WO2018034410A1 - Driving part for variable-capacity compressor - Google Patents

Driving part for variable-capacity compressor Download PDF

Info

Publication number
WO2018034410A1
WO2018034410A1 PCT/KR2017/004467 KR2017004467W WO2018034410A1 WO 2018034410 A1 WO2018034410 A1 WO 2018034410A1 KR 2017004467 W KR2017004467 W KR 2017004467W WO 2018034410 A1 WO2018034410 A1 WO 2018034410A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
drive shaft
ring body
variable displacement
friction
Prior art date
Application number
PCT/KR2017/004467
Other languages
French (fr)
Korean (ko)
Inventor
송세영
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to US15/779,954 priority Critical patent/US20190178236A1/en
Publication of WO2018034410A1 publication Critical patent/WO2018034410A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0895Component parts, e.g. sealings; Manufacturing or assembly thereof driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing

Definitions

  • the present invention relates to a drive for a variable displacement compressor, and more particularly to a drive for a variable displacement compressor with a simplified structure of the drive.
  • a compressor applied to an air conditioning system sucks refrigerant gas that has passed through an evaporator, compresses the refrigerant gas to a high temperature and high pressure refrigerant gas, and discharges the refrigerant gas.
  • Various types of compressors are used, such as reciprocating type, rotary type, scroll type, and swash plate type.
  • a disk-shaped swash plate is inclined to the drive shaft which is rotated by the power of the engine, and rotates by the drive shaft.
  • the swash plate type compressor is a principle that sucks or compresses and discharges refrigerant gas by linearly reciprocating a plurality of pistons in a cylinder by rotation of the swash plate.
  • the inclination angle of the swash plate installed in the drive shaft is variable according to the heat load, and the reciprocating feed amount of the piston is changed as the inclination angle of the swash plate is changed. The refrigerant discharge amount is adjusted.
  • the drive unit of the conventional variable displacement swash plate compressor is configured to adjust the inclination angle of the swash plate through the shaft bush that the hinge pin is fixed to the rotor fixed to the rotating shaft is fixed to the hub, and sliding around the rotating shaft
  • This hinge mechanism requires a process of injecting a rotor into the rotating shaft, which is complicated in the work process and the product structure, and has a disadvantage in that the price is competitive in terms of weight and process.
  • the clearance between components due to the clearance of the hinge mechanism has a relatively large disadvantage.
  • the drive unit for a variable displacement compressor of the present invention includes a drive shaft 100 having one end connected to a pulley of the engine and receiving driving force, and coupled to one side of the pulley side of the drive shaft 100 and being thrust.
  • a support balance 300 supporting a bearing, a support plate 300 spaced apart from the support balance 300, a swash plate 500 for adjusting a refrigerant discharge amount and a pressure according to an inclination angle, the support balance 300 and the swash plate 500.
  • the inclination angle of the swash plate 500 in a low flow condition by generating a friction force between the hinge portion 700 and the driving shaft 100 to transfer the rotational force of the drive shaft 100 to the swash plate 500 It includes a friction ring module to control.
  • the friction ring module includes a polygonal pipe-shaped ring body 1000 inserted along the longitudinal direction of the drive shaft 100, and a support spring 1100 inserted outside the ring body 1000.
  • the friction ring module includes a cylindrical ring body 1000 inserted along the longitudinal direction of the drive shaft 100, and a support spring 1100 inserted outside the ring body 1000.
  • the ring body 1000 has an inner diameter smaller than an outer diameter of the drive shaft 100.
  • the ring body 1000 is characterized in that the opening 1002 is formed along the longitudinal direction.
  • the ring body 1000 includes a plurality of hooks 1004 extending outward from one end facing the swash plate 500 and bent and extended in the direction of the retainer 1300.
  • the support spring 1100 is inserted between the hook 1004 and the ring body 1000.
  • the inner diameter of the support spring 1100 is larger than the outer diameter of the ring body 1000.
  • the gap between the ring body 1000 and the hook 1004 is greater than the thickness of the support spring 1100.
  • One side of the drive shaft 100 opposite to the pulley connection portion further includes a retainer 1300 of a circular or semi-circular shape to limit the movement of the friction ring module.
  • the ring body 1000 moves along the drive shaft 100 when the inclination angle of the swash plate 500 is changed, and stops by contacting the retainer 1300 at a minimum angle of the swash plate 500. do.
  • the ring body 1000 is characterized in that a plurality of friction protrusions (1006a) protruding from the inner peripheral surface toward the drive shaft 100 is formed.
  • the present invention also provides a variable displacement compressor including a drive shaft 100 rotatably supported in a housing and a swash plate 500 that receives a driving force received by the drive shaft 100 and variably controls the discharge amount of the refrigerant according to an inclination angle.
  • a variable displacement compressor including a drive shaft 100 rotatably supported in a housing and a swash plate 500 that receives a driving force received by the drive shaft 100 and variably controls the discharge amount of the refrigerant according to an inclination angle.
  • coupled to the drive shaft 100 is movable in the axial direction, is located between the swash plate 500 and the support spring (1100) for applying a force in the direction of increasing the inclination angle, and has a force in the centrifugal direction
  • the friction member 1000 is provided, and the friction member 1000 generates a friction force between the drive shaft 100 to limit the rapid movement of the inclination angle of the swash plate 500 under low flow conditions. .
  • the friction member 1000 is formed as a module with the support spring 1100 is characterized in that coupled to the drive shaft 100 in the axial direction.
  • the drive unit for a variable displacement compressor has an effect of preventing hunting problems generated under low flow conditions while maintaining controllability by providing a friction ring module.
  • FIG. 1 is a perspective view showing a maximum inclination angle state of the drive unit for a variable displacement compressor according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of a drive unit for a variable displacement compressor according to FIG. 1;
  • FIG. 3 is a perspective view illustrating a friction ring of a driving unit for a variable displacement compressor according to FIG. 1;
  • FIG. 4 is a perspective view illustrating a friction ring of a driving unit for a variable displacement compressor according to another embodiment of the present invention.
  • FIG. 5 is a plan view illustrating a coupling state of the friction ring according to FIG. 4.
  • FIG. 1 is a perspective view showing a maximum inclination angle state of the drive unit for a variable displacement compressor according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the drive unit for a variable displacement compressor according to FIG. 1,
  • FIG. It is a perspective view which shows the friction ring of the drive part for capacitive compressors.
  • the drive unit 10 for a variable displacement compressor is inserted into the compressor consisting of a cylinder block and a front, rear housing.
  • the drive unit 10 includes a pulley (not shown) receiving power of an engine, a drive shaft 100 coupled to the pulley to rotate by the pulley, and a support balance 300 and a swash plate 500 coupled to the drive shaft. It is configured by.
  • the support balancing 300 and the swash plate 500 are connected by the hinge portion 700.
  • the coil spring 910 and the bush 900 are coupled between the swash plate 500 and the drive shaft 100 to help initial operation of the swash plate 500.
  • a friction ring module is provided at an end side opposite to the pulley connection portion of the drive shaft 100 to prevent hunting in a low flow condition while maintaining controllability.
  • the driving shaft 100 is rotatably supported by the front housing and the other end is rotatably supported by the rear housing.
  • the drive shaft 100 is provided with a hinge connection portion 110 in contact with the support balance 300.
  • the hinge connector 110 prevents the support balance 300 from moving toward the swash plate 500, and at the same time, the hinge portion 700 to be described later is connected to the driving shaft 100.
  • the hinge connector 110 is provided with a through hole formed through the drive shaft 100 along a direction connecting both ends of the counter weight 330 of the support balance 300 based on FIG. 1 (the support balance will be described later). The direction is defined based on the support balance because it is fixed to the combined position without rotating itself when coupled to the drive shaft).
  • the through-hole is formed in the hinge connection portion 110 may affect the rigidity of the drive shaft 100, it is preferable that the rigidity of the drive shaft 100 is not reduced by reinforcing the thickness of the peripheral portion where the through-hole is formed. Therefore, the hinge connector 110 is formed to protrude outward from the outer circumferential surface of the drive shaft 100.
  • the support balance 300 is coupled to one side of the pulley side of the drive shaft 100, and the swash plate 500 is inserted at a predetermined interval from the support balance 300.
  • the support balance 300 is a structure that replaces a rotor in which a conventional lug plate is integrally formed, and serves to support a thrust bearing (not shown).
  • the reason why the conventional rotor is disposed at a position opposite to the swash plate is that yawing occurs due to the transmission of rotational force to the swash plate and the weight imbalance when a mass is provided on the drive shaft 100. This is to rebalance the function (static balance function).
  • the rotor is integrally formed with a lug plate, but the size and weight are large, and the hinge structure is complicated, which makes it difficult to miniaturize the driving unit.
  • the present invention proposes a support balance 300 as a structure to replace such a rotor.
  • the support balance 300 includes a disc shaped bearing supporter 310, a stepped portion 312 protruding in a direction in which the pulley is connected, and having a diameter smaller than that of the bearing supporter 310, and an outer peripheral surface of the bearing supporter 310. It is provided on one side and comprises a counter weight 330 in the form of a partial ring having a larger radius than the bearing supporter 310.
