WO2018034099A1 - Vehicle driving device - Google Patents

Vehicle driving device Download PDF

Info

Publication number
WO2018034099A1
WO2018034099A1 PCT/JP2017/026093 JP2017026093W WO2018034099A1 WO 2018034099 A1 WO2018034099 A1 WO 2018034099A1 JP 2017026093 W JP2017026093 W JP 2017026093W WO 2018034099 A1 WO2018034099 A1 WO 2018034099A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
planetary
output
coupling member
Prior art date
Application number
PCT/JP2017/026093
Other languages
French (fr)
Japanese (ja)
Inventor
雪島 良
功 平井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2018034099A1 publication Critical patent/WO2018034099A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a vehicle drive device capable of amplifying a torque difference and transmitting drive torque from two independent electric motors to left and right drive wheels.
  • Patent Document 1 As a two-motor vehicle drive device including two electric motors and a reduction gear for independently driving left and right drive wheels, there is one disclosed in Patent Document 1.
  • the conventional two-motor vehicle drive device disclosed in Patent Document 1 includes electric motors 101L and 101R that individually drive the left and right drive wheels, and a reduction gear that reduces the rotation of the electric motors 101L and 101R. 102L and 102R are provided.
  • the reduction gears 102 ⁇ / b> L and 102 ⁇ / b> R are provided with an input gear that transmits power to the rotor shaft 112, and an output gear shaft 125 and an input gear that transmit driving force to the drive wheels via the drive shaft 116.
  • One or more intermediate gear shafts 124 (counter shafts) having a large gear and a small gear are arranged to transmit power to each other, and each of the gears is a parallel shaft gear reducer arranged in parallel and offset.
  • an idler gear shaft 123 is provided between the input gears of the speed reducers 102L and 102R and the intermediate gear shaft 124.
  • the two-motor type vehicle drive device does not require a differential gear or the like that distributes the driving force of one electric motor to the left and right like the one-motor type vehicle drive device that drives the left and right drive wheels by one common electric motor It has the advantage of becoming.
  • This type of two-motor type vehicle drive device includes an electric motor for driving independently for each of the left and right drive wheels, and by appropriately controlling each electric motor, a drive torque difference is appropriately applied to the left and right drive wheels.
  • the turning moment of the vehicle is controlled.
  • each electric motor is independently connected to the left and right drive wheels via a speed reducer
  • the rotation speed of each electric motor is reduced by the speed reducer and the output torque of each electric motor (
  • the driving force is increased by each reduction gear and transmitted to the left and right drive wheels.
  • each electric motor has the same output characteristics, and each reduction gear has the same reduction ratio.
  • the output torque of the left and right electric motors transmitted to the left and right drive wheels is increased according to the reduction ratio of the reduction gear.
  • the ratio of the difference between the output torques of the left and right drive wheels is the same as the ratio of the difference between the output torques of the left and right electric motors because the reduction ratio of the left and right reduction gears is the same.
  • the ratio of the torque difference is not increased.
  • the left and right drive is more than the ratio of the difference in output torque applied from the left and right electric motors. It may be effective to increase the ratio of the difference in output torque transmitted to the wheels.
  • Patent Document 2 and Patent Document 3 include a gear device in which two planetary gear mechanisms having three elements and two degrees of freedom are coaxially arranged between two electric motors and left and right drive wheels, and two electric motors.
  • a vehicle drive device is disclosed that can amplify the difference between torques applied to the left and right driving wheels and amplify the difference.
  • Patent Document 2 and Patent Document 3 do not specifically mention the arrangement of the gear device in the vehicle drive device.
  • the applicant of the present application has already filed a patent application for a vehicle drive device in which the gear device for amplifying the torque difference is reduced in size and weight (Japanese Patent Application No. 2016-023529).
  • the vehicle drive device for which the applicant of the present application has applied for a patent has the configuration shown in FIG.
  • the vehicle drive device 201 of the prior application example includes two electric motors 202L and 202R that are mounted on the vehicle and can be controlled independently, two electric motors 202L and 202R, and left and right drive wheels.
  • a gear device 300 that is provided between the two electric motors 202L and 202R and distributes the torques of the two electric motors 202L and 202R to the left and right wheels, and speed reducers 203L and 203R that transmit the torques of the two electric motors 202L and 202R to the drive wheels.
  • the reduction gears 203L and 203R are connected to electric motors 202L and 202R, input gear shafts 212L and 212R having an input gear 212a, output gear shafts 214L and 214R connected to driving wheels and having an output gear 214a, and an input And intermediate gear shafts 213L and 213R that transmit power between the gear shafts 212L and 212R and the output gear shafts 214L and 214R.
  • the intermediate gear shafts 213L and 213R are provided with a large-diameter gear 213a that meshes with the input gear 212a and a small-diameter gear 213b that meshes with the output gear 214a.
  • the two electric motors 202L and 202R use electric motors having the same output characteristics and are accommodated in the motor housings 204L and 204R.
  • the input gear shafts 212L and 212R, the intermediate gear shafts 213L and 213R, and the output gear shafts 214L and 214R are arranged offset from each other.
  • the vehicle drive device 201 of the prior application example has a gear device 300 that distributes the driving force from the two electric motors 202L and 202R to the left and right drive wheels.
  • the gear device 300 is coaxial with the speed reducers 203L and 203R. And a pair of left and right intermediate gear shafts 213L and 213R arranged in the same manner, and three planetary gear mechanisms 330L and 330R having a combination of two elements on the same axis.
  • the planetary gear mechanism of the single pinion type is employ
  • the vehicle drive device 201 of the prior application example can distribute and amplify the difference in torque applied from the two electric motors 202L and 202R by the gear device 300, and can apply the amplified difference to the left and right drive wheels.
  • the speed reducers in the vehicle drive device described in Patent Documents 1 to 3 and the vehicle drive device of the prior application example are all arranged in parallel and offset from each other. If all the two-stage reductions are arranged in parallel and offset with different axes, the size of the vehicle drive device in the direction perpendicular to the gear shaft of the reduction gear increases. For this reason, the installation space of the vehicle drive device occupying the vehicle body space is increased, and there is a problem that a passenger compartment or a passenger compartment space on which luggage is placed is reduced.
  • the present invention seeks to provide a vehicle drive device capable of reducing the size in the direction perpendicular to the gear shaft of the reduction gear, reducing the size of the vehicle drive device, and increasing the vehicle compartment space.
  • the present invention includes two electric motors mounted on a vehicle and independently controllable, and two speed reducers that decelerate the motor rotation of each electric motor and transmit it to drive wheels.
  • the speed reducer includes an input gear, an output gear shaft having an output gear, and an output gear from the input gear by meshing of the gears.
  • the output gear shaft is provided with an output gear at the speed reducer side end.
  • the output gear shaft And an output gear shaft that passes through the rotor shaft and accommodates the electric motor.
  • the opening on the outer wall of the motor housing is provided coaxially with the rotor shaft so that the end portion on the side of the motor is located inside the hollow rotor shaft.
  • the reduction gear is connected to the drive wheels from the vehicle drive device to the outside of the vehicle drive device.
  • the speed reducer has an intermediate gear shaft that is parallel to the rotor shaft and the output gear shaft of the electric motor, and the left and right intermediate gear shafts are coaxial.
  • the intermediate gear shaft is provided with a small gear and a large gear, the input gear is engaged with the large gear provided on the intermediate gear shaft, and the small gear provided on the intermediate gear shaft is engaged with the output gear.
  • the rotation of the electric motor is decelerated and transmitted to the output gear shaft.
  • the speed reducer is configured such that a gear train composed of a small gear and an output gear of the intermediate gear shaft is arranged closer to the inside of the vehicle body than a gear train composed of the input gear and the large gear of the intermediate gear shaft.
  • the vehicle drive device has a gear device that distributes the drive force from the two electric motors to the left and right drive wheels, and the gear device is a pair of left and right intermediate gears arranged coaxially with the reducer. It consists of a planetary gear mechanism having three elements and two degrees of freedom that are combined on the same axis as the shaft.
  • the planetary gear mechanism is composed of an inner gear, a planet carrier provided coaxially with the inner gear, and the inner gear.
  • a first coupling member having a sun gear provided above and a plurality of planetary gears as revolving gears, and coupling one planet carrier and one element of the two planetary gear mechanisms;
  • a second coupling member that couples the same one element as described above and the other planet carrier, and the input element of the gear device is coaxially provided on the input side large gear of the intermediate gear shaft of the reduction gear, and the intermediate gear
  • the output side small gear of the shaft is the output of the gear device. It is linked to the prime.
  • the planetary gear mechanism is a single pinion planetary gear mechanism, and includes a first coupling member that couples one planet carrier of the two planetary gear mechanisms and the other sun gear, one sun gear, and the other planetary gear.
  • a second coupling member coupled to the carrier, wherein an internal gear of the gear device is coaxially provided on an input side large gear of the intermediate gear shaft of the reduction gear, and an output side small gear of the intermediate gear shaft is disposed on the planetary gear. It is connected to the planetary carrier of the gear mechanism.
  • a large gear meshing with an input gear and an internal gear of the planetary gear mechanism are arranged at an axial position where they are radially overlapped with each other on an intermediate gear shaft of the reduction gear which is coaxial with the gear device.
  • the planetary carrier of the planetary gear mechanism supports the planetary gear via a carrier pin and has carrier flanges extending on the inboard side and the outboard side of the vehicle, and the planetary carrier is a housing of the vehicle drive device. On the other hand, it is rotatably supported by two rolling bearings.
  • a small gear of an intermediate gear shaft that meshes with the output gear may be provided coaxially on the inboard side of the planetary carrier.
  • the internal gear of the planetary gear mechanism can be configured to be rotatably supported by a rolling bearing with respect to the planet carrier.
  • the housing for housing the two speed reducers has a three-piece configuration including a central housing and left and right side housings, and a partition wall for separating the left and right is provided at a central portion of the central housing, and the first coupling member And the second coupling member can penetrate the partition wall.
  • the first coupling member and the second coupling member are arranged coaxially, one coupling member is a hollow shaft, and the other coupling member is a shaft inserted into the hollow shaft. It has a double structure, and the connection between the first and second coupling members and the planet carrier to which the respective coupling members are coupled can be configured by spline fitting.
  • the shaft end opposite to the spline fitting portion with the planet carrier can be rotatably supported by the rolling bearing.
  • the planetary gear mechanism is a single pinion planetary gear mechanism, and includes a first coupling member that couples one planet carrier and the other internal gear of the two planetary gear mechanisms, one internal gear, and the other planetary gear.
  • a sun gear of the gear device is coaxially provided on the input side large gear of the intermediate gear shaft of the reduction gear, and the output side small gear of the intermediate gear shaft is connected to the planetary gear. It can be configured to be coaxially connected to the planetary carrier of the gear mechanism.
  • the planetary gear mechanism includes an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a plurality of double planets as revolving gears.
  • a double pinion planetary gear mechanism having a gear, and when the planet carrier is fixed, the internal gear rotates in the same direction as the sun gear, and one planet carrier and the other internal gear of the two planet gear mechanisms.
  • a second coupling member that couples one internal gear and the other planetary carrier to the input large gear of the intermediate gear shaft of the speed reducer.
  • a gear may be provided coaxially, and an output side small gear of the intermediate gear shaft may be connected coaxially with the planet carrier of the planetary gear mechanism.
  • the planetary gear mechanism includes an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a plurality of double planets as revolving gears.
  • a double pinion planetary gear mechanism having a gear, and when the planet carrier is fixed, the internal gear rotates in the same direction as the sun gear, and one planet carrier and the other sun gear of the two planet gear mechanisms.
  • a second coupling member for coupling one sun gear and the other planet carrier, and the planetary gear of the gear device is connected to the input large gear of the intermediate gear shaft of the reduction gear.
  • the carrier may be provided coaxially, and the output side small gear of the intermediate gear shaft may be connected coaxially with the internal gear of the planetary gear mechanism.
  • the size in the direction perpendicular to the gear shaft of the reduction gear can be reduced, and the vehicle drive device can be reduced in size. And the cabin space can be increased.
  • FIG. 1 is a cross-sectional plan view showing an embodiment of a vehicle drive device according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is the cross-sectional top view which expanded a part of FIG.
  • It is explanatory drawing which shows an example of the electric vehicle of the rear-wheel drive system which mounts the vehicle drive device which concerns on this invention, and has shown the gear structure with the skeleton figure.
  • the two-motor type vehicle drive device 1 has a reduction gear housing 9 that accommodates two reduction gears 3 ⁇ / b> L and 3 ⁇ / b> R in parallel on the left and right sides.
  • a structure is adopted in which the motor housings 4L and 4R of the two electric motors 2L and 2R are fixedly arranged on the outboard side of the vehicle.
  • the electric vehicle AM according to the embodiment of the present invention shown in FIG. 4 is a rear wheel drive system, and includes a chassis 60, rear wheels 61L and 61R as drive wheels, front wheels 62L and 62R, and left and right rear wheels 61L and 61R.
  • the two-motor type vehicle driving device 1 is mounted on the chassis 60 at the center position of the left and right rear wheels 61L and 61R.
  • the driving force of the vehicle driving device 1 is as follows: It is transmitted to the left and right rear wheels 61L and 61R via the constant velocity joints 65a and 65b and the intermediate shaft 65c.
  • the gear structure of the vehicle drive device 1 is shown in the skeleton diagram.
  • the torque (driving force) of the electric motors 2L and 2R is such that the input gear 12a of the rotor shafts 12L and 12R serving as the input gear shafts of the speed reducers 3L and 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L and 13R. Is transmitted to the internal gears R L and R R of the gear unit 30.
  • the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a.
  • the torque of the electric motors 2L, 2R is further increased by the ratio and output to the drive wheels 61L, 61R.
  • the gear device 30 is configured by combining two planetary gear mechanisms 30L and 30R having the same three-element and two-degree-of-freedom with coaxial intermediate gear shafts 13L and 13R.
  • the planetary gear mechanisms 30L and 30R are of a single pinion type.
  • a planetary gear mechanism is used.
  • the planetary gear mechanisms 30L and 30R are coaxially provided with sun gears S L and S R and internal gears R L and R R, and between these sun gears S L and S R and the internal gears R L and R R.
  • the sun gears S L and S R and the planetary gears P L and P R are external gears having gear teeth on the outer periphery
  • the internal gears R L and R R are internal gears having gear teeth on the inner periphery.
  • the planetary gears P L and P R mesh with the sun gears S L and S R and the internal gears R L and R R.
  • This gear device 30 includes a first planetary gear mechanism 30L having a sun gear S L , a planet carrier C L , a planet gear P L and an internal gear R L , and the sun gear S R , planet carrier C R , and planet gear P P.
  • the second planetary gear mechanism 30R having the R and the internal gear R R is coaxially combined.
  • Outputs from the electric motors 2L and 2R are given to the internal gears R L and R R of the two planetary gear mechanisms 30L and 30R, respectively, and outputs from the first coupling member 31 and the second coupling member 32 are output side small diameters. It is increased between the gear 13b and the output gear 14a and applied to the drive wheels 61L and 61R.
  • the gear device 30 for amplifying the torque difference may be on the vehicle body front side or the rear side with respect to the output gear shafts 14L and 14R.
  • either the front wheel drive method shown in FIG. 5 or the four wheel drive method shown in FIG. 6 may be used.
  • the electric vehicle AM is a front wheel drive system, and drives the chassis 60, the rear wheels 61L and 61R, the front wheels 62L and 62R as drive wheels, and the left and right front wheels 62L and 62R, respectively.
  • the vehicle drive device 1 is mounted on the chassis 60 at the center position of the left and right front wheels 62L and 62R.
  • the drive force of the vehicle drive device 1 is a constant velocity joint 65a, 65b and the intermediate shaft 65c are transmitted to the left and right front wheels 62L and 62R.
  • the gear device 30 that amplifies the torque difference may be on the vehicle body front side or the rear side with respect to the output gear shafts 14L and 14R.
  • the electric vehicle AM is a four-wheel drive system, and includes a chassis 60, rear wheels 61L and 61R as drive wheels, front wheels 62L and 62R as drive wheels, and left and right rear wheels 61L. , 61R for driving the left and right front wheels 62L, 62R for driving the left and right rear wheels 61L. 61R and the left and right front wheels 62L and 62R are mounted on the chassis 60 at the center position thereof, and the driving force of the vehicle drive device 1 is applied to the left and right rear wheels 61L through the constant velocity joints 65a and 65b and the intermediate shaft 65c. 61R and the left and right front wheels 62L and 62R are transmitted.
  • FIG. 4 includes an electric motor 2L, 2R as two drive sources mounted on the vehicle and independently controllable, left and right drive wheels 61L, 61R, and two electric motors 2L, 2R left and right reduction gears 3L, 3R provided between 2R.
  • a speed reducer housing 9 that accommodates two speed reducers 3L and 3R provided in parallel on the left and right is a central housing 9a and left and right side housings 9bL fixed to both side surfaces of the central housing 9a. , 9bR three-piece structure.
  • the left and right electric motors 2L, 2R in the vehicle drive device 1 according to the present invention are accommodated in motor housings 4L, 4R as shown in FIG.
  • the motor housings 4L and 4R include cylindrical motor housing bodies 4aL and 4aR, and outer walls 4bL and 4bR that close the outer surfaces of the motor housing bodies 4aL and 4aR.
  • An opening 40 through which the gear shafts 14L and 14R are drawn is provided. Further, the inner side surfaces of the motor housing bodies 4aL and 4aR on the side of the speed reducers 3L and 3R are closed by side surface housings 9bL and 9bR of the speed reducer housing 9.
  • a cooling water channel 41 is disposed in the motor housing main bodies 4aL and 4aR, and a cooling liquid is supplied to the water channel 41 from a radiator (not shown).
  • the water channel 41 constitutes a so-called water jacket, thereby effectively cooling the electric motors 2L, 2R.
  • the electric motors 2 ⁇ / b> L and 2 ⁇ / b> R are of a radial gap type in which a stator 6 is provided on the inner peripheral surface of the motor housing body 4 aL and 4 aR, and a rotor 5 is provided on the inner periphery of the stator 6. I am using something.
  • the rotor 5 has rotor shafts 12L and 12R in the center.
  • the rotor shafts 12L and 12R function as input gear shafts.
  • the rotor shafts 12L and 12R are hollow structures penetrating in the axial direction, and end portions of the rotor shafts 12L and 12R are inserted into the reduction gear housing 9 through the side housings 9bL and 9bR of the reduction gear housing 9. Yes.
  • An input gear 12a is provided on the outer peripheral surface of the end of the rotor shafts 12L and 12R inserted into the reduction gear housing 9.
  • the input gear 12a is integrally formed on the outer peripheral surfaces of the end portions of the rotor shafts 12L and 12R.
  • the input gear 12a is formed so as to be fitted to the rotor shafts 12L and 12R by a spline or the like. May be.
  • the rotor shafts 12L, 12R are rotatably supported by the rolling bearings 10a, 10b on the outer walls 4bL, 4bR of the motor housings 4L, 4R and the side housings 9bL, 9bR of the reduction gear housing 9 (FIG. 1). .
  • Output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R.
  • the output gear shafts 14 ⁇ / b> L and 14 ⁇ / b> R have large-diameter output gears 14 a disposed in the vicinity of the partition wall 11 in the central housing 9 a on the inboard side in the speed reducer housing 9, and are formed on both surfaces of the partition wall 11.
  • the bearing fitting hole 16a of the boss portion and the opening 40 of the outer walls 4bL and 4bR of the motor housings 4L and 4R are rotatably supported by the rolling bearings 17a and 17b.
  • the output gear 14a is splined to the output gear shafts 14L and 14R.
  • An oil seal 39 that seals between the output gear shafts 14L, 14R and the openings 40 of the outer walls 4bL, 4bR of the motor housings 4L, 4R is provided outside the rolling bearing 17b that rotatably supports the output gear shafts 14L, 14R. Is provided.
  • a shaft 650 to which an outer ring 651 of a constant velocity joint 65a is attached is spline-fitted to the wheel side ends of the output gear shafts 14L and 14R, and power is transmitted to the drive wheels 61L and 61R via the intermediate shaft 65c.
  • the A trunnion, a roller, an intermediate shaft 65c, and the like are disposed inside the constant velocity joint 65a, and a boot 653 is fitted between the intermediate shaft 65c and the outer ring 651.
  • a tripod type using the trunnion or roller shown in the figure but also a double offset type using a steel ball may be used.
  • the driving torque of the two-motor type vehicle driving device 1 is transmitted to the left and right driving wheels 61L and 61R via a drive shaft composed of constant velocity joints 65a and 65b and an intermediate shaft 65c (FIG. 4).
  • the left and right electric motors 2L, 2R in the two-motor type vehicle drive device 1 use electric motors having the same output characteristics, and are housed in motor housings 4L, 4R as shown in FIG.
  • output gear shafts 14L, 14R are coaxially arranged inside the rotor shafts 12L, 12R serving as input gear shafts, and the rotor shaft 12L, 12R and the intermediate gear shafts 13L and 13R are arranged offset from each other.
  • a reduction gear housing 9 that accommodates two reduction gears 3L and 3R provided in parallel on the left and right is divided into three pieces in a direction orthogonal to the gear shafts of the reduction gears 3L and 3R, as shown in FIG.
  • the housing 9a has a three-piece structure including left and right side housings 9bL and 9bR fixed to both side surfaces of the central housing 9a.
  • the left and right side housings 9bL and 9bR are fixed to the openings on both sides of the central housing 9a by a plurality of bolts (not shown).
  • the central housing 9a is provided with a partition wall 11 in the center.
  • the speed reducer housing 9 is divided into left and right parts by the partition wall 11, and left and right accommodation chambers for accommodating the two speed reducers 3L and 3R are provided in parallel.
  • the speed reducers 3L and 3R are provided substantially symmetrically, and torque is transmitted from rotor shafts 12L and 12R serving as input gear shafts, and input gears 12a provided on the rotor shafts 12L and 12R.
  • Intermediate gear shafts 13L and 13R having a large-diameter input-side external gear 13a to which torque is transmitted and an output-side small gear 13b meshing with the output gear 14a, and an output gear 14a, and inside the rotor shafts 12L and 12R.
  • Is a parallel shaft gear reducer provided with output gear shafts 14L and 14R arranged coaxially with each other.
  • Output gear shafts 14L, 14R coaxially arranged inside the rotor shafts 12L, 12R are pulled out of the motor housings 4L, 4R and driven wheels 61L via constant velocity joints 65a, 65b and an intermediate shaft 65c (FIG. 4). , 61R to transmit torque.
  • the intermediate gear shafts 13L and 13R constitute a gear shaft having an input side external gear 13a meshed with the input gear 12a and an output side small diameter gear 13b meshed with the output gear 14a on the outer peripheral surface. Both ends of the intermediate gear shafts 13L and 13R are inserted into bearing fitting holes 19a formed on both surfaces of the partition wall 11 of the central housing 9a and bearing fitting holes 19b formed on the side housings 9bL and 9bR via rolling bearings 20a and 20b. It is supported. And the bearing fitting hole 19a has penetrated so that the 1st coupling member 31 mentioned later and the 2nd coupling member 32 may pass.
  • the intermediate gear shafts 13L and 13R arranged on the same axis have a torque difference between the left and right drive wheels 61L and 61R on the same axis as the intermediate gear shafts 13L and 13R.
  • a gear device 30 for amplifying and distributing is incorporated (FIG. 4).
  • the gear device 30 is composed of a planetary gear mechanism having three elements and two degrees of freedom, which are combined on the same axis.
  • the gear device 30 includes internal gears R L and R R and internal gears R L and R connected to the large-diameter input side external gears 13a of the intermediate gear shafts 13L and 13R, respectively.
  • sun gear provided on R coaxially S L, S R and internal gear R L, R R and the sun gear S L
  • the planetary gear P L as a revolving gear meshing with S R, P R and the planetary gears P L
  • the planetary gear mechanism consisting of a C R 30L, and 30R, the one A first coupling member 31 that couples the planet carrier C L (left side of the figure in FIG.
  • the intermediate gear shafts 13L, 13R have input side external gears 13a, and the intermediate gear shafts 13L, 13R have output side small gears 13b that mesh with the output gear shafts 14L, 14R.
  • the output side small-diameter gear 13b is connected to the planetary carriers C L and C R.
  • the internal gear R L, the input-side external gear 13a which is connected to R R is the internal gear R L, and is formed integrally with the R R.
  • Planet carrier C L, C R is the planetary gears P L, a carrier pin 33 which supports the P R, and the carrier flange 34a on the outboard side which is connected to the outboard side end portion of the carrier pin 33, inboard end And an inboard carrier flange 34b connected to the portion.
  • the carrier flange 34a on the outboard side includes a hollow shaft portion 35 extending toward the outboard side, and the end portion on the outboard side of the hollow shaft portion 35 is formed on the side housings 9bL and 9bR of the reduction gear housing 9.
  • the fitting hole 19b is supported via a rolling bearing 20b.
  • the carrier flange 34b on the inboard side includes a hollow shaft portion 36 extending toward the inboard side, and an end portion on the inboard side of the hollow shaft portion 36 is formed in a bearing fitting hole formed in the partition wall 11 of the central housing 9a. 19a is supported via a rolling bearing 20a.
  • the hollow shaft portion 36 of the intermediate gear shaft 13 ⁇ / b> R is spline-fitted with the second coupling member 32.
  • the output-side small-diameter gear 13b is spline-fitted to the outer peripheral surface of the hollow shaft portion 36 of the carrier flange 34b.
  • the planetary gears P L and P R are supported by the carrier pin 33 via the needle roller bearing 37.
  • each carrier flange 34a, 34b outer peripheral surface and the inner gear R L of the, between the R R, the rolling bearing 38a, are disposed 38b.
  • the input side external gear 13a connected to the internal gears R L and R R can rotate with high accuracy.
  • the first coupling member 31 and the second coupling member 32 that couple the two planetary gear mechanisms that constitute the gear device 30 of the vehicle drive device 1 define the partition wall 11 that partitions the central housing 9a of the speed reducer housing 9 to the left and right. It is built through.
  • the first coupling member 31 and the second coupling member 32 are arranged coaxially, and one coupling member (the second coupling member 32 in the embodiment of FIGS. 1 and 3) is a hollow shaft, and the other coupling member. (In the embodiment of FIGS. 1 and 3, the first coupling member 31) has a double structure including a shaft inserted through the hollow shaft.
  • an end portion of the right side of the planetary gear mechanism 30R side of the second coupling member 32 consists of a hollow shaft, the hollow shaft of the carrier flange 34b on the inboard side of the planet carrier C R
  • the portion 36 is spline-fitted, but may be integrally formed.
  • End of the planetary gear mechanism 30L side of the second coupling member 32 has, on its outer peripheral surface, the external gear is formed to mesh with the planetary gears P L of the planetary gear mechanism 30L, the sun gear S of the outer gear planetary gear mechanism 30L L is composed.
  • the first coupling member 31 inserted through the second coupling member 32 constituted by a hollow shaft has a large-diameter portion 43 at an end portion on the planetary gear mechanism 30R side. external gear meshing with the planetary gears P R of the gear mechanism 30R is formed, the outer gear constitutes the sun gear S R of the planetary gear mechanism 30R.
  • the coupling member (the first coupling member 31 in the embodiment of FIGS. 1 and 3) on the inner diameter side of the double-structure shaft that couples the two planetary gear mechanisms is the coupling member (the first coupling member 31 in the embodiment of FIGS. 1 and 3).
  • 1 coupling member 31) and the planet carrier (C L in the embodiment of FIGS. 1 and 3), the shaft end opposite to the spline fitting, and the other planet carrier (C R in the embodiment of FIGS. 1 and 3) ) Is supported by a deep groove ball bearing 49.
  • the output gear shafts 14L and 14R are coaxially disposed inside the hollow rotor shafts 12L and 12R, as shown in FIGS.
  • a needle roller bearing 48 is provided between the inner peripheral surface of the inboard side ends of the rotor shafts 12L and 12R and the outer peripheral surface of the output gear shafts 14L and 14R at an axial position that also serves as the inner peripheral surface of the input gear 12a.
  • the input gear 12a supports the radial load received by meshing with the input side external gear 13a.
  • the needle roller bearing 48 prevents the inboard side ends of the rotor shafts 12L and 12R from becoming cantilever beams, prevents deflection due to radial load, and allows the input gear 12a to rotate with high accuracy.
  • a shaft 650 to which an outer ring 651 of a constant velocity joint 65a is attached is spline-fitted to the inner peripheral surface of the end portion on the outboard side of the output gear shafts 14L, 14R.
  • the constant velocity joint 65a coupled to the output gear shafts 14L and 14R is connected to the drive wheels 61L and 61R via the intermediate shaft 65c and the constant velocity joint 65b (FIG. 4).
  • an oil seal 39 is provided between the end of the output gear shafts 14L and 14R on the outboard side and the opening 40 formed in the side housings 9bL and 9bR. This prevents leakage of used lubricant and intrusion of muddy water from the outside.
  • the gears constituting the reduction gears 3L and 3R in the reduction gear housing 9 are all external gears, and the gears and bearings in the reduction gear housing 9 are lubricated in the lower part of the internal space of the reduction gear housing 9. This is done by the oil being swirled by the gears.
  • the interior of the motor housing 4L, 4R is divided into two spaces 4c, 4d in the axial direction by the stator 6 and the rotor 5, as shown in FIG.
  • An oil passage communicating the two spaces 4c and 4d is provided in the vicinity of the lowermost part (bottom dead center) of the stator 6.
  • axial grooves are provided on the outer periphery of the stator 6 or the inner peripheral portions of the motor housings 4L and 4R as oil passages that communicate the spaces 4c and 4d.
  • a through oil passage 90 is provided in the side housings 9bL and 9bR that partition the motor housings 4L and 4R from the reduction gear housing 9. As shown in FIG. 2, the through oil passage 90 is provided at a lower position in the lowermost part of the reduction gear housing 9.
  • An axial groove is provided as an oil passage that communicates the spaces 4c and 4d, and the through oil passage 90 is provided at a position lower than the lowest part (bottom dead center) of the rotor 5, so that it is provided at the end in the wheel side direction.
  • Lubricating oil supplied to the bearings 10b, 17b and the oil seal 39 through the inside of the output gear shafts 14L, 14R moves from the space 4c of the motor housings 4L, 4R to the space 4d and is not lifted up by the rotor 5. Returned into the reducer housing 9.
  • the gear configuration of the two-motor type vehicle drive device 1 of the embodiment shown in FIG. 1 is as shown in the skeleton diagram shown in FIG.
  • the left and right electric motors 2 ⁇ / b> L and 2 ⁇ / b> R are operated by electric power supplied from a battery 63 mounted on the vehicle via an inverter 64.
  • the electric motors 2L and 2R are individually controlled by an electronic control device (not shown), and can generate and output different torques.
  • the torques of the rotor shafts 12L, 12R of the electric motors 2L, 2R are the large-diameter input-side external gears of the input gear 12a of the rotor shafts 12L, 12R and the intermediate gear shafts 13L, 13R that serve as the input gear shafts of the speed reducers 3L, 3R. 13a is increased by the gear ratio and transmitted to the internal gears R L and R R of the gear unit 30.
  • the output side small diameter gear 13b of the intermediate gear shafts 13L and 13R is engaged with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the teeth of the output side small diameter gear 13b and the output gear 14a are engaged.
  • the torque of the rotor shafts 12L and 12R of the electric motors 2L and 2R is further increased by a number ratio and output to the drive wheels 61L and 61R.
  • the gear device 30 includes the first planetary gear mechanism 30L having the sun gear S L , the planet carrier C L , the planetary gear P L, and the internal gear RL , the sun gear S R , and the planet carrier C R.
  • a second planetary gear mechanism 30R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
  • the planet carrier C L of the first planetary gear mechanism 30L is binding and the sun gear S R of the second planetary gear mechanism 30R to form a first coupling member 31, the sun gear S L of the first planetary gear mechanism 30L
  • the planet carrier C R of the second planetary gear mechanism 30R form a second coupling member 32 are coupled.
  • the torque TM1 generated by the electric motor 2L is transmitted to the intermediate gear shaft 13L by meshing the input gear 12a of the rotor shaft 12L serving as the input gear shaft and the input side external gear 13a, and the torque transmitted to the intermediate gear shaft 13L is transmitted.
  • the first planetary gear mechanism 30L is transmitted to the output-side small-diameter gear 13b of the intermediate gear shaft 13L, and the output-side small-diameter gear 13b of the intermediate gear shaft 13L and the output gear 14a of the output gear shaft 14L are engaged with each other.
  • the drive torque TL is output from 14L to the drive wheel 61L.
  • the torque TM2 generated by the electric motor 2R is transmitted to the intermediate gear shaft 13R by meshing the input gear 12a of the rotor shaft 12R serving as the input gear shaft with the input side external gear 13a, and the torque transmitted to the intermediate gear shaft 13R is transmitted.
  • the intermediate gear shaft 13R is transmitted to the output-side small gear 13b via the second planetary gear mechanism 30R, and the output-side small-diameter gear 13b of the intermediate gear shaft 13R and the output gear 14a of the output gear shaft 14R mesh with each other to produce an output gear shaft.
  • Drive torque TR is output from 14R to drive wheel 61R.
  • Motor torques from the electric motors 2L and 2R are given to the internal gears R L and R R of the two planetary gear mechanisms, and outputs from the first coupling member 31 and the second coupling member 32 are drive wheels 61L and 61R. Given to.
  • the 2nd coupling member 32 is comprised by the hollow shaft, the 1st coupling member 31 is penetrated in the inside, and the axis
  • the first coupling member 31 has one end a rotation shaft of the (right end in the drawing) is the sun gear S R, the other end (left end in the drawing) are provided through the sun gear S L, connected to the planet carrier C L Has been.
  • the second coupling member 32 is a hollow shaft, one end (left end in the drawing) has a rotation shaft of the sun gear S L, the other end (right end in the drawing) is connected to the planet carrier C R. Two planetary gear mechanisms are coupled by the first coupling member 31 and the second coupling member 32.
  • the gear device 30 is configured by combining two identical single pinion planetary gear mechanisms 30L and 30R, and therefore can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the left planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the right planetary gear mechanism 30R is shown on the lower side.
  • the torques TM1 and TM2 output from the electric motors 2L and 2R are transferred to the internal gears R L and R R via the input side external gears 13a meshing with the input gears 12a of the input gear shafts 12L and 12R.
  • the distance between R R and the planet carrier C R is equal, and this is a.
  • the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
  • the electric motor 2L input from 2R is R L, R R, and the drive wheels 61L, output to 61R are sun gear S R and the planet carrier C L, the planet carrier C R and sun gear S L.
  • the connection between the two planetary gear mechanisms constituting the gear device 30 that is the torque difference amplifying mechanism is the sun gear S L and the planet carrier C R , and the sun gear S R and the planet carrier C L. Therefore, a connecting member having a larger diameter than the internal gears R L and R R is not required. Therefore, the vehicle drive device 1 for an electric vehicle incorporating the torque difference amplification mechanism can be reduced in size and weight.
  • the output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R, they are perpendicular to the gear shafts of the speed reducers 3L and 3R.
  • FIG. 8 is a skeleton diagram showing the gear configuration of the vehicle drive apparatus 1 according to the second embodiment of the present invention
  • FIG. 9 is a torque difference amplification by the gear apparatus incorporated in the vehicle drive apparatus 1 according to the second embodiment of the present invention. It is a velocity diagram for demonstrating a rate.
  • the vehicle drive device 1 includes an electric motor 2L and an electric motor 2R mounted on the vehicle, a left drive wheel and a right drive wheel (not shown), and a gear device 30 provided therebetween. Reducers 3L and 3R are provided.
  • the electric motor 2L and the electric motor 2R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. .
  • the driving force of the vehicle drive device 1 is transmitted to the left and right drive wheels (not shown) via a drive shaft (not shown) including the constant velocity joint 65a.
  • the torque of the electric motors 2L, 2R is the gear ratio between the input gear 12a of the rotor shafts 12L, 12R serving as the input gear shafts of the speed reducers 3L, 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L, 13R. And transmitted to the sun gears S L and S R of the gear unit 30.
  • the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a.
  • the torque of the electric motors 2L and 2R is further increased by the ratio and output to the drive wheels.
  • the rotor shafts 12L and 12R have a hollow structure penetrating in the axial direction, and an input gear 12a is provided at the inboard side ends of the rotor shafts 12L and 12R.
  • Output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R.
  • the gear device 30 is configured by combining two planetary gear mechanisms 30L and 30R having the same three-element and two-degree-of-freedom with coaxial intermediate gear shafts 13L and 13R.
  • the planetary gear mechanisms 30L and 30R are of a single pinion type.
  • a planetary gear mechanism is used.
  • the planet carrier C L of the first planetary gear mechanism 30L and the internal gear R R of the second planetary gear mechanism 30R is coupled by a first coupling member 31, and the internal gear R L of the first planetary gear mechanism 30L second a planet carrier C R of the planetary gear mechanism 30R is coupled by the second coupling member 32.
  • first coupling member 31 and the second coupling member 32 are provided with an output-side small-diameter gear 13b, and the output-side small-diameter gear 13b meshes with the large-diameter output gear 14a of the output gear shafts 14L, 14R, so that a constant velocity joint is obtained. It is connected to the left and right drive wheels via a drive shaft including 65a, and the output is taken out.
  • the input from the electric motors 2L and 2R is the sun gears S L and S R
  • the output to the drive wheels is the planet carrier C L and the internal gear R R and the planet carrier C R and the internal It becomes gear RL .
  • the gear device 30 shown in FIG. 8 is configured by combining two identical single pinion planetary gear mechanisms 30L and 30R
  • the gear device 30 can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the second planetary gear mechanism 30R is shown on the lower side. Is shown.
  • the reduction ratios in the reduction gears 3L and 3R are omitted, and the sun gears S L and S R are omitted.
  • the torque input to is kept TM1 and TM2.
  • the planet carrier C L and the internal gear R R as shown by broken line in the drawing of FIG. 9, it is coupled by a first coupling member 31, planet carrier C R and the internal gear R L is These are coupled by the second coupling member 32 as indicated by a broken line in the figure.
  • the torques TM1 and TM2 output from the electric motor 2L and the electric motor 2R are input to the sun gears S L and S R , respectively.
  • driving torques TL and TR transmitted from the first coupling member 31 and the second coupling member 32 located in the middle on the velocity diagram to the left and right driving wheels are output.
  • the torque difference amplification factor ⁇ of the gear device 30 according to the second embodiment will be described.
  • the two single pinion type planetary gear mechanisms 30L and 30R use gear elements having the same number of teeth, and therefore in the velocity diagram, the internal gear RL and the planet carrier C
  • the distance from L and the distance between the internal gear R R and the planet carrier C R are equal, and this is a.
  • the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
  • the torque difference amplification factor ⁇ can be obtained considering the balance of torque.
  • the arrow direction indicates the positive direction of the moment M.
  • the electric motor 2L, input from 2R is the sun gear S L, S R, the output to the driving wheels planet carrier C L and the internal gear R R, a planet carrier C R and the internal gear R L , and the torque difference amplification factor ⁇ is (2Zr + Zs) / Zs.
  • FIG. 10 is a skeleton diagram showing a gear configuration of a vehicle drive apparatus 1 according to a third embodiment of the present invention.
  • FIG. 11 is a torque difference amplification by a gear apparatus incorporated in the vehicle drive apparatus 1 according to the third embodiment of the present invention. It is a velocity diagram for demonstrating a rate.
  • the vehicle drive device 1 includes an electric motor 2L and an electric motor 2R mounted on the vehicle, a left drive wheel and a right drive wheel (not shown), and a gear device 30 provided therebetween. Reducers 3L and 3R are provided.
  • the electric motor 2L and the electric motor 2R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. .
  • the driving force of the vehicle drive device 1 is transmitted to the left and right drive wheels (not shown) via a drive shaft (not shown) including the constant velocity joint 65a.
  • the torque of the electric motors 2L, 2R is the gear ratio between the input gear 12a of the rotor shafts 12L, 12R serving as the input gear shafts of the speed reducers 3L, 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L, 13R. And transmitted to the sun gears S L and S R of the gear unit 30.
  • the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a.
  • the torque of the electric motors 2L and 2R is further increased by the ratio and output to the drive wheels.
  • the rotor shafts 12L and 12R have a hollow structure penetrating in the axial direction, and an input gear 12a is provided at the ends of the rotor shafts 12L and 12R.
  • Output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R.
  • the gear device 30 is configured by combining two planetary gear mechanisms 30L and 30R having the same three-element two-degree-of-freedom with coaxial intermediate gear shafts 13L and 13R.
  • the planetary gear mechanisms 30L and 30R are of a double pinion type. A planetary gear mechanism is used.
  • the planet carrier C L of the first planetary gear mechanism 30L and the internal gear R R of the second planetary gear mechanism 30R is coupled by a first coupling member 31, and the internal gear R L of the first planetary gear mechanism 30L second a planet carrier C R of the planetary gear mechanism 30R is coupled by the second coupling member 32.
  • first coupling member 31 and the second coupling member 32 are provided with an output side small gear 13b, which meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R that mesh with the output side small gear 13b, and a constant velocity joint. It is connected to the left and right drive wheels via a drive shaft including 65a, and the output is taken out.
  • the input from the electric motors 2L and 2R is the sun gears S L and S R
  • the output to the drive wheels is the planet carrier C L and the internal gear R R , the planet carrier C R and the internal It becomes gear RL .
  • the gear device 30 shown in FIG. 10 is configured by combining two planetary gear mechanisms 30L and 30R of the same double pinion, it can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the second planetary gear mechanism 30R is shown on the lower side. Is shown.
  • the reduction ratio in each of the reduction gears 3L, 3R is omitted, and each sun gear S L , the torque input to the S R to remain TM1 and TM2.
  • the planet carrier C L and the internal gear R R are coupled by a first coupling member 31, planet carrier C R and the internal gear R L is These are coupled by the second coupling member 32 as indicated by a broken line in the figure.
  • the torques TM1 and TM2 output from the electric motor 2L and the electric motor 2R are input to the sun gears S L and S R , respectively.
  • driving torques TL and TR transmitted from the first coupling member 31 and the second coupling member 32 located in the middle on the velocity diagram to the left and right driving wheels are output.
  • the torque difference amplification factor ⁇ of the gear device 30 according to the third embodiment will be described.
  • the two double pinion planetary gear mechanisms 30L and 30R use gear elements having the same number of teeth, in the velocity diagram, the internal gear R L and the planet carrier C L And the distance between the internal gear R R and the planetary carrier C R are equal to each other. Further, the distance between the sun gear S L and the internal gear R L and the distance between the sun gear S R and the internal gear R R are also equal, which is b.
  • the torque difference amplification factor ⁇ can be obtained considering the balance of torque.
  • the arrow direction indicates the positive direction of the moment M.
  • the electric motor 2L, input from 2R is the sun gear S L, S R, the output to the driving wheels planet carrier C L and the internal gear R R, a planet carrier C R and the internal gear R L , and the torque difference amplification factor ⁇ is (2Zr ⁇ Zs) / Zs.
  • FIG. 12 is a skeleton diagram showing a gear configuration of a vehicle drive device according to the fourth embodiment of the present invention
  • FIG. 13 is a torque difference by the gear device incorporated in the vehicle drive device according to the fourth embodiment of the present invention. It is a velocity diagram for demonstrating the amplification factor.
  • the electric motor 2L and the electric motor 2R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. .
  • the driving force of the vehicle drive device 1 is transmitted to the left and right drive wheels (not shown) via a drive shaft (not shown) including the constant velocity joint 65a.
  • the torque of the electric motors 2L, 2R is the gear ratio between the input gear 12a of the rotor shafts 12L, 12R serving as the input gear shafts of the speed reducers 3L, 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L, 13R. And transmitted to the planetary carrier C L and the sun gear S R and the planetary carrier C R and the sun gear S L of the gear unit 30.
  • the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a.
  • the torque of the electric motors 2L and 2R is further increased by the ratio and output to the drive wheels.
  • the rotor shafts 12L and 12R have a hollow structure penetrating in the axial direction, and an input gear 12a is provided at the inboard side ends of the rotor shafts 12L and 12R.
  • Output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R.
  • the gear device 30 is configured by combining two identical planetary gear mechanisms 30L, 30R having three elements and two degrees of freedom on the same axis.
  • the planetary gear mechanisms 30L and 30R employ a double pinion planetary gear mechanism having two planetary gears.
  • the planetary gear mechanism is coaxially provided between the sun gears S L and S R and the internal gears R L and R R provided on the same axis, and between the sun gears S L and S R and the internal gears R L and R R.
  • the planetary carriers C L and C R provided above and a plurality of planetary gears P L and P R that are rotatably supported by the planet carriers C L and C R and mesh with each other.
  • the sun gears S L and S R and the planetary gears P L and P R are external gears having gear teeth on the outer periphery
  • the internal gears R L and R R are internal gears having gear teeth on the inner periphery.
  • the planet carrier C L, C R is the internal gear R L, sun gear across the R R S L, located on the opposite side of the S R, the internal gear R L, when fixing the R R is the sun
  • the gears S L and S R and the planet carriers C L and C R rotate in the opposite directions.
  • the ratio of the length from the planet carriers C L , C R to the internal gears R L , R R and the length from the planet carriers C L , C R to the sun gears S L , S R. Is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr of the internal gears R L and R R and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R.
  • the gear device 30 includes a first planetary gear mechanism 30L having a sun gear S L , a planet carrier C L , a planet gear P L and an internal gear R L , as well as the sun gear S R and the planet carrier.
  • C R, and a second planetary gear mechanism 30R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
  • the sun gear S L of the first planetary gear mechanism 30L and planet carrier C R of the second planetary gear mechanism 30R is coupled with the first coupling member 31, and the planet carrier C L of the first planetary gear mechanism 30L second
  • the sun gear SR of the planetary gear mechanism 30 ⁇ / b> R is coupled by the second coupling member 32.
  • the torque TM1 generated by the electric motor 2R is input to the first coupling member 31 via the reduction gear train, and the torque generated by the electric motor 2L is input to the second coupling member 32.
  • TM2 is input via the reduction gear train.
  • the internal gear R L of the first planetary gear mechanism 30L is connected to the left driving wheel via the output gear shaft 14L, the internal gear R R of the second planetary gear mechanism 30R right driving wheels through the output gear shaft 14R Connected to.
  • the driving torque transmitted by the gear device 30 will be described with reference to a velocity diagram shown in FIG. Since the gear device 30 is configured by combining two identical planetary gear mechanisms 30L and 30R, it can be represented by two velocity diagrams as shown in FIG. Here, for easy understanding, the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the second planetary gear mechanism 30R is shown on the lower side.
  • the speed diagram of the first planetary gear mechanism 30L and the speed diagram of the second planetary gear mechanism 30R indicate that the sun gears S L and S R and the planet carriers C L and C R are internal gears R L and R R. It is arranged on the left and right sides. That is, in FIG. 13, the planet carrier C R of the second planetary gear mechanism 30R is arranged on the sun gear S L of the first planetary gear mechanism 30L, first under the planet carrier C L of the first planetary gear mechanism 30L the sun gear S R of second planetary gear mechanism 30R is arranged.
  • first coupling member 31 In the gear device 30, elements located at both ends of the two velocity diagrams shown in FIG. 13 are joined to each other as shown by a broken line in the drawing to form a first coupling member 31 and a second coupling member 32. Then, the torque TM1 output from the electric motor 2R is applied to the first coupling member 31 via the reduction gear train. This is connected sun gear S L to the first coupling member 31, part of the torque TM1 output from the electric motor 2R is to be given via the reduction gear train. The remainder of the torque TM1 output from the electric motor 2R is provided to the planet carrier C R through the reduction gear train.
  • the torque TM2 output from the electric motor 2L is input to the second coupling member 32 via the reduction gear train.
  • This second coupling member 32 connected to the sun gear S R, a portion of the torque TM2 that is output from the electric motor 2L is to be given via the reduction gear train.
  • the remainder of the torque TM2 that is output from the electric motor 2L is applied to the planet carrier C L via a reduction gear train.
  • the torques TM1 and TM2 output from the electric motors 2R and 2L are input to the coupling members 31 and 32 via the reduction gear trains, so that a reduction ratio is applied. For this reason, in the description of the velocity diagram and each calculation formula, the reduction ratio is omitted, and the torque input to each coupling member 31 and 32 remains TM1 and TM2.
  • the coefficient ⁇ is a torque difference amplification factor.
  • the torque difference amplification factor ⁇ of the gear device 30 according to the fourth embodiment will be described.
  • two double-pinion planetary gear mechanism 30L, 30R is due to the use of gear elements of the same number of teeth, in the velocity diagram, the distance between the internal gear R L and a planet carrier C L and the internal gear The distance between R R and the planet carrier C R is equal, and this is a. Further, the distance between the sun gear S L and the internal gear R L and the distance between the sun gear S R and the internal gear R R are also equal, which is b.
  • the torques TM1 and TM2 of the electric motor 2R and the electric motor 2L are input to the first and second coupling members 31 and 32 at both left and right ends, respectively, and the drive torques TL and TR are extracted from the internal gears R L and R R.
  • TL ((a / (ba)) + 1) .TM2- (a / (ba)).
  • TR ((a / (ba)) + 1) .TM1- (a / (ba)).
  • the length a is the reciprocal (1 / Zr) of the number of teeth Zr of the internal gear R
  • the length a + b is the reciprocal (1 / Zs) of the number of teeth Zs of the sun gear S.
  • the torque difference amplification factor ⁇ is Zr / (Zr ⁇ 2Zs).
  • the inputs from the electric motors 2L and 2R are the sun gear S R and the planet carrier C L , the sun gear S L and the planet carrier C R , and the output to the drive wheels is The internal gears R L and R R are obtained.

