WO2018035793A1 - 一种可进行定标的血压测量设备及方法 - Google Patents

一种可进行定标的血压测量设备及方法 Download PDF

Info

Publication number
WO2018035793A1
WO2018035793A1 PCT/CN2016/096651 CN2016096651W WO2018035793A1 WO 2018035793 A1 WO2018035793 A1 WO 2018035793A1 CN 2016096651 W CN2016096651 W CN 2016096651W WO 2018035793 A1 WO2018035793 A1 WO 2018035793A1
Authority
WO
WIPO (PCT)
Prior art keywords
heart rate
blood pressure
measuring device
blood
smart
Prior art date
Application number
PCT/CN2016/096651
Other languages
English (en)
French (fr)
Inventor
徐平
刘和兴
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2016/096651 priority Critical patent/WO2018035793A1/zh
Priority to CN201680000759.7A priority patent/CN108124420B/zh
Publication of WO2018035793A1 publication Critical patent/WO2018035793A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time

Definitions

  • the present application belongs to the technical field of wearable devices, and in particular, to a blood pressure measuring device and method that can perform calibration.
  • Blood pressure is an important parameter reflecting the function of the user's circulatory system.
  • PWTT pulse wave transmission time
  • the user's blood pressure value can be obtained.
  • Photoelectric volume pulse wave is usually used to monitor the pulse wave of ECG and peripheral blood vessels (such as radial artery) or pulse waves of any two parts of the body (such as carotid artery and radial artery), and calculate the time between them.
  • the delay that is, the time required for arterial blood to be ejected from the heart to the peripheral blood vessel, thereby obtaining the pulse wave transmission time.
  • the user's blood pressure value is calculated by a calculation model between the pulse wave transmission time and the arterial blood pressure.
  • the calibration model for the pulse wave transmission time and the arterial blood pressure is determined by using other devices to measure the true arterial blood pressure level of the monitored person, and to calculate the calculation model between the pulse wave transmission time and the arterial blood pressure. Thereby improving the accuracy of blood pressure detection.
  • the present application provides a blood pressure measuring device and method capable of performing calibration, which does not require other devices to perform calibration of a calculation model between pulse wave transmission time and arterial blood pressure, is convenient to operate, and can effectively reduce calibration error.
  • An embodiment of the present application provides a blood pressure measuring device that can perform calibration, comprising: a pressure sensor and a heart rate chip disposed inside the blood pressure measuring device; and when the heart rate chip senses a photoplethysmographic pulse wave of a user's blood vessel When the amplitude is below a threshold, the pressure sensor senses a pressure value applied to the blood vessel by the blood pressure measuring device, and the pressure sensor transmits the pressure value sensed at least twice to the processor by the processor The calculation is performed based on the pressure values sensed twice to complete the calibration of the blood pressure value.
  • Another embodiment of the present application provides a blood pressure measuring method capable of scaling, which is applied to a blood pressure measuring device of an internal integrated pressure sensor and a heart rate chip, the method comprising: applying pressure to a blood vessel of a user through a blood pressure measuring device; a heart rate chip Sensing a photoplethysmographic pulse of the blood vessel, the pressure sensor sensing a pressure value applied to the blood vessel by the blood pressure measuring device when the amplitude of the photoplethysmographic pulse wave of the blood vessel is sensed by the heart rate chip; the pressure sensor will be at least The pressure value sensed twice is sent to the processor; the processor calculates based on the sensed pressure values twice to complete the calibration of the arterial blood pressure value.
  • the blood pressure measuring device of the present application internally includes a pressure sensor and a heart rate chip.
  • the pressure sensor senses passing.
  • the pressure value applied by the blood pressure measuring device to the blood vessel is the arterial pressure value, and the at least two sensed pressure values are transmitted to the smart portable terminal to complete the calibration of the arterial blood pressure value. Therefore, the blood pressure calibration of the calculation model between the pulse wave transmission time and the arterial blood pressure can be realized by the pressure sensor and the heart rate chip built in the blood pressure measuring device, and the operation is convenient, and the calibration error can be effectively reduced. Improve the accuracy of the calibration.
  • FIG. 1 is a schematic diagram of connection of a blood pressure measuring device and an intelligent portable terminal of the present application
  • FIG. 2 is a schematic view showing a use of an embodiment of a blood pressure measuring device capable of calibration
  • FIG. 3 is a waveform diagram of a heart rate chip sensing photoelectric volume pulse wave of the blood pressure measuring device capable of scaling in FIG. 2;
  • FIG. 4 is a schematic view showing another use of an embodiment of a blood pressure measuring device capable of scaling according to the present application
  • Figure 5 is a waveform diagram of a heart rate chip sensed photoplethysmogram of the blood pressure measuring device of Figure 3;
  • FIG. 6 is a schematic view showing the use of still another embodiment of a blood pressure measuring device capable of scaling according to the present application
  • FIG. 7 is a flow chart of blood pressure measurement performed by the smart heart rate earphone of the present application.
  • FIG. 8 is a flow chart of an embodiment of a method for performing calibration in blood pressure measurement according to the present application.
  • FIG. 9 is a flowchart of scaling a smart heart rate earphone in a specific application scenario of the present application.
  • PWTT pulse wave transmission time
  • BP arterial blood pressure
  • the parameters a and b are related to the vascular characteristics of each person, and also to whether the measured blood pressure is systolic or diastolic.
  • the process of determining parameters a and b is called calibration.
  • the method of calibration is to change the blood pressure value of the user by changing the position of the user being monitored, and at the same time, using other devices to obtain the blood pressure value of the user before and after the change of the position of the monitored user.
  • the transmission time of the pulse wave can be solved by solving the equations to determine the parameters a and b.
  • the parameters A and B are also related to the vascular characteristics of each person, and also to whether the measured blood pressure is systolic or diastolic.
  • the determination process of parameter A and parameter B is also called calibration, and the calibration method is the same as above.
  • the blood pressure measuring device of the present application internally includes a pressure sensor and a heart rate chip, and when the amplitude of the photoplethysmographic pulse wave of the heart rate chip sensing blood vessel is lower than a threshold, the pressure sensor senses application of a blood vessel by the blood pressure measuring device
  • the pressure value is the arterial pressure value
  • the pressure value sensed at least twice is sent to the smart portable terminal to complete the calibration of the arterial blood pressure value. Therefore, the blood pressure calibration of the calculation model between the pulse wave transmission time and the arterial blood pressure can be realized by the pressure sensor and the heart rate chip built in the blood pressure measuring device, and the operation is convenient, and the calibration error can be effectively reduced. Improve the accuracy of the calibration.
  • an embodiment of the present application provides a blood pressure measuring device 1 that can perform calibration, and the blood pressure measuring device 1 is connected to an intelligent portable terminal 2 , or the smart portable terminal 2 or a processor in the blood pressure measuring device 1 .
  • the calibration of the arterial blood pressure value is completed based on the pressure value transmitted by the blood pressure measuring device 1.
  • the smart portable terminal 2 of the present application can be an ordinary smart phone.
  • the heart rate chip technology is based on the principle of emission of the photoelectric volume pulse wave
  • the corresponding hardware function module is integrated on a small chip, and the photoelectric volume reflecting the fluctuation of the blood flow is obtained by receiving the reflected light remaining after absorption through the capillary. Pulse wave. Therefore, blood pressure measuring devices usually use a built-in heart rate chip to detect photoplethysmographic pulse waves.
  • the blood pressure measuring device 1 of the present application includes a pressure sensor 11 and a heart rate chip 12 placed inside the blood pressure measuring device.
