WO2018035691A1 - 用于图像处理的方法和装置 - Google Patents

用于图像处理的方法和装置 Download PDF

Info

Publication number
WO2018035691A1
WO2018035691A1 PCT/CN2016/096280 CN2016096280W WO2018035691A1 WO 2018035691 A1 WO2018035691 A1 WO 2018035691A1 CN 2016096280 W CN2016096280 W CN 2016096280W WO 2018035691 A1 WO2018035691 A1 WO 2018035691A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
component
image
color adjustment
value
Prior art date
Application number
PCT/CN2016/096280
Other languages
English (en)
French (fr)
Inventor
李蒙
陈海
郑建铧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680087579.7A priority Critical patent/CN109417616B/zh
Priority to PCT/CN2016/096280 priority patent/WO2018035691A1/zh
Priority to CN202010320630.2A priority patent/CN111667418A/zh
Publication of WO2018035691A1 publication Critical patent/WO2018035691A1/zh
Priority to US16/282,061 priority patent/US10963996B2/en

Links

Images

Classifications

    • G06T5/92
    • G06T5/94
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • G06T2207/20208High dynamic range [HDR] image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration by the use of histogram techniques

Definitions

  • the present invention relates to the field of image processing, and more particularly to a method and apparatus for image processing.
  • FIG. 1 shows a common application scenario of the method of image processing.
  • the image processing apparatus may perform specified image processing (for example, dynamic range adjustment processing or color processing) on the input image to be processed, and output the processed target image.
  • the dynamic range adjustment process may refer to a process of converting the first dynamic range image into the second dynamic range image.
  • the dynamic range may be a ratio of a maximum brightness value and a minimum brightness value of the image.
  • Dynamic range adjustment will cause image color shift (ie, color deviation).
  • the more common color processing method is to adjust the color value of the image according to the color adjustment coefficient, but it cannot be adjusted by existing color adjustment technology. Adjust the color deviation caused by the above dynamic range adjustment.
  • FIG. 2 shows the color distribution of an image obtained according to the color processing method of the prior art in the case of a given brightness
  • the abscissa of the coordinate system represents the U component
  • the ordinate represents V. Component.
  • each dotted line passing through the center point in the figure represents an ideal distribution curve of the same hue at different saturations
  • each solid line in the figure represents an actual distribution curve after color processing of the same hue (the actual distribution curve may be passed)
  • the color calibration experiment measured where the gray dots represent the reference hue.
  • Fig. 2 there is a deviation between the actual distribution curve and the ideal distribution curve, or the colors of the same hue are not uniformly distributed on the straight line passing through the center point. It can be seen that the prior art method of color processing may cause color deviation under certain conditions and affect the quality of the image.
  • Embodiments of the present invention provide a method and apparatus for image processing that can improve the quality of an image subjected to color processing.
  • a method for image processing comprising: determining an image to be processed a color value of N color components of each pixel, N is a natural number greater than 1; determining N ratios of luminance values of the pixels and color values of the N color components, respectively; determining according to the N ratios N first color adjustment coefficients; performing color processing on each of the pixels according to the N first color adjustment coefficients and the color values of the N color components to obtain a target image.
  • N first color adjustment coefficients are determined according to the N ratios of the luminance values of the pixels of the image to be processed and the color values of the N color components, and the color processing is performed on the image to be processed, thereby reducing the color.
  • the color deviation phenomenon of the processed image improves the quality of the image subjected to color processing.
  • the determining the N first color adjustment coefficients according to the N ratios includes: determining, according to the N ratios and a first power function, the N of each pixel a second color adjustment coefficient, wherein the N second color adjustment coefficients are values obtained by substituting the N ratio values into the first power function; determining the N according to the N second color adjustment coefficients The first color adjustment factor.
  • N second color adjustment coefficients are determined according to the N ratios of the luminance values of the pixels of the image to be processed and the color values of the N color components, and the first power function, and according to the N second The color adjustment coefficient determines N first color adjustment coefficients, and performs color processing on the image to be processed, which can reduce the color deviation phenomenon of the image subjected to color processing, and improve the quality of the image subjected to color processing.
  • the determining, according to the N second color adjustment coefficients, the N first color adjustment coefficients comprising: determining the N second color adjustment coefficients as the N The first color adjustment factor.
  • the method further includes: determining a third color adjustment coefficient of each pixel; and determining, according to the N second color adjustment coefficients, the N first color adjustment coefficients, including: Determining, according to the third color adjustment coefficient and the N second color adjustment coefficients, the N first color adjustment coefficients, wherein the N first color adjustment coefficients are respectively the third color adjustment coefficient
  • the N products obtained by multiplying the N second color adjustment coefficients are described.
  • the index of the first power function is determined by a lookup table.
  • the image to be processed is an image subjected to dynamic range adjustment processing
  • determining the third color adjustment coefficient of each pixel includes: determining that each pixel is adjusted in the dynamic range And an electrical signal ratio of the electrical signal value after the processing and the electrical signal value before the dynamic range adjusting process; determining the third color adjustment coefficient according to the electrical signal ratio.
  • the third color adjustment coefficient is determined according to the electrical signal ratio between the corresponding electrical signal values before and after the dynamic range adjustment processing based on the image to be processed, and according to the third color adjustment coefficient and the second color adjustment coefficient, Determining the N first color adjustment coefficients of the image to be processed, and performing color processing on the image to be processed can reduce the color deviation phenomenon caused by the dynamic range adjustment processing of the image to be processed, and improve the quality of the image subjected to color processing.
  • the determining, according to the electrical signal ratio, the third color adjustment coefficient comprises: determining the third color adjustment coefficient according to the electrical signal ratio and a second power function, The third color adjustment coefficient is a value obtained by substituting the electrical signal ratio into the second power function.
  • the index of the second power function is determined by a lookup table.
  • the N first color adjustment coefficients are preset.
  • At least two first color adjustment coefficients of the preset N first color adjustment coefficients are different, and color processing of the image to be processed can be improved according to the N first color adjustment coefficients.
  • the quality of the image being color processed is not limited
  • the N color components include an R component, a G component, and a B component in an RGB space, and the color according to the N first color adjustment coefficients and the N color components
  • performing color processing on the image to be processed to obtain a target image comprising: performing color processing on the image to be processed according to the following formula to obtain a target image:
  • Y represents the brightness value of the image to be processed
  • R, G, and B represent the color value of the R component of the image to be processed
  • the color value of the G component, and the color value of the B component respectively
  • R', G', B' respectively represent a color value of the R component of the target image, a color value of the G component, and a color value of the B component
  • a 1 represents a first color adjustment coefficient corresponding to the R component
  • a 2 represents a first color adjustment coefficient corresponding to the G component
  • a 3 represents The first color adjustment factor corresponding to the B component.
  • the N color components include a U component and a V component in a YUV space, according to the color values of the N first color adjustment coefficients and the N color components, Performing color processing on the image to be processed to obtain a target image includes: performing color processing on the image to be processed according to the following formula to obtain a target image:
  • u and v respectively represent the color value of the U component of the image to be processed and the color value of the V component
  • u', v' respectively represent the color value of the U component of the target image and the color value of the V component
  • a 4 represents the U component
  • a 5 represents a first color adjustment coefficient corresponding to the V component.
  • a method for image processing comprising: determining a color value of N color components of each pixel of an image to be processed, wherein the image to be processed is an image subjected to dynamic range adjustment processing, and N is greater than a natural number of 1; determining N ratios of luminance values of the respective pixels and color values of the N color components; determining N second of each pixel according to the N ratios and a first power function a color adjustment coefficient, wherein the N second color adjustment coefficients are values obtained by substituting the N ratio values into the first power function; determining an electrical signal value of the pixels after the dynamic range adjustment process An electrical signal ratio of the electrical signal value before the dynamic range adjustment processing; determining a third color adjustment coefficient according to the electrical signal ratio; determining according to the third color adjustment coefficient and the N second color adjustment coefficients N first color adjustment coefficients, the N first color adjustment coefficients are N products obtained by multiplying the third color adjustment coefficients by the N second color adjustment coefficients respectively; according to the N A color adjustment factor and said N color
  • the ratio of the electrical signals between the corresponding electrical signal values before and after the dynamic range adjustment processing based on the image to be processed, and the ratio of the luminance values of the image to be processed and the color values of the N color components are Determining the N first color adjustment coefficients of the image to be processed, and performing color processing on the image to be processed can reduce the color deviation phenomenon caused by the dynamic range adjustment processing of the image to be processed, and improve the quality of the image subjected to color processing.
  • the determining, according to the electrical signal ratio, the third color adjustment coefficient comprises: determining the third color adjustment coefficient according to the electrical signal ratio and a second power function, The third color adjustment coefficient is a value obtained by substituting the electrical signal ratio into the second power function.
  • the index of the first power function is determined by a lookup table.
  • the index of the second power function is determined by a lookup table.
  • the N color components include an R component, a G component, and a B component in an RGB space, and the color according to the N first color adjustment coefficients and the N color components a value, color processing the image to be processed to obtain a target image, including: Color processing the image to be processed according to the following formula to obtain the target image:
  • Y represents the luminance value of the image to be processed
  • R, G, and B respectively represent the color value of the R component of the image to be processed
  • the color value of the G component and the color value of the B component
  • R', G', B ' represent the R component of the target image color values, the color values in the color value of the G component and the B component
  • a 1 represents a first color adjustment coefficient corresponding to the R component
  • a 2 represents a first color component corresponding to G The adjustment coefficient
  • a 3 represents the first color adjustment coefficient corresponding to the B component.
  • the N color components include a U component and a V component in a YUV space, according to the color values of the N first color adjustment coefficients and the N color components, Performing color processing on the image to be processed to obtain a target image includes: performing color processing on the image to be processed according to the following formula to obtain the target image:
  • u, v respectively represent the color value of the U component of the image to be processed and the color value of the V component
  • u', v' respectively represent the color value of the U component of the target image and the color value of the V component
  • a 4 denotes a first color adjustment coefficient corresponding to the U component
  • a 5 denotes a first color adjustment coefficient corresponding to the V component.
  • an apparatus for image processing comprising means for performing the method of the first aspect.
  • the apparatus comprising means for performing the method of the first aspect.
  • an apparatus for image processing comprising means for performing the method of the second aspect.
  • the apparatus comprising means for performing the method of the second aspect.
  • an apparatus comprising a memory and a processor.
  • the memory is for storing a program
  • the processor is for executing a program
  • the processor is for performing the method of the first aspect.
  • an apparatus comprising a memory and a processor.
  • the storage is for storing a program
  • the processor is for executing a program
  • the processor is for performing the method of the second aspect.
  • a system chip comprising means for performing the method of the first aspect.
  • a system chip comprising means for performing the method of the second aspect.
  • FIG. 1 is a schematic diagram of an application scenario for image processing according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a color distribution of an image of an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a method for image processing according to an embodiment of the present invention.
  • FIG. 4 is a flow chart showing a method for image processing according to another embodiment of the present invention.
  • FIG. 5 is a schematic illustration of an apparatus for image processing in accordance with an embodiment of the present invention.
  • Figure 6 is a schematic diagram of an apparatus for image processing in accordance with another embodiment of the present invention.
  • An electrical signal value that represents a digitally expressed value of a graphic brightness or color component.
  • the electrical signal value can be used to characterize the Y component of the YUV space, the R component, the G component, and the B component of the RGB space.
  • the color value represents a digital expression value of the color component of the image, and the color value can be used to represent the U component, the V component of the YUV space, and the R component, the G component, and the B component of the RGB space.
  • Luminance value which represents the digital expression of the image brightness component, which can be used to characterize YUV The Y component of the space.
  • the embodiment of the present invention proposes a method for image processing and
  • the device may respectively determine N first color adjustment coefficients corresponding to N color components of each pixel of the image to be processed, and perform color processing on the image to be processed according to the N first color adjustment coefficients, thereby reducing color processing
  • the color cast phenomenon of the rear image improves the quality of the image subjected to color processing, and N is a natural number greater than 1.
  • the method of adjusting the color of an image is mainly to convert the color value of each pixel of the image according to a given color adjustment coefficient to obtain a processed image.
  • image color adjustment is generally performed according to the following formula:
  • Y represents the brightness value of the image to be processed
  • R, G, and B represent the color value of the R component of the image to be processed
  • R', G', B' respectively represent The color value of the R component of the target image, the color value of the G component, and the color value of the B component
  • a represents a color adjustment coefficient
  • the image color adjustment is generally performed according to the following formula:
  • u and v respectively represent the color value of the U component of the image to be processed and the color value of the V component
  • u′, v′ respectively represent the color value of the U component of the target image and the color value of the V component
  • a represents the color adjustment coefficient.
  • each color component in the color space for performing color processing corresponds to the same color adjustment coefficient
  • the embodiment of the present invention adopts multiple (N) color adjustment coefficients for color. Processing, in other words, the color adjustment coefficients corresponding to the respective color components may be different.
  • the color space may be a YUV space or an RGB space
  • the color component may be a U component and a V component of the YUV space.
  • the above color component may also be the R component, the G component, and the B component of the RGB space.
  • FIG. 3 shows a schematic diagram of a method for image processing according to an embodiment of the present invention. As shown in FIG. 3, the method 300 includes:
  • the colors in the embodiments of the present invention may include hue and saturation.
  • the above N color components may be components for characterizing colors in the color space of the image.
  • the color component described above may be the U component and the V component of the YUV space.
  • the above color component may also be the R component, the G component, and the B component of the RGB space.
  • the above components may also be referred to as channels, signals, color components, and the like.
  • the above color components may also be referred to as a channel of a color space, a channel of a color space, a color component of a color space, and the like.
  • the color value of the above color component can also be understood as a corresponding color component value, a color channel value, a color component value, and the like.
  • S302. Determine N ratios of luminance values of the pixels and color values of the N color components, respectively.
  • the brightness value of each pixel of the image to be processed may be determined in various ways, for example, for a YUV space, the brightness value may be a color value of the Y component of the YUV space.
  • the color value of the Y component can be calculated from the color values of the R component, the G component, and the B component.
  • a 11 , a 12 , and a 13 are fixed coefficients.
  • the values of a 11 , a 12 , and a 13 can be variously selected, which is not limited by the embodiment of the present invention.
  • Y, U, V, R, G, and B represent the color values of the respective color components.
  • the N first color adjustment coefficients can be determined in a variety of ways.
  • N first color adjustment coefficients can be obtained by experimental data calibration methods.
  • the N first color adjustment coefficients may also be determined by the ratio of the luminance values of the image to be processed to the color values of the N color components, respectively.
  • the following method can be used to perform color processing on the image to be processed:
  • Y represents the brightness value of the image to be processed
  • R, G, and B represent the color value of the R component of the image to be processed
  • the color value of the G component, and the color value of the B component respectively
  • R', G', B' respectively represent a color value of the R component of the target image, a color value of the G component, and a color value of the B component
  • a 1 represents a first color adjustment coefficient corresponding to the R component
  • a 2 represents a first color adjustment coefficient corresponding to the G component
  • a 3 represents The first color adjustment factor corresponding to the B component.
  • the color of the image to be processed can be processed using the following formula:
  • u and v respectively represent the color value of the U component of the image to be processed and the color value of the V component
  • u', v' respectively represent the color value of the U component of the target image and the color value of the V component
  • a 4 represents the U component
  • a 5 represents a first color adjustment coefficient corresponding to the V component.
  • the N first color adjustment coefficients and the N color components in the embodiment of the present invention may be understood as N first color adjustment coefficients corresponding to each pixel in the image to be processed or N color components corresponding to each pixel.
  • N first color adjustment coefficients are determined according to the N ratios of the luminance values of the pixels of the image to be processed and the color values of the N color components, and the color processing is performed on the image to be processed, thereby reducing the color.
  • the color deviation phenomenon of the processed image improves the quality of the image subjected to color processing.
  • determining the N first color adjustment coefficients according to the N ratios may include multiple manners.
  • the N ratios may be directly determined as N first color adjustment coefficients.
  • N second color adjustment coefficients may also be determined according to the N ratios and a dedicated function.
  • the N first color adjustment coefficients are then determined based on the N second color adjustment coefficients.
  • the dedicated function can be used to represent the correspondence between the N ratios and the N second color adjustment coefficients.
  • the special function can be a power function or a linear function.
  • the power function is called the first power function.
  • the index b of the first power function is a function coefficient.
  • N second color adjustment coefficients may be determined according to the N ratios and the first power function.
  • N first color adjustment coefficients are determined according to the N second color adjustment coefficients.
  • the N second color adjustment coefficients are values obtained by substituting the N ratio values into the first power function.
  • the coefficient b of the first power function may be determined by means of a lookup table using image or image sequence statistical information, and the image or image sequence statistical information may include a maximum value, a minimum value, an average value, a standard deviation, and a histogram of the image or image sequence. Figure distribution information.
  • a person skilled in the art can establish a correspondence between an index of the first power function and an average brightness value of the image to be processed based on experimental data or experience.
  • the average brightness value of the image to be processed may refer to an average of the brightness of the image to be processed or the sequence of images to be processed.
  • the correspondence may be as shown in Table 1.
  • the average luminance value in Table 1 ranges from [0, 1].
  • the average luminance value when the average luminance value of the image to be processed is acquired, the average luminance value may be an average value of the Y component of the image to be processed, or an average of other components of the image to be processed.
  • the index of the first power function When the average luminance value is less than 0.1, the index of the first power function may be 1.2; when the average luminance value is greater than 0.6, the index of the first power function may be 0.2.
  • the index value of the first power function can be obtained by interpolation.
  • the embodiment of the present invention does not limit the interpolation mode. For example, linear interpolation, quadratic linear interpolation, etc. can be adopted.