Abstract

The present invention addresses the problem of providing a vehicle driving device in which the vertical dimension of a gear shaft of a reducer can be reduced to reduce the size of the vehicle driving device and increase cabin space. This vehicle driving device is provided with: two electric motors 2L, 2R for driving left and right wheels; and two reducers 3L, 3R for reducing the rotating speed of the two electric motors 2L, 2R, wherein the two electric motors 2L, 2R are disposed on respective outboard sides relative to the two reducers 3L, 3R. Rotor shafts 12L, 12R of the electric motors 2L, 2R have hollow structures extending in the axial direction. An input gear 12a is disposed between the rotor shafts 12L, 12R. Output gear shafts 14L, 14R are coaxially disposed inside the hollow rotor shafts 12L, 12R. An output gear 14a is disposed between the output gear shafts 14L, 14R, and an intermediate shaft is rotatably disposed in the reducers 3L, 3R to be parallel with the rotor shafts 12L, 12R and the output gear shaft 14a.

Description

車両駆動装置Vehicle drive device
 この発明は、独立した2基の電動モータからの駆動トルクを左右の駆動輪にトルク差を増幅して伝達することができる車両駆動装置に関するものである。 The present invention relates to a vehicle drive device capable of amplifying a torque difference and transmitting drive torque from two independent electric motors to left and right drive wheels.
 左右の駆動輪をそれぞれ独立して駆動させる2基の電動モータと減速機を備える2モータ車両駆動装置としては、特許文献1に開示されたものがある。 As a two-motor vehicle drive device including two electric motors and a reduction gear for independently driving left and right drive wheels, there is one disclosed in Patent Document 1.
 特許文献1に開示された従来の2モータ車両駆動装置は、図14に示すように、左右の駆動輪を個別に駆動する電動モータ101L、101Rならびに電動モータ101L、101Rの回転を減速する減速機102L、102Rを備えている。 As shown in FIG. 14, the conventional two-motor vehicle drive device disclosed in Patent Document 1 includes electric motors 101L and 101R that individually drive the left and right drive wheels, and a reduction gear that reduces the rotation of the electric motors 101L and 101R. 102L and 102R are provided.
 減速機102L、102Rは、図14に示すように、ロータ軸112に動力が伝達される入力歯車が設けられ、ドライブシャフト116を介して駆動輪に駆動力を伝達する出力歯車軸125と入力歯車との間の動力伝達を行う、大歯車と小歯車を有する一つ以上の中間歯車軸124(カウンタ軸)が配置され、それぞれの歯車が平行かつオフセットした配置の平行軸歯車減速機である。 As shown in FIG. 14, the reduction gears 102 </ b> L and 102 </ b> R are provided with an input gear that transmits power to the rotor shaft 112, and an output gear shaft 125 and an input gear that transmit driving force to the drive wheels via the drive shaft 116. One or more intermediate gear shafts 124 (counter shafts) having a large gear and a small gear are arranged to transmit power to each other, and each of the gears is a parallel shaft gear reducer arranged in parallel and offset.
 図14では、減速機102L、102Rの入力歯車と中間歯車軸124との間に、アイドラ歯車軸123が設けられている。 14, an idler gear shaft 123 is provided between the input gears of the speed reducers 102L and 102R and the intermediate gear shaft 124.
 2モータ式の車両駆動装置は、一つの共通の電動モータによって左右の駆動輪を駆動させる1モータ式の車両駆動装置のように、一つの電動モータの駆動力を左右に振り分けるデファレンシャルギア等が不要になる、という利点を有する。 The two-motor type vehicle drive device does not require a differential gear or the like that distributes the driving force of one electric motor to the left and right like the one-motor type vehicle drive device that drives the left and right drive wheels by one common electric motor It has the advantage of becoming.
 この種の2モータ式の車両駆動装置は、左右の駆動輪のそれぞれについて独立に駆動用の電動モータを備え、各電動モータを独立して制御することにより左右の駆動輪に適宜駆動トルク差を与え、これにより車両の旋回モーメントを制御する。例えば、各電動モータがそれぞれ減速機を介して左右の駆動輪に独立して接続されている場合、各電動モータの回転速度はそれぞれの減速機で減速され、かつ、各電動モータの出力トルク(駆動力)はそれぞれの減速機で増大されて左右の駆動輪に伝達される。ここで、車両の右旋回時と左旋回時の挙動を同様にするために、各電動モータは同じ出力特性にして、それぞれの減速機も同じ減速比にしている。 This type of two-motor type vehicle drive device includes an electric motor for driving independently for each of the left and right drive wheels, and by appropriately controlling each electric motor, a drive torque difference is appropriately applied to the left and right drive wheels. Thus, the turning moment of the vehicle is controlled. For example, when each electric motor is independently connected to the left and right drive wheels via a speed reducer, the rotation speed of each electric motor is reduced by the speed reducer and the output torque of each electric motor ( The driving force is increased by each reduction gear and transmitted to the left and right drive wheels. Here, in order to make the vehicle turn right and turn left in the same manner, each electric motor has the same output characteristics, and each reduction gear has the same reduction ratio.
 左右の駆動輪に伝達される左右の電動モータの出力トルクは、減速機の減速比に応じて増大される。但し、左右の駆動輪の出力トルクの差の比率は、左右の減速機の減速比が同じであるので、左右の電動モータの出力トルクの差の比率と同一であり、左右の駆動輪の出力トルクの差の比率が増大されるわけではない。 The output torque of the left and right electric motors transmitted to the left and right drive wheels is increased according to the reduction ratio of the reduction gear. However, the ratio of the difference between the output torques of the left and right drive wheels is the same as the ratio of the difference between the output torques of the left and right electric motors because the reduction ratio of the left and right reduction gears is the same. The ratio of the torque difference is not increased.
 ところが、車両のスムーズな旋回走行の実現や、極端なアンダーステア、極端なオーバーステア等の車両の挙動変化を抑制するために、左右の電動モータから与えられる出力トルクの差の比率よりも左右の駆動輪に伝達される出力トルクの差の比率を大きくすることが有効な場合がある。 However, in order to achieve smooth turning of the vehicle and to suppress changes in vehicle behavior such as extreme understeer and extreme oversteer, the left and right drive is more than the ratio of the difference in output torque applied from the left and right electric motors. It may be effective to increase the ratio of the difference in output torque transmitted to the wheels.
 特許文献2及び特許文献3には、二つの電動モータと左右の駆動輪との間に、3要素2自由度の遊星歯車機構を同軸上に二つ組み合わせた歯車装置を備え、二つの電動モータから与えられるトルクの差を増幅して左右の駆動輪に与えることができる車両駆動装置が開示されている。この特許文献2及び特許文献3に記載した車両駆動装置では、左右の電動モータから与えられる出力トルク差よりも大きな駆動トルク差を得ることができる。 Patent Document 2 and Patent Document 3 include a gear device in which two planetary gear mechanisms having three elements and two degrees of freedom are coaxially arranged between two electric motors and left and right drive wheels, and two electric motors. A vehicle drive device is disclosed that can amplify the difference between torques applied to the left and right driving wheels and amplify the difference. In the vehicle drive devices described in Patent Literature 2 and Patent Literature 3, it is possible to obtain a driving torque difference larger than the output torque difference given from the left and right electric motors.
 また、特許文献2及び特許文献3では、車両駆動装置における歯車装置の配置について具体的に言及されていない。本願の出願人は、トルク差を増幅する歯車装置を小型、軽量化した車両駆動装置を、既に特許出願を行っている(特願2016-023529号)。 Further, Patent Document 2 and Patent Document 3 do not specifically mention the arrangement of the gear device in the vehicle drive device. The applicant of the present application has already filed a patent application for a vehicle drive device in which the gear device for amplifying the torque difference is reduced in size and weight (Japanese Patent Application No. 2016-023529).
 本願の出願人が特許出願している車両駆動装置(先願例)は、図15に示す構成である。 The vehicle drive device (prior application example) for which the applicant of the present application has applied for a patent has the configuration shown in FIG.
 先願例の車両駆動装置201は、図15に示すように、車両に搭載され独立して制御可能な二つの電動モータ202L、202Rと、二つの電動モータ202L、202Rと左右の駆動輪との間に設けられ、二つの電動モータ202L、202Rからのトルクを左右輪に分配する歯車装置300と、二つの電動モータ202L、202Rのトルクを駆動輪に伝達する減速機203L、203Rとを備えている。前記減速機203L、203Rは、電動モータ202L、202Rに連結し、入力歯車212aを有する入力歯車軸212L、212Rと、駆動輪に連結し、出力歯車214aを有する出力歯車軸214L、214Rと、入力歯車軸212L、212Rから出力歯車軸214L、214Rの間の動力伝達を行う中間歯車軸213L、213Rとを有する。中間歯車軸213L、213Rには、入力歯車212aと噛み合う大径歯車213aと出力歯車214aと噛み合う小径歯車213bとが設けられている。 As shown in FIG. 15, the vehicle drive device 201 of the prior application example includes two electric motors 202L and 202R that are mounted on the vehicle and can be controlled independently, two electric motors 202L and 202R, and left and right drive wheels. A gear device 300 that is provided between the two electric motors 202L and 202R and distributes the torques of the two electric motors 202L and 202R to the left and right wheels, and speed reducers 203L and 203R that transmit the torques of the two electric motors 202L and 202R to the drive wheels. Yes. The reduction gears 203L and 203R are connected to electric motors 202L and 202R, input gear shafts 212L and 212R having an input gear 212a, output gear shafts 214L and 214R connected to driving wheels and having an output gear 214a, and an input And intermediate gear shafts 213L and 213R that transmit power between the gear shafts 212L and 212R and the output gear shafts 214L and 214R. The intermediate gear shafts 213L and 213R are provided with a large-diameter gear 213a that meshes with the input gear 212a and a small-diameter gear 213b that meshes with the output gear 214a.
 二つの電動モータ202L、202Rは、同一出力特性の電動モータが用いられ、モータハウジング204L、204R内に収容されている。 The two electric motors 202L and 202R use electric motors having the same output characteristics and are accommodated in the motor housings 204L and 204R.
 そして、入力歯車軸212L、212R、中間歯車軸213L、213R、出力歯車軸214L、214Rは相互にオフセットして配置されている。 The input gear shafts 212L and 212R, the intermediate gear shafts 213L and 213R, and the output gear shafts 214L and 214R are arranged offset from each other.
 先願例の車両駆動装置201は、二つの電動モータ202L、202Rからの駆動力を左右の駆動輪に分配する歯車装置300を有し、この歯車装置300は、減速機203L、203Rの同軸上に配された左右の1対の中間歯車軸213L、213Rと同軸上に二つ組み合わせた3要素2自由度の遊星歯車機構330L、330Rからなる。そして、遊星歯車機構330L、330Rとして、シングルピニオン形式の遊星歯車機構を採用している。 The vehicle drive device 201 of the prior application example has a gear device 300 that distributes the driving force from the two electric motors 202L and 202R to the left and right drive wheels. The gear device 300 is coaxial with the speed reducers 203L and 203R. And a pair of left and right intermediate gear shafts 213L and 213R arranged in the same manner, and three planetary gear mechanisms 330L and 330R having a combination of two elements on the same axis. And the planetary gear mechanism of the single pinion type is employ | adopted as the planetary gear mechanisms 330L and 330R.
 先願例の車両駆動装置201は、二つの電動モータ202L、202Rから与えられるトルクの差を歯車装置300で分配して増幅し左右の駆動輪に与えることができる。 The vehicle drive device 201 of the prior application example can distribute and amplify the difference in torque applied from the two electric motors 202L and 202R by the gear device 300, and can apply the amplified difference to the left and right drive wheels.
 ところで、乗用車用として、これらの車両駆動装置を適用するにおいて、電動モータの回転速度と車輪回転速度の関係より、2段減速で用いられることが多い。例えば、モータの最高回転速度を10000min-1、車輪直径を630mmとすると、180km/hを最高車速とした際の車輪回転速度は1516min-1、この場合の減速比は10000/1516≒6.596となる。この様な高減速比を1段減速で達成しようとすると、大歯車が大きなものとなり、常用角が大きくなることでドライブシャフトの寿命が短くなる、あるいは大歯車部の減速機ハウジングの最低地上高が低くなり地面の凹凸で地面と当たりやすくなる、などのデメリットがある。そこで2段減速により大歯車を小さくすることが一般的である。 By the way, when these vehicle drive devices are applied to passenger cars, they are often used at a two-stage deceleration because of the relationship between the rotational speed of the electric motor and the rotational speed of the wheel. For example, assuming that the maximum rotation speed of the motor is 10,000 min −1 and the wheel diameter is 630 mm, the wheel rotation speed when the maximum vehicle speed is 180 km / h is 1516 min −1 , and the reduction ratio in this case is 10000 / 1516≈6.596. It becomes. Attempting to achieve such a high reduction ratio with one-stage reduction results in a large gear, which increases the working angle, shortens the life of the drive shaft, or reduces the ground clearance of the reduction gear housing of the large gear. There are disadvantages such as lowering the height and making it easier to hit the ground due to the unevenness of the ground. Therefore, it is common to make the large gear smaller by two-stage reduction.
 特許文献1から3に記載の車両駆動装置及び先願例の車両駆動装置においても、減速機は2段減速としたものが開示されている。 Also in the vehicle drive device described in Patent Documents 1 to 3 and the vehicle drive device of the prior application, a reduction gear having two-stage reduction is disclosed.
特開2010-48379号公報JP 2010-48379 A 特開2015-21594号公報JP 2015-21594 A 特許第4907390号公報Japanese Patent No. 4907390
 ところで、上記した特許文献1から3に記載の車両駆動装置及び先願例の車両駆動装置における減速機は、全て別々の歯車軸を平行且つオフセットした配置にしている。2段減速を全て別々の軸を平行且つオフセットした配置にすると、減速機の歯車軸に垂直な方向の車両駆動装置の寸法が大きくなる。そのため、車体空間に占める車両駆動装置の設置空間が大きくなり、人が乗る或いは荷物を載せる車室空間が小さくなるなどの難点がある。 By the way, the speed reducers in the vehicle drive device described in Patent Documents 1 to 3 and the vehicle drive device of the prior application example are all arranged in parallel and offset from each other. If all the two-stage reductions are arranged in parallel and offset with different axes, the size of the vehicle drive device in the direction perpendicular to the gear shaft of the reduction gear increases. For this reason, the installation space of the vehicle drive device occupying the vehicle body space is increased, and there is a problem that a passenger compartment or a passenger compartment space on which luggage is placed is reduced.
 そこで、この発明は、減速機の歯車軸に垂直な方向の寸法を小さくして、車両駆動装置を小型化し、車室空間を大きくすることができる車両駆動装置を提供しようとするものである。 Therefore, the present invention seeks to provide a vehicle drive device capable of reducing the size in the direction perpendicular to the gear shaft of the reduction gear, reducing the size of the vehicle drive device, and increasing the vehicle compartment space.
 前記の課題を解決するために、この発明は、車両に搭載され独立して制御可能な二つの電動モータと、各々の電動モータのモータ回転を減速し駆動輪に伝達する二つの減速機を備え、減速機に対し二つの電動モータを車両のアウトボード側に配置する車両駆動装置において、前記減速機は、入力歯車と、出力歯車を有する出力歯車軸と、歯車の噛み合いにより入力歯車から出力歯車の間の駆動力の伝達を行う中間歯車軸からなり、前記減速機を構成する歯車が外歯車である平行軸歯車減速機であり、前記電動モータのロータ軸は軸方向に貫通する中空構造であり、ロータ軸の減速機側端部には入力歯車が設けられ、二つの電動モータのロータ軸は同軸上に配置され、前記出力歯車軸は、減速機側端部には出力歯車が設けられ、出力歯車軸のモータ側端部が前記中空のロータ軸の内部に位置するようロータ軸と同軸上に設けられ、前記出力歯車軸は前記ロータ軸を貫通し電動モータを収容するモータハウジングの外側壁の開口部から車両駆動装置の外部へ引き出されて駆動輪に連結され、減速機は、中間歯車軸が電動モータのロータ軸と出力歯車軸とに軸平行に、且つ左右の中間歯車軸同士が同軸上に設けられ、それぞれ中間歯車軸には小歯車と大歯車が設けられ、入力歯車と中間歯車軸に設けられた大歯車との噛みあい、中間歯車軸に設けられた小歯車と出力歯車との噛み合いにより、前記電動モータの回転が減速されて出力歯車軸に伝達されるようにした。 In order to solve the above-described problems, the present invention includes two electric motors mounted on a vehicle and independently controllable, and two speed reducers that decelerate the motor rotation of each electric motor and transmit it to drive wheels. In the vehicle drive device in which two electric motors are arranged on the outboard side of the vehicle with respect to the speed reducer, the speed reducer includes an input gear, an output gear shaft having an output gear, and an output gear from the input gear by meshing of the gears. A parallel shaft gear reducer in which the gear constituting the speed reducer is an external gear, and the rotor shaft of the electric motor has a hollow structure penetrating in the axial direction. There is an input gear at the speed reducer side end of the rotor shaft, the rotor shafts of the two electric motors are coaxially arranged, and the output gear shaft is provided with an output gear at the speed reducer side end. The output gear shaft And an output gear shaft that passes through the rotor shaft and accommodates the electric motor. The opening on the outer wall of the motor housing is provided coaxially with the rotor shaft so that the end portion on the side of the motor is located inside the hollow rotor shaft. The reduction gear is connected to the drive wheels from the vehicle drive device to the outside of the vehicle drive device. The speed reducer has an intermediate gear shaft that is parallel to the rotor shaft and the output gear shaft of the electric motor, and the left and right intermediate gear shafts are coaxial. The intermediate gear shaft is provided with a small gear and a large gear, the input gear is engaged with the large gear provided on the intermediate gear shaft, and the small gear provided on the intermediate gear shaft is engaged with the output gear. Thus, the rotation of the electric motor is decelerated and transmitted to the output gear shaft.
 また、前記減速機は、入力歯車と中間歯車軸の大歯車からなる歯車列に対して、中間歯車軸の小歯車と出力歯車からなる歯車列が車体内側寄りに配置されるようにした。 Further, the speed reducer is configured such that a gear train composed of a small gear and an output gear of the intermediate gear shaft is arranged closer to the inside of the vehicle body than a gear train composed of the input gear and the large gear of the intermediate gear shaft.
 さらに、前記車両駆動装置は、二つの電動モータからの駆動力を左右の駆動輪に分配する歯車装置を有し、この歯車装置は、前記減速機の同軸に配された左右の一対の中間歯車軸と同軸上に二つ組み合わせた3要素2自由度の遊星歯車機構からなり、前記遊星歯車機構は、内歯車と、前記内歯車と同軸上に設けられた遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての複数の遊星歯車とを有し、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の1要素とを結合する第1結合部材と、一方の前記と同じ1要素と他方の遊星キャリヤとを結合する第2結合部材とを有し、前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の入力要素が同軸に設けられ、中間歯車軸の出力側小歯車が前記歯車装置の出力要素と連結されている。 Further, the vehicle drive device has a gear device that distributes the drive force from the two electric motors to the left and right drive wheels, and the gear device is a pair of left and right intermediate gears arranged coaxially with the reducer. It consists of a planetary gear mechanism having three elements and two degrees of freedom that are combined on the same axis as the shaft. The planetary gear mechanism is composed of an inner gear, a planet carrier provided coaxially with the inner gear, and the inner gear. A first coupling member having a sun gear provided above and a plurality of planetary gears as revolving gears, and coupling one planet carrier and one element of the two planetary gear mechanisms; A second coupling member that couples the same one element as described above and the other planet carrier, and the input element of the gear device is coaxially provided on the input side large gear of the intermediate gear shaft of the reduction gear, and the intermediate gear The output side small gear of the shaft is the output of the gear device. It is linked to the prime.
 また、前記遊星歯車機構は、シングルピニオン遊星歯車機構であり、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の太陽歯車とを結合する第1結合部材と、一方の太陽歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の内歯車が同軸に設けられ、中間歯車軸の出力側小歯車が前記遊星歯車機構の遊星キャリヤと連結されている。 The planetary gear mechanism is a single pinion planetary gear mechanism, and includes a first coupling member that couples one planet carrier of the two planetary gear mechanisms and the other sun gear, one sun gear, and the other planetary gear. A second coupling member coupled to the carrier, wherein an internal gear of the gear device is coaxially provided on an input side large gear of the intermediate gear shaft of the reduction gear, and an output side small gear of the intermediate gear shaft is disposed on the planetary gear. It is connected to the planetary carrier of the gear mechanism.
 また、前記歯車装置と同軸上にある前記減速機の中間歯車軸に、入力歯車と噛み合う大歯車と前記遊星歯車機構の内歯車とが、径方向に互いに重なり合う軸方向位置に配置されている。 Further, a large gear meshing with an input gear and an internal gear of the planetary gear mechanism are arranged at an axial position where they are radially overlapped with each other on an intermediate gear shaft of the reduction gear which is coaxial with the gear device.
 また、前記遊星歯車機構の遊星キャリヤはキャリヤピンを介して遊星歯車を支持し、車両のインボード側およびアウトボード側に延設したキャリヤフランジを有し、前記遊星キャリヤが、車両駆動装置のハウジングに対して二つの転がり軸受で回転自在に支持されている。 The planetary carrier of the planetary gear mechanism supports the planetary gear via a carrier pin and has carrier flanges extending on the inboard side and the outboard side of the vehicle, and the planetary carrier is a housing of the vehicle drive device. On the other hand, it is rotatably supported by two rolling bearings.
 また、前記遊星キャリヤのインボード側に、出力歯車と噛み合う中間歯車軸の小歯車を同軸に設ければよい。 Further, a small gear of an intermediate gear shaft that meshes with the output gear may be provided coaxially on the inboard side of the planetary carrier.
 また、前記遊星歯車機構の内歯車が、遊星キャリヤに対して転がり軸受によって回転自在に支持されるように構成することができる。 Further, the internal gear of the planetary gear mechanism can be configured to be rotatably supported by a rolling bearing with respect to the planet carrier.
 また、前記二つの減速機を収容するハウジングが、中央ハウジングと左右の側面ハウジングからなる3ピース構成であり、前記中央ハウジングの中央部には左右を仕切る仕切り壁が設けられ、前記第1結合部材と前記第2結合部材が前記仕切り壁を貫通しているように構成することができる。 The housing for housing the two speed reducers has a three-piece configuration including a central housing and left and right side housings, and a partition wall for separating the left and right is provided at a central portion of the central housing, and the first coupling member And the second coupling member can penetrate the partition wall.
 また、前記歯車装置は、前記第1結合部材と第2結合部材が同軸上に配置されると共に、一方の結合部材が中空軸、他方の結合部材が前記中空軸内部に挿通される軸からなる二重構造であり、前記第1結合部材および前記第2結合部材と、それぞれの結合部材が連結する遊星キャリヤとの連結がスプライン嵌合で構成することができる。 In the gear device, the first coupling member and the second coupling member are arranged coaxially, one coupling member is a hollow shaft, and the other coupling member is a shaft inserted into the hollow shaft. It has a double structure, and the connection between the first and second coupling members and the planet carrier to which the respective coupling members are coupled can be configured by spline fitting.
 また、前記第1および第2結合部材の内、内径側の結合部材において、遊星キャリヤとのスプライン嵌合部とは反対の軸端を転がり軸受で回転自在に支持することができる。 Further, in the coupling member on the inner diameter side among the first and second coupling members, the shaft end opposite to the spline fitting portion with the planet carrier can be rotatably supported by the rolling bearing.
 また、前記遊星歯車機構は、シングルピニオン遊星歯車機構であり、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の内歯車とを結合する第1結合部材と、一方の内歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の太陽歯車が同軸に設けられ、中間歯車軸の出力側小歯車が前記遊星歯車機構の遊星キャリヤと同軸に連結されて構成することができる。 The planetary gear mechanism is a single pinion planetary gear mechanism, and includes a first coupling member that couples one planet carrier and the other internal gear of the two planetary gear mechanisms, one internal gear, and the other planetary gear. A sun gear of the gear device is coaxially provided on the input side large gear of the intermediate gear shaft of the reduction gear, and the output side small gear of the intermediate gear shaft is connected to the planetary gear. It can be configured to be coaxially connected to the planetary carrier of the gear mechanism.
