WO2018035760A1 - 一种调制指数的估算方法和装置 - Google Patents

一种调制指数的估算方法和装置 Download PDF

Info

Publication number
WO2018035760A1
WO2018035760A1 PCT/CN2016/096589 CN2016096589W WO2018035760A1 WO 2018035760 A1 WO2018035760 A1 WO 2018035760A1 CN 2016096589 W CN2016096589 W CN 2016096589W WO 2018035760 A1 WO2018035760 A1 WO 2018035760A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
cost function
nonlinear
modulation
baseband signal
Prior art date
Application number
PCT/CN2016/096589
Other languages
English (en)
French (fr)
Inventor
许炜阳
李有均
徐弘乾
Original Assignee
深圳天珑无线科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳天珑无线科技有限公司 filed Critical 深圳天珑无线科技有限公司
Priority to PCT/CN2016/096589 priority Critical patent/WO2018035760A1/zh
Publication of WO2018035760A1 publication Critical patent/WO2018035760A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for estimating a modulation index.
  • auxiliary parameters are needed (eg, the symbol rate of the nonlinear modulated signal, the baseband signal of the digital signal corresponding to the nonlinear modulated signal, and the carrier bias of the nonlinear modulated signal). Frequency, etc.) to obtain the cost function of the digital signal corresponding to the nonlinear modulated signal, and then estimate the modulation index by the cost function, but in the non-cooperative communication, the auxiliary parameter is not available, and the empirical value is usually used to estimate the modulation index. That is, the auxiliary parameters used in the estimation of the modulation index are preset to estimate the modulation index.
  • the accuracy of the modulation index estimated by presetting the auxiliary parameters is not high.
  • Embodiments of the present application provide a method and apparatus for estimating a modulation index to improve the accuracy of a modulation index obtained.
  • an embodiment of the present application provides a method for estimating a modulation index, where the method includes:
  • the first baseband signal of the digital signal is sampled and extracted to obtain a second baseband signal of the digital signal;
  • a modulation index of the nonlinearly modulated signal is obtained according to the cost function.
  • the cost function of the second baseband signal is obtained using the following formula:
  • J C (g, ⁇ , ⁇ ) is a cost function of the second baseband signal
  • any of the possible implementations further provide an implementation manner of obtaining a modulation index of the nonlinear modulation signal according to the cost function, including:
  • a modulation index of the nonlinear modulated signal is obtained according to an argument g when the cost function is a maximum value.
  • nonlinear modulation signal is obtained according to an argument g when the cost function is a maximum value Modulation index, including:
  • the modulation index of the nonlinear modulated signal is obtained using the following formula:
  • g 0 is the independent variable g when the cost function is the maximum value.
  • the second baseband signal of the digital signal corresponding to the nonlinear modulation signal is obtained according to the symbol rate of the nonlinear modulation signal, and then the carrier frequency offset of the symbol rate, the second baseband signal, and the nonlinear modulation signal is adopted.
  • the embodiment of the present application further provides an apparatus for estimating a modulation index, and the apparatus includes:
  • a sampling unit configured to sample and extract a first baseband signal of the digital signal corresponding to the nonlinear modulation signal according to a symbol rate of the nonlinear modulation signal, to obtain a second baseband signal of the digital signal;
  • an obtaining unit configured to obtain a cost function of the second baseband signal according to the symbol rate, the second baseband signal, and a carrier offset of the nonlinear modulated signal
  • a calculating unit configured to obtain a modulation index of the nonlinear modulation signal according to the cost function.
  • the obtaining unit is specifically configured to:
  • the cost function of the second baseband signal is obtained using the following formula:
  • J C (g, ⁇ , ⁇ ) is a cost function of the second baseband signal
  • a modulation index of the nonlinear modulated signal is obtained according to an argument g when the cost function is a maximum value.
  • the calculating unit is configured to obtain a modulation index of the nonlinear modulation signal according to an argument g when the cost function is a maximum value
