WO2018034067A1 - Semiconductor device with capacitor - Google Patents

Semiconductor device with capacitor Download PDF

Info

Publication number
WO2018034067A1
WO2018034067A1 PCT/JP2017/024085 JP2017024085W WO2018034067A1 WO 2018034067 A1 WO2018034067 A1 WO 2018034067A1 JP 2017024085 W JP2017024085 W JP 2017024085W WO 2018034067 A1 WO2018034067 A1 WO 2018034067A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
semiconductor element
semiconductor device
layer
resin layer
Prior art date
Application number
PCT/JP2017/024085
Other languages
French (fr)
Japanese (ja)
Inventor
尚之 小林
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018034067A1 publication Critical patent/WO2018034067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Definitions

  • the present invention relates to a semiconductor device with a capacitor, and more particularly, to a semiconductor device with a capacitor in which, even if a temperature change occurs, warpage, damage to a semiconductor element, and occurrence of poor connection are suppressed.
  • a power supply wiring that supplies power to the semiconductor element and a ground wiring are interposed.
  • a capacitor decoupling capacitor
  • Japanese Laid-Open Patent Publication No. 2001-223299 discloses a package substrate in which a capacitor is connected between a power supply wiring and a ground wiring.
  • FIG. 7 shows a package substrate 1000 disclosed in Patent Document 1.
  • a semiconductor element (IC chip) 101 is mounted on the package substrate 1000.
  • a power supply wiring (power supply line) 102 is connected from the power supply to the power supply terminal 101 ⁇ / b> P of the semiconductor element 101.
  • a ground wiring (earth wire) 103 is connected from the ground terminal 101E of the semiconductor element 101 to the power source.
  • capacitors (chip capacitors) 104 and 105 are mounted on the package substrate 1000.
  • the capacitors 104 and 105 are connected between the power supply wiring 102 and the ground wiring 103, respectively.
  • the loop inductance that becomes a transmission loss is proportional to the wiring length from the power supply terminal 101P of the semiconductor element 101 to the power supply via the power supply wiring 102 and the wiring length from the power supply to the ground terminal 101E via the ground wiring 103.
  • the loop length for determining the loop inductance is shortened to the wiring length via the capacitors 104 and 105 indicated by solid lines in the drawing.
  • the capacitors 104 and 105 are preferably connected as close to the semiconductor element 101 as possible.
  • the package substrate 1000 reduces the power impedance by reducing the loop inductance and suppresses voltage fluctuation.
  • the capacitors 104 and 105 have a function of removing noise entering and exiting the semiconductor element 101.
  • capacitors 104 and 105 are connected in the package substrate 1000.
  • different types of capacitors for example, aluminum
  • Many electrolytic capacitors and multilayer ceramic capacitors may be connected.
  • a sealing resin layer may be provided so as to cover the semiconductor element 101 and the capacitors 104 and 105.
  • FO-WLP fan-out-wafer-level package
  • This FO-WLP cuts out a semiconductor element from a wafer, attaches the functional surface (terminal surface) side of the semiconductor element to a film, and then molds a resin on the surface opposite to the film of the semiconductor element.
  • a packaging method for removing a film The semiconductor element is embedded in the resin layer (holding resin layer) with the functional surface (terminal surface) side exposed to the outside.
  • a rewiring layer is formed on the surface of the resin layer where the semiconductor element is exposed.
  • the thermal expansion coefficient of the semiconductor element and the thermal expansion coefficient of the interposer may be brought close to each other.
  • the difference between the thermal expansion coefficient of the Si interposer and the thermal expansion coefficient of the capacitor is too large.
  • the Si interposer may be warped, the capacitor may be peeled off from the Si interposer, or a connection failure may occur.
  • the semiconductor device with a capacitor according to the present invention is formed of at least one Si semiconductor element formed of Si and Si.
  • the Si semiconductor element and the Si capacitor are mounted on the Si interposer, respectively, and a sealing resin layer is formed on the main surface of the Si interposer so as to cover the mounted Si semiconductor element and the Si capacitor. can do.
  • the Si interposer and the mounted Si semiconductor element and the Si capacitor have close thermal expansion coefficients, the Si interposer is warped even if a temperature change occurs, or the Si semiconductor element and the Si capacitor are It does not peel off from the interposer or cause poor connection. Further, the Si semiconductor element and the Si capacitor are protected from the outside by the sealing resin layer.
  • each of the Si semiconductor element and the Si capacitor is embedded in the holding resin layer with one main surface exposed, and on the main surface of the holding resin layer where the Si semiconductor element and the Si capacitor are exposed, A rewiring layer may be formed.
  • the holding resin layer, the embedded Si semiconductor element, and the Si capacitor have similar coefficients of thermal expansion. Therefore, even if a temperature change occurs, the holding resin layer warps, the Si semiconductor element or the Si capacitor. The capacitor does not peel from the holding resin layer.
  • the Si capacitor for example, a trench capacitor in which a hole is formed in a Si base made of Si and formed in the hole can be used.
  • the Si capacitor is not limited to a trench capacitor, and may have another structure.
  • a thin film high-capacitance capacitor in which a conductive porous layer, a dielectric layer, and a conductor layer are sequentially laminated on the Si capacitor is formed, and the Si capacitor and the thin-film high-capacity capacitor are connected in parallel.
  • the required large capacitance can be formed between the power supply wiring and the ground wiring by using the Si capacitor and the thin film high-capacity capacitor.
  • the Si capacitor mainly reduces the power impedance in the high frequency range
  • the thin film high-capacitance capacitor mainly reduces the power impedance in the low frequency range, reducing the power impedance over a wide frequency range, and suppressing voltage fluctuations. Can do. Furthermore, noises of various frequencies can be removed.
  • a multilayer ceramic capacitor may be mounted on the Si capacitor, and the Si capacitor and the multilayer ceramic capacitor may be connected in parallel.
  • the required large capacitance can be formed between the power supply wiring and the ground wiring by the Si capacitor and the multilayer ceramic capacitor.
  • the Si capacitor mainly reduces the power supply impedance in the high frequency range
  • the multilayer ceramic capacitor mainly reduces the power supply impedance in the low frequency range, thereby reducing the power supply impedance over a wide frequency range and suppressing voltage fluctuations. it can. Furthermore, noises of various frequencies can be removed.
  • the multilayer ceramic capacitor is directly mounted on the Si interposer or embedded in the holding resin layer, the above-mentioned trouble may occur due to a temperature change, but if the multilayer ceramic capacitor is mounted on the Si capacitor, Since the Si capacitor functions as a buffer material, it is possible to avoid such troubles.
  • a thin film resistor may be formed on the surface of the Si capacitor, and the Si capacitor and the thin film resistor may be connected in series. If the ESR (Equivalent Series Resistance) of the Si capacitor is too small relative to the inductance component of the power supply wiring, anti-resonance with a large peak may occur, but as described above, the thin film resistor in series with the Si capacitor Can be connected to suppress the peak of antiresonance.
  • ESR Equivalent Series Resistance
  • the semiconductor device with a capacitor uses a Si semiconductor element as a semiconductor element, uses a Si capacitor as a capacitor, and arranges or holds the Si semiconductor element and the Si capacitor in a planar direction in a Si interposer. Since one main surface is embedded in the resin layer for use, even if the temperature changes, warping, damage to the semiconductor element, peeling of the semiconductor element or Si capacitor, or connection failure may occur. Is suppressed.
  • FIG. 1A is a front view showing the capacitor-equipped semiconductor device 100 according to the first embodiment.
  • FIG. 1B is a cross-sectional view showing the Si capacitor 4 of the semiconductor device 100 with a capacitor. It is explanatory drawing (front view which looked through and showed the inside of the resin layer 12 for sealing) which shows the semiconductor device 200 with a capacitor concerning 2nd Embodiment.
  • FIG. 3A is a front view showing a semiconductor device 300 with a capacitor according to the third embodiment.
  • FIG. 3B is a cross-sectional view showing the Si capacitor 14 of the semiconductor device 300 with a capacitor.
  • FIG. 4A is a front view showing a semiconductor device with a capacitor 400 according to the fourth embodiment.
  • FIG. 4B is a cross-sectional view showing the Si capacitor 24 of the semiconductor device with a capacitor 400.
  • FIG. 5A is a front view showing a semiconductor device 500 with a capacitor according to the fifth embodiment.
  • FIG. 5B is an explanatory diagram (a front view partially showing a cross section) showing the Si capacitor 34 of the semiconductor device with a capacitor 500.
  • 6 (A) to 6 (E) are explanatory views showing steps performed in an example of the method of manufacturing the capacitor-equipped semiconductor device 600 according to the sixth embodiment (see through the inside of the holding resin layer 20). It is a front view shown).
  • 10 is an explanatory view showing a package substrate 1000 disclosed in Patent Document 1.
  • FIG. 1 is an explanatory view showing a package substrate 1000 disclosed in Patent Document 1.
  • each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
  • FIG. 1A and 1B show a semiconductor device 100 with a capacitor according to the first embodiment.
  • FIG. 1A is a front view showing the semiconductor device 100 with a capacitor.
  • FIG. 1B is a cross-sectional view showing the Si capacitor 4 of the semiconductor device 100 with a capacitor.
  • the capacitor-equipped semiconductor device 100 includes a Si interposer 1 made of Si. Although not shown, a plurality of electrodes are formed on both main surfaces of the Si interposer 1, and predetermined wiring is made by surface wiring, interlayer wiring, via conductors, and the like.
  • the Si interposer 1 can be manufactured by an existing interposer manufacturing method that is generally implemented.
  • a semiconductor element (LSI element or the like) 3 is mounted on the electrode formed on the upper main surface of the Si interposer 1 by a bump 2 made of Sn-3.5Ag, Cu, Sn-Pb or the like.
  • the Si capacitor 4 is mounted by the bump 2 on another electrode formed on the upper main surface of the Si interposer.
  • FIG. 1B shows the details of the Si capacitor 4.
  • a trench capacitor is used as the Si capacitor 4.
  • the Si capacitor 4 includes a Si base 5 made of Si.
  • a plurality of holes 6 are formed in one main surface (lower main surface) of the Si substrate 5.
