WO2018035761A1 - 一种调制阶数的估算方法和装置 - Google Patents

一种调制阶数的估算方法和装置 Download PDF

Info

Publication number
WO2018035761A1
WO2018035761A1 PCT/CN2016/096590 CN2016096590W WO2018035761A1 WO 2018035761 A1 WO2018035761 A1 WO 2018035761A1 CN 2016096590 W CN2016096590 W CN 2016096590W WO 2018035761 A1 WO2018035761 A1 WO 2018035761A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
baseband signal
nonlinear
modulation order
sampling
Prior art date
Application number
PCT/CN2016/096590
Other languages
English (en)
French (fr)
Inventor
许炜阳
李有均
徐弘乾
Original Assignee
深圳天珑无线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳天珑无线科技有限公司 filed Critical 深圳天珑无线科技有限公司
Priority to PCT/CN2016/096590 priority Critical patent/WO2018035761A1/zh
Publication of WO2018035761A1 publication Critical patent/WO2018035761A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for estimating a modulation order.
  • the baseband signal of the digital signal corresponding to the nonlinear modulated signal it is necessary to use the baseband signal of the digital signal corresponding to the nonlinear modulated signal, and then estimate the modulation order of the nonlinear modulated signal by the baseband signal, but in the non-cooperative communication In the middle, the baseband signal of the digital signal corresponding to the nonlinear modulated signal is not available, and the preset baseband signal is usually used to estimate the modulation order.
  • the accuracy of the modulation order estimated by presetting the baseband signal is not high.
  • Embodiments of the present application provide a method and apparatus for estimating a modulation order to improve the accuracy of the obtained modulation order.
  • an embodiment of the present application provides a method for estimating a modulation order, where the method includes:
  • the modulation order of the nonlinear modulated signal is obtained according to the second baseband signal subjected to the offset compensation.
  • the second baseband signal is offset-compensated by the following formula:
  • s ⁇ f (n) is the second baseband signal obtained after the offset compensation
  • s2(n) is the second baseband signal
  • j 2 -1
  • j is an imaginary unit
  • ⁇ f is the carrier offset
  • T s is the sampling period of the spectrum of the digital signal
  • N is a multiple of the sample extraction.
  • any possible implementation manner further provide an implementation manner, where the obtaining the modulation order of the nonlinear modulation signal according to the second baseband signal after the offset compensation is performed, including:
  • a modulation order of the nonlinear modulated signal is obtained based on the third baseband signal.
  • the third baseband signal of the digital signal includes:
  • the second baseband signal after sampling and sampling is subjected to offset compensation by using the following formula to obtain a third baseband signal of the digital signal:
  • S 3 (n) is a third baseband signal of the digital signal
  • s ⁇ f (Nn) is a second baseband signal after sampling and extracting
  • N is a multiple of sampling extraction
  • j 2 -1
  • j is an imaginary number Unit
  • ⁇ f is the carrier offset frequency
  • T s is the sampling period of the spectrum of the digital signal.
  • any possible implementation manner further provide an implementation manner of obtaining a modulation order of the nonlinear modulation signal according to the third baseband signal, including:
  • a modulation order of the nonlinear modulated signal is obtained according to the cyclic spectrum.
  • S 3 (f + p / 2) and S 3 (fp / 2) respectively represent the displacement spectrum S 3 (t) a
  • S 3 (t) is the third time-domain baseband signal continuously Signal
  • S 3 (n) S 3 (t)
  • t nT s
  • S 3 (n) is the third baseband signal of the digital signal
  • n is a natural number
  • t is a time variable
  • M is a modulation order.
  • p is the cyclic frequency
  • f ⁇ k / Ts
  • k is a natural number
  • T s is the sampling period of the spectrum of the digital signal
  • * indicates a conjugate operation.
  • any possible implementation manner further provide an implementation manner, where the modulation order of the nonlinear modulation signal is obtained according to the cyclic spectrum, including:
  • the modulation order is 2; or,
  • the modulation order is 4; or,
  • the modulation order is 8.
  • the first part of the digital signal corresponding to the nonlinear modulated signal Performing sampling and decimation on a baseband signal to obtain a second baseband signal of the digital signal; performing offset compensation on the second baseband signal; and obtaining the nonlinear modulated signal according to the second baseband signal after offset compensation
  • the accuracy of the first baseband signal is high, and then the first baseband signal is sampled and extracted.
  • the obtained second baseband signal also has high accuracy, and in order to reduce the influence of the carrier offset on the second baseband signal, the second baseband signal is offset-compensated, thereby further improving the accuracy of the second baseband signal. Therefore, the accuracy of the obtained modulation order is high, and the purpose of improving the accuracy of the obtained modulation order is achieved.
  • an embodiment of the present application further provides an apparatus for estimating a modulation order, where the apparatus includes:
  • a sampling unit configured to sample and extract a first baseband signal of the digital signal corresponding to the nonlinear modulation signal, to obtain a second baseband signal of the digital signal
  • a compensation unit configured to perform offset compensation on the second baseband signal
  • a calculating unit configured to obtain a modulation order of the nonlinear modulation signal according to the second baseband signal after the offset compensation.
  • the second baseband signal is offset-compensated by the following formula:
  • s ⁇ f (n) is the second baseband signal obtained after the offset compensation
  • s2(n) is the second baseband signal
  • j 2 -1
  • j is an imaginary unit
  • ⁇ f is the carrier offset
  • T s is the sampling period of the spectrum of the digital signal
  • N is a multiple of the sample extraction.
  • a modulation order of the nonlinear modulated signal is obtained based on the third baseband signal.
  • the calculating unit is configured to deviate the second baseband signal after sampling and extracting according to a carrier offset frequency of the nonlinear modulated signal Frequency compensation, when obtaining the third baseband signal of the digital signal, specifically for:
  • the second baseband signal after sampling and sampling is subjected to offset compensation by using the following formula to obtain a third baseband signal of the digital signal:
  • S 3 (n) is a third baseband signal of the digital signal
  • s ⁇ f (Nn) is a second baseband signal after sampling and extracting
  • N is a multiple of sampling extraction
  • j 2 -1
  • j is an imaginary number Unit
  • ⁇ f is the carrier offset frequency
  • T s is the sampling period of the spectrum of the digital signal.
  • the calculating unit is configured to obtain, according to the third baseband signal, a modulation order of the nonlinear modulation signal, specifically for :
  • a modulation order of the nonlinear modulated signal is obtained according to the cyclic spectrum.
  • the calculating unit is configured to: when obtaining the cyclic spectrum of the nonlinear modulated signal according to the third baseband signal, specifically used to:
  • S 3 (f + p / 2) and S 3 (fp / 2) respectively represent the displacement spectrum S 3 (t) a