  • the calculating unit is configured to obtain a modulation index of the nonlinear modulation signal according to an argument g when the cost function is a maximum value
  • the modulation index of the nonlinear modulated signal is obtained using the following formula:
  • g 0 is the independent variable g when the cost function is the maximum value.
  • the sampling unit obtains the second baseband signal of the digital signal corresponding to the nonlinear modulation signal according to the symbol rate of the nonlinear modulation signal, and then acquires the unit and then passes the symbol.
  • the carrier frequency offset of the second rate signal, the second baseband signal and the nonlinear modulation signal obtains a cost function of the second baseband signal
  • the calculation unit obtains a modulation index by a cost function, since the auxiliary parameters used are based on the nonlinear modulation signal Therefore, the accuracy of the obtained cost function is higher, and the accuracy of the modulation index obtained according to the cost function is higher. Therefore, the embodiment of the present application can improve the accuracy of the obtained modulation index.
  • FIG. 1 is a schematic flow chart of a method for estimating a modulation index proposed in Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural diagram of an apparatus for estimating a modulation index proposed in Embodiment 2 of the present application.
  • Embodiment 1 of the present application proposes a method for estimating a modulation index. As shown in FIG. 1 , the method may include the following steps:
  • the power spectrum is smoothed to eliminate the influence of the signal noise on the baseband signal, and then the symbol rate is obtained.
  • the symbol rate can be compensated to eliminate the error of the symbol rate.
  • the purpose of the embodiment of the present application is to improve the accuracy of the symbol rate, so all the symbol rate can be improved. The implementation of the accuracy is within the scope of protection of the present application.
  • the first baseband signal of the digital signal corresponding to the nonlinear modulation signal is also obtained by the nonlinear modulation signal.
  • the first baseband signal can be obtained by the carrier frequency of the nonlinearly modulated signal.
  • the obtained carrier frequency is inaccurate, and therefore the power spectrum of the digital signal corresponding to the nonlinear modulated signal can be performed before the carrier frequency is obtained.
  • the denoising process is performed to obtain a carrier frequency with higher accuracy, thereby obtaining a first baseband signal with higher accuracy.
  • the accuracy of the first baseband signal is high, the accuracy of the second baseband signal obtained after sampling and extracting the first baseband signal is relatively high.
  • the nonlinear modulation signal includes, but is not limited to, a CPM (Continuous Phase Modulation) signal.
  • the CPM is a nonlinear modulation method in which the phase is continuous and the envelope is constant. After the signal is modulated by the CPM method, the CPM is obtained.
  • Signal, CPM signal includes GMSK (Gaussian Filtered Minimum Shift Keying) used in second generation digital mobile communication systems. Gaussian minimum frequency shift keying) signals, etc.
  • the carrier offset of the nonlinear modulated signal is obtained according to the instantaneous frequency of the first baseband signal. Therefore, in order to improve the accuracy of the carrier offset of the nonlinear modulated signal, the method for acquiring the first baseband signal may be used to obtain The first baseband signal is then used to obtain the carrier offset of the nonlinear modulated signal by the instantaneous frequency of the acquired first baseband signal.
  • the accuracy of the symbol rate, the second baseband signal, and the carrier offset frequency is high, the accuracy of the cost function obtained by the above three parameters is also high, thereby ensuring the accuracy of the data obtained by the cost function.
  • the implementation method of obtaining the cost function of the second baseband signal may be:
  • the cost function of the second baseband signal is obtained using the following formula:
  • J C (g, ⁇ , ⁇ ) is a cost function of the second baseband signal
  • the obtaining a modulation index of the nonlinear modulation signal according to the cost function includes:
  • a modulation index of the nonlinear modulated signal is obtained according to an argument g when the cost function is a maximum value.