  • An insulating layer 7, a first electrode layer 8, a dielectric layer 9, and a second electrode layer 10 are formed inside the hole 6.
  • the insulating layer 7 is formed of SiO 2
  • the first electrode layer 8 is formed of Si
  • the dielectric layer 9 is formed of Ti 2 O 3
  • the second electrode layer 10 is formed of TiN. .
  • the first electrode layer 8 and the second electrode layer 10 are each drawn out to the surface of the Si substrate 5, and the bumps 2 are formed in the drawn portions.
  • the Si capacitor 4 can be manufactured by an existing trench capacitor manufacturing method that is generally performed.
  • a bump 11 made of Sn-3.5Ag, Cu, Sn-Pb or the like is formed on the electrode formed on the lower main surface of the Si interposer.
  • the Si capacitor 4 is connected between a power supply wiring (not shown) for supplying power to the Si semiconductor element 3 and a ground wiring (not shown).
  • the Si capacitor 4 is connected between the power supply wiring and the ground wiring, so that the power supply impedance is small and voltage fluctuation is suppressed. Further, noise can be removed by the Si capacitor 4.
  • the semiconductor device with a capacitor 100 since the semiconductor device with a capacitor 100 has the Si semiconductor element 3 and the Si capacitor 4 mounted on the Si interposer 1 having a coefficient of thermal expansion close to each other, even if a temperature change occurs, The semiconductor element 3 is not damaged, and the Si semiconductor element 3 and the Si capacitor 4 are not peeled off from the Si interposer 1 to cause connection failure.
  • the capacitor-equipped semiconductor device 100 has a low profile because the Si capacitor 4 has a smaller height than an aluminum electrolytic capacitor or a multilayer ceramic capacitor.
  • FIG. 2 shows a semiconductor device 200 with a capacitor according to the second embodiment.
  • FIG. 2 is an explanatory view showing the semiconductor device with a capacitor 200 (a front view seen through the inside of the sealing resin layer 12).
  • the sealing resin layer 12 is added to the semiconductor device with a capacitor 100 according to the first embodiment. Specifically, in the semiconductor device with a capacitor 200, the sealing resin layer 12 is formed on the upper main surface of the Si interposer 1 so as to cover the Si semiconductor element 3 and the Si capacitor 4.
  • the sealing resin layer 12 is for protecting the Si semiconductor element 3 and the Si capacitor 4 and has characteristics such as a linear expansion coefficient relatively close to Si and low hygroscopicity. preferable.
  • an epoxy resin, a silicon resin, or the like can be used for the sealing resin layer 12.
  • the sealing resin layer 12 is formed by, for example, dropping a liquid resin on the upper main surface of the Si interposer 1 and heating it to cure after mounting the Si semiconductor element 3 and the Si capacitor 4. Can do.
  • FIG. 3A and 3B show a capacitor-equipped semiconductor device 300 according to the third embodiment.
  • FIG. 3A is a front view showing the semiconductor device 300 with a capacitor.
  • FIG. 3B is a cross-sectional view showing the Si capacitor 14 of the semiconductor device 300 with a capacitor.
  • the Si capacitor 4 of the semiconductor device with a capacitor 100 according to the first embodiment is replaced with a Si capacitor 14 having a thin film resistor 15 formed on the surface thereof. Then, the Si semiconductor element 3 and the Si capacitor 14 were mounted on the Si interposer 1.
  • FIG. 3B shows the details of the Si capacitor 14.
  • the Si capacitor 14 includes the Si base 5 similarly to the Si capacitor 4, and a trench capacitor is formed in the Si base 5. That is, a plurality of holes 6 are formed in the Si substrate 5, and an insulating layer 7, a first electrode layer 8, a dielectric layer 9, and a second electrode layer 10 are formed inside the holes 6.
  • the thin film resistor 15 is further formed on the lower main surface of the Si base 5 in the Si capacitor 14.
  • the thin film resistor 15 is made of NiCr, for example.
  • the thin film resistor 15 is connected in series with the trench capacitor (the first electrode layer 8, the dielectric layer 9, and the second electrode layer 10).
  • the ESR of the capacitor connected between the power supply wiring and the ground is too small with respect to the inductance component of the power supply wiring, anti-resonance with a large peak in the power supply impedance may occur.
  • the semiconductor device with a capacitor 300 according to the third embodiment since the thin film resistor 15 is connected in series with the trench capacitor, the anti-resonance peak can be suppressed to a small value.
  • the thin film resistor 15 can be formed by thin film technology, for example.
  • FIG. 4A and 4B show a semiconductor device 400 with a capacitor according to the fourth embodiment.
  • FIG. 4A is a front view showing the semiconductor device 400 with a capacitor.
  • FIG. 4B is a cross-sectional view showing the Si capacitor 24 of the semiconductor device with a capacitor 400.
  • the Si capacitor 4 of the semiconductor device with capacitor 100 according to the first embodiment is replaced with the Si capacitor 24 in which the thin film high-capacitance capacitor 16 is formed on the upper main surface. Then, the Si semiconductor element 3 and the Si capacitor 24 were mounted on the Si interposer 1.
  • FIG. 4B shows details of the Si capacitor 24.
  • the Si capacitor 24 includes the Si base 5 similarly to the Si capacitor 4, and a trench capacitor is formed in the Si base 5. That is, a plurality of holes 6 are formed in the Si substrate 5, and an insulating layer 7, a first electrode layer 8, a dielectric layer 9, and a second electrode layer 10 are formed inside the holes 6.
  • a thin film high-capacity capacitor 16 is further formed on the upper main surface of the Si base 5.
  • the thin film high-capacitance capacitor 16 has a structure in which a conductive porous layer 16a, a dielectric layer 16b, and a conductive layer 16c are sequentially stacked.
  • the thin film high capacity capacitor 16 has a very large capacity because the dielectric layer 16b is formed on the conductive porous layer 16a.
  • the thin film high capacity capacitor 16 can be formed by the following method, for example.
  • an insulating layer 17 made of, for example, SiO 2 is formed in a region of the Si base 5 where the thin film high capacity capacitor 16 is to be formed.
  • the insulating layer 17 made of SiO 2 can be formed by a CVD (Chemical Vapor Deposition) method or the like.
  • a conductor layer (not shown) made of, for example, Al is formed on the insulating layer 17 by, for example, photolithography.
  • the material of the conductor layer is not limited to Al and may be other metals.
  • an extremely large number of fine holes are formed in the conductor layer by, for example, etching after anodic oxidation to form the conductor porous body layer 16a.
  • the formation of fine holes is not limited to the anodic oxidation method, and may be formed by a method such as a method of depositing metal fine particles by printing, ink jetting, spraying, spraying, or the like.
  • a dielectric layer 16b made of, for example, AlOX (X is 1.2 or more) is formed on the conductive porous layer 16a by an atomic deposition method (ALD method; Atomic Layer Deposition).
  • a diffusion preventing layer made of, for example, TiON may be formed in advance between the conductive porous body layer 16a and the dielectric layer 16b. The formation of the diffusion preventing layer can also be performed by the ALD method.
  • a conductor layer 16c made of, for example, Al is formed on the dielectric layer 16b by, for example, the ALD method.
  • the material of the conductor layer 16c is not limited to Al, and may be Cu, Ni, or the like.
  • a diffusion prevention layer made of TiON or the like may be formed in advance between the dielectric layer 16b and the conductor layer 16c. This diffusion prevention layer can also be formed by the ALD method.
  • the conductive porous body layer 16a, the dielectric layer 16b, and the conductive layer 16c are patterned by using a photolithography technique to complete the thin film high-capacitance capacitor 16.
  • the trench capacitor (first electrode layer 8, dielectric layer 9, second electrode layer 10) of the Si capacitor 24 and the thin film high-capacitance capacitor 16 are formed in the Si substrate 5 and via conductors are formed. By connecting in parallel.
  • the capacitor-equipped semiconductor device 400 can form a desired large capacitance between the power supply wiring and the ground wiring by the trench capacitor and the thin film high-capacitance capacitor 16.
  • the capacitor-equipped semiconductor device 400 since the capacitor-equipped semiconductor device 400 has different types of capacitors connected in parallel, the power source impedance can be reduced and voltage fluctuation can be suppressed over a wide frequency range. Furthermore, noises of various frequencies can be removed.
  • the thin film resistor 15 is formed on the surface of the Si substrate 5, and the trench capacitor (first electrode layer) of the Si capacitor 24 is formed. 8, the dielectric layer 9, the second electrode layer 10) and the thin film resistor 15 may be connected in series.
  • FIG. 5A and 5B show a semiconductor device 500 with a capacitor according to the fifth embodiment.
  • FIG. 5A is a front view showing the semiconductor device 500 with a capacitor.
  • FIG. 5B is an explanatory diagram (a front view partially showing a cross section) showing the Si capacitor 34 of the semiconductor device with a capacitor 500.
  • the Si capacitor 4 of the semiconductor device with a capacitor 100 according to the first embodiment is replaced with the Si capacitor 34 on which the multilayer ceramic capacitor 18 is mounted on the upper main surface. Then, the Si semiconductor element 3 and the Si capacitor 34 were mounted on the Si interposer 1.
  • FIG. 5B shows details of the Si capacitor 34.
  • the Si capacitor 34 includes a Si base 5, and a trench capacitor is formed in the Si base 5. That is, a plurality of holes 6 are formed in the Si substrate 5, and an insulating layer 7, a first electrode layer 8, a dielectric layer 9, and a second electrode layer 10 are formed inside the holes 6.
  • a multilayer ceramic capacitor 18 is mounted on the upper main surface of the Si base 5 using a bonding material 19.
  • the trench capacitor (first electrode layer 8, dielectric layer 9, second electrode layer 10) of the Si capacitor 24 and the multilayer ceramic capacitor 18 are formed in the Si substrate 5 and via conductors are formed. Are connected in parallel.
  • the trench capacitor and the multilayer ceramic capacitor 18 provide a desired large capacity between the power supply wiring and the ground wiring. Can be formed.
  • the capacitor-equipped semiconductor device 400 since the capacitor-equipped semiconductor device 400 has different types of capacitors connected in parallel, the power source impedance can be reduced and voltage fluctuation can be suppressed over a wide frequency range. Furthermore, noises of various frequencies can be removed.
