WO2018034255A1 - スクロール流体機械 - Google Patents

スクロール流体機械 Download PDF

Info

Publication number
WO2018034255A1
WO2018034255A1 PCT/JP2017/029242 JP2017029242W WO2018034255A1 WO 2018034255 A1 WO2018034255 A1 WO 2018034255A1 JP 2017029242 W JP2017029242 W JP 2017029242W WO 2018034255 A1 WO2018034255 A1 WO 2018034255A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall body
end plate
scroll
tip
wall
Prior art date
Application number
PCT/JP2017/029242
Other languages
English (en)
French (fr)
Inventor
創 佐藤
央幸 木全
隆英 伊藤
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2018034255A1 publication Critical patent/WO2018034255A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids

Definitions

  • the present invention relates to a scroll fluid machine.
  • a scroll fluid machine that compresses or expands a fluid by meshing a fixed scroll member provided with a spiral wall on an end plate and a orbiting scroll member and performing a revolving orbiting motion.
  • a so-called stepped scroll compressor as shown in Patent Document 1 is known.
  • This stepped scroll compressor is provided with stepped portions at positions along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wall body of the fixed scroll and the orbiting scroll, and the outer periphery of the wall body with each step portion as a boundary.
  • the height on the side is higher than the height on the inner peripheral side.
  • the stepped scroll compressor is compressed not only in the circumferential direction of the wall but also in the height direction (three-dimensional compression), so compared to a general scroll compressor (two-dimensional compression) that does not have a stepped portion.
  • the displacement can be increased and the compressor capacity can be increased.
  • the stepped scroll compressor has a problem of large fluid leakage at the stepped portion.
  • the stress is concentrated due to the stress concentrated at the base of the stepped portion.
  • the inventors are considering providing a continuous inclined part instead of the step part provided in the wall body and the end plate. However, even if an inclined portion is provided, it has not been established in the past how appropriate an inclined portion has an inclined portion.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a scroll fluid machine having a wall body and an end plate having an inclined portion that can effectively exhibit performance.
  • the scroll fluid machine of the present invention employs the following means. That is, the scroll fluid machine according to the first aspect of the present invention is disposed so as to face the first scroll plate, the first scroll member having the spiral first wall provided on the first end plate. A scroll fluid provided with a spiral second wall body on the second end plate, the second wall member meshing with the first wall body and relatively revolving orbiting. The distance between the opposed surfaces of the first end plate and the second end plate facing each other is continuously increased from the outer peripheral side to the inner peripheral side of the first wall body and the second wall body.
  • a tip seal that is provided with an inclined portion that decreases, and a groove formed in the tooth tip of the first wall body and the second wall body corresponding to the inclined portion is in contact with the opposing tooth bottom and seals the fluid.
  • the turning radius of the orbiting scroll is ⁇ , in the spiral direction of the inclined portion
  • the tip clearance change amount ⁇ T is 50% or less of the height dimension of the tip seal in the height direction of the wall body.
  • the inclined portion in which the distance between the opposing surfaces of the first end plate and the second end plate continuously decreases from the outer peripheral side to the inner peripheral side of the wall body is provided, the fluid sucked from the outer peripheral side is As it goes to the inner peripheral side, it is compressed not only by the reduction of the compression chamber according to the spiral shape of the wall body, but also by the reduction of the distance between the opposing surfaces between the end plates. Since the inclined portion is provided, the tip clearance between the tooth tip and the tooth bottom changes according to the turning motion.
  • the tip clearance change amount ⁇ T according to the orbiting motion is represented by the following equation, where ⁇ is the turning radius of the orbiting scroll and ⁇ is the inclination in the spiral direction of the inclined portion.
  • the tip seal advances and retreats in the height direction from the groove by an amount corresponding to the tip clearance change amount ⁇ T. Therefore, if the tip clearance change amount ⁇ T is large, the tip seal may be detached from the groove. Therefore, the chip seal change amount ⁇ T is set to 50% or less of the height dimension of the chip seal to prevent the chip seal from falling off. More preferably, the tip clearance change amount ⁇ T is 20% or less of the height dimension of the tip seal.
  • the scroll fluid machine is disposed so as to face the first end plate and the first scroll member in which the spiral first wall body is provided on the first end plate.
  • the inclined portion in which the distance between the opposing surfaces of the first end plate and the second end plate continuously decreases from the outer peripheral side to the inner peripheral side of the wall body is provided, the fluid sucked from the outer peripheral side is As it goes to the inner peripheral side, it is compressed not only by the reduction of the compression chamber according to the spiral shape of the wall body, but also by the reduction of the distance between the opposing surfaces between the end plates. Since the inclined portion is provided, the tip clearance between the tooth tip and the tooth bottom changes according to the turning motion.
  • the tip clearance change amount ⁇ T according to the orbiting motion is represented by the following equation, where ⁇ is the turning radius of the orbiting scroll and ⁇ is the inclination in the spiral direction of the inclined portion.
  • the scroll fluid machine is disposed so as to face the first end plate and the first scroll member in which the spiral first wall body is provided on the first end plate.
  • a scroll fluid provided with a spiral second wall body on the second end plate, the second wall member meshing with the first wall body and relatively revolving orbiting.
  • the distance between the opposed surfaces of the first end plate and the second end plate facing each other is continuously increased from the outer peripheral side to the inner peripheral side of the first wall body and the second wall body.
  • a decreasing slope portion is provided, and the tip clearance between the tooth tip of the wall body and the tooth bottom of the end plate is less than the tip clearance reduction amount based on the twist angle around the center of the scroll member due to an assembly error. It is set large.