 また、前記遊星歯車機構は、内歯車と、前記内歯車と同軸上に設けられた遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての複数の二連の遊星歯車とを有するダブルピニオン遊星歯車機構であり、前記遊星キャリヤを固定したときに前記内歯車は前記太陽歯車と同一方向に回転し、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の内歯車とを結合する第1結合部材と、一方の内歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の太陽歯車が同軸に設けられ、中間歯車軸の出力側小歯車が前記遊星歯車機構の遊星キャリヤと同軸に連結されて構成することができる。 The planetary gear mechanism includes an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a plurality of double planets as revolving gears. A double pinion planetary gear mechanism having a gear, and when the planet carrier is fixed, the internal gear rotates in the same direction as the sun gear, and one planet carrier and the other internal gear of the two planet gear mechanisms. And a second coupling member that couples one internal gear and the other planetary carrier to the input large gear of the intermediate gear shaft of the speed reducer. A gear may be provided coaxially, and an output side small gear of the intermediate gear shaft may be connected coaxially with the planet carrier of the planetary gear mechanism.
 また、前記遊星歯車機構は、内歯車と、前記内歯車と同軸上に設けられた遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての複数の二連の遊星歯車とを有するダブルピニオン遊星歯車機構であり、前記遊星キャリヤを固定したときに前記内歯車は前記太陽歯車と同一方向に回転し、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の太陽歯車とを結合する第1結合部材と、一方の太陽歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の遊星キャリヤが同軸に設けられ、中間歯車軸の出力側小歯車が前記遊星歯車機構の内歯車と同軸に連結されて構成することができる。 The planetary gear mechanism includes an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a plurality of double planets as revolving gears. A double pinion planetary gear mechanism having a gear, and when the planet carrier is fixed, the internal gear rotates in the same direction as the sun gear, and one planet carrier and the other sun gear of the two planet gear mechanisms. And a second coupling member for coupling one sun gear and the other planet carrier, and the planetary gear of the gear device is connected to the input large gear of the intermediate gear shaft of the reduction gear. The carrier may be provided coaxially, and the output side small gear of the intermediate gear shaft may be connected coaxially with the internal gear of the planetary gear mechanism.
 以上のように、この発明によれば、出力歯車軸を中空のロータ軸の内部に同軸上に設けることにより、減速機の歯車軸に垂直な方向の寸法を小さくして、車両駆動装置を小型化し、車室空間を大きくすることができる。 As described above, according to the present invention, by providing the output gear shaft coaxially inside the hollow rotor shaft, the size in the direction perpendicular to the gear shaft of the reduction gear can be reduced, and the vehicle drive device can be reduced in size. And the cabin space can be increased.
この発明に係る車両駆動装置の実施形態を示す横断平面図である。1 is a cross-sectional plan view showing an embodiment of a vehicle drive device according to the present invention. 図1のII-II線の断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 図1の一部を拡大した横断平面図である。It is the cross-sectional top view which expanded a part of FIG. この発明に係る車両駆動装置を搭載した後輪駆動方式の電気自動車の一例を示す説明図であり、歯車構成をスケルトン図で示している。It is explanatory drawing which shows an example of the electric vehicle of the rear-wheel drive system which mounts the vehicle drive device which concerns on this invention, and has shown the gear structure with the skeleton figure. この発明に係る車両駆動装置を搭載した前輪駆動方式の電気自動車の一例を示す説明図であり、歯車構成をスケルトン図で示している。It is explanatory drawing which shows an example of the electric vehicle of the front-wheel drive system which mounts the vehicle drive device which concerns on this invention, and has shown the gear structure with the skeleton figure. この発明に係る車両駆動装置を搭載した四輪駆動方式の電気自動車の一例を示す説明図であり、歯車構成をスケルトン図で示している。It is explanatory drawing which shows an example of the electric vehicle of the four-wheel drive system which mounts the vehicle drive device which concerns on this invention, and has shown the gear structure with the skeleton figure. この発明の第1の実施形態に係る車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。It is a speed diagram for demonstrating the torque difference amplification factor by the gear apparatus incorporated in the vehicle drive device which concerns on 1st Embodiment of this invention. この発明の第2の実施形態の車両駆動装置の歯車構成を示すスケルトン図である。It is a skeleton figure which shows the gear structure of the vehicle drive device of 2nd Embodiment of this invention. この発明の第2の実施形態の車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。It is a velocity diagram for demonstrating the torque difference amplification factor by the gear apparatus integrated in the vehicle drive device of 2nd Embodiment of this invention. この発明の第3の実施形態の車両駆動装置の歯車構成を示すスケルトン図である。It is a skeleton figure which shows the gear structure of the vehicle drive device of 3rd Embodiment of this invention. この発明の第3の実施形態の車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。It is a velocity diagram for demonstrating the torque difference amplification factor by the gear apparatus integrated in the vehicle drive device of 3rd Embodiment of this invention. この発明の第4の実施形態の車両駆動装置の歯車構成を示すスケルトン図である。It is a skeleton figure which shows the gear structure of the vehicle drive device of 4th Embodiment of this invention. この発明の第4の実施形態の車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。It is a speed diagram for demonstrating the torque difference amplification factor by the gear apparatus integrated in the vehicle drive device of 4th Embodiment of this invention. 従来の2モータ車両駆動装置を示す横断平面図である。It is a cross-sectional top view which shows the conventional 2 motor vehicle drive device. 先願例の車両駆動装置を示す横断平面図である。It is a cross-sectional top view which shows the vehicle drive device of a prior application example.
 以下、この発明の実施の形態を添付図面に基づいて説明する。
 この発明に係る2モータ式の車両駆動装置1は、図1に示すように、2基の減速機3L、3Rを左右並列に収容する減速機ハウジング9を中央にし、その減速機ハウジング9の左右の車両のアウトボード側に2基の電動モータ2L、2Rのモータハウジング4L、4Rを固定配置した構造を採用する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, the two-motor type vehicle drive device 1 according to the present invention has a reduction gear housing 9 that accommodates two reduction gears 3 </ b> L and 3 </ b> R in parallel on the left and right sides. A structure is adopted in which the motor housings 4L and 4R of the two electric motors 2L and 2R are fixedly arranged on the outboard side of the vehicle.
 図4に示すこの発明の実施形態の電気自動車AMは、後輪駆動方式であり、シャーシ60と、駆動輪としての後輪61L、61Rと、前輪62L、62Rと、左右の後輪61L、61Rをそれぞれに駆動する2モータ式の車両駆動装置1とを備え、車両駆動装置1は、左右の後輪61L、61Rの中央位置のシャーシ60上に搭載され、車両駆動装置1の駆動力は、等速ジョイント65a、65bと中間シャフト65cを介して左右の後輪61L、61Rに伝達される。図4では、車両駆動装置1の歯車構成はスケルトン図で示している。 The electric vehicle AM according to the embodiment of the present invention shown in FIG. 4 is a rear wheel drive system, and includes a chassis 60, rear wheels 61L and 61R as drive wheels, front wheels 62L and 62R, and left and right rear wheels 61L and 61R. The two-motor type vehicle driving device 1 is mounted on the chassis 60 at the center position of the left and right rear wheels 61L and 61R. The driving force of the vehicle driving device 1 is as follows: It is transmitted to the left and right rear wheels 61L and 61R via the constant velocity joints 65a and 65b and the intermediate shaft 65c. In FIG. 4, the gear structure of the vehicle drive device 1 is shown in the skeleton diagram.
 電動モータ2L、2Rのトルク(駆動力)は、減速機3L、3Rの入力歯車軸となるロータ軸12L、12Rの入力歯車12aと中間歯車軸13L、13Rの大径の入力側外歯車13aとの歯数比で増大されて歯車装置30の内歯車RL、RRに伝達される。 The torque (driving force) of the electric motors 2L and 2R is such that the input gear 12a of the rotor shafts 12L and 12R serving as the input gear shafts of the speed reducers 3L and 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L and 13R. Is transmitted to the internal gears R L and R R of the gear unit 30.
 そして、歯車装置30を介して中間歯車軸13L、13Rの出力側小径歯車13bが出力歯車軸14L、14Rの大径の出力歯車14aに噛み合って出力側小径歯車13bと出力歯車14aとの歯数比で電動モータ2L、2Rのトルクがさらに増大されて、駆動輪61L、61Rに出力される。 Then, the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a. The torque of the electric motors 2L, 2R is further increased by the ratio and output to the drive wheels 61L, 61R.
 歯車装置30は、3要素2自由度の同一の遊星歯車機構30L、30Rが同軸上の中間歯車軸13L、13Rに二つ組み合わされて構成され、遊星歯車機構30L、30Rとして、シングルピニオン形式の遊星歯車機構を採用している。 The gear device 30 is configured by combining two planetary gear mechanisms 30L and 30R having the same three-element and two-degree-of-freedom with coaxial intermediate gear shafts 13L and 13R. The planetary gear mechanisms 30L and 30R are of a single pinion type. A planetary gear mechanism is used.
 遊星歯車機構30L、30Rは、同軸上に設けられた太陽歯車SL、SR及び内歯車RL、RRと、これら太陽歯車SL、SRと内歯車RL、RRとの間に位置する複数の遊星歯車PL、PRと、遊星歯車PL、PRを回転可能に支持し太陽歯車SL、SR及び内歯車RL、RRと同軸上に設けられた遊星キャリヤCL、CRとから構成される。ここで、太陽歯車SL、SRと遊星歯車PL、PRは外周にギヤ歯を有する外歯車であり、内歯車RL、RRは内周にギヤ歯を有する内歯車である。遊星歯車PL、PRは太陽歯車SL、SRと内歯車RL、RRとに噛み合っている。 The planetary gear mechanisms 30L and 30R are coaxially provided with sun gears S L and S R and internal gears R L and R R, and between these sun gears S L and S R and the internal gears R L and R R. A plurality of planetary gears P L , P R located in the direction of the planetary gears, and planetary gears P L , P R rotatably supported by the planetary gears provided coaxially with the sun gears S L , S R and the internal gears R L , R R. It is composed of carriers C L and C R. Here, the sun gears S L and S R and the planetary gears P L and P R are external gears having gear teeth on the outer periphery, and the internal gears R L and R R are internal gears having gear teeth on the inner periphery. The planetary gears P L and P R mesh with the sun gears S L and S R and the internal gears R L and R R.
 この歯車装置30は、太陽歯車SL、遊星キャリヤCL、遊星歯車PL及び内歯車RLを有する第1の遊星歯車機構30Lと、同じく太陽歯車SR、遊星キャリヤCR、遊星歯車PR及び内歯車RRを有する第2の遊星歯車機構30Rとが同軸上に組み合わされて構成されている。 This gear device 30 includes a first planetary gear mechanism 30L having a sun gear S L , a planet carrier C L , a planet gear P L and an internal gear R L , and the sun gear S R , planet carrier C R , and planet gear P P. The second planetary gear mechanism 30R having the R and the internal gear R R is coaxially combined.
 電動モータ2L、2Rからの出力は、二つの遊星歯車機構30L、30Rのそれぞれの内歯車RL、RRに与えられ、第1結合部材31、第2結合部材32からの出力が出力側小径歯車13bと出力歯車14aとの間で増大されて、駆動輪61L、61Rに与えられる。 Outputs from the electric motors 2L and 2R are given to the internal gears R L and R R of the two planetary gear mechanisms 30L and 30R, respectively, and outputs from the first coupling member 31 and the second coupling member 32 are output side small diameters. It is increased between the gear 13b and the output gear 14a and applied to the drive wheels 61L and 61R.
 後輪駆動方式において、トルク差を増幅する歯車装置30が、出力歯車軸14L、14Rに対し車体前側となっても後ろ側となってもよい。 In the rear wheel drive system, the gear device 30 for amplifying the torque difference may be on the vehicle body front side or the rear side with respect to the output gear shafts 14L and 14R.
 2モータ式の車両駆動装置1の搭載形態としては、図4で示した後輪駆動方式の他に、図5で示す前輪駆動方式でも図6で示す四輪駆動方式のいずれでも構わない。 As a mounting form of the two-motor type vehicle drive device 1, in addition to the rear wheel drive method shown in FIG. 4, either the front wheel drive method shown in FIG. 5 or the four wheel drive method shown in FIG. 6 may be used.
 図5に示す実施形態に係る電気自動車AMは、前輪駆動方式であり、シャーシ60と、後輪61L、61Rと、駆動輪としての前輪62L、62Rと、左右の前輪62L、62Rをそれぞれに駆動する2モータ式の車両駆動装置1とを備え、車両駆動装置1は、左右の前輪62L、62Rの中央位置のシャーシ60上に搭載され、車両駆動装置1の駆動力は、等速ジョイント65a、65bと中間シャフト65cを介して左右の前輪62L、62Rに伝達される。 The electric vehicle AM according to the embodiment shown in FIG. 5 is a front wheel drive system, and drives the chassis 60, the rear wheels 61L and 61R, the front wheels 62L and 62R as drive wheels, and the left and right front wheels 62L and 62R, respectively. The vehicle drive device 1 is mounted on the chassis 60 at the center position of the left and right front wheels 62L and 62R. The drive force of the vehicle drive device 1 is a constant velocity joint 65a, 65b and the intermediate shaft 65c are transmitted to the left and right front wheels 62L and 62R.
 前輪駆動方式において、トルク差を増幅する歯車装置30が、出力歯車軸14L、14Rに対し車体前側となっても後ろ側となってもよい。 In the front wheel drive system, the gear device 30 that amplifies the torque difference may be on the vehicle body front side or the rear side with respect to the output gear shafts 14L and 14R.
 図6に示す実施形態に係る電気自動車AMは、4輪駆動方式であり、シャーシ60と、駆動輪としての後輪61L、61Rと、駆動輪としての前輪62L、62Rと、左右の後輪61L、61Rをそれぞれに駆動する2モータ式の車両駆動装置1、左右の前輪62L、62Rをそれぞれに駆動する2モータ式の車両駆動装置1とを備え、車両駆動装置1は、左右の後輪61L、61R、左右の前輪62L、62Rのそれぞれの中央位置のシャーシ60上に搭載され、車両駆動装置1の駆動力は、等速ジョイント65a、65bと中間シャフト65cを介して左右の後輪61L、61R並びに左右の前輪62L、62Rに伝達される。 The electric vehicle AM according to the embodiment shown in FIG. 6 is a four-wheel drive system, and includes a chassis 60, rear wheels 61L and 61R as drive wheels, front wheels 62L and 62R as drive wheels, and left and right rear wheels 61L. , 61R for driving the left and right front wheels 62L, 62R for driving the left and right rear wheels 61L. 61R and the left and right front wheels 62L and 62R are mounted on the chassis 60 at the center position thereof, and the driving force of the vehicle drive device 1 is applied to the left and right rear wheels 61L through the constant velocity joints 65a and 65b and the intermediate shaft 65c. 61R and the left and right front wheels 62L and 62R are transmitted.
 図1及び図4に示す車両駆動装置1は、車両に搭載され独立して制御可能な二つの駆動源としての電動モータ2L、2Rと、左右の駆動輪61L、61Rと二つの電動モータ2L、2Rとの間に設けられる左右2基の減速機3L、3Rとを備える。 1 and FIG. 4 includes an electric motor 2L, 2R as two drive sources mounted on the vehicle and independently controllable, left and right drive wheels 61L, 61R, and two electric motors 2L, 2R left and right reduction gears 3L, 3R provided between 2R.
 図1に示すように、左右並列に設けられた2基の減速機3L、3Rを収容する減速機ハウジング9は、中央ハウジング9aとこの中央ハウジング9aの両側面に固定される左右の側面ハウジング9bL、9bRの3ピース構造になっている。 As shown in FIG. 1, a speed reducer housing 9 that accommodates two speed reducers 3L and 3R provided in parallel on the left and right is a central housing 9a and left and right side housings 9bL fixed to both side surfaces of the central housing 9a. , 9bR three-piece structure.
 この発明にかかる車両駆動装置1における左右の電動モータ2L、2Rは、図1に示すように、モータハウジング4L、4R内に収容されている。 The left and right electric motors 2L, 2R in the vehicle drive device 1 according to the present invention are accommodated in motor housings 4L, 4R as shown in FIG.
 モータハウジング4L、4Rは円筒形のモータハウジング本体4aL、4aRと、このモータハウジング本体4aL、4aRの外側面を閉塞する外側壁4bL、4bRとからなり、外側壁4bL、4bRには、後述する出力歯車軸14L、14Rを引き出す開口部40が設けられている。また、モータハウジング本体4aL,4aRの減速機3L、3R側の内側面は、減速機ハウジング9の側面ハウジング9bL、9bRによって閉塞されている。 The motor housings 4L and 4R include cylindrical motor housing bodies 4aL and 4aR, and outer walls 4bL and 4bR that close the outer surfaces of the motor housing bodies 4aL and 4aR. An opening 40 through which the gear shafts 14L and 14R are drawn is provided. Further, the inner side surfaces of the motor housing bodies 4aL and 4aR on the side of the speed reducers 3L and 3R are closed by side surface housings 9bL and 9bR of the speed reducer housing 9.
 前記モータハウジング本体4aL、4aRには冷却用の水路41が配置され、水路41にはラジエター(図示しない)から冷却液が供給される。水路41は所謂ウォータジャケットを構成し、これにより電動モータ2L、2Rを効果的に冷却している。 A cooling water channel 41 is disposed in the motor housing main bodies 4aL and 4aR, and a cooling liquid is supplied to the water channel 41 from a radiator (not shown). The water channel 41 constitutes a so-called water jacket, thereby effectively cooling the electric motors 2L, 2R.
 電動モータ2L、2Rは、図1に示すように、モータハウジング本体4aL、4aRの内周面にステータ6を設け、このステータ6の内周に間隔をおいてロータ5を設けたラジアルギャップタイプのものを使用している。 As shown in FIG. 1, the electric motors 2 </ b> L and 2 </ b> R are of a radial gap type in which a stator 6 is provided on the inner peripheral surface of the motor housing body 4 aL and 4 aR, and a rotor 5 is provided on the inner periphery of the stator 6. I am using something.
 ロータ5は、ロータ軸12L、12Rを中心部に有する。このロータ軸12L、12Rは入力歯車軸としての機能を有する。ロータ軸12L、12Rは、軸方向に貫通する中空構造であり、ロータ軸12L、12Rの端部は、減速機ハウジング9の側面ハウジング9bL、9bRを貫通して減速機ハウジング9内に挿入されている。減速機ハウジング9内に挿入されたロータ軸12L、12Rの端部外周面には、入力歯車12aが設けられている。 The rotor 5 has rotor shafts 12L and 12R in the center. The rotor shafts 12L and 12R function as input gear shafts. The rotor shafts 12L and 12R are hollow structures penetrating in the axial direction, and end portions of the rotor shafts 12L and 12R are inserted into the reduction gear housing 9 through the side housings 9bL and 9bR of the reduction gear housing 9. Yes. An input gear 12a is provided on the outer peripheral surface of the end of the rotor shafts 12L and 12R inserted into the reduction gear housing 9.
 図1の実施形態においては、入力歯車12aをロータ軸12L、12Rの端部外周面に一体に形成しているが、入力歯車12aをスプライン等でロータ軸12L、12Rに嵌合するように形成してもよい。 In the embodiment of FIG. 1, the input gear 12a is integrally formed on the outer peripheral surfaces of the end portions of the rotor shafts 12L and 12R. However, the input gear 12a is formed so as to be fitted to the rotor shafts 12L and 12R by a spline or the like. May be.
 ロータ軸12L、12Rは、モータハウジング4L、4Rの外側壁4bL、4bRと、減速機ハウジング9の側面ハウジング9bL、9bRとに、転がり軸受10a、10bによって回転自在に支持されている(図1)。 The rotor shafts 12L, 12R are rotatably supported by the rolling bearings 10a, 10b on the outer walls 4bL, 4bR of the motor housings 4L, 4R and the side housings 9bL, 9bR of the reduction gear housing 9 (FIG. 1). .
 中空のロータ軸12L、12Rの内部には、出力歯車軸14L、14Rが同軸上に配置されている。 Output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R.
 出力歯車軸14L、14Rは、減速機ハウジング9内のインボード側の中央ハウジング9aに仕切り壁11に近接して配置される大径の出力歯車14aを有し、仕切り壁11の両面に形成したボス部の軸受嵌合穴16aとモータハウジング4L、4Rの外側壁4bL、4bRの開口部40とに、転がり軸受17a、17bによって回転自在に支持されている。出力歯車14aは、出力歯車軸14L、14Rにスプライン嵌合されている。 The output gear shafts 14 </ b> L and 14 </ b> R have large-diameter output gears 14 a disposed in the vicinity of the partition wall 11 in the central housing 9 a on the inboard side in the speed reducer housing 9, and are formed on both surfaces of the partition wall 11. The bearing fitting hole 16a of the boss portion and the opening 40 of the outer walls 4bL and 4bR of the motor housings 4L and 4R are rotatably supported by the rolling bearings 17a and 17b. The output gear 14a is splined to the output gear shafts 14L and 14R.
 出力歯車軸14L、14Rを回転支持する転がり軸受17bの外側には、出力歯車軸14L、14Rとモータハウジング4L、4Rの外側壁4bL、4bRの開口部40との間をシールするオイルシール39が設けられている。 An oil seal 39 that seals between the output gear shafts 14L, 14R and the openings 40 of the outer walls 4bL, 4bR of the motor housings 4L, 4R is provided outside the rolling bearing 17b that rotatably supports the output gear shafts 14L, 14R. Is provided.
 出力歯車軸14L、14Rの車輪側の端部には、等速ジョイント65aの外輪651が取り付けられたシャフト650がスプライン嵌合され、中間シャフト65cを介して駆動輪61L、61Rに動力が伝達される。等速ジョイント65aの内部にはトラニオン、ローラ、中間シャフト65c等が配置され、中間シャフト65cと外輪651との間にはブーツ653が嵌め込まれている。図示のトラニオンやローラを使用するトリポード型に限らず、鋼球を使用するダブルオフセット型等でもよい。 A shaft 650 to which an outer ring 651 of a constant velocity joint 65a is attached is spline-fitted to the wheel side ends of the output gear shafts 14L and 14R, and power is transmitted to the drive wheels 61L and 61R via the intermediate shaft 65c. The A trunnion, a roller, an intermediate shaft 65c, and the like are disposed inside the constant velocity joint 65a, and a boot 653 is fitted between the intermediate shaft 65c and the outer ring 651. Not only the tripod type using the trunnion or roller shown in the figure, but also a double offset type using a steel ball may be used.
 2モータ式の車両駆動装置1の駆動トルクは、等速ジョイント65a、65bと中間シャフト65cからなるドライブシャフトを介して左右の駆動輪61L、61Rに伝達される(図4)。 The driving torque of the two-motor type vehicle driving device 1 is transmitted to the left and right driving wheels 61L and 61R via a drive shaft composed of constant velocity joints 65a and 65b and an intermediate shaft 65c (FIG. 4).
 2モータ式の車両駆動装置1における左右の電動モータ2L、2Rは、同一の出力特性の電動モータが用いられ、図1に示すように、モータハウジング4L、4R内に収容されている。図1のII-II線で断面とした図2に示すように、入力歯車軸となるロータ軸12L、12Rの内部には、出力歯車軸14L、14Rが同軸上に配置され、ロータ軸12L、12Rと中間歯車軸13L、13Rとは相互にオフセットして配置されている。 The left and right electric motors 2L, 2R in the two-motor type vehicle drive device 1 use electric motors having the same output characteristics, and are housed in motor housings 4L, 4R as shown in FIG. As shown in FIG. 2 taken along the line II-II in FIG. 1, output gear shafts 14L, 14R are coaxially arranged inside the rotor shafts 12L, 12R serving as input gear shafts, and the rotor shaft 12L, 12R and the intermediate gear shafts 13L and 13R are arranged offset from each other.
 左右並列に設けられた2基の減速機3L、3Rを収容する減速機ハウジング9は、減速機3L、3Rの歯車軸と直交する方向に3ピースに分割され、図1に示すように、中央ハウジング9aとこの中央ハウジング9aの両側面に固定される左右の側面ハウジング9bL、9bRの3ピース構造になっている。左右の側面ハウジング9bL、9bRは、中央ハウジング9aの両側の開口部に複数のボルト(図示しない)によって固定されている。 A reduction gear housing 9 that accommodates two reduction gears 3L and 3R provided in parallel on the left and right is divided into three pieces in a direction orthogonal to the gear shafts of the reduction gears 3L and 3R, as shown in FIG. The housing 9a has a three-piece structure including left and right side housings 9bL and 9bR fixed to both side surfaces of the central housing 9a. The left and right side housings 9bL and 9bR are fixed to the openings on both sides of the central housing 9a by a plurality of bolts (not shown).
 中央ハウジング9aには、図1に示すように、中央に仕切り壁11が設けられている。減速機ハウジング9は、この仕切り壁11によって左右に2分割され、2基の減速機3L、3Rを収容する左右の収容室が並列に設けられている。 As shown in FIG. 1, the central housing 9a is provided with a partition wall 11 in the center. The speed reducer housing 9 is divided into left and right parts by the partition wall 11, and left and right accommodation chambers for accommodating the two speed reducers 3L and 3R are provided in parallel.
 減速機3L、3Rは、図1に示すように、概ね左右対称形に設けられ、入力歯車軸となるロータ軸12L、12Rからトルクが伝達され、ロータ軸12L、12Rに設けられた入力歯車12aからのトルクが伝達される大径の入力側外歯車13aと出力歯車14aに噛み合う出力側小径歯車13bを有する中間歯車軸13L、13Rと、出力歯車14aを有し、ロータ軸12L、12Rの内部に同軸上に配置された出力歯車軸14L、14Rとを備える平行軸歯車減速機である。ロータ軸12L、12Rの内部に同軸上に配置された出力歯車軸14L、14Rがモータハウジング4L、4Rから引き出されて等速ジョイント65a、65b、中間シャフト65c(図4)を介して駆動輪61L、61Rにトルクを伝達する。 As shown in FIG. 1, the speed reducers 3L and 3R are provided substantially symmetrically, and torque is transmitted from rotor shafts 12L and 12R serving as input gear shafts, and input gears 12a provided on the rotor shafts 12L and 12R. Intermediate gear shafts 13L and 13R having a large-diameter input-side external gear 13a to which torque is transmitted and an output-side small gear 13b meshing with the output gear 14a, and an output gear 14a, and inside the rotor shafts 12L and 12R. Is a parallel shaft gear reducer provided with output gear shafts 14L and 14R arranged coaxially with each other. Output gear shafts 14L, 14R coaxially arranged inside the rotor shafts 12L, 12R are pulled out of the motor housings 4L, 4R and driven wheels 61L via constant velocity joints 65a, 65b and an intermediate shaft 65c (FIG. 4). , 61R to transmit torque.