  • the joint estimation algorithm of carrier frequency offset, symbol rate, and modulation index may be obtained, and when the maximum value of the cost function is obtained, the value of the corresponding independent variable g may be determined, and then The modulation index is then determined by the argument g at which the cost function is at its maximum value.
  • obtaining a modulation index of the nonlinear modulation signal according to the argument g when the cost function is a maximum value including:
  • the modulation index of the nonlinear modulated signal is obtained using the following formula:
  • g 0 is the independent variable g when the cost function is the maximum value.
  • the modulation index obtained by the above method can improve the demodulation success rate of the nonlinear modulation signal.
  • the second baseband signal of the digital signal corresponding to the nonlinear modulation signal is obtained according to the symbol rate of the nonlinear modulation signal, and then the carrier frequency offset of the symbol rate, the second baseband signal, and the nonlinear modulation signal is adopted.
  • Obtaining the cost function of the second baseband signal and passing The cost function is used to obtain the modulation index. Since the auxiliary parameters are all based on the nonlinear modulation signal, the accuracy of the obtained cost function is higher, and the accuracy of the modulation index obtained according to the cost function is higher. The application of the embodiment can improve the accuracy of the obtained modulation index.
  • the second embodiment of the present application provides a device for estimating a modulation index, which can be used to implement the foregoing method flows. As shown in FIG. 2, the device includes:
  • the sampling unit 21 is configured to sample and extract a first baseband signal of the digital signal corresponding to the nonlinear modulation signal according to a symbol rate of the nonlinear modulation signal, to obtain a second baseband signal of the digital signal;
  • the obtaining unit 22 is configured to obtain a cost function of the second baseband signal according to the symbol rate, the second baseband signal, and a carrier offset of the nonlinear modulated signal;
  • the calculating unit 23 is configured to obtain a modulation index of the nonlinear modulation signal according to the cost function.
  • the obtaining unit 22 is specifically configured to:
  • the cost function of the second baseband signal is obtained using the following formula:
  • J C (g, ⁇ , ⁇ ) is a cost function of the second baseband signal
  • the calculating unit 23 is specifically configured to:
  • a modulation index of the nonlinear modulated signal is obtained according to an argument g when the cost function is a maximum value.
  • the calculating unit 23 is configured to obtain a modulation index of the nonlinear modulation signal according to the argument g when the cost function is a maximum value, and includes:
  • the modulation index of the nonlinear modulated signal is obtained using the following formula:
  • g 0 is the independent variable g when the cost function is the maximum value.
  • the sampling unit obtains the second baseband signal of the digital signal corresponding to the nonlinear modulation signal according to the symbol rate of the nonlinear modulation signal, and then the acquisition unit passes the symbol rate, the second baseband signal, and the nonlinear modulation signal.
  • the carrier frequency offset obtains the cost function of the second baseband signal
  • the calculation unit obtains the modulation index through the cost function. Since the auxiliary parameters used are all based on the nonlinear modulation signal, the accuracy of the obtained cost function is high. Furthermore, the accuracy of the modulation index obtained according to the cost function is higher, so the embodiment of the present application can improve the accuracy of the obtained modulation index.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • the device embodiments described above are merely illustrative, wherein the units illustrated as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located in one place. Or it can be distributed to at least two network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请实施例提供了一种调制指数的估算方法和装置,所述方法包括:根据所述非线性调制信号的符号速率,对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,获得所述数字信号的第二基带信号;根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数;根据所述代价函数,获得所述非线性调制信号的调制指数。本申请实施例中由于采用的辅助参数都是基于该非线性调制信号得到的,因此获取的代价函数的准确性较高,进而根据代价函数得到的调制指数的准确性较高,所以本申请实施例可以提高获得的调制指数的准确性。