  • the fluid sucked from the outer peripheral side is As it goes to the inner peripheral side, it is compressed not only by the reduction of the compression chamber according to the spiral shape of the wall body, but also by the reduction of the distance between the opposing surfaces between the end plates.
  • the scroll fluid machine when the first scroll member and the second scroll member are assembled, an assembly error inevitably occurs due to the dimensional accuracy of the Oldham ring, the position accuracy of the centering pin, and the like.
  • FIG. 1 The fixed scroll and the turning scroll of the scroll compressor concerning one Embodiment of this invention are shown, (a) is a longitudinal cross-sectional view, (b) is the top view seen from the wall body side of the fixed scroll. It is the perspective view which showed the turning scroll of FIG. It is the top view which showed the end plate flat part provided in the fixed scroll. It is the top view which showed the wall body flat part provided in the fixed scroll. It is a schematic diagram which shows the wall body extended and displayed in the spiral direction. It is the elements on larger scale which expanded and showed the field of the code Z of Drawing 1 (b). 6 shows the tip seal gap in the portion shown in FIG.
  • (a) is a side view showing a state where the tip seal gap is relatively small, and (b) shows a state where the tip seal gap is relatively large. It is a side view. It is a graph which showed the efficiency change rate with respect to 2nd Embodiment of this invention with respect to chip clearance change amount. It shows between the tooth tip and the tooth bottom, (a) is a partially enlarged sectional view showing a state where the oil film seal is formed, (b) is a partially enlarged sectional view showing a state where the oil film seal is broken. is there. It is the top view which showed the fixed scroll and turning scroll which concern on 3rd Embodiment of this invention, and was seen from the wall body side of the fixed scroll. A modification is shown, (a) is a longitudinal cross-sectional view which shows the combination with the scroll which does not have a step part, (b) is a longitudinal cross-sectional view which showed the combination with a stepped scroll.
  • FIG. 1 shows a fixed scroll (first scroll member) 3 and a turning scroll (second scroll member) 5 of a scroll compressor (scroll fluid machine) 1.
  • the scroll compressor 1 is used as a compressor that compresses a gas refrigerant (fluid) that performs a refrigeration cycle such as an air conditioner.
  • the fixed scroll 3 and the orbiting scroll 5 are made of a metal compression mechanism made of aluminum alloy or iron and are housed in a housing (not shown).
  • the fixed scroll 3 and the orbiting scroll 5 suck the fluid guided into the housing from the outer peripheral side, and discharge the compressed fluid from the central discharge port 3c of the fixed scroll 3 to the outside.
  • the fixed scroll 3 is fixed to the housing and, as shown in FIG. 1A, stands on a substantially disc-shaped end plate (first end plate) 3a and one side surface of the end plate 3a. And a spiral wall body (first wall body) 3b.
  • the orbiting scroll 5 includes a substantially disc-shaped end plate (second end plate) 5a and a spiral wall body (second wall body) 5b erected on one side surface of the end plate 5a. .
  • the spiral shape of each wall 3b, 5b is defined using, for example, an involute curve or an Archimedean curve.
  • the fixed scroll 3 and the orbiting scroll 5 are meshed with their centers separated by an orbiting radius ⁇ , with the phases of the wall bodies 3b and 5b shifted by 180 °, and between the tooth tips and the tooth bottoms of the wall bodies 3b and 5b of both scrolls. It is assembled so as to have a slight clearance in the height direction (chip clearance).
  • a plurality of pairs of compression chambers formed between the scrolls 3 and 5 and surrounded by the end plates 3a and 5a and the walls 3b and 5b are formed symmetrically with respect to the scroll center.
  • the orbiting scroll 5 revolves around the fixed scroll 3 by a rotation prevention mechanism such as an Oldham ring (not shown).
  • the distance L between the facing surfaces 3a and 5a facing each other is continuously decreased from the outer peripheral side to the inner peripheral side of the spiral wall bodies 3b and 5b. Is provided.
  • the wall 5b of the orbiting scroll 5 is provided with a wall inclined portion 5b1 whose height continuously decreases from the outer peripheral side toward the inner peripheral side.
  • An end plate inclined portion 3a1 (see FIG. 1 (a)) that is inclined according to the inclination of the wall body inclined portion 5b1 is provided on the tooth bottom surface of the fixed scroll 3 where the tooth tips of the wall body inclined portion 5b1 face each other. Yes.
  • These wall body inclination part 5b1 and end plate inclination part 3a1 comprise the continuous inclination part.
  • the wall body 3b of the fixed scroll 3 is also provided with a wall body inclined portion 3b1 whose height is continuously inclined from the outer peripheral side toward the inner peripheral side, and faces the tooth tip of the wall body inclined portion 3b1.
  • An end plate inclined portion 5 a 1 is provided on the end plate 5 a of the orbiting scroll 5.
  • the meaning of “continuous in the inclined portion” in the present embodiment is not limited to the smoothly connected inclination, and small steps that are inevitably generated at the time of processing are connected in a staircase shape. If the part as a whole is included, it is continuously inclined. However, large steps such as so-called stepped scrolls are not included.
  • the wall body inclined portions 3b1 and 5b1 and / or the end plate inclined portions 3a1 and 5a1 are coated.
  • the coating include manganese phosphate treatment and nickel phosphorus plating.
  • wall body flat portions 5b2 and 5b3 having a constant height are provided on the innermost circumferential side and the outermost circumferential side of the wall body 5b of the orbiting scroll 5, respectively. .
  • These wall flat portions 5b2 and 5b3 are provided over a region of 180 ° around the center O2 (see FIG. 1A) of the orbiting scroll 5.
  • Wall body inclined connection portions 5b4 and 5b5 serving as bent portions are respectively provided at positions where the wall body flat portions 5b2 and 5b3 and the wall body inclined portion 5b1 are connected.
  • the bottom of the end plate 5a of the orbiting scroll 5 is provided with flat end plates 5a2 and 5a3 having a constant height.
  • end plate flat portions 5 a 2 and 5 a 3 are also provided over a 180 ° region around the center of the orbiting scroll 5.
  • end plate inclined connecting portions 5a4 and 5a5 serving as bent portions are provided, respectively.
  • the fixed scroll 3 also has the end plate flat portions 3a2 and 3a3, the wall body flat portions 3b2 and 3b3, and the end plate inclined connection portions 3a4 and 3a5 in the same manner as the orbiting scroll 5.
  • wall body inclination connection part 3b4, 3b5 is provided.
  • FIG. 5 shows wall bodies 3b and 5b displayed in a spiral direction.
  • the innermost wall flat portions 3b2 and 5b2 are provided over a distance D2
  • the outermost wall flat portions 3b3 and 5b3 are provided over a distance D3.