 入力歯車12aと中間歯車軸13L、13Rに設けられた大径の入力側外歯車13aとが噛み合い、入力歯車12aのトルクを入力側外歯車13aに伝達する。 The input gear 12a and the large-diameter input side external gear 13a provided on the intermediate gear shafts 13L and 13R mesh with each other to transmit the torque of the input gear 12a to the input side external gear 13a.
 中間歯車軸13L、13Rは、外周面に入力歯車12aに噛み合う入力側外歯車13aと出力歯車14aに噛み合う出力側小径歯車13bを有する歯車軸を構成している。この中間歯車軸13L、13Rの両端は、中央ハウジング9aの仕切り壁11の両面に形成した軸受嵌合穴19aと側面ハウジング9bL、9bRに形成した軸受嵌合穴19bに転がり軸受20a、20bを介して支持されている。そして、軸受嵌合穴19aは、後述する第1結合部材31と第2結合部材32が通るように貫通している。 The intermediate gear shafts 13L and 13R constitute a gear shaft having an input side external gear 13a meshed with the input gear 12a and an output side small diameter gear 13b meshed with the output gear 14a on the outer peripheral surface. Both ends of the intermediate gear shafts 13L and 13R are inserted into bearing fitting holes 19a formed on both surfaces of the partition wall 11 of the central housing 9a and bearing fitting holes 19b formed on the side housings 9bL and 9bR via rolling bearings 20a and 20b. It is supported. And the bearing fitting hole 19a has penetrated so that the 1st coupling member 31 mentioned later and the 2nd coupling member 32 may pass.
 同軸上に配置された中間歯車軸13L、13Rには、この中間歯車軸13L、13Rと同軸上に、二つの電動モータ2L、2Rから与えられるトルクを左右の駆動輪61L、61Rにトルク差を増幅して分配する歯車装置30が組み込まれている(図4)。歯車装置30は、同軸上に二つ組み合わせた3要素2自由度の遊星歯車機構からなる。 The intermediate gear shafts 13L and 13R arranged on the same axis have a torque difference between the left and right drive wheels 61L and 61R on the same axis as the intermediate gear shafts 13L and 13R. A gear device 30 for amplifying and distributing is incorporated (FIG. 4). The gear device 30 is composed of a planetary gear mechanism having three elements and two degrees of freedom, which are combined on the same axis.
 歯車装置30は、図3の拡大図に示すように、中間歯車軸13L、13Rの大径の入力側外歯車13aにそれぞれ連結された内歯車RL、RRと、内歯車RL、RRと同軸上に設けられた太陽歯車SL、SRと、内歯車RL、RRと太陽歯車SL、SRに噛み合う公転歯車としての遊星歯車PL、PRと、遊星歯車PL、PRに連結され、内歯車RL、RR及び太陽歯車SL、SRと同軸上に設けられた遊星キャリヤCL、CRとからなる遊星歯車機構30L、30Rと、一方の遊星キャリヤCL(図3では図の左側)と他方の太陽歯車SR(図3では図の右側)とを結合する第1結合部材31と、一方の太陽歯車SL(図3では図の左側)と他
方の遊星キャリヤCR(図3では図の右側)とを結合する第2結合部材32と、入力歯車12aと噛み合う中間歯車軸13L、13Rの入力側外歯車13aと、出力歯車軸14L、14Rの出力歯車14aと噛み合う中間歯車軸13L、13Rの出力側小径歯車13bとを有し、中間歯車軸13L、13Rの出力側小径歯車13bを、遊星キャリヤCL、CRに連結した構成である。
As shown in the enlarged view of FIG. 3, the gear device 30 includes internal gears R L and R R and internal gears R L and R connected to the large-diameter input side external gears 13a of the intermediate gear shafts 13L and 13R, respectively. sun gear provided on R coaxially S L, S R and internal gear R L, R R and the sun gear S L, the planetary gear P L as a revolving gear meshing with S R, P R and the planetary gears P L, is connected to the P R, the internal gear R L, R R and the sun gear S L, S R and the planetary carrier provided coaxially C L, the planetary gear mechanism consisting of a C R 30L, and 30R, the one A first coupling member 31 that couples the planet carrier C L (left side of the figure in FIG. 3) and the other sun gear S R (right side of the figure in FIG. 3) and one sun gear S L (FIG. 3 shows the figure). left side) and the second coupling member 32 for coupling the other of the planet carrier C R (in FIG. in FIG. 3 the right) and, chewing the input gear 12a The intermediate gear shafts 13L, 13R have input side external gears 13a, and the intermediate gear shafts 13L, 13R have output side small gears 13b that mesh with the output gear shafts 14L, 14R. The output side small-diameter gear 13b is connected to the planetary carriers C L and C R.
 図1及び図3に示す実施形態では、内歯車RL、RRに連結された入力側外歯車13aは、内歯車RL、RRと一体に形成されている。入力側外歯車13aと内歯車RL、RRとを、径方向に互いに重なり合う軸方向位置に配置することで、軸方向に並べて配置するより軸方向寸法を縮小することが可能となる。 In the embodiment shown in FIGS. 1 and 3, the internal gear R L, the input-side external gear 13a which is connected to R R is the internal gear R L, and is formed integrally with the R R. By disposing the input-side external gear 13a and the internal gears R L and R R at axial positions that overlap each other in the radial direction, it is possible to reduce the axial dimension compared to arranging them side by side in the axial direction.
 遊星キャリヤCL、CRは、遊星歯車PL、PRを支持するキャリヤピン33と、キャリヤピン33のアウトボード側端部に連結されたアウトボード側のキャリヤフランジ34aと、インボード側端部に連結されたインボード側のキャリヤフランジ34bを有する。 Planet carrier C L, C R is the planetary gears P L, a carrier pin 33 which supports the P R, and the carrier flange 34a on the outboard side which is connected to the outboard side end portion of the carrier pin 33, inboard end And an inboard carrier flange 34b connected to the portion.
 アウトボード側のキャリヤフランジ34aは、アウトボード側に延びる中空軸部35を備えており、中空軸部35のアウトボード側の端部が、減速機ハウジング9の側面ハウジング9bL、9bRに形成した軸受嵌合穴19bに転がり軸受20bを介して支持されている。 The carrier flange 34a on the outboard side includes a hollow shaft portion 35 extending toward the outboard side, and the end portion on the outboard side of the hollow shaft portion 35 is formed on the side housings 9bL and 9bR of the reduction gear housing 9. The fitting hole 19b is supported via a rolling bearing 20b.
 インボード側のキャリヤフランジ34bは、インボード側に延びる中空軸部36を備えており、中空軸部36のインボード側の端部が、中央ハウジング9aの仕切り壁11に形成した軸受嵌合穴19aに転がり軸受20aを介して支持されている。尚、図1及び図3に示す実施形態では、中間歯車軸13Rの中空軸部36は第2結合部材32とスプライン嵌合されている。 The carrier flange 34b on the inboard side includes a hollow shaft portion 36 extending toward the inboard side, and an end portion on the inboard side of the hollow shaft portion 36 is formed in a bearing fitting hole formed in the partition wall 11 of the central housing 9a. 19a is supported via a rolling bearing 20a. In the embodiment shown in FIGS. 1 and 3, the hollow shaft portion 36 of the intermediate gear shaft 13 </ b> R is spline-fitted with the second coupling member 32.
 図1及び図3に示す実施形態では、前記出力側小径歯車13bが、キャリヤフランジ34bの中空軸部36の外周面にスプライン嵌合されている。 In the embodiment shown in FIGS. 1 and 3, the output-side small-diameter gear 13b is spline-fitted to the outer peripheral surface of the hollow shaft portion 36 of the carrier flange 34b.
 遊星歯車PL、PRは、針状ころ軸受37を介してキャリヤピン33によって支持されている。 The planetary gears P L and P R are supported by the carrier pin 33 via the needle roller bearing 37.
 前記各キャリヤフランジ34a、34bの外周面と内歯車RL、RRとの間には、転がり軸受38a、38bを配置している。転がり軸受38a、38bにより支持されることで、内歯車RL、RRとそれぞれに連結された入力側外歯車13aは、精度よく回転することが出来る。 Wherein each carrier flange 34a, 34b outer peripheral surface and the inner gear R L of the, between the R R, the rolling bearing 38a, are disposed 38b. By being supported by the rolling bearings 38a and 38b, the input side external gear 13a connected to the internal gears R L and R R can rotate with high accuracy.
 車両駆動装置1の歯車装置30を構成する二つの遊星歯車機構を連結している第1結合部材31及び第2結合部材32は、減速機ハウジング9の中央ハウジング9aを左右に仕切る仕切り壁11を貫通して組み込まれている。 The first coupling member 31 and the second coupling member 32 that couple the two planetary gear mechanisms that constitute the gear device 30 of the vehicle drive device 1 define the partition wall 11 that partitions the central housing 9a of the speed reducer housing 9 to the left and right. It is built through.
 この第1結合部材31と第2結合部材32は、同軸上に配置されると共に、一方の結合部材(図1及び図3の実施形態では第2結合部材32)が中空軸、他方の結合部材(図1及び図3の実施形態では第1結合部材31)が中空軸に挿通される軸からなる二重構造になっている。 The first coupling member 31 and the second coupling member 32 are arranged coaxially, and one coupling member (the second coupling member 32 in the embodiment of FIGS. 1 and 3) is a hollow shaft, and the other coupling member. (In the embodiment of FIGS. 1 and 3, the first coupling member 31) has a double structure including a shaft inserted through the hollow shaft.
 図1及び図3に示す実施形態では、中空軸で構成される第2結合部材32の右側の遊星歯車機構30R側の端部と、遊星キャリヤCRのインボード側のキャリヤフランジ34bの中空軸部36とがスプライン嵌合されているが、一体に形成してもよい。 In the embodiment shown in FIGS. 1 and 3, an end portion of the right side of the planetary gear mechanism 30R side of the second coupling member 32 consists of a hollow shaft, the hollow shaft of the carrier flange 34b on the inboard side of the planet carrier C R The portion 36 is spline-fitted, but may be integrally formed.
 また、図1及び図3に示す実施形態では、第1結合部材31の左側の遊星歯車機構30L側の端部と、遊星キャリヤCLのアウトボード側のキャリヤフランジ34aの中空軸部35とにスプラインを設けて、第1結合部材31を遊星キャリヤCLに対しスプライン嵌合により連結している。 Further, in the embodiment shown in FIGS. 1 and 3, an end portion of the left planetary gear mechanism 30L side of the first coupling member 31, to the hollow shaft portion 35 of the carrier flange 34a on the outboard side of the planet carrier C L the splines are provided, they are connected by spline fitting to the first coupling member 31 the planet carrier C L.
 第2結合部材32の遊星歯車機構30L側の端部は、その外周面に、遊星歯車機構30Lの遊星歯車PLと噛み合う外歯車が形成され、この外歯車が遊星歯車機構30Lの太陽歯車SLを構成している。 End of the planetary gear mechanism 30L side of the second coupling member 32 has, on its outer peripheral surface, the external gear is formed to mesh with the planetary gears P L of the planetary gear mechanism 30L, the sun gear S of the outer gear planetary gear mechanism 30L L is composed.
 中空軸で構成される第2結合部材32に挿通される第1結合部材31は、遊星歯車機構30R側の端部に大径部43を有し、この大径部43の外周面に、遊星歯車機構30Rの遊星歯車PRと噛み合う外歯車が形成され、この外歯車が遊星歯車機構30Rの太陽歯車SRを構成している。 The first coupling member 31 inserted through the second coupling member 32 constituted by a hollow shaft has a large-diameter portion 43 at an end portion on the planetary gear mechanism 30R side. external gear meshing with the planetary gears P R of the gear mechanism 30R is formed, the outer gear constitutes the sun gear S R of the planetary gear mechanism 30R.
 二つの遊星歯車機構を連結する二重構造の軸の内径側の結合部材(図1及び図3の実施形態では第1結合部材31)は、結合部材(図1及び図3の実施形態では第1結合部材31)と遊星キャリヤ(図1及び図3の実施形態ではCL)とのスプライン嵌合と反対側の軸端を、他方の遊星キャリヤ(図1及び図3の実施形態ではCR)に対して深溝玉軸受49によって支持している。 The coupling member (the first coupling member 31 in the embodiment of FIGS. 1 and 3) on the inner diameter side of the double-structure shaft that couples the two planetary gear mechanisms is the coupling member (the first coupling member 31 in the embodiment of FIGS. 1 and 3). 1 coupling member 31) and the planet carrier (C L in the embodiment of FIGS. 1 and 3), the shaft end opposite to the spline fitting, and the other planet carrier (C R in the embodiment of FIGS. 1 and 3) ) Is supported by a deep groove ball bearing 49.
 出力歯車軸14L、14Rは、図1及び図3に示すように、中空のロータ軸12L、12Rの内部に同軸上に配置されている。ロータ軸12L、12Rのインボード側端部の内周面と出力歯車軸14L、14Rの外周面の間には、入力歯車12aの内周面ともなる軸方向位置に針状ころ軸受48が設けられ、入力歯車12aが入力側外歯車13aとの噛み合いにより受けるラジアル荷重を支持している。この針状ころ軸受48により、ロータ軸12L、12Rのインボード側端部が片持ち梁となることが無くなりラジアル荷重によるたわみを防止し、入力歯車12aは精度よく回転できる。出力歯車軸14L、14Rのアウトボード側の端部の内周面に、等速ジョイント65aの外輪651が取り付けられたシャフト650がスプライン嵌合されている。 The output gear shafts 14L and 14R are coaxially disposed inside the hollow rotor shafts 12L and 12R, as shown in FIGS. A needle roller bearing 48 is provided between the inner peripheral surface of the inboard side ends of the rotor shafts 12L and 12R and the outer peripheral surface of the output gear shafts 14L and 14R at an axial position that also serves as the inner peripheral surface of the input gear 12a. Thus, the input gear 12a supports the radial load received by meshing with the input side external gear 13a. The needle roller bearing 48 prevents the inboard side ends of the rotor shafts 12L and 12R from becoming cantilever beams, prevents deflection due to radial load, and allows the input gear 12a to rotate with high accuracy. A shaft 650 to which an outer ring 651 of a constant velocity joint 65a is attached is spline-fitted to the inner peripheral surface of the end portion on the outboard side of the output gear shafts 14L, 14R.
 出力歯車軸14L、14Rに結合された等速ジョイント65aは、中間シャフト65c、等速ジョイント65bを介して駆動輪61L、61Rに接続される(図4)。 The constant velocity joint 65a coupled to the output gear shafts 14L and 14R is connected to the drive wheels 61L and 61R via the intermediate shaft 65c and the constant velocity joint 65b (FIG. 4).
 出力歯車軸14L、14Rのアウトボード側の端部と側面ハウジング9bL、9bRに形成した開口部40との間には、図1に示すように、オイルシール39を設け、減速機ハウジング9に封入された潤滑油の漏洩及び外部からの泥水などの侵入を防止している。 As shown in FIG. 1, an oil seal 39 is provided between the end of the output gear shafts 14L and 14R on the outboard side and the opening 40 formed in the side housings 9bL and 9bR. This prevents leakage of used lubricant and intrusion of muddy water from the outside.
 減速機ハウジング9の内部の減速機3L、3Rを構成する歯車は、全て外歯車とし、減速機ハウジング9の内部の歯車および軸受の潤滑は、減速機ハウジング9の内部空間の下部に滞留する潤滑油を歯車が掻き揚げることにより行われる。 The gears constituting the reduction gears 3L and 3R in the reduction gear housing 9 are all external gears, and the gears and bearings in the reduction gear housing 9 are lubricated in the lower part of the internal space of the reduction gear housing 9. This is done by the oil being swirled by the gears.
 一方、モータハウジング4L、4Rの内部に侵入した潤滑油の排出が不十分であれば、モータハウジング4L、4Rの内部の油面高さが上昇し、ロータ5による油撹拌損失が増大する。このため、モータハウジング4L、4Rの内部の潤滑油を適切に減速機ハウジング20側に排出するために、次の構造を採用している。 On the other hand, if the lubricating oil that has entered the motor housings 4L and 4R is not sufficiently discharged, the oil level inside the motor housings 4L and 4R increases, and the oil stirring loss by the rotor 5 increases. For this reason, the following structure is adopted in order to properly discharge the lubricating oil inside the motor housings 4L and 4R to the reduction gear housing 20 side.
 モータハウジング4L、4Rの内部は、図1に示すように、ステータ6とロータ5とによって軸方向に二つの空間4c、4dに分断されている。 The interior of the motor housing 4L, 4R is divided into two spaces 4c, 4d in the axial direction by the stator 6 and the rotor 5, as shown in FIG.
 この二つの空間4c、4dを連通する油路を、ステータ6の最下部(下死点)近傍に設ける。例えば、ステータ6の外周もしくはモータハウジング4L、4Rの内周部に、空間4c、4dを連通する油路として軸方向溝図示しないを設ける。 An oil passage communicating the two spaces 4c and 4d is provided in the vicinity of the lowermost part (bottom dead center) of the stator 6. For example, axial grooves (not shown) are provided on the outer periphery of the stator 6 or the inner peripheral portions of the motor housings 4L and 4R as oil passages that communicate the spaces 4c and 4d.
 また、モータハウジング4L、4Rと減速機ハウジング9とを仕切る側面ハウジング9bL、9bRに貫通油路90を設ける。図2に示すように、この貫通油路90は、減速機ハウジング9の最下部に低い位置に設ける。 Further, a through oil passage 90 is provided in the side housings 9bL and 9bR that partition the motor housings 4L and 4R from the reduction gear housing 9. As shown in FIG. 2, the through oil passage 90 is provided at a lower position in the lowermost part of the reduction gear housing 9.
 空間4c、4dを連通する油路として軸方向溝を設け、さらに、貫通油路90をロータ5の最下部(下死点)よりも低い位置に設けることにより、車輪側方向端部に設けられる軸受10b、17bおよびオイルシール39に出力歯車軸14L、14Rの内部を通り供給される潤滑油が、モータハウジング4L、4Rの空間4cから空間4dに移動し、ロータ5に掻き揚げられることなく、減速機ハウジング9内に戻される。 An axial groove is provided as an oil passage that communicates the spaces 4c and 4d, and the through oil passage 90 is provided at a position lower than the lowest part (bottom dead center) of the rotor 5, so that it is provided at the end in the wheel side direction. Lubricating oil supplied to the bearings 10b, 17b and the oil seal 39 through the inside of the output gear shafts 14L, 14R moves from the space 4c of the motor housings 4L, 4R to the space 4d and is not lifted up by the rotor 5. Returned into the reducer housing 9.
 図1に示す実施形態の2モータ式の車両駆動装置1の歯車構成は、図4に示すスケルトン図の通りである。 The gear configuration of the two-motor type vehicle drive device 1 of the embodiment shown in FIG. 1 is as shown in the skeleton diagram shown in FIG.
 図4に示すように、左右の電動モータ2L及び電動モータ2Rは、車両に搭載されたバッテリ63からインバータ64を介して与えられた電力により動作する。そして、電動モータ2L、2Rは、電子制御装置(図示しない)により個別に制御され、異なるトルクを発生させて出力することができる。 As shown in FIG. 4, the left and right electric motors 2 </ b> L and 2 </ b> R are operated by electric power supplied from a battery 63 mounted on the vehicle via an inverter 64. The electric motors 2L and 2R are individually controlled by an electronic control device (not shown), and can generate and output different torques.
 電動モータ2L、2Rのロータ軸12L、12Rのトルクは、減速機3L、3Rの入力歯車軸となるロータ軸12L、12Rの入力歯車12aと中間歯車軸13L、13Rの大径の入力側外歯車13aとの歯数比で増大されて歯車装置30の内歯車RL、RRに伝達される。 The torques of the rotor shafts 12L, 12R of the electric motors 2L, 2R are the large-diameter input-side external gears of the input gear 12a of the rotor shafts 12L, 12R and the intermediate gear shafts 13L, 13R that serve as the input gear shafts of the speed reducers 3L, 3R. 13a is increased by the gear ratio and transmitted to the internal gears R L and R R of the gear unit 30.
 そして、歯車装置30を介して中間歯車軸13L、13Rの出力側小径歯車13bが出力歯車軸14L、14Rの大径の出力歯車14aに噛み合って、出力側小径歯車13bと出力歯車14aとの歯数比で電動モータ2L、2Rのロータ軸12L、12Rのトルクがさらに増大されて、駆動輪61L、61Rに出力される。 Then, the output side small diameter gear 13b of the intermediate gear shafts 13L and 13R is engaged with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the teeth of the output side small diameter gear 13b and the output gear 14a are engaged. The torque of the rotor shafts 12L and 12R of the electric motors 2L and 2R is further increased by a number ratio and output to the drive wheels 61L and 61R.
 この歯車装置30は、前記のように、太陽歯車SL、遊星キャリヤCL、遊星歯車PL及び内歯車RLを有する第1遊星歯車機構30Lと、同じく太陽歯車SR、遊星キャリヤCR、遊星歯車PR及び内歯車RRを有する第2遊星歯車機構30Rとが同軸上に組み合わされて構成されている。 As described above, the gear device 30 includes the first planetary gear mechanism 30L having the sun gear S L , the planet carrier C L , the planetary gear P L, and the internal gear RL , the sun gear S R , and the planet carrier C R. a second planetary gear mechanism 30R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
 そして、第1遊星歯車機構30Lの遊星キャリヤCLと第2遊星歯車機構30Rの太陽歯車SRとが結合されて第1結合部材31を形成し、第1遊星歯車機構30Lの太陽歯車SLと第2遊星歯車機構30Rの遊星キャリヤCRとが結合されて第2結合部材32を形成している。 Then, the planet carrier C L of the first planetary gear mechanism 30L is binding and the sun gear S R of the second planetary gear mechanism 30R to form a first coupling member 31, the sun gear S L of the first planetary gear mechanism 30L When the planet carrier C R of the second planetary gear mechanism 30R form a second coupling member 32 are coupled.
 電動モータ2Lで発生したトルクTM1は、入力歯車軸となるロータ軸12Lの入力歯車12aと入力側外歯車13aとが噛み合って中間歯車軸13Lに伝達され、中間歯車軸13Lに伝達されたトルクが、第1遊星歯車機構30Lを介して中間歯車軸13Lの出力側小径歯車13bに伝達され、中間歯車軸13Lの出力側小径歯車13bと出力歯車軸14Lの出力歯車14aとが噛み合って出力歯車軸14Lから駆動輪61Lに駆動トルクTLが出力される。 The torque TM1 generated by the electric motor 2L is transmitted to the intermediate gear shaft 13L by meshing the input gear 12a of the rotor shaft 12L serving as the input gear shaft and the input side external gear 13a, and the torque transmitted to the intermediate gear shaft 13L is transmitted. The first planetary gear mechanism 30L is transmitted to the output-side small-diameter gear 13b of the intermediate gear shaft 13L, and the output-side small-diameter gear 13b of the intermediate gear shaft 13L and the output gear 14a of the output gear shaft 14L are engaged with each other. The drive torque TL is output from 14L to the drive wheel 61L.
 電動モータ2Rで発生したトルクTM2は、入力歯車軸となるロータ軸12Rの入力歯車12aと入力側外歯車13aとが噛み合って中間歯車軸13Rに伝達され、中間歯車軸13Rに伝達されたトルクが、第2遊星歯車機構30Rを介して中間歯車軸13Rの出力側小径歯車13bに伝達され、中間歯車軸13Rの出力側小径歯車13bと出力歯車軸14Rの出力歯車14aとが噛み合って出力歯車軸14Rから駆動輪61Rに駆動トルクTRが出力される。 The torque TM2 generated by the electric motor 2R is transmitted to the intermediate gear shaft 13R by meshing the input gear 12a of the rotor shaft 12R serving as the input gear shaft with the input side external gear 13a, and the torque transmitted to the intermediate gear shaft 13R is transmitted. The intermediate gear shaft 13R is transmitted to the output-side small gear 13b via the second planetary gear mechanism 30R, and the output-side small-diameter gear 13b of the intermediate gear shaft 13R and the output gear 14a of the output gear shaft 14R mesh with each other to produce an output gear shaft. Drive torque TR is output from 14R to drive wheel 61R.
 電動モータ2L、2Rからのモータトルクは、二つの遊星歯車機構のそれぞれの内歯車RL、RRに与えられ、第1結合部材31、第2結合部材32からの出力が駆動輪61L、61Rに与えられる。 Motor torques from the electric motors 2L and 2R are given to the internal gears R L and R R of the two planetary gear mechanisms, and outputs from the first coupling member 31 and the second coupling member 32 are drive wheels 61L and 61R. Given to.
 第2結合部材32は、中空軸で構成されており、その内部に第1結合部材31が挿通され、第1結合部材31と第2結合部材32を構成する軸は二重構造になっている。 The 2nd coupling member 32 is comprised by the hollow shaft, the 1st coupling member 31 is penetrated in the inside, and the axis | shaft which comprises the 1st coupling member 31 and the 2nd coupling member 32 has a double structure. .
 第1結合部材31は、その一端(図中右端)が太陽歯車SRの回転軸であり、他端(図中左端)が太陽歯車SLを貫通して設けられ、遊星キャリヤCLに接続されている。また、中空軸である第2結合部材32は、一端(図中左端)が太陽歯車SLの回転軸となっており、他端(図中右端)は遊星キャリヤCRと接続されている。この第1結合部材31と第2結合部材32によって、二つの遊星歯車機構が結合されている。 The first coupling member 31 has one end a rotation shaft of the (right end in the drawing) is the sun gear S R, the other end (left end in the drawing) are provided through the sun gear S L, connected to the planet carrier C L Has been. The second coupling member 32 is a hollow shaft, one end (left end in the drawing) has a rotation shaft of the sun gear S L, the other end (right end in the drawing) is connected to the planet carrier C R. Two planetary gear mechanisms are coupled by the first coupling member 31 and the second coupling member 32.
 ところで、歯車装置30は、二つの同一のシングルピニオン形式の遊星歯車機構30L、30Rを組み合わせて構成されるため、図7に示すように二本の速度線図によって表すことができる。ここでは、分かりやすいように、二本の速度線図を上下にずらし、上側に左側の遊星歯車機構30Lの速度線図を示し、下側に右側の遊星歯車機構30Rの速度線図を示す。また本来は、各電動モータ2L、2Rから出力されたトルクTM1及びTM2は、各入力歯車軸12L、12Rの入力歯車12aと噛み合う入力側外歯車13aを介して各内歯車RL、RRに入力されるため減速比が掛かる、また、歯車装置30から取り出された駆動トルクTL、TRは、出力側小径歯車13bと噛み合う出力歯車14aを介し左右の駆動輪61L、61Rへ伝達されるため減速比が掛かるが、以降、理解を容易にするため、図7に示す速度線図及び各計算式の説明においては、減速比を省略し、各内歯車RL、RRに入力されるトルクをTM1及びTM2のまま、駆動トルクはTL、TRのままとする。 By the way, the gear device 30 is configured by combining two identical single pinion planetary gear mechanisms 30L and 30R, and therefore can be represented by two velocity diagrams as shown in FIG. Here, for easy understanding, the two speed diagrams are shifted up and down, the speed diagram of the left planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the right planetary gear mechanism 30R is shown on the lower side. Originally, the torques TM1 and TM2 output from the electric motors 2L and 2R are transferred to the internal gears R L and R R via the input side external gears 13a meshing with the input gears 12a of the input gear shafts 12L and 12R. Since it is input, a reduction ratio is applied, and the drive torques TL and TR extracted from the gear device 30 are transmitted to the left and right drive wheels 61L and 61R via the output gear 14a meshing with the output-side small-diameter gear 13b. In order to facilitate understanding, the speed ratio shown in FIG. 7 and the explanation of each calculation formula will be omitted, and the torque input to the internal gears R L and R R will be omitted. The driving torque remains TL and TR with TM1 and TM2.