  • the stepped part 312 is integrally formed in the bearing supporter 310, and a hollow in which the drive shaft 100 is inserted is formed in the center of the bearing supporter 310 and the stepped part 312.
  • the counter weight 330 is preferably disposed below the bearing supporter 310 when the counter weight 330 is based on the driving unit arrangement of FIGS. 1 and 2.
  • the support balance 300 is a form having an eccentric load because the counter weight 330 is provided inclined.
  • the position of the counter weight 330 is to prevent the eccentricity of the weight according to the structure of the hinge portion 700 for adjusting the swash plate angle, so that the weight of the swash plate 500 and the hinge portion 700 is biased It is deployed.
  • the hollow portion inserted into the drive shaft 100 has an eccentric shape, thereby maintaining a structure in which the support balance 300 does not rotate on the drive shaft 100.
  • the swash plate 500 is connected to a piston (not shown) inserted into the cylinder bore provided in the cylinder block. As the swash plate 500 rotates, the piston moves linearly in the cylinder bore to suck the refrigerant or compress the refrigerant inside the cylinder bore. By adjusting the inclination angle of the swash plate 500, the refrigerant discharge amount and the pressure are adjusted.
  • the swash plate 500 protrudes from the swash plate arm 510 and the hub 530 on the plate surface facing the support balance 300.
  • the swash plate arm 510 is disposed on the upper side relative to the position of FIGS. 1 and 2, and the hub 530 is spaced apart from the swash plate arm 510 and disposed on the lower side.
  • the swash plate arm 510 is formed of a pair of plate facing each other, the through hole is formed so that the second hinge pin 770 to be described later penetrate into the plate.
  • a hinge portion 700 to be described later is inserted between the swash plate arms 510 to be rotatably coupled to the swash plate arms 510 by a second hinge pin 770.
  • the hub 530 has a substantially semi-cylindrical shape and protrudes from the swash plate arm 510 toward the support balance 300.
  • the hub 530 serves to limit the movement of the swash plate 500 so that the swash plate 500 is not inclined to be disposed above a set angle when the inclination angle of the swash plate 500 is adjusted.
  • the hub 530 is preferably protruded to contact the support balance 300 when the inclination angle of the swash plate 500 is the maximum.
  • the support balance 300 and the swash plate 500 described above are connected by the hinge 700.
  • the hinge part 700 includes a first hinge arm 710 disposed on both sides of the hinge connection part 110 of the drive shaft 100, a second hinge arm 730 protruding toward the swash plate arm 510, and a first hinge.
  • the first hinge pin 750 is coupled to the arm 710 and the second hinge pin 770 is coupled to the second hinge arm 730.
  • the first hinge arm 710 is connected to the second hinge arm 730 and is composed of a pair of plate facing each other.
  • the first hinge arm 710 grips the hinge connector 110 on both sides of the hinge connector 110 based on FIG. 3, and a through hole through which the first hinge pin 750 is inserted is formed.
  • the first hinge pin 750 penetrates through one side plate of the first hinge arm 710, passes through a through hole of the hinge connection unit 110, and then penetrates through the other side plate of the first hinge arm 710.
  • the first hinge arm 710 is rotatably coupled to the hinge connector 110 by the first hinge pin 750.
  • the hinge connecting portion 110 has a curved outer circumferential surface according to the shape of the outer circumferential surface of the drive shaft 100, the engaging portion with the first hinge arm 710 is lifted without surface contact. Therefore, it is preferable that the contact surface of the hinge connecting portion 110 to which the first hinge arm 710 is in contact is not flat but planar so that the first hinge arm 710 can stably hold the hinge connecting portion 110.
  • the second hinge arm 730 has a thickness corresponding to the gap between the pair of swash plate arms 510, and a through hole through which the second hinge pin 770 is inserted is formed.
  • the second hinge pin 770 is inserted into one side of the swash plate arm 510 and penetrates through the second hinge arm 730 to be inserted into the other side of the swash plate arm 510 facing each other.
  • the swash plate arm 510 is rotatably coupled to the second hinge arm 730 by the second hinge pin 770.
  • the bush 900 is provided in a cylindrical shape and inserted between the swash plate 500 and the driving shaft 100, and a coil spring 910 is provided between the bush 900 and the driving shaft 100. Is inserted.
  • the bush 900 is elastically supported by the coil spring 910 and slides along the drive shaft 100.
  • the bush 900 slides together with the swash plate 500 so that the swash plate 500 can move smoothly along the drive shaft 100.
  • the friction ring module is provided to prevent the hunting phenomenon that the noise does not maintain the swash plate angle when the friction is too low in low flow conditions.
  • the friction ring module is composed of a ring body 1000 and the support spring (1100).
  • a retainer 1300 for restricting movement of the friction ring module is inserted at an end opposite to the pulley connection portion of the drive shaft 100.
  • the retainer 1300 has a circular or semi-circular ring shape and serves as a stopper.
  • the ring body 1000 is a polygonal pipe shape in which a portion thereof is cut to form the opening 1002, and is inserted along the longitudinal direction of the driving shaft 100. Since the ring body 1000 is not a cylindrical shape, the ring body 1000 is coupled in a form having play in some sections instead of completely surrounding the outer circumferential surface of the drive shaft 100.
  • the opening 1002 is formed along the longitudinal direction of the drive shaft 100, and the inner diameter of the ring body 1000 is preferably smaller than the outer diameter of the drive shaft 100 when the opening 1002 is not opened. This is to generate a force in the direction of the drive shaft 100 and to generate a friction force between the ring body 1000 and the drive shaft 100 through this.
  • One end of the ring body 1000 facing the swash plate 500 is formed with a plurality of hooks 1004 to which the support springs 1100 are coupled.
  • the hook 1004 extends outward from one end of the ring body 1000 facing the swash plate 500 and is bent and extended in the direction of the retainer 1300.
  • the interval between the hook 1004 and the outer circumferential surface of the ring body 1000 is preferably greater than the thickness of the support spring 1100 so as not to interfere with the operation of the support spring 1100.
  • the support spring 1100 is inserted between the hook 1004 and the ring body 1000.
  • One end of the support spring 1100 is inserted between the hook 1004 and the ring body 1000, and the other end thereof extends toward the retainer 1300.
  • the inner diameter of the support spring 1100 is formed somewhat larger than the outer diameter of the ring body 1000.
  • the reason why the hook 1004 is provided is to facilitate the assembly of the support spring 1100. That is, the hook 1004 serves as a temporary fixing role of the support spring 1100 during assembly to prevent the support spring 1100 from escaping toward the swash plate 500. However, the hook 1004 does not interfere with the retainer 1300 side movement of the support spring 1100.
  • the ring body 1000a is formed in a cylindrical shape, and an opening 1002a is formed at one side thereof.
  • a plurality of hooks 1004a are formed on an outer circumferential surface of the ring body 1000a, and may further include a plurality of friction protrusions 1006a protruding from the inner circumferential surface of the ring body 1000a toward the driving shaft 100 (previous implementation). Detailed description of the same configuration as the example will be omitted).
  • the friction protrusion 1006a serves to increase the friction force between the drive shaft 100 and the ring body 1000a, and as shown in FIG. 5, increases the force generated toward the center of the drive shaft 100.
  • the ring body 1000a is formed in a cylindrical shape, and the driving shaft 100 is supported by three points through the friction protrusion 1006a. press) has the effect of improving productivity.
  • the inner diameter of the ring body 1000a is made smaller than the outer diameter of the drive shaft 100, or the friction protrusion 1006a is provided to properly maintain the frictional force while maintaining controllability while maintaining controllability. It is effective to prevent.
  • the ring bodies 1000 and 1000a move between the bush 900 and the retainer 1300 inserted between the swash plate 500 and the drive shaft 100, and at the minimum angle of the swash plate 500.
  • the movement is stopped while being pushed by 900 to contact the retainer 1300. Therefore, the length of the drive shaft 100 in the longitudinal direction of the ring bodies 1000 and 1000a varies depending on the position of the retainer 1300 when the swash plate 500 is at the minimum angle.
  • the above-described ring body 1000 is coupled to the drive shaft 100 is movable in the axial direction, is located between the operating spring swash plate 500 and the support spring (1100) for applying a force in the direction of increasing the inclination angle, It can be configured to have a force in the direction.
  • the ring body 1000 may be defined as a friction member because the ring body 1000 has an effect of generating a friction force between the driving shaft 100 and limiting the rapid movement of the inclination angle of the swash plate 500 under low flow conditions.
  • the ring body 1000 may be formed as a module with the support spring 1100 may be coupled to the drive shaft 100 in the axial direction.
  • the present invention can be applied to a drive unit for a variable displacement compressor, which simplifies the structure of the drive unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A driving part for a variable-capacity compressor, according to the present invention, comprises: a driving shaft (100) of which one end is connected to an engine pulley so as to receive driving power; a support balancer (300) coupled to one side of the driving shaft (100) at a pulley side and supporting a thrust bearing; a swash plate (500) disposed to be spaced from the support balancer (300), and adjusting a refrigerant discharge amount and pressure according to an inclination angle; a hinge part (700) for connecting the support balancer (300) and the swash plate, and transmitting the rotating power of the driving shaft (100) to the swash plate (500); and a friction ring module for generating friction force between the friction ring module and the driving shaft (100) so as to control the inclination angle of the swash plate (500) in a low-flow condition. According to the present invention, the friction ring module is provided so as to prevent hunting occurring in the low-flow condition, while maintaining controllability.

