WO2017141617A1 - Vehicle drive apparatus - Google Patents

Vehicle drive apparatus Download PDF

Info

Publication number
WO2017141617A1
WO2017141617A1 PCT/JP2017/001854 JP2017001854W WO2017141617A1 WO 2017141617 A1 WO2017141617 A1 WO 2017141617A1 JP 2017001854 W JP2017001854 W JP 2017001854W WO 2017141617 A1 WO2017141617 A1 WO 2017141617A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
gears
planetary
input
output
Prior art date
Application number
PCT/JP2017/001854
Other languages
French (fr)
Japanese (ja)
Inventor
英範 柄澤
功 平井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017141617A1 publication Critical patent/WO2017141617A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • F16H1/10Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes one of the members being internally toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/10Differential gearings with gears having orbital motion with orbital spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/36Differential gearings characterised by intentionally generating speed difference between outputs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Definitions

  • the present invention relates to a vehicle drive device capable of amplifying a torque difference between two independent drive sources and transmitting torque to left and right drive wheels.
  • each electric motor is controlled independently to give an appropriate drive torque difference between the left and right drive wheels, thereby reducing the turning moment of the vehicle. It is known to control. For example, when each electric motor is independently connected to the left and right drive wheels via a reduction gear, the rotational speed of each electric motor is reduced by the respective reduction gear, and the output torque of each electric motor is It is increased by each reducer and transmitted to the left and right drive wheels.
  • each electric motor has the same output characteristics, and each reduction gear has the same reduction ratio.
  • the output torque of the left and right electric motors transmitted to the left and right drive wheels is increased according to the reduction ratio of the reduction gear.
  • the ratio of the difference between the output torques of the left and right drive wheels is the same as the ratio of the difference between the output torques of the left and right electric motors because the reduction ratio of the left and right reduction gears is the same.
  • the ratio of the torque difference is not increased.
  • the left and right drive is more than the ratio of the difference in output torque applied from the left and right electric motors. It may be effective to increase the ratio of the difference in output torque transmitted to the wheels.
  • Patent Document 1 and Patent Document 2 include a gear device in which two planetary gear mechanisms having three elements and two degrees of freedom are coaxially arranged between two drive sources and left and right drive wheels.
  • a vehicle drive device is disclosed that can amplify the difference between torques applied to the left and right driving wheels and amplify the difference.
  • FIG. 6 is a skeleton diagram showing the gear configuration of the vehicle drive device according to the prior art 1
  • FIG. 7 is a speed line for explaining the amplification factor of the torque difference by the gear device incorporated in the vehicle drive device according to the prior art 1.
  • the vehicle drive device 100 includes left and right electric motors 102L and 102R mounted on the vehicle, left drive wheels 104L and right drive wheels 104R, a gear device 105 and reduction gear trains 106L and 106R provided therebetween. 107L and 107R.
  • the electric motor 102L and the electric motor 102R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. .
  • the output shaft 102aL of the electric motor 102L and the output shaft 102aR of the electric motor 102R are connected to the coupling members 111 and 112 of the gear device 105 through reduction gear trains 106L and 106R, respectively.
  • the output from the gear unit 105 is given to the left and right drive wheels 104L and 104R via the reduction gear trains 107L and 107R.
  • the gear unit 105 is configured by combining two identical planetary gear mechanisms 110L and 110R with three elements and two degrees of freedom on the same axis.
  • the single-pinion type planetary gear mechanism includes a sun gear S L , S R and internal gears R L , R R provided on the same axis, and these sun gears S L , S R and internal gears R L , R R.
  • a plurality of planetary gears P L and P R and planetary gears P L and P R are rotatably supported, and are provided coaxially with the sun gears S L and S R and the internal gears R L and R R. It was planet carrier C L, composed of a C R.
  • the sun gear S L, S R and the planetary gears P L, P R is the external gear having gear teeth on the outer circumference
  • the internal gear R L, R R is the internal gear having gear teeth on the inner peripheral is there.
  • the planetary gears P L and P R are in mesh with the sun gears S L and S R and the internal gears R L and R R.
  • the sun gears S L and S R and the internal gears R L and R R rotate in the opposite directions.
  • the internal gears R L and R R and the sun gears S L and S R are arranged on the opposite side with respect to the planetary carriers C L and C R.
  • the internal gears R L , R R are arranged on the opposite side of the sun gears S L , S R across the planetary carriers C L , C R.
  • the ratio of the length from the planet carriers C L , C R to the internal gears R L , R R and the length from the planet carriers C L , C R to the sun gears S L , S R. Is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr of the internal gears R L and R R and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R.
  • the gear unit 105 includes a first planetary gear mechanism 110L having a sun gear S L , a planetary carrier C L , a planetary gear P L and an internal gear RL , as well as a sun gear S R and a planet carrier.
  • C R, and a second planetary gear mechanism 110R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
  • the sun gear S L of the first planetary gear mechanism 110L and the internal gear R R of the second planetary gear mechanism 110R is coupled by a first coupling member 111, and the internal gear R L of the first planetary gear mechanism 110L second
  • the sun gear S R of the planetary gear mechanism 110R is coupled by the second coupling member 112.
  • the torque TM1 generated by the electric motor 102L is input to the first coupling member 111 via the reduction gear train 106L, and the torque TM2 generated by the electric motor 102R is input to the second coupling member 112 by the reduction gear train 106R. Is input through. Further, the planet carrier C R of the planetary carrier C L and the second planetary gear mechanism 110R of the first planetary gear mechanism 110L, respectively reduction gear train 107L, through 107R left and right drive wheels 104L, the output is connected to the 104R It is taken out.
  • the gear device 105 is configured by combining two identical planetary gear mechanisms 110L and 110R, it can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the planetary gear mechanism 110L is shown on the upper side, and the speed diagram of the planetary gear mechanism 110R is shown on the lower side.
  • the sun gears S L and S R and the internal gears R L and R R are arranged in the left and right directions. That is, in FIG. 7, the internal gear R R of the second planetary gear mechanism 110R is arranged on the sun gear S L of the first planetary gear mechanism 110L, the internal gear R L of the first planetary gear mechanism 110L the sun gear S R of the second planetary gear mechanism 110R is disposed underneath.
  • the elements located at both ends of the two velocity diagrams shown in FIG. 7 are coupled by the first coupling member 111 and the second coupling member 112, respectively, as indicated by broken lines in the drawing. .
  • the torques TM1 and TM2 output from the first electric motor 102L and the second electric motor 102R are input to the first connecting member 111 and the second connecting member 112, respectively.
  • the torques TM1 and TM2 output from the electric motors 102L and 102R are input to the coupling members 111 and 112 via the reduction gear trains 106L and 106R, respectively.
  • the reduction ratio is omitted, and the torques input to the coupling members 111 and 112 remain TM1 and TM2.
  • the coefficient ⁇ is a torque difference amplification factor.
  • the torque difference amplification factor ⁇ of the gear device 105 will be described.
  • the two planetary gear mechanisms 110L and 110R are single pinion planetary gear mechanisms and use gear elements having the same number of teeth
  • the internal gear R L and the planet carrier C L are represented in the velocity diagram.
  • the distance between the internal gear R R and the planetary carrier C R are equal to each other.
  • the distance between the sun gear S L and the carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
  • Torques TM1 and TM2 of the first electric motor 102L and the second electric motor 102R are input to the first coupling member 111 and the second coupling member 112 at the left and right ends, respectively, and the driving torque TL is output from the planetary carriers C L and C R.
  • the following equation (2) is obtained from the relationship between torque input and output.
  • Equation (3) the equation of moment with reference to the left end (R L , S R ) in the figure is the following equation (3).
  • the arrow M direction indicates the positive moment direction.
  • TL ((a / (ba)) + 1) .TM2- (a / (ba)).
  • TM1 (4) TR ((a / (ba)) + 1) .TM1- (a / (ba)).
  • the torque difference amplification factor ⁇ is (Zr + Zs) / (Zr ⁇ Zs).
  • the inputs from the first electric motor 102L and the second electric motor 102R are S L + R R and S R + R L
  • the outputs to the drive wheels 104L and 104R are C L, the C R.
  • FIG. 8 is a skeleton diagram showing the gear configuration of the vehicle drive wheel device according to the prior art 2
  • FIG. 9 is a velocity diagram for explaining the torque difference amplification factor by the vehicle drive device according to the prior art 2.
  • the vehicle drive device 100 is provided between a first electric motor 102L and a second electric motor 102R mounted on the vehicle, a left drive wheel 104L and a right drive wheel 104R, and these.
  • a gear device 105 and reduction gear trains 106L and 106R are provided.
  • the first electric motor 102L and the second electric motor 102R operate with electric power from a battery (not shown) mounted on the vehicle, and are individually controlled by an electronic control device (not shown) to generate different torques. Can be output.
  • the output shaft 102aL of the first electric motor 102L and the output shaft 102aR of the second electric motor 102R are connected to the sun gears S L and S R of the gear device 105 via reduction gear trains 106L and 106R, respectively.
  • the output from the gear unit 105 is given to the left and right drive wheels 104L, 104R.
  • the gear device 105 of the prior art 2 is configured by combining two identical planetary gear mechanisms 110L and 110R having three elements and two degrees of freedom on the same axis.
  • the planetary gear mechanisms 110L and 110R for example, a single pinion planetary gear mechanism is adopted.
  • the first electric motor 102L torque TM1 generated in is input to the sun gear S L of the first planetary gear mechanism 110L via a reduction gear train 106L, torque TM2 generated by the second electric motor 102R is decelerated It is input to the sun gear S R of the second planetary gear mechanism 110R through a gear train 106R.
  • first coupling member 111 and the second coupling member 112 are connected to the left and right drive wheels 104L and 104R, respectively, and outputs are taken out.
  • the inputs from the electric motors 102L and 102R are S L and S R
  • the outputs to the drive wheels 104L and 104R are C L + R R and C R + RL .
  • the gear device 105 is configured by combining two identical single pinion type planetary gear mechanisms 110L and 110R, it can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 110L is shown on the upper side, and the speed of the second planetary gear mechanism 110R is shown on the lower side.
  • a diagram is shown.
  • the reduction ratio in each reduction gear train 106L, 106R is omitted, and each sun gear S L , S R is assigned to each sun gear S L , S R.
  • the input torque remains TM1 and TM2.
  • the planet carrier C L and the internal gear R R shown in FIG. 9 are coupled by the first coupling member 111 as shown by the broken line in the figure, and the planet carrier C R and the internal gear R L are combined. Are coupled by the second coupling member 112 as indicated by a broken line in the figure.
  • the torques TM1 and TM2 output from the first electric motor 102L and the second electric motor 102R are input to the sun gears S L and S R , respectively.
  • the drive torques TL and TR transmitted from the first coupling member 111 and the second coupling member 112 located in the middle of the velocity diagram to the left and right driving wheels 104L and 104R are output.
  • the torque difference amplification factor ⁇ of the gear device 105 will be described. Also in this prior art 2, since the two single pinion type planetary gear mechanisms 110L and 110R use gear elements having the same number of teeth, the internal gear R L and the planet carrier C L And the distance between the internal gear R R and the planetary carrier C R are equal to each other. Further, the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
  • FIG. 9 shows the gear device 105 of the prior art 2 in a velocity diagram.
  • the torque difference gain ⁇ can be obtained.
  • the arrow M direction indicates the positive moment direction.
  • the inputs from the electric motors 102L, 102R are S L , S R , the outputs to the drive wheels 104L, 104R are C L + R R , C R + RL , and the torque difference amplification factor ⁇ is (2Zr + Zs) / Zs.
  • the gear device 105 receives the input torque.
  • the difference ⁇ TIN is amplified, and a driving torque difference ⁇ TOUT larger than the input torque difference ⁇ TIN can be obtained.
  • JP 2015-21594 A Japanese Patent No. 4907390
  • the torque difference is amplified by connecting the internal gears R L and R R constituting the two planetary gear mechanisms and the coupling member.
  • One of the connecting members connecting the internal gears R L and R R to the other member necessarily has a larger diameter than the other internal gears R L and R R , so that there is a problem that the apparatus becomes large.
  • the vehicle drive device Since the vehicle drive device is mounted on the vehicle body, it is indispensable to reduce the size and weight of the gear device that amplifies the torque difference in order to reduce the mounting space and secure a wide cabin space.
  • the vehicle drive device When the input shaft of the gear device that amplifies the torque difference of the vehicle drive device is directly connected to the electric motor, and the output shaft of the gear device is connected to the drive wheel, the drive force of the electric motor that matches the drive torque required for the drive wheel is obtained. Since this is necessary, the electric motor becomes large. For this reason, the vehicle drive device has several gear shafts as a reduction mechanism that increases the torque of the electric motor and transmits it to the drive wheels.
  • the gear shaft is connected to the output shaft of the electric motor, the input gear shaft having a small diameter gear as an input gear, the output gear shaft having a large diameter gear as an output gear connected to a drive wheel, and the input gear shaft, At least one or more intermediate gear shafts that transmit power by engaging the gears between the output gear shafts are arranged.
  • the vehicle drive device (prior application example 1) for which the applicant of the present application has applied for a patent has the configuration shown in FIGS.
  • the vehicle drive device 201 of the first application example is provided between two electric motors 202L and 202R that are mounted on a vehicle and can be controlled independently, between the two electric motors 202L and 202R, and left and right drive wheels.
  • a gear device 300 that distributes the driving force from the two electric motors 202L and 202R to the left and right wheels, and speed reducers 203L and 203R that transmit the driving force of the two electric motors 202L and 202R to the driving wheels are provided.
  • the reduction gears 203L and 203R are connected to electric motors 202L and 202R, input gear shafts 212L and 212R having an input gear 212a, output gear shafts 214L and 214R connected to driving wheels and having an output gear 214a, and gears.
  • And intermediate gear shafts 213L and 213R that transmit power between the input gear shafts 212L and 212R and the output gear shafts 214L and 214R, and the gears constituting the reduction gears 203L and 203R are external gears.
  • the gear device 300 that distributes the driving force from the two electric motors 202L and 202R to the left and right wheels is a three-element two-free combination that is coaxially combined with a pair of left and right intermediate gear shafts 213L and 213R.
  • Planetary gear mechanism 300L, 300R is an internal gear R L, and R R, the internal gear R L, R R and planet carrier C L provided coaxially, and C R, the internal gear R L, and R R solar provided coaxially gear S L, and S R, the planetary gear P L as a revolving wheel, and a P R, the two planetary gear mechanisms 300L, of one of the planet carrier C L and the other 300R a first coupling member 231 for coupling the sun gear S R, and a second coupling member 232 for coupling one of the sun gear S L and the other planet carrier C R, the gear 300 coaxial with certain intermediate gear shaft 213L, the 213R, provided an input-side external gear 213a meshing with the input gear 212a, a planet carrier C L of the planetary gear mechanism, is connected to the C R, and an output-side small-diameter gear 213b meshing with the output gear 214a ,
  • the planetary carrier C L , C Both ends of R have a
  • the vehicle driving device 201 is required to be quiet. For this reason, as shown in FIG. 12, external gears constituting the reduction gears 203L and 203R, that is, the output-side small gear 213b that meshes with the output gear 214a and the input-side external gear 213a that meshes with the input gear 212a, as shown in FIG. Gears are used.
  • the output gear 214a that meshes with the output-side small-diameter gear 213b and the input gear 212a that meshes with the input-side external gear 213a are also helical gears.
  • the sun gears S L and S R , the planetary gears P L and P R , and the internal gears R L and R R in the planetary gear mechanisms 300L and 300R constituting the gear device 300 that amplifies the torque difference are also considered in terms of noise reduction.
  • a helical gear may be used.
  • the helical gears generate a thrust force during rotation, so it is necessary to select bearings that also take the thrust force into consideration. Yes, the size of the unit is increased by the bearing size and the bearing support structure (axial dimension B shown in FIG. 12).
  • the rolling is provided between the thrust bearing 220a provided on both sides of the planetary gears P L, P R, and 220b, the internal gear R L, R R and planet carrier C L, and C R
  • Both of the bearings 239a and 239b must be large in size.
  • the gear device 300 which is a torque difference amplifying mechanism has a planetary gear mechanism 300L having three types of gear elements (sun gears S L and S R , planetary gears P L and P R , and internal gears R L and R R ). Because two 300Rs are used, the number of constituent gears is large, and if all gears are manufactured with helical gears in consideration of noise reduction, the number of processing steps such as equipment adjustments according to the torsion angle increases. There is.
  • a small support bearing can be selected by combining a helical gear and a spur gear as a gear constituting the vehicle drive device, the unit can be reduced in size and cost, and the torque difference can be reduced. It is an object of the present invention to reduce the number of processing steps for gears in a planetary gear mechanism that constitutes a gear device that is an amplifying mechanism, and to reduce costs.
  • the present invention provides two drive sources mounted on a vehicle and independently controllable, and provided between the two drive sources and the left and right drive wheels.
  • a vehicle drive device comprising: a gear device that distributes power from a power source to left and right wheels; and a speed reducer that transmits power from the two drive sources to the drive wheels, the speed reducer is connected to the drive source and is input At least one input gear shaft having a gear, an output gear shaft connected to a drive wheel and having an output gear, and at least one intermediate gear shaft that transmits power between the input gear shaft and the output gear shaft by meshing of the gears
  • the gear that constitutes the speed reduction device is an external gear
  • the gear device that distributes the power from the two drive sources to the left and right wheels is coaxial with a pair of left and right intermediate gear shafts arranged coaxially.
  • the planetary gear mechanism comprises an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a planetary gear as a revolving gear. And a first coupling member that couples one planet carrier and the other sun gear of the two planetary gear mechanisms, and a second coupling member that couples one sun gear and the other planet carrier.
  • An input side external gear meshing with an input gear or a drive side intermediate gear shaft and an planetary carrier of the planetary gear mechanism, and an output gear or An output-side small-diameter gear that meshes with the gear of the driven-side intermediate gear shaft is provided, and the external gear that constitutes the reduction gear is a helical gear, and the internal gear, the sun gear, and the planetary gear that constitute the planetary gear mechanism.
  • Each spur gear It is characterized by that.
  • the input-side external gear that meshes with the input gear or the gear of the drive-side intermediate gear shaft can be integrally formed on the outer peripheral portion of the internal gear of the planetary gear mechanism.
  • the input side external gear that meshes with the input gear or the gear on the drive side intermediate gear shaft may be formed by a member separate from the internal gear of the planetary gear mechanism.
  • the internal gear of the planetary gear mechanism can be rotatably supported by a rolling bearing with respect to the planet carrier.
  • the speed reducer housing of the vehicle drive device has a three-piece configuration including a central housing and left and right side housings.
  • a partition wall is provided at the central portion of the central housing to partition the left and right, and the first coupling of the gear device A member and the second coupling member may be provided so as to penetrate the partition wall.
  • the oil supply hole can be provided in the inner diameter of the inner diameter side of the first coupling member and the second coupling member.
  • the sun gear, planetary gear, and internal gear in the planetary gear mechanism of the torque difference amplifying mechanism are spur gears, but the gear of the reduction gear used in combination with the torque difference amplifying mechanism always rotates during traveling. Since there is a possibility that sound may be generated due to the meshing between the gears, a helical gear with good noise reduction is used.
  • the sun gear, planetary gear, and internal gear constituting the planetary gear mechanism are spur gears, so that the thrust force during rotation is not generated and the bearing is downsized and the support structure is simplified.
  • a spur gear it is not necessary to set up in accordance with the torsion angle when processing a helical gear, and the number of processing steps can be reduced.
  • the planetary gear mechanism of the torque difference amplifying mechanism is integrated with the planetary gear mechanism as a whole when there is no difference in torque and rotational speed between the left and right wheels as when traveling straight.
  • a spur gear is used instead of a helical gear because no rotation difference occurs between the sun gear, the planetary gear, and the internal gear, and no sound is generated by meshing between the gears. It was.
  • the torque difference amplifying mechanism mainly causes left and right torque differences and rotational speed differences during turning that is less frequent than straight running. Occasionally, the difference in rotation between the gears in the planetary gear mechanism is little, so the influence on the quietness of the vehicle is small.
  • the sun gear, planetary gear, and internal gear in the planetary gear mechanism of the torque difference amplification mechanism are spur gears, and the gear of the reduction gear used in combination with the torque difference amplification mechanism always rotates during traveling. Since there is a possibility that sound may be generated due to the meshing between the gears, a helical gear with good noise reduction is used.
  • connection between the two planetary gear mechanisms of the gear device that is the torque difference amplifying mechanism is a connection between the sun gear and the planet carrier, and a connecting member having a larger diameter than the internal gear is not required.
  • the difference amplifying mechanism can be reduced, and the vehicle drive device including the torque difference amplifying mechanism can be reduced in size and weight.
  • the gear device which is a torque difference amplifying mechanism, coaxially with the pair of intermediate gear shafts of the vehicle drive device, the gear device itself does not greatly increase in diameter.
  • the two planetary gear mechanisms are coupled by a first coupling member and a second coupling member having a double structure comprising a hollow shaft and a shaft inserted into the hollow shaft, and are connected to the inner diameter side of the inner diameter side coupling member.
  • the shaft center oil supply can be performed, so that the gear tooth surface and the bearing portion inside the planetary gear mechanism can be easily lubricated.
  • the rotation accuracy of the gear shaft can be ensured by supporting both ends of the planetary carrier of the gear device with rolling bearings and supporting the internal gear with the rolling bearings with respect to the planetary carrier.
  • FIG. 1 It is a cross-sectional top view which shows embodiment of the vehicle drive device of this invention. It is an enlarged view of the gear apparatus part of embodiment of FIG. It is the fragmentary sectional view which showed a part of gear of the gear apparatus of embodiment of FIG. 1 with the external shape. It is explanatory drawing of the electric vehicle which showed the gear structure of the vehicle drive device which concerns on embodiment of FIG. 1 with the skeleton figure. It is a speed diagram for demonstrating the torque difference amplification factor by the gear apparatus incorporated in the vehicle drive device which concerns on embodiment of FIG. It is a skeleton figure which shows the gear structure of the vehicle drive device which concerns on the prior art 1.
  • FIG. It is a speed diagram for demonstrating the torque difference gain by the gear apparatus integrated in the vehicle drive device which concerns on the prior art 1.
  • FIG. It is a skeleton figure which shows the gear structure of the vehicle drive device which concerns on the prior art 2.
  • FIG. It is a speed diagram for demonstrating the torque difference gain by the gear apparatus integrated in the vehicle drive device which concerns on the prior art 2.
  • FIG. It is a cross-sectional top view which shows the vehicle drive device of prior application example 1. It is an enlarged view of the gear apparatus part of the vehicle drive device of prior application example 1 shown in FIG. It is the fragmentary sectional view which showed a part of gear of the gear apparatus of the prior application example 1 shown in FIG.
  • the electric vehicle AM shown in FIG. 4 is a rear wheel drive system, and includes a chassis 60, drive wheels 61L and 61R as rear wheels, front wheels 62L and 62R, and a two-motor vehicle drive device 1 according to the present invention.
  • a battery 63, an inverter 64, and the like are provided.
  • the gear structure of the vehicle drive device 1 is shown with the skeleton figure.
  • a vehicle drive device 1 shown in FIG. 1 drives a pair of left and right drive wheels.
  • the motors 2L and 2R serve as two drive sources that are mounted on the vehicle and can be controlled independently, and left and right drive wheels 61L. , 61R and two electric motors 2L, 2R, two left and right reduction gears 3L, 3R are provided.
  • the driving torque of the two-motor type vehicle drive device 1 is transmitted to the left and right drive wheels 61L and 61R via a drive shaft composed of constant velocity joints 65a and 65b and an intermediate shaft 65c.
  • a front wheel driving method and a four wheel driving method may be used.
  • the left and right electric motors 2L and 2R in the two-motor type vehicle drive device 1 use electric motors having the same output characteristics and are accommodated in motor housings 4L and 4R as shown in FIG.
  • the motor housings 4L and 4R include cylindrical motor housing bodies 4aL and 4aR, outer walls 4bL and 4bR that close the outer surfaces of the motor housing bodies 4aL and 4aR, and reduction gears on the inner surfaces of the motor housing bodies 4aL and 4aR. It consists of inner walls 4cL and 4cR separated from 3L and 3R. The inner walls 4cL and 4cR of the motor housing bodies 4aL and 4aR are provided with openings through which the motor shaft 5a is drawn.
  • the electric motors 2 ⁇ / b> L and 2 ⁇ / b> R are of a radial gap type in which a stator 6 is provided on the inner peripheral surface of the motor housing body 4 aL and 4 aR, and a rotor 5 is provided on the inner periphery of the stator 6. I am using something.
  • the electric motors 2L and 2R may be axial gap types.
  • the rotor 5 has a motor shaft 5a in the center, and the motor shaft 5a is drawn from the openings of the inner walls 4cL and 4cR of the motor housing main bodies 4aL and 4aR to the reduction gears 3L and 3R, respectively.
  • a seal member 7 is provided between the openings of the inner side walls 4cL and 4cR of the motor housing bodies 4aL and 4aR and the motor shaft 5a.
  • the motor shaft 5a is rotatably supported by the rolling bearings 8a and 8b on the inner walls 4cL and 4cR and the outer walls 4bL and 4bR of the motor housing main bodies 4aL and 4aR (FIG. 1).
  • a reduction gear housing 9 that accommodates two reduction gears 3L and 3R provided in parallel on the left and right is divided into three pieces in a direction perpendicular to the gear shafts of the reduction gears 3L and 3R, as shown in FIG.
  • the housing 9a has a three-piece structure including left and right side housings 9bL and 9bR fixed to both side surfaces of the central housing 9a.
  • the left and right side housings 9bL and 9bR are fixed to the openings on both sides of the central housing 9a by a plurality of bolts (not shown).
  • a plurality of bolts 10 are used to fix side faces 9bL and 9bR of the reduction gear housing 9 on the side of the outboard side (outside the vehicle body) and the inner side walls 4cL and 4cR of the motor housing bodies 4aL and 4aR of the electric motors 2L and 2R
  • the two electric motors 2L and 2R are fixedly arranged on the left and right sides of the reduction gear housing 9 (FIG. 1).
  • the central housing 9a is provided with a partition wall 11 in the center.
  • the speed reducer housing 9 is divided into left and right parts by the partition wall 11, and independent left and right accommodation chambers for accommodating the two speed reducers 3L and 3R are provided in parallel.
  • the reduction gears 3L and 3R are provided symmetrically, and input gear shafts 12L and 12R having an input gear 12a connected to the motor shaft 5a and a large-diameter input engaged with the input gear 12a.
  • the intermediate gear shafts 13L and 13R having output side small-diameter gears 13b meshing with the side outer gear 13a and the output gear 14a, and the output gear 14a, are pulled out from the speed reducer housing 9 and are constant velocity joints 65a and 65b, and an intermediate shaft 65c.
  • This is a parallel shaft gear reducer provided with output gear shafts 14L, 14R that transmit torque to drive wheels 61L, 61R via (FIG. 4).
  • the input gear shafts 12L and 12R, the intermediate gear shafts 13L and 13R, and the output gear shafts 14L and 14R of the left and right reduction gears 3L and 3R are coaxially arranged.
  • Both ends of the input gear shafts 12L, 12R of the reduction gears 3L, 3R roll into bearing fitting holes 16a formed on both the left and right sides of the partition wall 11 of the central housing 9a and bearing fitting holes 16b formed in the side housings 9bL, 9bR.
  • the bearings 17a and 17b are rotatably supported.
  • the bearing fitting holes 16a and 16b have a stepped shape having a wall portion with which the outer rings of the rolling bearings 17a and 17b abut.
  • the end portions on the outboard side of the input gear shafts 12L, 12R are drawn outward from the openings provided in the side housings 9bL, 9bR, and between the openings and the outer ends of the input gear shafts 12L, 12R. Is provided with an oil seal 18 to prevent leakage of the lubricating oil sealed in the speed reducer housing 9.
  • the input gear shafts 12L and 12R have a hollow structure, and end portions of the motor shaft 5a are inserted into the hollow input gear shafts 12L and 12R.
  • the input gear shafts 12L, 12R and the motor shaft 5a are connected by splines (including the same for serrations).
  • At least one or more intermediate gear shafts 13L and 13R are arranged.
  • the intermediate gear shafts 13L and 13R have a pair of intermediate gear shafts 13L and 13R.
  • the intermediate gear shafts 13L and 13R constitute a stepped gear shaft having an input side external gear 13a meshed with the input gear 12a and an output side small diameter gear 13b meshed with the output gear 14a on the outer peripheral surface.
  • rolling bearings 20a and 20b are fitted into bearing fitting holes 19a formed on both surfaces of the partition wall 11 of the central housing 9a and bearing fitting holes 19b formed on the side housings 9bL and 9bR. Is supported through.
  • the bearing fitting holes 19a and 19b have a stepped shape with a wall portion with which the outer rings of the rolling bearings 20a and 20b abut so that a first coupling member 31 and a second coupling member 32 to be described later pass. It penetrates.
  • the intermediate gear shafts 13L and 13R arranged on the same axis are connected to the intermediate gear shafts 13L and 13R so that the drive torque applied from the two electric motors 2L and 2R is a torque difference between the left and right drive wheels 61L and 61R.
  • a gear device 30 for amplifying and distributing the signal is incorporated.
  • the gear unit 30 is composed of a pair of left and right intermediate gear shafts 13L and 13R arranged on the same axis and two planetary gear mechanisms 30L and 30R with two elements on the same axis.
  • the planetary gear mechanisms 30L and 30R constituting the gear device 30 have internal gears R L and R incorporated in the large-diameter input side external gear 13a of the intermediate gear shafts 13L and 13R, respectively. and R, the internal gear R L, R R and the sun gear S L provided coaxially, S R and internal gear R L, R R and the sun gear S L, the planetary gear P as revolving gear meshing with S R L, and P R, the planetary gear P L, is connected to the P R, the internal gear R L, R R and planet carrier C L provided coaxially, and C R, the one planet carrier C L (FIG.
  • the output side small-diameter gear 13b of 13R is connected to the planetary carriers C L and C R.
  • the planetary gear mechanisms 30L and 30R constituting the gear device 30 are incorporated only in any one of the pair of intermediate gear shafts 13L and 13R.
  • the input side external gear 13a connected to the internal gears R L , R R is a gear provided on the drive side intermediate gear shafts 13L, 13R of the plural pairs of intermediate gear shafts 13L, 13R, or the input gear shaft 12L.
  • the output side small gear 13b provided coaxially with the planetary gear mechanisms 30L and 30R is provided on the driven side of the plurality of pairs of intermediate gear shafts 13L and 13R. It arrange
  • the internal gear R L, R R in connected input-side external gear 13a is an internal gear R L, but are formed integrally with the R R, it may be formed separately .
  • the planet carrier C L, the output-side small-diameter gear 13b which is connected to the C R is the planet carrier C L, although formed integrally with the C R, and formed separately Also good.
  • Planet carrier C L, C R is the planetary gears P L as shown in FIG. 2, P a carrier pin 33 which supports the R, carrier flange 34a on the outboard side end portion linked outboard side of the carrier pin 33 And an inboard carrier flange 34b coupled to the inboard side end.
  • the carrier flange 34a on the outboard side includes a hollow shaft portion 35 extending toward the outboard side, and the end portion on the outboard side of the hollow shaft portion 35 is formed on the side housings 9bL and 9bR of the speed reducer housing 9.
  • the fitting hole 19b is supported via a rolling bearing 20b.
  • the carrier flange 34b on the inboard side includes a hollow shaft portion 36 extending toward the inboard side, and an end portion on the inboard side of the hollow shaft portion 36 is formed in a bearing fitting hole formed in the partition wall 11 of the central housing 9a. 19a is supported via a rolling bearing 20a.
  • the output-side small-diameter gear 13b is integrally formed on the outer peripheral surface of the hollow shaft portion 35 of the carrier flange 34a.
  • the planetary gears P L and P R are supported by the carrier pin 33 via the needle roller bearing 37.
  • each carrier flange 34a, 34b facing surface and a planetary gear P L of, inserting the thrust plate 38 between the P R, the planetary gear P L, thereby achieving a smooth rotation of the P R.
  • each carrier flange 34a, 34b outer peripheral surface and the inner gear R L of the, between the R R, the rolling bearing 39a, are arranged 39 b.
  • a collar 40 is disposed between the carrier flange 34b on the inboard side and the rolling bearing 20a that supports the hollow shaft portion 36 of the carrier flange 34b on the inboard side.
  • the first coupling member 31 and the second coupling member 32 that couple the two planetary gear mechanisms 30L and 30R constituting the gear device 30 of the vehicle drive device 1 are partitions that partition the central housing 9a of the reduction gear housing 9 to the left and right. It penetrates through the wall 11 and is incorporated.
  • the first coupling member 31 and the second coupling member 32 are arranged coaxially, and one coupling member (the second coupling member 32 in the embodiment of FIGS. 1 and 2) is a hollow shaft and the other coupling member. (In the embodiment of FIGS. 1 and 2, the first coupling member 31) has a double structure including a shaft inserted through the hollow shaft.
  • the end portion of the right side of the planetary gear mechanism 30R side in the second coupling member 32 consists of a hollow shaft, the hollow shaft of the carrier flange 34b on the inboard side of the planet carrier C R the spline 41 is provided on the part 36, are connected by spline fitting to the second coupling member 32 the planet carrier C R.
  • the two planetary gear mechanisms 30L, first coupling member 31 of the 30R and a second binding member 32 by connecting the splined to the planet carrier C L and the planet carrier C R, two The planetary gear mechanism can be divided into left and right, and can be incorporated into the three-piece reduction gear housing 9 together with other reduction gear shafts from the left and right.
  • End of the planet carrier C L of the second coupling member 32 has, on its outer peripheral surface, the external gear meshing with the planetary gears P L of the left planetary gear mechanism is formed, the sun the external gear of the left planetary gear mechanism A gear S L is configured.
  • the first coupling member 31 inserted through the second coupling member 32 constituted by a hollow shaft has a large diameter portion 43 at an end portion on the right planetary gear mechanism 30R side, and an outer peripheral surface of the large diameter portion 43 is provided. , external gear meshing with the planetary gears P R of the right planetary gear mechanism 30R is formed, the outer gear constitutes the sun gear S R of the right planetary gear mechanism 30R.
  • the maximum diameter of the sun gear S R are connected to the inner diameter side of the coupling member (first coupling member 31), the binding of the outer diameter side member (the second coupling by member 32) is set smaller than the minimum diameter of the spline hole of the inner surface of the hollow shaft portion 36 of the carrier flange 34b on the inboard side of the planet carrier C R for mating, the inner diameter side of the coupling member (first coupling member 31 ) Can be easily incorporated.
  • first coupling member 31 Between the outer peripheral surface of the inner diameter side coupling member (first coupling member 31) and the inner peripheral surface of the outer diameter side coupling member (second coupling member 32), there are needles 44 at both ends of the collar 44.
  • the roller bearings 45 and 46 are interposed.
  • the first coupling member 31 and the second coupling member 32 and the planetary carriers C L and C R are fitted to the planetary carriers C L and C R (splines 42 and 41) by using a fitting tolerance slidable in the axial direction. Uneven load on the gear tooth surface due to the thrust force can be prevented.
  • the axial movement of the first coupling member 31 and the second coupling member 32 and the planetary carriers C L and C R due to the sliding of the spline (splines 42 and 41) fitting portion is caused by the outer diameter side coupling member (FIG. 1).
  • the second coupling member 32) is regulated by providing thrust bearings 47 and 48 at both ends.
  • the coupling member (the first coupling member 31 in the embodiment of FIGS. 1 and 2) on the inner diameter side of the double-structure shaft that couples the two planetary gear mechanisms 30L and 30R is the coupling member (implementation of FIGS. 1 and 2).
  • the shaft end opposite to the spline fitting between the first coupling member 31) and the planet carrier (C L in the embodiment of FIGS. 1 and 2) is connected to the other planet carrier (the embodiment of FIGS. 1 and 2).
  • C R is supported by a deep groove ball bearing 49.
  • the coupling member (the first coupling member 31 in the embodiment shown in FIGS. 1 and 2) on the inner diameter side of the double-structure shaft that couples the two planetary gear mechanisms 30L and 30R has teeth of the sun gears S L and S R. surface, the planetary gear P L, the tooth surfaces of the P R, in order to supply the lubricating oil, etc, is provided an oil supply hole 50 to the axis.
  • the oil supply hole 50 of the inner diameter side coupling member (first coupling member 31 in the embodiment of FIGS. 1 and 2) has an outer diameter side coupling member (second coupling member 32 in the embodiment of FIGS. 1 and 2).
  • Radial oil supply passages 51 and 52 are provided at the positions of the thrust bearings 47 and 48 at both ends.
  • the output gear shafts 14L and 14R have a large-diameter output gear 14a, and are formed in bearing fitting holes 53a formed on both surfaces of the partition wall 11 of the central housing 9a and bearing fitting holes 53b formed on the side housings 9bL and 9bR. It is supported by rolling bearings 54a and 54b.
  • the bearing fitting holes 53a and 53b have a stepped shape having a wall portion with which the outer rings of the rolling bearings 54a and 54b come into contact.
  • Outboard side ends of the output gear shafts 14L and 14R are drawn out of the reduction gear housing 9 from openings formed in the side housings 9bL and 9bR, and are pulled out to the outboard side of the output gear shafts 14L and 14R.
  • the outer joint portion of the constant velocity joint 65a is splined to the outer peripheral surface of the end portion.
  • the constant velocity joint 65a coupled to the output gear shafts 14L and 14R is connected to the drive wheels 61L and 61R via the intermediate shaft 65c and the constant velocity joint 65b (FIG. 4).
  • An oil seal 55 is provided between the end of the output gear shafts 14L and 14R on the outboard side and the opening formed in the side housings 9bL and 9bR, and leakage of the lubricating oil sealed in the speed reducer housing 9 and the outside Intrusion of muddy water from
  • gears constituting the reduction gears 3L and 3R used in combination with the torque difference amplification mechanism may generate noise due to the meshing between the rotating gears during traveling, the noise reduction is good. Uses helical gears.
  • an input-side external gear 13a that meshes with an input gear 12a that is a component of the reduction gears 3L and 3R
  • an output-side small-diameter gear 13b that meshes with an output gear 14a, as shown in FIG. It is composed by.
  • the input gear 12a meshing with the input-side external gear 13a and the output gear 14a meshing with the output-side small-diameter gear 13b are also constituted by helical gears.
  • the sun gears S L , S R , the planet gears P L , P R , and the internal gears R L , R R in the planetary gear mechanisms 30L, 30R of the torque difference amplifying mechanism are constituted by spur gears, a lotus shown in FIG.
  • the bearing size and the bearing support structure can be reduced, leading to a reduction in the size of the unit.
  • the torsion at the time of processing the helical gears It is not necessary to set up according to the corner, and the number of processing steps can be reduced.
  • the planetary gear mechanisms 30L and 30R of the torque difference amplifying mechanism are rotated as a whole when the planetary gear mechanisms 30L and 30R are united when there is no difference in torque and rotational speed between the left and right wheels as in straight travel.
  • the sun gears S L , S R , the planetary gears P L , P R , the internal gears R L , R R do not produce a rotation difference, and no noise is generated by meshing between the gears.
  • 30R is not a helical gear but a spur gear.
  • the torque difference amplifying mechanism mainly causes left and right torque differences and rotational speed differences.
  • the difference in rotation between the gears in the planetary gear mechanisms 30L and 30R during the turn is small, so the influence on the quietness of the vehicle is small.
  • the sun gears S L and S R , the planet gears P L and P R , and the internal gears R L and R R in the planetary gear mechanisms 30L and 30R of the torque difference amplification mechanism are spur gears, Since the gear elements of the reduction gears 3L and 3R used in combination with the torque difference amplifying mechanism may generate a sound due to the meshing between the rotating gears during traveling, a helical gear with good quietness Is used.
  • the gear configuration of the two-motor type vehicle drive device 1 of the embodiment shown in FIG. 1 is as shown in the skeleton diagram shown in FIG.
  • the left and right electric motors 2 ⁇ / b> L and 2 ⁇ / b> R are operated by electric power supplied from a battery 63 mounted on the vehicle via an inverter 64.
  • the electric motors 2L and 2R are individually controlled by an electronic control device (not shown), and can generate and output different torques.
  • the torque of the motor shaft 5a of the electric motors 2L and 2R is the gear ratio between the input gear shaft 12a of the input gear shafts 12L and 12R of the reduction gears 3L and 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L and 13R. And transmitted to the internal gears R L and R R of the gear device 30.
  • the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a.
  • the torque of the motor shafts 5a of the electric motors 2L and 2R is further increased by the ratio and output to the drive wheels 61L and 61R.
  • the gear device 30 is configured by combining two planetary gear mechanisms 30L and 30R having the same three-element and two-degree-of-freedom with coaxial intermediate gear shafts 13L and 13R.
  • the planetary gear mechanisms 30L and 30R are of a single pinion type.
  • a planetary gear mechanism is used.
  • the planetary gear mechanisms 30L and 30R are coaxially provided with sun gears S L and S R and internal gears R L and R R, and between these sun gears S L and S R and the internal gears R L and R R.
  • a plurality of planetary gears P L, P R is close to the planetary gear P L, provided the P R rotatably supported by the sun gear S L, S R and the internal gear R L, on R R coaxial It is composed of planetary carriers C L and C R.
  • the sun gear S L, S R and the planetary gears P L, P R is the external gear having gear teeth on the outer circumference
  • the internal gear R L, R R is the internal gear having gear teeth on the inner peripheral is there.
  • the planetary gears P L and P R mesh with the sun gears S L and S R and the internal gears R L and R.
  • the gear device 30 includes the first planetary gear mechanism 30L having the sun gear S L , the planet carrier C L , the planet gear P L and the internal gear RL , and the sun gear S R and the planet carrier C.
  • a second planetary gear mechanism 30R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
  • the torque TM1 generated by the electric motor 2L is transmitted to the intermediate gear shaft 13L when the input gear 12a of the input gear shaft 12L and the input side external gear 13a are meshed, and the torque transmitted to the intermediate gear shaft 13L is the first torque. It is transmitted to the output-side small gear 13b of the intermediate gear shaft 13L via the planetary gear mechanism 30L, and the output-side small gear 13b of the intermediate gear shaft 13L and the output gear 14a of the output gear shaft 14L are meshed to drive from the output gear shaft 14L. A driving torque TL is output to the wheel 61L.
  • the torque TM2 generated by the electric motor 2R is transmitted to the intermediate gear shaft 13R when the input gear 12a of the input gear shaft 12R and the input side external gear 13a are meshed, and the torque transmitted to the intermediate gear shaft 13R is the second torque. It is transmitted to the output-side small gear 13b of the intermediate gear shaft 13R via the planetary gear mechanism 30R, and the output-side small gear 13b of the intermediate gear shaft 13R and the output gear 14a of the output gear shaft 14R are meshed to drive from the output gear shaft 14R.
  • a driving torque TR is output to the wheel 61R.
  • Electric motor 2L the output from the 2R, the two planetary gear mechanisms 30L, each of the internal gear R L of 30R, given R R, the first coupling member 31, the output from the second coupling member 32 is the driving wheel 61L , 61R.
  • the 2nd coupling member 32 is comprised by the hollow shaft, the 1st coupling member 31 is penetrated in the inside, and the axis
  • the second coupling member 32 is a hollow shaft, one end (left end in the drawing) has a rotation shaft of the sun gear S L, the other end (right end in the drawing) is connected to the planet carrier C R.
  • the first planetary gear mechanisms 30L and 30R are coupled by the first coupling member 31 and the second coupling member 32.
  • the gear device 30 is configured by combining two identical single pinion planetary gear mechanisms 30L and 30R, and therefore can be represented by two velocity diagrams as shown in FIG.
  • the two speed diagrams are shifted up and down, the speed diagram of the left planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the right planetary gear mechanism 30R is shown on the lower side.
  • the torques TM1 and TM2 output from the electric motors 2L and 2R are respectively transmitted through the input side external gears 13a meshing with the input gears 12a of the input gear shafts 12L and 12R. Since the gears R L and R R are input to the transmission gear, a reduction ratio is applied.
  • the drive torques TL and TR taken out from the gear device 30 are connected to the left and right drive wheels 61L via the output-side small-diameter gear 13b meshing with the output gear 14a.
  • the speed ratio and the calculation formulas shown in FIG. 5 are omitted in the following description of the speed ratio and the calculation formulas, and the internal gears R L , R are omitted.
  • the torque input to R remains TM1 and TM2, and the drive torque remains TL and TR.
  • the distance between R R and the planet carrier C R is equal, and this is a.
  • the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
  • the electric motor 2L, input from 2R is, R L, R R, and the drive wheels 61L, the output of the 61R becomes S R + C L, S L + C R.
  • connection between the two planetary gear mechanisms 30L and 30R constituting the gear device 30 that is the torque difference distribution mechanism is the sun gear S R and the planet carrier C L , and the sun gear S L and the planet carrier C R.
  • No connection member having a larger diameter than the internal gears R L and R R is required.
  • the vehicle on which the vehicle drive device 1 is mounted is not limited to an electric vehicle or a hybrid electric vehicle, and may be, for example, a fuel cell vehicle that uses the first electric motor 2L and the second electric motor 2R as driving sources. Good.
  • the present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention.

