器件, 或者该容 器的两端密封且距离相邻器件还有一段自由空间。 第一偏振段 401和第二偏振段 402采用光纤传输。 输出单元 50优选设置于第二偏振分光单元 702的输出方向, 当然也可以在第一偏振段 401和第二偏振段 402各设置一个输出单元 50。
[0072] 在另一实施例中, 还可以将第一共程段和第二共程段的传输媒介设为光纤, 增 益介质 30与第一共程段或第二共程段的光纤合二为一, 或者采用独立增益器件
[0073] 将第一偏振段 401和第二偏振段 402的传输媒介设为自由空间。 输出单元 50优选 设置于第一共程段或第二共程段。
[0074] 同样地, 本实施例也可以在第一偏振段 401和第二偏振段 402上设置单纵模单 元 110, 或者在第一共程段或第二共程段上设一单纵模单元 110。
[0075] 还可以在第一偏振段 401和第二偏振段 402上设置可调衰减单元 100, 或者, 在 第一偏振段 401或第二偏振段 402设一可调衰减单元 100。
[0076] 本发明实施例提供的双频光源装置采用特殊的谐振腔单元, 即两个谐振腔共用 相同泵浦单元 10和增益介质 30, 即能够获得不同频率激光, 又可采用该双频激 光进行外差干涉。 与传统的双频光源装置相比, 其频率调节容易, 调节范围大 , 且抗干扰性强。
如上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种双频光源装置, 其特征在于, 包括泵浦单元、 谐振腔单元以及用 于将所述泵浦单元发出的泵浦光耦合至所述谐振腔单元的耦合单元; 所述谐振腔单元包括共程光路段和非共程光路段, 所述共程光路段设 有增益介质, 所述非共程光路段包括独立传输且光程不同的第一偏振 段和第二偏振段, 所述第一偏振段和第二偏振段传输的激光偏振方向 不同; 所述共程光路段和所述第一偏振段构成第一谐振腔, 所述共程 光路段和所述第二偏振段构成第二谐振腔; 所述双频光源装置还包括 用于将所述第一谐振腔产生的第一频率激光和所述第二谐振腔产生的 第二频率激光输出的输出单元。
[权利要求 2] 如权利要求 1所述的双频光源装置, 其特征在于, 还包括设置于所述 泵浦单元和所述耦合单元之间的准直聚焦单元。
[权利要求 3] 如权利要求 1所述的双频光源装置, 其特征在于, 所述共程光路段和 非共程光路段形成环形的谐振腔单元, 所述共程光路段包括位于所述 非共程光路段一侧的第一共程段和位于所述非共程光路段另一侧的第 二共程段, 所述第一共程段通过第一偏振分光单元连接所述第一偏振 段的一端和第二偏振段的一端, 所述第二共程段通过第二偏振分光单 元连接所述第一偏振段的另一端和第二偏振段的另一端, 所述增益介 质发出的光经所述第一谐振腔形成所述第一频率激光, 所述增益介质 发出的光经所述第二谐振腔形成所述第二频率激光。
[权利要求 4] 如权利要求 1所述的双频光源装置, 其特征在于, 所述共程光路段和 非共程光路段形成线形的谐振腔单元, 所述共程光路段包括第一共程 段和第二共程段, 所述耦合单元、 所述第一共程段、 所述非共程光路 段、 所述第二共程段和所述输出单元依序设置, 所述增益介质设置于 所述第一共程段和 /或第二共程段, 所述第一共程段通过第一偏振分 光单元连接所述第一偏振段的一端和第二偏振段的一端, 所述第二共 程段通过第二偏振分光单元连接所述第一偏振段的另一端和第二偏振 段的另一端。 如权利要求 1所述的双频光源装置, 其特征在于, 所述共程光路段和 非共程光路段形成线形的谐振腔单元, 所述共程光路段包括第三共程 段, 所述耦合单元、 所述第三共程段、 所述非共程光路段和所述输出 单元依序设置, 所述增益介质设置于所述第三共程段, 所述第三共程 段通过第三偏振分光单元连接所述第一偏振段和第二偏振段。
如权利要求 1所述的双频光源装置, 其特征在于, 所述输出单元设置 于所述共程光路段。
如权利要求 1所述的双频光源装置, 其特征在于, 所述输出单元包括 设置于所述第一偏振段的第一输出单元和设置于所述第二偏振段的第 二输出单元。
如权利要求 1所述的双频光源装置, 其特征在于, 在所述共程光路段 设有一单纵模单元, 或者在所述第一偏振段和第二偏振段各设有一单 纵模单元。
如权利要求 1所述的双频光源装置, 其特征在于, 在所述第一偏振段 和 /或第二偏振段设有可调衰减单元。
如权利要求 1~9任一项所述的双频光源装置, 其特征在于, 所述共程 光路段、 第一偏振段及第二偏振段的传输媒介均为光纤。
如权利要求 1~9任一项所述的双频光源装置, 其特征在于, 所述共程 光路段、 第一偏振段及第二偏振段的传输媒介均为自由空间。
如权利要求 1~9任一项所述的双频光源装置, 其特征在于, 所述共程 光路段的传输媒介为自由空间, 所述第一偏振段及第二偏振段的传输 媒介为光纤。
如权利要求 1~9任一项所述的双频光源装置, 其特征在于, 所述共程 光路段的传输媒介为光纤, 所述第一偏振段及第二偏振段的传输媒介 为自由空间。
PCT/CN2016/096710 2016-08-25 2016-08-25 一种双频光源装置 WO2018035806A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096710 WO2018035806A1 (zh) 2016-08-25 2016-08-25 一种双频光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096710 WO2018035806A1 (zh) 2016-08-25 2016-08-25 一种双频光源装置