  • the present application presses the blood pressure measuring device 1 against the corresponding blood vessel 111 of the forelimb, pressing it against the corresponding bone 110.
  • the heart rate chip 12 senses a change in blood volume in the blood vessel
  • the pressure sensor 11 senses a pressure value applied to the blood vessel 111 by the finger through the blood pressure measuring device 1.
  • the pressure value of the corresponding finger applied to the blood vessel 111 by the blood pressure measuring device 1 is smaller than the pressure value of the blood vessel 111 itself, the blood can normally pass through the corresponding blood vessel 111, and its photoplethysmographic pulse wave is as shown by 112 in FIG.
  • the corresponding blood vessel 111 becomes narrower and narrower until the applied pressure value is equal to the pressure value of the blood vessel 111 itself.
  • the entire blood vessel 111 is completely closed. Since the blood vessel 111 has no blood flow at this time, the amplitude of the photoplethysmographic pulse wave detected by the heart rate chip 12 is lower than the threshold value, that is, the pulse wave almost becomes a straight line or the pulse wave is straight, as shown in FIG. Show.
  • the threshold is set by a person skilled in the art according to human characteristics. Therefore, the pressure value sensed by the pressure sensor 11 at this time is the monitored arterial pressure value of the blood vessel 111.
  • the pressure sensor 11 of the present application senses a pressure value applied by the user through the blood pressure measuring device 1 to the blood vessel, and the pressure sensor 11 will The pressure value sensed at least twice is sent to the smart portable terminal 2 to complete the calibration of the arterial blood pressure value.
  • the present application uses the processor located in the smart portable terminal 2 or the blood pressure measuring device 1 to substitute the at least two sensed pressure values into a calculation model by solving a system of equations The values of parameters a and b or A and B are obtained, thereby completing the calibration of the arterial blood pressure value.
  • the blood pressure calibration of the model between the pulse wave transmission time and the arterial blood pressure can be realized by the pressure sensor and the heart rate chip built in the blood pressure measuring device, and the operation is convenient, and the calibration error can be effectively reduced and the calibration error can be effectively improved.
  • the accuracy of the calibration is convenient, and the calibration error can be effectively reduced and the calibration error can be effectively improved.
  • the pressure sensor 11 and the heart rate chip 12 are located on the same plane or different planes.
  • the blood pressure measuring device 1 of the present application further includes a transparent medium, and the pressure sensor 11 is embedded on the transparent medium.
  • the blood pressure measuring device 1 is a smart heart rate earphone, and at least one earplug of the smart heart rate earphone integrates the pressure sensor 11 and the heart rate chip 12 through the The pressure sensor 11 and the heart rate chip 12 perform scaling of the arterial blood pressure value.
  • the heart rate chip 12 in one earplug of the smart heart rate earphone obtains a photoplethysmographic pulse wave of the user's ear.
  • Another earplug of the smart heart rate earphone is provided with a heart rate chip, which is placed in other parts of the user (such as a finger) to obtain a photoplethysmographic pulse wave of other parts of the user.
  • another earphone of the smart heart rate earphone is not provided with a heart rate chip, and another heart rate chip is integrated in the fingerprint module of the smart portable terminal 2 connected to the smart heart rate earphone.
  • the photoplethysmographic pulse wave at the finger is simultaneously detected at the time of the fingerprint.
  • the present application can utilize the at least one earplug of the smart heart rate earphone integrated with the pressure sensor 11 and the heart rate chip 12 and the fingerprint module of another earplug or the smart portable terminal 2 to complete the blood pressure measurement after the calibration.
  • the process of performing blood pressure measurement by the smart heart rate earphone connected to the smart portable terminal includes:
  • the smart heart rate earphone is inserted into a headphone jack of the smart portable terminal.
  • the extracted photoplethysmographic pulse wave Due to the abundant capillaries in the ear, the extracted photoplethysmographic pulse wave has a higher signal-to-noise ratio than other parts such as the wrist, and is less affected by skin color, tattoo, body hair and motion.
  • the volume pulse wave transmission time difference can improve the accuracy of monitoring the user's blood pressure value based on the pulse wave transmission time and the applicability of the population. Wearing an earplug of the smart heart rate earphone on the ear, so the user's ear can be obtained through the heart rate chip on the earplug Photoelectric volume pulse wave.
  • the photoelectric volume pulse wave signal-to-noise ratio of the user's ear monitored by the present application is higher than that of the user part such as the wrist, and the accuracy of the blood pressure value monitoring of the user is improved.
  • the present application monitors the user's blood pressure value through the smart heart rate earphone and the smart portable terminal, and is convenient to wear and simple to operate.
  • the photoplethysmographic pulse wave of the user's ear and the photoplethysmographic pulse wave of the user's finger are transmitted to the smart portable terminal or the processor in the blood pressure measuring device through the earphone cable in real time.
  • the smart heart rate earphone of the present application is connected to the smart portable terminal through a headphone cable or a wireless manner, and the smart heart rate earphone can transmit the photoelectric volume pulse wave of the user's ear and the user's finger through the earphone wire or wirelessly while enjoying music.
  • the photoplethysmographic pulse wave is transmitted in real time to the processor in the smart portable terminal.
  • the smart portable terminal supplies power to the smart heart rate earphone through the earphone line, and energy of all devices such as reflection of the smart heart rate earphone is provided by the smart portable terminal, and the smart heart rate earphone does not need an external battery.
  • the present application solves the current contradiction between the compact size and the battery capacity of the wearable device.
  • the transmission time of the pulse wave is obtained by using the photoplethysmographic pulse wave.
  • the present application detects each pulse by synchronously measuring the photoplethysmographic pulse 101 of the user's ear and the photoplethysmographic pulse 102 of other user parts (eg, fingers) to denoise the photoplethysmographic pulse wave.
  • the trough point of the wave which corresponds to the end of the diastole and the moment when the contraction begins.
  • the delay between the photoplethysmographic pulse wave 101 of the user's ear and the valley of the photoplethysmographic pulse 102 of other user sites (eg, fingers) is that the pulse wave is transmitted from the aorta 3 to the ear and the pulse wave is transmitted from the aorta 3
  • the intelligent heart rate earphone can also detect the user's heart rate, blood oxygen, body The temperature is equal to the value, so the intelligent heart rate earphone of the present application can realize various user feature monitoring, and is convenient to use and simple to operate.
  • FIG. 2 another embodiment of the present application provides a calibration method in blood pressure measurement, which is applied to a blood pressure measuring device of an internal integrated pressure sensor 11 and a heart rate chip 12.
  • the blood pressure measuring device 1 is connected to an intelligent portable terminal 2, which completes the calibration of the arterial blood pressure value based on the pressure value transmitted by the blood pressure measuring device 1.
  • the heart rate chip technology is based on the principle of emission of the photoelectric volume pulse wave
  • the corresponding hardware function module is integrated on a small chip, and the photoelectric volume reflecting the fluctuation of the blood flow is obtained by receiving the reflected light remaining after absorption through the capillary. Pulse wave. Therefore, blood pressure measuring devices usually use a built-in heart rate chip to detect photoplethysmographic pulse waves.
  • the method includes:
  • the heart rate chip senses a photoplethysmographic pulse of the blood vessel.
  • the pressure sensor senses a pressure value applied to the blood vessel by the blood pressure measuring device.
  • the pressure sensor sends the pressure value sensed at least twice to the processor.
  • the processor calculates the pressure value according to the two senses to complete the calibration of the blood pressure value of the artery.