Abstract

The present invention addresses the problem of making a torque-difference amplifying mechanism smaller and reducing a vehicle drive apparatus in size and weight. Planetary gear mechanisms 30L, 30R of a gear device 30, which distribute motive power of electric motors 2L, 2R to left and right wheels, respectively, are provided with internal gears RL, RR, planetary carriers CL, CR provided coaxially to the internal gears RL, RR, sun gears SL, SR provided coaxially to the internal gears RL, RR, and planetary gears PL, PR, respectively, and are provided with: a first coupling member 31 coupling the planetary carrier CL on one side and the sun gear SR on the other side; and a second coupling member 32 coupling the sun gear SL on one side and the planetary carrier CR on the other side, wherein input-side external gears 13a which are engaged with input gears 12a, and output-side small diameter gears 13b which are respectively connected to the planetary carriers CL, CR and which are engaged with output gears 14a, are provided to intermediate gear shafts 13L, 13R, external gears composing deceleration devices 3L, 3R are helical gears, and the internal gears RL, RR, the sun gears SL, SR, the planetary gears PL, PR composing the planetary gear mechanisms 30L, 30R are spur gears.

Description

車両駆動装置Vehicle drive device
 この発明は、独立した二つの駆動源のトルク差を増幅させ、左右の駆動輪にトルクを伝達することができる車両駆動装置に関するものである。 The present invention relates to a vehicle drive device capable of amplifying a torque difference between two independent drive sources and transmitting torque to left and right drive wheels.
 電気自動車等の車両において、左右の駆動輪にそれぞれ電動モータを配置して、各電動モータを独立して制御することにより左右の駆動輪に適宜駆動トルク差を与え、これにより車両の旋回モーメントを制御することが知られている。例えば、各電動モータがそれぞれ減速機を介して左右の駆動輪に独立して接続されている場合、各電動モータの回転速度はそれぞれの減速機で減速され、かつ、各電動モータの出力トルクはそれぞれの減速機で増大されて左右の駆動輪に伝達される。ここで、車両の右旋回時と左旋回時の挙動を同様にするために、各電動モータは同じ出力特性にして、それぞれの減速機も同じ減速比にしている。 In a vehicle such as an electric vehicle, electric motors are arranged on the left and right drive wheels, respectively, and each electric motor is controlled independently to give an appropriate drive torque difference between the left and right drive wheels, thereby reducing the turning moment of the vehicle. It is known to control. For example, when each electric motor is independently connected to the left and right drive wheels via a reduction gear, the rotational speed of each electric motor is reduced by the respective reduction gear, and the output torque of each electric motor is It is increased by each reducer and transmitted to the left and right drive wheels. Here, in order to make the vehicle turn right and turn left in the same manner, each electric motor has the same output characteristics, and each reduction gear has the same reduction ratio.
 ところで、左右の駆動輪の出力トルクに差を付けたい場合、左右の電動モータの出力トルクに差を付け、左右の駆動輪に左右の電動モータの出力トルクを減速機を介して伝達する。 Incidentally, when it is desired to make a difference between the output torques of the left and right drive wheels, a difference is made between the output torques of the left and right electric motors, and the output torques of the left and right electric motors are transmitted to the left and right drive wheels via a reduction gear.
 左右の駆動輪に伝達される左右の電動モータの出力トルクは、減速機の減速比に応じて増大される。但し、左右の駆動輪の出力トルクの差の比率は、左右の減速機の減速比が同じであるので、左右の電動モータの出力トルクの差の比率と同一であり、左右の駆動輪の出力トルクの差の比率が増大されるわけではない。 The output torque of the left and right electric motors transmitted to the left and right drive wheels is increased according to the reduction ratio of the reduction gear. However, the ratio of the difference between the output torques of the left and right drive wheels is the same as the ratio of the difference between the output torques of the left and right electric motors because the reduction ratio of the left and right reduction gears is the same. The ratio of the torque difference is not increased.
 ところが、車両のスムーズな旋回走行の実現や、極端なアンダーステア、極端なオーバーステア等の車両の挙動変化を抑制するために、左右の電動モータから与えられる出力トルクの差の比率よりも左右の駆動輪に伝達される出力トルクの差の比率を大きくすることが有効な場合がある。 However, in order to achieve smooth turning of the vehicle and to suppress changes in vehicle behavior such as extreme understeer and extreme oversteer, the left and right drive is more than the ratio of the difference in output torque applied from the left and right electric motors. It may be effective to increase the ratio of the difference in output torque transmitted to the wheels.
 特許文献1及び特許文献2には、二つの駆動源と左右の駆動輪との間に、3要素2自由度の遊星歯車機構を同軸上に二つ組み合わせた歯車装置を備え、二つの駆動源から与えられるトルクの差を増幅して左右の駆動輪に与えることができる車両駆動装置が開示されている。 Patent Document 1 and Patent Document 2 include a gear device in which two planetary gear mechanisms having three elements and two degrees of freedom are coaxially arranged between two drive sources and left and right drive wheels. A vehicle drive device is disclosed that can amplify the difference between torques applied to the left and right driving wheels and amplify the difference.
 特許文献1に開示された車両駆動装置(以下、従来技術1という。)を図6及び図7を参照して説明する。図6は、従来技術1に係る車両駆動装置の歯車構成を示すスケルトン図、図7は従来技術1に係る車両駆動装置に組み込まれた歯車装置によるトルク差の増幅率を説明するための速度線図である。 A vehicle drive device disclosed in Patent Document 1 (hereinafter referred to as Conventional Technology 1) will be described with reference to FIGS. FIG. 6 is a skeleton diagram showing the gear configuration of the vehicle drive device according to the prior art 1, and FIG. 7 is a speed line for explaining the amplification factor of the torque difference by the gear device incorporated in the vehicle drive device according to the prior art 1. FIG.
 車両駆動装置100は、車両に搭載された左右の電動モータ102L及び電動モータ102Rと、左駆動輪104L及び右駆動輪104Rと、これらの間に設けられる歯車装置105と減速ギヤ列106L、106R、107L、107Rとを備えている。 The vehicle drive device 100 includes left and right electric motors 102L and 102R mounted on the vehicle, left drive wheels 104L and right drive wheels 104R, a gear device 105 and reduction gear trains 106L and 106R provided therebetween. 107L and 107R.
 電動モータ102L及び電動モータ102Rは、車両に搭載されたバッテリ(図示省略)からの電力により動作し、電子制御装置(図示省略)により個別に制御され、異なるトルクを発生させて出力することができる。 The electric motor 102L and the electric motor 102R operate with electric power from a battery (not shown) mounted on the vehicle, are individually controlled by an electronic control device (not shown), and can generate and output different torques. .
 電動モータ102Lの出力軸102aL、電動モータ102Rの出力軸102aRは、それぞれ減速ギヤ列106L、106Rを介して歯車装置105の各結合部材111、112に接続される。歯車装置105からの出力は減速ギヤ列107L、107Rを介して左右の駆動輪104L、104Rに与えられる。 The output shaft 102aL of the electric motor 102L and the output shaft 102aR of the electric motor 102R are connected to the coupling members 111 and 112 of the gear device 105 through reduction gear trains 106L and 106R, respectively. The output from the gear unit 105 is given to the left and right drive wheels 104L and 104R via the reduction gear trains 107L and 107R.
 歯車装置105は、3要素2自由度の同一の遊星歯車機構110L、110Rが同軸上に二つ組み合わされて構成されている。 The gear unit 105 is configured by combining two identical planetary gear mechanisms 110L and 110R with three elements and two degrees of freedom on the same axis.
 遊星歯車機構110L、110Rには、例えば、シングルピニオン形式の遊星歯車機構が採用されている。シングルピニオン形式の遊星歯車機構は、同軸上に設けられた太陽歯車SL、SR及び内歯車RL、RRと、これら太陽歯車SL、SRと内歯車RL、RRとの間に位置する複数の遊星歯車PL、PRと、遊星歯車PL、PRを回動可能に支持し、太陽歯車SL、SR及び内歯車RL、RRと同軸上に設けられた遊星キャリヤCL、CRとから構成される。ここで、太陽歯車SL、SRと遊星歯車PL、PRは外周にギヤ歯を有する外歯歯車であり、内歯車RL、RRは内周にギヤ歯を有する内歯歯車である。 As the planetary gear mechanisms 110L and 110R, for example, single-pinion type planetary gear mechanisms are employed. The single-pinion type planetary gear mechanism includes a sun gear S L , S R and internal gears R L , R R provided on the same axis, and these sun gears S L , S R and internal gears R L , R R. A plurality of planetary gears P L and P R and planetary gears P L and P R are rotatably supported, and are provided coaxially with the sun gears S L and S R and the internal gears R L and R R. It was planet carrier C L, composed of a C R. Here, the sun gear S L, S R and the planetary gears P L, P R is the external gear having gear teeth on the outer circumference, the internal gear R L, R R is the internal gear having gear teeth on the inner peripheral is there.
 遊星歯車PL、PRは、太陽歯車SL、SRと内歯車RL、RRとに噛み合っている。図6に示すようなシングルピニオン遊星歯車機構では、遊星キャリヤCL、CRを固定した場合に太陽歯車SL、SRと内歯車RL、RRとが逆方向に回転するため、速度線図に表すと内歯車RL、RR及び太陽歯車SL、SRが遊星キャリヤCL、CRに対して反対側に配置される。換言すると、内歯車RL、RRは遊星キャリヤCL、CRを挟んで太陽歯車SL、SRの反対側に配置される。 The planetary gears P L and P R are in mesh with the sun gears S L and S R and the internal gears R L and R R. In the single pinion planetary gear mechanism as shown in FIG. 6, when the planetary carriers C L and C R are fixed, the sun gears S L and S R and the internal gears R L and R R rotate in the opposite directions. In the diagram, the internal gears R L and R R and the sun gears S L and S R are arranged on the opposite side with respect to the planetary carriers C L and C R. In other words, the internal gears R L , R R are arranged on the opposite side of the sun gears S L , S R across the planetary carriers C L , C R.
 図7に示す速度線図においては、遊星キャリヤCL、CRから内歯車RL、RRまでの長さと遊星キャリヤCL、CRから太陽歯車SL、SRまでの長さの比は、内歯車RL、RRの歯数Zrの逆数(1/Zr)と太陽歯車SL、SRの歯数Zsの逆数(1/Zs)との比と等しい。 In the velocity diagram shown in FIG. 7, the ratio of the length from the planet carriers C L , C R to the internal gears R L , R R and the length from the planet carriers C L , C R to the sun gears S L , S R. Is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr of the internal gears R L and R R and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R.
 この歯車装置105は、図6に示すように、太陽歯車SL、遊星キャリヤCL、遊星歯車PL及び内歯車RLを有する第1遊星歯車機構110Lと、同じく太陽歯車SR、遊星キャリヤCR、遊星歯車PR及び内歯車RRを有する第2遊星歯車機構110Rとが同軸上に組み合わされて構成されている。 As shown in FIG. 6, the gear unit 105 includes a first planetary gear mechanism 110L having a sun gear S L , a planetary carrier C L , a planetary gear P L and an internal gear RL , as well as a sun gear S R and a planet carrier. C R, and a second planetary gear mechanism 110R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
 そして、第1遊星歯車機構110Lの太陽歯車SLと第2遊星歯車機構110Rの内歯車RRとが第1結合部材111によって結合され、第1遊星歯車機構110Lの内歯車RLと第2遊星歯車機構110Rの太陽歯車SRとが第2結合部材112によって結合されている。 Then, the sun gear S L of the first planetary gear mechanism 110L and the internal gear R R of the second planetary gear mechanism 110R is coupled by a first coupling member 111, and the internal gear R L of the first planetary gear mechanism 110L second The sun gear S R of the planetary gear mechanism 110R is coupled by the second coupling member 112.
 第1結合部材111には、電動モータ102Lで発生されたトルクTM1が減速ギヤ列106Lを介して入力され、第2結合部材112には、電動モータ102Rで発生されたトルクTM2が減速ギヤ列106Rを介して入力される。また、第1遊星歯車機構110Lの遊星キャリヤCL及び第2遊星歯車機構110Rの遊星キャリヤCRは、それぞれ減速ギヤ列107L、107Rを介して左右の駆動輪104L、104Rに接続されて出力が取り出される。 The torque TM1 generated by the electric motor 102L is input to the first coupling member 111 via the reduction gear train 106L, and the torque TM2 generated by the electric motor 102R is input to the second coupling member 112 by the reduction gear train 106R. Is input through. Further, the planet carrier C R of the planetary carrier C L and the second planetary gear mechanism 110R of the first planetary gear mechanism 110L, respectively reduction gear train 107L, through 107R left and right drive wheels 104L, the output is connected to the 104R It is taken out.
 ここで、歯車装置105によって伝達される駆動トルクについて、図7に示す速度線図を用いて説明する。 Here, the driving torque transmitted by the gear device 105 will be described with reference to the velocity diagram shown in FIG.
 歯車装置105は、二つの同一の遊星歯車機構110L、110Rを組み合わせて構成されるため、図7に示すように二本の速度線図によって表すことができる。ここでは、理解を容易にするために、二本の速度線図を上下にずらし、上側に遊星歯車機構110Lの速度線図を示し、下側に遊星歯車機構110Rの速度線図を示す。 Since the gear device 105 is configured by combining two identical planetary gear mechanisms 110L and 110R, it can be represented by two velocity diagrams as shown in FIG. Here, for easy understanding, the two speed diagrams are shifted up and down, the speed diagram of the planetary gear mechanism 110L is shown on the upper side, and the speed diagram of the planetary gear mechanism 110R is shown on the lower side.
 また、第1の遊星歯車機構110Lの速度線図と第2の遊星歯車機構110Rの速度線図は、太陽歯車SL、SRと内歯車RL、RRが左右反対に配置される。すなわち、図7において、第1の遊星歯車機構110Lの太陽歯車SLの下に第2の遊星歯車機構110Rの内歯車RRが配置され、第1の遊星歯車機構110Lの内歯車RLの下に第2の遊星歯車機構110Rの太陽歯車SRが配置される。 Further, in the velocity diagram of the first planetary gear mechanism 110L and the velocity diagram of the second planetary gear mechanism 110R, the sun gears S L and S R and the internal gears R L and R R are arranged in the left and right directions. That is, in FIG. 7, the internal gear R R of the second planetary gear mechanism 110R is arranged on the sun gear S L of the first planetary gear mechanism 110L, the internal gear R L of the first planetary gear mechanism 110L the sun gear S R of the second planetary gear mechanism 110R is disposed underneath.
 この歯車装置105は、図7に示す二本の速度線図の両端に位置する要素同士が、図中破線で示すように、第1結合部材111及び第2結合部材112によってそれぞれ結合されている。そして、第1結合部材111及び第2結合部材112に、それぞれ第1の電動モータ102L及び第2の電動モータ102Rから出力されたトルクTM1及びTM2が入力される。ここで、本来は、各電動モータ102L、102Rから出力されたトルクTM1及びTM2は各減速ギヤ列106L、106Rを介し各結合部材111、112に入力されるため、減速比が掛かるが、理解を容易にするため、速度線図及び各計算式の以降の説明においては、減速比を省略し、各結合部材111、112に入力されるトルクをTM1及びTM2のままとする。 In the gear device 105, the elements located at both ends of the two velocity diagrams shown in FIG. 7 are coupled by the first coupling member 111 and the second coupling member 112, respectively, as indicated by broken lines in the drawing. . Then, the torques TM1 and TM2 output from the first electric motor 102L and the second electric motor 102R are input to the first connecting member 111 and the second connecting member 112, respectively. Here, originally, the torques TM1 and TM2 output from the electric motors 102L and 102R are input to the coupling members 111 and 112 via the reduction gear trains 106L and 106R, respectively. For the sake of simplicity, in the following explanation of the velocity diagram and each calculation formula, the reduction ratio is omitted, and the torques input to the coupling members 111 and 112 remain TM1 and TM2.
 一方、図7に示す速度線図上で中間に位置する遊星キャリヤCL、CRから左右の駆動輪104L、104Rに伝達される駆動トルクTL、TRが出力される。 On the other hand, the drive torques TL and TR transmitted from the planetary carriers C L and C R located in the middle on the velocity diagram shown in FIG. 7 to the left and right drive wheels 104L and 104R are output.
 このように構成された歯車装置105によって、第1の電動モータ102L及び第2の電動モータ102Rで発生させる各駆動トルクTM1、TM2にトルク差(入力トルク差)ΔTIN(=TM2-TM1)を与えると、左駆動輪104Lに伝達される駆動トルクTLと右駆動輪104Rに伝達される駆動トルクTRとに駆動トルク差ΔTOUT(=TL-TR)を発生させることができる。すなわち、この歯車装置105によれば、以下の式(1)の関係が得られる。なお、係数αはトルク差増幅率である。 The gear device 105 configured in this manner gives a torque difference (input torque difference) ΔTIN (= TM2−TM1) to the drive torques TM1 and TM2 generated by the first electric motor 102L and the second electric motor 102R. Then, a drive torque difference ΔTOUT (= TL−TR) can be generated between the drive torque TL transmitted to the left drive wheel 104L and the drive torque TR transmitted to the right drive wheel 104R. That is, according to the gear device 105, the relationship of the following expression (1) is obtained. The coefficient α is a torque difference amplification factor.
 (TL-TR)=α×(TM2-TM1) …(1) (TL-TR) = α × (TM2-TM1) (1)
 この従来技術1に係る歯車装置105のトルク差増幅率αについて説明する。ここでは、二つの遊星歯車機構110L、110Rは、シングルピニオン遊星歯車機構であり、同一の歯数の歯車要素を使用しているため、速度線図においては内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLとキャリヤCLとの距離及び太陽歯車SRと遊星キャリヤCRとの距離も等しく、これをbとする。 The torque difference amplification factor α of the gear device 105 according to prior art 1 will be described. Here, since the two planetary gear mechanisms 110L and 110R are single pinion planetary gear mechanisms and use gear elements having the same number of teeth, the internal gear R L and the planet carrier C L are represented in the velocity diagram. And the distance between the internal gear R R and the planetary carrier C R are equal to each other. Further, the distance between the sun gear S L and the carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
 左右両端の第1結合部材111、第2結合部材112に、それぞれ第1の電動モータ102L、第2の電動モータ102RのトルクTM1、TM2を入力し、遊星キャリヤCL、CRから駆動トルクTL、TRを取り出す場合、トルクの入力と出力の関係から、以下の式(2)が得られる。 Torques TM1 and TM2 of the first electric motor 102L and the second electric motor 102R are input to the first coupling member 111 and the second coupling member 112 at the left and right ends, respectively, and the driving torque TL is output from the planetary carriers C L and C R. When TR is taken out, the following equation (2) is obtained from the relationship between torque input and output.
 TR+TL=TM1+TM2   …(2) TR + TL = TM1 + TM2 (2)
 また、図中の左端(RL、SR)を基準としたモーメントの式は以下の式(3)となる。なお、図7において、矢印M方向が正のモーメント方向を示している。 Also, the equation of moment with reference to the left end (R L , S R ) in the figure is the following equation (3). In FIG. 7, the arrow M direction indicates the positive moment direction.
 0=aTL+bTR-(a+b)TM1  …(3) 0 = aTL + bTR- (a + b) TM1 (3)
 これら式(2)、(3)からTL、TRについてまとめると、以下の(4)、(5)式となる。
TL=((a/(b-a))+1)・TM2-(a/(b-a))・TM1…(4)
TR=((a/(b-a))+1)・TM1-(a/(b-a))・TM2…(5)
Summarizing TL and TR from these equations (2) and (3), the following equations (4) and (5) are obtained.
TL = ((a / (ba)) + 1) .TM2- (a / (ba)). TM1 (4)
TR = ((a / (ba)) + 1) .TM1- (a / (ba)). TM2 (5)
 これら(4)、(5)式から駆動トルク差(TL-TR)は以下の(6)式となる。
(TL-TR)=((a+b)/(b-a))・(TM2-TM1)…(6)
From these equations (4) and (5), the drive torque difference (TL-TR) is expressed by the following equation (6).
(TL-TR) = ((a + b) / (ba)). (TM2-TM1) (6)
 シングルピニオン形式の遊星歯車機構の場合、長さaは内歯車RL、RRの歯数Zrの逆数(1/Zr)、長さbは太陽歯車SL、SRの歯数Zsの逆数(1/Zs)となるため、上記の式は(7)式のように書き換えられる。
 (TL-TR)=((Zr+Zs)/(Zr-Zs))・(TM2-TM1)…(7)
In the case of a single pinion type planetary gear mechanism, the length a is the reciprocal (1 / Zr) of the number of teeth Zr of the internal gears R L and R R , and the length b is the reciprocal of the number of teeth Zs of the sun gears S L and S R. Since (1 / Zs), the above equation can be rewritten as equation (7).
(TL-TR) = ((Zr + Zs) / (Zr-Zs)). (TM2-TM1) (7)
 上記(1)、(7)式よりトルク差増幅率αは、(Zr+Zs)/(Zr-Zs)となる。 From the above equations (1) and (7), the torque difference amplification factor α is (Zr + Zs) / (Zr−Zs).
 上記したように、この従来技術1では、第1の電動モータ102L、第2の電動モータ102Rからの入力は、SL+RR、SR+RLとなり、駆動輪104L、104Rへの出力はCL、CRとなる。 As described above, in the prior art 1, the inputs from the first electric motor 102L and the second electric motor 102R are S L + R R and S R + R L , and the outputs to the drive wheels 104L and 104R are C L, the C R.
 二つの電動モータ102L、102Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTIN(=(TM2-TM1))を与えると、歯車装置105において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差α・ΔTINを得ることができる。すなわち、入力トルク差ΔTINが小さくても、歯車装置105において所定のトルク差増幅率αで入力トルク差ΔTINを増幅することができ、左駆動輪104Lと右駆動輪104Rとに伝達される駆動トルクTL、TRに、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUT(=α・(TM2-TM1))を与えることができる。 When different torques TM1 and TM2 are generated by the two electric motors 102L and 102R to give an input torque difference ΔTIN (= (TM2−TM1)), the gear device 105 amplifies the input torque difference ΔTIN, and the input torque difference ΔTIN Large driving torque difference α · ΔTIN can be obtained. That is, even if the input torque difference ΔTIN is small, the gear device 105 can amplify the input torque difference ΔTIN with a predetermined torque difference amplification factor α, and the drive torque transmitted to the left drive wheel 104L and the right drive wheel 104R. A driving torque difference ΔTOUT (= α · (TM2−TM1)) larger than the input torque difference ΔTIN can be given to TL and TR.
 次に、特許文献2に開示された車両駆動装置(以下、従来技術2という。)を図8及び図9を参照して説明する。図8は、従来技術2に係る車両駆動輪装置の歯車構成を示すスケルトン図、図9は従来技術2に係る車両駆動装置によるトルク差増幅率を説明するための速度線図である。 Next, a vehicle drive device disclosed in Patent Document 2 (hereinafter referred to as Conventional Technology 2) will be described with reference to FIGS. FIG. 8 is a skeleton diagram showing the gear configuration of the vehicle drive wheel device according to the prior art 2, and FIG. 9 is a velocity diagram for explaining the torque difference amplification factor by the vehicle drive device according to the prior art 2.