Description

가변 용량 압축기용 구동부Drive for variable displacement compressor
본 발명은 가변 용량 압축기용 구동부에 관한 것으로, 더욱 상세하게는 구동부의 구조를 단순화시킨 가변 용량 압축기용 구동부에 관한 것이다.The present invention relates to a drive for a variable displacement compressor, and more particularly to a drive for a variable displacement compressor with a simplified structure of the drive.
일반적으로 공조시스템에 적용되는 압축기는 증발기를 거친 냉매 가스를 흡입해 고온고압의 냉매 가스 상태로 압축하여 응축기로 토출한다. 압축기는 왕복동식, 회전식, 스크롤식, 사판식 등 다양한 타입이 사용되고 있다.In general, a compressor applied to an air conditioning system sucks refrigerant gas that has passed through an evaporator, compresses the refrigerant gas to a high temperature and high pressure refrigerant gas, and discharges the refrigerant gas. Various types of compressors are used, such as reciprocating type, rotary type, scroll type, and swash plate type.
사판식 압축기는 엔진의 동력을 전달받아 회전하는 구동축에 디스크 형상의 사판(swash plate)이 경사지게 설치되어 구동축에 의해 회전한다. 또한, 사판식 압축기는 사판의 회전에 의해 복수의 피스톤이 실린더 내부에서 직선 왕복 운동함으로써 냉매 가스를 흡입 또는 압축하여 배출하는 원리이다. 일 예로, 한국특허공개 2012-0100189호에 개시된 바와 같은 용량 가변형 사판식 압축기는, 열 부하에 따라 구동축에 설치된 사판의 경사각이 가변되는 것으로, 사판의 경사각이 가변됨에 따라 피스톤의 왕복 이송량이 변화되어 냉매 토출량이 조절된다.In the swash plate type compressor, a disk-shaped swash plate is inclined to the drive shaft which is rotated by the power of the engine, and rotates by the drive shaft. In addition, the swash plate type compressor is a principle that sucks or compresses and discharges refrigerant gas by linearly reciprocating a plurality of pistons in a cylinder by rotation of the swash plate. For example, in the variable displacement swash plate type compressor as disclosed in Korean Patent Publication No. 2012-0100189, the inclination angle of the swash plate installed in the drive shaft is variable according to the heat load, and the reciprocating feed amount of the piston is changed as the inclination angle of the swash plate is changed. The refrigerant discharge amount is adjusted.
일반적으로 종래의 용량 가변형 사판 압축기의 구동부는 허브에 위치 고정된 힌지핀이 회전축에 고정된 로터에 대해 슬라이딩(sliding) 하고, 회전축을 중심으로 슬라이딩하는 샤프트 부쉬를 통해 사판의 경사각을 조정하는 구조를 갖는다.In general, the drive unit of the conventional variable displacement swash plate compressor is configured to adjust the inclination angle of the swash plate through the shaft bush that the hinge pin is fixed to the rotor fixed to the rotating shaft is fixed to the hub, and sliding around the rotating shaft Have
이러한 힌지 메카니즘은 회전축에 로터를 압입하는 공정이 필요해 작업 공정과 제품 구조가 복잡해 중량적으로나 프로세스적으로 가격 경쟁력이 낮은 단점이 있다. 또한, 힌지 메카니즘의 clearance로 인한 구성품간 유격이 상대적으로 큰 단점이 있다.This hinge mechanism requires a process of injecting a rotor into the rotating shaft, which is complicated in the work process and the product structure, and has a disadvantage in that the price is competitive in terms of weight and process. In addition, the clearance between components due to the clearance of the hinge mechanism has a relatively large disadvantage.
본 발명의 목적은 구동부의 구조를 단순화시킨 가변 용량 압축기용 구동부를 제공하는 것이다.It is an object of the present invention to provide a drive for a variable displacement compressor that simplifies the structure of the drive.
상기와 같은 목적을 달성하기 위하여 본 발명의 가변 용량 압축기용 구동부는, 일단이 엔진의 풀리에 연결되어 구동력을 전달받는 구동축(100)과, 상기 구동축(100)의 상기 풀리 쪽 일측에 결합되며 트러스트 베어링을 지지하는 서포트 밸런스(300)와, 상기 서포트 밸런스(300)와 이격 배치되며, 경사각에 따라 냉매 토출량 및 압력을 조절하는 사판(500)과, 상기 서포트 밸런스(300)와 상기 사판(500)을 연결하고 상기 구동축(100)의 회전력을 상기 사판(500)에 전달하는 힌지부(700)와, 상기 구동축(100)과의 사이에서 마찰력을 발생해 저유량 조건에서 상기 사판(500)의 경사각을 제어하는 프릭션 링 모듈을 포함한다.In order to achieve the above object, the drive unit for a variable displacement compressor of the present invention includes a drive shaft 100 having one end connected to a pulley of the engine and receiving driving force, and coupled to one side of the pulley side of the drive shaft 100 and being thrust. A support balance 300 supporting a bearing, a support plate 300 spaced apart from the support balance 300, a swash plate 500 for adjusting a refrigerant discharge amount and a pressure according to an inclination angle, the support balance 300 and the swash plate 500. The inclination angle of the swash plate 500 in a low flow condition by generating a friction force between the hinge portion 700 and the driving shaft 100 to transfer the rotational force of the drive shaft 100 to the swash plate 500 It includes a friction ring module to control.
상기 프릭션 링 모듈은 상기 구동축(100)의 길이 방향을 따라 삽입되는 다각 파이프 형상의 링 본체(1000)와, 상기 링 본체(1000)의 외측에 삽입되는 서포트 스프링(1100)을 포함한다.The friction ring module includes a polygonal pipe-shaped ring body 1000 inserted along the longitudinal direction of the drive shaft 100, and a support spring 1100 inserted outside the ring body 1000.
상기 프릭션 링 모듈은 상기 구동축(100)의 길이 방향을 따라 삽입되는 원통 형상의 링 본체(1000)와, 상기 링 본체(1000)의 외측에 삽입되는 서포트 스프링(1100)을 포함한다.The friction ring module includes a cylindrical ring body 1000 inserted along the longitudinal direction of the drive shaft 100, and a support spring 1100 inserted outside the ring body 1000.
상기 링 본체(1000)는 내경이 상기 구동축(100)의 외경보다 작은 것을 특징으로 한다.The ring body 1000 has an inner diameter smaller than an outer diameter of the drive shaft 100.
상기 링 본체(1000)는 길이 방향을 따라 개구부(1002)가 형성된 것을 특징으로 한다.The ring body 1000 is characterized in that the opening 1002 is formed along the longitudinal direction.
상기 링 본체(1000)는 상기 사판(500)을 향하는 일단에서 외측으로 연장되고, 상기 리테이너(1300) 방향으로 절곡되어 연장된 복수의 후크(1004)를 포함한다.The ring body 1000 includes a plurality of hooks 1004 extending outward from one end facing the swash plate 500 and bent and extended in the direction of the retainer 1300.
상기 서포트 스프링(1100)은 상기 후크(1004)와 상기 링 본체(1000)의 사이에 삽입되는 것을 특징으로 한다.The support spring 1100 is inserted between the hook 1004 and the ring body 1000.
상기 서포트 스프링(1100)의 내경은 상기 링 본체(1000)의 외경보다 큰 것을 특징으로 한다.The inner diameter of the support spring 1100 is larger than the outer diameter of the ring body 1000.
상기 링 본체(1000)와 상기 후크(1004) 사이의 간격은 상기 서포트 스프링(1100)의 두께보다 큰 것을 특징으로 한다.The gap between the ring body 1000 and the hook 1004 is greater than the thickness of the support spring 1100.
상기 풀리 연결부위에 대향되는 상기 구동축(100)의 일측에는 상기 프릭션 링 모듈의 이동을 제한하는 원형 또는 반 원형 형상의 리테이너(1300)를 더 포함한다.One side of the drive shaft 100 opposite to the pulley connection portion further includes a retainer 1300 of a circular or semi-circular shape to limit the movement of the friction ring module.
상기 링 본체(1000)는 상기 사판(500)의 경사각이 변경될 때 상기 구동축(100)을 따라 이동하되, 상기 사판(500)의 최소각 상태에서 상기 리테이너(1300)에 접촉해 멈추는 것을 특징으로 한다.The ring body 1000 moves along the drive shaft 100 when the inclination angle of the swash plate 500 is changed, and stops by contacting the retainer 1300 at a minimum angle of the swash plate 500. do.
상기 링 본체(1000)에는 내주면으로부터 상기 구동축(100)을 향해 돌출 형성된 복수의 마찰 돌기(1006a)가 형성된 것을 특징으로 한다.The ring body 1000 is characterized in that a plurality of friction protrusions (1006a) protruding from the inner peripheral surface toward the drive shaft 100 is formed.
또한, 본 발명은 하우징 내에 회전 가능하게 지지된 구동축(100)과, 상기 구동축(100)이 받는 구동력을 전달받고 경사각에 따라 냉매의 토출량을 가변 제어하는 사판(500)을 구비한 가변 용량 압축기에 있어서, 상기 구동축(100)에 결합되어 축방향으로 이동 가능하며, 작동 초기 상기 사판(500)과 경사각이 커지는 방향으로 힘을 가해주는 서포트 스프링(1100) 사이에 위치하고, 원심 방향으로의 힘을 가지는 마찰부재(1000)를 구비하고, 상기 마찰부재(1000)는 상기 구동축(100)과의 사이에서 마찰력을 발생시켜 저유량 조건에서 상기 사판(500)의 경사각의 급격한 움직임을 제한하는 것을 특징으로 한다.The present invention also provides a variable displacement compressor including a drive shaft 100 rotatably supported in a housing and a swash plate 500 that receives a driving force received by the drive shaft 100 and variably controls the discharge amount of the refrigerant according to an inclination angle. In this case, coupled to the drive shaft 100 is movable in the axial direction, is located between the swash plate 500 and the support spring (1100) for applying a force in the direction of increasing the inclination angle, and has a force in the centrifugal direction The friction member 1000 is provided, and the friction member 1000 generates a friction force between the drive shaft 100 to limit the rapid movement of the inclination angle of the swash plate 500 under low flow conditions. .