 歯車装置30を構成する二つの遊星歯車機構30L、30Rは、同一の歯数の歯車要素を使用しているため、速度線図においては内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLと遊星キャリヤCLとの距離及び太陽歯車SRと遊星キャリヤCRとの距離も等しく、これをbとする。遊星キャリヤCL、CRから内歯車RL、RRまでの長さと遊星キャリヤCL、CRから太陽歯車SL、SRまでの長さの比は、内歯車RL、RRの歯数Zrの逆数(1/Zr)と太陽歯車SL、SRの歯数Zsの逆数(1/Zs)との比と等しい。よって、a=(1/Zr)、b=(1/Zs)である。 Since the two planetary gear mechanisms 30L and 30R constituting the gear device 30 use gear elements having the same number of teeth, the distance between the internal gear R L and the planet carrier C L and the internal gear in the speed diagram. The distance between R R and the planet carrier C R is equal, and this is a. Further, the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b. The ratio of the length from the planet carrier C L , C R to the internal gear R L , R R and the length from the planet carrier C L , C R to the sun gear S L , S R is the ratio of the internal gear R L , R R It is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R. Therefore, a = (1 / Zr) and b = (1 / Zs).
 RRの点を基準にしたモーメントMの釣り合いから下記(1)式が算出される。なお、図7において、矢印方向がモーメントMの正方向である。
 a・TR+(a+b)・TL-(b+2a)・TM1=0 …(1)
The following equation (1) is calculated from the balance of moment M with reference to the point of R R. In FIG. 7, the arrow direction is the positive direction of the moment M.
a · TR + (a + b) · TL− (b + 2a) · TM1 = 0 (1)
 RLの点を基準にしたモーメントMの釣り合いから下記(2)式が算出される。
 -a・TL-(a+b)・TR+(b+2a)・TM2=0 …(2)
The following equation (2) is calculated from the balance of moment M with reference to point R L.
-A.TL- (a + b) .TR + (b + 2a) .TM2 = 0 (2)
(1)式+(2)式より、下記(3)式が得られる。
-b・(TR-TL)+(2a+b)・(TM2-TM1)=0
(TR-TL)=((2a+b)/b)・(TM2-TM1)  …(3)
The following formula (3) is obtained from the formula (1) + formula (2).
-B. (TR-TL) + (2a + b). (TM2-TM1) = 0
(TR-TL) = ((2a + b) / b). (TM2-TM1) (3)
 (3)式の(2a+b)/bがトルク差増幅率αとなる。a=1/Zr、b=1/Zsを代入すると、α=(Zr+2Zs)/Zrとなり、下記のトルク差増幅率αが得られる。 (2a + b) / b in the expression (3) is the torque difference amplification factor α. When a = 1 / Zr and b = 1 / Zs are substituted, α = (Zr + 2Zs) / Zr, and the following torque difference amplification factor α is obtained.
 α=(Zr+2Zs)/Zr Α = (Zr + 2Zs) / Zr
 この発明の第1の実施形態では、電動モータ2L、2Rからの入力は、RL、RRとなり、駆動輪61L、61Rへの出力は、太陽歯車SRと遊星キャリヤCL、遊星キャリヤCRと太陽歯車SLとなる。 In the first embodiment of the present invention, the electric motor 2L, input from 2R is R L, R R, and the drive wheels 61L, output to 61R are sun gear S R and the planet carrier C L, the planet carrier C R and sun gear S L.
 そして、二つの電動モータ2L、2Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTIN(=(TM2-TM1))を与えると、歯車装置30において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差α・ΔTINを得ることができる。すなわち、入力トルク差ΔTINが小さくても、歯車装置30において上記したトルク差増幅率α(=(Zr+2Zs)/Zr)で入力トルク差ΔTINを増幅することができ、左駆動輪61Lと右駆動輪61Rとに伝達される駆動トルクTL、TRに、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUT(=α・(TM2-TM1))を与えることができる。 When different torques TM1 and TM2 are generated by the two electric motors 2L and 2R to give an input torque difference ΔTIN (= (TM2−TM1)), the gear device 30 amplifies the input torque difference ΔTIN, and the input torque difference A driving torque difference α · ΔTIN larger than ΔTIN can be obtained. That is, even if the input torque difference ΔTIN is small, the input torque difference ΔTIN can be amplified by the above-described torque difference amplification factor α (= (Zr + 2Zs) / Zr) in the gear device 30, and the left drive wheel 61L and the right drive wheel A driving torque difference ΔTOUT (= α · (TM2−TM1)) larger than the input torque difference ΔTIN can be given to the driving torques TL and TR transmitted to 61R.
 この発明の第1の実施形態では、トルク差増幅機構である歯車装置30を構成する二つの遊星歯車機構の接続は、太陽歯車SLと遊星キャリヤCR、太陽歯車SRと遊星キャリヤCLであるから、内歯車RL、RRよりも大径の接続部材を必要としない。そのため、トルク差増幅機構を組み込んだ電気自動車用の車両駆動装置1を小さく軽量化することができる。 In the first embodiment of the present invention, the connection between the two planetary gear mechanisms constituting the gear device 30 that is the torque difference amplifying mechanism is the sun gear S L and the planet carrier C R , and the sun gear S R and the planet carrier C L. Therefore, a connecting member having a larger diameter than the internal gears R L and R R is not required. Therefore, the vehicle drive device 1 for an electric vehicle incorporating the torque difference amplification mechanism can be reduced in size and weight.
 また、この発明の第1の実施形態では、中空のロータ軸12L、12Rの内部には、出力歯車軸14L、14Rが同軸上に配置されているので、減速機3L、3Rの歯車軸に垂直な方向の寸法を小さくして、車両駆動装置を小型化し、車室空間を大きくすることができる。 In the first embodiment of the present invention, since the output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R, they are perpendicular to the gear shafts of the speed reducers 3L and 3R. By reducing the size in the appropriate direction, the vehicle drive device can be downsized and the cabin space can be increased.
 次に、この発明の第2の実施形態につき、図8及び図9を参照して説明する。図8はこの発明の第2の実施形態の車両駆動装置1の歯車構成を示すスケルトン図、図9はこの発明の第2の実施形態の車両駆動装置1に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。 Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a skeleton diagram showing the gear configuration of the vehicle drive apparatus 1 according to the second embodiment of the present invention, and FIG. 9 is a torque difference amplification by the gear apparatus incorporated in the vehicle drive apparatus 1 according to the second embodiment of the present invention. It is a velocity diagram for demonstrating a rate.
 図8に示すように、車両駆動装置1は、車両に搭載された電動モータ2L及び電動モータ2Rと、左駆動輪及び右駆動輪(図示しない)と、これらの間に設けられる歯車装置30と減速機3L、3Rとを備えている。 As shown in FIG. 8, the vehicle drive device 1 includes an electric motor 2L and an electric motor 2R mounted on the vehicle, a left drive wheel and a right drive wheel (not shown), and a gear device 30 provided therebetween. Reducers 3L and 3R are provided.
 電動モータ2L及び電動モータ2Rは、車両に搭載されたバッテリ(図示しない)からの電力により動作し、電子制御装置(図示しない)により個別に制御され、異なるトルクを発生させて出力することができる。車両駆動装置1の駆動力は、等速ジョイント65aを含むドライブシャフト(図示しない)を介して左右の駆動輪図示しないに伝達される。 The electric motor 2L and the electric motor 2R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. . The driving force of the vehicle drive device 1 is transmitted to the left and right drive wheels (not shown) via a drive shaft (not shown) including the constant velocity joint 65a.
 電動モータ2L、2Rのトルクは、減速機3L、3Rの入力歯車軸となるロータ軸12L、12Rの入力歯車12aと中間歯車軸13L、13Rの大径の入力側外歯車13aとの歯数比で増大されて歯車装置30の太陽歯車SL、SRに伝達される。 The torque of the electric motors 2L, 2R is the gear ratio between the input gear 12a of the rotor shafts 12L, 12R serving as the input gear shafts of the speed reducers 3L, 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L, 13R. And transmitted to the sun gears S L and S R of the gear unit 30.
 そして、歯車装置30を介して中間歯車軸13L、13Rの出力側小径歯車13bが出力歯車軸14L、14Rの大径の出力歯車14aに噛み合って出力側小径歯車13bと出力歯車14aとの歯数比で電動モータ2L、2Rのトルクがさらに増大されて、駆動輪に出力される。 Then, the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a. The torque of the electric motors 2L and 2R is further increased by the ratio and output to the drive wheels.
 ロータ軸12L、12Rは、軸方向に貫通する中空構造であり、ロータ軸12L、12Rのインボード側端部には、入力歯車12aが設けられている。中空のロータ軸12L、12Rの内部には、出力歯車軸14L、14Rが同軸上に配置されている。 The rotor shafts 12L and 12R have a hollow structure penetrating in the axial direction, and an input gear 12a is provided at the inboard side ends of the rotor shafts 12L and 12R. Output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R.
 歯車装置30は、3要素2自由度の同一の遊星歯車機構30L、30Rが同軸上の中間歯車軸13L、13Rに二つ組み合わされて構成され、遊星歯車機構30L、30Rとして、シングルピニオン形式の遊星歯車機構を採用している。 The gear device 30 is configured by combining two planetary gear mechanisms 30L and 30R having the same three-element and two-degree-of-freedom with coaxial intermediate gear shafts 13L and 13R. The planetary gear mechanisms 30L and 30R are of a single pinion type. A planetary gear mechanism is used.
 そして、第1遊星歯車機構30Lの遊星キャリヤCLと第2遊星歯車機構30Rの内歯車RRとが第1結合部材31によって結合され、第1遊星歯車機構30Lの内歯車RLと第2遊星歯車機構30Rの遊星キャリヤCRとが第2結合部材32によって結合されている。 Then, the planet carrier C L of the first planetary gear mechanism 30L and the internal gear R R of the second planetary gear mechanism 30R is coupled by a first coupling member 31, and the internal gear R L of the first planetary gear mechanism 30L second a planet carrier C R of the planetary gear mechanism 30R is coupled by the second coupling member 32.
 電動モータ2Lで発生されたトルクTM1が入力歯車12aと中間歯車軸13Lの大径の入力側外歯車13aとの歯数比で増大されて第1遊星歯車機構30Lの太陽歯車SLに入力され、電動モータ2Rで発生されたトルクTM2が入力歯車12aと中間歯車軸13Rの大径の入力側外歯車13aとの歯数比で増大されて第2遊星歯車機構30Rの太陽歯車SRに入力される。 Is input to the sun gear S L of the first planetary gear mechanism 30L is increased by the gear ratio of the torque TM1 generated by the electric motor 2L is an input-side external gear 13a of the large diameter input gear 12a and the intermediate gear shaft 13L the input to the sun gear S R of the second planetary gear mechanism 30R is increased by the gear ratio between the input side external gear 13a of a large diameter torque TM2 that is generated by the electric motor 2R is the input gear 12a and the intermediate gear shaft 13R Is done.
 また、第1結合部材31、第2結合部材32には出力側小径歯車13bが設けられ、出力側小径歯車13bと出力歯車軸14L、14Rの大径の出力歯車14aとが噛み合い、等速ジョイント65aを含むドライブシャフトを介して左右の駆動輪に接続されて出力が取り出される。 Further, the first coupling member 31 and the second coupling member 32 are provided with an output-side small-diameter gear 13b, and the output-side small-diameter gear 13b meshes with the large-diameter output gear 14a of the output gear shafts 14L, 14R, so that a constant velocity joint is obtained. It is connected to the left and right drive wheels via a drive shaft including 65a, and the output is taken out.
 この第2の実施形態では、電動モータ2L、2Rからの入力は、太陽歯車SL、SRとなり、駆動輪への出力は、遊星キャリヤCLと内歯車RR、遊星キャリヤCRと内歯車RLとなる。 In the second embodiment, the input from the electric motors 2L and 2R is the sun gears S L and S R , and the output to the drive wheels is the planet carrier C L and the internal gear R R and the planet carrier C R and the internal It becomes gear RL .
 ここで、第2の実施形態の歯車装置30によって伝達される駆動トルクについて、図9に示す速度線図を用いて説明する。 Here, the driving torque transmitted by the gear device 30 of the second embodiment will be described with reference to the velocity diagram shown in FIG.
 図8に示す歯車装置30は、二つの同一のシングルピニオンの遊星歯車機構30L、30Rを組み合わせて構成されるため、図9に示すように、二本の速度線図によって表すことができる。ここでは、理解を容易にするために、二本の速度線図を上下にずらし、上側に第1遊星歯車機構30Lの速度線図を示し、下側に第2遊星歯車機構30Rの速度線図を示している。また、第1の実施形態での説明と同様に、速度線図及び各計算式の以降の説明においては、各減速機3L、3Rでの減速比を省略し、各太陽歯車SL、SRに入力されるトルクをTM1及びTM2のままとする。 Since the gear device 30 shown in FIG. 8 is configured by combining two identical single pinion planetary gear mechanisms 30L and 30R, the gear device 30 can be represented by two velocity diagrams as shown in FIG. Here, for ease of understanding, the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the second planetary gear mechanism 30R is shown on the lower side. Is shown. Similarly to the description in the first embodiment, in the following explanation of the velocity diagram and each calculation formula, the reduction ratios in the reduction gears 3L and 3R are omitted, and the sun gears S L and S R are omitted. The torque input to is kept TM1 and TM2.
 図8に示す歯車装置30では、遊星キャリヤCLと内歯車RRが、図9の図中破線で示すように、第1結合部材31によって結合され、遊星キャリヤCRと内歯車RLが、図中破線で示すように、第2結合部材32によって結合されている。 In the gear device 30 shown in FIG. 8, the planet carrier C L and the internal gear R R, as shown by broken line in the drawing of FIG. 9, it is coupled by a first coupling member 31, planet carrier C R and the internal gear R L is These are coupled by the second coupling member 32 as indicated by a broken line in the figure.
 そして、太陽歯車SL、SRにそれぞれ電動モータ2L及び電動モータ2Rから出力されたトルクTM1及びTM2が入力される。一方、速度線図上で中間に位置する第1結合部材31、第2結合部材32から左右の駆動輪に伝達される駆動トルクTL、TRが出力される。 The torques TM1 and TM2 output from the electric motor 2L and the electric motor 2R are input to the sun gears S L and S R , respectively. On the other hand, driving torques TL and TR transmitted from the first coupling member 31 and the second coupling member 32 located in the middle on the velocity diagram to the left and right driving wheels are output.
 このように構成された歯車装置30によっても、電動モータ2L及び電動モータ2Rで発生させる各モータトルクTM1、TM2にトルク差(入力トルク差)ΔTIN(=TM2-TM1)を与えることで、左駆動輪に伝達される駆動トルクTLと右駆動輪に伝達される駆動トルクTRとに駆動トルク差ΔTOUT(=TR-TL)を発生させることができる。 Also with the gear device 30 configured as described above, the left drive is achieved by giving a torque difference (input torque difference) ΔTIN (= TM2−TM1) to the motor torques TM1 and TM2 generated by the electric motor 2L and the electric motor 2R. A drive torque difference ΔTOUT (= TR−TL) can be generated between the drive torque TL transmitted to the wheel and the drive torque TR transmitted to the right drive wheel.
 この第2の実施形態に係る歯車装置30のトルク差増幅率αについて説明する。この第2の実施形態においても、二つのシングルピニオン形式の遊星歯車機構30L、30Rは、同一の歯数の歯車要素を使用しているため、速度線図においては内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。
また、太陽歯車SLと遊星キャリヤCLとの距離及び太陽歯車SRと遊星キャリヤCRとの距離も等しく、これをbとする。遊星キャリヤCL、CRから内歯車RL、RRまでの長さと遊星キャリヤCL、CRから太陽歯車SL、SRまでの長さの比は、内歯車RL、RRの歯数Zrの逆数(1/Zr)と太陽歯車SL、SRの歯数Zsの逆数(1/Zs)との比と等しい。よって、a=(1/Zr)、b=(1/Zs)である。
The torque difference amplification factor α of the gear device 30 according to the second embodiment will be described. Also in the second embodiment, the two single pinion type planetary gear mechanisms 30L and 30R use gear elements having the same number of teeth, and therefore in the velocity diagram, the internal gear RL and the planet carrier C The distance from L and the distance between the internal gear R R and the planet carrier C R are equal, and this is a.
Further, the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b. The ratio of the length from the planet carrier C L , C R to the internal gear R L , R R and the length from the planet carrier C L , C R to the sun gear S L , S R is the ratio of the internal gear R L , R R It is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R. Therefore, a = (1 / Zr) and b = (1 / Zs).
 この図9の速度線図において、トルクの釣り合いを考えると、トルク差増幅率αを求めることができる。なお、図9において、矢印方向がモーメントMの正の方向を示している。 In the velocity diagram of FIG. 9, the torque difference amplification factor α can be obtained considering the balance of torque. In FIG. 9, the arrow direction indicates the positive direction of the moment M.
 SRの点を基準にしたモーメントMの釣り合いから下記(4)式が算出される。
 b・TR+(a+b)・TL-(a+2b)・TM1=0 …(4)
The following equation (4) is calculated from the balance of the moment M with respect to the point of S R.
b.TR + (a + b) .TL- (a + 2b) .TM1 = 0 (4)
 SLの点を基準にしたモーメントMの釣り合いから下記(5)式が算出される。
 -b・TL-(a+b)・TR+(a+2b)・TM2=0 …(5)
Following formula (5) is calculated from the balance of moment M relative to the points S L.
-B.TL- (a + b) .TR + (a + 2b) .TM2 = 0 (5)
(4)式+(5)式より、下記(6)式が算出される。
a・(TR-TL)―(a+2b)・(TM2-TM1)=0
(TR-TL)=((a+2b)/a)・(TM2-TM1)  …(6)
The following equation (6) is calculated from the equation (4) + the equation (5).
a · (TR−TL) − (a + 2b) · (TM2−TM1) = 0
(TR-TL) = ((a + 2b) / a). (TM2-TM1) (6)
 (6)式の(a+2b)/aがトルク差増幅率αとなる。 (A + 2b) / a in the equation (6) is the torque difference amplification factor α.
 a=1/Zr、b=1/Zsを代入すると、α=(2Zr+Zs)/Zsとなる。 When a = 1 / Zr and b = 1 / Zs are substituted, α = (2Zr + Zs) / Zs.
 この第2の実施形態では、電動モータ2L、2Rからの入力は、太陽歯車SL、SR、駆動輪への出力は遊星キャリヤCLと内歯車RR、遊星キャリヤCRと内歯車RLとなり、トルク差増幅率αは、(2Zr+Zs)/Zsである。 In this second embodiment, the electric motor 2L, input from 2R is the sun gear S L, S R, the output to the driving wheels planet carrier C L and the internal gear R R, a planet carrier C R and the internal gear R L , and the torque difference amplification factor α is (2Zr + Zs) / Zs.
 上記のように、二つの電動モータ2L、2Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTINを与えると、歯車装置30において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUT(=α・(TM2-TM1))を得ることができる。 As described above, when different torques TM1 and TM2 are generated by the two electric motors 2L and 2R to give the input torque difference ΔTIN, the input torque difference ΔTIN is amplified in the gear device 30, and the driving is greater than the input torque difference ΔTIN. A torque difference ΔTOUT (= α · (TM2−TM1)) can be obtained.
 次に、この発明の第3の実施形態につき、図10及び図11を参照して説明する。図10はこの発明の第3の実施形態の車両駆動装置1の歯車構成を示すスケルトン図、図11はこの発明の第3の実施形態の車両駆動装置1に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。 Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a skeleton diagram showing a gear configuration of a vehicle drive apparatus 1 according to a third embodiment of the present invention. FIG. 11 is a torque difference amplification by a gear apparatus incorporated in the vehicle drive apparatus 1 according to the third embodiment of the present invention. It is a velocity diagram for demonstrating a rate.
 図10に示すように、車両駆動装置1は、車両に搭載された電動モータ2L及び電動モータ2Rと、左駆動輪及び右駆動輪(図示しない)と、これらの間に設けられる歯車装置30と減速機3L、3Rとを備えている。 As shown in FIG. 10, the vehicle drive device 1 includes an electric motor 2L and an electric motor 2R mounted on the vehicle, a left drive wheel and a right drive wheel (not shown), and a gear device 30 provided therebetween. Reducers 3L and 3R are provided.
 電動モータ2L及び電動モータ2Rは、車両に搭載されたバッテリ(図示しない)からの電力により動作し、電子制御装置(図示しない)により個別に制御され、異なるトルクを発生させて出力することができる。車両駆動装置1の駆動力は、等速ジョイント65aを含むドライブシャフト(図示しない)を介して左右の駆動輪図示しないに伝達される。 The electric motor 2L and the electric motor 2R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. . The driving force of the vehicle drive device 1 is transmitted to the left and right drive wheels (not shown) via a drive shaft (not shown) including the constant velocity joint 65a.
 電動モータ2L、2Rのトルクは、減速機3L、3Rの入力歯車軸となるロータ軸12L、12Rの入力歯車12aと中間歯車軸13L、13Rの大径の入力側外歯車13aとの歯数比で増大されて歯車装置30の太陽歯車SL、SRに伝達される。 The torque of the electric motors 2L, 2R is the gear ratio between the input gear 12a of the rotor shafts 12L, 12R serving as the input gear shafts of the speed reducers 3L, 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L, 13R. And transmitted to the sun gears S L and S R of the gear unit 30.
 そして、歯車装置30を介して中間歯車軸13L、13Rの出力側小径歯車13bが出力歯車軸14L、14Rの大径の出力歯車14aに噛み合って出力側小径歯車13bと出力歯車14aとの歯数比で電動モータ2L、2Rのトルクがさらに増大されて、駆動輪に出力される。 Then, the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a. The torque of the electric motors 2L and 2R is further increased by the ratio and output to the drive wheels.
 ロータ軸12L、12Rは、軸方向に貫通する中空構造であり、ロータ軸12L、12Rの端部には、入力歯車12aが設けられている。中空のロータ軸12L、12Rの内部には、出力歯車軸14L、14Rが同軸上に配置されている。 The rotor shafts 12L and 12R have a hollow structure penetrating in the axial direction, and an input gear 12a is provided at the ends of the rotor shafts 12L and 12R. Output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R.
 歯車装置30は、3要素2自由度の同一の遊星歯車機構30L、30Rが同軸上の中間歯車軸13L、13Rに二つ組み合わされて構成され、遊星歯車機構30L、30Rとして、ダブルピニオン形式の遊星歯車機構を採用している。 The gear device 30 is configured by combining two planetary gear mechanisms 30L and 30R having the same three-element two-degree-of-freedom with coaxial intermediate gear shafts 13L and 13R. The planetary gear mechanisms 30L and 30R are of a double pinion type. A planetary gear mechanism is used.
 そして、第1遊星歯車機構30Lの遊星キャリヤCLと第2遊星歯車機構30Rの内歯車RRとが第1結合部材31によって結合され、第1遊星歯車機構30Lの内歯車RLと第2遊星歯車機構30Rの遊星キャリヤCRとが第2結合部材32によって結合されている。 Then, the planet carrier C L of the first planetary gear mechanism 30L and the internal gear R R of the second planetary gear mechanism 30R is coupled by a first coupling member 31, and the internal gear R L of the first planetary gear mechanism 30L second a planet carrier C R of the planetary gear mechanism 30R is coupled by the second coupling member 32.
 電動モータ2Lで発生されたトルクTM1が入力歯車12aと中間歯車軸13Lの大径の入力側外歯車13aとの歯数比で増大されて第1遊星歯車機構30Lの太陽歯車SLに入力され、電動モータ2Rで発生されたトルクTM2が入力歯車12aと中間歯車軸13Rの大径の入力側外歯車13aとの歯数比で増大されて第2遊星歯車機構30Rの太陽歯車SRに入力される。 Is input to the sun gear S L of the first planetary gear mechanism 30L is increased by the gear ratio of the torque TM1 generated by the electric motor 2L is an input-side external gear 13a of the large diameter input gear 12a and the intermediate gear shaft 13L the input to the sun gear S R of the second planetary gear mechanism 30R is increased by the gear ratio between the input side external gear 13a of a large diameter torque TM2 that is generated by the electric motor 2R is the input gear 12a and the intermediate gear shaft 13R Is done.
 また、第1結合部材31、第2結合部材32には出力側小径歯車13bが設けられ、出力側小径歯車13bと噛み合う出力歯車軸14L、14Rの大径の出力歯車14aと噛み合い、等速ジョイント65aを含むドライブシャフトを介して左右の駆動輪に接続されて出力が取り出される。 Further, the first coupling member 31 and the second coupling member 32 are provided with an output side small gear 13b, which meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R that mesh with the output side small gear 13b, and a constant velocity joint. It is connected to the left and right drive wheels via a drive shaft including 65a, and the output is taken out.
 この第3の実施形態では、電動モータ2L、2Rからの入力は、太陽歯車SL、SRとなり、駆動輪への出力は、遊星キャリヤCLと内歯車RR、遊星キャリヤCRと内歯車RLとなる。 In the third embodiment, the input from the electric motors 2L and 2R is the sun gears S L and S R , and the output to the drive wheels is the planet carrier C L and the internal gear R R , the planet carrier C R and the internal It becomes gear RL .
 ここで、第3の実施形態の歯車装置30によって伝達される駆動トルクについて、図11に示す速度線図を用いて説明する。 Here, the driving torque transmitted by the gear device 30 of the third embodiment will be described with reference to the velocity diagram shown in FIG.
 図10に示す歯車装置30は、二つの同一のダブルピニオンの遊星歯車機構30L、30Rを組み合わせて構成されるため、図11に示すように、二本の速度線図によって表すことができる。ここでは、理解を容易にするために、二本の速度線図を上下にずらし、上側に第1遊星歯車機構30Lの速度線図を示し、下側に第2遊星歯車機構30Rの速度線図を示している。また、第1、第2の実施形態での説明と同様に、速度線図及び各計算式の以降の説明においては、各減速機3L、3Rでの減速比を省略し、各太陽歯車SL、SRに入力されるトルクをTM1及びTM2のままとする。 Since the gear device 30 shown in FIG. 10 is configured by combining two planetary gear mechanisms 30L and 30R of the same double pinion, it can be represented by two velocity diagrams as shown in FIG. Here, for ease of understanding, the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the second planetary gear mechanism 30R is shown on the lower side. Is shown. Further, similarly to the description in the first and second embodiments, in the following explanation of the velocity diagram and each calculation formula, the reduction ratio in each of the reduction gears 3L, 3R is omitted, and each sun gear S L , the torque input to the S R to remain TM1 and TM2.