  • the present application presses the blood pressure measuring device 1 against the corresponding blood vessel 111 of the forelimb, pressing it against the corresponding bone 110.
  • the heart rate chip 12 senses a change in blood volume in the blood vessel
  • the pressure sensor 11 senses a pressure value applied to the blood vessel 111 by the finger through the blood pressure measuring device 1.
  • the pressure value of the corresponding finger applied to the blood vessel 111 by the blood pressure measuring device 1 is smaller than the pressure value of the blood vessel 111 itself, the blood can normally pass through the corresponding blood vessel 111, and its photoplethysmographic pulse wave is as shown by 112 in FIG.
  • the pressure value of the blood vessel 111 applied by the finger through the blood pressure measuring device 1 continues to increase, the corresponding blood vessel 111 becomes narrower and narrower until the applied pressure value is equal to the pressure value of the blood vessel 111 itself.
  • the entire blood vessel 111 is completely closed. Since the blood vessel 111 has no blood flow at this time, the amplitude of the photoplethysmographic pulse wave detected by the heart rate chip 12 is lower than the threshold value, that is, almost becomes a straight line, as shown by 113 in FIG.
  • the threshold is based on those skilled in the art Body characteristics are set. Therefore, the pressure value sensed by the pressure sensor 11 at this time is the monitored arterial pressure value of the blood vessel 111.
  • the pressure sensor 11 of the present application senses a pressure value applied by the user through the blood pressure measuring device 1 to the blood vessel, and the pressure sensor 11 will The pressure value sensed at least twice is sent to the smart portable terminal 2 to complete the calibration of the arterial blood pressure value.
  • the present application substitutes the pressure value of the at least two senses into a calculation model by using a processor located in the smart portable terminal 2 or the blood pressure measurement device 1, and obtains parameters a and b by solving a system of equations. Or the values of A and B, thus completing the calibration of the arterial blood pressure value.
  • the blood pressure calibration of the model between the pulse wave transmission time and the arterial blood pressure can be realized by the pressure sensor and the heart rate chip built in the blood pressure measuring device, and the operation is convenient, and the calibration error can be effectively reduced and the calibration error can be effectively improved.
  • the accuracy of the calibration is convenient, and the calibration error can be effectively reduced and the calibration error can be effectively improved.
  • the pressure sensor 11 and the heart rate chip 12 are located on the same plane or different planes.
  • the blood pressure measuring device 1 of the present application further includes a transparent medium, and the pressure sensor 11 is embedded on the transparent medium.
  • the blood pressure measuring device 1 is a smart heart rate earphone, and at least one earplug of the smart heart rate earphone integrates the pressure sensor 11 and the heart rate chip 12 through the The pressure sensor 11 and the heart rate chip 12 perform scaling of the arterial blood pressure value.
  • the heart rate chip 12 in the earplug obtains a photoplethysmographic pulse wave of the user's ear.
  • Another earplug of the smart heart rate earphone is provided with a heart rate chip, which is placed in other parts of the user (such as a finger) to obtain a photoplethysmographic pulse wave of other parts of the user.
  • another earphone of the smart heart rate earphone is not provided with a heart rate chip, and another heart rate chip is integrated in the fingerprint module of the smart portable terminal 2 connected to the smart heart rate earphone.
  • the photoplethysmographic pulse wave at the finger is simultaneously detected at the time of the fingerprint.
  • the present application can utilize the at least one earplug of the smart heart rate earphone integrated with the pressure sensor 11 and the heart rate chip 12 and the fingerprint module of another earplug or the smart portable terminal 2 to complete the blood pressure measurement after the calibration.
  • the process of performing blood pressure measurement by the smart heart rate earphone connected to the smart portable terminal includes:
  • the smart heart rate earphone is inserted into a headphone jack of the smart portable terminal.
  • the extracted photoplethysmographic pulse wave Due to the abundant capillaries in the ear, the extracted photoplethysmographic pulse wave has a higher signal-to-noise ratio than other parts such as the wrist, and is less affected by skin color, tattoo, body hair and motion.
  • the volume pulse wave transmission time difference can improve the accuracy of monitoring the user's blood pressure value based on the pulse wave transmission time and the applicability of the population.
  • One earplug of the smart heart rate earphone is worn on the ear, so the photoplethysmographic pulse wave of the user's ear can be obtained by the heart rate chip on the earplug.
  • the photoelectric volume pulse wave signal-to-noise ratio of the user's ear monitored by the present application is higher than that of the user part such as the wrist, and the accuracy of the blood pressure value monitoring of the user is improved.
  • the present application monitors the user's blood pressure value through the smart heart rate earphone and the smart portable terminal, and is convenient to wear and simple to operate.
  • the photoplethysmographic pulse wave of the user's ear and the photoplethysmographic pulse wave of the user's finger are transmitted to the smart portable terminal or the processor in the blood pressure measuring device through the earphone cable in real time.
  • the smart heart rate earphone of the present application is connected to the smart portable terminal through a headphone cable or a wireless manner, and the smart heart rate earphone can transmit the photoelectric volume pulse wave of the user's ear and the user's finger through the earphone wire or wirelessly while enjoying music.
  • the photoplethysmographic pulse wave is transmitted in real time to the processor in the smart portable terminal.
  • the smart portable terminal supplies power to the smart heart rate earphone through the earphone line, and energy of all devices such as reflection of the smart heart rate earphone is provided by the smart portable terminal, and the smart heart rate earphone does not need an external battery.
  • the present application solves the current contradiction between the compact size and the battery capacity of the wearable device.
  • the transmission time of the pulse wave is obtained by using the photoplethysmographic pulse wave.
  • the present application detects each pulse by synchronously measuring the photoplethysmographic pulse 101 of the user's ear and the photoplethysmographic pulse 102 of other user parts (eg, fingers) to denoise the photoplethysmographic pulse wave.
  • the trough point of the wave which corresponds to the end of the diastole and the moment when the contraction begins.
  • Photoelectric volume pulse wave 101 of the user's ear and other user parts The delay between the valley points of the photoplethysmographic pulse wave 102 (eg, a finger) is the time difference between the transmission of the pulse wave from the aorta 3 to the ear and the transmission of the pulse wave from the aorta 3 to other user sites (eg, fingers), ie, The transmission time 103 of the pulse wave is described.
  • the intelligent heart rate earphone can also detect the user's heart rate, blood oxygen, body temperature and other values. Therefore, the smart heart rate earphone of the present application can realize various user feature monitoring, and is convenient to use and simple to operate.
  • a method for performing calibration in blood pressure measurement is applied to a smart heart rate earphone, at least one earplug of the smart heart rate earphone integrates the pressure sensor 11 and the heart rate chip 12, and another earplug Another heart rate chip 13 is integrated.
  • the operation process of the smart heart rate headset connected to the smart portable terminal for calibration includes:
  • the blood vessel is continuously pressurized by the smart heart rate earphone.
  • the smart portable terminal receives a photoelectric volume pulse wave sensed by a heart rate chip of the smart heart rate earphone.
  • the smart heart rate earphone performs repeated operations, and outputs blood pressure values of at least two blood vessels to the smart portable terminal.
  • the smart portable terminal performs a scaling operation according to the received blood pressure values of at least two blood vessels, and obtains a parameter value of the calculation model.
  • the user blood pressure value monitoring can be performed.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication link shown or discussed may be an indirect coupling or communication link through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like.