상기 마찰부재(1000)는 상기 서포트 스프링(1100)과 모듈로 형성되어 상기 구동축(100)에 축방향으로 결합되는 특징이 있다.The friction member 1000 is formed as a module with the support spring 1100 is characterized in that coupled to the drive shaft 100 in the axial direction.
본 발명의 일 실시 예에 따른 가변 용량 압축기용 구동부는, 프릭션 링 모듈이 구비됨으로써 제어성을 유지하면서도 저유량의 조건에서 발생되는 헌팅 문제를 방지하는 효과가 있다.The drive unit for a variable displacement compressor according to an embodiment of the present invention has an effect of preventing hunting problems generated under low flow conditions while maintaining controllability by providing a friction ring module.
도 1은 본 발명의 일 실시 예에 따른 가변 용량 압축기용 구동부의 최대 경사각 상태를 도시한 결합 사시도,1 is a perspective view showing a maximum inclination angle state of the drive unit for a variable displacement compressor according to an embodiment of the present invention,
도 2는 도 1에 따른 가변 용량 압축기용 구동부의 분해 사시도,2 is an exploded perspective view of a drive unit for a variable displacement compressor according to FIG. 1;
도 3은 도 1에 따른 가변 용량 압축기용 구동부의 프릭션 링을 도시한 사시도,3 is a perspective view illustrating a friction ring of a driving unit for a variable displacement compressor according to FIG. 1;
도 4는 본 발명의 다른 실시 예에 따른 가변 용량 압축기용 구동부의 프릭션 링을 도시한 사시도,4 is a perspective view illustrating a friction ring of a driving unit for a variable displacement compressor according to another embodiment of the present invention;
도 5는 도 4에 따른 프릭션 링의 결합 상태를 도시한 평면도이다. 5 is a plan view illustrating a coupling state of the friction ring according to FIG. 4.
이하에서는 도면을 참조하여, 본 발명의 일 실시 예에 따른 가변 용량 압축기용 구동부에 대해 상세히 설명하기로 한다.Hereinafter, with reference to the drawings, a drive unit for a variable displacement compressor according to an embodiment of the present invention will be described in detail.
도 1은 본 발명의 일 실시 예에 따른 가변 용량 압축기용 구동부의 최대 경사각 상태를 도시한 결합 사시도, 도 2는 도 1에 따른 가변 용량 압축기용 구동부의 분해 사시도, 도 3은 도 1에 따른 가변 용량 압축기용 구동부의 프릭션 링을 도시한 사시도이다. 1 is a perspective view showing a maximum inclination angle state of the drive unit for a variable displacement compressor according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of the drive unit for a variable displacement compressor according to FIG. 1, FIG. It is a perspective view which shows the friction ring of the drive part for capacitive compressors.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시 예에 따른 가변 용량 압축기용 구동부(10)는 실린더 블록 및 프런트, 리어 하우징으로 구성된 압축기 내부에 삽입된다. 구동부(10)는 엔진의 동력을 전달받는 풀리(미도시)와, 풀리에 결합되어 풀리에 의해 회전하는 구동축(100)과, 구동축 상에 결합되는 서포트 밸런스(300) 및 사판(500)을 포함하여 구성된다. 서포트 밸런싱(300)과 사판(500)은 힌지부(700)에 의해 연결된다. 사판(500)과 구동축(100)의 사이에는 코일 스프링(910) 및 부시(900)가 결합되어 사판(500)의 초기 작동을 돕는다. 구동축(100)의 풀리 연결 부위에 대향되는 단부 쪽에는 프릭션 링 모듈이 구비되어 제어성(controllability)를 유지하면서도 저유량의 조건에서 헌팅을 방지하는 역할을 한다.As shown in Figure 1 and 2, the drive unit 10 for a variable displacement compressor according to an embodiment of the present invention is inserted into the compressor consisting of a cylinder block and a front, rear housing. The drive unit 10 includes a pulley (not shown) receiving power of an engine, a drive shaft 100 coupled to the pulley to rotate by the pulley, and a support balance 300 and a swash plate 500 coupled to the drive shaft. It is configured by. The support balancing 300 and the swash plate 500 are connected by the hinge portion 700. The coil spring 910 and the bush 900 are coupled between the swash plate 500 and the drive shaft 100 to help initial operation of the swash plate 500. A friction ring module is provided at an end side opposite to the pulley connection portion of the drive shaft 100 to prevent hunting in a low flow condition while maintaining controllability.
구동축(100)은 일단이 풀리에 연결되어 프런트 하우징에 회전 가능하게 지지되고, 타단이 리어 하우징에 회전 가능하게 지지된다. 구동축(100)에는 서포트 밸런스(300)에 접촉되는 힌지 연결부(110)가 구비된다.One end of the driving shaft 100 is rotatably supported by the front housing and the other end is rotatably supported by the rear housing. The drive shaft 100 is provided with a hinge connection portion 110 in contact with the support balance 300.
힌지 연결부(110)는 서포트 밸런스(300)가 사판(500) 쪽으로 이동하는 것을 방지함과 동시에, 후술할 힌지부(700)가 구동축(100)에 연결되도록 한다. 이를 위해, 힌지 연결부(110)에는 도 1을 기준으로 서포트 밸런스(300)의 카운터 웨이트(330) 양단을 잇는 방향을 따라 구동축(100)을 관통하여 형성된 관통홀이 구비된다(후술할 서포트 밸런스가 구동축에 결합된 상태에서 스스로 회전하지 않고 결합된 위치에 고정되므로 서포트 밸런스를 기준으로 방향을 정의함). 힌지 연결부(110)에 관통홀이 형성되면 구동축(100)의 강성에 영향을 줄 수 있으므로, 관통홀이 형성된 주변 부위의 두께를 보강하여 구동축(100)의 강성이 감소되지 않도록 하는 것이 바람직하다. 따라서 힌지 연결부(110)는 구동축(100)의 외주면보다 외측으로 돌출 형성된다.The hinge connector 110 prevents the support balance 300 from moving toward the swash plate 500, and at the same time, the hinge portion 700 to be described later is connected to the driving shaft 100. To this end, the hinge connector 110 is provided with a through hole formed through the drive shaft 100 along a direction connecting both ends of the counter weight 330 of the support balance 300 based on FIG. 1 (the support balance will be described later). The direction is defined based on the support balance because it is fixed to the combined position without rotating itself when coupled to the drive shaft). When the through-hole is formed in the hinge connection portion 110 may affect the rigidity of the drive shaft 100, it is preferable that the rigidity of the drive shaft 100 is not reduced by reinforcing the thickness of the peripheral portion where the through-hole is formed. Therefore, the hinge connector 110 is formed to protrude outward from the outer circumferential surface of the drive shaft 100.
구동축(100)의 풀리 쪽 일측에는 서포트 밸런스(300)가 결합되며, 서포트 밸런스(300)와 소정 간격 이격되어 사판(500)이 삽입된다. The support balance 300 is coupled to one side of the pulley side of the drive shaft 100, and the swash plate 500 is inserted at a predetermined interval from the support balance 300.
서포트 밸런스(300)는 종래의 러그 플레이트가 일체로 형성된 로터를 대체하는 구조로, 트러스트 베어링(미도시)을 지지하는 역할을 한다. 사판에 대향되는 위치에 종래의 로터가 배치되는 이유는 사판에 회전력을 전달하는 것과, 구동축(100) 상에 중량체(mass)가 구비될 때 무게 불균형에 의해 요잉(yawing)이 발생하는데, 이 때 다시 균형을 맞춰주는 기능을 하기 위함이다(static balance 기능). 종래에는 이러한 역할을 러그 플레이트가 일체로 형성된 로터가 수행하였으나, 크기와 무게가 크고 힌지 구조가 복잡해 구동부의 소형화가 어려운 문제가 있었다. 또한, 로터를 압입 과정에 의해 구동축(100)에 결합시키는 과정에서 구동축(100)이나 주변 부품에 변형이 발생하는 원인이 되었다. 본 발명에서는 이러한 로터를 대체하는 구조로 서포트 밸런스(300)를 제안하는 것이다.The support balance 300 is a structure that replaces a rotor in which a conventional lug plate is integrally formed, and serves to support a thrust bearing (not shown). The reason why the conventional rotor is disposed at a position opposite to the swash plate is that yawing occurs due to the transmission of rotational force to the swash plate and the weight imbalance when a mass is provided on the drive shaft 100. This is to rebalance the function (static balance function). Conventionally, the rotor is integrally formed with a lug plate, but the size and weight are large, and the hinge structure is complicated, which makes it difficult to miniaturize the driving unit. In addition, in the process of coupling the rotor to the drive shaft 100 by a press-in process, the deformation of the drive shaft 100 and the peripheral parts. The present invention proposes a support balance 300 as a structure to replace such a rotor.
서포트 밸런스(300)는 원판 형상의 베어링 서포터(310)와, 풀리가 연결되는 쪽 방향으로 돌출 형성되고 베어링 서포터(310)보다 작은 직경을 갖는 단차부(312)와, 베어링 서포터(310)의 외주면 일측에 구비되며 베어링 서포터(310) 보다 큰 반경을 갖는 부분 링 형태의 카운터 웨이트(330)를 포함하여 구성된다. The support balance 300 includes a disc shaped bearing supporter 310, a stepped portion 312 protruding in a direction in which the pulley is connected, and having a diameter smaller than that of the bearing supporter 310, and an outer peripheral surface of the bearing supporter 310. It is provided on one side and comprises a counter weight 330 in the form of a partial ring having a larger radius than the bearing supporter 310.
단차부(312)는 베어링 서포터(310)에 일체로 형성되며, 베어링 서포터(310) 및 단차부(312)의 중앙에는 구동축(100)이 삽입되는 중공이 관통 형성된다. The stepped part 312 is integrally formed in the bearing supporter 310, and a hollow in which the drive shaft 100 is inserted is formed in the center of the bearing supporter 310 and the stepped part 312.