  • the semiconductor device with a capacitor 400 uses a multilayer ceramic capacitor 18 having a coefficient of thermal expansion that is significantly different from that of the Si interposer 1 and the Si semiconductor element 3.
  • Si Since it is mounted on the interposer 1 and the Si base 5 functions as a kind of buffer material, even if a temperature change occurs, it does not warp and the multilayer ceramic capacitor 18 does not peel off.
  • the thin film resistor 15 is formed on the surface of the Si base 5, and the trench capacitor (first electrode layer) of the Si capacitor 34 is formed. 8, the dielectric layer 9, the second electrode layer 10) and the thin film resistor 15 may be connected in series.
  • FIGS. 6A to 6E show a semiconductor device 600 with a capacitor according to a sixth embodiment.
  • FIGS. 6A to 6E are explanatory views showing steps performed in an example of the method of manufacturing the capacitor-equipped semiconductor device 600 (front views showing through the inside of the holding resin layer 20). 6E shows the completed semiconductor device 600 with a capacitor.
  • the capacitor-equipped semiconductor device 600 holds the Si semiconductor element 13 and the Si capacitor 44 in the holding resin layer 20 by FO-WLP (fan out-Wafer Level Package).
  • FO-WLP fan out-Wafer Level Package
  • the Si semiconductor element 13 and the Si capacitor 44 are prepared.
  • the Si semiconductor element 13 the same one as the Si semiconductor element 3 used in the first embodiment was prepared.
  • the Si capacitor 44 the same one as the Si capacitor 4 used in the first embodiment was prepared.
  • the bumps are not formed on the lower main surface of the Si semiconductor element 13 and the Si capacitor 44, respectively.
  • the Si semiconductor element 13 and the Si capacitor 44 are attached to the film 21 with the surfaces on which the terminals are formed facing the film 21, respectively.
  • the surface of the film 21 is previously given adhesiveness.
  • a liquid resin is dropped on the film 21 so as to cover the Si semiconductor element 13 and the Si capacitor 44, and then heated to cure the resin and retain the resin.
  • Layer 20 is formed.
  • a material having characteristics (such as a linear expansion coefficient) that the holding resin layer 20 is not warped or the Si semiconductor element 13 is not peeled off from the holding resin layer 20 must be selected.
  • the film 21 is removed from the holding resin layer 20 in which the Si semiconductor element 13 and the Si capacitor 44 are embedded.
  • 6C to 6E show the holding resin layer 20 upside down with respect to FIGS. 6A and 6B.
  • the surface on which the terminals of the Si semiconductor element 13 are formed and the surface on which the terminals of the Si capacitor 44 are formed are exposed.
  • the rewiring layer 22 is formed on the surface of the holding resin layer 20 where the Si semiconductor element 13 and the Si capacitor 44 are exposed.
  • the redistribution layer 22 is formed by laminating a plurality of insulating layers (not shown), and a via conductor formed through the insulating layer or a wiring electrode formed between the layers, between the two main surfaces. Wiring is made.
  • the rewiring layer 22 connects the Si semiconductor element 13 and the Si capacitor 44.
  • the rewiring layer 22 can be formed using a general insulating material or a conductive material by using a photolithography technique.
  • bumps 23 are formed on the rewiring layer 22 to complete the semiconductor device 600 with a capacitor.
  • the resin constituting the holding resin layer takes into account the thermal expansion coefficient, size, and shape of the semiconductor element, and even if the temperature changes, the holding resin layer warps.
  • the element is selected so that the element is not damaged or the semiconductor element does not peel from the holding resin layer.
  • the Si capacitor 44 having a thermal expansion coefficient close to that of the Si semiconductor element 13 is used as the capacitor embedded in the holding resin layer 20 together with the Si semiconductor element 13.
  • the holding resin layer 20 is prevented from warping, the Si semiconductor element 13 is damaged, and the Si semiconductor element 13 and the Si capacitor 44 are prevented from peeling from the holding resin layer.
  • capacitor semiconductor devices 100 to 600 according to the first to sixth embodiments have been described above.
  • the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.
  • trench capacitors are used for the Si capacitors 4, 14, 24, 34, and 44.
  • the Si capacitor only needs to use Si for the substrate, Is not limited and may be of other types.
  • the Si capacitor 44 having only the trench capacitor is embedded in the holding resin layer 20 as the Si capacitor.
  • the Si capacitor 14 including the trench capacitor and the thin film resistor 15, the Si capacitor 24 including the trench capacitor and the thin film high-capacitance capacitor 16, the trench capacitor and the multilayer ceramic capacitor 18 used in the other embodiments are used.
  • a Si capacitor 34 or the like provided with may be embedded in the holding resin layer 20.
  • the number of Si capacitors mounted on the Si interposer 1 and the number of Si capacitors embedded in the holding resin layer 20 are arbitrary, and are not limited to the number drawn in the drawing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Provided is a semiconductor device with capacitor for which even when a temperature change occurs, warping, damage to a semiconductor element, and the occurrence of connection failure are suppressed. Provided are at least one Si semiconductor element 3 formed using Si, and at least one Si capacitor 4 formed using Si, wherein the Si semiconductor element 3 and the Si capacitor 4 are respectively placed aligned in the planar direction by being mounted on one Si interposer 1 formed using Si.

Description

キャパシタ付半導体装置Semiconductor device with capacitor
 本発明は、キャパシタ付半導体装置に関し、さらに詳しくは、温度変化が起こっても、反ったり、半導体素子が破損したり、接続不良が発生したりすることが抑制されたキャパシタ付半導体装置に関する。 The present invention relates to a semiconductor device with a capacitor, and more particularly, to a semiconductor device with a capacitor in which, even if a temperature change occurs, warpage, damage to a semiconductor element, and occurrence of poor connection are suppressed.
 半導体素子を使用した電子回路においては、ノイズを除去するために、また、電源インピーダンスを小さくして電圧変動を抑制するために、半導体素子へ電力を供給する電源配線と、グランド配線との間に、キャパシタ(デカップリングコンデンサ)を接続する場合が多い。 In an electronic circuit using a semiconductor element, in order to eliminate noise and to reduce voltage fluctuation by reducing power supply impedance, a power supply wiring that supplies power to the semiconductor element and a ground wiring are interposed. In many cases, a capacitor (decoupling capacitor) is connected.
 特許文献1(特開2001-223299号公報)に、電源配線とグランド配線との間にキャパシタを接続したパッケージ基板が開示されている。 Japanese Laid-Open Patent Publication No. 2001-223299 discloses a package substrate in which a capacitor is connected between a power supply wiring and a ground wiring.
 図7に、特許記文献1に開示されたパッケージ基板1000を示す。 FIG. 7 shows a package substrate 1000 disclosed in Patent Document 1.
 パッケージ基板1000には、半導体素子(ICチップ)101が実装されている。そして、電源から半導体素子101の電源端子101Pに、電源配線(電源線)102が接続されている。また、半導体素子101のグランド端子101Eから電源に、グランド配線(アース線)103が接続されている。 A semiconductor element (IC chip) 101 is mounted on the package substrate 1000. A power supply wiring (power supply line) 102 is connected from the power supply to the power supply terminal 101 </ b> P of the semiconductor element 101. A ground wiring (earth wire) 103 is connected from the ground terminal 101E of the semiconductor element 101 to the power source.
 パッケージ基板1000には、さらに、キャパシタ(チップコンデンサ)104、105が実装されている。キャパシタ104、105は、それぞれ、電源配線102とグランド配線103との間に接続されている。 Further, capacitors (chip capacitors) 104 and 105 are mounted on the package substrate 1000. The capacitors 104 and 105 are connected between the power supply wiring 102 and the ground wiring 103, respectively.
 伝送損失となるループインダクタンスは、半導体素子101の電源端子101Pから電源配線102を介して電源までの配線長、および、電源からグランド配線103を介してグランド端子101Eまでの配線長に比例するが、パッケージ基板1000では、キャパシタ104、105を接続することにより、ループインダクタンスを決定するループ長を、図中に実線で示すキャパシタ104、105を経由する配線長に短縮している。なお、ループ長を短くするためには、キャパシタ104、105は、できる限り半導体素子101の近くに接続することが好ましい。 The loop inductance that becomes a transmission loss is proportional to the wiring length from the power supply terminal 101P of the semiconductor element 101 to the power supply via the power supply wiring 102 and the wiring length from the power supply to the ground terminal 101E via the ground wiring 103. In the package substrate 1000, by connecting the capacitors 104 and 105, the loop length for determining the loop inductance is shortened to the wiring length via the capacitors 104 and 105 indicated by solid lines in the drawing. In order to shorten the loop length, the capacitors 104 and 105 are preferably connected as close to the semiconductor element 101 as possible.
 パッケージ基板1000は、ループインダクタンスを小さくすることによって、電源インピーダンスを小さくし、電圧変動を抑制している。また、キャパシタ104、105は、半導体素子101に出入りするノイズを除去する機能も有している。 The package substrate 1000 reduces the power impedance by reducing the loop inductance and suppresses voltage fluctuation. In addition, the capacitors 104 and 105 have a function of removing noise entering and exiting the semiconductor element 101.
 なお、パッケージ基板1000では、2個のキャパシタ104、105を接続しているが、広い周波数範囲で電源インピーダンスを小さくするために、電源配線とグランド配線との間に、種類の異なるキャパシタ(たとえばアルミ電解キャパシタと積層セラミックキャパシタなど)を、多数個、接続する場合もある。 In the package substrate 1000, two capacitors 104 and 105 are connected. In order to reduce the power supply impedance in a wide frequency range, different types of capacitors (for example, aluminum) are provided between the power supply wiring and the ground wiring. Many electrolytic capacitors and multilayer ceramic capacitors may be connected.
 また、パッケージ基板1000では示されていないが、半導体素子101やキャパシタ104、105を覆うように、封止用樹脂層を設ける場合もある。 Although not shown in the package substrate 1000, a sealing resin layer may be provided so as to cover the semiconductor element 101 and the capacitors 104 and 105.