Abstract

一种可进行定标的血压测量设备(1)及方法,其中的可进行定标的血压测量设备(1)包括:置于血压测量设备(1)内部的压力传感器(11)和心率芯片(12);当心率芯片(12)感测到用户血管(111)的光电容积脉搏波(112)的振幅低于阈值时,压力传感器(11)感测通过血压测量设备对血管(111)施加的压力值,压力传感器(11)将至少两次感测的压力值发送至处理器,由处理器根据两次感测的压力值进行计算,以完成血压值的定标。该方法无需采用其他设备进行脉搏波传输时间和动脉血压之间计算模型的定标,操作方便,且能够有效减小定标误差。

Description

一种可进行定标的血压测量设备及方法
本申请属于可穿戴设备技术领域,尤其涉及一种可进行定标的血压测量设备及方法。
背景技术
血压是反映用户循环系统机能的重要参数,为了避免现有电子血压计通过袖带给手臂加压带来的噪声和不舒适感,以及实现连续的血压测量,多采用脉搏波传输时间(PWTT)可获得用户的血压数值。
通常采用光电容积脉搏波(PPG)同时监测心电(ECG)和外周血管(如桡动脉)脉搏波或者身体任意两个部位(如颈动脉和桡动脉)的脉搏波,计算它们之间的时间延迟,即动脉血从心脏喷出到传输至外周血管所需要的时间,从而获得脉搏波传输时间。通过脉搏波传输时间和动脉血压之间的计算模型,计算用户的血压数值。
目前对于脉搏波传输时间和动脉血压之间的计算模型的定标方式是采用其他的设备测定被监测者的真实动脉血压水平,对脉搏波传输时间和动脉血压之间的计算模型进行定标,从而提高血压检测的准确性。
由于需要使用其他的设备对脉搏波传输时间和动脉血压之间的计算模型进行定标,从而造成操作不便,因此很多人放弃定标,从而影响血压检测的准确度。并且,在使用其他设备对脉搏波传输时间和动脉血压之间的计算模型进行定标时,可能由于设备本身所带来的系统误差或者由于设备使用者的经验,从而导致定标出现误差。
发明内容
本申请提供一种可进行定标的血压测量设备及方法,其无需采用其他设备进行脉搏波传输时间和动脉血压之间计算模型的定标,操作方便,且能够有效减小定标误差。
本申请一实施例提供一种可进行定标的血压测量设备,包括:置于所述血压测量设备内部的压力传感器和心率芯片;当所述心率芯片感测到用户血管的光电容积脉搏波的振幅低于阈值时,所述压力传感器感测通过所述血压测量设备对血管施加的压力值,所述压力传感器将至少两次感测的所述压力值发送至处理器,由所述处理器根据两次感测的所述压力值进行计算,以完成血压值的定标。
本申请另一实施例提供的一种可进行定标的血压测量方法,应用于内部集成压力传感器和心率芯片的血压测量设备,所述方法包括:通过血压测量设备对用户血管施加压力;心率芯片感测血管的光电容积脉搏,当心率芯片感测到血管的光电容积脉搏波的振幅低于阈值时,压力传感器感测通过所述血压测量设备对血管施加的压力值;所述压力传感器将至少两次感测的所述压力值发送至处理器;所述处理器根据两次感测的所述压力值进行计算,以完成动脉血压值的定标。
从上述本申请实施例可知,本申请所述血压测量设备内部包括压力传感器和心率芯片,当所述心率芯片感测血管的光电容积脉搏波的振幅低于阈值时,所述压力传感器感测通过所述血压测量设备对血管施加的压力值即为动脉压力值,并将至少两次感测的所述压力值发送至智能便携终端以完成动脉血压值的定标。因此,本申请通过血压测量设备内置的压力传感器和心率芯片即可实现脉搏波传输时间和动脉血压之间计算模型的血压定标,无需其他设备,操作方便,且能够有效减小定标误差,提高了定标的准确度。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请血压测量设备和智能便携终端的连接示意图;
图2为本申请一种可进行定标的血压测量设备一实施例的一使用示意图;
图3为图2可进行定标的血压测量设备的心率芯片感测得光电容积脉搏波波形图;
图4为本申请一种可进行定标的血压测量设备一实施例的另一使用示意图;
图5为图3可进行定标的血压测量设备的心率芯片感测得光电容积脉搏波波形图;
图6为本申请一种可进行定标的血压测量设备再一实施例的使用示意图;
图7为本申请智能心率耳机进行血压测量的流程图;
图8为本申请一种在血压测量中的进行定标的方法一实施例的流程图;
图9为本申请一具体应用场景中智能心率耳机进行定标的流程图。
具体实施方式
通过对大量人群的研究,所述脉搏波的传输时间(PWTT)和动脉血压(BP)满足以下计算模型:
BP=a*ln(PWTT)+b,
其中,参数a和参数b与每个人的血管特性有关,也和测量的血压是收缩压还是舒张压有关。
参数a和b的确定过程称为定标,定标的方法是通过改变所监测用户的体位使用户的血压数值发生改变,同时采用其他设备获得所监测用户的体位改变前后用户的血压数值对应的脉搏波的传输时间,通过解方程组即可以确定参数a和b。
现有技术中也存在所述脉搏波的传输时间(PWTT)和动脉血压(BP)满足的其他计算模型,比如:BP=A*PWTT+B,
其中,参数A和参数B也与每个人的血管特性有关,也和测量的血压是收缩压还是舒张压有关。
同样,参数A和参数B的确定过程也称为定标,定标的方法同上。
本申请所述血压测量设备内部包括压力传感器和心率芯片,当所述心率芯片感测血管的光电容积脉搏波的振幅低于阈值时,所述压力传感器感测通过所述血压测量设备对血管施加的压力值即为动脉压力值,并将至少两次感测的所述压力值发送至智能便携终端以完成动脉血压值的定标。因此,本申请通过血压测量设备内置的压力传感器和心率芯片即可实现脉搏波传输时间和动脉血压之间计算模型的血压定标,无需其他设备,操作方便,且能够有效减小定标误差,提高了定标的准确度。
为使得本申请的发明目的、特征、优点能够更加的明显和易懂,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例,都属于本申请保护的范围。