카운터 웨이트(330)는 도 1 및 도 2의 구동부 배치 상태를 기준으로 할 때, 베어링 서포터(310)의 하측에 배치되는 것이 바람직하다. 서포트 밸런스(300)는 카운터 웨이트(330)가 일츨으로 치우치게 구비됨으로써 편심 하중을 갖는 형태이다. 카운터 웨이트(330)의 위치는 사판각의 조절을 위한 힌지부(700)의 구조에 따른 중량의 편심을 방지하기 위한 것으로, 사판(500)과 힌지부(700)의 중량이 치우치는 부분에 대향되도록 배치된 것이다.The counter weight 330 is preferably disposed below the bearing supporter 310 when the counter weight 330 is based on the driving unit arrangement of FIGS. 1 and 2. The support balance 300 is a form having an eccentric load because the counter weight 330 is provided inclined. The position of the counter weight 330 is to prevent the eccentricity of the weight according to the structure of the hinge portion 700 for adjusting the swash plate angle, so that the weight of the swash plate 500 and the hinge portion 700 is biased It is deployed.
서포트 밸런스(300)가 압입 공정에 의해 결합되던 기존의 로터와는 달리, 구동축(100)에 삽입되는 중공 부분이 편심된 형태를 가짐으로써 구동축(100) 상에서 회전하지 않고 결합 상태를 유지하는 구조를 갖는다.Unlike the existing rotor, in which the support balance 300 is coupled by the indentation process, the hollow portion inserted into the drive shaft 100 has an eccentric shape, thereby maintaining a structure in which the support balance 300 does not rotate on the drive shaft 100. Have
사판(500)은 실린더 블록 내에 구비된 실린더 보어에 삽입된 피스톤(미도시)에 연결된다. 사판(500)의 회전에 따라 실린더 보어의 내부에서 피스톤이 직선 운동하며 냉매를 흡입하거나, 실린더 보어 내부의 냉매를 압축하게 된다. 사판(500)의 경사 각도 조절에 의해 냉매 토출량 및 압력이 조절된다.The swash plate 500 is connected to a piston (not shown) inserted into the cylinder bore provided in the cylinder block. As the swash plate 500 rotates, the piston moves linearly in the cylinder bore to suck the refrigerant or compress the refrigerant inside the cylinder bore. By adjusting the inclination angle of the swash plate 500, the refrigerant discharge amount and the pressure are adjusted.
사판(500)은 서포트 밸런스(300)를 향하는 판면에 사판암(510)과 허브(530)가 돌출 형성된다. 사판암(510)은 도 1 및 2의 위치를 기준으로 할 때 상대적으로 상측에 배치되고, 허브(530)는 사판암(510)과 이격되되 상대적으로 하측에 배치된다.The swash plate 500 protrudes from the swash plate arm 510 and the hub 530 on the plate surface facing the support balance 300. The swash plate arm 510 is disposed on the upper side relative to the position of FIGS. 1 and 2, and the hub 530 is spaced apart from the swash plate arm 510 and disposed on the lower side.
사판암(510)은 서로 마주보는 한 쌍의 판재로 형성되며, 판재에 후술할 제2 힌지핀(770)이 관통하여 삽입될 수 있도록 관통홀이 각각 형성된다. 사판암(510)의 사이에 후술할 힌지부(700)가 삽입되어 제2 힌지핀(770)에 의해 사판암(510)에 회동 가능하게 결합된다.The swash plate arm 510 is formed of a pair of plate facing each other, the through hole is formed so that the second hinge pin 770 to be described later penetrate into the plate. A hinge portion 700 to be described later is inserted between the swash plate arms 510 to be rotatably coupled to the swash plate arms 510 by a second hinge pin 770.
허브(530)는 대략 반원통 형상을 가지며, 서포트 밸런스(300)를 향해 사판암(510)보다 돌출된다. 허브(530)는 사판(500)의 경사각이 조절될 때 사판(500)이 설정 각도 이상으로 경사 배치되지 못하도록 사판(500)의 이동을 제한하는 역할을 한다. 이를 위해, 허브(530)는 사판(500)의 경사각이 최대일 때 서포트 밸런스(300)에 접촉될 정도로 돌출되는 것이 바람직하다.The hub 530 has a substantially semi-cylindrical shape and protrudes from the swash plate arm 510 toward the support balance 300. The hub 530 serves to limit the movement of the swash plate 500 so that the swash plate 500 is not inclined to be disposed above a set angle when the inclination angle of the swash plate 500 is adjusted. To this end, the hub 530 is preferably protruded to contact the support balance 300 when the inclination angle of the swash plate 500 is the maximum.
전술한 서포트 밸런스(300)와 사판(500)은 힌지부(700)에 의해 연결된다.The support balance 300 and the swash plate 500 described above are connected by the hinge 700.
힌지부(700)는 구동축(100)의 힌지 연결부(110) 양측에 배치되는 제1 힌지암(710)과, 사판암(510) 쪽으로 돌출 형성되는 제2 힌지암(730)과, 제1 힌지암(710)에 결합되는 제1 힌지핀(750) 및 제2 힌지암(730)에 결합되는 제2 힌지핀(770)으로 구성된다.The hinge part 700 includes a first hinge arm 710 disposed on both sides of the hinge connection part 110 of the drive shaft 100, a second hinge arm 730 protruding toward the swash plate arm 510, and a first hinge. The first hinge pin 750 is coupled to the arm 710 and the second hinge pin 770 is coupled to the second hinge arm 730.
제1 힌지암(710)은 제2 힌지암(730)에 연결되며, 서로 마주보는 한 쌍의 판재로 구성된다. 제1 힌지암(710)은 도 3을 기준으로 힌지 연결부(110)의 양측에서 힌지 연결부(110)를 파지하는 형태로, 제1 힌지핀(750)이 관통 삽입되는 관통홀이 형성된다. 제1 힌지핀(750)은 제1 힌지암(710)의 일측 판재를 관통해 힌지 연결부(110)의 관통홀을 통과한 후 제1 힌지암(710)의 타측 판재를 관통해 결합된다. 제1 힌지핀(750)에 의해 제1 힌지암(710)이 힌지 연결부(110)에 회동 가능하게 결합된다. 힌지 연결부(110)가 구동축(100)의 외주면 형상에 따라 곡선형의 외주면을 갖게 되면 제1 힌지암(710)과의 결합 부위가 면접촉되지 않고 들뜨는 형태가 된다. 따라서 제1 힌지암(710)이 안정적으로 힌지 연결부(110)를 파지할 수 있도록 제1 힌지암(710)이 접촉되는 힌지 연결부(110)의 접촉면은 곡선형이 아닌 평면인 것이 바람직하다.The first hinge arm 710 is connected to the second hinge arm 730 and is composed of a pair of plate facing each other. The first hinge arm 710 grips the hinge connector 110 on both sides of the hinge connector 110 based on FIG. 3, and a through hole through which the first hinge pin 750 is inserted is formed. The first hinge pin 750 penetrates through one side plate of the first hinge arm 710, passes through a through hole of the hinge connection unit 110, and then penetrates through the other side plate of the first hinge arm 710. The first hinge arm 710 is rotatably coupled to the hinge connector 110 by the first hinge pin 750. When the hinge connecting portion 110 has a curved outer circumferential surface according to the shape of the outer circumferential surface of the drive shaft 100, the engaging portion with the first hinge arm 710 is lifted without surface contact. Therefore, it is preferable that the contact surface of the hinge connecting portion 110 to which the first hinge arm 710 is in contact is not flat but planar so that the first hinge arm 710 can stably hold the hinge connecting portion 110.
제2 힌지암(730)은 한 쌍의 사판암(510) 사이 간격에 대응하는 두께를 가지며, 제2 힌지핀(770)이 관통 삽입되는 관통홀이 형성된다. 제2 힌지핀(770)은 사판암(510)의 일측으로 삽입되어 제2 힌지암(730)을 관통한 후 마주보는 사판암(510)의 타측으로 삽입된다. 제2 힌지핀(770)에 의해 사판암(510)이 제2 힌지암(730)에 회동 가능하게 결합된다.The second hinge arm 730 has a thickness corresponding to the gap between the pair of swash plate arms 510, and a through hole through which the second hinge pin 770 is inserted is formed. The second hinge pin 770 is inserted into one side of the swash plate arm 510 and penetrates through the second hinge arm 730 to be inserted into the other side of the swash plate arm 510 facing each other. The swash plate arm 510 is rotatably coupled to the second hinge arm 730 by the second hinge pin 770.
도 2에 도시된 바와 같이, 부시(900)는 원통형으로 구비되어 사판(500)과 구동축(100)의 사이에 삽입되며, 부시(900)와 구동축(100)의 사이에는 코일 스프링(910)이 삽입된다. 부시(900)는 코일 스프링(910)에 의해 탄성 지지되고, 구동축(100)을 따라 슬라이딩 이동한다. 사판(500)의 경사각이 변경될 때 부시(900)가 사판(500)과 함께 슬라이딩 이동함으로써 사판(500)이 구동축(100)을 따라 원활하게 이동할 수 있게 한다.As shown in FIG. 2, the bush 900 is provided in a cylindrical shape and inserted between the swash plate 500 and the driving shaft 100, and a coil spring 910 is provided between the bush 900 and the driving shaft 100. Is inserted. The bush 900 is elastically supported by the coil spring 910 and slides along the drive shaft 100. When the inclination angle of the swash plate 500 is changed, the bush 900 slides together with the swash plate 500 so that the swash plate 500 can move smoothly along the drive shaft 100.
한편, 프릭션 링 모듈은 저유량 조건에서 마찰(friction)이 너무 낮을 때 사판각을 작게 유지하지 못해 소음이 발생하는 헌팅 현상을 방지하기 위해 구비된다.On the other hand, the friction ring module is provided to prevent the hunting phenomenon that the noise does not maintain the swash plate angle when the friction is too low in low flow conditions.
도 2 및 도 3에 도시된 바와 같이, 프릭션 링 모듈은 링 본체(1000)와 서포트 스프링(1100)으로 구성된다. 구동축(100)의 풀리 연결부 반대쪽 단부에는 프릭션 링 모듈의 이동을 제한하는 리테이너(1300)가 삽입된다. 리테이너(1300)는 원형 또는 반 원형의 링 형상을 가지며, 스토퍼 역할을 한다.As shown in Figures 2 and 3, the friction ring module is composed of a ring body 1000 and the support spring (1100). A retainer 1300 for restricting movement of the friction ring module is inserted at an end opposite to the pulley connection portion of the drive shaft 100. The retainer 1300 has a circular or semi-circular ring shape and serves as a stopper.