 図10に示す歯車装置30では、遊星キャリヤCLと内歯車RRが、図11の図中破線で示すように、第1結合部材31によって結合され、遊星キャリヤCRと内歯車RLが、図中破線で示すように、第2結合部材32によって結合されている。 In the gear device 30 shown in FIG. 10, the planet carrier C L and the internal gear R R, as shown by broken line in the drawing of FIG. 11, are coupled by a first coupling member 31, planet carrier C R and the internal gear R L is These are coupled by the second coupling member 32 as indicated by a broken line in the figure.
 そして、太陽歯車SL、SRにそれぞれ電動モータ2L及び電動モータ2Rから出力されたトルクTM1及びTM2が入力される。一方、速度線図上で中間に位置する第1結合部材31、第2結合部材32から左右の駆動輪に伝達される駆動トルクTL、TRが出力される。 The torques TM1 and TM2 output from the electric motor 2L and the electric motor 2R are input to the sun gears S L and S R , respectively. On the other hand, driving torques TL and TR transmitted from the first coupling member 31 and the second coupling member 32 located in the middle on the velocity diagram to the left and right driving wheels are output.
 このように構成された歯車装置30によっても、電動モータ2L及び電動モータ2Rで発生させる各モータトルクTM1、TM2にトルク差(入力トルク差)ΔTIN(=TM2-TM1)を与えることで、左駆動輪に伝達される駆動トルクTLと右駆動輪に伝達される駆動トルクTRとに駆動トルク差ΔTOUT(=TR-TL)を発生させることができる。 Also with the gear device 30 configured as described above, the left drive is achieved by giving a torque difference (input torque difference) ΔTIN (= TM2−TM1) to the motor torques TM1 and TM2 generated by the electric motor 2L and the electric motor 2R. A drive torque difference ΔTOUT (= TR−TL) can be generated between the drive torque TL transmitted to the wheel and the drive torque TR transmitted to the right drive wheel.
 この第3の実施形態に係る歯車装置30のトルク差増幅率αについて説明する。この第3の実施形態において、二つのダブルピニオン遊星歯車機構30L、30Rは、同一の歯数の歯車要素を使用しているため、速度線図においては、内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLと内歯車RLとの距離及び太陽歯車SRと内歯車RRとの距離も等しく、これをbとする。遊星キャリヤCL、CRから内歯車RL、RRまでの長さと遊星キャリヤCL、CRから太陽歯車SL、SRまでの長さの比は、内歯車RL、RRの歯数Zrの逆数(1/Zr)と太陽歯車SL、SRの歯数Zsの逆数(1/Zs)との比と等しい。よって、a=(1/Zr)、a+b=(1/Zs)である。 The torque difference amplification factor α of the gear device 30 according to the third embodiment will be described. In the third embodiment, since the two double pinion planetary gear mechanisms 30L and 30R use gear elements having the same number of teeth, in the velocity diagram, the internal gear R L and the planet carrier C L And the distance between the internal gear R R and the planetary carrier C R are equal to each other. Further, the distance between the sun gear S L and the internal gear R L and the distance between the sun gear S R and the internal gear R R are also equal, which is b. The ratio of the length from the planet carrier C L , C R to the internal gear R L , R R and the length from the planet carrier C L , C R to the sun gear S L , S R is the ratio of the internal gear R L , R R It is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R. Therefore, a = (1 / Zr) and a + b = (1 / Zs).
 この図11の速度線図において、トルクの釣り合いを考えると、トルク差増幅率αを求めることができる。なお、図11において、矢印方向がモーメントMの正の方向を示している。 In the velocity diagram of FIG. 11, the torque difference amplification factor α can be obtained considering the balance of torque. In FIG. 11, the arrow direction indicates the positive direction of the moment M.
 SRの点を基準にしたモーメントMの釣り合いから下記(7)式が算出される。
 b・TL+(a+b)・TR-(a+2b)・TM1=0 …(7)
The following equation (7) is calculated from the balance of the moment M with respect to the point of S R.
b.TL + (a + b) .TR- (a + 2b) .TM1 = 0 (7)
 SLの点を基準にしたモーメントMの釣り合いから下記(8)式が算出される。
 -b・TR-(a+b)・TL+(a+2b)・TM2=0 …(8)
The following equation (8) is calculated from the balance of the moment M with reference to the point of S L.
-B.TR- (a + b) .TL + (a + 2b) .TM2 = 0 (8)
 (7)式+(8)式より、下記(9)式が算出される。
 a・(TR-TL)-(a+2b)・(TM1-TM2)=0
 (TR-TL)=((a+2b)/a)・(TM1-TM2)  …(9)
The following equation (9) is calculated from the equation (7) + the equation (8).
a. (TR-TL)-(a + 2b). (TM1-TM2) = 0
(TR-TL) = ((a + 2b) / a). (TM1-TM2) (9)
 (9)式の(a+2b)/aがトルク差増幅率αとなる。 (A + 2b) / a in the equation (9) is the torque difference amplification factor α.
 a=1/Zr、a+b=1/Zsを代入すると、α=(2Zr-Zs)/Zsとなる。 When a = 1 / Zr and a + b = 1 / Zs are substituted, α = (2Zr−Zs) / Zs.
 この第3の実施形態では、電動モータ2L、2Rからの入力は、太陽歯車SL、SR、駆動輪への出力は遊星キャリヤCLと内歯車RR、遊星キャリヤCRと内歯車RLとなり、トルク差増幅率αは、(2Zr-Zs)/Zsである。 In the third embodiment, the electric motor 2L, input from 2R is the sun gear S L, S R, the output to the driving wheels planet carrier C L and the internal gear R R, a planet carrier C R and the internal gear R L , and the torque difference amplification factor α is (2Zr−Zs) / Zs.
 上記のように、二つの電動モータ2L、2Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTINを与えると、歯車装置30において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUT(=α・(TM1-TM2))を得ることができる。 As described above, when different torques TM1 and TM2 are generated by the two electric motors 2L and 2R to give the input torque difference ΔTIN, the input torque difference ΔTIN is amplified in the gear device 30, and the driving is greater than the input torque difference ΔTIN. A torque difference ΔTOUT (= α · (TM1−TM2)) can be obtained.
 図12は、この発明の第4の実施形態に係る車両駆動装置の歯車構成を示すスケルトン図、図13はこの発明の第4の実施形態に係る車両駆動装置に組み込まれた歯車装置によるトルク差の増幅率を説明するための速度線図である。 FIG. 12 is a skeleton diagram showing a gear configuration of a vehicle drive device according to the fourth embodiment of the present invention, and FIG. 13 is a torque difference by the gear device incorporated in the vehicle drive device according to the fourth embodiment of the present invention. It is a velocity diagram for demonstrating the amplification factor.
 電動モータ2L及び電動モータ2Rは、車両に搭載されたバッテリ(図示しない)からの電力により動作し、電子制御装置(図示しない)により個別に制御され、異なるトルクを発生させて出力することができる。車両駆動装置1の駆動力は、等速ジョイント65aを含むドライブシャフト(図示しない)を介して左右の駆動輪図示しないに伝達される。 The electric motor 2L and the electric motor 2R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. . The driving force of the vehicle drive device 1 is transmitted to the left and right drive wheels (not shown) via a drive shaft (not shown) including the constant velocity joint 65a.
 電動モータ2L、2Rのトルクは、減速機3L、3Rの入力歯車軸となるロータ軸12L、12Rの入力歯車12aと中間歯車軸13L、13Rの大径の入力側外歯車13aとの歯数比で増大されて歯車装置30の遊星キャリヤCLと太陽歯車SR、遊星キャリヤCRと太陽歯車SLに伝達される。 The torque of the electric motors 2L, 2R is the gear ratio between the input gear 12a of the rotor shafts 12L, 12R serving as the input gear shafts of the speed reducers 3L, 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L, 13R. And transmitted to the planetary carrier C L and the sun gear S R and the planetary carrier C R and the sun gear S L of the gear unit 30.
 そして、歯車装置30を介して中間歯車軸13L、13Rの出力側小径歯車13bが出力歯車軸14L、14Rの大径の出力歯車14aに噛み合って出力側小径歯車13bと出力歯車14aとの歯数比で電動モータ2L、2Rのトルクがさらに増大されて、駆動輪に出力される。 Then, the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a. The torque of the electric motors 2L and 2R is further increased by the ratio and output to the drive wheels.
 ロータ軸12L、12Rは、軸方向に貫通する中空構造であり、ロータ軸12L、12Rのインボード側端部には、入力歯車12aが設けられている。中空のロータ軸12L、12Rの内部には、出力歯車軸14L、14Rが同軸上に配置されている。 The rotor shafts 12L and 12R have a hollow structure penetrating in the axial direction, and an input gear 12a is provided at the inboard side ends of the rotor shafts 12L and 12R. Output gear shafts 14L and 14R are coaxially arranged inside the hollow rotor shafts 12L and 12R.
 歯車装置30は、3要素2自由度の同一の遊星歯車機構30L、30Rが同軸上に二つ組み合わされて構成されている。 The gear device 30 is configured by combining two identical planetary gear mechanisms 30L, 30R having three elements and two degrees of freedom on the same axis.
 遊星歯車機構30L、30Rには、二連の遊星歯車を有するダブルピニオン遊星歯車機構が採用されている。この遊星歯車機構は、同軸上に設けられた太陽歯車SL、SR及び内歯車RL、RRと、これら太陽歯車SL、SRと内歯車RL、RRとの間にあって同軸上に設けられた遊星キャリヤCL、CRと、この遊星キャリヤCL、CRに回転可能に支持され互いに噛み合う複数の二連の遊星歯車PL、PRから構成されている。ここで、太陽歯車SL、SRと遊星歯車PL、PRは外周にギヤ歯を有する外歯車であり、内歯車RL、RRは内周にギヤ歯を有する内歯車である。 The planetary gear mechanisms 30L and 30R employ a double pinion planetary gear mechanism having two planetary gears. The planetary gear mechanism is coaxially provided between the sun gears S L and S R and the internal gears R L and R R provided on the same axis, and between the sun gears S L and S R and the internal gears R L and R R. The planetary carriers C L and C R provided above and a plurality of planetary gears P L and P R that are rotatably supported by the planet carriers C L and C R and mesh with each other. Here, the sun gears S L and S R and the planetary gears P L and P R are external gears having gear teeth on the outer periphery, and the internal gears R L and R R are internal gears having gear teeth on the inner periphery.
 二連の遊星歯車PL、PRは、二連の一方が太陽歯車SL、SRと、二連の他方が内歯車RL、RRとに噛み合っている。図12に示すようなダブルピニオン遊星歯車機構では、遊星キャリヤCL、CRを固定し太陽歯車SL、SRを回転させた場合に、太陽歯車SL、SRと内歯車RL、RRとが同方向に回転するため、図13に示す速度線図に表すと内歯車RL、RR及び太陽歯車SL、SRが遊星キャリヤCL、CRに対して同じ側に配置される。換言すると、遊星キャリヤCL、CRは内歯車RL、RRを挟んで太陽歯車SL、SRの反対側に配置され、内歯車RL、RRを固定した場合には、太陽歯車SL、SRと遊星キャリヤCL、CRとが逆方向に回転する。 In the two planetary gears P L and P R, one of the two gears meshes with the sun gears S L and S R, and the other of the two gears meshes with the internal gears R L and R R. In the double pinion planetary gear mechanism as shown in FIG. 12, when the planetary carriers C L and C R are fixed and the sun gears S L and S R are rotated, the sun gears S L and S R and the internal gear R L , Since R R rotates in the same direction, the internal gears R L , R R and the sun gears S L , S R are on the same side with respect to the planet carriers C L , C R in the velocity diagram shown in FIG. Be placed. In other words, the planet carrier C L, C R is the internal gear R L, sun gear across the R R S L, located on the opposite side of the S R, the internal gear R L, when fixing the R R is the sun The gears S L and S R and the planet carriers C L and C R rotate in the opposite directions.
 図13に示す速度線図においては、遊星キャリヤCL、CRから内歯車RL、RRまでの長さと遊星キャリヤCL、CRから太陽歯車SL、SRまでの長さの比は、内歯車RL、RRの歯数Zrの逆数(1/Zr)と太陽歯車SL、SRの歯数Zsの逆数(1/Zs)との比と等しい。 In the velocity diagram shown in FIG. 13, the ratio of the length from the planet carriers C L , C R to the internal gears R L , R R and the length from the planet carriers C L , C R to the sun gears S L , S R. Is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr of the internal gears R L and R R and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R.
 この歯車装置30は、図12に示すように、太陽歯車SL、遊星キャリヤCL、遊星歯車PL及び内歯車RLを有する第1遊星歯車機構30Lと、同じく太陽歯車SR、遊星キャリヤCR、遊星歯車PR及び内歯車RRを有する第2遊星歯車機構30Rとが同軸上に組み合わされて構成されている。 As shown in FIG. 12, the gear device 30 includes a first planetary gear mechanism 30L having a sun gear S L , a planet carrier C L , a planet gear P L and an internal gear R L , as well as the sun gear S R and the planet carrier. C R, and a second planetary gear mechanism 30R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
 そして、第1遊星歯車機構30Lの太陽歯車SLと第2遊星歯車機構30Rの遊星キャリヤCRとが第1結合部材31で結合され、第1遊星歯車機構30Lの遊星キャリヤCLと第2遊星歯車機構30Rの太陽歯車SRとが第2結合部材32で結合されている。 Then, the sun gear S L of the first planetary gear mechanism 30L and planet carrier C R of the second planetary gear mechanism 30R is coupled with the first coupling member 31, and the planet carrier C L of the first planetary gear mechanism 30L second The sun gear SR of the planetary gear mechanism 30 </ b> R is coupled by the second coupling member 32.
 図12に示すように、第1結合部材31には、電動モータ2Rで発生されたトルクTM1が減速ギヤ列を介して入力され、第2結合部材32には、電動モータ2Lで発生されたトルクTM2が減速ギヤ列を介して入力される。また、第1遊星歯車機構30Lの内歯車RLは出力歯車軸14Lを介して左駆動輪に接続され、第2遊星歯車機構30Rの内歯車RRは出力歯車軸14Rを介して右駆動輪に接続される。 As shown in FIG. 12, the torque TM1 generated by the electric motor 2R is input to the first coupling member 31 via the reduction gear train, and the torque generated by the electric motor 2L is input to the second coupling member 32. TM2 is input via the reduction gear train. Further, the internal gear R L of the first planetary gear mechanism 30L is connected to the left driving wheel via the output gear shaft 14L, the internal gear R R of the second planetary gear mechanism 30R right driving wheels through the output gear shaft 14R Connected to.
 ここで、歯車装置30によって伝達される駆動トルクについて、図13に示す速度線図を用いて説明する。歯車装置30は、二つの同一の遊星歯車機構30L、30Rを組み合わせて構成されるため、図13に示すように、二本の速度線図によって表すことができる。ここでは、分かりやすいように、二本の速度線図を上下にずらし、上側に第1遊星歯車機構30Lの速度線図を示し、下側に第2遊星歯車機構30Rの速度線図を示す。 Here, the driving torque transmitted by the gear device 30 will be described with reference to a velocity diagram shown in FIG. Since the gear device 30 is configured by combining two identical planetary gear mechanisms 30L and 30R, it can be represented by two velocity diagrams as shown in FIG. Here, for easy understanding, the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the second planetary gear mechanism 30R is shown on the lower side.
 また、第1遊星歯車機構30Lの速度線図と第2遊星歯車機構30Rの速度線図とは、太陽歯車SL、SRと遊星キャリヤCL、CRとが内歯車RL、RRを挟み左右反対に配置される。すなわち、図13において、第1遊星歯車機構30Lの太陽歯車SLの下に第2遊星歯車機構30Rの遊星キャリヤCRが配置され、第1遊星歯車機構30Lの遊星キャリヤCLの下に第2遊星歯車機構30Rの太陽歯車SRが配置される。 The speed diagram of the first planetary gear mechanism 30L and the speed diagram of the second planetary gear mechanism 30R indicate that the sun gears S L and S R and the planet carriers C L and C R are internal gears R L and R R. It is arranged on the left and right sides. That is, in FIG. 13, the planet carrier C R of the second planetary gear mechanism 30R is arranged on the sun gear S L of the first planetary gear mechanism 30L, first under the planet carrier C L of the first planetary gear mechanism 30L the sun gear S R of second planetary gear mechanism 30R is arranged.
 この歯車装置30は、図13に示す二本の速度線図の両端に位置する要素同士が、図中破線で示すようにそれぞれ結合されて第1結合部材31及び第2結合部材32が形成される。そして、第1結合部材31に電動モータ2Rから出力されたトルクTM1が減速ギヤ列を介して与えられる。この第1結合部材31に接続された太陽歯車SLには、電動モータ2Rから出力されたトルクTM1の一部が減速ギヤ列を介して与えられることになる。そして、電動モータ2Rから出力されたトルクTM1の残部は減速ギヤ列を介して遊星キャリヤCRに与えられる。 In the gear device 30, elements located at both ends of the two velocity diagrams shown in FIG. 13 are joined to each other as shown by a broken line in the drawing to form a first coupling member 31 and a second coupling member 32. The Then, the torque TM1 output from the electric motor 2R is applied to the first coupling member 31 via the reduction gear train. This is connected sun gear S L to the first coupling member 31, part of the torque TM1 output from the electric motor 2R is to be given via the reduction gear train. The remainder of the torque TM1 output from the electric motor 2R is provided to the planet carrier C R through the reduction gear train.
 第2結合部材32に電動モータ2Lから出力されたトルクTM2が減速ギヤ列を介して入力される。この第2結合部材32に接続された太陽歯車SRには、電動モータ2Lから出力されたトルクTM2の一部が減速ギヤ列を介して与えられることになる。そして、電動モータ2Lから出力されたトルクTM2の残部は減速ギヤ列を介して遊星キャリヤCLに与えられる。ここで本来は、各電動モータ2R、2Lから出力されたトルクTM1及びTM2は各減速ギヤ列を介し各結合部材31、32に入力されるため減速比が掛かるが、以降、理解を容易にするため、速度線図及び各計算式の説明においては減速比を省略し、各結合部材31、32に入力されるトルクをTM1及びTM2のままとする。 The torque TM2 output from the electric motor 2L is input to the second coupling member 32 via the reduction gear train. This second coupling member 32 connected to the sun gear S R, a portion of the torque TM2 that is output from the electric motor 2L is to be given via the reduction gear train. The remainder of the torque TM2 that is output from the electric motor 2L is applied to the planet carrier C L via a reduction gear train. Here, originally, the torques TM1 and TM2 output from the electric motors 2R and 2L are input to the coupling members 31 and 32 via the reduction gear trains, so that a reduction ratio is applied. For this reason, in the description of the velocity diagram and each calculation formula, the reduction ratio is omitted, and the torque input to each coupling member 31 and 32 remains TM1 and TM2.
 速度線図上で中間に位置する内歯車RL、RRから左右の駆動輪に伝達される駆動トルクTL、TRが出力される。 Drive torques TL and TR transmitted from the internal gears R L and R R located in the middle of the speed diagram to the left and right drive wheels are output.
 このように構成された歯車装置30によって、電動モータ2R及び電動モータ2Lで発生させる各モータトルクTM1、TM2にトルク差(入力トルク差)ΔTIN(=TM2-TM1)を与えることで、左駆動輪に伝達される駆動トルクTLと右駆動輪に伝達される駆動トルクTRとに駆動トルク差ΔTOUT(=TL-TR)を発生させることができる。すなわち、この歯車装置30によれば、以下の式(10)の関係が得られる。なお、係数αはトルク差増幅率である。 By providing a torque difference (input torque difference) ΔTIN (= TM2−TM1) to the motor torques TM1 and TM2 generated by the electric motor 2R and the electric motor 2L by the gear device 30 configured as described above, the left driving wheel A drive torque difference ΔTOUT (= TL−TR) can be generated between the drive torque TL transmitted to the right drive wheel and the drive torque TR transmitted to the right drive wheel. That is, according to this gear device 30, the relationship of the following formula (10) is obtained. The coefficient α is a torque difference amplification factor.
 (TL-TR)=α×(TM2-TM1) …(10) (TL-TR) = α × (TM2-TM1) (10)
 この第4の実施形態に係る歯車装置30のトルク差増幅率αについて説明する。ここでは、二つのダブルピニオン遊星歯車機構30L、30Rは、同一の歯数の歯車要素を使用しているため、速度線図においては、内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLと内歯車RLとの距離及び太陽歯車SRと内歯車RRとの距離も等しく、これをbとする。 The torque difference amplification factor α of the gear device 30 according to the fourth embodiment will be described. Here, two double-pinion planetary gear mechanism 30L, 30R is due to the use of gear elements of the same number of teeth, in the velocity diagram, the distance between the internal gear R L and a planet carrier C L and the internal gear The distance between R R and the planet carrier C R is equal, and this is a. Further, the distance between the sun gear S L and the internal gear R L and the distance between the sun gear S R and the internal gear R R are also equal, which is b.
 左右両端の第1結合部材31、第2結合部材32に、それぞれ電動モータ2R、電動モータ2LのトルクTM1、TM2を入力し、内歯車RL、RRから駆動トルクTL、TRを取り出す。 The torques TM1 and TM2 of the electric motor 2R and the electric motor 2L are input to the first and second coupling members 31 and 32 at both left and right ends, respectively, and the drive torques TL and TR are extracted from the internal gears R L and R R.
 トルクの入力と出力の関係から、以下の式(11)が得られる。
 TR+TL=TM1+TM2   …(11)
From the relationship between torque input and output, the following equation (11) is obtained.
TR + TL = TM1 + TM2 (11)
 また、図中の左端(CL、SR部)を基準としたモーメントの式は以下の式(12)となる。なお、図において、矢印方向がモーメントMの正の方向を示している。 Further, expression of the left end (C L, S R portion) moment relative to the in the figure become the following equation (12). In the figure, the arrow direction indicates the positive direction of the moment M.
 0=aTL+bTR-(a+b)TM1  …(12) 0 = aTL + bTR- (a + b) TM1 (12)
 これら式(11)、(12)からTL、TRについてまとめると、以下の(13)、(14)式となる。 Summarizing TL and TR from these equations (11) and (12), the following equations (13) and (14) are obtained.
TL=((a/(b-a))+1)・TM2-(a/(b-a))・TM1…(13)
TR=((a/(b-a))+1)・TM1-(a/(b-a))・TM2…(14)
TL = ((a / (ba)) + 1) .TM2- (a / (ba)). TM1 (13)
TR = ((a / (ba)) + 1) .TM1- (a / (ba)). TM2 (14)
 これら(13)、(14)式から駆動トルク差(TL-TR)は以下の(15)式となる。 From these equations (13) and (14), the drive torque difference (TL-TR) becomes the following equation (15).
(TL-TR)=((a+b)/(b-a))・(TM2-TM1)…(15) (TL-TR) = ((a + b) / (ba)). (TM2-TM1) (15)
 ダブルピニオン遊星歯車機構の場合、長さaは内歯車Rの歯数Zrの逆数(1/Zr)、長さa+bは太陽歯車Sの歯数Zsの逆数(1/Zs)となるため、上記の式は(16)式のように書き換えられる。 In the case of the double pinion planetary gear mechanism, the length a is the reciprocal (1 / Zr) of the number of teeth Zr of the internal gear R, and the length a + b is the reciprocal (1 / Zs) of the number of teeth Zs of the sun gear S. Is rewritten as equation (16).
 (TL-TR)=(Zr/(Zr-2Zs))・(TM2-TM1)…(16) (TL-TR) = (Zr / (Zr-2Zs)). (TM2-TM1) (16)
 上記(10)、(16)式よりトルク差増幅率αは、Zr/(Zr-2Zs)となる。 From the above formulas (10) and (16), the torque difference amplification factor α is Zr / (Zr−2Zs).
 上記したように、この第4の実施形態では、電動モータ2L、2Rからの入力は、太陽歯車SRと遊星キャリヤCL、太陽歯車SLと遊星キャリヤCRとなり、駆動輪への出力は内歯車RL、RRとなる。 As described above, in the fourth embodiment, the inputs from the electric motors 2L and 2R are the sun gear S R and the planet carrier C L , the sun gear S L and the planet carrier C R , and the output to the drive wheels is The internal gears R L and R R are obtained.
 二つの電動モータ2R、2Lで異なるトルクTM1、TM2を発生させて入力トルク差ΔTIN(=TM2-TM1)を与えると、歯車装置30において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差α・ΔTINを得ることができる。すなわち、入力トルク差ΔTINが小さくても、歯車装置30において所定のトルク差増幅率αで入力トルク差ΔTINを増幅することができ、左駆動輪と右駆動輪とに伝達される駆動トルクTL、TRに、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUT(=α・(TM2-TM1)=TL-TR)を与えることができる。 When different torques TM1 and TM2 are generated by the two electric motors 2R and 2L to give an input torque difference ΔTIN (= TM2−TM1), the gear device 30 amplifies the input torque difference ΔTIN and is larger than the input torque difference ΔTIN. A drive torque difference α · ΔTIN can be obtained. That is, even if the input torque difference ΔTIN is small, the gear device 30 can amplify the input torque difference ΔTIN with a predetermined torque difference amplification factor α, and drive torque TL transmitted to the left drive wheel and the right drive wheel, A driving torque difference ΔTOUT (= α · (TM2−TM1) = TL−TR) larger than the input torque difference ΔTIN can be given to TR.
 この発明は前述した実施形態に何ら限定されるものではなく、この発明の要旨を逸脱しない範囲において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内の全ての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. The scope of the present invention is claimed. The equivalent meanings recited in the claims, and all modifications within the scope.
1     :車両駆動装置
2L、2R :電動モータ
3L、3R :減速機
4L、4R :モータハウジング
4aL、4aR :モータハウジング本体
4bL、4bR :外側壁
5     :ロータ
6     :ステータ
9     :減速機ハウジング
9a    :中央ハウジング
9bL、9bR :側面ハウジング
11    :仕切り壁
12L、12R :ロータ軸
12a   :入力歯車
13L、13R :中間歯車軸
13a   :入力側外歯車
13b   :出力側小径歯車
14L、14R   :出力歯車軸
14a   :出力歯車
30    :歯車装置
30L   :第1の遊星歯車機構
30R   :第2の遊星歯車機構
31    :第1結合部材
32    :第2結合部材
65a、65b :等速ジョイント
65c   :中間シャフト
90    :貫通油路
L、CR  :遊星キャリヤ
L、PR  :遊星歯車
L、RR  :内歯車
L、SR  :太陽歯車
1: Vehicle drive device 2L, 2R: Electric motor 3L, 3R: Reduction gear 4L, 4R: Motor housing 4aL, 4aR: Motor housing body 4bL, 4bR: Outer wall 5: Rotor 6: Stator 9: Reduction gear housing 9a: Center Housing 9bL, 9bR: Side housing 11: Partition walls 12L, 12R: Rotor shaft 12a: Input gear 13L, 13R: Intermediate gear shaft 13a: Input side external gear 13b: Output side small gears 14L, 14R: Output gear shaft 14a: Output Gear 30: Gear device 30L: First planetary gear mechanism 30R: Second planetary gear mechanism 31: First coupling member 32: Second coupling members 65a, 65b: Constant velocity joint 65c: Intermediate shaft 90: Through oil passage C L, C R: planet carrier P L, P R: planetary gear R L, R: internal gear S L, S R: the sun gear