参见图1,本申请实施例提供一种可进行定标的血压测量设备1,所述血压测量设备1连接智能便携终端2,所述智能便携终端2或者所述血压测量设备1中的处理器根据所述血压测量设备1发送的压力值完成动脉血压值的定标。本申请智能便携终端2可为普通的智能手机。
由于心率芯片技术为根据光电容积脉搏波的发射获取原理,将相应的硬件功能模块集成在一片细小的芯片上,其通过接收经过毛细血管吸收后剩余的反射光,得到反映血流波动的光电容积脉搏波。因此,血压测量设备通常采用内置的心率芯片检测光电容积脉搏波。
参见图2,本申请所述血压测量设备1包括:置于所述血压测量设备内部的压力传感器11和心率芯片12。
具体地,本申请通过将血压测量设备1对准前肢相应的血管111,将其压在对应的骨骼110上。由所述心率芯片12感知血管中血容量的变化,而压力传感器11感受由手指通过血压测量设备1施加的对血管111施加的压力值。其中当相应的手指通过血压测量设备1施加的对血管111的压力值小于血管111的本身的压力值时,血液能正常通过相应的血管111,其光电容积脉搏波如图3的112所示。
参见图4,当手指通过血压测量设备1施加的对血管111的压力值继续增大时,相应的血管111会越来越窄,一直到施加的压力值与血管111本身的压力值相等时,整个血管111即完全闭合。由于此时血管111已经没有了血流,因此由所述心率芯片12所监测到的光电容积脉搏波的振幅低于阈值,即脉搏波几乎变为一条直线或脉搏波呈直线,如图5所示。所述阈值为本领域技术人员根据人体特征进行设定。因此,此时由所述压力传感器11所感知到的压力值即为所监测到的血管111的动脉压力值。
当所述心率芯片12感测血管111的光电容积脉搏波的振幅低于阈值时,本申请压力传感器11感测用户通过所述血压测量设备1对血管施加的压力值,所述压力传感器11将至少两次感测的所述压力值发送至智能便携终端2以完成动脉血压值的定标。
具体地,本申请利用位于所述智能便携终端2或者所述血压测量设备1中的处理器将所述至少两次感测的所述压力值代入计算模型,通过解方程组 获得参数a和b或者A和B的值,从而完成动脉血压值的定标。
因此,本申请通过血压测量设备内置的压力传感器和心率芯片即可实现脉搏波传输时间和动脉血压之间模型的血压定标,无需其他设备,操作方便,且能够有效减小定标误差,提高了定标的准确度。
具体地,所述压力传感器11和心率芯片12位于同一平面或者不同平面。
为了防止灰尘进入所述血压测量设备1中,本申请所述血压测量设备1还包括一透明介质,所述压力传感器11嵌于所述透明介质上。
在本申请再一具体实施例中,参见图6,所述血压测量设备1为智能心率耳机,所述智能心率耳机的至少一耳塞集成所述压力传感器11和所述心率芯片12,通过所述压力传感器11和所述心率芯片12进行动脉血压值的定标。所述智能心率耳机的一个耳塞中的心率芯片12获得用户耳朵的光电容积脉搏波。所述智能心率耳机的另一耳塞设置心率芯片,将其设置在用户其他部位(比如手指),获得用户其他部位的光电容积脉搏波。
在本申请再一具体实施例中,所述智能心率耳机的另一耳塞未设置心率芯片,在与所述智能心率耳机连接的智能便携终端2的指纹模组内集成另一心率芯片,在检测指纹时候同时检测手指处的光电容积脉搏波。
因此,本申请可利用所述智能心率耳机的至少一集成所述压力传感器11和所述心率芯片12的耳塞以及另一耳塞或者智能便携终端2的指纹模组完成定标后的血压测量。
在本申请再一具体实施例中,参见图7,与所述智能便携终端连接的所述智能心率耳机进行血压测量的过程包括:
701、所述智能心率耳机插入到所述智能便携终端的耳机插孔中。
702、利用所述智能心率耳机的一个耳塞获得用户耳朵的光电容积脉搏波,以及所述智能心率耳机的另一个耳塞或者所述智能心率耳机的指纹模组获得用户手指的光电容积脉搏波。
由于耳朵部位的毛细血管丰富,提取出来的光电容积脉搏波比其他部位如手腕处的信噪比高,受肤色、纹身、体毛和运动的影响小,通过测量耳朵和其他用户部位之间的光电容积脉搏波传输时间差,可以提高基于脉搏波传输时间监测用户血压数值的准确性以及人群适用度。将所述智能心率耳机的一个耳塞佩戴在耳朵上,所以可以通过所述耳塞上的心率芯片获得用户耳朵 的光电容积脉搏波。
因此,本申请监测的用户耳朵的光电容积脉搏波信噪比高于手腕等用户部位,提高了用户血压数值监测的准确度。并且,本申请通过智能心率耳机和智能便携终端监测用户血压值,穿戴方便,操作简单。
703、所述用户耳朵的光电容积脉搏波以及用户手指的光电容积脉搏波通过耳机线实时传输至所述智能便携终端或者所述血压测量设备中的处理器。
本申请智能心率耳机通过耳机线或者无线方式与智能便携终端连接,所述智能心率耳机可在欣赏音乐的同时,通过所述耳机线或者无线方式将所述用户耳朵的光电容积脉搏波以及用户手指的光电容积脉搏波实时传输至所述智能便携终端中的处理器。
所述智能便携终端通过所述耳机线为所述智能心率耳机供电,所述智能心率耳机的反光等所有器件的能源由所述智能便携终端提供,所述智能心率耳机无需外加电池。本申请解决了目前可穿戴设备在体积小巧和电池容量之间的矛盾。
704、判断所述智能便携终端或者所述血压测量设备中的处理器是否获得足够的光电容积脉搏波。
705、如果获得足够的光电容积脉搏波,利用所述光电容积脉搏波获得脉搏波的传输时间。
参见图8,本申请通过同步测量所述用户耳朵的光电容积脉搏波101以及其他用户部位(例如,手指)的光电容积脉搏波102,对所述光电容积脉搏波去噪,寻找到每个脉搏波的波谷点,此波谷点对应于心脏舒张末期,即将开始收缩的时刻。所述用户耳朵的光电容积脉搏波101以及其他用户部位(例如,手指)的光电容积脉搏波102的波谷点之间的延迟就是脉搏波从主动脉3传输到耳朵与脉搏波从主动脉3传输到其他用户部位(例如,手指)的时间差,即所述脉搏波的传输时间103。