特開2001-223299号公報JP 2001-223299 A
 今日、半導体素子(LSI素子など)の小型化が進み、平面方向にも、厚み方向にも、寸法が極めて小さくなってきている。それにともない、半導体素子を直接に基板に実装するのではなく、間にインターポーザを介して、基板に実装する場合がある。 Today, the miniaturization of semiconductor elements (LSI elements, etc.) has progressed, and the dimensions have become extremely small both in the planar direction and in the thickness direction. Along with this, there is a case where the semiconductor element is not directly mounted on the substrate, but is mounted on the substrate via an interposer.
 また、新しい半導体パッケージ技術として、FO-WLP(fan out - Wafer Level Package)と呼ばれる手法が実用化されつつある。このFO-WLPは、ウエハから半導体素子を切り出し、半導体素子の機能面(端子面)側をフィルムに貼着させたうえで、半導体素子のフィルムと反対側の面に樹脂を成型し、成型後にフィルムを除去するパッケージング方法である。半導体素子は、機能面(端子面)側を外部に露出させて、樹脂層(保持用樹脂層)に埋設される。そして、樹脂層の半導体素子が露出した面に、再配線層が形成される。 Also, as a new semiconductor package technology, a technique called FO-WLP (fan-out-wafer-level package) is being put into practical use. This FO-WLP cuts out a semiconductor element from a wafer, attaches the functional surface (terminal surface) side of the semiconductor element to a film, and then molds a resin on the surface opposite to the film of the semiconductor element. A packaging method for removing a film. The semiconductor element is embedded in the resin layer (holding resin layer) with the functional surface (terminal surface) side exposed to the outside. A rewiring layer is formed on the surface of the resin layer where the semiconductor element is exposed.
 小型化された脆弱な半導体素子を、インターポーザに実装する場合や、FO-WLPによって保持用樹脂層に埋設させる場合には、半導体素子の熱膨張係数とインターポーザの熱膨張係数をできるだけ近づけること、また、半導体素子の熱膨張係数と保持用樹脂層の熱膨張係数とをできるだけ近づけることが重要である。熱膨張係数に差があると、僅かな温度変化で、半導体素子が破損したり、インターポーザや保持用樹脂層が反ったり、半導体素子がインターポーザや保持用樹脂層から剥離したりする虞があるからである。 When mounting a miniaturized fragile semiconductor element in an interposer or embedding it in a holding resin layer with FO-WLP, make the thermal expansion coefficient of the semiconductor element and the thermal expansion coefficient of the interposer as close as possible. It is important to make the thermal expansion coefficient of the semiconductor element and the thermal expansion coefficient of the holding resin layer as close as possible. If there is a difference in the coefficient of thermal expansion, a slight temperature change may damage the semiconductor element, warp the interposer or holding resin layer, or peel the semiconductor element from the interposer or holding resin layer. It is.
 そこで、たとえば、Siにより形成されたSi半導体素子を、Siにより形成されたSiインターポーザに実装することで、半導体素子の熱膨張係数とインターポーザの熱膨張係数とを近づける場合がある。 Therefore, for example, by mounting a Si semiconductor element formed of Si on a Si interposer formed of Si, the thermal expansion coefficient of the semiconductor element and the thermal expansion coefficient of the interposer may be brought close to each other.
 また、FO-WLPにおいては、埋設される半導体素子の熱膨張係数や大きさや形状を十分に考慮したうえで、慎重に保持用樹脂層の材質を選定し、温度変化があっても、保持用樹脂層が反ったり、半導体素子が破損したり、半導体素子が保持用樹脂層から剥離したりしないようにしている。 In FO-WLP, after carefully considering the thermal expansion coefficient, size, and shape of the embedded semiconductor element, carefully select the material of the holding resin layer, even if there is a change in temperature. The resin layer is not warped, the semiconductor element is damaged, or the semiconductor element is not separated from the holding resin layer.
 一方、上述したように、半導体素子を使用した電子回路において、ノイズの出入りや電圧変動を抑制するために、電源配線とグランド配線との間にキャパシタを接続する場合、できるだけ半導体素子の近くに接続することが好ましい。したがって、たとえば、インターポーザを使用する場合には、インターポーザにキャパシタが実装されることが好ましい。また、FO-WLPによる場合には、保持用樹脂層に、キャパシタを埋設することが好
ましい。
On the other hand, as described above, in an electronic circuit using a semiconductor element, when connecting a capacitor between the power supply wiring and the ground wiring in order to suppress noise in / out and voltage fluctuation, connect as close to the semiconductor element as possible. It is preferable to do. Therefore, for example, when an interposer is used, it is preferable that a capacitor is mounted on the interposer. In the case of FO-WLP, it is preferable to embed a capacitor in the holding resin layer.
 しかしながら、Siにより形成されたSiインターポーザに、アルミ電解キャパシタや、積層セラミックキャパシタを実装した場合、Siインターポーザの熱膨張係数とキャパシタの熱膨張係数との差が大き過ぎるために、僅かな温度変化で、Siインターポーザが反ったり、キャパシタがSiインターポーザから剥離したり、接続不良を起こしたりする虞があった。 However, when an aluminum electrolytic capacitor or a multilayer ceramic capacitor is mounted on a Si interposer formed of Si, the difference between the thermal expansion coefficient of the Si interposer and the thermal expansion coefficient of the capacitor is too large. The Si interposer may be warped, the capacitor may be peeled off from the Si interposer, or a connection failure may occur.
 また、Si半導体素子の熱膨張係数などを考慮して選定された、FO-WLPの保持用樹脂層に、アルミ電解キャパシタや、積層セラミックキャパシタを埋設した場合、保持用樹脂層の熱膨張係数とキャパシタの熱膨張係数との差が大き過ぎるために、僅かな温度変化で、保持用樹脂層が反ったり、キャパシタが保持用樹脂層から剥離したりする虞があった。 In addition, when an aluminum electrolytic capacitor or a multilayer ceramic capacitor is embedded in the holding resin layer of FO-WLP selected in consideration of the thermal expansion coefficient of the Si semiconductor element, the thermal expansion coefficient of the holding resin layer Since the difference from the thermal expansion coefficient of the capacitor is too large, there is a possibility that the holding resin layer is warped or the capacitor is peeled off from the holding resin layer by a slight temperature change.
 本発明は、上述した従来の課題を解決するためになされたものであり、その手段として本発明のキャパシタ付半導体装置は、Siにより形成された少なくとも1つのSi半導体素子と、Siにより形成された少なくとも1つのSiキャパシタと、を備え、Si半導体素子とSiキャパシタとが、それぞれ、Siにより形成された1つのSiインターポーザに実装されることにより、または、1つの保持用樹脂層に一方の主面を露出させて埋設されることにより、平面方向に並べて配置されたものとした。 The present invention has been made in order to solve the above-described conventional problems, and as a means therefor, the semiconductor device with a capacitor according to the present invention is formed of at least one Si semiconductor element formed of Si and Si. At least one Si capacitor, wherein the Si semiconductor element and the Si capacitor are each mounted on one Si interposer formed of Si, or one main surface on one holding resin layer It was assumed that they were arranged side by side in the plane direction by being exposed and embedded.
 Si半導体素子とSiキャパシタとが、それぞれ、Siインターポーザに実装され、実装されたSi半導体素子とSiキャパシタとを覆うように、Siインターポーザの主面上に封止用樹脂層が形成されたものとすることができる。この場合には、Siインターポーザと、実装されたSi半導体素子およびSiキャパシタとは、熱膨張係数が近いため、温度変化が起こっても、Siインターポーザが反ったり、Si半導体素子やSiキャパシタが、Siインターポーザから剥離したり、接続不良を起こしたりすることがない。また、封止用樹脂層により、Si半導体素子とSiキャパシタとが外部から保護される。 The Si semiconductor element and the Si capacitor are mounted on the Si interposer, respectively, and a sealing resin layer is formed on the main surface of the Si interposer so as to cover the mounted Si semiconductor element and the Si capacitor. can do. In this case, since the Si interposer and the mounted Si semiconductor element and the Si capacitor have close thermal expansion coefficients, the Si interposer is warped even if a temperature change occurs, or the Si semiconductor element and the Si capacitor are It does not peel off from the interposer or cause poor connection. Further, the Si semiconductor element and the Si capacitor are protected from the outside by the sealing resin layer.
 また、Si半導体素子とSiキャパシタとが、それぞれ、保持用樹脂層に一方の主面を露出させて埋設され、Si半導体素子とSiキャパシタとが露出された保持用樹脂層の主面上に、再配線層が形成されたものとすることができる。この場合には、保持用樹脂層と、埋設されたSi半導体素子とSiキャパシタとは、熱膨張係数が近いため、温度変化が起こっても、保持用樹脂層が反ったり、Si半導体素子やSiキャパシタが保持用樹脂層から剥離したりすることがない。 Further, each of the Si semiconductor element and the Si capacitor is embedded in the holding resin layer with one main surface exposed, and on the main surface of the holding resin layer where the Si semiconductor element and the Si capacitor are exposed, A rewiring layer may be formed. In this case, the holding resin layer, the embedded Si semiconductor element, and the Si capacitor have similar coefficients of thermal expansion. Therefore, even if a temperature change occurs, the holding resin layer warps, the Si semiconductor element or the Si capacitor. The capacitor does not peel from the holding resin layer.
 Siキャパシタとしては、たとえば、Siにより形成されたSi基体に孔が形成され、孔に形成されたトレンチキャパシタを使用することができる。ただし、Siキャパシタはトレンチキャパシタには限定されず、他の構造のものであっても良い。 As the Si capacitor, for example, a trench capacitor in which a hole is formed in a Si base made of Si and formed in the hole can be used. However, the Si capacitor is not limited to a trench capacitor, and may have another structure.