Claims (14)

  1.  車両に搭載され独立して制御可能な二つの電動モータと、各々の電動モータのモータ回転を減速し駆動輪に伝達する二つの減速機を備え、減速機に対し二つの電動モータを車両のアウトボード側に配置する車両駆動装置において、
     前記減速機は、入力歯車と、出力歯車を有する出力歯車軸と、歯車の噛み合いにより入力歯車から出力歯車の間の駆動力の伝達を行う中間歯車軸からなり、前記減速機を構成する歯車が外歯車である平行軸歯車減速機であり、
     前記電動モータのロータ軸は軸方向に貫通する中空構造であり、ロータ軸の減速機側端部には入力歯車が設けられ、二つの電動モータのロータ軸は同軸上に配置され、
     前記出力歯車軸は、減速機側端部には出力歯車が設けられ、出力歯車軸のモータ側端部が前記中空のロータ軸の内部に位置するようロータ軸と同軸上に設けられ、前記出力歯車軸は前記ロータ軸を貫通し電動モータを収容するモータハウジングの外側壁の開口部から車両駆動装置の外部へ引き出されて駆動輪に連結され、
     減速機は、中間歯車軸が電動モータのロータ軸と出力歯車軸とに軸平行に、且つ左右の中間歯車軸同士が同軸上に設けられ、それぞれ中間歯車軸には小歯車と大歯車が設けられ、入力歯車と中間歯車軸に設けられた大歯車との噛みあい、中間歯車軸に設けられた小歯車と出力歯車との噛み合いにより、前記電動モータの回転が減速されて出力歯車軸に伝達されるようにしたことを特徴とする車両駆動装置。
    It is equipped with two electric motors mounted on the vehicle that can be controlled independently, and two reduction gears that reduce the motor rotation of each electric motor and transmit it to the drive wheels. In the vehicle drive device arranged on the board side,
    The speed reducer includes an input gear, an output gear shaft having an output gear, and an intermediate gear shaft that transmits a driving force between the input gear and the output gear by meshing of the gears. A parallel shaft gear reducer that is an external gear,
    The rotor shaft of the electric motor is a hollow structure penetrating in the axial direction, an input gear is provided at the speed reducer side end of the rotor shaft, and the rotor shafts of the two electric motors are arranged coaxially,
    The output gear shaft is provided with an output gear at the speed reducer side end, and is provided coaxially with the rotor shaft so that the motor side end of the output gear shaft is located inside the hollow rotor shaft. The gear shaft passes through the rotor shaft and is pulled out from the opening of the outer wall of the motor housing that houses the electric motor to the outside of the vehicle drive device, and is connected to the drive wheels.
    The reducer has an intermediate gear shaft that is parallel to the rotor shaft and the output gear shaft of the electric motor, and the left and right intermediate gear shafts are coaxially arranged, and each intermediate gear shaft is provided with a small gear and a large gear. The rotation of the electric motor is decelerated and transmitted to the output gear shaft by meshing between the input gear and the large gear provided on the intermediate gear shaft, and meshing between the small gear provided on the intermediate gear shaft and the output gear. A vehicle drive device characterized in that the vehicle drive device is provided.
  2.  前記減速機は、入力歯車と中間歯車軸の大歯車からなる歯車列に対して、中間歯車軸の小歯車と出力歯車からなる歯車列が車体内側寄りに配置されるようにしたことを特徴とする請求項1に記載の車両駆動装置。 The speed reducer is characterized in that a gear train composed of a small gear of an intermediate gear shaft and an output gear is arranged closer to the inside of the vehicle body than a gear train composed of a large gear of an input gear and an intermediate gear shaft. The vehicle drive device according to claim 1.
  3.  前記車両駆動装置は、二つの電動モータからの駆動力を左右の駆動輪に分配する歯車装置を有し、この歯車装置は、前記減速機の同軸に配された左右の一対の中間歯車軸と同軸上に二つ組み合わせた3要素2自由度の遊星歯車機構からなり、
     前記遊星歯車機構は、内歯車と、前記内歯車と同軸上に設けられた遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての複数の遊星歯車とを有し、
     前記二つの遊星歯車機構の一方の遊星キャリヤと他方の1要素とを結合する第1結合部材と、一方の前記と同じ1要素と他方の遊星キャリヤとを結合する第2結合部材とを有し、
     前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の入力要素が同軸に設けられ、中間歯車軸の出力側小歯車が前記歯車装置の出力要素と連結されていることを特徴とする請求項2に記載の車両駆動装置。
    The vehicle drive device includes a gear device that distributes the driving force from two electric motors to left and right drive wheels, and the gear device includes a pair of left and right intermediate gear shafts arranged coaxially with the speed reducer. It consists of a planetary gear mechanism with three elements and two degrees of freedom that are combined on the same axis.
    The planetary gear mechanism includes an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a plurality of planetary gears as revolution gears. ,
    A first coupling member that couples one planet carrier and the other one element of the two planetary gear mechanisms; and a second coupling member that couples the same one element to the other planet carrier. ,
    An input element of the gear device is coaxially provided on an input side large gear of an intermediate gear shaft of the reduction gear, and an output side small gear of the intermediate gear shaft is connected to an output element of the gear device. The vehicle drive device according to claim 2.
  4.  前記遊星歯車機構は、シングルピニオン遊星歯車機構であり、
     前記二つの遊星歯車機構の一方の遊星キャリヤと他方の太陽歯車とを結合する第1結合部材と、一方の太陽歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、
     前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の内歯車が同軸に設けられ、中間歯車軸の出力側小歯車が前記遊星歯車機構の遊星キャリヤと連結されていることを特徴とする請求項3の車両駆動装置。
    The planetary gear mechanism is a single pinion planetary gear mechanism,
    A first coupling member that couples one planetary carrier and the other sun gear of the two planetary gear mechanisms, and a second coupling member that couples one sun gear and the other planetary carrier,
    The internal gear of the gear device is coaxially provided on the input side large gear of the intermediate gear shaft of the speed reducer, and the output side small gear of the intermediate gear shaft is connected to the planet carrier of the planetary gear mechanism. The vehicle drive device according to claim 3.
  5.  前記歯車装置と同軸上にある前記減速機の中間歯車軸に、入力歯車と噛み合う大歯車と前記遊星歯車機構の内歯車とが、径方向に互いに重なり合う軸方向位置に配置されていることを特徴とする請求項4に記載の車両駆動装置。 A large gear meshing with an input gear and an internal gear of the planetary gear mechanism are arranged at axial positions overlapping with each other in the radial direction on an intermediate gear shaft of the reduction gear that is coaxial with the gear device. The vehicle drive device according to claim 4.
  6.  前記遊星歯車機構の遊星キャリヤはキャリヤピンを介して遊星歯車を支持し、車両のインボード側およびアウトボード側に延設したキャリヤフランジを有し、
     前記遊星キャリヤが、車両駆動装置のハウジングに対して二つの転がり軸受で回転自在に支持されていることを特徴とする請求項3~5のいずれか1項に記載の車両駆動装置。
    The planetary carrier of the planetary gear mechanism has a carrier flange that supports the planetary gear via a carrier pin and extends on the inboard side and the outboard side of the vehicle,
    The vehicle drive device according to any one of claims 3 to 5, wherein the planetary carrier is rotatably supported by two rolling bearings with respect to a housing of the vehicle drive device.
  7.  前記遊星キャリヤのインボード側に、出力歯車と噛み合う中間歯車軸の小歯車を同軸に設けたことを特徴とする請求項3~6のいずれか1項に記載の車両駆動装置。 The vehicle drive device according to any one of claims 3 to 6, wherein a small gear of an intermediate gear shaft that meshes with an output gear is provided coaxially on the inboard side of the planetary carrier.
  8.  前記遊星歯車機構の内歯車が、遊星キャリヤに対して転がり軸受によって回転自在に支持されていることを特徴とする請求項3~7のいずれか1項に記載の車両駆動装置。 The vehicle drive device according to any one of claims 3 to 7, wherein an internal gear of the planetary gear mechanism is rotatably supported by a rolling bearing with respect to the planet carrier.
  9.  前記二つの減速機を収容するハウジングが、中央ハウジングと左右の側面ハウジングからなる3ピース構成であり、前記中央ハウジングの中央部には左右を仕切る仕切り壁が設けられ、前記第1結合部材と前記第2結合部材が前記仕切り壁を貫通していることを特徴とする請求項3~8のいずれか1項に記載の車両駆動装置。 The housing that accommodates the two speed reducers has a three-piece configuration including a central housing and left and right side housings, and a partition wall that partitions the left and right is provided at the center of the central housing, and the first coupling member and the The vehicle drive device according to any one of claims 3 to 8, wherein the second coupling member passes through the partition wall.
  10.  前記歯車装置は、前記第1結合部材と第2結合部材が同軸上に配置されると共に、一方の結合部材が中空軸、他方の結合部材が前記中空軸内部に挿通される軸からなる二重構造であり、
     前記第1結合部材および前記第2結合部材と、それぞれの結合部材が連結する遊星キャリヤとの連結がスプライン嵌合であることを特徴とする請求項3~9のいずれか1項に記載の車両駆動装置。
    In the gear device, the first coupling member and the second coupling member are arranged coaxially, one coupling member is a hollow shaft, and the other coupling member is a double shaft that is inserted into the hollow shaft. Structure,
    The vehicle according to any one of claims 3 to 9, wherein the connection between the first coupling member and the second coupling member and the planet carrier to which the respective coupling members are coupled is a spline fitting. Drive device.
  11.  前記第1および第2結合部材の内、内径側の結合部材において、遊星キャリヤとのスプライン嵌合部とは反対の軸端を転がり軸受で回転自在に支持したことを特徴とする請求項3~10のいずれか1項に記載の車両駆動装置。 The shaft end opposite to the spline fitting portion with the planetary carrier is rotatably supported by a rolling bearing in the inner diameter side coupling member of the first and second coupling members. The vehicle drive device according to any one of 10.
  12.  前記遊星歯車機構は、シングルピニオン遊星歯車機構であり、
     前記二つの遊星歯車機構の一方の遊星キャリヤと他方の内歯車とを結合する第1結合部材と、一方の内歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、
     前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の太陽歯車が同軸に設けられ、中間歯車軸の出力側小歯車が前記遊星歯車機構の遊星キャリヤと連結されていることを特徴とする請求項3の車両駆動装置。
    The planetary gear mechanism is a single pinion planetary gear mechanism,
    A first coupling member that couples one planet carrier and the other internal gear of the two planetary gear mechanisms, and a second coupling member that couples one internal gear and the other planet carrier;
    The sun gear of the gear device is coaxially provided on the input side large gear of the intermediate gear shaft of the speed reducer, and the output side small gear of the intermediate gear shaft is connected to the planet carrier of the planetary gear mechanism. The vehicle drive device according to claim 3.
  13.  前記遊星歯車機構は、内歯車と、前記内歯車と同軸上に設けられた遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての複数の二連の遊星歯車とを有し、
     前記遊星キャリヤを固定したときに前記内歯車は前記太陽歯車と同一方向に回転し、
     前記二つの遊星歯車機構の一方の遊星キャリヤと他方の内歯車とを結合する第1結合部材と、一方の内歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、
     前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の太陽歯車が同軸に設けられ、中間歯車軸の出力側小歯車が前記遊星歯車機構の遊星キャリヤと同軸に連結されていることを特徴とする請求項3の車両駆動装置。
    The planetary gear mechanism includes an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a plurality of double planetary gears as revolution gears. Have
    When the planet carrier is fixed, the internal gear rotates in the same direction as the sun gear,
    A first coupling member that couples one planet carrier and the other internal gear of the two planetary gear mechanisms, and a second coupling member that couples one internal gear and the other planet carrier;
    The sun gear of the gear device is coaxially provided on the input side large gear of the intermediate gear shaft of the reduction gear, and the output side small gear of the intermediate gear shaft is coaxially connected to the planet carrier of the planetary gear mechanism. 4. The vehicle drive device according to claim 3, wherein
  14.  前記遊星歯車機構は、内歯車と、前記内歯車と同軸上に設けられた遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての複数の二連の遊星歯車とを有し、
     前記遊星キャリヤを固定したときに前記内歯車は前記太陽歯車と同一方向に回転し、
     前記二つの遊星歯車機構の一方の遊星キャリヤと他方の太陽歯車とを結合する第1結合部材と、一方の太陽歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、
     前記減速機の中間歯車軸の入力側大歯車に前記歯車装置の遊星キャリヤが同軸に設けられ、中間歯車軸の出力側小歯車が前記遊星歯車機構の内歯車と同軸に連結されていることを特徴とする請求項3の車両駆動装置。
    The planetary gear mechanism includes an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a plurality of double planetary gears as revolution gears. Have
    When the planet carrier is fixed, the internal gear rotates in the same direction as the sun gear,
    A first coupling member that couples one planetary carrier and the other sun gear of the two planetary gear mechanisms, and a second coupling member that couples one sun gear and the other planetary carrier,
    The planetary carrier of the gear unit is coaxially provided on the input side large gear of the intermediate gear shaft of the speed reducer, and the output side small gear of the intermediate gear shaft is connected coaxially with the internal gear of the planetary gear mechanism. 4. The vehicle drive device according to claim 3, wherein
PCT/JP2017/026093 2016-08-19 2017-07-19 Vehicle driving device WO2018034099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-161040 2016-08-19
JP2016161040A JP2018028365A (en) 2016-08-19 2016-08-19 Vehicle drive unit