706、根据每个用户定标后的计算模型,代入所述脉搏波的传输时间,得到监测的用户血压值。
707、保存所述用户血压值到智能便携终端中的相应账号中,和/或,将所述用户血压值上传至云端数据库中,以便进行血压长期管理。
智能心率耳机除了监测用户血压值外,还能检测用户的心率,血氧,体 温等数值,因此本申请智能心率耳机可实现多种用户特征监测,使用方便,操作简单。
参见图2,本申请另一实施例提供一种血压测量中的定标方法,应用于内部集成压力传感器11和心率芯片12的血压测量设备。参见图1,所述血压测量设备1连接智能便携终端2,智能便携终端2根据所述血压测量设备1发送的压力值完成动脉血压值的定标。
由于心率芯片技术为根据光电容积脉搏波的发射获取原理,将相应的硬件功能模块集成在一片细小的芯片上,其通过接收经过毛细血管吸收后剩余的反射光,得到反映血流波动的光电容积脉搏波。因此,血压测量设备通常采用内置的心率芯片检测光电容积脉搏波。
参见图8,所述方法包括:
S1、通过血压测量设备对用户血管施加压力。
S2、心率芯片感测血管的光电容积脉搏,当心率芯片感测到血管的光电容积脉搏波的振幅低于阈值时,压力传感器感测通过所述血压测量设备对血管施加的压力值。
S3、所述压力传感器将至少两次感测的所述压力值发送至处理器。
S4、所述处理器根据两次感测的所述压力值进行计算,以完成动脉血压值的定标。
具体地,本申请通过将血压测量设备1对准前肢相应的血管111,将其压在对应的骨骼110上。由所述心率芯片12感知血管中血容量的变化,而压力传感器11感受由手指通过血压测量设备1施加的对血管111施加的压力值。其中当相应的手指通过血压测量设备1施加的对血管111的压力值小于血管111的本身的压力值时,血液能正常通过相应的血管111,其光电容积脉搏波如图3的112所示。
参见图4,当手指通过血压测量设备1施加的对血管111的压力值继续增大时,相应的血管111会越来越窄,一直到施加的压力值与血管111本身的压力值相等时,整个血管111即完全闭合。由于此时血管111已经没有了血流,因此由所述心率芯片12所监测到的光电容积脉搏波的振幅低于阈值,即几乎变为一条直线,如图5的113所示。所述阈值为本领域技术人员根据 人体特征进行设定。因此,此时由所述压力传感器11所感知到的压力值即为所监测到的血管111的动脉压力值。
当所述心率芯片12感测血管111的光电容积脉搏波的振幅低于阈值时,本申请压力传感器11感测用户通过所述血压测量设备1对血管施加的压力值,所述压力传感器11将至少两次感测的所述压力值发送至智能便携终端2以完成动脉血压值的定标。
具体地,本申请利用位于所述智能便携终端2或者所述血压测量设备1中的处理器将所述至少两次感测的所述压力值代入计算模型,通过解方程组获得参数a和b或者A和B的值,从而完成动脉血压值的定标。
因此,本申请通过血压测量设备内置的压力传感器和心率芯片即可实现脉搏波传输时间和动脉血压之间模型的血压定标,无需其他设备,操作方便,且能够有效减小定标误差,提高了定标的准确度。
具体地,所述压力传感器11和心率芯片12位于同一平面或者不同平面。
为了防止灰尘进入所述血压测量设备1中,本申请所述血压测量设备1还包括一透明介质,所述压力传感器11嵌于所述透明介质上。
在本申请再一具体实施例中,参见图6,所述血压测量设备1为智能心率耳机,所述智能心率耳机的至少一耳塞集成所述压力传感器11和所述心率芯片12,通过所述压力传感器11和所述心率芯片12进行动脉血压值的定标。所述耳塞中的心率芯片12获得用户耳朵的光电容积脉搏波。所述智能心率耳机的另一耳塞设置心率芯片,将其设置在用户其他部位(比如手指),获得用户其他部位的光电容积脉搏波。
在本申请再一具体实施例中,所述智能心率耳机的另一耳塞未设置心率芯片,在与所述智能心率耳机连接的智能便携终端2的指纹模组内集成另一心率芯片,在检测指纹时候同时检测手指处的光电容积脉搏波。
因此,本申请可利用所述智能心率耳机的至少一集成所述压力传感器11和所述心率芯片12的耳塞以及另一耳塞或者智能便携终端2的指纹模组完成定标后的血压测量。
在本申请再一具体实施例中,参见图7,与所述智能便携终端连接的所述智能心率耳机进行血压测量的过程包括:
701、所述智能心率耳机插入到所述智能便携终端的耳机插孔中。
702、利用所述智能心率耳机的一个耳塞获得用户耳朵的光电容积脉搏波,以及所述智能心率耳机的另一个耳塞或者所述智能心率耳机的指纹模组获得用户手指的光电容积脉搏波。
由于耳朵部位的毛细血管丰富,提取出来的光电容积脉搏波比其他部位如手腕处的信噪比高,受肤色、纹身、体毛和运动的影响小,通过测量耳朵和其他用户部位之间的光电容积脉搏波传输时间差,可以提高基于脉搏波传输时间监测用户血压数值的准确性以及人群适用度。将所述智能心率耳机的一个耳塞佩戴在耳朵上,所以可以通过所述耳塞上的心率芯片获得用户耳朵的光电容积脉搏波。
因此,本申请监测的用户耳朵的光电容积脉搏波信噪比高于手腕等用户部位,提高了用户血压数值监测的准确度。并且,本申请通过智能心率耳机和智能便携终端监测用户血压值,穿戴方便,操作简单。
703、所述用户耳朵的光电容积脉搏波以及用户手指的光电容积脉搏波通过耳机线实时传输至所述智能便携终端或者所述血压测量设备中的处理器。
本申请智能心率耳机通过耳机线或者无线方式与智能便携终端连接,所述智能心率耳机可在欣赏音乐的同时,通过所述耳机线或者无线方式将所述用户耳朵的光电容积脉搏波以及用户手指的光电容积脉搏波实时传输至所述智能便携终端中的处理器。
所述智能便携终端通过所述耳机线为所述智能心率耳机供电,所述智能心率耳机的反光等所有器件的能源由所述智能便携终端提供,所述智能心率耳机无需外加电池。本申请解决了目前可穿戴设备在体积小巧和电池容量之间的矛盾。