 また、Siキャパシタ上に、導体多孔体層と、誘電体層と、導体層とが順に積層された薄膜高容量キャパシタを形成し、Siキャパシタと薄膜高容量性キャパシタとを並列に接続しても良い。この場合には、Siキャパシタと薄膜高容量キャパシタとで、電源配線とグランド配線との間に、必要とする所望の大きな容量を形成することができる。また、Siキャパシタで主に高周波域の電源インピーダンスを小さくし、薄膜高容量キャパシタで主に低周波域の電源インピーダンスを小さくし、広い周波数範囲にわたって、電源インピーダンスを小さくし、電圧変動を抑制することができる。さらに、種々の周波数のノイズを除去することができる。 Alternatively, a thin film high-capacitance capacitor in which a conductive porous layer, a dielectric layer, and a conductor layer are sequentially laminated on the Si capacitor is formed, and the Si capacitor and the thin-film high-capacity capacitor are connected in parallel. good. In this case, the required large capacitance can be formed between the power supply wiring and the ground wiring by using the Si capacitor and the thin film high-capacity capacitor. In addition, the Si capacitor mainly reduces the power impedance in the high frequency range, and the thin film high-capacitance capacitor mainly reduces the power impedance in the low frequency range, reducing the power impedance over a wide frequency range, and suppressing voltage fluctuations. Can do. Furthermore, noises of various frequencies can be removed.
 また、Siキャパシタに、積層セラミックキャパシタを実装し、Siキャパシタと積層セラミックキャパシタとを並列に接続しても良い。この場合には、Siキャパシタと積層セラミックキャパシタとで、電源配線とグランド配線との間に、必要とする所望の大きな容量を形成することができる。また、Siキャパシタで主に高周波域の電源インピーダンスを小さくし、積層セラミックキャパシタで主に低周波域の電源インピーダンスを小さくし、広い周波数範囲にわたって、電源インピーダンスを小さくし、電圧変動を抑制することができる。さらに、種々の周波数のノイズを除去することができる。なお、積層セラミックキャパシタを、直接にSiインターポーザに実装したり保持用樹脂層に埋設したりすると、温度変化により上述したような支障が生じる虞があるが、Siキャパシタに積層セラミックキャパシタを実装すれば、Siキャパシタが緩衝材として機能するため、それらの支障を回避することができる。 Alternatively, a multilayer ceramic capacitor may be mounted on the Si capacitor, and the Si capacitor and the multilayer ceramic capacitor may be connected in parallel. In this case, the required large capacitance can be formed between the power supply wiring and the ground wiring by the Si capacitor and the multilayer ceramic capacitor. In addition, the Si capacitor mainly reduces the power supply impedance in the high frequency range, and the multilayer ceramic capacitor mainly reduces the power supply impedance in the low frequency range, thereby reducing the power supply impedance over a wide frequency range and suppressing voltage fluctuations. it can. Furthermore, noises of various frequencies can be removed. If the multilayer ceramic capacitor is directly mounted on the Si interposer or embedded in the holding resin layer, the above-mentioned trouble may occur due to a temperature change, but if the multilayer ceramic capacitor is mounted on the Si capacitor, Since the Si capacitor functions as a buffer material, it is possible to avoid such troubles.
 また、Siキャパシタの表面に薄膜抵抗体を形成し、Siキャパシタと薄膜抵抗体とを直列に接続しても良い。SiキャパシタのESR(Equivalent Series Resistance)が、電源配線のインダクタンス成分に対して小さすぎる場合、大きなピークをもった反共振が発生する場合があるが、上記のようにSiキャパシタと直列に薄膜抵抗体を接続すれば、反共振のピークを小さく抑制することができる。 Alternatively, a thin film resistor may be formed on the surface of the Si capacitor, and the Si capacitor and the thin film resistor may be connected in series. If the ESR (Equivalent Series Resistance) of the Si capacitor is too small relative to the inductance component of the power supply wiring, anti-resonance with a large peak may occur, but as described above, the thin film resistor in series with the Si capacitor Can be connected to suppress the peak of antiresonance.
 本発明のキャパシタ付半導体装置は、半導体素子にSi半導体素子を用いるとともに、キャパシタにSiキャパシタを用い、Si半導体素子とSiキャパシタとを、平面方向に並べて、Siインターポーザに実装するか、または、保持用樹脂層に一方の主面を露出させて埋設しているため、温度変化が起こっても、反ったり、半導体素子が破損したり、半導体素子やSiキャパシタが剥離したり、接続不良が発生したりすることが抑制されている。 The semiconductor device with a capacitor according to the present invention uses a Si semiconductor element as a semiconductor element, uses a Si capacitor as a capacitor, and arranges or holds the Si semiconductor element and the Si capacitor in a planar direction in a Si interposer. Since one main surface is embedded in the resin layer for use, even if the temperature changes, warping, damage to the semiconductor element, peeling of the semiconductor element or Si capacitor, or connection failure may occur. Is suppressed.
図1(A)は、第1実施形態にかかるキャパシタ付半導体装置100を示す正面図である。図1(B)は、キャパシタ付半導体装置100のSiキャパシタ4を示す断面図である。FIG. 1A is a front view showing the capacitor-equipped semiconductor device 100 according to the first embodiment. FIG. 1B is a cross-sectional view showing the Si capacitor 4 of the semiconductor device 100 with a capacitor. 第2実施形態にかかるキャパシタ付半導体装置200を示す説明図(封止用樹脂層12の内部を透視して示した正面図)である。It is explanatory drawing (front view which looked through and showed the inside of the resin layer 12 for sealing) which shows the semiconductor device 200 with a capacitor concerning 2nd Embodiment. 図3(A)は、第3実施形態にかかるキャパシタ付半導体装置300を示す正面図である。図3(B)は、キャパシタ付半導体装置300のSiキャパシタ14を示す断面図である。FIG. 3A is a front view showing a semiconductor device 300 with a capacitor according to the third embodiment. FIG. 3B is a cross-sectional view showing the Si capacitor 14 of the semiconductor device 300 with a capacitor. 図4(A)は、第4実施形態にかかるキャパシタ付半導体装置400を示す正面図である。図4(B)は、キャパシタ付半導体装置400のSiキャパシタ24を示す断面図である。FIG. 4A is a front view showing a semiconductor device with a capacitor 400 according to the fourth embodiment. FIG. 4B is a cross-sectional view showing the Si capacitor 24 of the semiconductor device with a capacitor 400. 図5(A)は、第5実施形態にかかるキャパシタ付半導体装置500を示す正面図である。図5(B)は、キャパシタ付半導体装置500のSiキャパシタ34を示す説明図(一部分を断面で示した正面図)である。FIG. 5A is a front view showing a semiconductor device 500 with a capacitor according to the fifth embodiment. FIG. 5B is an explanatory diagram (a front view partially showing a cross section) showing the Si capacitor 34 of the semiconductor device with a capacitor 500. 図6(A)~(E)は、それぞれ、第6実施形態にかかるキャパシタ付半導体装置600の製造方法の一例において実施される工程を示す説明図(保持用樹脂層20の内部を透視して示した正面図)である。6 (A) to 6 (E) are explanatory views showing steps performed in an example of the method of manufacturing the capacitor-equipped semiconductor device 600 according to the sixth embodiment (see through the inside of the holding resin layer 20). It is a front view shown). 特許文献1に開示されたパッケージ基板1000を示す説明図である。10 is an explanatory view showing a package substrate 1000 disclosed in Patent Document 1. FIG.
 以下、図面とともに、本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 なお、各実施形態は、本発明の実施の形態を例示的に示したものであり、本発明が実施形態の内容に限定されることはない。また、異なる実施形態に記載された内容を組合せて実施することも可能であり、その場合の実施内容も本発明に含まれる。また、図面は、実施形態の理解を助けるためのものであり、必ずしも厳密に描画されていない場合がある。たとえば、描画された構成要素ないし構成要素間の寸法の比率が、明細書に記載されたそれらの寸法の比率と一致していない場合がある。また、明細書に記載されている構成要素が、図面において省略されている場合や、個数を省略して描画されている場合などがある。 Each embodiment shows an embodiment of the present invention by way of example, and the present invention is not limited to the content of the embodiment. Moreover, it is also possible to implement combining the content described in different embodiment, and the implementation content in that case is also included in this invention. Further, the drawings are for helping understanding of the embodiment, and may not be drawn strictly. For example, a drawn component or a dimensional ratio between the components may not match the dimensional ratio described in the specification. In addition, the constituent elements described in the specification may be omitted in the drawings or may be drawn with the number omitted.
 [第1実施形態]
 図1(A)、(B)に、第1実施形態にかかるキャパシタ付半導体装置100を示す。ただし、図1(A)は、キャパシタ付半導体装置100を示す正面図である。図1(B)は、キャパシタ付半導体装置100のSiキャパシタ4を示す断面図である。
[First Embodiment]
1A and 1B show a semiconductor device 100 with a capacitor according to the first embodiment. However, FIG. 1A is a front view showing the semiconductor device 100 with a capacitor. FIG. 1B is a cross-sectional view showing the Si capacitor 4 of the semiconductor device 100 with a capacitor.
 キャパシタ付半導体装置100は、Siにより形成されたSiインターポーザ1を備える。図示しないが、Siインターポーザ1の両主面には、それぞれ複数の電極が形成され、表面配線、層間配線、ビア導体などによって、所定の配線がなされている。Siインターポーザ1は、一般に実施されている、既存のインターポーザの製造方法によって製造することができる。 The capacitor-equipped semiconductor device 100 includes a Si interposer 1 made of Si. Although not shown, a plurality of electrodes are formed on both main surfaces of the Si interposer 1, and predetermined wiring is made by surface wiring, interlayer wiring, via conductors, and the like. The Si interposer 1 can be manufactured by an existing interposer manufacturing method that is generally implemented.
 Siインターポーザ1の上側主面に形成された電極に、Sn‐3.5Ag、Cu、Sn‐Pbなどからなるバンプ2によって、半導体素子(LSI素子など)3が実装されている。 A semiconductor element (LSI element or the like) 3 is mounted on the electrode formed on the upper main surface of the Si interposer 1 by a bump 2 made of Sn-3.5Ag, Cu, Sn-Pb or the like.
 また、Siインターポーザの上側主面に形成された別の電極に、バンプ2によって、Siキャパシタ4が実装されている。 Further, the Si capacitor 4 is mounted by the bump 2 on another electrode formed on the upper main surface of the Si interposer.