  • the distance D2 and the distance D3 are lengths corresponding to the regions 180 degrees around the centers O1 and O2 of the scrolls 3 and 5, respectively.
  • Wall body inclined portions 3b1 and 5b1 are provided over the distance D2 between the innermost wall flat portions 3b2 and 5b2 and the outermost wall flat portions 3b3 and 5b3.
  • the inclination ⁇ in the inclined portion is constant with respect to the circumferential direction in which the spiral wall bodies 3b and 5b extend.
  • FIG. 6 shows an enlarged view of the region indicated by the symbol Z in FIG.
  • a tip seal 7 is provided on the tooth tip of the wall 3 b of the fixed scroll 3.
  • the tip seal 7 is made of resin and seals the fluid by contacting the tooth bottom of the end plate 5a of the orbiting scroll 5 facing the tip seal 7.
  • the tip seal 7 is accommodated in a tip seal groove 3d formed in the tooth tip of the wall 3b over the circumferential direction. The compressed fluid enters the tip seal groove 3d, and the tip seal 7 is pressed from the back and pushed out toward the bottom of the tooth to be brought into contact with the opposing tooth bottom.
  • a tip seal is similarly provided on the tooth tip of the wall 5b of the orbiting scroll 5.
  • FIG. 7A shows that the tip clearance T is small
  • FIG. 7B shows that the tip clearance T is large. Even if the tip clearance T changes due to the swiveling motion, the tip seal 7 is pressed against the tooth bottom side of the end plate 5a by the compressed fluid from the back surface, so that it can be followed and sealed.
  • the tip clearance change amount ⁇ T in which the tip clearance T changes during one turn of the turn can be expressed as the following equation.
  • ⁇ T 2 ⁇ ⁇ tan ⁇ (2)
  • is a turning radius.
  • the tip clearance change amount ⁇ T is 50% or less of the height dimension Hc of the tip seal in the height direction of the walls 3b and 5b.
  • the scroll compressor 1 described above operates as follows.
  • the orbiting scroll 5 performs a revolving orbiting motion around the fixed scroll 3 by a driving source such as an electric motor (not shown).
  • a driving source such as an electric motor (not shown).
  • the fluid is sucked from the outer peripheral side of the scrolls 3 and 5, and the fluid is taken into the compression chambers surrounded by the walls 3b and 5b and the end plates 3a and 5a.
  • the fluid in the compression chamber is sequentially compressed as it moves from the outer peripheral side to the inner peripheral side.
  • the compressed fluid is finally discharged from the discharge port 3 c formed in the fixed scroll 3.
  • the inclined portions formed by the end plate inclined portions 3a1 and 5a1 and the wall body inclined portions 3b1 and 5b1 are also compressed in the height direction of the wall bodies 3b and 5b, and three-dimensional compression is performed. Done.
  • the tip clearance change amount ⁇ T is set to 50% or less of the height dimension Hc of the tip seal 7.
  • ⁇ T / Lout which is a value obtained by dividing the tip clearance change amount ⁇ T by the height of the outermost periphery of the wall bodies 3b and 5b (see the symbol Lout in FIG. 2), is set to 0.01 or less. .
  • the reason will be described with reference to FIGS.
  • the horizontal axis represents ⁇ T / Lout and the vertical axis represents the efficiency change rate.
  • the efficiency change ratio is the ratio of the efficiency at a predetermined ⁇ T / Lout with respect to the case where the tip clearance change amount ⁇ T is zero, that is, when the efficiency in the case of so-called two-dimensional scrolling with no wall height inclination is 1. Indicates.
  • ⁇ T / Lout when ⁇ T / Lout is 0.01, the decrease in the efficiency change rate is less than 1%. Therefore, when ⁇ T / Lout is set to 0.01 or less, the decrease in the efficiency change rate can be suppressed to less than 1%.
  • the end clearances 5a and 3a facing the tooth tips of the walls 3b and 5b are set by setting the tip clearance T to a predetermined value or less. It is considered that an oil film seal OS with lubricating oil is formed between the bottom of the tooth. Since the oil film seal OS at the tip clearance T is secured in this way, fluid leakage in the compression chamber is reduced, and the reduction in the efficiency change rate is reduced.
  • ⁇ T / Lout is larger than 0.01, the tip clearance T is increased, and the oil film is separated at the tip clearance T as shown in FIG. 9B, and the oil film seal OS (see FIG. 9A). And fluid leakage in the compression chamber occurs. As a result, the efficiency change rate is greatly reduced.
  • the desired efficiency can be maintained by maintaining the oil film seal OS between the chip clearances T by setting ⁇ T / Lout to 0.01 or less.
  • the tip clearance T between the tooth tips of the walls 3b, 5b and the tooth bottoms of the end plates 5a, 3a takes into account the twist angle ⁇ around the center of the scrolls 3, 5 due to assembly errors. Yes.
  • the torsion angle ⁇ has an inevitable assembly error due to the dimensional accuracy of the Oldham ring and the position accuracy of the centering pin, etc. when the scrolls 3 and 5 are assembled and operated. It is generated by the play that occurs around the center of 3,5.
  • FIG. 10 is a figure similar to FIG.1 (b).
  • ⁇ T r ⁇ ⁇ ⁇ tan ⁇ (3)
  • r is a radius on the outer peripheral side where the inclined portion starts, that is, a radius in the wall inclined connecting portions 3b5 and 5b5 (see FIGS. 2 and 5) on the outer peripheral side of the wall bodies 3b and 5b.
  • is the inclination at the inclined portion (see FIG. 5).
  • the twist angle ⁇ can be obtained by actual measurement. Alternatively, it is also possible to individually measure the dimensions of the part causing the twist of the scroll, such as the dimensional accuracy of the Oldham ring and the position accuracy of the centering pin, and to calculate the twist angle ⁇ from these dimensions.
  • the tip clearance T is made larger than ⁇ T.
  • the end plate inclined portions 3a1 and 5a1 and the wall body inclined portions 3b1 and 5b1 are provided on both scrolls 3 and 5, but may be provided on either one of them.
  • one wall body for example, the orbiting scroll 5
  • the other end plate 3a is provided with an end plate inclined portion 3a1.
  • the other wall body and the one end plate 5a may be flat.
  • the shape combined with the conventional stepped shape that is, the end plate inclined portion 3a1 is provided on the end plate 3a of the fixed scroll 3, while the end plate 5a of the orbiting scroll 5 is provided on the end plate 5a. You may combine with the shape in which the step part was provided.
  • the wall body flat portions 3b2, 3b3, 5b2, 5b3 and the end plate flat portions 3a2, 3a3, 5a2, 5a3 are provided, but the flat portions on the inner peripheral side and / or the outer peripheral side are omitted.
  • the inclined portion may be provided so as to extend over the entire walls 3b and 5b.
  • the scroll compressor has been described.
  • the present invention can be applied to a scroll expander used as an expander.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