704、判断所述智能便携终端或者所述血压测量设备中的处理器是否获得足够的光电容积脉搏波。
705、如果获得足够的光电容积脉搏波,利用所述光电容积脉搏波获得脉搏波的传输时间。
参见图8,本申请通过同步测量所述用户耳朵的光电容积脉搏波101以及其他用户部位(例如,手指)的光电容积脉搏波102,对所述光电容积脉搏波去噪,寻找到每个脉搏波的波谷点,此波谷点对应于心脏舒张末期,即将开始收缩的时刻。所述用户耳朵的光电容积脉搏波101以及其他用户部位 (例如,手指)的光电容积脉搏波102的波谷点之间的延迟就是脉搏波从主动脉3传输到耳朵与脉搏波从主动脉3传输到其他用户部位(例如,手指)的时间差,即所述脉搏波的传输时间103。
706、根据每个用户定标后的计算模型,代入所述脉搏波的传输时间,得到监测的用户血压值。
707、保存所述用户血压值到智能便携终端中的相应账号中,和/或,将所述用户血压值上传至云端数据库中,以便进行血压长期管理。
智能心率耳机除了监测用户血压值外,还能检测用户的心率,血氧,体温等数值,因此本申请智能心率耳机可实现多种用户特征监测,使用方便,操作简单。
下面通过本申请一具体应用场景来进一步说明本申请实现。
参见图6,本申请一种在血压测量中的进行定标的方法,应用于智能心率耳机,所述智能心率耳机的至少一耳塞集成所述压力传感器11和所述心率芯片12,另一耳塞集成另一心率芯片13。
参见图9,与所述智能便携终端连接的所述智能心率耳机进行定标的操作过程包括:
901、在所述智能便携终端上开启定标开关,进行定标操作。
902、将所述智能心率耳机对准前臂的血管。
903、通过所述智能心率耳机对所述血管不断加压。
904、所述智能便携终端接收所述智能心率耳机的心率芯片感测的光电容积脉搏波。
905、当所述智能心率耳机的心率芯片感测的光电容积脉搏波的振幅低于阈值时,读取所述智能心率耳机中压力传感器感测的压力,该压力为血管的血压值。
906、所述智能心率耳机进行重复操作,输出至少两个血管的血压值至所述智能便携终端。
907、所述智能便携终端根据接收的至少两个血管的血压值进行定标操作,获得计算模型的参数值。
所述智能心率耳机完成定标操作后,可进行用户血压数值监测。
在本申请所提供的多个实施例中,应该理解到,所揭露的装置和方法, 可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信链接可以是通过一些接口,装置或模块的间接耦合或通信链接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本申请所提供的一种耳机工作模式的切换方法及一种耳机的描述,对于本领域的技术人员,依据本申请实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种可进行定标的血压测量设备,其特征在于,包括:置于所述血压测量设备内部的压力传感器和心率芯片;当所述心率芯片感测到用户血管的光电容积脉搏波的振幅低于阈值时,所述压力传感器感测通过所述血压测量设备对血管施加的压力值,所述压力传感器将至少两次感测的所述压力值发送至处理器,由所述处理器根据两次感测的所述压力值进行计算,以完成血压值的定标。
  2. 根据权利要求1所述的血压测量设备,其特征在于,还包括一透明介质,所述压力传感器嵌于所述透明介质上。
  3. 根据权利要求1所述的血压测量设备,其特征在于,所述血压测量设备为智能心率耳机,所述智能心率耳机的至少一耳塞集成所述压力传感器和所述心率芯片。
  4. 根据权利要求3所述的血压测量设备,其特征在于,所述智能心率耳机的另一耳塞集成另一心率芯片。
  5. 根据权利要求3或4所述的血压测量设备,其特征在于,所述智能便携终端通过耳机线为所述智能心率耳机供电。
  6. 一种血压测量中的定标方法,其特征在于,应用于内部集成压力传感器和心率芯片的血压测量设备,所述方法包括:
    通过血压测量设备对用户血管施加压力;
    心率芯片感测血管的光电容积脉搏,当心率芯片感测到血管的光电容积脉搏波的振幅低于阈值时,压力传感器感测通过所述血压测量设备对血管施加的压力值;
    所述压力传感器将至少两次感测的所述压力值发送至处理器;
    所述处理器根据两次感测的所述压力值进行计算,以完成动脉血压值的定标。
  7. 根据权利要求6所述的方法,其特征在于,所述血压测量设备还包括一透明介质,所述压力传感器嵌于所述透明介质上。
  8. 根据权利要求6所述的方法,其特征在于,所述血压测量设备为智能心率耳机,所述智能心率耳机的至少一耳塞集成所述压力传感器和所述心率芯片。
  9. 根据权利要求8所述的方法,其特征在于,所述智能心率耳机的另一耳塞集成另一心率芯片。
  10. 根据权利要求8或9所述的方法,其特征在于,所述智能便携终端通过耳机线为所述智能心率耳机供电。
PCT/CN2016/096651 2016-08-25 2016-08-25 一种可进行定标的血压测量设备及方法 WO2018035793A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/096651 WO2018035793A1 (zh) 2016-08-25 2016-08-25 一种可进行定标的血压测量设备及方法
CN201680000759.7A CN108124420B (zh) 2016-08-25 2016-08-25 一种可进行定标的血压测量设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096651 WO2018035793A1 (zh) 2016-08-25 2016-08-25 一种可进行定标的血压测量设备及方法