 なお、図8においては、従来技術1との差を分かりやすくするために、左右に電動モータ102L、102Rを配置して従来技術1と同様の図にし、同一構成部分には同一符号を付している。 In FIG. 8, in order to make the difference from the prior art 1 easier to understand, the electric motors 102L and 102R are arranged on the left and right to make the same figure as the prior art 1, and the same components are denoted by the same reference numerals. ing.
 図8に示すように、車両駆動装置100は、車両に搭載された第1の電動モータ102L及び第2の電動モータ102Rと、左駆動輪104L及び右駆動輪104Rと、これらの間に設けられる歯車装置105と減速ギヤ列106L、106Rとを備えている。 As shown in FIG. 8, the vehicle drive device 100 is provided between a first electric motor 102L and a second electric motor 102R mounted on the vehicle, a left drive wheel 104L and a right drive wheel 104R, and these. A gear device 105 and reduction gear trains 106L and 106R are provided.
 第1の電動モータ102L及び第2の電動モータ102Rは、車両に搭載されたバッテリ(図示省略)からの電力により動作し、電子制御装置(図示省略)により個別に制御され、異なるトルクを発生させて出力することができる。第1の電動モータ102Lの出力軸102aL、第2の電動モータ102Rの出力軸102aRは、それぞれ減速ギヤ列106L、106Rを介して歯車装置105の太陽歯車SL、SRに接続される。歯車装置105からの出力は左右の駆動輪104L、104Rに与えられる。 The first electric motor 102L and the second electric motor 102R operate with electric power from a battery (not shown) mounted on the vehicle, and are individually controlled by an electronic control device (not shown) to generate different torques. Can be output. The output shaft 102aL of the first electric motor 102L and the output shaft 102aR of the second electric motor 102R are connected to the sun gears S L and S R of the gear device 105 via reduction gear trains 106L and 106R, respectively. The output from the gear unit 105 is given to the left and right drive wheels 104L, 104R.
 従来技術1と同様に従来技術2の歯車装置105は、3要素2自由度の同一の遊星歯車機構110L、110Rが同軸上に二つ組み合わされて構成されている。遊星歯車機構110L、110Rには、例えば、シングルピニオン遊星歯車機構が採用されている。 Like the prior art 1, the gear device 105 of the prior art 2 is configured by combining two identical planetary gear mechanisms 110L and 110R having three elements and two degrees of freedom on the same axis. As the planetary gear mechanisms 110L and 110R, for example, a single pinion planetary gear mechanism is adopted.
 そして、第1の遊星歯車機構110Lの遊星キャリヤCLと第2の遊星歯車機構110Rの内歯車RRとが第1結合部材111によって結合され、第1の遊星歯車機構110Lの内歯車RLと第2の遊星歯車機構110Rの遊星キャリヤCRとが第2結合部材112によって結合されている。 Then, the planet carrier C L of the first planetary gear mechanism 110L and the internal gear R R of the second planetary gear mechanism 110R is coupled by a first coupling member 111, the internal gear R L of the first planetary gear mechanism 110L When the planet carrier C R of the second planetary gear mechanism 110R is coupled by the second coupling member 112.
 第1の電動モータ102Lで発生されたトルクTM1が減速ギヤ列106Lを介して第1の遊星歯車機構110Lの太陽歯車SLに入力され、第2の電動モータ102Rで発生されたトルクTM2が減速ギヤ列106Rを介して第2の遊星歯車機構110Rの太陽歯車SRに入力される。 The first electric motor 102L torque TM1 generated in is input to the sun gear S L of the first planetary gear mechanism 110L via a reduction gear train 106L, torque TM2 generated by the second electric motor 102R is decelerated It is input to the sun gear S R of the second planetary gear mechanism 110R through a gear train 106R.
 また、第1結合部材111、第2の結合部材112は、それぞれ左右の駆動輪104L、104Rに接続されて出力が取り出される。 Also, the first coupling member 111 and the second coupling member 112 are connected to the left and right drive wheels 104L and 104R, respectively, and outputs are taken out.
 上記したように、この従来技術2では、電動モータ102L、102Rからの入力は、SL、SRとなり、駆動輪104L、104Rへの出力は、CL+RR、CR+RLとなる。 As described above, in the conventional technique 2, the inputs from the electric motors 102L and 102R are S L and S R , and the outputs to the drive wheels 104L and 104R are C L + R R and C R + RL .
 ここで、従来技術2の歯車装置105によって伝達される駆動トルクについて、図9に示す速度線図を用いて説明する。 Here, the driving torque transmitted by the gear device 105 of the prior art 2 will be described with reference to a velocity diagram shown in FIG.
 歯車装置105は、二つの同一のシングルピニオン形式の遊星歯車機構110L、110Rを組み合わせて構成されるため、図9に示すように二本の速度線図によって表すことができる。ここでは、理解を容易にするために、二本の速度線図を上下にずらし、上側に第1の遊星歯車機構110Lの速度線図を示し、下側に第2の遊星歯車機構110Rの速度線図を示している。また、従来技術1での説明と同様に、速度線図及び各計算式の以降の説明においては、各減速ギヤ列106L、106Rでの減速比を省略し、各太陽歯車SL、SRに入力されるトルクをTM1及びTM2のままとする。 Since the gear device 105 is configured by combining two identical single pinion type planetary gear mechanisms 110L and 110R, it can be represented by two velocity diagrams as shown in FIG. Here, for ease of understanding, the two speed diagrams are shifted up and down, the speed diagram of the first planetary gear mechanism 110L is shown on the upper side, and the speed of the second planetary gear mechanism 110R is shown on the lower side. A diagram is shown. Similarly to the description in the related art 1, in the following explanation of the velocity diagram and each calculation formula, the reduction ratio in each reduction gear train 106L, 106R is omitted, and each sun gear S L , S R is assigned to each sun gear S L , S R. The input torque remains TM1 and TM2.
 図8に示す歯車装置105では、図9に示す遊星キャリヤCLと内歯車RRが、図中破線で示すように、第1結合部材111によって結合され、遊星キャリヤCRと内歯車RLが、図中破線で示すように、第2結合部材112によって結合されている。 In the gear device 105 shown in FIG. 8, the planet carrier C L and the internal gear R R shown in FIG. 9 are coupled by the first coupling member 111 as shown by the broken line in the figure, and the planet carrier C R and the internal gear R L are combined. Are coupled by the second coupling member 112 as indicated by a broken line in the figure.
 そして、太陽歯車SL、SRにそれぞれ第1の電動モータ102L及び第2の電動モータ102Rから出力されたトルクTM1及びTM2が入力される。一方、速度線図上で中間に位置する第1結合部材111、第2結合部材112から左右の駆動輪104L、104Rに伝達される駆動トルクTL、TRが出力される。 The torques TM1 and TM2 output from the first electric motor 102L and the second electric motor 102R are input to the sun gears S L and S R , respectively. On the other hand, the drive torques TL and TR transmitted from the first coupling member 111 and the second coupling member 112 located in the middle of the velocity diagram to the left and right driving wheels 104L and 104R are output.
 このように構成された歯車装置105によっても、第1の電動モータ102L及び第2の電動モータ102Rで発生させる各駆動トルクTM1、TM2にトルク差(入力トルク差)ΔTIN(=TM2-TM1)を与えることで、左駆動輪104Lに伝達される駆動トルクTLと右駆動輪104Rに伝達される駆動トルクTRとに駆動トルク差ΔTOUT(=TR-TL)を発生させることができる。 Also with the gear device 105 configured in this way, a torque difference (input torque difference) ΔTIN (= TM2−TM1) is generated between the drive torques TM1 and TM2 generated by the first electric motor 102L and the second electric motor 102R. By giving, a driving torque difference ΔTOUT (= TR−TL) can be generated between the driving torque TL transmitted to the left driving wheel 104L and the driving torque TR transmitted to the right driving wheel 104R.
 この従来技術2に係る歯車装置105のトルク差増幅率αについて説明する。この従来技術2においても、二つのシングルピニオン形式の遊星歯車機構110L、110Rは、同一の歯数の歯車要素を使用しているため、速度線図においては内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLと遊星キャリヤCLとの距離及び太陽歯車SRと遊星キャリヤCRとの距離も等しく、これをbとする。 The torque difference amplification factor α of the gear device 105 according to prior art 2 will be described. Also in this prior art 2, since the two single pinion type planetary gear mechanisms 110L and 110R use gear elements having the same number of teeth, the internal gear R L and the planet carrier C L And the distance between the internal gear R R and the planetary carrier C R are equal to each other. Further, the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b.
 この従来技術2の歯車装置105を速度線図で示すと図9のようになる。 FIG. 9 shows the gear device 105 of the prior art 2 in a velocity diagram.
 この速度線図において、トルクの釣り合いを考えると、トルク差増幅率αを求めることができる。なお、図9において、矢印M方向が正のモーメント方向を示している。 In this speed diagram, considering the torque balance, the torque difference gain α can be obtained. In FIG. 9, the arrow M direction indicates the positive moment direction.
 SRの点を基準にしたモーメントMの釣り合いから下記(8)式が算出される。
 b・TR+(a+b)・TL-(a+2b)・TM1=0 …(8)
The following equation (8) is calculated from the balance of the moment M with respect to the point of S R.
b.TR + (a + b) .TL- (a + 2b) .TM1 = 0 (8)
 SLの点を基準にしたモーメントMの釣り合いから下記(9)式が算出される。
 -b・TL-(a+b)・TR+(a+2b)・TM2=0 …(9)
The following equation (9) is calculated from the balance of the moment M with respect to the point of S L.
-B.TL- (a + b) .TR + (a + 2b) .TM2 = 0 (9)
(8)式+(9)式より、下記(10)式が算出される。
a・(TR-TL)―(a+2b)・(TM2-TM1)=0
(TR-TL)=((a+2b)/a)・(TM2-TM1)  …(10)
The following expression (10) is calculated from the expression (8) + the expression (9).
a · (TR−TL) − (a + 2b) · (TM2−TM1) = 0
(TR-TL) = ((a + 2b) / a). (TM2-TM1) (10)
 (10)式の(a+2b)/aがトルク差増幅率αとなる。 (A + 2b) / a in the equation (10) is the torque difference amplification factor α.
 a=1/Zr、b=1/Zsを代入すると、α=(2Zr+Zs)/Zsとなる。 When a = 1 / Zr and b = 1 / Zs are substituted, α = (2Zr + Zs) / Zs.
 この従来技術2では、電動モータ102L、102Rからの入力は、SL、SR、駆動輪104L、104Rへの出力はCL+RR、CR+RLであり、トルク差増幅率αは、(2Zr+Zs)/Zsである。 In this prior art 2, the inputs from the electric motors 102L, 102R are S L , S R , the outputs to the drive wheels 104L, 104R are C L + R R , C R + RL , and the torque difference amplification factor α is (2Zr + Zs) / Zs.
 上記のように、従来技術1及び従来技術2に記載のものにおいては、二つの電動モータ102L、102Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTINを与えると、歯車装置105において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUTを得ることができる。 As described above, in the conventional technology 1 and the conventional technology 2, when the two electric motors 102L and 102R generate different torques TM1 and TM2 to give the input torque difference ΔTIN, the gear device 105 receives the input torque. The difference ΔTIN is amplified, and a driving torque difference ΔTOUT larger than the input torque difference ΔTIN can be obtained.
特開2015-21594号公報JP 2015-21594 A 特許第4907390号公報Japanese Patent No. 4907390
 ところで、前記従来技術1及び従来技術2では、2つの遊星歯車機構を構成する内歯車RL、RRと結合部材とを接続することによりトルク差を増幅するようにしているため、左右どちらかの内歯車RL、RRと別部材を繋ぐ結合部材の1つが、必ず他方の内歯車RL、RRより大径になるため、装置が大型化するという問題がある。 By the way, in the prior art 1 and the prior art 2, the torque difference is amplified by connecting the internal gears R L and R R constituting the two planetary gear mechanisms and the coupling member. One of the connecting members connecting the internal gears R L and R R to the other member necessarily has a larger diameter than the other internal gears R L and R R , so that there is a problem that the apparatus becomes large.
 車両駆動装置は、車体に搭載されるため、搭載空間を小さくして車室空間を広く確保するためには、トルク差を増幅する歯車装置の小型化、軽量化は必須である。 Since the vehicle drive device is mounted on the vehicle body, it is indispensable to reduce the size and weight of the gear device that amplifies the torque difference in order to reduce the mounting space and secure a wide cabin space.
 車両駆動装置のトルク差を増幅する歯車装置の入力軸を直接電動モータに連結し、歯車装置の出力軸を駆動輪に連結すると、駆動輪に必要な駆動トルクに合わせた電動モータの駆動力が必要となるため、電動モータが大型化してしまう。このため、車両駆動装置には電動モータのトルクを増大して駆動輪に伝達する減速機構としてのいくつかの歯車軸を有する。歯車軸は、電動モータの出力軸と連結し、入力歯車としての小径歯車を有する入力歯車軸と、駆動輪と連結し、出力歯車としての大径歯車を有する出力歯車軸と、入力歯車軸と出力歯車軸の間で歯車が噛合うことで動力伝達を行う中間歯車軸を少なくとも1つ以上配置する構成になっている。 When the input shaft of the gear device that amplifies the torque difference of the vehicle drive device is directly connected to the electric motor, and the output shaft of the gear device is connected to the drive wheel, the drive force of the electric motor that matches the drive torque required for the drive wheel is obtained. Since this is necessary, the electric motor becomes large. For this reason, the vehicle drive device has several gear shafts as a reduction mechanism that increases the torque of the electric motor and transmits it to the drive wheels. The gear shaft is connected to the output shaft of the electric motor, the input gear shaft having a small diameter gear as an input gear, the output gear shaft having a large diameter gear as an output gear connected to a drive wheel, and the input gear shaft, At least one or more intermediate gear shafts that transmit power by engaging the gears between the output gear shafts are arranged.
 従来技術1および従来技術2では、車両駆動装置における歯車配置がスケルトン図でしか示されていないが、本願の出願人は、従来技術1と従来技術2におけるトルク差を増幅する歯車装置よりも小型、軽量化を図った車両駆動装置を、既に特許出願を行っている(特願2016-023529号)。 In the prior art 1 and the prior art 2, the gear arrangement in the vehicle drive device is shown only in the skeleton diagram, but the applicant of the present application is smaller than the gear device that amplifies the torque difference between the prior art 1 and the prior art 2. A patent application has already been filed for a vehicle drive device that has been reduced in weight (Japanese Patent Application No. 2016-023529).
 この本願の出願人が特許出願している車両駆動装置(先願例1)は、図10~図12に示す構成である。 The vehicle drive device (prior application example 1) for which the applicant of the present application has applied for a patent has the configuration shown in FIGS.
 先願例1の車両駆動装置201は、車両に搭載され独立して制御可能な二つの電動モータ202L、202Rと、二つの電動モータ202L、202Rと左右の駆動輪との間に設けられ、二つの電動モータ202L、202Rからの駆動力を左右輪に分配する歯車装置300と、二つの電動モータ202L、202Rの駆動力を駆動輪に伝達する減速装置203L、203Rとを備えている。前記減速装置203L、203Rは、電動モータ202L、202Rに連結し、入力歯車212aを有する入力歯車軸212L、212Rと、駆動輪に連結し、出力歯車214aを有する出力歯車軸214L、214Rと、歯車の噛合いにより入力歯車軸212L、212Rから出力歯車軸214L、214Rの間の動力伝達を行う中間歯車軸213L、213Rとを有し、減速装置203L、203Rを構成する歯車が外歯車である。 The vehicle drive device 201 of the first application example is provided between two electric motors 202L and 202R that are mounted on a vehicle and can be controlled independently, between the two electric motors 202L and 202R, and left and right drive wheels. A gear device 300 that distributes the driving force from the two electric motors 202L and 202R to the left and right wheels, and speed reducers 203L and 203R that transmit the driving force of the two electric motors 202L and 202R to the driving wheels are provided. The reduction gears 203L and 203R are connected to electric motors 202L and 202R, input gear shafts 212L and 212R having an input gear 212a, output gear shafts 214L and 214R connected to driving wheels and having an output gear 214a, and gears. , And intermediate gear shafts 213L and 213R that transmit power between the input gear shafts 212L and 212R and the output gear shafts 214L and 214R, and the gears constituting the reduction gears 203L and 203R are external gears.
 二つの電動モータ202L、202Rからの駆動力を左右輪に分配する歯車装置300は、同軸に配された左右の1対の中間歯車軸213L、213Rと同軸上に二つ組み合わせた3要素2自由度の遊星歯車機構300L、300Rからなる。遊星歯車機構300L、300Rは、内歯車RL、RRと、前記内歯車RL、RRと同軸上に設けられた遊星キャリヤCL、CRと、前記内歯車RL、RRと同軸上に設けられた太陽歯車SL、SRと、公転歯車としての遊星歯車PL、PRとを有し、前記二つの遊星歯車機構300L、300Rの一方の遊星キャリヤCLと他方の太陽歯車SRとを結合する第1結合部材231と、一方の太陽歯車SLと他方の遊星キャリヤCRとを結合する第2結合部材232とを有し、前記歯車装置300と同軸上にある中間歯車軸213L、213Rに、入力歯車212aと噛み合う入力側外歯車213aと、前記遊星歯車機構の遊星キャリヤCL、CRと連結され、出力歯車214aと噛み合う出力側小径歯車213bとを設け、前記遊星キャリヤCL、CRの両端が転がり軸受219a、219bによって歯車装置300を収容するハウジング209に対して回転自在に支持した構造である。 The gear device 300 that distributes the driving force from the two electric motors 202L and 202R to the left and right wheels is a three-element two-free combination that is coaxially combined with a pair of left and right intermediate gear shafts 213L and 213R. Planetary gear mechanisms 300L and 300R. Planetary gear mechanism 300L, 300R is an internal gear R L, and R R, the internal gear R L, R R and planet carrier C L provided coaxially, and C R, the internal gear R L, and R R solar provided coaxially gear S L, and S R, the planetary gear P L as a revolving wheel, and a P R, the two planetary gear mechanisms 300L, of one of the planet carrier C L and the other 300R a first coupling member 231 for coupling the sun gear S R, and a second coupling member 232 for coupling one of the sun gear S L and the other planet carrier C R, the gear 300 coaxial with certain intermediate gear shaft 213L, the 213R, provided an input-side external gear 213a meshing with the input gear 212a, a planet carrier C L of the planetary gear mechanism, is connected to the C R, and an output-side small-diameter gear 213b meshing with the output gear 214a , The planetary carrier C L , C Both ends of R have a structure that is rotatably supported by a rolling bearing 219a, 219b with respect to a housing 209 that houses the gear device 300.
 車両駆動装置201は、静音性が求められる。このため、減速装置203L、203Rを構成する外歯車、すなわち、出力歯車214aと噛み合う出力側小径歯車213bや入力歯車212aと噛み合う入力側外歯車213aには、図12に示すように、はすば歯車が用いられる。また、出力側小径歯車213bと噛み合う出力歯車214a、入力側外歯車213aと噛み合う入力歯車212aもはすば歯車である。 The vehicle driving device 201 is required to be quiet. For this reason, as shown in FIG. 12, external gears constituting the reduction gears 203L and 203R, that is, the output-side small gear 213b that meshes with the output gear 214a and the input-side external gear 213a that meshes with the input gear 212a, as shown in FIG. Gears are used. The output gear 214a that meshes with the output-side small-diameter gear 213b and the input gear 212a that meshes with the input-side external gear 213a are also helical gears.
 また、トルク差を増幅する歯車装置300を構成する遊星歯車機構300L、300R内の太陽歯車SL、SR、遊星歯車PL、PR、内歯車RL、RRも静音性を考慮すると、図12に示すように、はすば歯車を使用するのがよい。 Further, the sun gears S L and S R , the planetary gears P L and P R , and the internal gears R L and R R in the planetary gear mechanisms 300L and 300R constituting the gear device 300 that amplifies the torque difference are also considered in terms of noise reduction. As shown in FIG. 12, a helical gear may be used.
 ところが、静音性を考慮して、すべての歯車に、はすば歯車を使用すると、はすば歯車は、回転時にスラスト力が発生するため、軸受もスラスト力を考慮したものを選定する必要があり、軸受サイズ、軸受支持構造によるユニットの大型化につながる(図12に示す軸方向寸法B)。 However, considering the quietness, if helical gears are used for all gears, the helical gears generate a thrust force during rotation, so it is necessary to select bearings that also take the thrust force into consideration. Yes, the size of the unit is increased by the bearing size and the bearing support structure (axial dimension B shown in FIG. 12).
 すなわち、図12に示すように、遊星歯車PL、PRの両側に設けられるスラスト軸受220a、220bと、内歯車RL、RRと遊星キャリヤCL、CRとの間に設けられる転がり軸受239a、239bをいずれも大きなサイズのものを使用しなければならない。 That is, as shown in FIG. 12, the rolling is provided between the thrust bearing 220a provided on both sides of the planetary gears P L, P R, and 220b, the internal gear R L, R R and planet carrier C L, and C R Both of the bearings 239a and 239b must be large in size.
 また、トルク差増幅機構である歯車装置300には、3種類の歯車要素(太陽歯車SL、SR、遊星歯車PL、PR、内歯車RL、RR)を有する遊星歯車機構300L、300Rが2つ使用されているため、構成歯車の個数が多く、静音性を考慮して全ての歯車をはすば歯車で製作すると、ねじれ角に合わせた設備調整など加工工数が増えるという課題がある。 The gear device 300 which is a torque difference amplifying mechanism has a planetary gear mechanism 300L having three types of gear elements (sun gears S L and S R , planetary gears P L and P R , and internal gears R L and R R ). Because two 300Rs are used, the number of constituent gears is large, and if all gears are manufactured with helical gears in consideration of noise reduction, the number of processing steps such as equipment adjustments according to the torsion angle increases. There is.
 そこで、この発明は、車両駆動装置を構成する歯車として、はすば歯車と平歯車を組み合わせることにより、小型の支持軸受を選定でき、ユニットの小型化、低コスト化ができ、また、トルク差増幅機構である歯車装置を構成する遊星歯車機構内の歯車の加工工数が削減でき、コストを低減できるようにすることを課題とする。 Therefore, according to the present invention, a small support bearing can be selected by combining a helical gear and a spur gear as a gear constituting the vehicle drive device, the unit can be reduced in size and cost, and the torque difference can be reduced. It is an object of the present invention to reduce the number of processing steps for gears in a planetary gear mechanism that constitutes a gear device that is an amplifying mechanism, and to reduce costs.