性能を効果的に発揮できる壁体及び端板に傾斜部を有するスクロール流体機械を提供する。 固定スクロール部材(3)と、旋回スクロール(5)とを備えたスクロール圧縮機(1)であって、向かい合う端板(3a)と端板(5a)との対向面間距離(L)が、外周側から内周側に向かって連続的に減少する傾斜部が設けられている。壁体(3b,5b)の歯先に形成された溝部には、対向する歯底に接触して流体をシールするチップシールが設けられている。旋回スクロール(3)の旋回半径をρ、傾斜部の渦巻方向における傾きをφとした場合に、チップクリアランス変化量(ΔT)がΔT=2ρ×tanφとされ、チップクリアランス変化量(ΔT)が、チップシールの高さ寸法の50%以下とされている。

Description

スクロール流体機械
 本発明は、スクロール流体機械に関するものである。
 一般に、端板上に渦巻状の壁体が設けられた固定スクロール部材と旋回スクロール部材とを噛み合わせ、公転旋回運動を行わせて流体を圧縮または膨張するスクロール流体機械が知られている。
 このようなスクロール流体機械として、特許文献1に示すようないわゆる段付きスクロール圧縮機が知られている。この段付きスクロール圧縮機は、固定スクロールおよび旋回スクロールの渦巻状の壁体の歯先面および歯底面の渦巻き方向に沿う位置に各々段部が設けられ、各段部を境に壁体の外周側の高さが内周側の高さよりも高くされている。段付きスクロール圧縮機は、壁体の周方向だけでなく、高さ方向にも圧縮(三次元圧縮)されるため、段部を備えていない一般的なスクロール圧縮機(二次元圧縮)に比べ、押しのけ量を大きくし、圧縮機容量を増加することができる。
特開2015-55173号公報
 しかし、段付きスクロール圧縮機は、段部における流体漏れが大きいという問題がある。また、段部の根元部分に応力が集中して強度が低下するという問題がある。
 これに対して、発明者等は、壁体及び端板に設けられた段部に代えて連続的な傾斜部を設けることを検討している。
 しかし、傾斜部を設けるとしても、どの程度の傾きを有する傾斜部とすれば適切なのかが従来では確立されていなかった。
 本発明は、このような事情に鑑みてなされたものであって、性能を効果的に発揮できる壁体及び端板に傾斜部を有するスクロール流体機械を提供することを目的とする。
 上記課題を解決するために、本発明のスクロール流体機械は以下の手段を採用する。
 すなわち、本発明の第1の態様にかかるスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材とを備えたスクロール流体機械であって、向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、前記傾斜部に対応する前記第1壁体及び前記第2壁体の歯先に形成された溝部には、対向する歯底に接触して流体をシールするチップシールが設けられ、前記旋回スクロールの旋回半径をρ、前記傾斜部の渦巻方向における傾きをφとした場合に、チップクリアランス変化量ΔTが、下式により定義され、
 ΔT=2ρ×tanφ
 前記チップクリアランス変化量ΔTが、前記壁体の高さ方向における前記チップシールの高さ寸法の50%以下とされている。
 第1端板と第2端板との対向面間距離が壁体の外周側から内周側に向かって連続的に減少する傾斜部が設けられているので、外周側から吸い込まれた流体は内周側に向かうにしたがい、壁体の渦巻形状に応じた圧縮室の減少によって圧縮されるだけでなく、端板間の対向面間距離の減少によって更に圧縮されることになる。
 傾斜部が設けられているので、旋回運動に応じて歯先と歯底との間のチップクリアランスが変化する。この旋回運動に応じたチップクリアランス変化量ΔTは、旋回スクロールの旋回半径をρ、傾斜部の渦巻き方向における傾きをφとすると、下式のようになる。
 ΔT=2ρ×tanφ
 このチップクリアランス変化量ΔTに応じた分だけ、チップシールは溝部から高さ方向に進退することになる。したがって、チップクリアランス変化量ΔTが大きいと、チップシールが溝部から外れてしまうおそれがある。
 そこで、チップクリアランス変化量ΔTを、チップシールの高さ寸法の50%以下とすることで、チップシールの脱落を防止することとした。
 なお、より好ましくは、チップクリアランス変化量ΔTは、チップシールの高さ寸法の20%以下とされる。
 また、本発明の第2の態様にかかるスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材とを備えたスクロール流体機械であって、向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、前記旋回スクロールの旋回半径をρ、前記傾斜部の渦巻き方向における傾きをφとした場合に、チップクリアランス変化量ΔTが、下式により定義され、
 ΔT=2ρ×tanφ
 前記チップクリアランス変化量ΔTを前記壁体の最外周の高さで除した値が、0.01以下とされている。
 第1端板と第2端板との対向面間距離が壁体の外周側から内周側に向かって連続的に減少する傾斜部が設けられているので、外周側から吸い込まれた流体は内周側に向かうにしたがい、壁体の渦巻形状に応じた圧縮室の減少によって圧縮されるだけでなく、端板間の対向面間距離の減少によって更に圧縮されることになる。
 傾斜部が設けられているので、旋回運動に応じて歯先と歯底との間のチップクリアランスが変化する。この旋回運動に応じたチップクリアランス変化量ΔTは、旋回スクロールの旋回半径をρ、傾斜部の渦巻き方向における傾きをφとすると、下式のようになる。
 ΔT=2ρ×tanφ
 歯先と歯底との間には、潤滑油による油膜シールが形成される。しかし、チップクリアランス変化量ΔTが大きくなると、歯先と歯底との間の油膜シールが切れてしまい、圧縮室のシール性が低下して効率が低下するおそれがある。
 本発明者等が鋭意検討したところ、チップクリアランス変化量ΔTを壁体の最外周の高さで除した値が0.01以下であれば、油膜シールが維持されて大きな性能低下が見られず、所期の効率を維持できることを見出した。