  • the index value of the first power function when the average luminance value is between 0.55 and 0.6, the index value of the first power function can be obtained by linear interpolation as follows:
  • the output represents an exponent value of the first power function
  • the input represents an average brightness value of the image to be processed or the sequence of images to be processed.
  • N second color adjustment coefficients are determined according to the N ratios of the luminance values of the pixels of the image to be processed and the color values of the N color components, and the first power function, and according to the N second
  • the color adjustment coefficient determines N first color adjustment coefficients, and performs color processing on the image to be processed, which can reduce the color deviation phenomenon of the image subjected to color processing, and improve the color of the color. The quality of the color processed image.
  • determining the N first color adjustment coefficients according to the N second color adjustment coefficients may include multiple methods.
  • the N second color adjustment coefficients may be directly used as the N first color adjustment coefficients.
  • the N first color adjustment coefficients may also be determined according to the third color adjustment coefficient of each pixel and the N second color adjustment coefficients.
  • the N first color adjustment coefficients may be N products obtained by multiplying the third color adjustment coefficients by the N second color adjustment coefficients, respectively.
  • the third color adjustment coefficient may be a color adjustment coefficient of a given image to be processed, or may be determined according to other manners.
  • the image to be processed may be an image subjected to dynamic range adjustment processing, and the dynamic range adjustment processing indicates compression or stretching of electrical signal values (eg, Y component, R component, G component, and B component) of the image. deal with.
  • the dynamic range adjustment processing of the image may cause color deviation phenomenon of the image.
  • the third color adjustment factor may be determined based on an electrical signal ratio.
  • the electrical signal ratio may be an electrical signal ratio of each of the pixels after the dynamic range adjustment processing and the electrical signal value before the dynamic range adjustment processing.
  • the electrical signal value may be the Y component of the YUV space, or may be the R component, the G component, and the B component of the RGB space.
  • the dynamic range adjustment processing of the electrical signal values of the image to be processed can be as shown in the following formula:
  • the electric signal value before the dynamic range adjustment processing is Y 1
  • the electric signal value after the dynamic range adjustment processing is Y 2
  • c is an electrical signal ratio before and after the dynamic range adjustment processing.
  • the dynamic range adjustment processing of the color values of the image to be processed can be as shown in the following formula:
  • the color values before the dynamic range adjustment processing are R 1 , G 1 , and B 1
  • the color values after the dynamic range adjustment processing are R 2 , G 2 , B 2 , and f are electrical signal ratios before and after the dynamic range adjustment processing.
  • the N ratios of the electrical signal ratio before and after the dynamic range adjustment processing and the luminance values of the image to be processed and the color values of the N color components are determined based on the image to be processed, and N first to be processed are determined.
  • Color adjustment coefficient, color processing of the image to be processed can reduce the color deviation phenomenon caused by the dynamic range adjustment processing, and improve the color processing map Like the quality.
  • determining the third color adjustment coefficient includes multiple manners according to the electrical signal ratio.
  • the electrical signal ratio can be directly determined as the third color adjustment factor.
  • the third color adjustment coefficient may be determined according to the electrical signal ratio and the second power function, where the third color adjustment coefficient may be obtained by substituting the electrical signal ratio into the second power function. value.
  • the index d of the second power function is a function coefficient.
  • the value of d can be determined by a person skilled in the art based on experimental data, empirically selected fixed values or using image or image sequence statistical information by means of a lookup table, and the image or image sequence statistical information may include the maximum value of the image or image sequence. , minimum, average, standard deviation, and histogram distribution information.
  • a person skilled in the art can establish a correspondence between an index of the second power function and an average brightness value of the image to be processed based on experimental data or experience.
  • the average brightness value of the image to be processed may refer to an average of the brightness of the image to be processed or the sequence of images to be processed.
  • the correspondence may be as shown in Table 2.
  • the average luminance values in Table 2 are expressed in a normalized manner with a range of [0, 1]. Among them, 1 represents the maximum value of the luminance value, and 0 represents the minimum value of the luminance value.
  • the method for finding the index of the second power function can refer to the detailed description related to Table 1, and details are not described herein again.
  • the N first color adjustment coefficients may be preset.
  • the N first color adjustment coefficients may be obtained by calibration of experimental data.
  • a mapping relationship between the N first color adjustment coefficients and the color values of the N color components of the pixels may be counted based on the experimental data, and N first color adjustment coefficients are determined based on the mapping relationship.
  • the N first color adjustment coefficients corresponding to the pixels of the image to be processed are respectively determined, and the color processing of the image to be processed is performed, and the quality of the image subjected to the color processing can be improved.
  • R, G, and B respectively represent the color value of the R component of the image to be processed, the color value of the G component, and the color value of the B component
  • a 1 represents a first color adjustment coefficient corresponding to the R component
  • a 2 represents a G component corresponding to The first color adjustment coefficient
  • a 3 represents the first color adjustment coefficient corresponding to the B component.
  • the R component, the G component, and the B component in Table 3 are represented in a normalized manner, and the ranges thereof are [0, 1], respectively.
  • 1 represents the maximum value of each component value
  • 0 represents the minimum value of each component value.
  • the first color corresponding to the R component, the G component, and the B component value respectively is determined by the lookup table. Adjustment coefficient.
  • Table 4 shows the mapping relationship between the N first color adjustment coefficients and the color values of the N color components based on experimental data statistics.
  • u represents the color value of the U component
  • v represents the color value of the V component.
  • a 4 represents a first color adjustment coefficient corresponding to the U component
  • a 5 represents a first color adjustment coefficient corresponding to the V component.
  • the U component and the V component in Table 4 are represented in a normalized manner, and the ranges thereof are [0, 1], respectively.
  • 1 represents the maximum value of each component value
  • 0 represents the minimum value of each component value.
  • the first color adjustment coefficient corresponding to the U component and the V component respectively is determined by the lookup table.
  • FIG. 4 is a flow diagram of a method 400 for processing an image in accordance with an embodiment of the present invention.
  • the example of Figure 4 can be applied to the RGB space. It mainly shows the process of determining N first color adjustment coefficients.
  • the scheme of Figure 4 can be applied to the conversion process of HDR to SDR. Alternatively, the scheme of FIG. 4 can also be applied to the conversion process of SDR to HDR.
  • the image to be processed has undergone dynamic range adjustment processing before color processing.
  • method 400 includes:
  • the a may be an electrical signal ratio between an electrical signal value of each pixel of the image to be processed after the dynamic range adjustment process and an electrical signal value before the dynamic range adjustment process.
  • the coefficient d can be determined by means of a lookup table using image or image sequence statistics.
  • the coefficient d can be determined according to Table 2.
  • d can be a fixed value selected empirically, such as 0.2.
  • the coefficient b can be determined by means of a lookup table using image or image sequence statistics.
  • the coefficient b can be determined according to Table 1.
  • a1, a2, and a3 are BetaR, BetaG, and BetaB, respectively.
  • N first color adjustment coefficients are determined according to the N ratios of the luminance values of the pixels of the image to be processed and the color values of the N color components, and the color processing is performed on the image to be processed, thereby reducing the color.
  • the color deviation phenomenon of the processed image improves the quality of the image subjected to color processing.
  • FIG. 5 is a schematic diagram of an apparatus 500 according to an embodiment of the present invention. It should be understood that the apparatus 500 of FIG. 5 can implement various steps of the method in FIG. 1 to FIG. 4, and the repeated description is omitted as appropriate for brevity.
  • the apparatus 500 includes:
  • a determining module 510 configured to determine a color value of N color components of each pixel of the image to be processed, N is a natural number greater than 1; and determine a brightness value of each pixel and a color value N of the N color components respectively a ratio; determining the N first color adjustment coefficients according to the N ratios;
  • the processing module 520 is configured to perform color processing on each of the pixels according to the N first color adjustment coefficients and the color values of the N color components to obtain a target image.
  • N first color adjustment coefficients corresponding to N color components of pixels of an image to be processed may be respectively determined, and color processing is performed on the image to be processed according to the N first color adjustment coefficients, which can be reduced.
  • the color cast phenomenon of the color processed image improves the quality of the image subjected to color processing.
  • FIG. 6 is a schematic illustration of an apparatus 600 in accordance with an embodiment of the present invention. It should be understood that the apparatus of FIG. 6 can implement the various steps of the method of FIG. 1 to FIG. 4, and the repeated description is omitted as appropriate for brevity.
  • the apparatus 600 includes:
  • a memory 610 configured to store a program
  • the processor 620 is configured to execute a program in the memory 610, where the processor 620 is configured to determine color values of N color components of each pixel of the image to be processed, and determine each of the to-be-processed images. a color value of N color components of the pixel, N being a natural number greater than 1; determining N ratios of brightness values of the respective pixels and color values of the N color components; Determining, by the N ratios, the N first color adjustment coefficients; performing color processing on each pixel according to the N first color adjustment coefficients and color values of the N color components to obtain a target image.
  • N first color adjustment coefficients corresponding to N color components of pixels of an image to be processed may be respectively determined, and color processing is performed on the image to be processed according to the N first color adjustment coefficients, which can be reduced.
  • the color cast phenomenon of the color processed image improves the quality of the image subjected to color processing.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and may be implemented in actual implementation.
  • There are additional ways of dividing for example, multiple units or components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method of various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