Description

一种调制指数的估算方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种调制指数的估算方法和装置。
背景技术
非协作通信中,在对非线性调制信号进行解调时,需要获知相对准确的该非线性调制信号的调制指数,否则在对该非线性调制信号进行解调时会导致解调失败。
在对非线性调制信号的调制指数进行估算时,需要用到多个辅助参数(如:非线性调制信号的符号速率、非线性调制信号对应的数字信号的基带信号和非线性调制信号的载波偏频等)来得到非线性调制信号对应的数字信号的代价函数,再通过代价函数估算出调制指数,但是在非协作通信中,辅助参数是无法获得的,通常采用经验值来对调制指数进行估算,即在对调制指数进行估算时预设需要用到的辅助参数来对调制指数进行估算。
然而,通过预设辅助参数估算出来的调制指数的准确性不高。
发明内容
本申请实施例提供一种调制指数的估算方法和装置,用以提高获得的调制指数的准确性。
第一方面,本申请实施例提供了一种调制指数的估算方法,所述方法包括:
根据所述非线性调制信号的符号速率,对所述非线性调制信号对应的 数字信号的第一基带信号进行采样抽取,获得所述数字信号的第二基带信号;
根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数;
根据所述代价函数,获得所述非线性调制信号的调制指数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数,包括:
利用如下公式得到所述第二基带信号的代价函数:
JC(g,α,β)=|rC(g,α)|2+|rC(g,β)|2
其中,JC(g,α,β)为所述第二基带信号的代价函数;
Figure PCTCN2016096589-appb-000001
Figure PCTCN2016096589-appb-000002
g、α和β均为自变量,α的自变量取值是根据所述符号速率和所述载波偏频确定的,s2(n)为所述第二基带信号,C为s2(n)的观测长度,n为所述功率谱的自变量,n的取值范围为自然数,j2=-1,j为虚数单位。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述代价函数,获得所述非线性调制信号的调制指数,包括:
获取所述代价函数为最大值时的自变量g;
根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号 的调制指数,包括:
利用如下公式获得所述非线性调制信号的调制指数:
Figure PCTCN2016096589-appb-000003
其中,
Figure PCTCN2016096589-appb-000004
为所述非线性调制信号的调制指数,g0为所述代价函数为最大值时的自变量g。
在本申请实施例中,根据非线性调制信号的符号速率来获得非线性调制信号对应的数字信号的第二基带信号,然后再通过符号速率、第二基带信号和非线性调制信号的载波偏频获得第二基带信号的代价函数,并通过代价函数来获得调制指数,由于采用的辅助参数都是基于该非线性调制信号得到的,因此获取的代价函数的准确性较高,进而根据代价函数得到的调制指数的准确性较高,所以本申请实施例可以提高获得的调制指数的准确性。
另一方面,本申请实施例还提供了一种调制指数的估算装置,所述装置包括:
采样单元,用于根据所述非线性调制信号的符号速率,对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,获得所述数字信号的第二基带信号;
获取单元,用于根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数;
计算单元,用于根据所述代价函数,获得所述非线性调制信号的调制指数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式, 所述获取单元,具体用于:
利用如下公式得到所述第二基带信号的代价函数:
JC(g,α,β)=|rC(g,α)|2+|rC(g,β)|2
其中,JC(g,α,β)为所述第二基带信号的代价函数;
Figure PCTCN2016096589-appb-000005
Figure PCTCN2016096589-appb-000006
g、α和β均为自变量,α的自变量取值是根据所述符号速率和所述载波偏频确定的,s2(n)为所述第二基带信号,C为s2(n)的观测长度,n为所述功率谱的自变量,n的取值范围为自然数,j2=-1,j为虚数单位。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述计算单元,具体用于:
获取所述代价函数为最大值时的自变量g;
根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数。
如上所述的方面和任一可能的实现方式,进一步提供一种实现方式,所述计算单元用于根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数时,包括:
利用如下公式获得所述非线性调制信号的调制指数:
Figure PCTCN2016096589-appb-000007
其中,
Figure PCTCN2016096589-appb-000008
为所述非线性调制信号的调制指数,g0为所述代价函数为最大值时的自变量g。
在本申请实施例中,采样单元根据非线性调制信号的符号速率来获得非线性调制信号对应的数字信号的第二基带信号,然后获取单元再通过符 号速率、第二基带信号和非线性调制信号的载波偏频获得第二基带信号的代价函数,计算单元通过代价函数来获得调制指数,由于采用的辅助参数都是基于该非线性调制信号得到的,因此获取的代价函数的准确性较高,进而根据代价函数得到的调制指数的准确性较高,所以本申请实施例可以提高获得的调制指数的准确性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例一中提出的一种调制指数的估算方法的流程示意图;
图2为本申请实施例二中提出的一种调制指数的估算装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例一
本申请实施例一提出了一种调制指数的估算方法,具体如图1所示,所述方法可以包括以下步骤:
101、根据所述非线性调制信号的符号速率,对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,获得所述数字信号的第二基带信号。
具体的,为了提高获得的符号速率的准确度,在获得非线性调制信号对应的数字信号的功率谱后,对该功率谱进行平滑处理,消除信噪对基带信号的影响后,再获得符号速率;或者,在通过上述方法获得符号速率后,可以对该符号速率进行补偿,以消除该符号速率的误差,本申请实施例的目的是为了提高符号速率的准确性,因此所有能够提高该符号速率准确性的实现方式均属于本申请的保护范围。