 また、本発明の第3の態様にかかるスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材とを備えたスクロール流体機械であって、向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、前記壁体の歯先と前記端板の歯底との間のチップクリアランスが、組付け誤差による前記スクロール部材の中心回りの捩れ角に基づくチップクリアランス減少量よりも大きく設定されている。
 第1端板と第2端板との対向面間距離が壁体の外周側から内周側に向かって連続的に減少する傾斜部が設けられているので、外周側から吸い込まれた流体は内周側に向かうにしたがい、壁体の渦巻形状に応じた圧縮室の減少によって圧縮されるだけでなく、端板間の対向面間距離の減少によって更に圧縮されることになる。
 スクロール流体機械は、第1スクロール部材と第2スクロール部材とを組み付ける際に、オルダムリングの寸法精度や芯出しピン等の位置精度等によって組付け誤差が不可避的に生じる。組付け誤差が生じると、スクロール部材がその中心回りに捩れると、その捩れ角に基づいて、傾斜部の歯先と歯底との間のチップクリアランスが減少することになる。
 そこで、歯先と歯底のチップクリアランスを、組付け誤差によるスクロール部材の中心回りの捩れ角に基づくチップクリアランス減少量よりも大きく設定することとして、歯先と歯底との干渉を回避することとした。
 チップクリアランス変化量ΔT(=2ρ×tanφ)を、チップシールの高さ寸法の50%以下とすることで、チップシールの脱落を防止することができる。これにより、壁体及び端板に傾斜部を有していても、性能を発揮することができる。
 チップクリアランス変化量ΔT(=2ρ×tanφ)を壁体の最外周の高さで除した値が0.01以下とすることにより、油膜シールが維持されて大きな性能低下が見られず、所期の性能を維持することができる。
 歯先と歯底のチップクリアランスを、組付け誤差によるスクロール部材の中心回りの捩れ角に基づくチップクリアランス減少量よりも大きく設定することとして、歯先と歯底との干渉を回避することができる。
本発明の一実施形態にかかるスクロール圧縮機の固定スクロール及び旋回スクロールを示し、(a)は縦断面図、(b)は固定スクロールの壁体側から見た平面図である。 図1の旋回スクロールを示した斜視図である。 固定スクロールに設けた端板平坦部を示した平面図である。 固定スクロールに設けた壁体平坦部を示した平面図である。 渦巻き方向に伸ばして表示した壁体を示す模式図である。 図1(b)の符号Zの領域を拡大して示した部分拡大図である。 図6で示した部分のチップシール隙間を示し、(a)はチップシール隙間が相対的に小さい状態を示した側面図であり、(b)はチップシール隙間が相対的に大きい状態を示した側面図である。 本発明の第2実施形態に係り、チップクリアランス変化量に対する効率変化割合を示したグラフである。 歯先と歯底との間を示し、(a)は油膜シールが形成された状態を示した部分拡大断面図であり、(b)は油膜シールが破壊した状態を示した部分拡大断面図である。 本発明の第3実施形態に係る固定スクロール及び旋回スクロールを示し、固定スクロールの壁体側から見た平面図である。 変形例を示し、(a)は段部を有していないスクロールとの組合せを示す縦断面図であり、(b)は段付きスクロールとの組合せを示した縦断面図である。
[第1実施形態]
 以下に、本発明にかかる第1実施形態について、図面を参照して説明する。
 図1には、スクロール圧縮機(スクロール流体機械)1の固定スクロール(第1スクロール部材)3と旋回スクロール(第2スクロール部材)5が示されている。スクロール圧縮機1は、例えば空調機等の冷凍サイクルを行うガス冷媒(流体)を圧縮する圧縮機として用いられる。
 固定スクロール3及び旋回スクロール5は、アルミ合金製や鉄製等の金属製の圧縮機構とされ、図示しないハウジング内に収容されている。固定スクロール3及び旋回スクロール5は、ハウジング内に導かれた流体を外周側から吸い込み、固定スクロール3の中央の吐出ポート3cから外部へと圧縮後の流体を吐出する。
 固定スクロール3は、ハウジングに固定されており、図1(a)に示されているように、略円板形状の端板(第1端板)3aと、端板3aの一側面上に立設された渦巻状の壁体(第1壁体)3bとを備えている。旋回スクロール5は、略円板形状の端板(第2端板)5aと、端板5aの一側面上に立設された渦巻状の壁体(第2壁体)5bとを備えている。各壁体3b,5bの渦巻形状は、例えば、インボリュート曲線やアルキメデス曲線を用いて定義されている。
 固定スクロール3と旋回スクロール5は、その中心を旋回半径ρだけ離し、壁体3b,5bの位相を180°ずらして噛み合わされ、両スクロールの壁体3b、5bの歯先と歯底間に常温で僅かな高さ方向のクリアランス(チップクリアランス)を有するように組み付けられている。これにより、両スクロール3,5間に、その端板3a,5aと壁体3b、5bとにより囲まれて形成される複数対の圧縮室がスクロール中心に対して対称に形成される。旋回スクロール5は、図示しないオルダムリング等の自転防止機構によって固定スクロール3の周りを公転旋回運動する。
 図1(a)に示すように、向かい合う両端板3a,5a間の対向面間距離Lが、渦巻状の壁体3b,5bの外周側から内周側に向かって、連続的に減少する傾斜部が設けられている。
 図2に示すように、旋回スクロール5の壁体5bには、外周側から内周側に向かって高さが連続的に減少する壁体傾斜部5b1が設けられている。この壁体傾斜部5b1の歯先が対向する固定スクロール3の歯底面には、壁体傾斜部5b1の傾斜に応じて傾斜する端板傾斜部3a1(図1(a)参照)が設けられている。これら壁体傾斜部5b1及び端板傾斜部3a1によって、連続的な傾斜部が構成されている。同様に、固定スクロール3の壁体3bにも高さが外周側から内周側に向かって連続的に傾斜する壁体傾斜部3b1が設けられ、この壁体傾斜部3b1の歯先に対向する端板傾斜部5a1が旋回スクロール5の端板5aに設けられている。