  • S 3 (t) is the third time-domain baseband signal continuously Signal
  • S 3 (n) S 3 (t)
  • t nT s
  • S 3 (n) is the third baseband signal of the digital signal
  • n is a natural number
  • t is a time variable
  • M is a modulation order.
  • p is the cyclic frequency
  • f ⁇ k / Ts
  • k is a natural number
  • T s is the sampling period of the spectrum of the digital signal
  • * indicates a conjugate operation.
  • the modulation order is 2; or,
  • the modulation order is 4; or,
  • the modulation order is 8.
  • the first baseband signal of the digital signal corresponding to the nonlinear modulation signal is sampled and extracted by the sampling unit to obtain a second baseband signal of the digital signal; and the compensation unit pairs the second baseband signal.
  • the calculation unit obtains a modulation order of the nonlinear modulation signal according to the second baseband signal that is subjected to the offset compensation.
  • the first baseband signal is corresponding to the nonlinear modulation signal.
  • the digital signal is obtained, so the accuracy of the first baseband signal is high, and the second baseband signal obtained by sampling and extracting the first baseband signal also has high accuracy, and in order to reduce the carrier offset frequency to the second
  • the influence of the baseband signal compensates the second baseband signal, which further improves the accuracy of the second baseband signal, so that the accuracy of the obtained modulation order is higher, and the accuracy of the obtained modulation order is improved. the goal of.
  • FIG. 1 is a schematic flow chart of a method for estimating a modulation order according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic flowchart of a method for step 103 according to Embodiment 2 of the present application;
  • FIG. 3 is a schematic flowchart of a method for step 203 according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram of an apparatus for estimating a modulation order according to Embodiment 4 of the present application.
  • the method may include the following steps:
  • sampling and extracting may be performed according to the symbol rate of the nonlinear modulated signal, and the symbol rate may be after obtaining the power spectrum of the digital signal corresponding to the nonlinear modulated signal, the power spectrum Smoothing is performed to eliminate the influence of signal noise on the baseband signal; or, after the symbol rate is obtained by the above method, the symbol rate can be compensated to eliminate the error of the symbol rate, and the above two methods can be guaranteed.
  • the accuracy of the symbol rate results in a second baseband signal with higher accuracy.
  • the carrier frequency of the nonlinear modulated signal needs to be obtained when obtaining the first baseband signal, and the power spectrum of the digital signal corresponding to the nonlinear modulated signal is affected by the signal noise.
  • the carrier frequency obtained is inaccurate, so the power spectrum of the digital signal corresponding to the nonlinear modulation signal can be denoised before the carrier frequency is obtained, so as to obtain a carrier frequency with higher accuracy, thereby obtaining higher accuracy.
  • the nonlinear modulation signal includes, but is not limited to, a CPM (Continuous Phase Modulation) signal.
  • the CPM is a nonlinear modulation method in which the phase is continuous and the envelope is constant. After the signal is modulated by the CPM method, the CPM is obtained.
  • the signal and the CPM signal include a GMSK (Gaussian Filtered Minimum Shift Keying) signal used in the second generation digital mobile communication system.
  • GMSK Gausian Filtered Minimum Shift Keying
  • the second baseband signal needs to be offset-compensated, and when the second baseband signal is offset-compensated, The second baseband signal can be offset compensated by the carrier offset of the nonlinear modulated signal.
  • Performing offset compensation on the second baseband signal including:
  • the second baseband signal is offset-compensated by the following formula:
  • s ⁇ f (n) is the second baseband signal obtained after the offset compensation
  • s2(n) is the second baseband signal
  • j 2 -1
  • j is an imaginary unit
  • ⁇ f is the carrier offset
  • T s is the sampling period of the spectrum of the digital signal
  • N is a multiple of the sample extraction.
  • the accuracy of the second baseband signal after the offset compensation is high, the accuracy of the modulation order of the obtained nonlinear modulation signal is also high, and further, since the modulation with higher accuracy can be obtained. The order, therefore, can improve the demodulation success rate of the nonlinear modulated signal.
  • the second baseband signal of the digital signal is obtained by sampling and extracting the first baseband signal of the digital signal corresponding to the nonlinear modulation signal; and the second baseband signal is offset-compensated. Obtaining a modulation order of the nonlinear modulation signal according to the second baseband signal after the offset compensation.
  • the first baseband signal is obtained according to the digital signal corresponding to the nonlinear modulation signal, Therefore, the accuracy of the first baseband signal is high, and the second baseband signal obtained by sampling and extracting the first baseband signal also has high accuracy, and in order to reduce the influence of the carrier offset on the second baseband signal,
  • the second baseband signal is compensated by offset frequency, which further improves the accuracy of the second baseband signal, so that the accuracy of the obtained modulation order is high, and the purpose of improving the accuracy of the obtained modulation order is achieved.
  • the second embodiment of the present application provides a method for implementing step 103. Specifically, as shown in FIG. 2, the method includes the following steps:
  • the 201 Perform the offset compensation according to the symbol rate of the nonlinear modulated signal.
  • the second baseband signal is sampled and extracted.
  • the second baseband signal subjected to the offset compensation needs to be sampled and extracted according to the symbol rate of the nonlinear modulation signal, wherein the sampling extraction multiple is determined according to the accuracy value of the actual requirement, and, in order to ensure The accuracy of the obtained modulation order, the symbol rate used for sampling and extracting the second baseband signal after the offset compensation can be obtained according to the manner of obtaining the symbol rate proposed in the first embodiment, due to the sampling extraction
  • the accuracy of the two baseband signals and the symbol rate used are relatively high, so the accuracy of the second baseband signal obtained after sampling and sampling is also high.
  • the carrier offset used is the carrier offset of the nonlinear modulated signal, thereby ensuring the accuracy of the third baseband signal, and the third baseband signal excludes most of the signal noise. And the influence of the carrier offset frequency, in order to obtain a more accurate modulation order.
  • the second baseband signal after the sampling and decimation is subjected to the offset compensation according to the carrier offset of the nonlinear modulated signal, and the third baseband signal of the digital signal is obtained, including:
  • the second baseband signal after sampling and sampling is subjected to offset compensation by using the following formula to obtain a third baseband signal of the digital signal:
  • S 3 (n) is a third baseband signal of the digital signal
  • s ⁇ f (Nn) is a second baseband signal after sampling and extracting
  • N is a multiple of sampling extraction
  • j 2 -1
  • j is an imaginary number Unit
  • ⁇ f is the carrier offset frequency
  • T s is the sampling period of the spectrum of the digital signal.
  • the modulation order of the nonlinear modulation signal is obtained according to the third baseband signal, it can be obtained by a cyclic spectrum method.
  • the modulation order with higher accuracy can be ensured when the modulation order is obtained according to the third baseband signal, thereby improving the success rate when demodulating the nonlinear adjustment signal.
  • the third embodiment of the present application provides a method for implementing step 203. Specifically, as shown in FIG. 3, the method includes the following steps:
  • the spectral line in the cyclic spectrum can be obtained by the cyclic spectrum of the nonlinear modulated signal. Since the specific modulation order corresponds to a different number of spectral lines, in order to ensure that the modulation order can be obtained, the cyclic spectrum needs to be obtained first.
  • the cyclic spectrum is obtained according to the third baseband signal. Since the accuracy of the third baseband signal is high, the accuracy of the obtained cyclic spectrum is also high, so that the spectral line obtained according to the cyclic spectrum analysis is also more accurate. high.
  • obtaining a cyclic spectrum of the nonlinear modulated signal includes:
  • S 3 (f + p / 2) and S 3 (fp / 2) respectively represent the displacement spectrum S 3 (t) a
  • S 3 (t) is the third time-domain baseband signal continuously Signal
  • S 3 (n) S 3 (t)
  • t nT s
  • S 3 (n) is the third baseband signal of the digital signal
  • n is a natural number
  • t is a time variable
  • M is a modulation order.
  • p is the cyclic frequency
  • f ⁇ k / Ts
  • k is a natural number
  • T s is the sampling period of the spectrum of the digital signal
  • * indicates a conjugate operation.
  • the accuracy of the obtained cyclic spectrum is high, the number of spectral lines obtained by analyzing the cyclic spectrum is also highly accurate, thereby ensuring the accuracy of the estimated modulation order.
  • a modulation order of the nonlinear modulation signal including:
  • the modulation order is 2; or,
  • the modulation order is 4; or,
  • the modulation order is 8.
  • the modulation index of the nonlinear modulation signal may be used in the process of estimating the modulation order by the cyclic spectrum, and the accuracy of the modulation index may be obtained by the cost function of the second baseband signal.
  • Embodiment 4 of the present application provides an apparatus for estimating a modulation order, which can be used to implement the foregoing method flows. As shown in FIG. 4, the apparatus includes:
  • a sampling unit 41 configured to sample and extract a first baseband signal of the digital signal corresponding to the nonlinear modulation signal, to obtain a second baseband signal of the digital signal;
  • the compensation unit 42 is configured to perform offset compensation on the second baseband signal
  • the calculating unit 43 is configured to obtain a modulation order of the nonlinear modulation signal according to the second baseband signal after the offset compensation.
  • the compensation unit 42 is specifically configured to:
  • the second baseband signal is offset-compensated by the following formula:
  • s ⁇ f (n) is the second baseband signal obtained after the offset compensation
  • s2(n) is the second baseband signal
  • j 2 -1
  • j is an imaginary unit
  • ⁇ f is the carrier offset
  • T s is the sampling period of the spectrum of the digital signal
  • N is a multiple of the sample extraction.
  • the calculating unit 43 is specifically configured to:
  • a modulation order of the nonlinear modulated signal is obtained based on the third baseband signal.
  • the calculating unit 43 is configured to perform offset compensation on the second baseband signal that is sampled and extracted according to a carrier offset of the nonlinear modulated signal, to obtain a third of the digital signal.
  • the baseband signal it is specifically used to:
  • the second baseband signal after sampling and sampling is subjected to offset compensation by using the following formula to obtain a third baseband signal of the digital signal:
  • S 3 (n) is a third baseband signal of the digital signal
  • s ⁇ f (Nn) is a second baseband signal after sampling and extracting
  • N is a multiple of sampling extraction
  • j 2 -1
  • j is an imaginary number Unit
  • ⁇ f is the carrier offset frequency
  • T s is the sampling period of the spectrum of the digital signal.
  • the calculating unit 43 is configured to: when obtaining the modulation order of the nonlinear modulation signal according to the third baseband signal, specifically:
  • a modulation order of the nonlinear modulated signal is obtained according to the cyclic spectrum.
  • the calculating unit 43 is configured to obtain a cyclic spectrum of the nonlinear modulated signal according to the third baseband signal, specifically used to:
  • S 3 (f + p / 2) and S 3 (fp / 2) respectively represent the displacement spectrum S 3 (t) a
  • S 3 (t) is the third time-domain baseband signal continuously Signal
  • S 3 (n) S 3 (t)
  • t nT s
  • S 3 (n) is the third baseband signal of the digital signal
  • n is a natural number
  • t is a time variable
  • M is a modulation order.
  • p is the cyclic frequency
  • f ⁇ k / Ts
  • k is a natural number
  • T s is the sampling period of the spectrum of the digital signal
  • * indicates a conjugate operation.
  • the modulation order when the cyclic spectrum includes 1 cyclic line, the modulation order is 2; or, when the cyclic spectrum includes 3 cyclic lines, the modulation order The number is 4; or, when the cyclic spectrum contains 7 cyclic lines, the modulation order is 8.
  • the first baseband signal of the digital signal corresponding to the nonlinear modulation signal is sampled and extracted by the sampling unit to obtain a second baseband signal of the digital signal; and the compensation unit pairs the second baseband signal.
  • the calculation unit obtains a modulation order of the nonlinear modulation signal according to the second baseband signal that is subjected to the offset compensation.
  • the first baseband signal is corresponding to the nonlinear modulation signal.
  • the digital signal is obtained, so the accuracy of the first baseband signal is high, and the second baseband signal obtained by sampling and extracting the first baseband signal also has high accuracy, and in order to reduce the carrier offset frequency to the second
  • the influence of the baseband signal compensates the second baseband signal, which further improves the accuracy of the second baseband signal, so that the accuracy of the obtained modulation order is higher, and the accuracy of the obtained modulation order is improved. the goal of.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the device embodiments described above are merely illustrative, wherein the units illustrated as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located in one place. Or it can be distributed to at least two network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请实施例提供了一种调制阶数的估算方法和装置,所述方法包括:对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;对所述第二基带信号进行偏频补偿;根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数。本申请实施例可以提高得到的调制阶数的准确性。