Publications (1)

Publication Number Publication Date
WO2018035793A1 true WO2018035793A1 (zh) 2018-03-01

Family

ID=61246623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096651 WO2018035793A1 (zh) 2016-08-25 2016-08-25 一种可进行定标的血压测量设备及方法

Country Status (2)

Country Link
CN (1) CN108124420B (zh)
WO (1) WO2018035793A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755669A (en) * 1997-04-30 1998-05-26 Nihon Kohden Corporation Blood pressure monitoring apparatus
CN2824836Y (zh) * 2005-01-19 2006-10-11 捷飞科研有限公司 头戴式生理参数测量仪
CN101125079A (zh) * 2006-08-16 2008-02-20 通用电气公司 一种使用spo2体积描记图信号测定nibp目标充气压力的方法和系统
CN101193588A (zh) * 2005-03-21 2008-06-04 海尔思-斯玛特有限公司 连续血压监测的系统
CN101229058A (zh) * 2007-01-26 2008-07-30 香港中文大学 脉搏波传输时间法测量动脉血压的初始校准装置
CN101327121A (zh) * 2007-06-22 2008-12-24 香港中文大学 一种生理参数测量装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631319A (zh) * 2003-12-23 2005-06-29 罗志昌 基于指端容积脉搏血流波无创检测血流参数的方法
CN100361625C (zh) * 2004-03-26 2008-01-16 香港中文大学 非侵入式血压测量装置及方法
JP2006102260A (ja) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> 耳式血圧計
CN101044976A (zh) * 2006-03-31 2007-10-03 合世生医科技股份有限公司 利用血氧浓度及心电图测量仪来测量血压值的方法及装置
CN102397064B (zh) * 2011-12-14 2014-02-19 中国航天员科研训练中心 连续血压测量装置
CN103637789B (zh) * 2013-12-02 2016-01-06 清华大学 血压实时测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755669A (en) * 1997-04-30 1998-05-26 Nihon Kohden Corporation Blood pressure monitoring apparatus
CN2824836Y (zh) * 2005-01-19 2006-10-11 捷飞科研有限公司 头戴式生理参数测量仪
CN101193588A (zh) * 2005-03-21 2008-06-04 海尔思-斯玛特有限公司 连续血压监测的系统
CN101125079A (zh) * 2006-08-16 2008-02-20 通用电气公司 一种使用spo2体积描记图信号测定nibp目标充气压力的方法和系统
CN101229058A (zh) * 2007-01-26 2008-07-30 香港中文大学 脉搏波传输时间法测量动脉血压的初始校准装置
CN101327121A (zh) * 2007-06-22 2008-12-24 香港中文大学 一种生理参数测量装置

Also Published As

Publication number Publication date
CN108124420A (zh) 2018-06-05
CN108124420B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
US20210307692A1 (en) Apparatus and method for measuring biometric information
EP3361944A1 (en) Ambulatory blood pressure and vital sign monitoring apparatus, system and method
US20140288447A1 (en) Ear-related devices implementing sensors to acquire physiological characteristics
US10448830B2 (en) Wearable blood pressure monitoring system
Mukherjee et al. A literature review on current and proposed technologies of noninvasive blood pressure measurement
WO2022120656A1 (zh) 血压检测方法、装置以及电子设备
CN107405090A (zh) 用于测量血压的方法和装置
WO2018035827A1 (zh) 移动终端、辅助设备、血压测量系统及方法
CN108124419B (zh) 一种血压测量方法、智能心率耳机及系统
CN105407795B (zh) 人体健康数据云端处理方法、移动终端和通信系统
US20190053722A1 (en) Apparatus, terminal and bioinformation system
CN110301906A (zh) 无创血压测量方法和装置
CN106572804A (zh) 用于使用声学信号来测量血压的方法和装置
CN112426141A (zh) 血压检测方法、装置以及电子设备
US20210085259A1 (en) Apparatus and method for estimating bio-information
TW202224626A (zh) 非施壓連續血壓量測裝置及方法
US20210235996A1 (en) Signal processing apparatus, and apparatus and method for estimating bio-information
CN112168155A (zh) 一种血压检测方法、可穿戴设备以及计算机可读存储介质
WO2018035793A1 (zh) 一种可进行定标的血压测量设备及方法
JP2006192052A (ja) 血圧測定装置
CN207693556U (zh) 一种可进行定标的血压测量设备
TW202007355A (zh) 智慧型個人攜帶式之血壓量測系統與血壓校正方法
KR101876194B1 (ko) 복수의 웨어러블 디바이스를 이용한 혈압 산출시스템, 산출방법 및 산출프로그램
EP3753484A1 (en) Apparatus and method for calibrating bio-information estimation model, and apparatus for estimating bio-information
US11844588B2 (en) Apparatus and method for detecting characteristic point of oscillometric envelope and apparatus for estimating bio-information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913816

Country of ref document: EP

Kind code of ref document: A1