一种用于图像处理的方法和装置,能够提高进行色彩处理的图像的质量,包括:确定待处理图像的各像素的N个色彩分量的色彩值,N为大于1的自然数;确定所述各像素的亮度值分别与所述N个色彩分量的色彩值的N个比值;根据所述N个比值,确定N个第一色彩调整系数;根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述各像素进行色彩处理,以得到目标图像。

Description

用于图像处理的方法和装置 技术领域
本发明涉及图像处理领域,尤其涉及用于图像处理的方法和装置。
背景技术
在图像处理领域中,经常涉及对图像的色彩进行调整的情况。例如,在对图像进行高动态范围(High Dynamic Range,HDR)和标准动态范围(Standard Dynamic Range,SDR)之间转换的过程中,涉及到对图像的动态范围调整处理以及对图像的色彩处理的情况。其中,图1示出了图像处理的方法的常见应用场景。图像处理装置可以对输入的待处理的图像进行指定的图像处理(例如,动态范围调整处理或色彩处理),并输出处理后的目标图像。动态范围调整处理可以指将第一动态范围图像转换为第二动态范围图像的处理。其中,动态范围可以是图像的最大亮度值和最小亮度值的比值。动态范围调整会造成图像色彩的偏移(即色彩偏差),现有技术中,较为常见的色彩处理的方式是,根据色彩调整系数对图像的色彩值进行调整,但是通过现有色彩调整技术无法调整上述动态范围调整引起的色彩偏差。
现有技术主要存在以下问题:图2示出了在给定亮度的情况下,根据现有技术的色彩处理方式得到的图像的色彩分布情况,坐标系的横坐标表示U分量,纵坐标表示V分量。其中,图中通过中心点的每条虚线表示同一色调在不同饱和度时的理想分布曲线,图中的每条实线表示同一色调进行色彩处理之后的实际分布曲线(该实际分布曲线可以是通过色彩标定实验测量得到的),其中灰色的点表示参考色调。由图2可以看出,该实际分布曲线和理想分布曲线之间存在偏差,或者说,相同色调的颜色并不是均匀分布在通过中心点的直线上。由此可见,现有技术的色彩处理的方法会在一定情况下出现色彩的偏差,影响图像的质量。
发明内容
本发明实施例提供了一种用于图像处理的方法和装置,能够提高进行色彩处理的图像的质量。
第一方面,提供了一种用于图像处理的方法,包括:确定待处理图像的 各像素的N个色彩分量的色彩值,N为大于1的自然数;确定所述各像素的亮度值分别与所述N个色彩分量的色彩值的N个比值;根据所述N个比值,确定N个第一色彩调整系数;根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述各像素进行色彩处理,以得到目标图像。
在本发明实施例中,根据待处理图像的各像素的亮度值与N个色彩分量的色彩值的N个比值确定N个第一色彩调整系数,以对待处理图像进行色彩处理,能够减少进行色彩处理的图像的色彩偏差现象,提高了进行色彩处理的图像的质量。
在一种可能的实现方式中,所述根据所述N个比值,确定所述N个第一色彩调整系数,包括:根据所述N个比值和第一幂函数,确定所述各像素的N个第二色彩调整系数,所述N个第二色彩调整系数是将所述N个比值分别代入所述第一幂函数得到的值;根据所述N个第二色彩调整系数,确定所述N个第一色彩调整系数。
在本发明实施例中,根据待处理图像的各像素的亮度值与N个色彩分量的色彩值的N个比值以及第一幂函数,确定N个第二色彩调整系数,并根据N个第二色彩调整系数确定N个第一色彩调整系数,以对待处理图像进行色彩处理,能够减少进行色彩处理的图像的色彩偏差现象,提高了进行色彩处理的图像的质量。
在一种可能的实现方式中,所述根据所述N个第二色彩调整系数,确定所述N个第一色彩调整系数,包括:将所述N个第二色彩调整系数确定为所述N个第一色彩调整系数。
在一种可能的实现方式中,还包括:确定所述各像素的第三色彩调整系数;所述根据所述N个第二色彩调整系数,确定所述N个第一色彩调整系数,包括:根据所述第三色彩调整系数和所述N个第二色彩调整系数,确定所述N个第一色彩调整系数,所述N个第一色彩调整系数是所述第三色彩调整系数分别与所述N个第二色彩调整系数相乘得到的N个积。
在一种可能的实现方式中,所述第一幂函数的指数是通过查找表确定的。
在一种可能的实现方式中,所述待处理图像是经过动态范围调整处理的图像,所述确定所述各像素的第三色彩调整系数,包括:确定所述各像素在所述动态范围调整处理之后的电信号值和所述动态范围调整处理之前的电信号值的电信号比值;根据所述电信号比值,确定所述第三色彩调整系数。
在本发明实施例中,基于待处理图像进行动态范围调整处理前后的对应的电信号值之间的电信号比值确定第三色彩调整系数,并根据第三色彩调整系数和第二色彩调整系数,确定待处理图像的N个第一色彩调整系数,以对待处理图像进行色彩处理,能够减少待处理图像由于动态范围调整处理引起的色彩偏差现象,提高了进行色彩处理的图像的质量。
在一种可能的实现方式中,所述根据所述电信号比值,确定所述第三色彩调整系数,包括:根据所述电信号比值和第二幂函数,确定所述第三色彩调整系数,所述第三色彩调整系数是将所述电信号比值代入所述第二幂函数得到的值。
在一种可能的实现方式中,所述第二幂函数的指数是通过查找表确定的。
在一种可能的实现方式中,所述N个第一色彩调整系数是预置的。
在本发明实施例中,预置的N个第一色彩调整系数中的至少两个第一色彩调整系数不相同,根据该N个第一色彩调整系数,对待处理图像的进行色彩处理,能够提高进行色彩处理的图像的质量。
在一种可能的实现方式中,所述N个色彩分量包括RGB空间中的R分量、G分量、B分量,所述根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述待处理图像进行色彩处理,以得到目标图像,包括:根据以下公式对所述待处理图像进行色彩处理,以得到目标图像:
Figure PCTCN2016096280-appb-000001
其中,Y表示待处理图像的亮度值,R、G、B分别表示待处理图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,R'、G'、B'分别表示目标图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,a1表示R分量对应的第一色彩调整系数,a2表示G分量对应的第一色彩调整系数,a3表示B分量对应的第一色彩调整系数。
在一种可能的实现方式中,所述N个色彩分量包括YUV空间中的U分量、V分量,所述根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述待处理图像进行色彩处理,以得到目标图像,包括:根据以下公式对所述待处理图像进行色彩处理,以得到目标图像:
Figure PCTCN2016096280-appb-000002
其中,u、v分别表示待处理图像的U分量的色彩值和V分量的色彩值,u'、v'分别表示目标图像的U分量的色彩值和V分量的色彩值,a4表示U分量对应的第一色彩调整系数,a5表示V分量对应的第一色彩调整系数。
第二方面,提供了一种用于图像处理的方法,包括:确定待处理图像的各像素的N个色彩分量的色彩值,所述待处理图像为经过动态范围调整处理的图像,N为大于1的自然数;确定所述各像素的亮度值分别与所述N个色彩分量的色彩值的N个比值;根据所述N个比值和第一幂函数,确定所述各像素的N个第二色彩调整系数,所述N个第二色彩调整系数是将所述N个比值分别代入所述第一幂函数得到的值;确定所述各像素在所述动态范围调整处理之后的电信号值和所述动态范围调整处理之前的电信号值的电信号比值;根据所述电信号比值,确定第三色彩调整系数;根据所述第三色彩调整系数和所述N个第二色彩调整系数,确定N个第一色彩调整系数,所述N个第一色彩调整系数是所述第三色彩调整系数分别与所述N个第二色彩调整系数相乘得到的N个积;根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述各像素进行色彩处理,以得到目标图像。
在本发明实施例中,基于待处理图像进行动态范围调整处理前后的对应的电信号值之间的电信号比值,以及待处理图像的亮度值与N个色彩分量的色彩值的N个比值,确定待处理图像的N个第一色彩调整系数,以对待处理图像进行色彩处理,能够减少待处理图像由于动态范围调整处理引起的色彩偏差现象,提高了进行色彩处理的图像的质量。
在一种可能的实现方式中,所述根据所述电信号比值,确定所述第三色彩调整系数,包括:根据所述电信号比值和第二幂函数,确定所述第三色彩调整系数,所述第三色彩调整系数是将所述电信号比值代入所述第二幂函数得到的值。
在一种可能的实现方式中,所述第一幂函数的指数是通过查找表确定的。
在一种可能的实现方式中,所述第二幂函数的指数是通过查找表确定的。
在一种可能的实现方式中,所述N个色彩分量包括RGB空间中的R分量、G分量、B分量,所述根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述待处理图像进行色彩处理,以得到目标图像,包括: 根据以下公式对所述待处理图像进行色彩处理,以得到所述目标图像:
Figure PCTCN2016096280-appb-000003
其中,Y表示所述待处理图像的亮度值,R、G、B分别表示所述待处理图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,R'、G'、B'分别表示所述目标图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,a1表示R分量对应的第一色彩调整系数,a2表示G分量对应的第一色彩调整系数,a3表示B分量对应的第一色彩调整系数。
在一种可能的实现方式中,所述N个色彩分量包括YUV空间中的U分量、V分量,所述根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述待处理图像进行色彩处理,以得到目标图像,包括:根据以下公式对所述待处理图像进行色彩处理,以得到所述目标图像:
Figure PCTCN2016096280-appb-000004
其中,u、v分别表示所述待处理图像的U分量的色彩值和V分量的色彩值,u'、v'分别表示所述目标图像的U分量的色彩值和V分量的色彩值,a4表示U分量对应的第一色彩调整系数,a5表示V分量对应的第一色彩调整系数。