Description

一种调制阶数的估算方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种调制阶数的估算方法和装置。
背景技术
非协作通信中,在对非线性调制信号进行解调时,需要获知相对准确的该非线性调制信号的调制阶数,否则在对该非线性调制信号进行解调时会导致解调失败。
在对非线性调制信号的调制阶数进行估算时,需要用到非线性调制信号对应的数字信号的基带信号,然后通过基带信号对非线性调制信号的调制阶数进行估算,但是在非协作通信中,非线性调制信号对应的数字信号的基带信号是无法获得的,通常采用预设的基带信号来对调制阶数进行估算。
然而,通过预设基带信号估算出来的调制阶数的准确性不高。
发明内容
本申请实施例提供一种调制阶数的估算方法和装置,用以提高获得的调制阶数的准确性。
第一方面,本申请实施例提供了一种调制阶数的估算方法,所述方法包括:
对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;
对所述第二基带信号进行偏频补偿;
根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述对所述第二基带信号进行偏频补偿,包括:
利用如下公式对所述第二基带信号进行偏频补偿:
sΔf(n)=s2(n)exp(-j2πΔfnTs),n=0,1,2…,N-1;
其中,sΔf(n)为进行偏频补偿后得到的第二基带信号,s2(n)为所述第二基带信号,j2=-1,j为虚数单位,Δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期,N为采样抽取的倍数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数,包括:
根据所述非线性调制信号的符号速率,对所述进行偏频补偿后的第二基带信号进行采样抽取;
根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号;
根据所述第三基带信号,获得所述非线性调制信号的调制阶数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号,包括:
利用如下公式对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号:
S3(n)=sΔf(Nn)exp(-j2πδfnTs),n=0,1,2,...;
其中,S3(n)为所述数字信号的第三基带信号,sΔf(Nn)为进行采样抽取后的第二基带信号,N为采样抽取的倍数,j2=-1,j为虚数单位,δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,根据所述第三基带信号,获得所述非线性调制信号的调制阶数,包括:
根据所述第三基带信号,获得所述非线性调制信号的循环谱;
根据所述循环谱,获得所述非线性调制信号的调制阶数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述第三基带信号,获得所述非线性调制信号的循环谱,包括:
利用如下公式,获得所述循环谱:
Figure PCTCN2016096590-appb-000001
其中,
Figure PCTCN2016096590-appb-000002
为所述循环谱,S3(f+p/2)和S3(f-p/2)分别表示S3(t)的频谱位移,S3(t)为所述第三基带信号的时域连续信号,S3(n)=S3(t)|t=nTs,S3(n)为所述数字信号的第三基带信号,n为自然数,t为时间变量,M为调制阶数,p为循环频率,f=±k/Ts,k为自然数,Ts为所述数字信号的频谱的采样周期,*表示共轭运算。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述循环谱,获得所述非线性调制信号的调制阶数,包括:
当所述循环谱中包含1个循环谱线时,所述调制阶数为2;或者,
当所述循环谱中包含3个循环谱线时,所述调制阶数为4;或者,
当所述循环谱中包含7个循环谱线时,所述调制阶数为8。
在本申请实施例中,通过对所述非线性调制信号对应的数字信号的第 一基带信号进行采样抽取,得到所述数字信号的第二基带信号;对所述第二基带信号进行偏频补偿;根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数,在本申请实施例中,由于第一基带信号是根据非线性调制信号对应的数字信号得到的,因此第一基带信号的准确性较高,进而对第一基带信号进行采样抽取后得到的第二基带信号也具有较高的准确性,并且为了减少载波偏频对第二基带信号的影响,对第二基带信号进行了偏频补偿,进一步提高了第二基带信号的准确性,从而得到的调制阶数的准确度较高,实现了提高获得的调制阶数的准确性的目的。
另一方面,本申请实施例还提供了一种调制阶数的估算装置,所述装置包括:
采样单元,用于对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;
补偿单元,用于对所述第二基带信号进行偏频补偿;
计算单元,用于根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述补偿单元,具体用于:
利用如下公式对所述第二基带信号进行偏频补偿:
sΔf(n)=s2(n)exp(-j2πΔfnTs),n=0,1,2…,N-1;
其中,sΔf(n)为进行偏频补偿后得到的第二基带信号,s2(n)为所述第二基带信号,j2=-1,j为虚数单位,Δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期,N为采样抽取的倍数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述计算单元,具体用于:
根据所述非线性调制信号的符号速率,对所述进行偏频补偿后的第二基带信号进行采样抽取;
根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号;
根据所述第三基带信号,获得所述非线性调制信号的调制阶数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述计算单元用于根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号时,具体用于:
利用如下公式对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号:
S3(n)=sΔf(Nn)exp(-j2πδfnTs),n=0,1,2,...;
其中,S3(n)为所述数字信号的第三基带信号,sΔf(Nn)为进行采样抽取后的第二基带信号,N为采样抽取的倍数,j2=-1,j为虚数单位,δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述计算单元用于根据所述第三基带信号,获得所述非线性调制信号的调制阶数时,具体用于:
根据所述第三基带信号,获得所述非线性调制信号的循环谱;
根据所述循环谱,获得所述非线性调制信号的调制阶数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式, 所述计算单元用于根据所述第三基带信号,获得所述非线性调制信号的循环谱时,具体用于:
利用如下公式,获得所述循环谱:
Figure PCTCN2016096590-appb-000003
其中,
Figure PCTCN2016096590-appb-000004
为所述循环谱,S3(f+p/2)和S3(f-p/2)分别表示S3(t)的频谱位移,S3(t)为所述第三基带信号的时域连续信号,S3(n)=S3(t)|t=nTs,S3(n)为所述数字信号的第三基带信号,n为自然数,t为时间变量,M为调制阶数,p为循环频率,f=±k/Ts,k为自然数,Ts为所述数字信号的频谱的采样周期,*表示共轭运算。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,
当所述循环谱中包含1个循环谱线时,所述调制阶数为2;或者,
当所述循环谱中包含3个循环谱线时,所述调制阶数为4;或者,
当所述循环谱中包含7个循环谱线时,所述调制阶数为8。
在本申请实施例中,通过采样单元对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;补偿单元对所述第二基带信号进行偏频补偿;计算单元根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数,在本申请实施例中,由于第一基带信号是根据非线性调制信号对应的数字信号得到的,因此第一基带信号的准确性较高,进而对第一基带信号进行采样抽取后得到的第二基带信号也具有较高的准确性,并且为了减少载波偏频对第二基带信号的影响,对第二基带信号进行了偏频补偿,进一步提高了第二基带信号的准确性,从而得到的调制阶数的准确度较高,实现了提高获得的调制阶数的准确性的目的。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一中提出的一种调制阶数的估算方法流程示意图;
图2为本申请实施例二中提出的一种针对步骤103的方法流程示意图;
图3为本申请实施例三中提出的一种针对步骤203的方法流程示意图;
图4为本申请实施例四中提出的一种调制阶数的估算装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
本申请实施例一提出了一种调制阶数的估算方法,具体如图1所示,所述方法可以包括以下步骤:
101、对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号。
具体的,为了保证非线性调制信号对应的数字信号的第二基带信号的 准确性,在对第一基带信号进行采样抽取时,可以根据非线性调制信号的符号速率进行采样抽取,符号速率可以是在获得非线性调制信号对应的数字信号的功率谱后,对该功率谱进行平滑处理,消除信噪对基带信号的影响后得到;或者,在通过上述方法获得符号速率后,可以对该符号速率进行补偿,以消除该符号速率的误差,通过上述两种方式可以保证获得的符号速率的准确性,进而可以得到准确性较高的第二基带信号。
为了进一步提高第二基带信号的准确性,在获得该第一基带信号时需要通过该非线性调制信号的载波频率获得,并且由于非线性调制信号对应的数字信号的功率谱会受到信噪的影响,导致获得的载波频率不准确,因此在获得载波频率之前可以对非线性调制信号对应的数字信号的功率谱进行去噪处理,以获得准确性较高的载波频率,进而获得准确性较高的第一基带信号。
例如,非线性调制信号包括但不限于CPM(Continue Phase Modulation,连续相位调制)信号等,CPM是一种相位连续、包络恒定的非线性调制方式,信号通过CPM方式进行调制后就得到了CPM信号,CPM信号包括第二代数字移动通信系统中采用的GMSK(Gaussian Filtered Minimum Shift Keying,高斯最小频移键控)信号等。
102、对所述第二基带信号进行偏频补偿。
具体的,为了减少载波偏频对第二基带信号的影响,从而进一步提高第二基带信号的准确性,需要对第二基带信号进行偏频补偿,在对第二基带信号进行偏频补偿时,可以利用非线性调制信号的载波偏频对第二基带信号进行偏频补偿。
所述对所述第二基带信号进行偏频补偿,包括:
利用如下公式对所述第二基带信号进行偏频补偿:
sΔf(n)=s2(n)exp(-j2πΔfnTs),n=0,1,2…,N-1;
其中,sΔf(n)为进行偏频补偿后得到的第二基带信号,s2(n)为所述第二基带信号,j2=-1,j为虚数单位,Δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期,N为采样抽取的倍数。
103、根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数。
具体的,由于进行偏频补偿后的第二基带信号的准确性较高,因此获得的非线性调制信号的调制阶数的准确性也较高,进一步的,由于可以获得准确性较高的调制阶数,因此可以提高非线性调制信号的解调成功率。
在本申请实施例中,通过对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;对所述第二基带信号进行偏频补偿;根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数,在本申请实施例中,由于第一基带信号是根据非线性调制信号对应的数字信号得到的,因此第一基带信号的准确性较高,进而对第一基带信号进行采样抽取后得到的第二基带信号也具有较高的准确性,并且为了减少载波偏频对第二基带信号的影响,对第二基带信号进行了偏频补偿,进一步提高了第二基带信号的准确性,从而得到的调制阶数的准确度较高,实现了提高获得的调制阶数的准确性的目的。
实施例二
本申请实施例二提供了一种针对步骤103的实现方法,具体如图2所示,该方法包括以下步骤:
201、根据所述非线性调制信号的符号速率,对所述进行偏频补偿后的 第二基带信号进行采样抽取。
具体的,为了减少计算量,需要根据非线性调制信号的符号速率对进行偏频补偿后的第二基带信号进行采样抽取,其中,采样抽取倍数根据实际需求的精度值来确定,并且,为了保证获得的调制阶数的准确性,对进行偏频补偿后的第二基带信号进行采样抽取时使用的符号速率可以根据实施例一中提出的符号速率的获得方式来获得,由于进行采样抽取的第二基带信号和使用的符号速率的准确性都比较高,因此进行采样抽取后得到的第二基带信号的准确性也较高。
202、根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号。
具体的,为了进一步提高采样抽取后得到的第二基带信号的准确性,需要对采样抽取后得到的第一基带信号进行偏频补偿,来消除载波偏频对其的影响,并且在对采样抽取后得到的第一基带信号进行偏频补偿时,使用的载波偏频是非线性调制信号的载波偏频,从而保证了第三基带信号的准确性,此时第三基带信号排除了大多数信噪和载波偏频的影响,进而可以获得准确性更高的调制阶数。
举例说明,根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号,包括:
利用如下公式对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号:
S3(n)=sΔf(Nn)exp(-j2πδfnTs),n=0,1,2,...;