 なお、本実施形態でいう傾斜部における連続的という意味は、滑らかに接続された傾斜に限定されるものではなく、加工時に不可避的に生じるような小さな段差が階段状に接続されており、傾斜部を全体としてみれば連続的に傾斜しているものも含まれる。ただし、いわゆる段付きスクロールのような大きな段差は含まれない。
 壁体傾斜部3b1,5b1及び/又は端板傾斜部3a1,5a1には、コーティングが施されている。コーティングとしては、例えば、リン酸マンガン処理やニッケルリンめっき等が挙げられる。
 図2に示されているように、旋回スクロール5の壁体5bの最内周側と最外周側には、それぞれ、高さが一定とされた壁体平坦部5b2,5b3が設けられている。これら壁体平坦部5b2,5b3は、旋回スクロール5の中心O2(図1(a)参照)まわりに180°の領域にわたって設けられている。壁体平坦部5b2,5b3と壁体傾斜部5b1とが接続される位置には、それぞれ、屈曲部となる壁体傾斜接続部5b4,5b5が設けられている。
 旋回スクロール5の端板5aの歯底についても同様に、高さが一定とされた端板平坦部5a2,5a3が設けられている。これら端板平坦部5a2,5a3についても、旋回スクロール5の中心まわりに180°の領域にわたって設けられている。端板平坦部5a2,5a3と端板傾斜部5a1とが接続される位置には、それぞれ、屈曲部となる端板傾斜接続部5a4,5a5が設けられている。
 図3及び図4にハッチングにて示すように、固定スクロール3についても、旋回スクロール5と同様に、端板平坦部3a2,3a3、壁体平坦部3b2,3b3、端板傾斜接続部3a4,3a5及び壁体傾斜接続部3b4,3b5が設けられている。
 図5には、渦巻き方向に伸ばして表示した壁体3b,5bが示されている。同図に示されているように、最内周側の壁体平坦部3b2,5b2が距離D2にわたって設けられ、最外周側の壁体平坦部3b3,5b3が距離D3にわたって設けられている。距離D2及び距離D3は、それぞれ、各スクロール3,5の中心O1,O2まわりに180°とされた領域に相当する長さとなっている。最内周側の壁体平坦部3b2,5b2と最外周側の壁体平坦部3b3,5b3との間に、壁体傾斜部3b1,5b1が距離D2にわたって設けられている。最内周側の壁体平坦部3b2,5b2と最外周側の壁体平坦部3b3,5b3との高低差をhとすると、壁体傾斜部3b1,5b1の傾きφは下式とされる。
 φ=tan-1(h/D1)  ・・・(1)
 このように、傾斜部における傾きφは、渦巻状の壁体3b,5bが延在する周方向に対して一定とされている。
 図6には、図1(b)の符号Zで示した領域の拡大図が示されている。図6に示されているように、固定スクロール3の壁体3bの歯先には、チップシール7が設けられている。チップシール7は樹脂製とされており、対向する旋回スクロール5の端板5aの歯底に接触して流体をシールする。チップシール7は、壁体3bの歯先に周方向にわたって形成されたチップシール溝3d内に収容されている。このチップシール溝3d内に圧縮流体が入り込み、チップシール7を背面から押圧して歯底側に押し出すことで対向する歯底に接触させるようになっている。なお、旋回スクロール5の壁体5bの歯先に対しても、同様にチップシールが設けられている。
 両スクロール3,5が相対的に公転旋回運動を行うと、旋回直径(旋回半径ρ×2)分だけ歯先と歯底の位置が相対的にずれる。この歯先と歯底の位置ずれに起因して、傾斜部では、歯先と歯底との間のチップクリアランスが変化する。例えば、図7(a)ではチップクリアランスTが小さく、図7(b)ではチップクリアランスTが大きいことを示している。チップシール7は、このチップクリアランスTが旋回運動によって変化しても、背面から圧縮流体によって端板5aの歯底側に押圧されるので、追従してシールできるようになっている。
 図7に示したように、旋回を1回転する間にチップクリアランスTが変化するチップクリアランス変化量ΔTは、下式のように表すことができる。
 ΔT=2ρ×tanφ   ・・・(2)
 ここで、ρは旋回半径である。
 チップクリアランス変化量ΔTは、壁体3b,5bの高さ方向におけるチップシールの高さ寸法Hcの50%以下とされている。
 上述したスクロール圧縮機1は、以下のように動作する。
 図示しない電動モータ等の駆動源によって、旋回スクロール5が固定スクロール3回りに公転旋回運動を行う。これにより、各スクロール3,5の外周側から流体を吸い込み、各壁体3b,5b及び各端板3a,5aによって囲まれた圧縮室に流体を取り込む。圧縮室内の流体は外周側から内周側に移動するに従い順次圧縮さる。圧縮された流体は、最終的に固定スクロール3に形成された吐出ポート3cから吐出される。流体が圧縮される際に、端板傾斜部3a1,5a1及び壁体傾斜部3b1,5b1によって形成された傾斜部では、壁体3b,5bの高さ方向にも圧縮されて、三次元圧縮が行われる。
 本実施形態によれば、以下の作用効果を奏する。
 そこで、チップクリアランス変化量ΔTを、チップシール7の高さ寸法Hcの50%以下とした。これにより、チップクリアランス変化量ΔTに応じた分だけ、チップシール7がチップシール溝3dから高さ方向に進退したとしても、チップシール7がチップシール溝3dから外れてしまうことを回避して、チップシール7の脱落を防止することができる。
 なお、チップクリアランス変化量ΔTは、チップシール7の高さ寸法Hcの20%以下としても良い。
[第2実施形態]
 次に、本発明の第2実施形態について説明する。
 本実施形態は、チップクリアランス変化量ΔTの上限の設定の考え方が異なり、その他の構成については同様である。したがって、以下の説明では、第1実施形態に対する相違点のみを説明し、その他の構成は同様であるので説明を省略する。