Publications (1)

Publication Number Publication Date
WO2018035806A1 true WO2018035806A1 (zh) 2018-03-01

Family

ID=61245971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096710 WO2018035806A1 (zh) 2016-08-25 2016-08-25 一种双频光源装置

Country Status (1)

Country Link
WO (1) WO2018035806A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155249A1 (zh) * 2019-01-31 2020-08-06 深圳大学 一种双频光源
CN116111434A (zh) * 2023-04-13 2023-05-12 山东科技大学 一种绿光双频激光系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822355A (en) * 1995-12-21 1998-10-13 Electronics And Telecommunications Research Institute Dual cavity laser
CN102916335A (zh) * 2012-10-22 2013-02-06 西安理工大学 双腔双频固体激光器Pound-Drever-Hall稳频系统
CN104242044A (zh) * 2014-09-29 2014-12-24 西安理工大学 电光双折射双腔双频Nd:YAG激光器及频差调谐方法
CN104634369A (zh) * 2015-02-10 2015-05-20 深圳大学 一种环形激光器传感器
CN104634370A (zh) * 2015-02-10 2015-05-20 深圳大学 一种基于激光器的传感器
CN104655159A (zh) * 2015-02-10 2015-05-27 深圳大学 一种正交偏振激光器的传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5822355A (en) * 1995-12-21 1998-10-13 Electronics And Telecommunications Research Institute Dual cavity laser
CN102916335A (zh) * 2012-10-22 2013-02-06 西安理工大学 双腔双频固体激光器Pound-Drever-Hall稳频系统
CN104242044A (zh) * 2014-09-29 2014-12-24 西安理工大学 电光双折射双腔双频Nd:YAG激光器及频差调谐方法
CN104634369A (zh) * 2015-02-10 2015-05-20 深圳大学 一种环形激光器传感器
CN104634370A (zh) * 2015-02-10 2015-05-20 深圳大学 一种基于激光器的传感器
CN104655159A (zh) * 2015-02-10 2015-05-27 深圳大学 一种正交偏振激光器的传感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155249A1 (zh) * 2019-01-31 2020-08-06 深圳大学 一种双频光源
CN116111434A (zh) * 2023-04-13 2023-05-12 山东科技大学 一种绿光双频激光系统
CN116111434B (zh) * 2023-04-13 2023-08-18 山东科技大学 一种绿光双频激光系统

Similar Documents

Publication Publication Date Title
US7534990B2 (en) Compact optical delay devices
Jackson et al. Fibre optic sensors
CN104634256B (zh) 一种光纤激光单波自混合干涉位移测量系统
CN101013025A (zh) 利用光纤光栅的光纤干涉型在线微位移测量系统
KR101978444B1 (ko) 편광 빛살 가르게를 이용한 광섬유 사냑 간섭계
CN104634370B (zh) 一种基于激光器的传感器
US9772188B2 (en) Frequency based ring laser sensor
CN104634369B (zh) 一种环形激光器传感器
JPH01203906A (ja) 光ファイバセンサ装置
CN206211258U (zh) 一种双频光源装置
WO2018035806A1 (zh) 一种双频光源装置
CN104503080A (zh) 一种谐振腔长可调的多路光程相关器
CN102253389A (zh) 一种He-Ne激光器双折射外腔回馈位移测量系统
CN104677296A (zh) 一种光纤激光拍波和单波自混合干涉融合的位移测量系统
CN104655159B (zh) 一种正交偏振激光器的传感器
WO2018035813A1 (zh) 一种双频光源
JP2014025835A (ja) 光電流センサ
JP2017015576A (ja) サニャック干渉型光電流センサ及びその信号処理方法
JP6094300B2 (ja) 白色干渉測定方法及び白色干渉測定装置
JP2009253129A (ja) 光源および光断層画像化装置
CN206236953U (zh) 一种双频光源
US9837785B2 (en) Polarization laser sensor
CN204535728U (zh) 一种正交偏振激光器的传感器
CN204535729U (zh) 一种基于激光器的传感器
JPS6352694B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16913828

Country of ref document: EP

Kind code of ref document: A1