링 본체(1000)는 일부가 절개되어 개구부(1002)를 형성하는 다각 파이프 형상으로, 구동축(100)의 길이 방향을 따라 삽입된다. 링 본체(1000)가 원통 형상이 아니므로 구동축(100)의 외주면을 완전히 감싸는 형태가 아닌 일부 구간에서 유격이 있는 형태로 결합된다. 개구부(1002)는 구동축(100)의 길이 방향을 따라 형성되며, 개구부(1002)가 벌어지지 않은 상태에서 링 본체(1000)의 내경은 구동축(100)의 외경보다 작게 형성되는 것이 바람직하다. 이는 구동축(100) 중심 방향으로의 힘을 방생하고 이를 통해 링 본체(1000)와 구동축(100) 간에 마찰력을 생성하기 위함이다. 링 본체(1000)의 내경이 구동축(100)의 외경보다 작아도 개구부(1002)가 있기 때문에 링 본체(1000)의 조립에는 문제가 없다. 사판(500)을 향하는 링 본체(1000)의 일단에는 서포트 스프링(1100)이 결합되는 복수의 후크(1004)가 형성된다.The ring body 1000 is a polygonal pipe shape in which a portion thereof is cut to form the opening 1002, and is inserted along the longitudinal direction of the driving shaft 100. Since the ring body 1000 is not a cylindrical shape, the ring body 1000 is coupled in a form having play in some sections instead of completely surrounding the outer circumferential surface of the drive shaft 100. The opening 1002 is formed along the longitudinal direction of the drive shaft 100, and the inner diameter of the ring body 1000 is preferably smaller than the outer diameter of the drive shaft 100 when the opening 1002 is not opened. This is to generate a force in the direction of the drive shaft 100 and to generate a friction force between the ring body 1000 and the drive shaft 100 through this. Even if the inner diameter of the ring main body 1000 is smaller than the outer diameter of the drive shaft 100, there is no problem in assembling the ring main body 1000 because there is an opening 1002. One end of the ring body 1000 facing the swash plate 500 is formed with a plurality of hooks 1004 to which the support springs 1100 are coupled.
후크(1004)는 사판(500)을 향하는 링 본체(1000)의 일단에서 외측으로 연장되고 리테이너(1300) 방향으로 절곡되어 연장된다. 후크(1004)와 링 본체(1000)의 외주면 사이 간격은 서포트 스프링(1100)의 두께보다 크게 형성되어 서포트 스프링(1100)의 동작에 간섭하지 않는 것이 바람직하다. 후크(1004)와 링 본체(1000)의 사이에 서포트 스프링(1100)이 삽입된다.The hook 1004 extends outward from one end of the ring body 1000 facing the swash plate 500 and is bent and extended in the direction of the retainer 1300. The interval between the hook 1004 and the outer circumferential surface of the ring body 1000 is preferably greater than the thickness of the support spring 1100 so as not to interfere with the operation of the support spring 1100. The support spring 1100 is inserted between the hook 1004 and the ring body 1000.
서포트 스프링(1100)은 일단이 후크(1004)와 링 본체(1000) 사이에 삽입되고, 타단은 리테이너(1300) 쪽으로 연장된다. 서포트 스프링(1100)의 내경은 링 본체(1000)의 외경보다 다소 크게 형성된다.One end of the support spring 1100 is inserted between the hook 1004 and the ring body 1000, and the other end thereof extends toward the retainer 1300. The inner diameter of the support spring 1100 is formed somewhat larger than the outer diameter of the ring body 1000.
링 본체(1000)의 외경보다 서포트 스프링(1100)의 내경이 큰데도 불구하고 후크(1004)가 구비되는 이유는 서포트 스프링(1100)의 조립을 원활하게 하기 위함이다. 즉, 후크(1004)는 조립 시 서포트 스프링(1100)의 일시적인 고정 역할을 하여 서포트 스프링(1100)이 사판(500) 쪽으로 이탈하는 것을 방지한다. 그러나 후크(1004)는 서포트 스프링(1100)의 리테이너(1300) 쪽 이동에는 간섭하지 않는다.Although the inner diameter of the support spring 1100 is larger than the outer diameter of the ring body 1000, the reason why the hook 1004 is provided is to facilitate the assembly of the support spring 1100. That is, the hook 1004 serves as a temporary fixing role of the support spring 1100 during assembly to prevent the support spring 1100 from escaping toward the swash plate 500. However, the hook 1004 does not interfere with the retainer 1300 side movement of the support spring 1100.
도 4 및 도 5에 도시된 바와 같이, 본 발명의 다른 실시 예에 따른 프릭션 링 모듈은 링 본체(1000a)가 원통형으로 형성되고, 일측에 개구부(1002a)가 형성된다. 링 본체(1000a)의 외주면에는 복수의 후크(1004a)가 형성되고, 링 본체(1000a)의 내주면으로부터 구동축(100)을 향해 돌출 형성된 복수의 마찰 돌기(1006a)를 더 포함할 수 있다(이전 실시 예와 동일한 구성에 대해서는 상세한 설명을 생략하기로 함).4 and 5, in the friction ring module according to another embodiment of the present invention, the ring body 1000a is formed in a cylindrical shape, and an opening 1002a is formed at one side thereof. A plurality of hooks 1004a are formed on an outer circumferential surface of the ring body 1000a, and may further include a plurality of friction protrusions 1006a protruding from the inner circumferential surface of the ring body 1000a toward the driving shaft 100 (previous implementation). Detailed description of the same configuration as the example will be omitted).
마찰 돌기(1006a)는 구동축(100)과 링 본체(1000a) 간의 마찰력을 높여주는 역할을 하며, 도 5에 도시된 바와 같이 구동축(100)의 중심 방향으로 발생되는 힘을 높여준다.The friction protrusion 1006a serves to increase the friction force between the drive shaft 100 and the ring body 1000a, and as shown in FIG. 5, increases the force generated toward the center of the drive shaft 100.
링 본체(1000a)의 형상에 대한 제약은 없으나, 본 실시 예에서와 같이 링 본체(1000a)를 원통형으로 형성하고 마찰 돌기(1006a)를 통해 구동축(100)을 3점 지지하게 구성하고 복합 프레스(press)를 이용하면 생산성이 향상되는 효과가 있다.There is no restriction on the shape of the ring body 1000a, but as in the present embodiment, the ring body 1000a is formed in a cylindrical shape, and the driving shaft 100 is supported by three points through the friction protrusion 1006a. press) has the effect of improving productivity.
마찰력이 너무 높으면 프릭션 링 모듈이 구동축(100)에 고착되는 문제가 발생해 압력이 전혀 변하지 않는 문제가 발생하고, 마찰력이 너무 낮으면 저부하 조건에서 사판각을 작게 유지하기 어려워 소음이 발생하는 문제(헌팅)가 있다.If the frictional force is too high, the friction ring module is fixed to the drive shaft 100, causing a problem that the pressure does not change at all. If the frictional force is too low, the swash plate angle is difficult to keep small under low load conditions. There is a problem (hunting).
본 발명에서는 링 본체(1000a)의 내경을 구동축(100)의 외경보다 작게 형성하거나, 마찰 돌기(1006a)를 구비하여 마찰력을 적절히 유지함으로써 제어성(controllability)을 유지하면서도 저유량 조건에서의 헌팅을 방지하는 효과가 있다.In the present invention, the inner diameter of the ring body 1000a is made smaller than the outer diameter of the drive shaft 100, or the friction protrusion 1006a is provided to properly maintain the frictional force while maintaining controllability while maintaining controllability. It is effective to prevent.
전술한 실시 예들에서 링 본체(1000, 1000a)는 사판(500)과 구동축(100) 사이에 삽입된 부시(900)와 리테이너(1300)의 사이에서 이동하며, 사판(500)의 최소각에서 부시(900)에 의해 밀려 리테이너(1300)에 접촉하면서 그 이동이 멈추게 된다. 따라서 링 본체(1000, 1000a)의 구동축(100) 길이 방향 길이는 사판(500)이 최소각일 때 리테이너(1300)의 위치에 따라 가변된다. In the above-described embodiments, the ring bodies 1000 and 1000a move between the bush 900 and the retainer 1300 inserted between the swash plate 500 and the drive shaft 100, and at the minimum angle of the swash plate 500. The movement is stopped while being pushed by 900 to contact the retainer 1300. Therefore, the length of the drive shaft 100 in the longitudinal direction of the ring bodies 1000 and 1000a varies depending on the position of the retainer 1300 when the swash plate 500 is at the minimum angle.
한편, 전술한 링 본체(1000)는 구동축(100)에 결합되어 축방향으로 이동 가능하며, 작동 초기 사판(500)과 경사각이 커지는 방향으로 힘을 가해주는 서포트 스프링(1100) 사이에 위치하고, 원심 방향으로의 힘을 갖도록 구성될 수 있다. 이에 따라, 링 본체(1000)는 구동축(100)과의 사이에서 마찰력을 발생시켜 저유량 조건에서 사판(500)의 경사각의 급격한 움직임을 제한하는 효과를 가지므로, 마찰부재라고 정의할 수 있다. 또한, 링 본체(1000)는 서포트 스프링(1100)과 모듈로 형성되어 상기 구동축(100)에 축방향으로 결합될 수도 있다.On the other hand, the above-described ring body 1000 is coupled to the drive shaft 100 is movable in the axial direction, is located between the operating spring swash plate 500 and the support spring (1100) for applying a force in the direction of increasing the inclination angle, It can be configured to have a force in the direction. Accordingly, the ring body 1000 may be defined as a friction member because the ring body 1000 has an effect of generating a friction force between the driving shaft 100 and limiting the rapid movement of the inclination angle of the swash plate 500 under low flow conditions. In addition, the ring body 1000 may be formed as a module with the support spring 1100 may be coupled to the drive shaft 100 in the axial direction.
전술한 바와 같은 구조의 프릭션 링 모듈이 구비됨으로써 제어성을 유지하면서도 저유량의 조건에서 발생되는 헌팅 문제를 방지하는 효과가 있다.By providing the friction ring module having the structure as described above, there is an effect of preventing hunting problems generated under low flow conditions while maintaining controllability.
본 발명은 구동부의 구조를 단순화시킨 가변 용량 압축기용 구동부에 적용할 수 있다.The present invention can be applied to a drive unit for a variable displacement compressor, which simplifies the structure of the drive unit.