 本実施形態では、チップクリアランス変化量ΔTを、壁体3b、5bの最外周の高さ(図2の符号Lout参照)で除した値であるΔT/Loutが、0.01以下とされている。その理由について、図8及び図9を用いて説明する。
 図8は、横軸がΔT/Lout、縦軸が効率変化割合とされている。効率変化割合は、チップクリアランス変化量ΔTがゼロの場合、すなわち壁体高さの傾斜がない、いわゆる二次元スクロールの場合の効率を1とした場合に対する、所定のΔT/Loutのときの効率の割合を示す。図8に示されているように、ΔT/Loutが0.01のとき、効率変化割合の低下は1%未満となる。したがって、ΔT/Loutを0.01以下にすると、効率変化割合の低下を1%未満に抑えることができる。
 図9(a)に示すように、ΔT/Loutが0.01以下の範囲では、チップクリアランスTを所定値以下とすることで、壁体3b,5bの歯先と対向する端板5a,3aの歯底との間にわたって潤滑油による油膜シールOSが形成されていると考えられる。このようにチップクリアランスTにおける油膜シールOSが確保されていることから、圧縮室の流体漏れが低減して、効率変化割合の低下が小さくなる。
 一方、ΔT/Loutが0.01よりも大きくなると、チップクリアランスTが大きくなり、図9(b)に示すようにチップクリアランスTにおいて油膜が分離して油膜シールOS(図9(a)参照)がなくなり、圧縮室の流体漏れが発生する。これにより、効率変化割合が大きく低下することになる。
 以上の通り、本実施形態によれば、ΔT/Loutを0.01以下にすることにより、チップクリアランスT間の油膜シールOSを維持することで、所期の効率を維持することができる。
[第3実施形態]
 次に、本発明の第3実施形態について説明する。
 本実施形態では、チップクリアランスTの下限の設定について説明する。その他の構成については上記各実施形態と同様である。したがって、以下の説明では、上記各実施形態に対する相違点のみを説明し、その他の構成は同様であるので説明を省略する。本実施形態は、第1実施形態や第2実施形態と組み合わせて用いることができる。
 本実施形態では、壁体3b,5bの歯先と端板5a,3aの歯底との間のチップクリアランスTが、組付け誤差によるスクロール3,5の中心回りの捩れ角δθを考慮している。捩れ角δθは、図10に示すように、スクロール3,5同士を組み付けて運転する際に、オルダムリングの寸法精度や芯出しピン等の位置精度等によって組付け誤差が不可避的に生じ、スクロール3,5の中心回りに生じるガタによって発生する。なお、図10は図1(b)と同様の図である。運転時には圧縮室内のガス圧力が加わるため、スクロール3,5の中心回りのガタによって、壁体3b,5bの傾斜部における歯先と端板5a,3aの歯底との間が近づき、チップクリアランスTが減少する。このチップクリアランス減少量δTは、下式で表される。
 δT=r×δθ×tanφ   ・・・(3)
 ここで、rは傾斜部が開始する外周側における半径、すなわち壁体3b、5bの外周側の壁体傾斜接続部3b5,5b5(図2,5参照)における半径である。φは傾斜部における傾きである(図5参照)。捩れ角δθは、現物の計測によって得ることができる。または、オルダムリングの寸法精度や芯出しピンの位置精度等、スクロールのねじれを生じさせる部位の寸法を個別に計測し、これらの寸法から捩れ角δθを計算によって求めることもできる。
 本実施形態では、スクロール3,5同士を組み付ける際に、傾斜部が開始する外周側における半径、リップクリアランス減少量および傾斜部の傾きφを考慮した上式(3)から得られるチップクリアランス減少量δTよりもチップクリアランスTが大きくなるようにする。これにより、歯先と歯底との干渉を回避することができる。
 上記の各実施形態では、端板傾斜部3a1,5a1及び壁体傾斜部3b1,5b1を両スクロール3,5に設けることとしたが、いずれか一方に設けても良い。
 具体的には、図11(a)に示すように、一方の壁体(例えば旋回スクロール5)に壁体傾斜部5b1を設け、他方の端板3aに端板傾斜部3a1を設けた場合には、他方の壁体と一方の端板5aは平坦としても良い。
 また、図11(b)に示すように、従来の段付き形状と組み合わせた形状、すなわち、固定スクロール3の端板3aに端板傾斜部3a1を設ける一方で、旋回スクロール5の端板5aに段部が設けられた形状と組み合わせても良い。
 上記の各実施形態では、壁体平坦部3b2,3b3,5b2,5b3および端板平坦部3a2,3a3,5a2,5a3を設けることとしたが、内周側及び/又は外周側の平坦部を省略して傾斜部を壁体3b,5bの全体に延長して設けるようにしてもよい。
 上記の各実施形態では、スクロール圧縮機として説明したが、膨張機として用いるスクロール膨張機に対しても本発明を適用することができる。
1 スクロール圧縮機(スクロール流体機械)
3 固定スクロール(第1スクロール部材)
3a 端板(第1端板)
3a1 端板傾斜部
3a2 端板平坦部(内周側)
3a3 端板平坦部(外周側)
3a4 端板傾斜接続部(内周側)
3a5 端板傾斜接続部(外周側)
3b 壁体(第1壁体)
3b1 壁体傾斜部
3b2 壁体平坦部(内周側)
3b3 壁体平坦部(外周側)
3b4 壁体傾斜接続部(内周側)
3b5 壁体傾斜接続部(外周側)
3c 吐出ポート
3d チップシール溝
5 旋回スクロール(第2スクロール部材)
5a 端板(第2端板)
5a1 端板傾斜部
5a2 端板平坦部(内周側)
5a3 端板平坦部(外周側)
5a4 端板傾斜接続部(内周側)
5a5 端板傾斜接続部(外周側)
5b 壁体(第2壁体)
5b1 壁体傾斜部
5b2 壁体平坦部(内周側)
5b3 壁体平坦部(外周側)
5b4 壁体傾斜接続部(内周側)
5b5 壁体傾斜接続部(外周側)
7 チップシール
Hc チップシールの高さ寸法
L 対向面間距離
OS 油膜シール
T チップクリアランス
ΔT チップクリアランス変化量
δT チップクリアランス減少量
φ 傾き
δθ 捩れ角