第三方面,提供了一种用于图像处理的装置,所述装置包括用于执行第一方面的方法的模块。基于同一发明构思,由于该装置解决问题的原理与第一方面的方法设计中的方案对应,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
第四方面,提供了一种用于图像处理的装置,所述装置包括用于执行第二方面的方法的模块。基于同一发明构思,由于该装置解决问题的原理与第二方面的方法设计中的方案对应,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
第五方面,提供了一种装置,所述装置包括存储器和处理器。所述存储器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述处理器用于执行第一方面的方法。
第六方面,提供了一种装置,所述装置包括存储器和处理器。所述存储 器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述处理器用于执行第二方面的方法。
第七方面,提供了一种系统芯片,所述系统芯片包括用于执行第一方面的方法的模块。
第八方面,提供了一种系统芯片,所述系统芯片包括用于执行第二方面的方法的模块。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的用于图像处理的应用场景示意图。
图2是本发明实施例的图像的色彩分布的示意图。
图3是本发明实施例的用于图像处理的方法的示意性框图。
图4是本发明另一实施例的用于图像处理的方法的流程示意图。
图5是本发明实施例的用于图像处理的装置的示意图。
图6是本发明另一实施例的用于图像处理的装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了方便理解本发明实施例,首先在此介绍本发明实施例描述中会引入的几个要素。
电信号值,表示图形亮度或色彩分量的数字表达值。电信号值可以用于表征YUV空间的Y分量、RGB空间的R分量、G分量、B分量。
色彩值,表示图像色彩分量的数字表达值,色彩值可以用于表征YUV空间的U分量、V分量,RGB空间的R分量、G分量、B分量。
亮度值,表示图像亮度分量的数字表达值,亮度值可以用于表征YUV 空间的Y分量。
为了提高进行色彩处理的图像的质量,或者,更具体地,减少进行色彩处理之后图像的色彩偏差现象(或者说,偏色现象),本发明实施例提出了一种用于图像处理的方法和装置,该方法可以分别确定待处理的图像的各像素的N个色彩分量对应的N个第一色彩调整系数,并根据N个第一色彩调整系数对待处理图像进行色彩处理,能够减少进行色彩处理后图像的偏色现象,提高进行色彩处理的图像的质量,N为大于1的自然数。
现有技术中,对图像的色彩进行调整的方法主要是根据给定的色彩调整系数对图像的各像素的色彩值进行转换,以得到处理后的图像。例如,对于RGB空间,一般根据如下公式进行图像色彩调整:
Figure PCTCN2016096280-appb-000005
其中,Y表示待处理图像的亮度值,R、G、B分别表示待处理图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,R'、G'、B'分别表示目标图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,a表示色彩调整系数。
而对于YUV空间,一般根据如下公式进行图像色彩调整:
Figure PCTCN2016096280-appb-000006
其中,u、v分别表示待处理图像的U分量的色彩值和V分量的色彩值,u'、v'分别表示目标图像的U分量的色彩值和V分量的色彩值,a表示色彩调整系数。
由此可见,现有技术中,进行色彩处理的颜色空间中的各色彩分量对应同一色彩调整系数,而本发明实施例中,本发明实施例采用了多个(N个)色彩调整系数进行色彩处理,换句话说,各色彩分量对应的色彩调整系数可以是不相同的。其中上述颜色空间可以是YUV空间或RGB空间,上述色彩分量可以是YUV空间的U分量和V分量。或者上述色彩分量也可以是RGB空间的R分量、G分量和B分量。
图3示出了本发明实施例的用于图像处理的方法的示意图。如图3所示,该方法300包括:
S301,确定待处理图像的各像素的N个色彩分量的色彩值,N为大于1的自然数;
可选地,本发明实施例中的色彩可以包括色调与饱和度。上述N个色彩分量可以是用于表征图像的颜色空间中的色彩的分量。例如,上述色彩分量可以是YUV空间的U分量和V分量。或者上述色彩分量也可以是RGB空间的R分量、G分量和B分量。另外,上述分量也可以称作通道、信号、颜色分量等。上述色彩分量也可以称作颜色空间的通道、颜色空间的信道、颜色空间的颜色分量等。上述色彩分量的色彩值,也可以理解为对应的色彩分量值、色彩通道值、颜色分量值等。
S302,确定所述各像素的亮度值分别与所述N个色彩分量的色彩值的N个比值;
可选地,可以采用多种方式确定上述待处理图像的各像素的亮度值,例如,对于YUV空间,该亮度值可以是YUV空间的Y分量的色彩值。对于RGB空间,可以根据R分量、G分量、B分量的色彩值计算Y分量的色彩值。例如,可以根据公式Y=a11*R+a12*G+a13*B,计算Y分量的色彩值。其中,a11、a12、a13是固定系数。本领域技术人员能够理解,a11、a12、a13的取值可以有多种选择,本发明实施例对此不作限定。例如,Y=0.2126*R+0.7152*G+0.0722*B或者Y=0.2627*R+0.6780*G+0.0593*B。
例如,对于YUV空间来说,该N(N=2)个比值可以为Y/U、Y/V。对于RGB空间来说,该N(N=3)个比值可以为Y/R、Y/G、Y/B。其中Y、U、V、R、G、B分别表示各色彩分量的色彩值。
S303,根据所述N个比值,确定N个第一色彩调整系数;
可选地,可以采取多种方式确定N个第一色彩调整系数。例如,可以通过实验数据标定的方法获得N个第一色彩调整系数。或者,也可以通过待处理图像的亮度值分别与N个色彩分量的色彩值的比值,确定N个第一色彩调整系数。
S304,根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述各像素进行色彩处理,以得到目标图像。
可选地,对于RGB空间,可采用如下公式,对待处理图像进行色彩处理:
Figure PCTCN2016096280-appb-000007
其中,Y表示待处理图像的亮度值,R、G、B分别表示待处理图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,R'、G'、B'分别表示目标图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,a1表示R分量对应的第一色彩调整系数,a2表示G分量对应的第一色彩调整系数,a3表示B分量对应的第一色彩调整系数。
可选地,对于YUV空间,可以采用如下公式,对待处理图像进行色彩处理:
Figure PCTCN2016096280-appb-000008
其中,u、v分别表示待处理图像的U分量的色彩值和V分量的色彩值,u'、v'分别表示目标图像的U分量的色彩值和V分量的色彩值,a4表示U分量对应的第一色彩调整系数,a5表示V分量对应的第一色彩调整系数。
本领域技术人员能够理解,对待处理图像进行色彩处理的过程,即是对待处理图像中的像素依次进行色彩调整的过程。所以,本发明实施例中的N个第一色彩调整系数、N个色彩分量可以理解为是待处理图像中的各像素对应的N个第一色彩调整系数或各像素对应的N个色彩分量。
在本发明实施例中,根据待处理图像的各像素的亮度值与N个色彩分量的色彩值的N个比值确定N个第一色彩调整系数,以对待处理图像进行色彩处理,能够减少进行色彩处理的图像的色彩偏差现象,提高了进行色彩处理的图像的质量。
可选地,在方法300中,所述根据所述N个比值,确定所述N个第一色彩调整系数,可以包括多种方式。例如,可以将所述N个比值直接确定为N个第一色彩调整系数。
可选地,也可以根据该N个比值和专用函数,确定N个第二色彩调整系数。然后根据N个第二色彩调整系数,确定该N个第一色彩调整系数。该专用函数可以用来表示N个比值与N个第二色彩调整系数之间的对应关系。例如,该专用函数可以是幂函数或者线性函数。例如,该线性函数可以为f(x)=x。假设该幂函数称作第一幂函数。第一幂函数可以表示为f(x)=xb。 其中,第一幂函数的指数b为函数系数。具体地,可以根据该N个比值和第一幂函数,确定N个第二色彩调整系数。然后根据N个第二色彩调整系数,确定N个第一色彩调整系数。其中,该N个第二色彩调整系数是将该N个比值分别代入该第一幂函数得到的值。所述第一幂函数的系数b可以利用图像或图像序列统计信息通过查找表的方式确定,图像或图像序列统计信息可以包括图像或图像序列的最大值、最小值、平均值、标准差以及直方图分布信息。
例如,作为一个具体实施例,本领域技术人员可以基于实验数据或经验,建立第一幂函数的指数和待处理图像的平均亮度值的对应关系。此处,待处理图像的平均亮度值可以指待处理图像或者待处理图像序列的亮度的平均值。作为一个示例,该对应关系可以如表1所示。表1中的平均亮度值的范围为[0,1]。
表1
平均亮度值 0.1 0.25 0.3 0.55 0.6
第一幂函数的指数 1.2 1.0 0.8 0.6 0.2
可选地,如表1所示,当获取待处理图像的平均亮度值,该平均亮度值可以是待处理图像的Y分量的平均值,或者是待处理图像的其他分量的平均值。当平均亮度值小于0.1时,第一幂函数的指数可以取1.2;当平均亮度值大于0.6时,第一幂函数的指数可以取0.2。当平均亮度值在两个表值之间时,可以通过插值方式获得第一幂函数的指数值。本发明实施例对插值方式不作限定。例如,可以采取线性插值、二次线性插值等方式。例如,当平均亮度值在0.55与0.6之间时,可以采取如下线性插值方式获得第一幂函数的指数值:
output=0.6+(0.2-0.6)*(input-0.55)/(0.6-0.55)
其中,上述output表示第一幂函数的指数值,上述input表示待处理图像或者待处理图像序列的平均亮度值。