 前記の課題を解決するために、この発明は、車両に搭載され独立して制御可能な二つの駆動源と、前記二つの駆動源と左右の駆動輪との間に設けられ、前記二つの駆動源からの動力を左右輪に分配する歯車装置と、前記二つの駆動源の動力を前記駆動輪に伝達する減速装置とを備える車両駆動装置において、前記減速装置は、駆動源に連結し、入力歯車を有する入力歯車軸と、駆動輪に連結し、出力歯車を有する出力歯車軸と、歯車の噛合いにより入力歯車軸から出力歯車軸の間の動力伝達を行う中間歯車軸が少なくとも1つ以上配され、前記減速装置を構成する歯車が外歯車であり、前記二つの駆動源からの動力を左右輪に分配する歯車装置は、同軸に配された左右の1対の中間歯車軸と同軸上に二つ組み合わせた3要素2自由度の遊星歯車機構からなり、前記遊星歯車機構は、内歯車と、前記内歯車と同軸上に設けられた遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての遊星歯車とを有し、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の太陽歯車とを結合する第1結合部材と、一方の太陽歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、前記歯車装置と同軸上にある前記減速装置の中間歯車軸に、入力歯車または駆動側中間歯車軸の歯車と噛み合う入力側外歯車と、前記遊星歯車機構の遊星キャリヤと連結され、出力歯車または従動側中間歯車軸の歯車と噛み合う出力側小径歯車とを設け、前記減速装置を構成する外歯車を、はすば歯車とし、前記遊星歯車機構を構成する、内歯車、太陽歯車、遊星歯車をそれぞれ平歯車としたことを特徴とする。 In order to solve the above-described problems, the present invention provides two drive sources mounted on a vehicle and independently controllable, and provided between the two drive sources and the left and right drive wheels. In a vehicle drive device comprising: a gear device that distributes power from a power source to left and right wheels; and a speed reducer that transmits power from the two drive sources to the drive wheels, the speed reducer is connected to the drive source and is input At least one input gear shaft having a gear, an output gear shaft connected to a drive wheel and having an output gear, and at least one intermediate gear shaft that transmits power between the input gear shaft and the output gear shaft by meshing of the gears The gear that constitutes the speed reduction device is an external gear, and the gear device that distributes the power from the two drive sources to the left and right wheels is coaxial with a pair of left and right intermediate gear shafts arranged coaxially. 3 elements 2 degrees of freedom planetary teeth The planetary gear mechanism comprises an internal gear, a planet carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a planetary gear as a revolving gear. And a first coupling member that couples one planet carrier and the other sun gear of the two planetary gear mechanisms, and a second coupling member that couples one sun gear and the other planet carrier. An input side external gear meshing with an input gear or a drive side intermediate gear shaft and an planetary carrier of the planetary gear mechanism, and an output gear or An output-side small-diameter gear that meshes with the gear of the driven-side intermediate gear shaft is provided, and the external gear that constitutes the reduction gear is a helical gear, and the internal gear, the sun gear, and the planetary gear that constitute the planetary gear mechanism. Each spur gear It is characterized by that.
 前記入力歯車または駆動側の中間歯車軸の歯車と噛み合う入力側外歯車は、前記遊星歯車機構の内歯車の外周部に一体に形成することができる。 The input-side external gear that meshes with the input gear or the gear of the drive-side intermediate gear shaft can be integrally formed on the outer peripheral portion of the internal gear of the planetary gear mechanism.
 前記入力歯車または駆動側の中間歯車軸の歯車と噛み合う入力側外歯車は、前記遊星歯車機構の内歯車と別部材により形成してもよい。 The input side external gear that meshes with the input gear or the gear on the drive side intermediate gear shaft may be formed by a member separate from the internal gear of the planetary gear mechanism.
 前記遊星歯車機構の内歯車は、遊星キャリヤに対して転がり軸受によって回転自在に支持されることができる。 The internal gear of the planetary gear mechanism can be rotatably supported by a rolling bearing with respect to the planet carrier.
 前記車両駆動装置の減速装置ハウジングが、中央ハウジングと左右の側面ハウジングからなる3ピース構成であり、前記中央ハウジングの中央部には左右を仕切る仕切り壁が設けられ、前記歯車装置の前記第1結合部材と前記第2結合部材を前記仕切り壁を貫通するように設けることができる。 The speed reducer housing of the vehicle drive device has a three-piece configuration including a central housing and left and right side housings. A partition wall is provided at the central portion of the central housing to partition the left and right, and the first coupling of the gear device A member and the second coupling member may be provided so as to penetrate the partition wall.
 前記第1結合部材および第2結合部材の内、内径側の結合部材の内径に給油穴を設けることができる。 The oil supply hole can be provided in the inner diameter of the inner diameter side of the first coupling member and the second coupling member.
 この発明では、トルク差増幅機構の遊星歯車機構内の太陽歯車、遊星歯車、内歯車を平歯車とするが、トルク差増幅機構と合わせて用いられる減速装置の歯車は、走行中は常に回転している歯車間の噛み合いにより音が発生する可能性があるため、静音性の良いはすば歯車を用いている。 In this invention, the sun gear, planetary gear, and internal gear in the planetary gear mechanism of the torque difference amplifying mechanism are spur gears, but the gear of the reduction gear used in combination with the torque difference amplifying mechanism always rotates during traveling. Since there is a possibility that sound may be generated due to the meshing between the gears, a helical gear with good noise reduction is used.
 そして、遊星歯車機構を構成する太陽歯車、遊星歯車、内歯車を平歯車とすることにより、回転時のスラスト力が発生しないようにして軸受の小型化、支持構造の簡易化を図っている。また、平歯車を使用することにより、はすば歯車の加工時のねじれ角に合わせた段取りも不要となり加工工数を削減できる。 Then, the sun gear, planetary gear, and internal gear constituting the planetary gear mechanism are spur gears, so that the thrust force during rotation is not generated and the bearing is downsized and the support structure is simplified. In addition, by using a spur gear, it is not necessary to set up in accordance with the torsion angle when processing a helical gear, and the number of processing steps can be reduced.
 この発明を左右輪駆動装置として用いた場合、トルク差増幅機構の遊星歯車機構は、直進時のような左右輪のトルク差、回転速度差がない場合は、遊星歯車機構が一体となって全体が回転しているため、太陽歯車、遊星歯車、内歯車間で回転差が生じず歯車間の噛み合いで音が発生しないため、この発明においては、はすば歯車ではなく平歯車を使用することとした。 When this invention is used as a left and right wheel drive device, the planetary gear mechanism of the torque difference amplifying mechanism is integrated with the planetary gear mechanism as a whole when there is no difference in torque and rotational speed between the left and right wheels as when traveling straight. In this invention, a spur gear is used instead of a helical gear because no rotation difference occurs between the sun gear, the planetary gear, and the internal gear, and no sound is generated by meshing between the gears. It was.
 トルク差増幅機構の遊星歯車機構に平歯車を使用しても、トルク差増幅機構で、主に左右のトルク差、回転速度差が生じるのは、直進に比べ頻度の低い旋回時であり、旋回時に遊星歯車機構内の歯車間で回転差が生じるのもわずかの時間のため車両の静音性への影響は小さい。 Even if a spur gear is used for the planetary gear mechanism of the torque difference amplifying mechanism, the torque difference amplifying mechanism mainly causes left and right torque differences and rotational speed differences during turning that is less frequent than straight running. Occasionally, the difference in rotation between the gears in the planetary gear mechanism is little, so the influence on the quietness of the vehicle is small.
 したがって、この発明では、トルク差増幅機構の遊星歯車機構内の太陽歯車、遊星歯車、内歯車を平歯車とし、トルク差増幅機構と合わせて用いられる減速装置の歯車は、走行中は常に回転している歯車間の噛み合いにより音が発生する可能性があるため、静音性の良いはすば歯車を用いている。 Therefore, in this invention, the sun gear, planetary gear, and internal gear in the planetary gear mechanism of the torque difference amplification mechanism are spur gears, and the gear of the reduction gear used in combination with the torque difference amplification mechanism always rotates during traveling. Since there is a possibility that sound may be generated due to the meshing between the gears, a helical gear with good noise reduction is used.
 さらに、この発明においては、トルク差増幅機構である歯車装置の2つの遊星歯車機構の接続は、太陽歯車と遊星キャリヤの接続であり、内歯車より大径の接続部材は必要としないので、トルク差増幅機構を小さくすることができ、トルク差増幅機構を含む車両駆動装置を小型、軽量化することができる。 Furthermore, in the present invention, the connection between the two planetary gear mechanisms of the gear device that is the torque difference amplifying mechanism is a connection between the sun gear and the planet carrier, and a connecting member having a larger diameter than the internal gear is not required. The difference amplifying mechanism can be reduced, and the vehicle drive device including the torque difference amplifying mechanism can be reduced in size and weight.
 トルク差増幅機構である歯車装置を車両駆動装置の1対の中間歯車軸と同軸に設けることにより、歯車装置自体が大幅に大径化することがない。 ¡By providing the gear device, which is a torque difference amplifying mechanism, coaxially with the pair of intermediate gear shafts of the vehicle drive device, the gear device itself does not greatly increase in diameter.
 また、2つの遊星歯車機構を、中空軸とその中空軸の内部に挿通される軸からなる2重構造の第1結合部材及び第2結合部材によって結合し、内径側の結合部材の内径側に給油穴を設けることより、軸心給油が行えるので、遊星歯車機構内部の歯車歯面や軸受部分への潤滑が容易になる。 In addition, the two planetary gear mechanisms are coupled by a first coupling member and a second coupling member having a double structure comprising a hollow shaft and a shaft inserted into the hollow shaft, and are connected to the inner diameter side of the inner diameter side coupling member. By providing the oil supply hole, the shaft center oil supply can be performed, so that the gear tooth surface and the bearing portion inside the planetary gear mechanism can be easily lubricated.
 遊星歯車機構の内歯車と入力側外歯車を一体形成とし、内歯車の外周部に入力側外歯車を設けることにより、更なる小型化が行える。 Further reduction in size can be achieved by integrally forming the internal gear of the planetary gear mechanism and the input side external gear and providing the input side external gear on the outer peripheral portion of the internal gear.
 さらに、歯車装置の遊星キャリヤの両端を転がり軸受で支持し、内歯車を遊星キャリヤに対して転がり軸受によって支持することにより、歯車軸の回転精度を確保することができる。 Furthermore, the rotation accuracy of the gear shaft can be ensured by supporting both ends of the planetary carrier of the gear device with rolling bearings and supporting the internal gear with the rolling bearings with respect to the planetary carrier.
この発明の車両駆動装置の実施形態を示す横断平面図である。It is a cross-sectional top view which shows embodiment of the vehicle drive device of this invention. 図1の実施形態の歯車装置部分の拡大図である。It is an enlarged view of the gear apparatus part of embodiment of FIG. 図1の実施形態の歯車装置の歯車の一部を外形で示した部分断面図である。It is the fragmentary sectional view which showed a part of gear of the gear apparatus of embodiment of FIG. 1 with the external shape. 図1の実施形態に係る車両駆動装置の歯車構成をスケルトン図で示した電気自動車の説明図である。It is explanatory drawing of the electric vehicle which showed the gear structure of the vehicle drive device which concerns on embodiment of FIG. 1 with the skeleton figure. 図1の実施形態に係る車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。It is a speed diagram for demonstrating the torque difference amplification factor by the gear apparatus incorporated in the vehicle drive device which concerns on embodiment of FIG. 従来技術1に係る車両駆動装置の歯車構成を示すスケルトン図である。It is a skeleton figure which shows the gear structure of the vehicle drive device which concerns on the prior art 1. FIG. 従来技術1に係る車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。It is a speed diagram for demonstrating the torque difference gain by the gear apparatus integrated in the vehicle drive device which concerns on the prior art 1. FIG. 従来技術2に係る車両駆動装置の歯車構成を示すスケルトン図である。It is a skeleton figure which shows the gear structure of the vehicle drive device which concerns on the prior art 2. FIG. 従来技術2に係る車両駆動装置に組み込まれた歯車装置によるトルク差増幅率を説明するための速度線図である。It is a speed diagram for demonstrating the torque difference gain by the gear apparatus integrated in the vehicle drive device which concerns on the prior art 2. FIG. 先願例1の車両駆動装置を示す横断平面図である。It is a cross-sectional top view which shows the vehicle drive device of prior application example 1. 図10に示す先願例1の車両駆動装置の歯車装置部分の拡大図である。It is an enlarged view of the gear apparatus part of the vehicle drive device of prior application example 1 shown in FIG. 図10に示す先願例1の歯車装置の歯車の一部を外形で示した部分断面図である。It is the fragmentary sectional view which showed a part of gear of the gear apparatus of the prior application example 1 shown in FIG.
 以下、この発明の実施の形態を添付図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図4に示す電気自動車AMは、後輪駆動方式であり、シャーシ60と、後輪としての駆動輪61L、61Rと、前輪62L、62Rと、この発明に係る2モータ式の車両駆動装置1、バッテリ63、インバータ64等を備える。図4では、車両駆動装置1の歯車構成をスケルトン図で示している。 The electric vehicle AM shown in FIG. 4 is a rear wheel drive system, and includes a chassis 60, drive wheels 61L and 61R as rear wheels, front wheels 62L and 62R, and a two-motor vehicle drive device 1 according to the present invention. A battery 63, an inverter 64, and the like are provided. In FIG. 4, the gear structure of the vehicle drive device 1 is shown with the skeleton figure.
 図1に示す車両駆動装置1は、左右一対の駆動輪を駆動するものであり、車両に搭載され独立して制御可能な二つの駆動源としての電動モータ2L、2Rと、左右の駆動輪61L、61Rと二つの電動モータ2L、2Rとの間に設けられる左右2基の減速装置3L、3Rとを備える。 A vehicle drive device 1 shown in FIG. 1 drives a pair of left and right drive wheels. The motors 2L and 2R serve as two drive sources that are mounted on the vehicle and can be controlled independently, and left and right drive wheels 61L. , 61R and two electric motors 2L, 2R, two left and right reduction gears 3L, 3R are provided.
 2モータ式の車両駆動装置1の駆動トルクは、等速ジョイント65a、65bと中間シャフト65cからなるドライブシャフトを介して左右の駆動輪61L、61Rに伝達される。 The driving torque of the two-motor type vehicle drive device 1 is transmitted to the left and right drive wheels 61L and 61R via a drive shaft composed of constant velocity joints 65a and 65b and an intermediate shaft 65c.
 なお、2モータ式の車両駆動装置1の搭載形態としては、図4に示す後輪駆動方式の他、前輪駆動方式、四輪駆動方式でもよい。 In addition, as a mounting form of the two-motor type vehicle driving device 1, in addition to the rear wheel driving method shown in FIG. 4, a front wheel driving method and a four wheel driving method may be used.
 2モータ式の車両駆動装置1における左右の電動モータ2L、2Rは、同じ出力特性の電動モータが用いられ、図1に示すように、モータハウジング4L、4R内に収容されている。 The left and right electric motors 2L and 2R in the two-motor type vehicle drive device 1 use electric motors having the same output characteristics and are accommodated in motor housings 4L and 4R as shown in FIG.
 モータハウジング4L、4Rは、円筒形のモータハウジング本体4aL、4aRと、このモータハウジング本体4aL、4aRの外側面を閉塞する外側壁4bL、4bRと、モータハウジング本体4aL、4aRの内側面に減速装置3L、3Rと隔てる内側壁4cL、4cRとからなる。モータハウジング本体4aL、4aRの内側壁4cL、4cRには、モータ軸5aを引き出す開口部が設けられている。 The motor housings 4L and 4R include cylindrical motor housing bodies 4aL and 4aR, outer walls 4bL and 4bR that close the outer surfaces of the motor housing bodies 4aL and 4aR, and reduction gears on the inner surfaces of the motor housing bodies 4aL and 4aR. It consists of inner walls 4cL and 4cR separated from 3L and 3R. The inner walls 4cL and 4cR of the motor housing bodies 4aL and 4aR are provided with openings through which the motor shaft 5a is drawn.
 電動モータ2L、2Rは、図1に示すように、モータハウジング本体4aL、4aRの内周面にステータ6を設け、このステータ6の内周に間隔をおいてロータ5を設けたラジアルギャップタイプのものを使用している。なお、電動モータ2L、2Rは、アキシャルギャップタイプのものを使用してもよい。 As shown in FIG. 1, the electric motors 2 </ b> L and 2 </ b> R are of a radial gap type in which a stator 6 is provided on the inner peripheral surface of the motor housing body 4 aL and 4 aR, and a rotor 5 is provided on the inner periphery of the stator 6. I am using something. The electric motors 2L and 2R may be axial gap types.
 ロータ5は、モータ軸5aを中心部に有し、そのモータ軸5aはモータハウジング本体4aL、4aRの内側壁4cL、4cRの開口部からそれぞれ減速装置3L、3R側に引き出されている。モータハウジング本体4aL、4aRの内側壁4cL、4cRの開口部とモータ軸5aとの間にはシール部材7が設けられている。 The rotor 5 has a motor shaft 5a in the center, and the motor shaft 5a is drawn from the openings of the inner walls 4cL and 4cR of the motor housing main bodies 4aL and 4aR to the reduction gears 3L and 3R, respectively. A seal member 7 is provided between the openings of the inner side walls 4cL and 4cR of the motor housing bodies 4aL and 4aR and the motor shaft 5a.
 モータ軸5aは、モータハウジング本体4aL、4aRの内側壁4cL、4cRと外側壁4bL、4bRとに転がり軸受8a、8bによって回転自在に支持されている(図1)。 The motor shaft 5a is rotatably supported by the rolling bearings 8a and 8b on the inner walls 4cL and 4cR and the outer walls 4bL and 4bR of the motor housing main bodies 4aL and 4aR (FIG. 1).
 左右並列に設けられた2基の減速装置3L、3Rを収容する減速装置ハウジング9は、減速装置3L、3Rの歯車軸と直交する方向に3ピースに分割され、図1に示すように、中央ハウジング9aとこの中央ハウジング9aの両側面に固定される左右の側面ハウジング9bL、9bRの3ピース構造になっている。左右の側面ハウジング9bL、9bRは、中央ハウジング9aの両側の開口部に複数のボルト(図示省略)によって固定されている。 A reduction gear housing 9 that accommodates two reduction gears 3L and 3R provided in parallel on the left and right is divided into three pieces in a direction perpendicular to the gear shafts of the reduction gears 3L and 3R, as shown in FIG. The housing 9a has a three-piece structure including left and right side housings 9bL and 9bR fixed to both side surfaces of the central housing 9a. The left and right side housings 9bL and 9bR are fixed to the openings on both sides of the central housing 9a by a plurality of bolts (not shown).
 減速装置ハウジング9の側面ハウジング9bL、9bRのアウトボード側(車体外側)の側面と電動モータ2L、2Rのモータハウジング本体4aL、4aRの内側壁4cL、4cRとを、複数のボルト10によって固定することにより、減速装置ハウジング9の左右に2基の電動モータ2L、2Rが固定配置される(図1)。 A plurality of bolts 10 are used to fix side faces 9bL and 9bR of the reduction gear housing 9 on the side of the outboard side (outside the vehicle body) and the inner side walls 4cL and 4cR of the motor housing bodies 4aL and 4aR of the electric motors 2L and 2R Thus, the two electric motors 2L and 2R are fixedly arranged on the left and right sides of the reduction gear housing 9 (FIG. 1).
 中央ハウジング9aには、図1に示すように、中央に仕切り壁11が設けられている。減速装置ハウジング9は、この仕切り壁11によって左右に2分割され、2基の減速装置3L、3Rを収容する独立した左右の収容室が並列に設けられている。 As shown in FIG. 1, the central housing 9a is provided with a partition wall 11 in the center. The speed reducer housing 9 is divided into left and right parts by the partition wall 11, and independent left and right accommodation chambers for accommodating the two speed reducers 3L and 3R are provided in parallel.
 減速装置3L、3Rは、図1に示すように、左右対称形に設けられ、モータ軸5aと連結し入力歯車12aを有する入力歯車軸12L、12Rと、この入力歯車12aに噛み合う大径の入力側外歯車13aと出力歯車14aに噛み合う出力側小径歯車13bを有する中間歯車軸13L、13Rと、出力歯車14aを有し、減速装置ハウジング9から引き出されて等速ジョイント65a、65b、中間シャフト65c(図4)を介して駆動輪61L、61Rにトルクを伝達する出力歯車軸14L、14Rとを備える平行軸歯車減速機である。左右2基の減速装置3L、3Rの各入力歯車軸12L、12R、各中間歯車軸13L、13R、各出力歯車軸14L、14Rは、それぞれが同軸上に配置されている。 As shown in FIG. 1, the reduction gears 3L and 3R are provided symmetrically, and input gear shafts 12L and 12R having an input gear 12a connected to the motor shaft 5a and a large-diameter input engaged with the input gear 12a. The intermediate gear shafts 13L and 13R having output side small-diameter gears 13b meshing with the side outer gear 13a and the output gear 14a, and the output gear 14a, are pulled out from the speed reducer housing 9 and are constant velocity joints 65a and 65b, and an intermediate shaft 65c. This is a parallel shaft gear reducer provided with output gear shafts 14L, 14R that transmit torque to drive wheels 61L, 61R via (FIG. 4). The input gear shafts 12L and 12R, the intermediate gear shafts 13L and 13R, and the output gear shafts 14L and 14R of the left and right reduction gears 3L and 3R are coaxially arranged.
 減速装置3L、3Rの入力歯車軸12L、12Rの両端は、中央ハウジング9aの仕切り壁11の左右両面に形成した軸受嵌合穴16aと側面ハウジング9bL、9bRに形成した軸受嵌合穴16bに転がり軸受17a、17bを介して回転自在に支持されている。軸受嵌合穴16a、16bは、転がり軸受17a、17bの外輪が当接する壁部のある段付き形状になっている。 Both ends of the input gear shafts 12L, 12R of the reduction gears 3L, 3R roll into bearing fitting holes 16a formed on both the left and right sides of the partition wall 11 of the central housing 9a and bearing fitting holes 16b formed in the side housings 9bL, 9bR. The bearings 17a and 17b are rotatably supported. The bearing fitting holes 16a and 16b have a stepped shape having a wall portion with which the outer rings of the rolling bearings 17a and 17b abut.
 入力歯車軸12L、12Rのアウトボード側の端部は、側面ハウジング9bL、9bRに設けた開口部から外側に引き出されており、開口部と入力歯車軸12L、12Rの外側端部との間にはオイルシール18を設け、減速装置ハウジング9に封入された潤滑油の漏洩を防止している。 The end portions on the outboard side of the input gear shafts 12L, 12R are drawn outward from the openings provided in the side housings 9bL, 9bR, and between the openings and the outer ends of the input gear shafts 12L, 12R. Is provided with an oil seal 18 to prevent leakage of the lubricating oil sealed in the speed reducer housing 9.
 入力歯車軸12L、12Rは中空構造であり、この中空の入力歯車軸12L、12Rに、モータ軸5aの端部が挿入されている。入力歯車軸12L、12Rとモータ軸5aとは、スプライン(セレーションも含む以下同じ)結合されている。 The input gear shafts 12L and 12R have a hollow structure, and end portions of the motor shaft 5a are inserted into the hollow input gear shafts 12L and 12R. The input gear shafts 12L, 12R and the motor shaft 5a are connected by splines (including the same for serrations).
 中間歯車軸13L、13Rは、少なくとも一つ以上配置されており、図1に示す実施形態では、一対の中間歯車軸13L、13Rを有する。 At least one or more intermediate gear shafts 13L and 13R are arranged. In the embodiment shown in FIG. 1, the intermediate gear shafts 13L and 13R have a pair of intermediate gear shafts 13L and 13R.
 中間歯車軸13L、13Rは、外周面に入力歯車12aに噛み合う入力側外歯車13aと出力歯車14aに噛み合う出力側小径歯車13bを有する段付きの歯車軸を構成している。この中間歯車軸13L、13Rの両端は、中央ハウジング9aの仕切り壁11の両面に形成した軸受嵌合穴19aと側面ハウジング9bL、9bRに形成した軸受嵌合穴19bとに転がり軸受20a、20bを介して支持されている。そして、軸受嵌合穴19a、19bは、転がり軸受20a、20bの外輪が当接する壁部のある段付き形状になっており、後述する第1結合部材31と第2結合部材32が通るように貫通している。 The intermediate gear shafts 13L and 13R constitute a stepped gear shaft having an input side external gear 13a meshed with the input gear 12a and an output side small diameter gear 13b meshed with the output gear 14a on the outer peripheral surface. At both ends of the intermediate gear shafts 13L and 13R, rolling bearings 20a and 20b are fitted into bearing fitting holes 19a formed on both surfaces of the partition wall 11 of the central housing 9a and bearing fitting holes 19b formed on the side housings 9bL and 9bR. Is supported through. And the bearing fitting holes 19a and 19b have a stepped shape with a wall portion with which the outer rings of the rolling bearings 20a and 20b abut so that a first coupling member 31 and a second coupling member 32 to be described later pass. It penetrates.