 図1(B)に、Siキャパシタ4の詳細を示す。本実施形態においては、Siキャパシタ4として、トレンチキャパシタを使用している。 FIG. 1B shows the details of the Si capacitor 4. In the present embodiment, a trench capacitor is used as the Si capacitor 4.
 Siキャパシタ4は、Siにより形成されたSi基体5を備える。Si基体5の一方主面(下側主面)に、複数の孔6が形成されている。 The Si capacitor 4 includes a Si base 5 made of Si. A plurality of holes 6 are formed in one main surface (lower main surface) of the Si substrate 5.
 孔6の内部に、絶縁層7、第1電極層8、誘電体層9、第2電極層10、が形成されている。本実施形態においては、絶縁層7をSiOによって形成し、第1電極層8をSiによって形成し、誘電体層9をTiによって形成し、第2電極層10をTiNによって形成した。 An insulating layer 7, a first electrode layer 8, a dielectric layer 9, and a second electrode layer 10 are formed inside the hole 6. In this embodiment, the insulating layer 7 is formed of SiO 2 , the first electrode layer 8 is formed of Si, the dielectric layer 9 is formed of Ti 2 O 3 , and the second electrode layer 10 is formed of TiN. .
 第1電極層8、第2電極層10は、それぞれ、Si基体5の表面に引き出され、引き出された部分にバンプ2が形成されている。 The first electrode layer 8 and the second electrode layer 10 are each drawn out to the surface of the Si substrate 5, and the bumps 2 are formed in the drawn portions.
 Siキャパシタ4は、一般に実施されている、既存のトレンチキャパシタの製造方法によって製造することができる。 The Si capacitor 4 can be manufactured by an existing trench capacitor manufacturing method that is generally performed.
 Siインターポーザの下側主面に形成された電極に、Sn‐3.5Ag、Cu、Sn‐Pbなどからなるバンプ11が形成されている。 A bump 11 made of Sn-3.5Ag, Cu, Sn-Pb or the like is formed on the electrode formed on the lower main surface of the Si interposer.
 キャパシタ付半導体装置100においては、Siキャパシタ4が、Si半導体素子3へ電力を供給する電源配線(図示せず)と、グランド配線(図示せず)との間に接続されている。 In the capacitor-equipped semiconductor device 100, the Si capacitor 4 is connected between a power supply wiring (not shown) for supplying power to the Si semiconductor element 3 and a ground wiring (not shown).
 以上の構造からなるキャパシタ付半導体装置100は、Siキャパシタ4を電源配線とグランド配線との間に接続しているため、電源インピーダンスが小さく、電圧変動が抑制されている。また、Siキャパシタ4によって、ノイズを除去することができる。 In the semiconductor device with a capacitor 100 having the above structure, the Si capacitor 4 is connected between the power supply wiring and the ground wiring, so that the power supply impedance is small and voltage fluctuation is suppressed. Further, noise can be removed by the Si capacitor 4.
 また、キャパシタ付半導体装置100は、相互に熱膨張係数が近い、Siインターポーザ1に、Si半導体素子3と、Siキャパシタ4とを実装しているため、温度変化が起こっても、反ったり、Si半導体素子3が破損したり、Si半導体素子3やSiキャパシタ4がSiインターポーザ1から剥離して接続不良が発生したりすることがない。 In addition, since the semiconductor device with a capacitor 100 has the Si semiconductor element 3 and the Si capacitor 4 mounted on the Si interposer 1 having a coefficient of thermal expansion close to each other, even if a temperature change occurs, The semiconductor element 3 is not damaged, and the Si semiconductor element 3 and the Si capacitor 4 are not peeled off from the Si interposer 1 to cause connection failure.
 さらに、キャパシタ付半導体装置100は、Siキャパシタ4が、アルミ電解キャパシタや積層セラミックキャパシタなどに比べて高さ寸法が小さいため、低背化されている。 Further, the capacitor-equipped semiconductor device 100 has a low profile because the Si capacitor 4 has a smaller height than an aluminum electrolytic capacitor or a multilayer ceramic capacitor.
 [第2実施形態]
 図2に、第2実施形態にかかるキャパシタ付半導体装置200を示す。ただし、図2は、キャパシタ付半導体装置200を示す説明図(封止用樹脂層12の内部を透視して示した正面図)である。
[Second Embodiment]
FIG. 2 shows a semiconductor device 200 with a capacitor according to the second embodiment. However, FIG. 2 is an explanatory view showing the semiconductor device with a capacitor 200 (a front view seen through the inside of the sealing resin layer 12).
 キャパシタ付半導体装置200は、第1実施形態にかかるキャパシタ付半導体装置100に、封止用樹脂層12を追加した。具体的には、キャパシタ付半導体装置200は、Siインターポーザの1の上側主面に、Si半導体素子3とSiキャパシタ4とを覆うように、封止用樹脂層12が形成されている。 In the semiconductor device with a capacitor 200, the sealing resin layer 12 is added to the semiconductor device with a capacitor 100 according to the first embodiment. Specifically, in the semiconductor device with a capacitor 200, the sealing resin layer 12 is formed on the upper main surface of the Si interposer 1 so as to cover the Si semiconductor element 3 and the Si capacitor 4.
 封止用樹脂層12は、Si半導体素子3やSiキャパシタ4を保護するためのものであり、線膨張係数がSiに比較的近い、吸湿性が低いなどの特性を備えたものであることが好ましい。封止用樹脂層12には、たとえば、エポキシ樹脂、シリコン樹脂などを使用することができる。 The sealing resin layer 12 is for protecting the Si semiconductor element 3 and the Si capacitor 4 and has characteristics such as a linear expansion coefficient relatively close to Si and low hygroscopicity. preferable. For the sealing resin layer 12, for example, an epoxy resin, a silicon resin, or the like can be used.
 封止用樹脂層12は、たとえば、Si半導体素子3とSiキャパシタ4とを実装した後に、Siインターポーザの1の上側主面に液状の樹脂を滴下し、加熱して硬化させることにより形成することができる。 The sealing resin layer 12 is formed by, for example, dropping a liquid resin on the upper main surface of the Si interposer 1 and heating it to cure after mounting the Si semiconductor element 3 and the Si capacitor 4. Can do.
 [第3実施形態]
 図3(A)、(B)に、第3実施形態にかかるキャパシタ付半導体装置300を示す。ただし、図3(A)は、キャパシタ付半導体装置300を示す正面図である。図3(B)は、キャパシタ付半導体装置300のSiキャパシタ14を示す断面図である。
[Third Embodiment]
3A and 3B show a capacitor-equipped semiconductor device 300 according to the third embodiment. However, FIG. 3A is a front view showing the semiconductor device 300 with a capacitor. FIG. 3B is a cross-sectional view showing the Si capacitor 14 of the semiconductor device 300 with a capacitor.
 キャパシタ付半導体装置300は、第1実施形態にかかるキャパシタ付半導体装置100のSiキャパシタ4を、表面に薄膜抵抗体15が形成されたSiキャパシタ14に置換えた。そして、Siインターポーザ1に、Si半導体素子3と、Siキャパシタ14とを実装した。 In the semiconductor device with a capacitor 300, the Si capacitor 4 of the semiconductor device with a capacitor 100 according to the first embodiment is replaced with a Si capacitor 14 having a thin film resistor 15 formed on the surface thereof. Then, the Si semiconductor element 3 and the Si capacitor 14 were mounted on the Si interposer 1.
 図3(B)に、Siキャパシタ14の詳細を示す。 FIG. 3B shows the details of the Si capacitor 14.
 Siキャパシタ14は、Siキャパシタ4と同様に、Si基体5を備え、Si基体5にトレンチキャパシタが形成されている。すなわち、Si基体5に複数の孔6が形成され、孔6の内部に、絶縁層7、第1電極層8、誘電体層9、第2電極層10が形成されている。 The Si capacitor 14 includes the Si base 5 similarly to the Si capacitor 4, and a trench capacitor is formed in the Si base 5. That is, a plurality of holes 6 are formed in the Si substrate 5, and an insulating layer 7, a first electrode layer 8, a dielectric layer 9, and a second electrode layer 10 are formed inside the holes 6.
 Siキャパシタ14には、さらに、Si基体5の下側主面に、薄膜抵抗体15が形成されている。薄膜抵抗体15は、たとえば、NiCrからなる。薄膜抵抗体15は、トレンチキャパシタ(第1電極層8、誘電体層9、第2電極層10)と直列に接続されている。 The thin film resistor 15 is further formed on the lower main surface of the Si base 5 in the Si capacitor 14. The thin film resistor 15 is made of NiCr, for example. The thin film resistor 15 is connected in series with the trench capacitor (the first electrode layer 8, the dielectric layer 9, and the second electrode layer 10).
 上述したとおり、電源配線とグランドとの間に接続するキャパシタのESRが、電源配線のインダクタンス成分に対して小さすぎる場合、電源インピーダンスに大きなピークをもった反共振が発生する場合がある。しかしながら、第3実施形態にかかるキャパシタ付半導体装置300では、トレンチキャパシタと直列に薄膜抵抗体15を接続しているため、反共振のピークを小さく抑えることができる。 As described above, if the ESR of the capacitor connected between the power supply wiring and the ground is too small with respect to the inductance component of the power supply wiring, anti-resonance with a large peak in the power supply impedance may occur. However, in the semiconductor device with a capacitor 300 according to the third embodiment, since the thin film resistor 15 is connected in series with the trench capacitor, the anti-resonance peak can be suppressed to a small value.
 薄膜抵抗体15は、たとえば、薄膜技術により形成することができる。 The thin film resistor 15 can be formed by thin film technology, for example.
 [第4実施形態]
 図4(A)、(B)に、第4実施形態にかかるキャパシタ付半導体装置400を示す。ただし、図4(A)は、キャパシタ付半導体装置400を示す正面図である。図4(B)は、キャパシタ付半導体装置400のSiキャパシタ24を示す断面図である。
[Fourth Embodiment]
4A and 4B show a semiconductor device 400 with a capacitor according to the fourth embodiment. However, FIG. 4A is a front view showing the semiconductor device 400 with a capacitor. FIG. 4B is a cross-sectional view showing the Si capacitor 24 of the semiconductor device with a capacitor 400.