并且,非线性调制信号对应的数字信号的第一基带信号也是通过该非线性调制信号得到的。可以通过该非线性调制信号的载波频率获得该第一基带信号。并且,由于非线性调制信号对应的数字信号的功率谱会受到信噪的影响,导致获得的载波频率不准确,因此在获得载波频率之前,可以对非线性调制信号对应的数字信号的功率谱进行去噪处理,以获得准确性较高的载波频率,进而获得准确性较高的第一基带信号。
同时,由于第一基带信号的准确性较高,在对第一基带信号进行采样抽取后得到的第二基带信号的准确性也相对较高。
例如,非线性调制信号包括但不限于CPM(Continue Phase Modulation,连续相位调制)信号等,CPM是一种相位连续、包络恒定的非线性调制方式,信号通过CPM方式进行调制后就得到了CPM信号,CPM信号包括第二代数字移动通信系统中采用的GMSK(Gaussian Filtered Minimum Shift Keying, 高斯最小频移键控)信号等。
102、根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数。
具体的,非线性调制信号的载波偏频是根据第一基带信号的瞬时频率获得的,因此为了提高非线性调制信号的载波偏频的准确性,可以利用上述获取第一基带信号的方法来获取第一基带信号,然后再通过获取的第一基带信号的瞬时频率来获取非线性调制信号的载波偏频。
由于符号速率、第二基带信号和载波偏频的准确性较高,因此通过上述三个参数获得的代价函数的准确性也较高,进而保证了通过代价函数获得数据的准确性。
举例说明,根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数的实现方法可以为:
利用如下公式得到所述第二基带信号的代价函数:
JC(g,α,β)=|rC(g,α)|2+|rC(g,β)|2
其中,JC(g,α,β)为所述第二基带信号的代价函数;
Figure PCTCN2016096589-appb-000009
Figure PCTCN2016096589-appb-000010
g、α和β均为自变量,α的自变量取值是根据所述符号速率和所述载波偏频确定的,s2(n)为所述第二基带信号,C为s2(n)的观测长度,n为所述功率谱的自变量,n的取值范围为自然数,j2=-1,j为虚数单位。
103、根据所述代价函数,获得所述非线性调制信号的调制指数。
具体的,由于获得的代价函数的准确性较高,因此通过分析上述公式可以获得准确性较高的调制指数。
举例说明,所述根据所述代价函数,获得所述非线性调制信号的调制指数,包括:
获取所述代价函数为最大值时的自变量g;
根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数。
具体的,在获取代价函数的最大值时,可以通过载波偏频、符号速率和调制指数的联合估计算法得到,在得到代价函数的最大值时就可以确定对应的自变量g的取值,然后再通过代价函数为最大值时的自变量g确定调制指数。
举例说明,根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数,包括:
利用如下公式获得所述非线性调制信号的调制指数:
Figure PCTCN2016096589-appb-000011
其中,
Figure PCTCN2016096589-appb-000012
为所述非线性调制信号的调制指数,g0为所述代价函数为最大值时的自变量g。
可以理解的是,由于代价函数的准确性较高,因此获得的代价函数的最大值对应的自变量g的准确性也较高,通过上述公式可以获得准确性较高的调制指数。
进一步的,由于通过上述方法可以获得准确性较高的调制指数,因此通过上述方法获得的调制指数可以提高对非线性调制信号的解调成功率。
在本申请实施例中,根据非线性调制信号的符号速率来获得非线性调制信号对应的数字信号的第二基带信号,然后再通过符号速率、第二基带信号和非线性调制信号的载波偏频获得第二基带信号的代价函数,并通过 代价函数来获得调制指数,由于采用的辅助参数都是基于该非线性调制信号得到的,因此获取的代价函数的准确性较高,进而根据代价函数得到的调制指数的准确性较高,所以本申请实施例可以提高获得的调制指数的准确性。
实施例二
本申请实施例二提供一种调制指数的估算装置,可用于实现前述各方法流程,如图2所示,所述装置包括:
采样单元21,用于根据所述非线性调制信号的符号速率,对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,获得所述数字信号的第二基带信号;
获取单元22,用于根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数;
计算单元23,用于根据所述代价函数,获得所述非线性调制信号的调制指数。
在一个具体的实现方案中,所述获取单元22,具体用于:
利用如下公式得到所述第二基带信号的代价函数:
JC(g,α,β)=|rC(g,α)|2+|rC(g,β)|2
其中,JC(g,α,β)为所述第二基带信号的代价函数;
Figure PCTCN2016096589-appb-000013
Figure PCTCN2016096589-appb-000014
g、α和β均为自变量,α的自变量取值是根据所述符号速率和所述载波偏频确定的,s2(n)为所述第二基带信号,C为s2(n)的观测长度,n为所述 功率谱的自变量,n的取值范围为自然数,j2=-1,j为虚数单位。
在一个具体的实现方案中,所述计算单元23,具体用于:
获取所述代价函数为最大值时的自变量g;
根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数。
在一个具体的实现方案中,所述计算单元23用于根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数时,包括:
利用如下公式获得所述非线性调制信号的调制指数:
Figure PCTCN2016096589-appb-000015
其中,
Figure PCTCN2016096589-appb-000016
为所述非线性调制信号的调制指数,g0为所述代价函数为最大值时的自变量g。
在本申请实施例中,采样单元根据非线性调制信号的符号速率来获得非线性调制信号对应的数字信号的第二基带信号,然后获取单元再通过符号速率、第二基带信号和非线性调制信号的载波偏频获得第二基带信号的代价函数,计算单元通过代价函数来获得调制指数,由于采用的辅助参数都是基于该非线性调制信号得到的,因此获取的代价函数的准确性较高,进而根据代价函数得到的调制指数的准确性较高,所以本申请实施例可以提高获得的调制指数的准确性。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到至少两个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (8)