在本发明实施例中,根据待处理图像的各像素的亮度值与N个色彩分量的色彩值的N个比值以及第一幂函数,确定N个第二色彩调整系数,并根据N个第二色彩调整系数确定N个第一色彩调整系数,以对待处理图像进行色彩处理,能够减少进行色彩处理的图像的色彩偏差现象,提高了进行色 彩处理的图像的质量。
可选地,在方法300中,根据该N个第二色彩调整系数,确定所述N个第一色彩调整系数,可以包括多种方法。例如,可以直接将所述N个第二色彩调整系数,作为所述N个第一色彩调整系数。或者,也可以根据各像素的第三色彩调整系数和所述N个第二色彩调整系数,确定所述N个第一色彩调整系数。例如,所述N个第一色彩调整系数可以是所述第三色彩调整系数分别与所述N个第二色彩调整系数相乘得到的N个积。
其中,上述第三色彩调整系数,可以是给定的待处理图像的色彩调整系数,也可以是根据其他方式确定的。例如,所述待处理图像可以是经过动态范围调整处理的图像,所述动态范围调整处理表示对图像的电信号值(例如、Y分量、R分量、G分量、B分量)进行压缩或拉伸处理。其中,对图像做动态范围调整处理可能会引起图像的产生色彩偏差现象。所述第三色彩调整系数可以是根据电信号比值确定的。该电信号比值可以是各像素在动态范围调整处理后的电信号值和动态范围调整处理前的电信号值的电信号比值。该电信号值可以是YUV空间的Y分量、也可以是RGB空间的R分量、G分量、B分量。
例如,在YUV色彩空间,对待处理图像的电信号值进行动态范围调整处理,可以如以下公式所示:
Y2=cY1
其中,动态范围调整处理前的电信号值为Y1,动态范围调整处理后的电信号值为Y2,c为该动态范围调整处理前后的电信号比值。
又例如,在RGB色彩空间,对待处理图像的色彩值进行动态范围调整处理,可以如以下公式所示:
Figure PCTCN2016096280-appb-000009
其中动态范围调整处理前的色彩值为R1,G1,B1,动态范围调整处理后的色值为R2,G2,B2,f为该动态范围调整处理前后的电信号比值。
在本发明实施例中,基于待处理图像进行动态范围调整处理前后的电信号比值以及待处理图像的亮度值与N个色彩分量的色彩值的N个比值,确定待处理图像的N个第一色彩调整系数,以对待处理图像进行色彩处理,能够减少待动态范围调整处理引起的色彩偏差现象,提高了进行色彩处理的图 像的质量。
可选地,根据该电信号比值,确定该第三色彩调整系数包括多种方式。例如,可以直接将该电信号比值确定为该第三色彩调整系数。又例如,也可以根据所述电信号比值和第二幂函数,确定所述第三色彩调整系数,所述第三色彩调整系数可以是将所述电信号比值代入所述第二幂函数得到的值。其中,所述第二幂函数可以表示为f(x)=xd,所述第二幂函数的指数d为函数系数。其中,d的取值可以本领域技术人员基于实验数据、经验选取的固定值或利用图像或图像序列统计信息通过查找表的方式确定,图像或图像序列统计信息可以包括图像或图像序列的最大值、最小值、平均值、标准差以及直方图分布信息。
例如,作为一个具体实施例,本领域技术人员可以基于实验数据或经验,建立第二幂函数的指数和待处理图像的平均亮度值的对应关系。此处,待处理图像的平均亮度值可以指待处理图像或者待处理图像序列的亮度的平均值。作为一个示例,该对应关系可以如表2所示。表2中的平均亮度值采用归一化方式表示,其范围为[0,1]。其中,1表示亮度值的最大值,0表示亮度值的最小值。
表2
平均亮度值 0.1 0.25 0.3 0.55 0.6
第二幂函数的指数 0.1 0.15 0.2 0.25 0.3
为了描述的方便和简洁,在表2所对应的方法中,查找第二幂函数的指数的方法可以参考与表1有关的详细描述,此处不再赘述。
可选地,在方法300中,该N个第一色彩调整系数可以是预置的。例如,该N个第一色彩调整系数可以是通过实验数据标定获得的。例如,可以基于实验数据,统计N个第一色彩调整系数与像素的N个色彩分量的色彩值的映射关系,并基于该映射关系,确定N个第一色彩调整系数。
在本发明实施例中,基于实验数据的分析,分别确定待处理图像的各像素对应的N个第一色彩调整系数,以对待处理图像的进行色彩处理,能够提高进行色彩处理的图像的质量。
可选地,在一个示例中,以RGB空间为例,表3示出了基于实验数据统计的N(N=2)个第一色彩调整系数与N个色彩分量的色彩值的映射关系。 其中,R、G、B分别表示待处理图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,a1表示R分量对应的第一色彩调整系数,a2表示G分量对应的第一色彩调整系数,a3表示B分量对应的第一色彩调整系数。表3中的R分量、G分量、B分量采用归一化的方式表示,其范围分别为[0,1]。其中,1表示各分量值的最大值,0表示各分量值的最小值。
表3
R2+G2+B2 0-0.2 0.2-0.5 0.5-1.0 1.0-2.0 2.0-3.0
a1 1.1 1.1 1.2 1.2 1.2
a2 1.0 1.0 1.0 1.0 1.0
a3 1.2 1.3 1.4 1.5 1.6
如表3所示,本领域技术人员可以在获取待处理图像的像素的R分量、G分量和B分量值之后,通过查找表,确定R分量、G分量和B分量值分别对应的第一色彩调整系数。
类似的,在一个示例中,以YUV空间为例,表4示出了基于实验数据统计的N个第一色彩调整系数与N个色彩分量的色彩值的映射关系。其中,u表示U分量的色彩值,v表示V分量的色彩值。a4表示U分量对应的第一色彩调整系数,a5表示V分量对应的第一色彩调整系数。表4中的U分量、V分量采用归一化的方式表示,其范围分别为[0,1]。其中,1表示各分量值的最大值,0表示各分量值的最小值。
表4
u2+v2 0-0.05 0.05-0.1 0.1-0.15 0.15-0.2 0.2-0.5
a4 1.0 1.1 1.2 1.2 1.2
a5 1.2 1.3 1.4 1.5 1.6
如表4所示,本领域技术人员可以在获取待处理图像的像素的U分量和V分量值之后,通过查找表,确定U分量和V分量分别对应的第一色彩调整系数。
上文介绍了本发明实施例的用于图像处理的方法300,下文将结合图4中的具体例子,更加详细描述本发明实施例。应注意,图4的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图4的例子,显然 可以进行各种等价的修改或变化,这样的修改和变化也落入本发明实施例的范围。
图4是本发明实施例的用于处理图像的方法400的流程示意图。图4的例子可以应用于RGB空间。其主要展示了确定N个第一色彩调整系数的流程。图4的方案可以应用于HDR转SDR的转换过程中。或者,图4的方案也可以应用于SDR转HDR的转换过程中。在图4的方案中,待处理的图像在进行色彩处理之前已进行过动态范围调整处理。如图4所示,方法400包括:
401,获取待处理图像的各像素的N(N=3)个色彩分量的色彩值R、G、B以及待处理图像的电信号比值a;
其中,所述a可以是待处理图像的各像素在动态范围调整处理后的电信号值与动态范围调整处理前的电信号值之间的电信号比值。
402,根据色彩值R、G、B计算待处理图像的各像素的亮度值Y;
例如,可以根据前文所述的公式Y=a11*R+a12*G+a13*B,确定Y。
403,将a代入第二幂函数,得到第三色彩调整系数Alphy1,该第二幂函数为f(x)=xd
其中,系数d可以利用图像或图像序列统计信息通过查找表的方式确定。例如,可以根据表2确定系数d。或者,d可以为根据经验选取的固定值,如0.2。
为了描述的方便和简洁,确定第二幂函数的系数d的具体方式可以参考方法300中关于确定第二幂函数的系数d的方式的详细描述。此处不再赘述。
404,分别计算亮度值与N个色彩分量的比值Y/R、Y/G、Y/B;
405,分别将Y/R、Y/G、Y/B代入第一幂函数,得到N个色彩分量分别对应的第二色彩调整系数AlphyR、AlphyG、AlphyB,该第一幂函数为f(x)=xb
其中,系数b可以利用图像或图像序列统计信息通过查找表的方式确定。例如,可以根据表1确定系数b。
为了描述的方便和简洁,获取第一幂函数的系数b的具体方式可以参考方法300中关于确定第一幂函数的系数b的方式的详细描述。此处不再赘述。
406,将Alphy1与AlphyR、AlphyG、AlphyB分别相乘,得到N个第一色彩调整系数BetaR、BetaG、BetaB;
407,根据BetaR、BetaG、BetaB和下述公式计算各像素的N个色彩通 道进行色彩处理后对应的色彩值R’、G’、B’。
Figure PCTCN2016096280-appb-000010
其中,a1、a2、a3的取值分别为BetaR、BetaG、BetaB。
在本发明实施例中,根据待处理图像的各像素的亮度值与N个色彩分量的色彩值的N个比值确定N个第一色彩调整系数,以对待处理图像进行色彩处理,能够减少进行色彩处理的图像的色彩偏差现象,提高了进行色彩处理的图像的质量。
上文结合图1至图4详细描述了本发明实施例的用于图像处理的方法,下文将结合图5和图6描述本发明实施例的用于图像处理的装置。
图5是本发明实施例的装置500的示意图,应理解,图5的装置500能够实现图1至图4中的方法的各个步骤,为了简洁,适当省略重复的描述,该装置500包括:
确定模块510,用于确定待处理图像的各像素的N个色彩分量的色彩值,N为大于1的自然数;确定所述各像素的亮度值分别与所述N个色彩分量的色彩值的N个比值;根据所述N个比值,确定所述N个第一色彩调整系数;
处理模块520,用于根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述各像素进行色彩处理,以得到目标图像。
在本发明实施例中,可以分别确定与待处理的图像的像素的N个色彩分量对应的N个第一色彩调整系数,并根据N个第一色彩调整系数对待处理图像进行色彩处理,能够减少进行色彩处理的图像的偏色现象,提高进行色彩处理的图像的质量。
图6是本发明实施例的装置600的示意图。应理解,图6的装置能够实现图1至图4中的方法的各个步骤,为了简洁,适当省略重复的描述,该装置600包括:
存储器610,用于存储程序;
处理器620,用于执行存储器610中的程序,当所述程序被执行时,所述处理器620用于确定待处理图像的各像素的N个色彩分量的色彩值,确定待处理图像的各像素的N个色彩分量的色彩值,N为大于1的自然数;确定所述各像素的亮度值分别与所述N个色彩分量的色彩值的N个比值;根据 所述N个比值,确定所述N个第一色彩调整系数;根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述各像素进行色彩处理,以得到目标图像。