其中,S3(n)为所述数字信号的第三基带信号,sΔf(Nn)为进行采样抽取后的第二基带信号,N为采样抽取的倍数,j2=-1,j为虚数单位,δf为所 述载波偏频,Ts为所述数字信号的频谱的采样周期。
203、根据所述第三基带信号,获得所述非线性调制信号的调制阶数。
具体的,在根据第三基带信号获得非线性调制信号的调制阶数时,可以通过循环谱法获得。
由于第三基带信号的准确性较高,在根据第三基带信号获得调制阶数时可以保证获得准确性较高的调制阶数,进而提高了对非线性调节信号进行解调时的成功率。
实施例三
本申请实施例三提供了一种针对步骤203的实现方法,具体如图3所示,该方法包括以下步骤:
301、根据所述第三基带信号,获得所述非线性调制信号的循环谱。
具体的,通过非线性调制信号的循环谱可以获得循环谱中的谱线,由于特定的调制阶数对应不同数量的谱线,因此为了保证可以获得调制阶数,需要先获得循环谱。
其中,循环谱是根据第三基带信号得到的,由于第三基带信号的准确性较高,因此得到的循环谱的准确性也较高,进而使得根据循环谱分析得到的谱线也准确性较高。
举例说明,根据所述第三基带信号,获得所述非线性调制信号的循环谱,包括:
利用如下公式,获得所述循环谱:
Figure PCTCN2016096590-appb-000005
其中,
Figure PCTCN2016096590-appb-000006
为所述循环谱,S3(f+p/2)和S3(f-p/2)分别表示S3(t)的频谱位移,S3(t)为所述第三基带信号的时域连续信号,S3(n)=S3(t)|t=nTs, S3(n)为所述数字信号的第三基带信号,n为自然数,t为时间变量,M为调制阶数,p为循环频率,f=±k/Ts,k为自然数,Ts为所述数字信号的频谱的采样周期,*表示共轭运算。
302、根据所述循环谱,获得所述非线性调制信号的调制阶数。
具体的,由于得到的循环谱的准确性较高,因此根据循环谱进行分析得到的谱线的个数也准确性较高,进而保证了估算出来的调制阶数的准确性。
所述根据所述循环谱,获得所述非线性调制信号的调制阶数,包括:
当所述循环谱中包含1个循环谱线时,所述调制阶数为2;或者,
当所述循环谱中包含3个循环谱线时,所述调制阶数为4;或者,
当所述循环谱中包含7个循环谱线时,所述调制阶数为8。
具体的,在通过循环谱对调制阶数进行估算的过程中可能会使用到该非线性调制信号的调制指数,为了保证调制指数的准确性,可以通过第二基带信号的代价函数获得。
实施例四
本申请实施例四提供了一种调制阶数的估算装置,可用于实现前述各方法流程,如图4所示,所述装置包括:
采样单元41,用于对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;
补偿单元42,用于对所述第二基带信号进行偏频补偿;
计算单元43,用于根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数。
在一个具体的实现方案中,所述补偿单元42,具体用于:
利用如下公式对所述第二基带信号进行偏频补偿:
sΔf(n)=s2(n)exp(-j2πΔfnTs),n=0,1,2…,N-1;
其中,sΔf(n)为进行偏频补偿后得到的第二基带信号,s2(n)为所述第二基带信号,j2=-1,j为虚数单位,Δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期,N为采样抽取的倍数。
在一个具体的实现方案中,所述计算单元43,具体用于:
根据所述非线性调制信号的符号速率,对所述进行偏频补偿后的第二基带信号进行采样抽取;
根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号;
根据所述第三基带信号,获得所述非线性调制信号的调制阶数。
在一个具体的实现方案中,所述计算单元43用于根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号时,具体用于:
利用如下公式对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号:
S3(n)=sΔf(Nn)exp(-j2πδfnTs),n=0,1,2,...;
其中,S3(n)为所述数字信号的第三基带信号,sΔf(Nn)为进行采样抽取后的第二基带信号,N为采样抽取的倍数,j2=-1,j为虚数单位,δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期。
在一个具体的实现方案中,所述计算单元43用于根据所述第三基带信号,获得所述非线性调制信号的调制阶数时,具体用于:
根据所述第三基带信号,获得所述非线性调制信号的循环谱;
根据所述循环谱,获得所述非线性调制信号的调制阶数。
在一个具体的实现方案中,所述计算单元43用于根据所述第三基带信号,获得所述非线性调制信号的循环谱时,具体用于:
利用如下公式,获得所述循环谱:
Figure PCTCN2016096590-appb-000007
其中,
Figure PCTCN2016096590-appb-000008
为所述循环谱,S3(f+p/2)和S3(f-p/2)分别表示S3(t)的频谱位移,S3(t)为所述第三基带信号的时域连续信号,S3(n)=S3(t)|t=nTs,S3(n)为所述数字信号的第三基带信号,n为自然数,t为时间变量,M为调制阶数,p为循环频率,f=±k/Ts,k为自然数,Ts为所述数字信号的频谱的采样周期,*表示共轭运算。
在一个具体的实现方案中,当所述循环谱中包含1个循环谱线时,所述调制阶数为2;或者,当所述循环谱中包含3个循环谱线时,所述调制阶数为4;或者,当所述循环谱中包含7个循环谱线时,所述调制阶数为8。
在本申请实施例中,通过采样单元对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;补偿单元对所述第二基带信号进行偏频补偿;计算单元根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数,在本申请实施例中,由于第一基带信号是根据非线性调制信号对应的数字信号得到的,因此第一基带信号的准确性较高,进而对第一基带信号进行采样抽取后得到的第二基带信号也具有较高的准确性,并且为了减少载波偏频对第二基带信号的影响,对第二基带信号进行了偏频补偿,进一步提高了第二基带信号的准确性,从而得到的调制阶数的准确度较高,实现了提高获得的调制阶数的准确性的目的。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到至少两个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种调制阶数的估算方法,其特征在于,所述方法包括:
    对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;
    对所述第二基带信号进行偏频补偿;
    根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数。
  2. 如权利要求1所述方法,其特征在于,所述对所述第二基带信号进行偏频补偿,包括:
    利用如下公式对所述第二基带信号进行偏频补偿:
    sΔf(n)=s2(n)exp(-j2πΔfnTs),n=0,1,2…,N-1;
    其中,sΔf(n)为进行偏频补偿后得到的第二基带信号,s2(n)为所述第二基带信号,j2=-1,j为虚数单位,Δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期,N为采样抽取的倍数。
  3. 如权利要求1所述方法,其特征在于,所述根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数,包括:
    根据所述非线性调制信号的符号速率,对所述进行偏频补偿后的第二基带信号进行采样抽取;
    根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号;
    根据所述第三基带信号,获得所述非线性调制信号的调制阶数。
  4. 如权利要求3所述方法,其特征在于,所述根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所 述数字信号的第三基带信号,包括:
    利用如下公式对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号:
    S3(n)=sΔf(Nn)exp(-j2πδfnTs),n=0,1,2,...;
    其中,S3(n)为所述数字信号的第三基带信号,sΔf(Nn)为进行采样抽取后的第二基带信号,N为采样抽取的倍数,j2=-1,j为虚数单位,δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期。
  5. 如权利要求3所述方法,其特征在于,根据所述第三基带信号,获得所述非线性调制信号的调制阶数,包括:
    根据所述第三基带信号,获得所述非线性调制信号的循环谱;
    根据所述循环谱,获得所述非线性调制信号的调制阶数。
  6. 如权力要求5所述方法,其特征在于,所述根据所述第三基带信号,获得所述非线性调制信号的循环谱,包括:
    利用如下公式,获得所述循环谱:
    Figure PCTCN2016096590-appb-100001
    其中,
    Figure PCTCN2016096590-appb-100002
    为所述循环谱,S3(f+p/2)和S3(f-p/2)分别表示S3(t)的频谱位移,S3(t)为所述第三基带信号的时域连续信号,
    Figure PCTCN2016096590-appb-100003
    S3(n)为所述数字信号的第三基带信号,n为自然数,t为时间变量,M为调制阶数,p为循环频率,f=±k/Ts,k为自然数,Ts为所述数字信号的频谱的采样周期,*表示共轭运算。
  7. 如权利要求5所述方法,其特征在于,所述根据所述循环谱,获得所述非线性调制信号的调制阶数,包括:
    当所述循环谱中包含1个循环谱线时,所述调制阶数为2;或者,
    当所述循环谱中包含3个循环谱线时,所述调制阶数为4;或者,
    当所述循环谱中包含7个循环谱线时,所述调制阶数为8。
  8. 一种调制阶数的估算装置,其特征在于,所述装置包括:
    采样单元,用于对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,得到所述数字信号的第二基带信号;
    补偿单元,用于对所述第二基带信号进行偏频补偿;
    计算单元,用于根据进行偏频补偿后的第二基带信号,获得所述非线性调制信号的调制阶数。
  9. 如权利要求8所述装置,其特征在于,所述补偿单元,具体用于:
    利用如下公式对所述第二基带信号进行偏频补偿:
    sΔf(n)=s2(n)exp(-j2πΔfnTs),n=0,1,2…,N-1;
    其中,sΔf(n)为进行偏频补偿后得到的第二基带信号,s2(n)为所述第二基带信号,j2=-1,j为虚数单位,Δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期,N为采样抽取的倍数。
  10. 如权利要求8所述装置,其特征在于,所述计算单元,具体用于:
    根据所述非线性调制信号的符号速率,对所述进行偏频补偿后的第二基带信号进行采样抽取;
    根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号;
    根据所述第三基带信号,获得所述非线性调制信号的调制阶数。
  11. 如权利要求10所述装置,其特征在于,所述计算单元用于根据所述非线性调制信号的载波偏频,对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号时,具体用于:
    利用如下公式对进行采样抽取后的第二基带信号进行偏频补偿,获得所述数字信号的第三基带信号:
    S3(n)=sΔf(Nn)exp(-j2πδfnTs),n=0,1,2,...;
    其中,S3(n)为所述数字信号的第三基带信号,sΔf(Nn)为进行采样抽取后的第二基带信号,N为采样抽取的倍数,j2=-1,j为虚数单位,δf为所述载波偏频,Ts为所述数字信号的频谱的采样周期。
  12. 如权利要求10所述装置,其特征在于,所述计算单元用于根据所述第三基带信号,获得所述非线性调制信号的调制阶数时,具体用于:
    根据所述第三基带信号,获得所述非线性调制信号的循环谱;
    根据所述循环谱,获得所述非线性调制信号的调制阶数。
  13. 如权力要求12所述装置,其特征在于,所述计算单元用于根据所述第三基带信号,获得所述非线性调制信号的循环谱时,具体用于:
    利用如下公式,获得所述循环谱:
    Figure PCTCN2016096590-appb-100004
    其中,
    Figure PCTCN2016096590-appb-100005
    为所述循环谱,S3(f+p/2)和S3(f-p/2)分别表示S3(t)的频谱位移,S3(t)为所述第三基带信号的时域连续信号,
    Figure PCTCN2016096590-appb-100006
    S3(n)为所述数字信号的第三基带信号,n为自然数,t为时间变量,M为调制阶数,p为循环频率,f=±k/Ts,k为自然数,Ts为所述数字信号的频谱的采样周期,*表示共轭运算。
  14. 如权利要求12所述装置,其特征在于,
    当所述循环谱中包含1个循环谱线时,所述调制阶数为2;或者,
    当所述循环谱中包含3个循环谱线时,所述调制阶数为4;或者,
    当所述循环谱中包含7个循环谱线时,所述调制阶数为8。
PCT/CN2016/096590 2016-08-24 2016-08-24 一种调制阶数的估算方法和装置 WO2018035761A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096590 WO2018035761A1 (zh) 2016-08-24 2016-08-24 一种调制阶数的估算方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096590 WO2018035761A1 (zh) 2016-08-24 2016-08-24 一种调制阶数的估算方法和装置