  1. 一种调制指数的估算方法,其特征在于,所述方法包括:
    根据所述非线性调制信号的符号速率,对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,获得所述数字信号的第二基带信号;
    根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数;
    根据所述代价函数,获得所述非线性调制信号的调制指数。
  2. 如权利要求1所述方法,其特征在于,所述根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数,包括:
    利用如下公式得到所述第二基带信号的代价函数:
    JC(g,α,β)=|rC(g,α)|2+|rC(g,β)|2
    其中,JC(g,α,β)为所述第二基带信号的代价函数;
    Figure PCTCN2016096589-appb-100001
    Figure PCTCN2016096589-appb-100002
    g、α和β均为自变量,α的自变量取值是根据所述符号速率和所述载波偏频确定的,s2(n)为所述第二基带信号,C为s2(n)的观测长度,n为所述功率谱的自变量,n的取值范围为自然数,j2=-1,j为虚数单位。
  3. 如权利要求1所述方法,其特征在于,所述根据所述代价函数,获得所述非线性调制信号的调制指数,包括:
    获取所述代价函数为最大值时的自变量g;
    根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的 调制指数。
  4. 如权利要求3所述方法,其特征在于,所述根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数,包括:
    利用如下公式获得所述非线性调制信号的调制指数:
    Figure PCTCN2016096589-appb-100003
    其中,
    Figure PCTCN2016096589-appb-100004
    为所述非线性调制信号的调制指数,g0为所述代价函数为最大值时的自变量g。
  5. 一种调制指数的估算装置,其特征在于,所述装置包括:
    采样单元,用于根据所述非线性调制信号的符号速率,对所述非线性调制信号对应的数字信号的第一基带信号进行采样抽取,获得所述数字信号的第二基带信号;
    获取单元,用于根据所述符号速率、所述第二基带信号和所述非线性调制信号的载波偏频,得到所述第二基带信号的代价函数;
    计算单元,用于根据所述代价函数,获得所述非线性调制信号的调制指数。
  6. 如权利要求5所述装置,其特征在于,所述获取单元,具体用于:
    利用如下公式得到所述第二基带信号的代价函数:
    JC(g,α,β)=|rC(g,α)|2+|rC(g,β)|2
    其中,JC(g,α,β)为所述第二基带信号的代价函数;
    Figure PCTCN2016096589-appb-100005
    Figure PCTCN2016096589-appb-100006
    g、α和β均为自变量,α的自变量取值是根据所述符号速率和所述载波偏频确定的,s2(n)为所述第二基带信号,C为s2(n)的观测长度,n为所述 功率谱的自变量,n的取值范围为自然数,j2=-1,j为虚数单位。
  7. 如权利要求5所述装置,其特征在于,所述计算单元,具体用于:
    获取所述代价函数为最大值时的自变量g;
    根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数。
  8. 如权利要求7所述装置,其特征在于,所述计算单元用于根据所述代价函数为最大值时的自变量g,获得所述非线性调制信号的调制指数时,包括:
    利用如下公式获得所述非线性调制信号的调制指数:
    Figure PCTCN2016096589-appb-100007
    其中,
    Figure PCTCN2016096589-appb-100008
    为所述非线性调制信号的调制指数,g0为所述代价函数为最大值时的自变量g。
PCT/CN2016/096589 2016-08-24 2016-08-24 一种调制指数的估算方法和装置 WO2018035760A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096589 WO2018035760A1 (zh) 2016-08-24 2016-08-24 一种调制指数的估算方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096589 WO2018035760A1 (zh) 2016-08-24 2016-08-24 一种调制指数的估算方法和装置