 同軸上に配置された中間歯車軸13L、13Rには、この中間歯車軸13L、13Rと同軸上に、二つの電動モータ2L、2Rから与えられる駆動トルクを左右の駆動輪61L、61Rにトルク差を増幅して分配する歯車装置30が組み込まれている。 The intermediate gear shafts 13L and 13R arranged on the same axis are connected to the intermediate gear shafts 13L and 13R so that the drive torque applied from the two electric motors 2L and 2R is a torque difference between the left and right drive wheels 61L and 61R. A gear device 30 for amplifying and distributing the signal is incorporated.
 歯車装置30は、同軸に配された左右の1対の中間歯車軸13L、13Rと同軸上に二つ組み合わせた3要素2自由度の遊星歯車機構30L、30Rからなる。 The gear unit 30 is composed of a pair of left and right intermediate gear shafts 13L and 13R arranged on the same axis and two planetary gear mechanisms 30L and 30R with two elements on the same axis.
 歯車装置30を構成する遊星歯車機構30L、30Rは、図2の拡大図に示すように、中間歯車軸13L、13Rの大径の入力側外歯車13aにそれぞれ組み込まれた内歯車RL、RRと、内歯車RL、RRと同軸上に設けられた太陽歯車SL、SRと、内歯車RL、RRと太陽歯車SL、SRに噛み合う公転歯車としての遊星歯車PL、PRと、遊星歯車PL、PRに連結され、内歯車RL、RRと同軸上に設けられた遊星キャリヤCL、CRと、一方の遊星キャリヤCL(図2では図の左側)と他方の太陽歯車SR(図2では図の右側)とを結合する第1結合部材31と、一方の太陽歯車SL(図2では図の左側)と他方の遊星キャリヤCR(図2では図の右側)とを結合する第2結合部材32と、内歯車RL、RRに連結された、入力歯車軸12L、12Rの入力歯車12aと噛み合う入力側外歯車13aと、出力歯車軸14L、14Rの出力歯車14aと噛み合う中間歯車軸13L、13Rの出力側小径歯車13bとを有し、中間歯車軸13L、13Rの出力側小径歯車13bを、遊星キャリヤCL、CRに連結した構成である。 As shown in the enlarged view of FIG. 2, the planetary gear mechanisms 30L and 30R constituting the gear device 30 have internal gears R L and R incorporated in the large-diameter input side external gear 13a of the intermediate gear shafts 13L and 13R, respectively. and R, the internal gear R L, R R and the sun gear S L provided coaxially, S R and internal gear R L, R R and the sun gear S L, the planetary gear P as revolving gear meshing with S R L, and P R, the planetary gear P L, is connected to the P R, the internal gear R L, R R and planet carrier C L provided coaxially, and C R, the one planet carrier C L (FIG. 2 The first coupling member 31 that couples the left side of the figure) and the other sun gear S R (right side of the figure in FIG. 2), one sun gear S L (left side of the figure in FIG. 2), and the other planet carrier C a second coupling member 32 for coupling the R (in FIG. 2 FIG right), the internal gear R L, linked to R R, the input gear shaft An input side external gear 13a that meshes with the input gear 12a of 2L, 12R, and an output side small gear 13b of the intermediate gear shafts 13L, 13R that meshes with the output gear 14a of the output gear shafts 14L, 14R. The output side small-diameter gear 13b of 13R is connected to the planetary carriers C L and C R.
 なお、中間歯車軸13L、13Rを複数対設けた場合には、歯車装置30を構成する遊星歯車機構30L、30Rは、いずれか一対の中間歯車軸13L、13Rのみに組み込まれる。内歯車RL、RRに連結された入力側外歯車13aが、複数対の中間歯車軸13L、13Rの内の駆動側の中間歯車軸13L、13Rに設けられた歯車、あるいは入力歯車軸12L、12Rの入力歯車12aと噛み合うように設けられ、また、遊星歯車機構30L、30Rと同軸上に設けられた出力側小径歯車13bが、複数対の中間歯車軸13L、13Rの内の従動側の中間歯車軸13L、13Rに設けられた歯車、あるいは出力歯車軸14L、14Rの出力歯車14aと噛み合うように配置される。 When a plurality of pairs of intermediate gear shafts 13L and 13R are provided, the planetary gear mechanisms 30L and 30R constituting the gear device 30 are incorporated only in any one of the pair of intermediate gear shafts 13L and 13R. The input side external gear 13a connected to the internal gears R L , R R is a gear provided on the drive side intermediate gear shafts 13L, 13R of the plural pairs of intermediate gear shafts 13L, 13R, or the input gear shaft 12L. The output side small gear 13b provided coaxially with the planetary gear mechanisms 30L and 30R is provided on the driven side of the plurality of pairs of intermediate gear shafts 13L and 13R. It arrange | positions so that it may mesh with the gear provided in the intermediate gear shafts 13L and 13R, or the output gear 14a of the output gear shafts 14L and 14R.
 図1に示す実施形態では、内歯車RL、RRに連結された入力側外歯車13aは、内歯車RL、RRと一体に形成しているが、別体に形成してもよい。 In the embodiment shown in FIG. 1, the internal gear R L, R R in connected input-side external gear 13a is an internal gear R L, but are formed integrally with the R R, it may be formed separately .
 また、図1に示す実施形態では、遊星キャリヤCL、CRに連結された出力側小径歯車13bは、遊星キャリヤCL、CRと一体に形成しているが、別体に形成してもよい。 Further, in the embodiment shown in FIG. 1, the planet carrier C L, the output-side small-diameter gear 13b which is connected to the C R is the planet carrier C L, although formed integrally with the C R, and formed separately Also good.
 遊星キャリヤCL、CRは、図2に示すように遊星歯車PL、PRを支持するキャリヤピン33と、キャリヤピン33のアウトボード側端部に連結されたアウトボード側のキャリヤフランジ34aと、インボード側端部に連結されたインボード側のキャリヤフランジ34bを有する。 Planet carrier C L, C R is the planetary gears P L as shown in FIG. 2, P a carrier pin 33 which supports the R, carrier flange 34a on the outboard side end portion linked outboard side of the carrier pin 33 And an inboard carrier flange 34b coupled to the inboard side end.
 アウトボード側のキャリヤフランジ34aは、アウトボード側に延びる中空軸部35を備えており、中空軸部35のアウトボード側の端部が、減速装置ハウジング9の側面ハウジング9bL、9bRに形成した軸受嵌合穴19bに転がり軸受20bを介して支持されている。 The carrier flange 34a on the outboard side includes a hollow shaft portion 35 extending toward the outboard side, and the end portion on the outboard side of the hollow shaft portion 35 is formed on the side housings 9bL and 9bR of the speed reducer housing 9. The fitting hole 19b is supported via a rolling bearing 20b.
 インボード側のキャリヤフランジ34bは、インボード側に延びる中空軸部36を備えており、中空軸部36のインボード側の端部が、中央ハウジング9aの仕切り壁11に形成した軸受嵌合穴19aに転がり軸受20aを介して支持されている。 The carrier flange 34b on the inboard side includes a hollow shaft portion 36 extending toward the inboard side, and an end portion on the inboard side of the hollow shaft portion 36 is formed in a bearing fitting hole formed in the partition wall 11 of the central housing 9a. 19a is supported via a rolling bearing 20a.
 図1に示す実施形態では、前記出力側小径歯車13bが、キャリヤフランジ34aの中空軸部35の外周面に一体に形成されている。 In the embodiment shown in FIG. 1, the output-side small-diameter gear 13b is integrally formed on the outer peripheral surface of the hollow shaft portion 35 of the carrier flange 34a.
 遊星歯車PL、PRは、針状ころ軸受37を介してキャリヤピン33によって支持されている。 The planetary gears P L and P R are supported by the carrier pin 33 via the needle roller bearing 37.
 また、前記各キャリヤフランジ34a、34bの対向面と遊星歯車PL、PRの間にスラスト板38を挿入し、遊星歯車PL、PRの回転の円滑化を図っている。 Further, each carrier flange 34a, 34b facing surface and a planetary gear P L of, inserting the thrust plate 38 between the P R, the planetary gear P L, thereby achieving a smooth rotation of the P R.
 前記各キャリヤフランジ34a、34bの外周面と内歯車RL、RRとの間には、転がり軸受39a、39bを配置している。 Wherein each carrier flange 34a, 34b outer peripheral surface and the inner gear R L of the, between the R R, the rolling bearing 39a, are arranged 39 b.
 また、インボード側のキャリヤフランジ34bと、インボード側のキャリヤフランジ34bの中空軸部36を支持する転がり軸受20aとの間には、カラー40を配置している。 Further, a collar 40 is disposed between the carrier flange 34b on the inboard side and the rolling bearing 20a that supports the hollow shaft portion 36 of the carrier flange 34b on the inboard side.
 車両駆動装置1の歯車装置30を構成する2つの遊星歯車機構30L、30Rを連結している第1結合部材31および第2結合部材32は、減速装置ハウジング9の中央ハウジング9aを左右に仕切る仕切り壁11を貫通して組み込まれている。 The first coupling member 31 and the second coupling member 32 that couple the two planetary gear mechanisms 30L and 30R constituting the gear device 30 of the vehicle drive device 1 are partitions that partition the central housing 9a of the reduction gear housing 9 to the left and right. It penetrates through the wall 11 and is incorporated.
 この第1結合部材31と第2結合部材32は、同軸上に配置されると共に、一方の結合部材(図1及び図2の実施形態では第2結合部材32)が中空軸、他方の結合部材(図1及び図2の実施形態では第1結合部材31)が中空軸に挿通される軸からなる2重構造になっている。 The first coupling member 31 and the second coupling member 32 are arranged coaxially, and one coupling member (the second coupling member 32 in the embodiment of FIGS. 1 and 2) is a hollow shaft and the other coupling member. (In the embodiment of FIGS. 1 and 2, the first coupling member 31) has a double structure including a shaft inserted through the hollow shaft.
 図1及び図2に示す実施形態では、中空軸で構成される第2結合部材32における右側の遊星歯車機構30R側の端部と、遊星キャリヤCRのインボード側のキャリヤフランジ34bの中空軸部36とにスプライン41を設け、第2結合部材32を遊星キャリヤCRに対しスプライン嵌合により連結している。 In the embodiment shown in FIGS. 1 and 2, the end portion of the right side of the planetary gear mechanism 30R side in the second coupling member 32 consists of a hollow shaft, the hollow shaft of the carrier flange 34b on the inboard side of the planet carrier C R the spline 41 is provided on the part 36, are connected by spline fitting to the second coupling member 32 the planet carrier C R.
 また、図1及び図2に示す実施形態では、第1結合部材31における左側の遊星歯車機構30L側の端部と、遊星キャリヤCLのアウトボード側のキャリヤフランジ34aの中空軸部35とにスプライン42を設けて、第1結合部材31を遊星キャリヤCLに対しスプライン嵌合により連結している。 Further, in the embodiment shown in FIGS. 1 and 2, the end portion of the left planetary gear mechanism 30L side of the first coupling member 31, to the hollow shaft portion 35 of the carrier flange 34a on the outboard side of the planet carrier C L the spline 42 is provided, it is connected by spline fitting to the first coupling member 31 the planet carrier C L.
 上記のように、2つの遊星歯車機構30L、30Rの第1結合部材31と第2結合部材32とを、遊星キャリヤCLと遊星キャリヤCRに対しスプライン嵌合によって連結することにより、2つの遊星歯車機構が左右に分割することが可能となり、3ピース構成の減速装置ハウジング9に他の減速歯車軸と一緒に左右から組込むことができる。 As described above, the two planetary gear mechanisms 30L, first coupling member 31 of the 30R and a second binding member 32, by connecting the splined to the planet carrier C L and the planet carrier C R, two The planetary gear mechanism can be divided into left and right, and can be incorporated into the three-piece reduction gear housing 9 together with other reduction gear shafts from the left and right.
 第2結合部材32の遊星キャリヤCL側の端部は、その外周面に、左側の遊星歯車機構の遊星歯車PLと噛み合う外歯車が形成され、この外歯車が左側の遊星歯車機構の太陽歯車SLを構成している。 End of the planet carrier C L of the second coupling member 32 has, on its outer peripheral surface, the external gear meshing with the planetary gears P L of the left planetary gear mechanism is formed, the sun the external gear of the left planetary gear mechanism A gear S L is configured.
 中空軸で構成される第2結合部材32に挿通される第1結合部材31は、右側の遊星歯車機構30R側の端部に大径部43を有し、この大径部43の外周面に、右側の遊星歯車機構30Rの遊星歯車PRと噛み合う外歯車が形成され、この外歯車が右側の遊星歯車機構30Rの太陽歯車SRを構成している。 The first coupling member 31 inserted through the second coupling member 32 constituted by a hollow shaft has a large diameter portion 43 at an end portion on the right planetary gear mechanism 30R side, and an outer peripheral surface of the large diameter portion 43 is provided. , external gear meshing with the planetary gears P R of the right planetary gear mechanism 30R is formed, the outer gear constitutes the sun gear S R of the right planetary gear mechanism 30R.
 第1結合部材31および第2結合部材32の内、内径側の結合部材(第1結合部材31)と連結している太陽歯車SRの最大径は、外径側の結合部材(第2結合部材32)が嵌め合う遊星キャリヤCRのインボード側のキャリヤフランジ34bの中空軸部36の内面のスプライン穴の最小径よりも小さく設定することにより、内径側の結合部材(第1結合部材31)を容易に組み込むことが可能である。 Of the first coupling member 31 and second coupling member 32, the maximum diameter of the sun gear S R are connected to the inner diameter side of the coupling member (first coupling member 31), the binding of the outer diameter side member (the second coupling by member 32) is set smaller than the minimum diameter of the spline hole of the inner surface of the hollow shaft portion 36 of the carrier flange 34b on the inboard side of the planet carrier C R for mating, the inner diameter side of the coupling member (first coupling member 31 ) Can be easily incorporated.
 内径側の結合部材(第1結合部材31)の外周面と、外径側の結合部材(第2結合部材32)の内周面との間には、カラー44と、カラー44の両端に針状ころ軸受45、46を介在させている。 Between the outer peripheral surface of the inner diameter side coupling member (first coupling member 31) and the inner peripheral surface of the outer diameter side coupling member (second coupling member 32), there are needles 44 at both ends of the collar 44. The roller bearings 45 and 46 are interposed.
 第1結合部材31および第2結合部材32と遊星キャリヤCL、CRとの嵌合(スプライン42、41)は、軸方向に摺動可能な嵌め合い公差とすることにより、はすば歯車のスラスト力による歯車歯面への偏荷重を防ぐことができる。 The first coupling member 31 and the second coupling member 32 and the planetary carriers C L and C R are fitted to the planetary carriers C L and C R (splines 42 and 41) by using a fitting tolerance slidable in the axial direction. Uneven load on the gear tooth surface due to the thrust force can be prevented.
 また、第1結合部材31および第2結合部材32と遊星キャリヤCL、CRとのスプライン(スプライン42、41)嵌合部の摺動による軸方向移動は、外径側結合部材(図1及び図2の実施形態では第2結合部材32)の両端にスラスト軸受47、48を設けることにより規制している。 Further, the axial movement of the first coupling member 31 and the second coupling member 32 and the planetary carriers C L and C R due to the sliding of the spline (splines 42 and 41) fitting portion is caused by the outer diameter side coupling member (FIG. 1). In the embodiment of FIG. 2, the second coupling member 32) is regulated by providing thrust bearings 47 and 48 at both ends.
 2つの遊星歯車機構30L、30Rを連結する2重構造の軸の内径側の結合部材(図1及び図2の実施形態では第1結合部材31)は、結合部材(図1及び図2の実施形態では第1結合部材31)と遊星キャリヤ(図1及び図2の実施形態ではCL)とのスプライン嵌合と反対側の軸端を、他方の遊星キャリヤ(図1及び図2の実施形態ではCR)に対して深溝玉軸受49によって支持している。 The coupling member (the first coupling member 31 in the embodiment of FIGS. 1 and 2) on the inner diameter side of the double-structure shaft that couples the two planetary gear mechanisms 30L and 30R is the coupling member (implementation of FIGS. 1 and 2). In the form, the shaft end opposite to the spline fitting between the first coupling member 31) and the planet carrier (C L in the embodiment of FIGS. 1 and 2) is connected to the other planet carrier (the embodiment of FIGS. 1 and 2). In this case, C R ) is supported by a deep groove ball bearing 49.
 2つの遊星歯車機構30L、30Rを連結する2重構造の軸の内径側の結合部材(図1及び図2の実施形態では第1結合部材31)には、太陽歯車SL、SRの歯面、遊星歯車PL、PRの歯面、等に潤滑油を供給するために、軸心に給油穴50を設けている。内径側の結合部材(図1及び図2の実施形態では第1結合部材31)の給油穴50には、外径側結合部材(図1及び図2の実施形態では第2結合部材32)の両端のスラスト軸受47、48の位置に、径方向の給油通路51、52を設けている。 The coupling member (the first coupling member 31 in the embodiment shown in FIGS. 1 and 2) on the inner diameter side of the double-structure shaft that couples the two planetary gear mechanisms 30L and 30R has teeth of the sun gears S L and S R. surface, the planetary gear P L, the tooth surfaces of the P R, in order to supply the lubricating oil, etc, is provided an oil supply hole 50 to the axis. The oil supply hole 50 of the inner diameter side coupling member (first coupling member 31 in the embodiment of FIGS. 1 and 2) has an outer diameter side coupling member (second coupling member 32 in the embodiment of FIGS. 1 and 2). Radial oil supply passages 51 and 52 are provided at the positions of the thrust bearings 47 and 48 at both ends.
 出力歯車軸14L、14Rは、大径の出力歯車14aを有し、中央ハウジング9aの仕切り壁11の両面に形成した軸受嵌合穴53aと側面ハウジング9bL、9bRに形成した軸受嵌合穴53bに転がり軸受54a、54bによって支持されている。そして、軸受嵌合穴53a、53bは、転がり軸受54a、54bの外輪が当接する壁部のある段付き形状になっている。 The output gear shafts 14L and 14R have a large-diameter output gear 14a, and are formed in bearing fitting holes 53a formed on both surfaces of the partition wall 11 of the central housing 9a and bearing fitting holes 53b formed on the side housings 9bL and 9bR. It is supported by rolling bearings 54a and 54b. The bearing fitting holes 53a and 53b have a stepped shape having a wall portion with which the outer rings of the rolling bearings 54a and 54b come into contact.
 出力歯車軸14L、14Rのアウトボード側の端部は、側面ハウジング9bL、9bRに形成した開口部から減速装置ハウジング9の外側に引き出され、引き出された出力歯車軸14L、14Rのアウトボード側の端部の外周面に、等速ジョイント65aの外側継手部がスプライン結合されている。 Outboard side ends of the output gear shafts 14L and 14R are drawn out of the reduction gear housing 9 from openings formed in the side housings 9bL and 9bR, and are pulled out to the outboard side of the output gear shafts 14L and 14R. The outer joint portion of the constant velocity joint 65a is splined to the outer peripheral surface of the end portion.
 出力歯車軸14L、14Rに結合された等速ジョイント65aは、中間シャフト65c、等速ジョイント65bを介して駆動輪61L、61Rに接続される(図4)。 The constant velocity joint 65a coupled to the output gear shafts 14L and 14R is connected to the drive wheels 61L and 61R via the intermediate shaft 65c and the constant velocity joint 65b (FIG. 4).
 出力歯車軸14L、14Rのアウトボード側の端部と側面ハウジング9bL、9bRに形成した開口部との間には、オイルシール55を設け、減速装置ハウジング9に封入された潤滑油の漏洩および外部からの泥水などの侵入を防止している。 An oil seal 55 is provided between the end of the output gear shafts 14L and 14R on the outboard side and the opening formed in the side housings 9bL and 9bR, and leakage of the lubricating oil sealed in the speed reducer housing 9 and the outside Intrusion of muddy water from
 次に、この発明においては、図3に示すように、トルク差増幅機構の遊星歯車機構30L、30R内の太陽歯車SL、SR、遊星歯車PL、PR、内歯車RL、RRをすべて平歯車にしている。 Next, in the present invention, as shown in FIG. 3, the sun gears S L and S R , the planetary gears P L and P R , the internal gears R L and R in the planetary gear mechanisms 30L and 30R of the torque difference amplification mechanism. All R are spur gears.
 そして、トルク差増幅機構と合わせて用いられる減速装置3L、3Rを構成する歯車は、走行中は常に回転している歯車間の噛み合いにより音が発生する可能性があるため、静音性の良いはすば歯車を用いている。 Since the gears constituting the reduction gears 3L and 3R used in combination with the torque difference amplification mechanism may generate noise due to the meshing between the rotating gears during traveling, the noise reduction is good. Uses helical gears.
 具体的には、減速装置3L、3Rの構成要素である入力歯車12aに噛み合う入力側外歯車13aと、出力歯車14aに噛み合う出力側小径歯車13bを、図3に示すように、はすば歯車によって構成している。また、入力側外歯車13aと噛み合う入力歯車12a、出力側小径歯車13bと噛み合う出力歯車14aも、はすば歯車で構成される。 Specifically, an input-side external gear 13a that meshes with an input gear 12a that is a component of the reduction gears 3L and 3R, and an output-side small-diameter gear 13b that meshes with an output gear 14a, as shown in FIG. It is composed by. The input gear 12a meshing with the input-side external gear 13a and the output gear 14a meshing with the output-side small-diameter gear 13b are also constituted by helical gears.
 トルク差増幅機構の遊星歯車機構30L、30R内の太陽歯車SL、SR、遊星歯車PL、PR、内歯車RL、RRを平歯車で構成すると、図12に示す、はすば歯車を使用する場合のように、回転時にスラスト力が発生しないため、軸受サイズ、軸受支持構造を小型化でき、ユニットの小型化につながる。 If the sun gears S L , S R , the planet gears P L , P R , and the internal gears R L , R R in the planetary gear mechanisms 30L, 30R of the torque difference amplifying mechanism are constituted by spur gears, a lotus shown in FIG. As in the case of using gears, since no thrust force is generated during rotation, the bearing size and the bearing support structure can be reduced, leading to a reduction in the size of the unit.
 すなわち、遊星歯車PL、PRの両側に設けられるスラスト部材を図12のスラスト軸受220a、220bに替えて薄いスラスト板38を使用でき、また、内歯車RL、RRと遊星キャリヤCL、CRとの間に設けられる転がり軸受を図12の転がり軸受239a、239bよりも小さいサイズの転がり軸受39a、39bを使用できるので、歯車装置30の軸方向寸法(図3のA)を、図12の歯車装置300の軸方向寸法(図12のB)よりも小さくすることができる(A<B)。 That can be used planetary gears P L, a thrust bearing 220a of Fig. 12 a thrust member provided on both sides of the P R, a thin thrust plate 38 in place of the 220b, also internal gear R L, R R and planet carrier C L , the rolling bearing 239a in FIG. 12 a rolling bearing provided between the C R, the rolling bearing 39a of smaller size than 239b, so 39b can be used, the axial dimension of the gear device 30 (a in Figure 3), It can be made smaller than the axial dimension (B in FIG. 12) of the gear device 300 in FIG. 12 (A <B).
 また、遊星歯車機構30L、30R内の太陽歯車SL、SR、遊星歯車PL、PR、内歯車RL、RRとして平歯車を使用することにより、はすば歯車加工時のねじれ角に合わせた段取りも不要となり加工工数を削減できる。 Further, by using a spur gear as the sun gears S L , S R , the planet gears P L , P R , and the internal gears R L , R R in the planetary gear mechanisms 30L, 30R, the torsion at the time of processing the helical gears It is not necessary to set up according to the corner, and the number of processing steps can be reduced.
 トルク差増幅機構の遊星歯車機構30L、30Rは、直進時のような左右輪のトルク差、回転速度差がない場合は、遊星歯車機構30L、30Rが一体となって全体が回転しているため、太陽歯車SL、SR、遊星歯車PL、PR、内歯車RL、RR間で回転差が生じず歯車間の噛み合いで音が発生しないため、この発明では、遊星歯車機構30L、30Rの歯車として、はすば歯車ではなく平歯車を使用している。 The planetary gear mechanisms 30L and 30R of the torque difference amplifying mechanism are rotated as a whole when the planetary gear mechanisms 30L and 30R are united when there is no difference in torque and rotational speed between the left and right wheels as in straight travel. , The sun gears S L , S R , the planetary gears P L , P R , the internal gears R L , R R do not produce a rotation difference, and no noise is generated by meshing between the gears. , 30R is not a helical gear but a spur gear.