Publications (1)

Publication Number Publication Date
WO2018035761A1 true WO2018035761A1 (zh) 2018-03-01

Family

ID=61246614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096590 WO2018035761A1 (zh) 2016-08-24 2016-08-24 一种调制阶数的估算方法和装置

Country Status (1)

Country Link
WO (1) WO2018035761A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004262A1 (en) * 2002-06-27 2004-01-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for concurrent estimation of frequency offset and modulation index
US20090147669A1 (en) * 2007-12-10 2009-06-11 Nokia Siemens Networks Oy Continuous phase modulation encoder for wireless networks
CN101958871A (zh) * 2010-09-16 2011-01-26 西安工业大学 一种自适应fso-ofdm传输系统及传输方法
CN102291346A (zh) * 2011-04-29 2011-12-21 重庆金美通信有限责任公司 Cpm调制多符号检测频偏检测

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004262A1 (en) * 2002-06-27 2004-01-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for concurrent estimation of frequency offset and modulation index
US20090147669A1 (en) * 2007-12-10 2009-06-11 Nokia Siemens Networks Oy Continuous phase modulation encoder for wireless networks
CN101958871A (zh) * 2010-09-16 2011-01-26 西安工业大学 一种自适应fso-ofdm传输系统及传输方法
CN102291346A (zh) * 2011-04-29 2011-12-21 重庆金美通信有限责任公司 Cpm调制多符号检测频偏检测

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU XIAODONG: "Research of the Blind Estimation techniques of CPM parameters in Non-collaborative Communication", CHINA MASTER'S THESES, no. s2, 15 December 2013 (2013-12-15), pages 5 - 32 *

Similar Documents

Publication Publication Date Title
CN104717172B (zh) 一种发射机中iq不平衡的补偿方法和装置
WO2018054236A1 (zh) 一种ofdm系统同步跟踪方法和装置
CN103532894B (zh) Tcm‑8psk基带信号解调方法
EP3621259B1 (en) Method and device for fsk/gfsk demodulation
KR20060090035A (ko) 무선 통신 시스템에서 주파수 오차 보상 장치 및 방법
CN110300079B (zh) 一种msk信号相干解调方法及系统
CN106788734B (zh) 一种采用无数据辅助频偏估计算法的光ofdm系统
CN104022981A (zh) 一种正交幅度调制信号的盲载波频偏估计方法
US9621288B2 (en) Method and apparatus for estimating the current signal-to-noise ratio
CN108710027B (zh) 通道间相位差、幅度差的高精度测量方法
KR101674747B1 (ko) I/q 불균형을 보상하기 위한 레이더 신호 처리 장치 및 방법
CN107623647B (zh) 一种基于离散导频辅助的载波同步方法
CN103957009A (zh) 一种对压缩采样系统低通滤波器进行补偿的方法
WO2021143644A1 (zh) 一种载波相位跟踪方法及装置
CN104459743A (zh) 一种相干多载波调制信号分量间载波相位偏差确定方法
WO2018035760A1 (zh) 一种调制指数的估算方法和装置
WO2018035761A1 (zh) 一种调制阶数的估算方法和装置
US10277440B1 (en) Determining common phase error
CN107078981B (zh) 用于估计接收信号中的瞬时频率偏差的方法和频率偏差估计器
EP3035622B1 (en) Maximum likelihood sequence detection in the phase domain
KR20060081496A (ko) 높은 대역 효율의 고차 변조 시스템을 위한 심볼 타이밍동기 검출 장치 및 검출 방법
CN104270328B (zh) 一种信噪比实时估计方法
WO2018035763A1 (zh) 一种符号速率的估算方法和装置
CN108353066B (zh) 用于载波频率偏移校正的设备和方法及其存储介质
US6859507B2 (en) Method and apparatus for correcting a signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913784

Country of ref document: EP

Kind code of ref document: A1