Claims (3)

  1.  第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
     前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、
    を備えたスクロール流体機械であって、
     向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、
     前記傾斜部に対応する前記第1壁体及び前記第2壁体の歯先に形成された溝部には、対向する歯底に接触して流体をシールするチップシールが設けられ、
     前記旋回スクロールの旋回半径をρ、前記傾斜部の渦巻方向における傾きをφとした場合に、チップクリアランス変化量ΔTが、下式により定義され、
     ΔT=2ρ×tanφ
     前記チップクリアランス変化量ΔTが、前記壁体の高さ方向における前記チップシールの高さ寸法の50%以下とされているスクロール流体機械。
  2.  第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
     前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、
    を備えたスクロール流体機械であって、
     向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、
     前記旋回スクロールの旋回半径をρ、前記傾斜部の渦巻き方向における傾きをφとした場合に、チップクリアランス変化量ΔTが、下式により定義され、
     ΔT=2ρ×tanφ
     前記チップクリアランス変化量ΔTを前記壁体の最外周の高さで除した値が、0.01以下とされているスクロール流体機械。
  3.  第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
     前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って相対的に公転旋回運動を行う第2スクロール部材と、
    を備えたスクロール流体機械であって、
     向かい合う前記第1端板と前記第2端板との対向面間距離が、前記第1壁体及び前記第2壁体の外周側から内周側に向かって、連続的に減少する傾斜部が設けられ、
     前記壁体の歯先と前記端板の歯底との間のチップクリアランスが、組付け誤差による前記スクロール部材の中心回りの捩れ角に基づくチップクリアランス減少量よりも大きく設定されているスクロール流体機械。
PCT/JP2017/029242 2016-08-19 2017-08-14 スクロール流体機械 WO2018034255A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016161208A JP6328705B2 (ja) 2016-08-19 2016-08-19 スクロール流体機械
JP2016-161208 2016-08-19

Publications (1)

Publication Number Publication Date
WO2018034255A1 true WO2018034255A1 (ja) 2018-02-22

Family

ID=61196685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029242 WO2018034255A1 (ja) 2016-08-19 2017-08-14 スクロール流体機械

Country Status (2)

Country Link
JP (1) JP6328705B2 (ja)
WO (1) WO2018034255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019225271B2 (en) * 2018-02-21 2022-01-27 Mitsubishi Heavy Industries Thermal Systems, Ltd. Scroll fluid machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070766A (ja) * 2000-08-28 2002-03-08 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2009228476A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機
JP2010196663A (ja) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd 圧縮機
JP2014080940A (ja) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
JP2016102486A (ja) * 2014-11-28 2016-06-02 株式会社豊田自動織機 スクロール型圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070766A (ja) * 2000-08-28 2002-03-08 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2009228476A (ja) * 2008-03-19 2009-10-08 Daikin Ind Ltd スクロール圧縮機
JP2010196663A (ja) * 2009-02-26 2010-09-09 Mitsubishi Heavy Ind Ltd 圧縮機
JP2014080940A (ja) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
JP2016102486A (ja) * 2014-11-28 2016-06-02 株式会社豊田自動織機 スクロール型圧縮機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019225271B2 (en) * 2018-02-21 2022-01-27 Mitsubishi Heavy Industries Thermal Systems, Ltd. Scroll fluid machine

Also Published As

Publication number Publication date
JP2018028303A (ja) 2018-02-22
JP6328705B2 (ja) 2018-05-23

Similar Documents

Publication Publication Date Title
JP6325041B2 (ja) スクロール流体機械およびチップシール
WO2018038183A1 (ja) スクロール流体機械およびスクロール部材の加工方法
JP6352509B1 (ja) チップシールおよびこれを用いたスクロール流体機械
WO2019163323A1 (ja) スクロール流体機械
WO2018034255A1 (ja) スクロール流体機械
JP6328706B2 (ja) スクロール流体機械およびその製造方法
JP6336530B2 (ja) スクロール流体機械およびこれに用いられるスクロール部材
WO2019163331A1 (ja) スクロール流体機械およびこれに用いられるスクロール部材
JP6336531B2 (ja) スクロール流体機械
WO2018034254A1 (ja) スクロール流体機械
WO2018038182A1 (ja) スクロール流体機械
WO2018043362A1 (ja) スクロール流体機械
JP6612376B2 (ja) スクロール流体機械
JP2019035387A (ja) スクロール流体機械
JP6336535B2 (ja) スクロール流体機械およびスクロール部材の加工方法
JP2019143553A (ja) スクロール流体機械およびスクロール部材の加工方法
JP2019035399A (ja) スクロール流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841477

Country of ref document: EP

Kind code of ref document: A1