Publications (1)

Publication Number Publication Date
WO2018034099A1 true WO2018034099A1 (en) 2018-02-22

Family

ID=61197362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026093 WO2018034099A1 (en) 2016-08-19 2017-07-19 Vehicle driving device

Country Status (2)

Country Link
JP (1) JP2018028365A (en)
WO (1) WO2018034099A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023041104A1 (en) * 2021-09-14 2023-03-23 Schaeffler Technologies AG & Co. KG Electrical machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022192881A1 (en) * 2021-03-10 2022-09-15 Omni Powertrain Technologies, Llc Electric drivetrain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170881A (en) * 1997-12-10 1999-06-29 Nissan Motor Co Ltd Running assist device for vehicle
JP2007224979A (en) * 2006-02-22 2007-09-06 Ntn Corp Driving unit of electric automobile
JP2012257347A (en) * 2011-06-07 2012-12-27 Honda Motor Co Ltd Vehicular drive apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11170881A (en) * 1997-12-10 1999-06-29 Nissan Motor Co Ltd Running assist device for vehicle
JP2007224979A (en) * 2006-02-22 2007-09-06 Ntn Corp Driving unit of electric automobile
JP2012257347A (en) * 2011-06-07 2012-12-27 Honda Motor Co Ltd Vehicular drive apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023041104A1 (en) * 2021-09-14 2023-03-23 Schaeffler Technologies AG & Co. KG Electrical machine

Also Published As

Publication number Publication date
JP2018028365A (en) 2018-02-22

Similar Documents

Publication Publication Date Title
WO2017141607A1 (en) Vehicle-driving apparatus
US11135914B2 (en) Drive axle for electric vehicles
US11072229B2 (en) Vehicle electric drive system
US7316627B2 (en) Integrated two-speed motor
US8182386B2 (en) Transmission device comprising at least two output shafts
US20100285917A1 (en) Differential gear
CN109789800B (en) Drive source control device
US20050124450A1 (en) Variable ratio drive system
JP2017203503A (en) Vehicle drive unit
JP2002154343A (en) Power transmission mechanism for front and rear wheel drive vehicle
JP2004001726A (en) Front wheel carrier assembly for tandem axle
JP2018155310A (en) Four-wheel drive vehicle
JP2017206074A (en) Two-motor vehicle drive device for four-wheel drive vehicle
WO2018034099A1 (en) Vehicle driving device
JP2018155327A (en) Vehicle drive unit
JP2018054053A (en) Vehicle drive device
JP2017145931A (en) Vehicle drive device
JP2017141889A (en) Vehicle drive device
JP2017180559A (en) Vehicle driving apparatus
WO2018012189A1 (en) Vehicle drive device
WO2017141617A1 (en) Vehicle drive apparatus
JP6170580B1 (en) Vehicle drive device
JP2018028364A (en) Vehicle driving unit
WO2017163871A1 (en) Vehicle drive device
JP2017145942A (en) Vehicle drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841327

Country of ref document: EP

Kind code of ref document: A1