在本发明实施例中,可以分别确定与待处理的图像的像素的N个色彩分量对应的N个第一色彩调整系数,并根据N个第一色彩调整系数对待处理图像进行色彩处理,能够减少进行色彩处理的图像的偏色现象,提高进行色彩处理的图像的质量。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以 有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上某一实施例中的技术特征和描述,为了使申请文件简洁清楚,可以理解适用于其他实施例,在其他实施例不再一一赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种用于图像处理的方法,其特征在于,包括:
    确定待处理图像的各像素的N个色彩分量的色彩值,N为大于1的自然数;
    确定所述各像素的亮度值分别与所述N个色彩分量的色彩值的N个比值;
    根据所述N个比值,确定N个第一色彩调整系数;
    根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述各像素进行色彩处理,以得到目标图像。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述N个比值,确定N个第一色彩调整系数,包括:
    根据所述N个比值和第一幂函数,确定所述各像素的N个第二色彩调整系数,所述N个第二色彩调整系数是将所述N个比值分别代入所述第一幂函数得到的值;
    根据所述N个第二色彩调整系数,确定所述N个第一色彩调整系数。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    确定所述各像素的第三色彩调整系数;
    所述根据所述N个第二色彩调整系数,确定所述N个第一色彩调整系数,包括:
    根据所述第三色彩调整系数和所述N个第二色彩调整系数,确定所述N个第一色彩调整系数,所述N个第一色彩调整系数是所述第三色彩调整系数分别与所述N个第二色彩调整系数相乘得到的N个积。
  4. 如权利要求2所述的方法,其特征在于,所述根据所述N个第二色彩调整系数,确定所述N个第一色彩调整系数,包括:
    将所述N个第二色彩调整系数作为所述N个第一色彩调整系数。
  5. 如权利要求3所述的方法,其特征在于,所述待处理图像是经过动态范围调整处理的图像,
    所述确定所述各像素的第三色彩调整系数,包括:
    确定所述各像素在所述动态范围调整处理之后的电信号值和所述动态范围调整处理之前的电信号值的电信号比值;
    根据所述电信号比值,确定所述第三色彩调整系数。
  6. 如权利要求5所述的方法,其特征在于,所述根据所述电信号比值,确定所述第三色彩调整系数,包括:
    根据所述电信号比值和第二幂函数,确定所述第三色彩调整系数,所述第三色彩调整系数是将所述电信号比值代入所述第二幂函数得到的值。
  7. 如权利要求2至6中任一项所述的方法,其特征在于,所述第一幂函数的指数是通过查找表确定的。
  8. 如权利要求6所述的方法,其特征在于,所述第二幂函数的指数是通过查找表确定的。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述N个色彩分量包括RGB空间中的R分量、G分量、B分量,所述根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述待处理图像进行色彩处理,以得到目标图像,包括:
    根据以下公式对所述待处理图像进行色彩处理,以得到所述目标图像:
    Figure PCTCN2016096280-appb-100001
    其中,Y表示所述待处理图像的亮度值,R、G、B分别表示所述待处理图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,R'、G'、B'分别表示所述目标图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,a1表示R分量对应的第一色彩调整系数,a2表示G分量对应的第一色彩调整系数,a3表示B分量对应的第一色彩调整系数。
  10. 如权利要求1至8中任一项所述的方法,其特征在于,所述N个色彩分量包括YUV空间中的U分量、V分量,所述根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述待处理图像进行色彩处理,以得到目标图像,包括:
    根据以下公式对所述待处理图像进行色彩处理,以得到所述目标图像:
    Figure PCTCN2016096280-appb-100002
    其中,u、v分别表示所述待处理图像的U分量的色彩值和V分量的色彩值,u'、v'分别表示所述目标图像的U分量的色彩值和V分量的色彩值, a4表示U分量对应的第一色彩调整系数,a5表示V分量对应的第一色彩调整系数。
  11. 一种用于图像处理的装置,其特征在于,包括:
    确定模块,用于确定待处理图像的各像素的N个色彩分量的色彩值,N为大于1的自然数;确定所述各像素的亮度值分别与所述N个色彩分量的色彩值的N个比值;根据所述N个比值,确定N个第一色彩调整系数;
    处理模块,用于根据所述N个第一色彩调整系数和所述N个色彩分量的色彩值,对所述各像素进行色彩处理,以得到目标图像。
  12. 如权利要求11所述的装置,其特征在于,所述确定模块具体用于根据所述N个比值和第一幂函数,确定所述各像素的N个第二色彩调整系数,所述N个第二色彩调整系数是将所述N个比值分别代入所述第一幂函数得到的值;根据所述N个第二色彩调整系数,确定所述N个第一色彩调整系数。
  13. 如权利要求12所述的装置,其特征在于,所述确定模块还具体用于确定所述各像素的第三色彩调整系数;根据所述第三色彩调整系数和所述N个第二色彩调整系数,确定所述N个第一色彩调整系数,所述N个第一色彩调整系数是所述第三色彩调整系数分别与所述N个第二色彩调整系数相乘得到的N个积。
  14. 如权利要求12所述的装置,其特征在于,所述确定模块还具体用于将所述N个第二色彩调整系数作为所述N个第一色彩调整系数。
  15. 如权利要求13所述的装置,其特征在于,所述待处理图像是经过动态范围调整处理的图像,所述确定模块还具体用于确定所述各像素在所述动态范围调整处理之后的电信号值和所述动态范围调整处理之前的电信号值的电信号比值;根据所述电信号比值,确定所述第三色彩调整系数。
  16. 如权利要求15所述的装置,所述确定模块还具体用于根据所述电信号比值和第二幂函数,确定所述第三色彩调整系数,所述第三色彩调整系数是将所述电信号比值代入所述第二幂函数得到的值。
  17. 如权利要求11至16中任一项所述的装置,其特征在于,所述第一幂函数的指数是通过查找表确定的。
  18. 如权利要求16所述的装置,其特征在于,所述第二幂函数的指数是通过查找表确定的。
  19. 如权利要求11至18中任一项所述的装置,其特征在于,所述N个色彩分量包括RGB空间中的R分量、G分量、B分量,所述处理模块具体用于根据以下公式对所述待处理图像进行色彩处理,以得到所述目标图像:
    Figure PCTCN2016096280-appb-100003
    其中,Y表示所述待处理图像的亮度值,R、G、B分别表示所述待处理图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,R'、G'、B'分别表示所述目标图像的R分量的色彩值、G分量的色彩值和B分量的色彩值,a1表示R分量对应的第一色彩调整系数,a2表示G分量对应的第一色彩调整系数,a3表示B分量对应的第一色彩调整系数。
  20. 如权利要求11至18中任一项所述的装置,其特征在于,所述N个色彩分量包括YUV空间中的U分量、V分量,所述处理模块具体用于根据以下公式对所述待处理图像进行色彩处理,以得到所述目标图像:
    Figure PCTCN2016096280-appb-100004
    其中,u、v分别表示所述待处理图像的U分量的色彩值和V分量的色彩值,u'、v'分别表示所述目标图像的U分量的色彩值和V分量的色彩值,a4表示U分量对应的第一色彩调整系数,a5表示V分量对应的第一色彩调整系数。
PCT/CN2016/096280 2016-08-22 2016-08-22 用于图像处理的方法和装置 WO2018035691A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680087579.7A CN109417616B (zh) 2016-08-22 2016-08-22 用于图像处理的方法和装置
PCT/CN2016/096280 WO2018035691A1 (zh) 2016-08-22 2016-08-22 用于图像处理的方法和装置
CN202010320630.2A CN111667418A (zh) 2016-08-22 2016-08-22 用于图像处理的方法和装置
US16/282,061 US10963996B2 (en) 2016-08-22 2019-02-21 Image processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096280 WO2018035691A1 (zh) 2016-08-22 2016-08-22 用于图像处理的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/282,061 Continuation US10963996B2 (en) 2016-08-22 2019-02-21 Image processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2018035691A1 true WO2018035691A1 (zh) 2018-03-01