 キャパシタ付半導体装置400は、第1実施形態にかかるキャパシタ付半導体装置100のSiキャパシタ4を、上側主面に薄膜高容量キャパシタ16が形成されたSiキャパシタ24に置換えた。そして、Siインターポーザ1に、Si半導体素子3と、Siキャパシタ24とを実装した。 In the semiconductor device with capacitor 400, the Si capacitor 4 of the semiconductor device with capacitor 100 according to the first embodiment is replaced with the Si capacitor 24 in which the thin film high-capacitance capacitor 16 is formed on the upper main surface. Then, the Si semiconductor element 3 and the Si capacitor 24 were mounted on the Si interposer 1.
 図4(B)に、Siキャパシタ24の詳細を示す。 FIG. 4B shows details of the Si capacitor 24.
 Siキャパシタ24は、Siキャパシタ4と同様に、Si基体5を備え、Si基体5にトレンチキャパシタが形成されている。すなわち、Si基体5に複数の孔6が形成され、孔6の内部に、絶縁層7、第1電極層8、誘電体層9、第2電極層10が形成されている。 The Si capacitor 24 includes the Si base 5 similarly to the Si capacitor 4, and a trench capacitor is formed in the Si base 5. That is, a plurality of holes 6 are formed in the Si substrate 5, and an insulating layer 7, a first electrode layer 8, a dielectric layer 9, and a second electrode layer 10 are formed inside the holes 6.
 Siキャパシタ24には、さらに、Si基体5の上側主面に、薄膜高容量キャパシタ16が形成されている。薄膜高容量キャパシタ16は、導体多孔体層16aと、誘電体層16bと、導体層16cとが順に積層されたが形成された構造を備えている。薄膜高容量キャパシタ16は、導体多孔体層16a上に誘電体層16bを形成しているため、非常に大きな容量を備えている。 In the Si capacitor 24, a thin film high-capacity capacitor 16 is further formed on the upper main surface of the Si base 5. The thin film high-capacitance capacitor 16 has a structure in which a conductive porous layer 16a, a dielectric layer 16b, and a conductive layer 16c are sequentially stacked. The thin film high capacity capacitor 16 has a very large capacity because the dielectric layer 16b is formed on the conductive porous layer 16a.
 薄膜高容量キャパシタ16は、たとえば、次の方法で形成することができる。 The thin film high capacity capacitor 16 can be formed by the following method, for example.
 まず、Si基体5の薄膜高容量キャパシタ16を形成する領域に、たとえばSiOからなる絶縁層17を形成する。SiOからなる絶縁層17は、CVD(Chemical Vapor Deposition;化学気相蒸着)工法などにより形成することができる。 First, an insulating layer 17 made of, for example, SiO 2 is formed in a region of the Si base 5 where the thin film high capacity capacitor 16 is to be formed. The insulating layer 17 made of SiO 2 can be formed by a CVD (Chemical Vapor Deposition) method or the like.
 次に、絶縁層17上に、たとえばフォトリソグラフィ技術により、たとえばAlからなる導体層(図示せず)を形成する。ただし、導体層の材質はAlには限定されず、他の金属であっても良い。 Next, a conductor layer (not shown) made of, for example, Al is formed on the insulating layer 17 by, for example, photolithography. However, the material of the conductor layer is not limited to Al and may be other metals.
 次に、たとえば陽極酸化後にエッチングする手法によって、導体層に極めて多数の微細な孔を形成し、導体多孔体層16aを形成する。なお、微細な孔の形成は、陽極酸化法には限定されず、印刷、インクジェットや吹付け、溶射などで金属微粒子を堆積する手法などの方法によって形成しても良い。 Next, an extremely large number of fine holes are formed in the conductor layer by, for example, etching after anodic oxidation to form the conductor porous body layer 16a. The formation of fine holes is not limited to the anodic oxidation method, and may be formed by a method such as a method of depositing metal fine particles by printing, ink jetting, spraying, spraying, or the like.
 次に、導体多孔体層16a上に、原子堆積法(ALD法;Atomic Layer Deposition)により、たとえばAlOX(Xは1.2以上)からなる誘電体層16bを形成する。なお、導体多孔体層16aと誘電体層16bとの間に、予め、たとえばTiONなどからなる拡散防止層を形成しておいても良い。拡散防止層の形成も、ALD法によりおこなうことができる。 Next, a dielectric layer 16b made of, for example, AlOX (X is 1.2 or more) is formed on the conductive porous layer 16a by an atomic deposition method (ALD method; Atomic Layer Deposition). A diffusion preventing layer made of, for example, TiON may be formed in advance between the conductive porous body layer 16a and the dielectric layer 16b. The formation of the diffusion preventing layer can also be performed by the ALD method.
 次に、誘電体層16b上に、たとえばALD法により、たとえばAlからなる導体層16cを形成する。なお、導体層16cの材質はAlには限定されず、Cu、Niなどであっても良い。また、誘電体層16bと導体層16cとの間に、予め、たとえばTiONなどからなる拡散防止層を形成しておいても良い。この拡散防止層の形成も、ALD法によりおこなうことができる。 Next, a conductor layer 16c made of, for example, Al is formed on the dielectric layer 16b by, for example, the ALD method. The material of the conductor layer 16c is not limited to Al, and may be Cu, Ni, or the like. Further, a diffusion prevention layer made of TiON or the like may be formed in advance between the dielectric layer 16b and the conductor layer 16c. This diffusion prevention layer can also be formed by the ALD method.
 最後に、導体多孔体層16a、誘電体層16b、導体層16cを、フォトソグラフィー技術を用いてパターニングし、薄膜高容量キャパシタ16を完成させる。 Finally, the conductive porous body layer 16a, the dielectric layer 16b, and the conductive layer 16c are patterned by using a photolithography technique to complete the thin film high-capacitance capacitor 16.
キャパシタ付半導体装置400では、Siキャパシタ24のトレンチキャパシタ(第1電極層8、誘電体層9、第2電極層10)と、薄膜高容量キャパシタ16とを、Si基体5にビア導体を形成することによって、並列に接続している。 In the semiconductor device with a capacitor 400, the trench capacitor (first electrode layer 8, dielectric layer 9, second electrode layer 10) of the Si capacitor 24 and the thin film high-capacitance capacitor 16 are formed in the Si substrate 5 and via conductors are formed. By connecting in parallel.
 キャパシタ付半導体装置400は、トレンチキャパシタと薄膜高容量キャパシタ16とで、電源配線とグランド配線との間に、必要とする所望の大きな容量を形成することができる。また、キャパシタ付半導体装置400は、種類の異なるキャパシタを並列に接続しているため、広い周波数範囲にわたって、電源インピーダンスを小さくし、電圧変動を抑制することができる。さらに、種々の周波数のノイズを除去することができる。 The capacitor-equipped semiconductor device 400 can form a desired large capacitance between the power supply wiring and the ground wiring by the trench capacitor and the thin film high-capacitance capacitor 16. In addition, since the capacitor-equipped semiconductor device 400 has different types of capacitors connected in parallel, the power source impedance can be reduced and voltage fluctuation can be suppressed over a wide frequency range. Furthermore, noises of various frequencies can be removed.
 なお、キャパシタ付半導体装置400においても、第3実施形態にかかるキャパシタ付半導体装置300と同様に、Si基体5の表面に薄膜抵抗体15を形成し、Siキャパシタ24のトレンチキャパシタ(第1電極層8、誘電体層9、第2電極層10)と薄膜抵抗体15とを直列に接続させても良い。 In the semiconductor device with a capacitor 400, as in the semiconductor device with a capacitor 300 according to the third embodiment, the thin film resistor 15 is formed on the surface of the Si substrate 5, and the trench capacitor (first electrode layer) of the Si capacitor 24 is formed. 8, the dielectric layer 9, the second electrode layer 10) and the thin film resistor 15 may be connected in series.
 [第5実施形態]
 図5(A)、(B)に、第5実施形態にかかるキャパシタ付半導体装置500を示す。ただし、図5(A)は、キャパシタ付半導体装置500を示す正面図である。図5(B)は、キャパシタ付半導体装置500のSiキャパシタ34を示す説明図(一部分を断面で示した正面図)である。
[Fifth Embodiment]
5A and 5B show a semiconductor device 500 with a capacitor according to the fifth embodiment. However, FIG. 5A is a front view showing the semiconductor device 500 with a capacitor. FIG. 5B is an explanatory diagram (a front view partially showing a cross section) showing the Si capacitor 34 of the semiconductor device with a capacitor 500.
 キャパシタ付半導体装置500は、第1実施形態にかかるキャパシタ付半導体装置100のSiキャパシタ4を、上側主面に積層セラミックキャパシタ18が実装されたSiキャパシタ34に置換えた。そして、Siインターポーザ1に、Si半導体素子3と、Siキャパシタ34とを実装した。 In the semiconductor device with a capacitor 500, the Si capacitor 4 of the semiconductor device with a capacitor 100 according to the first embodiment is replaced with the Si capacitor 34 on which the multilayer ceramic capacitor 18 is mounted on the upper main surface. Then, the Si semiconductor element 3 and the Si capacitor 34 were mounted on the Si interposer 1.
 図5(B)に、Siキャパシタ34の詳細を示す。 FIG. 5B shows details of the Si capacitor 34.
 Siキャパシタ34は、Siキャパシタ4と同様に、Si基体5を備え、Si基体5にトレンチキャパシタが形成されている。すなわち、Si基体5に複数の孔6が形成され、孔6の内部に、絶縁層7、第1電極層8、誘電体層9、第2電極層10が形成されている。 Similar to the Si capacitor 4, the Si capacitor 34 includes a Si base 5, and a trench capacitor is formed in the Si base 5. That is, a plurality of holes 6 are formed in the Si substrate 5, and an insulating layer 7, a first electrode layer 8, a dielectric layer 9, and a second electrode layer 10 are formed inside the holes 6.
 Siキャパシタ24には、さらに、Si基体5の上側主面に、接合材19を使って、積層セラミックキャパシタ18が実装されている。 In the Si capacitor 24, a multilayer ceramic capacitor 18 is mounted on the upper main surface of the Si base 5 using a bonding material 19.