Claims (14)

  1. 일단이 엔진의 풀리에 연결되어 구동력을 전달받는 구동축(100)과,A driving shaft 100 having one end connected to a pulley of the engine and receiving a driving force;
    상기 구동축(100)의 상기 풀리 쪽 일측에 결합되며 트러스트 베어링을 지지하는 서포트 밸런스(300)와,A support balance 300 coupled to one side of the pulley of the drive shaft 100 and supporting a thrust bearing;
    상기 서포트 밸런스(300)와 이격 배치되며, 경사각에 따라 냉매 토출량 및 압력을 조절하는 사판(500)과,Is disposed apart from the support balance 300, the swash plate 500 to adjust the refrigerant discharge amount and pressure in accordance with the inclination angle,
    상기 서포트 밸런스(300)와 상기 사판(500)_을 연결하고 상기 구동축(100)의 회전력을 상기 사판(500)에 전달하는 힌지부(700)와,A hinge part 700 connecting the support balance 300 and the swash plate 500 and transmitting a rotational force of the driving shaft 100 to the swash plate 500;
    상기 구동축(100)과의 사이에서 마찰력을 발생해 저유량 조건에서 상기 사판(500)의 경사각을 제어하는 프릭션 링 모듈을 포함하는 가변 용량 압축기용 구동부.And a friction ring module for generating a friction force between the drive shaft 100 and controlling the inclination angle of the swash plate 500 under low flow conditions.
  2. 제1항에 있어서,The method of claim 1,
    상기 프릭션 링 모듈은 상기 구동축(100)의 길이 방향을 따라 삽입되는 다각 파이프 형상의 링 본체(1000)와, 상기 링 본체(1000)의 외측에 삽입되는 서포트 스프링(1100)을 포함하는 가변 용량 압축기용 구동부.The friction ring module includes a variable pipe shape ring body 1000 inserted along a longitudinal direction of the drive shaft 100 and a support spring 1100 inserted outside the ring body 1000. Drive for compressor.
  3. 제2항에 있어서,The method of claim 2,
    상기 프릭션 링 모듈은 상기 구동축(100)의 길이 방향을 따라 삽입되는 원통 형상의 링 본체(1000)와, 상기 링 본체(1000)의 외측에 삽입되는 서포트 스프링(1100)을 포함하는 가변 용량 압축기용 구동부.The friction ring module includes a cylindrical ring body 1000 inserted along the longitudinal direction of the drive shaft 100 and a support spring 1100 inserted outside the ring body 1000. Drive part for machine.
  4. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,
    상기 링 본체(1000)는 내경이 상기 구동축(100)의 외경보다 작은 것을 특징으로 하는 가변 용량 압축기용 구동부.The ring body 1000 is a drive unit for a variable displacement compressor, characterized in that the inner diameter is smaller than the outer diameter of the drive shaft (100).
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 링 본체(1000)는 길이 방향을 따라 개구부(1002)가 형성된 것을 특징으로 하는 가변 용량 압축기용 구동부.The ring body 1000 is a drive unit for a variable displacement compressor, characterized in that the opening 1002 is formed along the longitudinal direction.
  6. 제5항에 있어서,The method of claim 5,
    상기 링 본체(1000)는 상기 사판(500)을 향하는 일단에서 외측으로 연장되고, 상기 리테이너(1300) 방향으로 절곡되어 연장된 복수의 후크(1004)를 포함하는 가변 용량 압축기용 구동부.The ring body 1000 is a drive unit for a variable displacement compressor including a plurality of hooks (1004) extending from one end toward the swash plate (500) to the outside, bent toward the retainer (1300).
  7. 제6항에 있어서,The method of claim 6,
    상기 서포트 스프링(1100)은 상기 후크(1004)와 상기 링 본체(1000)의 사이에 삽입되는 것을 특징으로 하는 가변 용량 압축기용 구동부.The support spring (1100) is a drive unit for a variable displacement compressor, characterized in that inserted between the hook (1004) and the ring body (1000).
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 서포트 스프링(1100)의 내경은 상기 링 본체(1000)의 외경보다 큰 것을 특징으로 하는 가변 용량 압축기용 구동부.The inner diameter of the support spring (1100) is a drive unit for a variable displacement compressor, characterized in that larger than the outer diameter of the ring body (1000).
  9. 제8항에 있어서,The method of claim 8,
    상기 링 본체(1000)와 상기 후크(1004) 사이의 간격은 상기 서포트 스프링(1100)의 두께보다 큰 것을 특징으로 하는 가변 용량 압축기용 구동부.Drive between the ring body (1000) and the hook (1004) is greater than the thickness of the support spring (1100) drive unit for a variable displacement compressor.
  10. 제9항에 있어서,The method of claim 9,
    상기 풀리 연결부위에 대향되는 상기 구동축(100)의 일측에는 상기 프릭션 링 모듈의 이동을 제한하는 원형 또는 반 원형 형상의 리테이너(1300)를 더 포함하는 가변 용량 압축기용 구동부.One side of the drive shaft (100) facing the pulley connection portion further comprises a retainer (1300) of a circular or semi-circular shape to limit the movement of the friction ring module.
  11. 제10항에 있어서,The method of claim 10,
    상기 링 본체(1000)는 상기 사판(500)의 경사각이 변경될 때 상기 구동축(100)을 따라 이동하되, 상기 사판(500)의 최소각 상태에서 상기 리테이너(1300)에 접촉해 멈추는 것을 특징으로 하는 가변 용량 압축기용 구동부.The ring body 1000 moves along the drive shaft 100 when the inclination angle of the swash plate 500 is changed, and stops by contacting the retainer 1300 at a minimum angle of the swash plate 500. A drive unit for a variable displacement compressor.
  12. 제3항에 있어서,The method of claim 3,
    상기 링 본체(1000)에는 내주면으로부터 상기 구동축(100)을 향해 돌출 형성된 복수의 마찰 돌기(1006a)가 형성된 것을 특징으로 하는 가변 용량 압축기용 구동부.The ring body (1000) drive unit for a variable displacement compressor, characterized in that a plurality of friction projections (1006a) protruding from the inner peripheral surface toward the drive shaft (100) is formed.
  13. 하우징 내에 회전 가능하게 지지된 구동축(100)과, 상기 구동축(100)이 받는 구동력을 전달받고 경사각에 따라 냉매의 토출량을 가변 제어하는 사판(500)을 구비한 가변 용량 압축기에 있어서,In the variable displacement compressor having a drive shaft 100 rotatably supported in the housing and a swash plate 500 to receive the driving force received by the drive shaft 100 and to variably control the discharge amount of the refrigerant according to the inclination angle,
    상기 구동축(100)에 결합되어 축방향으로 이동 가능하며, 작동 초기 상기 사판(500)과 경사각이 커지는 방향으로 힘을 가해주는 서포트 스프링(1100) 사이에 위치하고, 원심 방향으로의 힘을 가지는 마찰부재(1000)를 구비하고, A friction member coupled to the drive shaft 100 and movable in the axial direction, positioned between the swash plate 500 and the support spring 1100 that exerts a force in a direction in which the inclination angle increases, and has a force in the centrifugal direction. 1000,
    상기 마찰부재(1000)는 상기 구동축(100)과의 사이에서 마찰력을 발생시켜 저유량 조건에서 상기 사판(500)의 경사각의 급격한 움직임을 제한하는 가변 용량 압축기.The friction member (1000) generates a friction force with the drive shaft (100) to limit the rapid movement of the inclination angle of the swash plate (500) under low flow conditions.
  14. 제13항에 있어서,The method of claim 13,
    상기 마찰부재(1000)는 상기 서포트 스프링(1100)과 모듈로 형성되어 상기 구동축(100)에 축방향으로 결합되는 가변 용량 압축기.The friction member (1000) is a variable displacement compressor which is formed in a module with the support spring (1100) is axially coupled to the drive shaft (100).
PCT/KR2017/004467 2016-08-16 2017-04-26 Driving part for variable-capacity compressor WO2018034410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/779,954 US20190178236A1 (en) 2016-08-16 2017-04-26 Driving part for variable-capacity compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0103666 2016-08-16
KR1020160103666A KR20180019382A (en) 2016-08-16 2016-08-16 Air blower for vehicle