 また、トルク差増幅機構の遊星歯車機構30L、30Rに平歯車を使用しても、トルク差増幅機構で、主に左右のトルク差、回転速度差が生じるのは、直進に比べ頻度の低い旋回時であり、旋回時に遊星歯車機構30L、30R内の歯車間で回転差が生じるのもわずかの時間のため車両の静音性への影響は小さい。 Even if spur gears are used for the planetary gear mechanisms 30L and 30R of the torque difference amplifying mechanism, the torque difference amplifying mechanism mainly causes left and right torque differences and rotational speed differences. The difference in rotation between the gears in the planetary gear mechanisms 30L and 30R during the turn is small, so the influence on the quietness of the vehicle is small.
 以上のように、この発明では、トルク差増幅機構の遊星歯車機構30L、30R内の太陽歯車SL、SR、遊星歯車PL、PR、内歯車RL、RRを平歯車とし、トルク差増幅機構と合わせて用いられる減速装置3L、3Rの歯車要素は、走行中は常に回転している歯車間の噛み合いにより音が発生する可能性があるため、静音性の良いはすば歯車を用いている。 As described above, in the present invention, the sun gears S L and S R , the planet gears P L and P R , and the internal gears R L and R R in the planetary gear mechanisms 30L and 30R of the torque difference amplification mechanism are spur gears, Since the gear elements of the reduction gears 3L and 3R used in combination with the torque difference amplifying mechanism may generate a sound due to the meshing between the rotating gears during traveling, a helical gear with good quietness Is used.
 図1に示す実施形態の2モータ式の車両駆動装置1の歯車構成は、図4に示すスケルトン図の通りである。 The gear configuration of the two-motor type vehicle drive device 1 of the embodiment shown in FIG. 1 is as shown in the skeleton diagram shown in FIG.
 図4に示すように、左右の電動モータ2L及び電動モータ2Rは、車両に搭載されたバッテリ63からインバータ64を介して与えられた電力により動作する。そして、電動モータ2L、2Rは、電子制御装置(図示省略)により個別に制御され、異なるトルクを発生させて出力することができる。 As shown in FIG. 4, the left and right electric motors 2 </ b> L and 2 </ b> R are operated by electric power supplied from a battery 63 mounted on the vehicle via an inverter 64. The electric motors 2L and 2R are individually controlled by an electronic control device (not shown), and can generate and output different torques.
 電動モータ2L、2Rのモータ軸5aのトルクは、減速装置3L、3Rの入力歯車軸12L、12Rの入力歯車12aと中間歯車軸13L、13Rの大径の入力側外歯車13aとの歯数比で増大されて歯車装置30の内歯車RL、RRに伝達される。 The torque of the motor shaft 5a of the electric motors 2L and 2R is the gear ratio between the input gear shaft 12a of the input gear shafts 12L and 12R of the reduction gears 3L and 3R and the large-diameter input side external gear 13a of the intermediate gear shafts 13L and 13R. And transmitted to the internal gears R L and R R of the gear device 30.
 そして、歯車装置30を介して中間歯車軸13L、13Rの出力側小径歯車13bが出力歯車軸14L、14Rの大径の出力歯車14aに噛み合って出力側小径歯車13bと出力歯車14aとの歯数比で電動モータ2L、2Rのモータ軸5aのトルクがさらに増大されて、駆動輪61L、61Rに出力される。 Then, the output side small gear 13b of the intermediate gear shafts 13L and 13R meshes with the large diameter output gear 14a of the output gear shafts 14L and 14R via the gear device 30, and the number of teeth of the output side small gear 13b and the output gear 14a. The torque of the motor shafts 5a of the electric motors 2L and 2R is further increased by the ratio and output to the drive wheels 61L and 61R.
 歯車装置30は、3要素2自由度の同一の遊星歯車機構30L、30Rが同軸上の中間歯車軸13L、13Rに二つ組み合わされて構成され、遊星歯車機構30L、30Rとして、シングルピニオン形式の遊星歯車機構を採用している。 The gear device 30 is configured by combining two planetary gear mechanisms 30L and 30R having the same three-element and two-degree-of-freedom with coaxial intermediate gear shafts 13L and 13R. The planetary gear mechanisms 30L and 30R are of a single pinion type. A planetary gear mechanism is used.
 遊星歯車機構30L、30Rは、同軸上に設けられた太陽歯車SL、SR及び内歯車RL、RRと、これら太陽歯車SL、SRと内歯車RL、RRとの間に位置する複数の遊星歯車PL、PRと、遊星歯車PL、PRを回動可能に支持し太陽歯車SL、SR及び内歯車RL、RRと同軸上に設けられた遊星キャリヤCL、CRとから構成される。ここで、太陽歯車SL、SRと遊星歯車PL、PRは外周にギヤ歯を有する外歯歯車であり、内歯車RL、RRは内周にギヤ歯を有する内歯歯車である。遊星歯車PL、PRは太陽歯車SL、SRと内歯車RL、RRとに噛み合っている。 The planetary gear mechanisms 30L and 30R are coaxially provided with sun gears S L and S R and internal gears R L and R R, and between these sun gears S L and S R and the internal gears R L and R R. a plurality of planetary gears P L, P R is close to the planetary gear P L, provided the P R rotatably supported by the sun gear S L, S R and the internal gear R L, on R R coaxial It is composed of planetary carriers C L and C R. Here, the sun gear S L, S R and the planetary gears P L, P R is the external gear having gear teeth on the outer circumference, the internal gear R L, R R is the internal gear having gear teeth on the inner peripheral is there. The planetary gears P L and P R mesh with the sun gears S L and S R and the internal gears R L and R R.
 遊星歯車機構30L、30Rでは、遊星キャリヤCL、CRを固定した場合に太陽歯車SL、SRと内歯車RL、RRとが逆方向に回転するため、図5に示す速度線図に表すと内歯車RL、RR及び太陽歯車SL、SRが遊星キャリヤCL、CRに対して反対側に配置される。 In the planetary gear mechanisms 30L, 30R, when the planet carriers C L , C R are fixed, the sun gears S L , S R and the internal gears R L , R R rotate in opposite directions, so the speed line shown in FIG. In the figure, the internal gears R L and R R and the sun gears S L and S R are arranged on the opposite side to the planetary carriers C L and C R.
 この歯車装置30は、前記のように、太陽歯車SL、遊星キャリヤCL、遊星歯車PL及び内歯車RLを有する第1の遊星歯車機構30Lと、同じく太陽歯車SR、遊星キャリヤCR、遊星歯車PR及び内歯車RRを有する第2の遊星歯車機構30Rとが同軸上に組み合わされて構成されている。 As described above, the gear device 30 includes the first planetary gear mechanism 30L having the sun gear S L , the planet carrier C L , the planet gear P L and the internal gear RL , and the sun gear S R and the planet carrier C. R, a second planetary gear mechanism 30R having a planetary gear P R and the internal gear R R is configured by combining coaxially.
 そして、第1の遊星歯車機構30Lの遊星キャリヤCLと第2の遊星歯車機構30Rの太陽歯車SRとが結合されて第1結合部材31を形成し、第1の遊星歯車機構30Lの太陽歯車SLと第2の遊星歯車機構30Rの遊星キャリヤCRとが結合されて第2結合部材32を形成している。 Then, coupled with the planet carrier C L of the first planetary gear mechanism 30L and the sun gear S R of the second planetary gear mechanism 30R form a first coupling member 31, the sun of the first planetary gear mechanism 30L a planet carrier C R gear S L and the second planetary gear mechanism 30R form a second coupling member 32 are coupled.
 電動モータ2Lで発生したトルクTM1は、入力歯車軸12Lの入力歯車12aと入力側外歯車13aとが噛み合って中間歯車軸13Lに伝達され、中間歯車軸13Lに伝達されたトルクが、第1の遊星歯車機構30Lを介して中間歯車軸13Lの出力側小径歯車13bに伝達され、中間歯車軸13Lの出力側小径歯車13bと出力歯車軸14Lの出力歯車14aとが噛み合って出力歯車軸14Lから駆動輪61Lに駆動トルクTLが出力される。 The torque TM1 generated by the electric motor 2L is transmitted to the intermediate gear shaft 13L when the input gear 12a of the input gear shaft 12L and the input side external gear 13a are meshed, and the torque transmitted to the intermediate gear shaft 13L is the first torque. It is transmitted to the output-side small gear 13b of the intermediate gear shaft 13L via the planetary gear mechanism 30L, and the output-side small gear 13b of the intermediate gear shaft 13L and the output gear 14a of the output gear shaft 14L are meshed to drive from the output gear shaft 14L. A driving torque TL is output to the wheel 61L.
 電動モータ2Rで発生したトルクTM2は、入力歯車軸12Rの入力歯車12aと入力側外歯車13aとが噛み合って中間歯車軸13Rに伝達され、中間歯車軸13Rに伝達されたトルクが、第2の遊星歯車機構30Rを介して中間歯車軸13Rの出力側小径歯車13bに伝達され、中間歯車軸13Rの出力側小径歯車13bと出力歯車軸14Rの出力歯車14aとが噛み合って出力歯車軸14Rから駆動輪61Rに駆動トルクTRが出力される。 The torque TM2 generated by the electric motor 2R is transmitted to the intermediate gear shaft 13R when the input gear 12a of the input gear shaft 12R and the input side external gear 13a are meshed, and the torque transmitted to the intermediate gear shaft 13R is the second torque. It is transmitted to the output-side small gear 13b of the intermediate gear shaft 13R via the planetary gear mechanism 30R, and the output-side small gear 13b of the intermediate gear shaft 13R and the output gear 14a of the output gear shaft 14R are meshed to drive from the output gear shaft 14R. A driving torque TR is output to the wheel 61R.
 電動モータ2L、2Rからの出力は、二つの遊星歯車機構30L、30Rのそれぞれの内歯車RL、RRに与えられ、第1結合部材31、第2結合部材32からの出力が駆動輪61L、61Rに与えられる。 Electric motor 2L, the output from the 2R, the two planetary gear mechanisms 30L, each of the internal gear R L of 30R, given R R, the first coupling member 31, the output from the second coupling member 32 is the driving wheel 61L , 61R.
 第2結合部材32は、中空軸で構成されており、その内部に第1結合部材31が挿通され、第1結合部材31と第2結合部材32を構成する軸は二重構造になっている。 The 2nd coupling member 32 is comprised by the hollow shaft, the 1st coupling member 31 is penetrated in the inside, and the axis | shaft which comprises the 1st coupling member 31 and the 2nd coupling member 32 has a double structure. .
 中実軸である第1結合部材31は、その一端(図中右端)が太陽歯車SRの回転軸であり、他端(図中左端)が太陽歯車SLを貫通して設けられ、遊星キャリヤCLに接続されている。また、中空軸である第2結合部材32は、一端(図中左端)が太陽歯車SLの回転軸となっており、他端(図中右端)は遊星キャリヤCRと接続されている。この第1結合部材31と第2結合部材32によって、二つの遊星歯車機構30L、30Rが結合されている。 The first coupling member 31, which is a solid shaft, has one end (right end in the drawing) serving as the rotation shaft of the sun gear S R , and the other end (left end in the drawing) penetrating the sun gear S L. It is connected to the carrier C L. The second coupling member 32 is a hollow shaft, one end (left end in the drawing) has a rotation shaft of the sun gear S L, the other end (right end in the drawing) is connected to the planet carrier C R. The first planetary gear mechanisms 30L and 30R are coupled by the first coupling member 31 and the second coupling member 32.
 ところで、歯車装置30は、二つの同一のシングルピニオン形式の遊星歯車機構30L、30Rを組み合わせて構成されるため、図5に示すように二本の速度線図によって表すことができる。ここでは、分かりやすいように、二本の速度線図を上下にずらし、上側に左側の遊星歯車機構30Lの速度線図を示し、下側に右側の遊星歯車機構30Rの速度線図を示す。また本来は、図1の実施形態では、各電動モータ2L、2Rから出力されたトルクTM1及びTM2は、各入力歯車軸12L、12Rの入力歯車12aと噛み合う入力側外歯車13aを介して各内歯車RL、RRに入力されるため減速比が掛かる、また、歯車装置30から取り出された駆動トルクTL、TRは、出力歯車14aと噛み合う出力側小径歯車13bを介し左右の駆動輪61L、61Rへ伝達されるため減速比が掛かるが、以降、理解を容易にするため、図5に示す速度線図及び各計算式の説明においては、減速比を省略し、各内歯車RL、RRに入力されるトルクをTM1及びTM2のまま、駆動トルクはTL、TRのままとする。 Incidentally, the gear device 30 is configured by combining two identical single pinion planetary gear mechanisms 30L and 30R, and therefore can be represented by two velocity diagrams as shown in FIG. Here, for easy understanding, the two speed diagrams are shifted up and down, the speed diagram of the left planetary gear mechanism 30L is shown on the upper side, and the speed diagram of the right planetary gear mechanism 30R is shown on the lower side. Originally, in the embodiment of FIG. 1, the torques TM1 and TM2 output from the electric motors 2L and 2R are respectively transmitted through the input side external gears 13a meshing with the input gears 12a of the input gear shafts 12L and 12R. Since the gears R L and R R are input to the transmission gear, a reduction ratio is applied. The drive torques TL and TR taken out from the gear device 30 are connected to the left and right drive wheels 61L via the output-side small-diameter gear 13b meshing with the output gear 14a. However, in order to facilitate understanding, the speed ratio and the calculation formulas shown in FIG. 5 are omitted in the following description of the speed ratio and the calculation formulas, and the internal gears R L , R are omitted. The torque input to R remains TM1 and TM2, and the drive torque remains TL and TR.
 歯車装置30を構成する二つの遊星歯車機構30L、30Rは、同一の歯数の歯車要素を使用しているため、速度線図においては内歯車RLと遊星キャリヤCLとの距離及び内歯車RRと遊星キャリヤCRとの距離は等しく、これをaとする。また、太陽歯車SLと遊星キャリヤCLとの距離及び太陽歯車SRと遊星キャリヤCRとの距離も等しく、これをbとする。遊星キャリヤCL、CRから内歯車RL、RRまでの長さと遊星キャリヤCL、CRから太陽歯車SL、SRまでの長さの比は、内歯車RL、RRの歯数Zrの逆数(1/Zr)と太陽歯車SL、SRの歯数Zsの逆数(1/Zs)との比と等しい。よって、a=(1/Zr)、b=(1/Zs)である。 Since the two planetary gear mechanisms 30L and 30R constituting the gear device 30 use gear elements having the same number of teeth, the distance between the internal gear R L and the planet carrier C L and the internal gear in the speed diagram. The distance between R R and the planet carrier C R is equal, and this is a. Further, the distance between the sun gear S L and the planet carrier C L and the distance between the sun gear S R and the planet carrier C R are also equal, which is b. The ratio of the length from the planet carrier C L , C R to the internal gear R L , R R and the length from the planet carrier C L , C R to the sun gear S L , S R is the ratio of the internal gear R L , R R It is equal to the ratio of the reciprocal number (1 / Zr) of the number of teeth Zr and the reciprocal number (1 / Zs) of the number of teeth Zs of the sun gears S L and S R. Therefore, a = (1 / Zr) and b = (1 / Zs).
Rの点を基準にしたモーメントMの釣り合いから下記(11)式が算出される。なお、図5において、図中矢印M方向が正のモーメント方向である。
 a・TR+(a+b)・TL-(b+2a)・TM1=0 …(11)
The following equation (11) is calculated from the balance of the moment M based on the point of R R. In FIG. 5, the arrow M direction in the figure is the positive moment direction.
a · TR + (a + b) · TL− (b + 2a) · TM1 = 0 (11)
 RLの点を基準にしたモーメントMの釣り合いから下記(12)式が算出される。
 -a・TL-(a+b)・TR+(b+2a)・TM2=0 …(12)
The following equation (12) is calculated from the balance of moment M with reference to point R L.
-A.TL- (a + b) .TR + (b + 2a) .TM2 = 0 (12)
(11)式+(12)式より、下記(13)式が得られる。
-b・(TR-TL)+(2a+b)・(TM2-TM1)=0
(TR-TL)=((2a+b)/b)・(TM2-TM1)  …(13)
The following expression (13) is obtained from the expression (11) + the expression (12).
-B. (TR-TL) + (2a + b). (TM2-TM1) = 0
(TR-TL) = ((2a + b) / b). (TM2-TM1) (13)
 (13)式の(2a+b)/bがトルク増幅率αとなる。a=1/Zr、b=1/Zsを代入すると、α=(Zr+2Zs)/Zrとなり、下記のトルク差増幅率αが得られる。 (2a + b) / b in the equation (13) is the torque amplification factor α. When a = 1 / Zr and b = 1 / Zs are substituted, α = (Zr + 2Zs) / Zr, and the following torque difference amplification factor α is obtained.
 α=(Zr+2Zs)/Zr Α = (Zr + 2Zs) / Zr
 この発明では、電動モータ2L、2Rからの入力は、RL、RRとなり、駆動輪61L、61Rへの出力はSR+CL、SL+CRとなる。 In the present invention, the electric motor 2L, input from 2R is, R L, R R, and the drive wheels 61L, the output of the 61R becomes S R + C L, S L + C R.
 そして、二つの電動モータ2L、2Rで異なるトルクTM1、TM2を発生させて入力トルク差ΔTIN(=(TM2-TM1))を与えると、歯車装置30において入力トルク差ΔTINが増幅され、入力トルク差ΔTINよりも大きな駆動トルク差α・ΔTINを得ることができる。すなわち、入力トルク差ΔTINが小さくても、歯車装置30において上記したトルク差増幅率α(=(Zr+2Zs)/Zr)で入力トルク差ΔTINを増幅することができ、左駆動輪61Lと右駆動輪61Rとに伝達される駆動トルクTL、TRに、入力トルク差ΔTINよりも大きな駆動トルク差ΔTOUT(=α・(TM2-TM1))を与えることができる。 When different torques TM1 and TM2 are generated by the two electric motors 2L and 2R to give an input torque difference ΔTIN (= (TM2−TM1)), the gear device 30 amplifies the input torque difference ΔTIN, and the input torque difference A driving torque difference α · ΔTIN larger than ΔTIN can be obtained. That is, even if the input torque difference ΔTIN is small, the input torque difference ΔTIN can be amplified by the above-described torque difference amplification factor α (= (Zr + 2Zs) / Zr) in the gear device 30, and the left drive wheel 61L and the right drive wheel A driving torque difference ΔTOUT (= α · (TM2−TM1)) larger than the input torque difference ΔTIN can be given to the driving torques TL and TR transmitted to 61R.
 従来技術1及び従来技術2では、トルク差増幅機構である歯車装置105の、2つの遊星歯車機構の左右接続部材に内歯車Rが含まれるため、左右どちらかの内歯車と別部材を繋ぐ結合部材の1つが必ず他方の内歯車Rより大径にならなければならない。 In the prior art 1 and the prior art 2, since the internal gear R is included in the left and right connecting members of the two planetary gear mechanisms of the gear device 105 that is the torque difference amplifying mechanism, the coupling that connects either the left or right internal gear and another member. One of the members must have a larger diameter than the other internal gear R.
 この発明では、トルク差分配機構である歯車装置30を構成する2つの遊星歯車機構30L、30Rの接続は、太陽歯車SRと遊星キャリヤCL、太陽歯車SLと遊星キャリヤCRであるから、内歯車RL、RRよりも大径の接続部材を必要としない。このため、この発明では、従来技術1及び従来技術2のものに比してトルク差分配機構を小さくすることができるので、トルク差分配機構を組み込んだ電気自動車用の車両駆動装置1を小さく軽量化することができる。 In the present invention, the connection between the two planetary gear mechanisms 30L and 30R constituting the gear device 30 that is the torque difference distribution mechanism is the sun gear S R and the planet carrier C L , and the sun gear S L and the planet carrier C R. No connection member having a larger diameter than the internal gears R L and R R is required. For this reason, in this invention, since the torque difference distribution mechanism can be made smaller than those of the prior art 1 and the prior art 2, the vehicle drive device 1 for an electric vehicle incorporating the torque difference distribution mechanism is made smaller and lighter. Can be
 電気自動車用の車両駆動装置1を小さく軽量化することにより、車両駆動装置1の車体搭載レイアウトと共に、周辺補機類の車体搭載レイアウトの自由度が向上する。 ¡By reducing the size and weight of the vehicle drive device 1 for an electric vehicle, the degree of freedom of the vehicle body mount layout of peripheral accessories is improved along with the vehicle body mount layout of the vehicle drive device 1.
 また、車両駆動装置1が小型化することにより、車室空間が拡大する等のメリットがある。 In addition, there is a merit that the vehicle interior space is expanded by reducing the size of the vehicle drive device 1.
 図1に示す実施形態では、二つの駆動源として電動モータ2L、2Rを用い、同じ出力特性の電動モータである場合を例示したが、二つの駆動源はこれに限られない。 1 exemplifies the case where the electric motors 2L and 2R are used as the two drive sources and the electric motors have the same output characteristics, but the two drive sources are not limited thereto.
 なお、車両駆動装置1が搭載される車両は、電気自動車やハイブリッド電気自動車に限られず、例えば、第1の電動モータ2L及び第2の電動モータ2Rを駆動源とした燃料電池自動車であってもよい。 The vehicle on which the vehicle drive device 1 is mounted is not limited to an electric vehicle or a hybrid electric vehicle, and may be, for example, a fuel cell vehicle that uses the first electric motor 2L and the second electric motor 2R as driving sources. Good.
 この発明は前述した実施形態に何ら限定されるものではなく、この発明の要旨を逸脱しない範囲において、さらに種々の形態で実施し得る。 The present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the gist of the present invention.
1    :車両駆動装置
2L、2R   :電動モータ
3L、3R   :減速装置
4L、4R   :モータハウジング
4aL、4aR  :モータハウジング本体
4bL、4bR  :外側壁
4cL、4cR  :内側壁
5    :ロータ
5a   :モータ軸
6    :ステータ
7    :シール部材
8a、8b   :転がり軸受
9    :減速装置ハウジング
9a   :中央ハウジング
9bL、9bR  :側面ハウジング
10   :ボルト
11   :仕切り壁
12L、12R  :入力歯車軸
12a  :入力歯車
13L、13R  :中間歯車軸
13a  :入力側外歯車
13b  :出力側小径歯車
14L、14R  :出力歯車軸
14a  :出力歯車
16a、16b  :軸受嵌合穴
17a、17b  :転がり軸受
18   :オイルシール
19a、19b  :軸受嵌合穴
20a、20b  :転がり軸受
30   :歯車装置
30L、30R  :遊星歯車機構
31   :第1結合部材
32   :第2結合部材
33   :キャリヤピン
34a、34b  :キャリヤフランジ
35、36   :中空軸部
37   :軸受
38   :スラスト板
39a、39b  :転がり軸受
40   :カラー
41、42   :スプライン
43   :大径部
44   :カラー45、46   :軸受
47、48   :スラスト軸受
49   :深溝玉軸受
50   :給油穴
51、52   :給油通路
53a、53b  :軸受嵌合穴
54a、54b  :転がり軸受
55   :オイルシール
60   :シャーシ
61L、61R  :駆動輪
62L、62R  :前輪
63   :バッテリ
64   :インバータ
65a、65b  :等速ジョイント
65c  :中間シャフト
AM   :電気自動車
L、CR   :遊星キャリヤ
L、PR   :遊星歯車
L、RR   :内歯車
L、SR   :太陽歯車
TM1、TM2  :トルク
TL、TR   :駆動トルク
Zr   :内歯車RL、RRの歯数
Zs   :太陽歯車SL、SRの歯数
α    :トルク差増幅率
1: Vehicle drive device 2L, 2R: Electric motor 3L, 3R: Deceleration device 4L, 4R: Motor housing 4aL, 4aR: Motor housing body 4bL, 4bR: Outer wall 4cL, 4cR: Inner wall 5: Rotor 5a: Motor shaft 6 : Stator 7: Sealing members 8a and 8b: Rolling bearing 9: Reduction gear housing 9a: Central housing 9bL and 9bR: Side housing 10: Bolt 11: Partition walls 12L and 12R: Input gear shaft 12a: Input gear shafts 13L and 13R: Intermediate Gear shaft 13a: Input side external gear 13b: Output side small diameter gears 14L, 14R: Output gear shaft 14a: Output gears 16a, 16b: Bearing fitting holes 17a, 17b: Rolling bearing 18: Oil seals 19a, 19b: Bearing fitting Hole 20a, 20b: Rolling bearing 30 : Gear units 30L, 30R: planetary gear mechanism 31: first coupling member 32: second coupling member 33: carrier pins 34a, 34b: carrier flanges 35, 36: hollow shaft portion 37: bearing 38: thrust plates 39a, 39b: Rolling bearing 40: Collar 41, 42: Spline 43: Large diameter portion 44: Collar 45, 46: Bearing 47, 48: Thrust bearing 49: Deep groove ball bearing 50: Oil hole 51, 52: Oil passage 53a, 53b: Bearing fit Joint hole 54a, 54b: Rolling bearing 55: Oil seal 60: Chassis 61L, 61R: Drive wheel 62L, 62R: Front wheel 63: Battery 64: Inverter 65a, 65b: Constant velocity joint 65c: Intermediate shaft AM: Electric vehicle C L , C R : Planetary carrier P L , P R : Planetary gear R L , R R : Internal gear S L , S R : Sun gear TM1, TM2: Torque TL, TR: Drive torque Zr: Number of teeth Zs of internal gears R L , R R : Number of teeth α of sun gears S L , S R : Torque difference gain