Publications (1)

Publication Number Publication Date
WO2018035760A1 true WO2018035760A1 (zh) 2018-03-01

Family

ID=61246020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096589 WO2018035760A1 (zh) 2016-08-24 2016-08-24 一种调制指数的估算方法和装置

Country Status (1)

Country Link
WO (1) WO2018035760A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285710A (zh) * 2021-12-28 2022-04-05 北京升哲科技有限公司 Cpm信号的调制指数估计方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136480A1 (en) * 2002-06-27 2004-07-15 Gerrit Smit Method and system for concurrent estimation of frequency offset and modulation index
CN103973621A (zh) * 2014-05-09 2014-08-06 武汉软件工程职业学院 一种二进制连续相位频率键控调制信号的参数识别方法
CN105827551A (zh) * 2015-01-04 2016-08-03 展讯通信(上海)有限公司 一种估计调制指数和频率偏移的方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040136480A1 (en) * 2002-06-27 2004-07-15 Gerrit Smit Method and system for concurrent estimation of frequency offset and modulation index
CN103973621A (zh) * 2014-05-09 2014-08-06 武汉软件工程职业学院 一种二进制连续相位频率键控调制信号的参数识别方法
CN105827551A (zh) * 2015-01-04 2016-08-03 展讯通信(上海)有限公司 一种估计调制指数和频率偏移的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, SHULING, A BLIND PARAMETER ESTIMATION ALGORITHM FOR CPM SIGNALS, RADIO COMMUNICATIONS TECHNOLOGY, vol. 39, no. 2, 30 April 2013 (2013-04-30), ISSN: 1003-3114 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114285710A (zh) * 2021-12-28 2022-04-05 北京升哲科技有限公司 Cpm信号的调制指数估计方法、装置、设备及存储介质
CN114285710B (zh) * 2021-12-28 2023-09-15 北京升哲科技有限公司 Cpm信号的调制指数估计方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
EP3621259B1 (en) Method and device for fsk/gfsk demodulation
CN104022981A (zh) 一种正交幅度调制信号的盲载波频偏估计方法
RU2598693C1 (ru) Способ и устройство для оценки текущего отношения сигнал-шум
CN110300079B (zh) 一种msk信号相干解调方法及系统
KR101674747B1 (ko) I/q 불균형을 보상하기 위한 레이더 신호 처리 장치 및 방법
CN202906963U (zh) 相干解调频移键控调制信号的频率偏移估计系统
TW201038028A (en) Carrier recovery device and related method
CN107623647B (zh) 一种基于离散导频辅助的载波同步方法
CN104459743A (zh) 一种相干多载波调制信号分量间载波相位偏差确定方法
JP2010200319A (ja) 特にモバイル装置の通信信号受信機の搬送波周波数シフトを推定するための方法
WO2016119444A1 (zh) 一种频偏估计的方法、装置及计算机存储介质
WO2018035760A1 (zh) 一种调制指数的估算方法和装置
CN107078981B (zh) 用于估计接收信号中的瞬时频率偏差的方法和频率偏差估计器
CN103873225A (zh) 突发通信的定时估计方法
EP3035622B1 (en) Maximum likelihood sequence detection in the phase domain
CN106027116B (zh) 一种基于chirp信号的移动水声通信多普勒系数估计方法
WO2018035761A1 (zh) 一种调制阶数的估算方法和装置
Yuan et al. Rapid carrier acquisition from baud-rate samples
CN103973621A (zh) 一种二进制连续相位频率键控调制信号的参数识别方法
CN103457630B (zh) 一种复数域下的干扰信号幅度估计方法及装置
CN108353066B (zh) 用于载波频率偏移校正的设备和方法及其存储介质
WO2018035763A1 (zh) 一种符号速率的估算方法和装置
CN107135182B (zh) 调频信号的频偏计算方法及装置
CN115632923A (zh) 一种基于oqpsk的无人机与卫星超宽带通信方法及相关设备
TWI382719B (zh) 通訊系統、電腦程式產品與參數估計方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913783

Country of ref document: EP

Kind code of ref document: A1