Publications (1)

Publication Number Publication Date
WO2018034410A1 true WO2018034410A1 (en) 2018-02-22

Family

ID=61196877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004467 WO2018034410A1 (en) 2016-08-16 2017-04-26 Driving part for variable-capacity compressor

Country Status (3)

Country Link
US (1) US20190178236A1 (en)
KR (1) KR20180019382A (en)
WO (1) WO2018034410A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235851A1 (en) * 2018-06-05 2019-12-12 한온시스템 주식회사 Variable-capacity swash plate compressor
CN113653782A (en) * 2021-07-07 2021-11-16 浙江捷昌线性驱动科技股份有限公司 Self-locking device suitable for motor and linear actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196455A (en) * 2007-02-15 2008-08-28 Calsonic Kansei Corp Swash plate type variable displacement compressor
KR20090034767A (en) * 2007-10-03 2009-04-08 가부시키가이샤 도요다 지도숏키 Capacity-variable type swash plate compressor
KR20120040582A (en) * 2010-10-19 2012-04-27 한라공조주식회사 Variable displacement swash plate type compressor
KR20140004367A (en) * 2012-07-02 2014-01-13 학교법인 두원학원 Variable displacement swash plate type compressor
KR20140097851A (en) * 2013-01-30 2014-08-07 한라비스테온공조 주식회사 variable capacity swash plate type compressor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2042647A (en) * 1934-05-03 1936-06-02 William E Wine Spring device
US2426672A (en) * 1944-04-08 1947-09-02 Miner Inc W H Friction shock absorber
US2493739A (en) * 1946-01-31 1950-01-10 James E Fleming Shock absorber
US3085657A (en) * 1960-09-29 1963-04-16 Hazeltine Research Inc Variable frequency vibration absorber
DE19615824A1 (en) * 1996-04-20 1997-10-23 Igus Gmbh bearings
JP4976731B2 (en) * 2006-04-07 2012-07-18 カルソニックカンセイ株式会社 Variable capacity compressor
US8052129B2 (en) * 2006-04-25 2011-11-08 Youd Jason B Steel spring damper
JP4810647B2 (en) * 2006-06-16 2011-11-09 株式会社テージーケー Differential pressure valve
EP2703667B1 (en) * 2011-04-26 2016-11-23 Senju Metal Industry Co., Ltd Sliding member
JP6237274B2 (en) * 2014-01-30 2017-11-29 株式会社豊田自動織機 Compressor check valve
JP6127999B2 (en) * 2014-02-03 2017-05-17 株式会社豊田自動織機 Variable capacity swash plate compressor
KR20180086272A (en) * 2015-12-18 2018-07-30 그라코 미네소타 인크. Internal bellows bearing
US10591074B2 (en) * 2016-07-21 2020-03-17 Hanon Systems Suction dampening device with internal dampening for vehicle air conditioning compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008196455A (en) * 2007-02-15 2008-08-28 Calsonic Kansei Corp Swash plate type variable displacement compressor
KR20090034767A (en) * 2007-10-03 2009-04-08 가부시키가이샤 도요다 지도숏키 Capacity-variable type swash plate compressor
KR20120040582A (en) * 2010-10-19 2012-04-27 한라공조주식회사 Variable displacement swash plate type compressor
KR20140004367A (en) * 2012-07-02 2014-01-13 학교법인 두원학원 Variable displacement swash plate type compressor
KR20140097851A (en) * 2013-01-30 2014-08-07 한라비스테온공조 주식회사 variable capacity swash plate type compressor

Also Published As

Publication number Publication date
US20190178236A1 (en) 2019-06-13
KR20180019382A (en) 2018-02-26

Similar Documents

Publication Publication Date Title
JP2555026B2 (en) Variable capacity compressor
WO2018034410A1 (en) Driving part for variable-capacity compressor
EP0292288B1 (en) Variable displacement compressor with biased inclined member
EP1440241B1 (en) Variable stroke balancing
WO2011007911A1 (en) Anti-abrasion apparatus and reciprocating compressor adopting the same
WO2002063193A2 (en) Piston joint
EP0921316A1 (en) Scroll compressor with radial guiding pin in eccentric bush
KR940007755B1 (en) Bent axis type variable displacement hydraulic pump
WO2012057488A2 (en) Hermetic compressor
US4508011A (en) Hydraulic axial piston machine
US5983775A (en) Swash-plate compressor in which improvement is made as regards a connection mechanism between a piston and a swash plate
KR970003245B1 (en) Compressor with variable displacement mechanism
WO2020055008A1 (en) Rotor with oil separation function, and variable capacity swash plate compressor including same
JPS58185984A (en) Hydraulic axial-flow piston machine
WO2019235851A1 (en) Variable-capacity swash plate compressor
US5778835A (en) Internal combustion engine
JP2011027013A (en) Compressor with variable displacement swash plate
US20010029837A1 (en) Hinge mechanism for variable displacement compressor
KR102641825B1 (en) Air blower for vehicle
KR19990007811A (en) Variable displacement swash plate compressor with improved swash plate support
EP1445486A1 (en) A hinge for a variable displacement compressor
JPH04318291A (en) Variable displacement swash plate type compressor
WO2019216519A1 (en) Compressor, and thrust plate manufacturing method for manufacturing thrust plate included in same compressor
WO2018155991A1 (en) Clutch and compressor comprising same
EP1043500A2 (en) Pivot joint for a swash plate of a variable displacement compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841594

Country of ref document: EP

Kind code of ref document: A1