Claims (6)

  1.  車両に搭載され独立して制御可能な二つの駆動源と、前記二つの駆動源と左右の駆動輪との間に設けられ、前記二つの駆動源からの動力を左右輪に分配する歯車装置と、前記二つの駆動源の動力を前記駆動輪に伝達する減速装置とを備える車両駆動装置において、前記減速装置は、駆動源に連結し、入力歯車を有する入力歯車軸と、駆動輪に連結し、出力歯車を有する出力歯車軸と、歯車の噛合いにより入力歯車軸から出力歯車軸の間の動力伝達を行う中間歯車軸が少なくとも1つ以上配され、前記減速装置を構成する歯車が外歯車であり、前記二つの駆動源からの動力を左右輪に分配する歯車装置は、同軸に配された左右の1対の中間歯車軸と同軸上に二つ組み合わせた3要素2自由度の遊星歯車機構からなり、前記遊星歯車機構は、内歯車と、前記内歯車と同軸上に設けられた遊星キャリヤと、前記内歯車と同軸上に設けられた太陽歯車と、公転歯車としての遊星歯車とを有し、前記二つの遊星歯車機構の一方の遊星キャリヤと他方の太陽歯車とを結合する第1結合部材と、一方の太陽歯車と他方の遊星キャリヤとを結合する第2結合部材とを有し、前記歯車装置と同軸上にある前記減速装置の中間歯車軸に、入力歯車または駆動側中間歯車軸の歯車と噛み合う入力側外歯車と、前記遊星歯車機構の遊星キャリヤと連結され、出力歯車または従動側中間歯車軸の歯車と噛み合う出力側小径歯車とを設け、前記減速装置を構成する外歯車を、はすば歯車とし、前記遊星歯車機構を構成する、内歯車、太陽歯車、遊星歯車をそれぞれ平歯車としたことを特徴とする車両駆動装置。 Two drive sources mounted on the vehicle and independently controllable, and a gear device provided between the two drive sources and the left and right drive wheels, and distributing power from the two drive sources to the left and right wheels And a reduction gear that transmits power of the two drive sources to the drive wheels. The reduction gear is connected to the drive source, and is connected to an input gear shaft having an input gear, and to the drive wheels. An output gear shaft having an output gear and at least one intermediate gear shaft for transmitting power between the input gear shaft and the output gear shaft by meshing of the gears, and the gear constituting the reduction gear is an external gear The gear device for distributing the power from the two drive sources to the left and right wheels is a three-element, two-degree-of-freedom planetary gear that is coaxially combined with a pair of left and right intermediate gear shafts arranged coaxially. The planetary gear mechanism is an internal gear A planetary carrier provided coaxially with the internal gear, a sun gear provided coaxially with the internal gear, and a planetary gear serving as a revolving gear, and one of the two planetary gear mechanisms. The speed reducer having a first coupling member for coupling the planet carrier and the other sun gear, and a second coupling member for coupling one sun gear to the other planet carrier, and coaxial with the gear device The intermediate gear shaft is connected to the input side external gear that meshes with the gear of the input gear or the drive side intermediate gear shaft, and the planetary carrier of the planetary gear mechanism, and the output side small diameter that meshes with the gear of the output gear or the driven side intermediate gear shaft. A vehicle drive characterized in that the external gear constituting the reduction gear is a helical gear, and the internal gear, the sun gear, and the planetary gear constituting the planetary gear mechanism are respectively spur gears. apparatus.
  2.  前記入力歯車または駆動側の中間歯車軸の歯車と噛み合う入力側外歯車が、前記遊星歯車機構の内歯車の外周部に一体に形成されたことを特徴とする請求項1に記載の車両駆動装置。 2. The vehicle drive device according to claim 1, wherein an input-side external gear that meshes with the input gear or the gear of the drive-side intermediate gear shaft is integrally formed on an outer peripheral portion of the internal gear of the planetary gear mechanism. .
  3.  前記歯車装置と同軸上にある前記減速機構の中間歯車軸に、入力歯車または駆動側の中間歯車軸の歯車と噛み合う入力側外歯車と、前記遊星歯車機構の内歯車とを、別部材により形成したことを特徴とする請求項1に記載の車両駆動装置。 The input side external gear meshing with the gear of the input gear or the drive side intermediate gear shaft and the internal gear of the planetary gear mechanism are formed by separate members on the intermediate gear shaft of the reduction mechanism that is coaxial with the gear device. The vehicle drive device according to claim 1, wherein
  4.  前記遊星歯車機構の内歯車は、遊星キャリヤに対して転がり軸受によって回転自在に支持されることを特徴とする請求項1~3のいずれかに記載の車両駆動装置。 The vehicle drive device according to any one of claims 1 to 3, wherein the internal gear of the planetary gear mechanism is rotatably supported by a rolling bearing with respect to the planet carrier.
  5.  前記車両駆動装置の減速装置ハウジングが、中央ハウジングと左右の側面ハウジングからなる3ピース構成であり、前記中央ハウジングの中央部には左右を仕切る仕切り壁が設けられ、前記第1結合部材と前記第2結合部材が前記仕切り壁を貫通していることを特徴とする請求項1~4のいずれかに記載の車両駆動装置。 The speed reducer housing of the vehicle drive device has a three-piece configuration including a central housing and left and right side housings. A partition wall is provided at the central portion of the central housing to partition the left and right, and the first coupling member and the first housing The vehicle drive device according to any one of claims 1 to 4, wherein two connecting members pass through the partition wall.
  6.  前記第1および第2結合部材の内、内径側の結合部材の内径に給油穴を設けたことを特徴とする請求項1~5のいずれかに記載の車両駆動装置。 The vehicle drive device according to any one of claims 1 to 5, wherein an oil supply hole is provided in an inner diameter of a coupling member on an inner diameter side of the first and second coupling members.
PCT/JP2017/001854 2016-02-19 2017-01-20 Vehicle drive apparatus WO2017141617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016030319A JP2017145948A (en) 2016-02-19 2016-02-19 Vehicle drive device
JP2016-030319 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017141617A1 true WO2017141617A1 (en) 2017-08-24