Family

ID=61246001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096280 WO2018035691A1 (zh) 2016-08-22 2016-08-22 用于图像处理的方法和装置

Country Status (3)

Country Link
US (1) US10963996B2 (zh)
CN (2) CN111667418A (zh)
WO (1) WO2018035691A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021217647A1 (zh) * 2020-04-30 2021-11-04 华为技术有限公司 一种图像色彩处理方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151320A1 (zh) * 2021-01-15 2022-07-21 深圳市大疆创新科技有限公司 图像处理方法、装置、计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201470A (zh) * 2006-12-11 2008-06-18 英业达股份有限公司 液晶面板的色彩校正方法及其系统
US20090208099A1 (en) * 2008-02-14 2009-08-20 Hideki Yoshii Image processing apparatus
CN101840689A (zh) * 2010-05-14 2010-09-22 中兴通讯股份有限公司 校正LCD屏gamma值的方法和装置
CN102045575A (zh) * 2009-10-21 2011-05-04 英属开曼群岛商恒景科技股份有限公司 用于像素色彩校正的方法以及像素色彩校正装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192967A (ja) * 1988-11-01 1990-07-30 Fuji Xerox Co Ltd 色調整方法および装置
US5774112A (en) * 1994-10-25 1998-06-30 International Business Machines Corporation Method and apparatus for tone correction of a digital color image with preservation of the chromaticity of the image
US6792160B2 (en) * 2001-07-27 2004-09-14 Hewlett-Packard Development Company, L.P. General purpose image enhancement algorithm which augments the visual perception of detail in digital images
EP1411714B1 (en) * 2002-10-17 2008-11-05 Noritsu Koki Co., Ltd. Conversion correcting method of color image data and photographic processing apparatus implementing the method
SG115543A1 (en) * 2003-05-17 2005-10-28 St Microelectronics Asia Method and apparatus for compensating for chrominance saturation
US7428333B2 (en) * 2004-01-23 2008-09-23 Old Dominion University Visibility improvement in color video stream
JP4799890B2 (ja) * 2004-12-03 2011-10-26 日立プラズマディスプレイ株式会社 プラズマディスプレイパネルの表示方法
CN101317464B (zh) * 2005-09-14 2010-12-08 Rg布赖特股份有限公司 图像增强和压缩
US7639893B2 (en) * 2006-05-17 2009-12-29 Xerox Corporation Histogram adjustment for high dynamic range image mapping
US8179363B2 (en) * 2007-12-26 2012-05-15 Sharp Laboratories Of America, Inc. Methods and systems for display source light management with histogram manipulation
US8169431B2 (en) * 2007-12-26 2012-05-01 Sharp Laboratories Of America, Inc. Methods and systems for image tonescale design
KR100933282B1 (ko) * 2008-01-16 2009-12-22 연세대학교 산학협력단 색채 복원 방법 및 시스템
US8159616B2 (en) * 2008-03-27 2012-04-17 Bang & Olufsen A/S Histogram and chrominance processing
JP5061027B2 (ja) * 2008-05-22 2012-10-31 三洋電機株式会社 信号処理装置及び投写型映像表示装置
JP5495025B2 (ja) * 2009-12-22 2014-05-21 ソニー株式会社 画像処理装置および方法、並びにプログラム
JP2011203814A (ja) * 2010-03-24 2011-10-13 Sony Corp 画像処理装置および方法、プログラム
US9305372B2 (en) * 2010-07-26 2016-04-05 Agency For Science, Technology And Research Method and device for image processing
JP2012058850A (ja) * 2010-09-06 2012-03-22 Sony Corp 画像処理装置および方法、並びにプログラム
BR112014027815B1 (pt) * 2012-10-08 2022-03-15 Koninklijke Philips N.V. Aparelho de processamento de cor de imagem, codificador de imagem, decodificador de imagem e método de processamento de cor de imagem
TWI473039B (zh) * 2013-03-05 2015-02-11 Univ Tamkang 影像的動態範圍壓縮與局部對比增強方法及影像處理裝置
US9036047B2 (en) 2013-03-12 2015-05-19 Intel Corporation Apparatus and techniques for image processing
CN104144332B (zh) * 2013-05-09 2017-04-12 华硕电脑股份有限公司 图像色彩调整方法与其电子装置
CN104715445B (zh) * 2013-12-13 2018-04-06 腾讯科技(深圳)有限公司 图像处理方法和系统
ES2694858T3 (es) * 2014-05-28 2018-12-27 Koninklijke Philips N.V. Métodos y aparatos para codificar imágenes de HDR, y métodos y aparatos para el uso de tales imágenes codificadas
EP3231174B1 (en) * 2014-12-11 2020-08-26 Koninklijke Philips N.V. Optimizing high dynamic range images for particular displays
DK3231174T3 (da) * 2014-12-11 2020-10-26 Koninklijke Philips Nv Optimering af billeder med højt dynamikområde til bestemte displays
EP3051486A1 (en) * 2015-01-30 2016-08-03 Thomson Licensing Method and apparatus for encoding and decoding high dynamic range (HDR) videos
EP3054417A1 (en) * 2015-02-06 2016-08-10 Thomson Licensing Method and apparatus for encoding and decoding high dynamic range images
EP3054418A1 (en) * 2015-02-06 2016-08-10 Thomson Licensing Method and apparatus for processing high dynamic range images
GB2534929A (en) * 2015-02-06 2016-08-10 British Broadcasting Corp Method and apparatus for conversion of HDR signals
US10777148B2 (en) * 2015-07-31 2020-09-15 Sony Corporation Image signal luminance processing method, device and display apparatus
KR102129541B1 (ko) * 2015-08-28 2020-07-03 애리스 엔터프라이지즈 엘엘씨 높은 동적 범위 및 넓은 컬러 영역 시퀀스들의 코딩에서의 컬러 볼륨 변환들
US9819956B2 (en) * 2015-09-23 2017-11-14 Arris Enterprises Llc High dynamic range adaptation operations at a video decoder
US10043251B2 (en) * 2015-10-09 2018-08-07 Stmicroelectronics Asia Pacific Pte Ltd Enhanced tone mapper for high dynamic range images and video
US10148907B1 (en) * 2017-10-27 2018-12-04 Avago Technologies International Sales Pte. Limited System and method of luminance processing in high dynamic range and standard dynamic range conversion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101201470A (zh) * 2006-12-11 2008-06-18 英业达股份有限公司 液晶面板的色彩校正方法及其系统
US20090208099A1 (en) * 2008-02-14 2009-08-20 Hideki Yoshii Image processing apparatus
CN102045575A (zh) * 2009-10-21 2011-05-04 英属开曼群岛商恒景科技股份有限公司 用于像素色彩校正的方法以及像素色彩校正装置
CN101840689A (zh) * 2010-05-14 2010-09-22 中兴通讯股份有限公司 校正LCD屏gamma值的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021217647A1 (zh) * 2020-04-30 2021-11-04 华为技术有限公司 一种图像色彩处理方法及装置

Also Published As

Publication number Publication date
CN111667418A (zh) 2020-09-15
US10963996B2 (en) 2021-03-30
CN109417616B (zh) 2020-05-08
CN109417616A (zh) 2019-03-01
US20190228509A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
CN107680056B (zh) 一种图像处理方法及装置
JP2003230160A (ja) カラー映像の彩度調節装置及び方法
TWI519151B (zh) 影像處理方法以及影像處理裝置
WO2018149172A1 (zh) 图像处理方法及其装置
JP5870598B2 (ja) 画像のホワイトバランス処理方法及び装置
WO2018035879A1 (zh) 一种图像处理方法以及装置
US8718360B2 (en) Colour image enhancement
CN110175969B (zh) 图像处理方法及图像处理装置
US8300934B2 (en) Image processing device and image correction device
KR20230133388A (ko) 보상 룩업 테이블의 구성 방법, 표시 패널의 보상 방법 및 보상 룩업 테이블의 구성 장치
US9571744B2 (en) Video processing method and apparatus
WO2018035691A1 (zh) 用于图像处理的方法和装置
CN108846871B (zh) 一种图像处理方法及装置
CN100525469C (zh) 图像处理装置及其方法
US9905195B2 (en) Image processing method
CN107404600B (zh) 图像处理装置及方法
US9852531B2 (en) Electronic apparatus and method for controlling the same
JP6484244B2 (ja) カラー/グレーの小さい差異を保持する画像処理方法
JP2020025241A (ja) 映像信号変換装置及びプログラム
KR20160025876A (ko) 영상의 대비 강화 방법 및 장치
CN109996017B (zh) 一种图像的调整方法及其终端
TWI653894B (zh) 影像增強電路與方法
JP2021190788A (ja) 彩度補正装置、映像信号変換装置及びプログラム
CN115643386A (zh) 一种图像处理方法、计算设备及存储介质
JP5915299B2 (ja) 画像処理装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913715

Country of ref document: EP

Kind code of ref document: A1