Family

ID=59625035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001854 WO2017141617A1 (en) 2016-02-19 2017-01-20 Vehicle drive apparatus

Country Status (2)

Country Link
JP (1) JP2017145948A (en)
WO (1) WO2017141617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094930A (en) * 2017-11-17 2019-06-20 アイシン・エィ・ダブリュ株式会社 Driving device for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505309A (en) * 1995-05-09 1999-05-18 アルファ ゲトリーベバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Two-stage planetary gear set
JP2008295173A (en) * 2007-05-23 2008-12-04 Honda Motor Co Ltd Power device
JP2010048379A (en) * 2008-08-22 2010-03-04 Aisin Aw Co Ltd Vehicle drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505309A (en) * 1995-05-09 1999-05-18 アルファ ゲトリーベバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Two-stage planetary gear set
JP2008295173A (en) * 2007-05-23 2008-12-04 Honda Motor Co Ltd Power device
JP2010048379A (en) * 2008-08-22 2010-03-04 Aisin Aw Co Ltd Vehicle drive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019094930A (en) * 2017-11-17 2019-06-20 アイシン・エィ・ダブリュ株式会社 Driving device for vehicle

Also Published As

Publication number Publication date
JP2017145948A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
WO2017141607A1 (en) Vehicle-driving apparatus
US11072229B2 (en) Vehicle electric drive system
JP2017203503A (en) Vehicle drive unit
JP6290342B1 (en) Control device for left and right wheel drive device
CN109789800B (en) Drive source control device
US20220355663A1 (en) Transmission Having A Torque Vectoring Superposition Unit
JP2018155310A (en) Four-wheel drive vehicle
JP2018039396A (en) Two motor vehicle drive device
JP2018155327A (en) Vehicle drive unit
JP2017145931A (en) Vehicle drive device
JP2018093612A (en) Motor control device and vehicle including motor control device
WO2017141617A1 (en) Vehicle drive apparatus
WO2018034099A1 (en) Vehicle driving device
JP2017141889A (en) Vehicle drive device
JP2017180559A (en) Vehicle driving apparatus
WO2017163871A1 (en) Vehicle drive device
JP6170580B1 (en) Vehicle drive device
WO2018012189A1 (en) Vehicle drive device
JP2017145942A (en) Vehicle drive device
JP2018048686A (en) Vehicle driving device
WO2017068913A1 (en) Vehicle-driving apparatus
JP6647935B2 (en) Planetary gear device and vehicle drive device using the same
JP2018105325A (en) Abnormality detection device for right and left wheel driving device, abnormality detection method and vehicle with this abnormality detection device
JP2018028364A (en) Vehicle driving unit
JP2018048663A (en) Vehicle drive unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752881

Country of ref document: EP

Kind code of ref document: A1