 キャパシタ付半導体装置400では、Siキャパシタ24のトレンチキャパシタ(第1電極層8、誘電体層9、第2電極層10)と、積層セラミックキャパシタ18とを、Si基体5にビア導体を形成することによって、並列に接続している。 In the semiconductor device with a capacitor 400, the trench capacitor (first electrode layer 8, dielectric layer 9, second electrode layer 10) of the Si capacitor 24 and the multilayer ceramic capacitor 18 are formed in the Si substrate 5 and via conductors are formed. Are connected in parallel.
 キャパシタ付半導体装置400は、積層セラミックキャパシタ18に容量の大きなものを選択することによって、トレンチキャパシタと積層セラミックキャパシタ18とで、電源配線とグランド配線との間に、必要とする所望の大きな容量を形成することができる。また、キャパシタ付半導体装置400は、種類の異なるキャパシタを並列に接続しているため、広い周波数範囲にわたって、電源インピーダンスを小さくし、電圧変動を抑制することができる。さらに、種々の周波数のノイズを除去することができる。 In the semiconductor device with a capacitor 400, by selecting a multilayer ceramic capacitor 18 having a large capacity, the trench capacitor and the multilayer ceramic capacitor 18 provide a desired large capacity between the power supply wiring and the ground wiring. Can be formed. In addition, since the capacitor-equipped semiconductor device 400 has different types of capacitors connected in parallel, the power source impedance can be reduced and voltage fluctuation can be suppressed over a wide frequency range. Furthermore, noises of various frequencies can be removed.
 なお、キャパシタ付半導体装置400は、Siインターポーザ1やSi半導体素子3と熱膨張係数が大きく異なる積層セラミックキャパシタ18を使用しているが、積層セラミックキャパシタ18をSi基体5に実装したうえで、Siインターポーザ1に実装しており、Si基体5が一種の緩衝材として機能するため、温度変化が発生しても、反ったり、積層セラミックキャパシタ18が剥離したりすることがない。 The semiconductor device with a capacitor 400 uses a multilayer ceramic capacitor 18 having a coefficient of thermal expansion that is significantly different from that of the Si interposer 1 and the Si semiconductor element 3. However, after mounting the multilayer ceramic capacitor 18 on the Si substrate 5, Si Since it is mounted on the interposer 1 and the Si base 5 functions as a kind of buffer material, even if a temperature change occurs, it does not warp and the multilayer ceramic capacitor 18 does not peel off.
 なお、キャパシタ付半導体装置500においても、第3実施形態にかかるキャパシタ付半導体装置300と同様に、Si基体5の表面に薄膜抵抗体15を形成し、Siキャパシタ34のトレンチキャパシタ(第1電極層8、誘電体層9、第2電極層10)と薄膜抵抗体15とを直列に接続させても良い。 Also in the semiconductor device with a capacitor 500, as in the semiconductor device with a capacitor 300 according to the third embodiment, the thin film resistor 15 is formed on the surface of the Si base 5, and the trench capacitor (first electrode layer) of the Si capacitor 34 is formed. 8, the dielectric layer 9, the second electrode layer 10) and the thin film resistor 15 may be connected in series.
 [第6実施形態]
 図6(A)~(E)に、第6実施形態にかかるキャパシタ付半導体装置600を示す。ただし、図6(A)~(E)は、それぞれ、キャパシタ付半導体装置600の製造方法の一例において実施される工程を示す説明図(保持用樹脂層20の内部を透視して示した正面図)であり、図6(E)が完成したキャパシタ付半導体装置600を示している。
[Sixth Embodiment]
6A to 6E show a semiconductor device 600 with a capacitor according to a sixth embodiment. However, FIGS. 6A to 6E are explanatory views showing steps performed in an example of the method of manufacturing the capacitor-equipped semiconductor device 600 (front views showing through the inside of the holding resin layer 20). 6E shows the completed semiconductor device 600 with a capacitor.
 キャパシタ付半導体装置600は、FO-WLP(fan out - Wafer Level Package)により、Si半導体素子13とSiキャパシタ44とを、保持用樹脂層20に保持させている。 The capacitor-equipped semiconductor device 600 holds the Si semiconductor element 13 and the Si capacitor 44 in the holding resin layer 20 by FO-WLP (fan out-Wafer Level Package).
 以下、製造方法の一例を説明することを通して、キャパシタ付半導体装置600の詳細を説明する。 Hereinafter, the details of the semiconductor device with a capacitor 600 will be described by explaining an example of the manufacturing method.
 まず、Si半導体素子13とSiキャパシタ44とを用意する。Si半導体素子13として、第1実施形態で使用したSi半導体素子3と同じものを用意した。また、Siキャパシタ44として、第1実施形態で使用したSiキャパシタ4と同じものを用意した。ただし、Si半導体素子13とSiキャパシタ44とは、それぞれ、下側主面にバンプは形成されていない。 First, the Si semiconductor element 13 and the Si capacitor 44 are prepared. As the Si semiconductor element 13, the same one as the Si semiconductor element 3 used in the first embodiment was prepared. Further, as the Si capacitor 44, the same one as the Si capacitor 4 used in the first embodiment was prepared. However, the bumps are not formed on the lower main surface of the Si semiconductor element 13 and the Si capacitor 44, respectively.
 次に、図6(A)に示すように、Si半導体素子13とSiキャパシタ44とを、それぞれ、端子が形成された面をフィルム21に対向させて、フィルム21に貼着する。なお、フィルム21の表面には、予め、粘着性がもたせてある。 Next, as shown in FIG. 6A, the Si semiconductor element 13 and the Si capacitor 44 are attached to the film 21 with the surfaces on which the terminals are formed facing the film 21, respectively. In addition, the surface of the film 21 is previously given adhesiveness.
 次に、図6(B)に示すように、Si半導体素子13とSiキャパシタ44とを覆うようにフィルム21上に液状の樹脂を滴下させ、続いて加熱し、樹脂を硬化させて保持用樹脂層20を形成する。ただし、保持用樹脂層20を構成する樹脂には、Si半導体素子13の熱膨張係数や大きさや形状を十分に考慮したうえで、温度変化があっても、Si半導体素子13が破損したり、保持用樹脂層20が反ったり、Si半導体素子13が保持用樹脂層20から剥離したりしない特性(線膨張係数など)を備えたものを選定しなければならない。 Next, as shown in FIG. 6B, a liquid resin is dropped on the film 21 so as to cover the Si semiconductor element 13 and the Si capacitor 44, and then heated to cure the resin and retain the resin. Layer 20 is formed. However, in the resin constituting the holding resin layer 20, after considering the thermal expansion coefficient, size, and shape of the Si semiconductor element 13 sufficiently, even if there is a temperature change, the Si semiconductor element 13 is damaged, A material having characteristics (such as a linear expansion coefficient) that the holding resin layer 20 is not warped or the Si semiconductor element 13 is not peeled off from the holding resin layer 20 must be selected.
 次に、図6(C)に示すように、Si半導体素子13とSiキャパシタ44とが埋設された保持用樹脂層20から、フィルム21を除去する。なお、図6(C)~(E)は、図6(A)、(B)と保持用樹脂層20の上下方向を反転させて示している。フィルム21を除去した保持用樹脂層20の表面には、Si半導体素子13の端子が形成された面と、Siキャパシタ44の端子が形成された面とが、それぞれ、露出している。 Next, as shown in FIG. 6C, the film 21 is removed from the holding resin layer 20 in which the Si semiconductor element 13 and the Si capacitor 44 are embedded. 6C to 6E show the holding resin layer 20 upside down with respect to FIGS. 6A and 6B. On the surface of the holding resin layer 20 from which the film 21 has been removed, the surface on which the terminals of the Si semiconductor element 13 are formed and the surface on which the terminals of the Si capacitor 44 are formed are exposed.
 次に、図6(D)に示すように、保持用樹脂層20のSi半導体素子13とSiキャパシタ44とが露出した面に、再配線層22を形成する。再配線層22は、複数の絶縁層(図示せず)が積層されたものからなり、絶縁層を貫通して形成されたビア導体や、層間に形成された配線電極によって、両主面間に配線がなされている。また、再配線層22は、Si半導体素子13とSiキャパシタ44とを接続している。再配線層22は、たとえば、一般的な絶縁材料、導電材料を使用して、フォトリソグラフィ技術を使用して形成することができる。 Next, as shown in FIG. 6D, the rewiring layer 22 is formed on the surface of the holding resin layer 20 where the Si semiconductor element 13 and the Si capacitor 44 are exposed. The redistribution layer 22 is formed by laminating a plurality of insulating layers (not shown), and a via conductor formed through the insulating layer or a wiring electrode formed between the layers, between the two main surfaces. Wiring is made. The rewiring layer 22 connects the Si semiconductor element 13 and the Si capacitor 44. For example, the rewiring layer 22 can be formed using a general insulating material or a conductive material by using a photolithography technique.
 最後に、図6(E)に示すように、再配線層22上にバンプ23を形成して、キャパシタ付半導体装置600を完成させる。 Finally, as shown in FIG. 6E, bumps 23 are formed on the rewiring layer 22 to complete the semiconductor device 600 with a capacitor.
 FO-WLPにおいては、保持用樹脂層を構成する樹脂に、半導体素子の熱膨張係数や大きさや形状を十分に考慮したうえで、温度変化があっても、保持用樹脂層が反ったり、半導体素子が破損したり、半導体素子が保持用樹脂層から剥離したりしないものが選定される。キャパシタ付半導体装置600では、Si半導体素子13とともに保持用樹脂層20に埋設されるキャパシタに、Si半導体素子13と熱膨張係数の近いSiキャパシタ44を使用しているため、温度変化があっても、保持用樹脂層20が反ったり、Si半導体素子13が破損したり、Si半導体素子13やSiキャパシタ44が保持用樹脂層から剥離したりすることが抑制されている。 In FO-WLP, the resin constituting the holding resin layer takes into account the thermal expansion coefficient, size, and shape of the semiconductor element, and even if the temperature changes, the holding resin layer warps. The element is selected so that the element is not damaged or the semiconductor element does not peel from the holding resin layer. In the semiconductor device with a capacitor 600, the Si capacitor 44 having a thermal expansion coefficient close to that of the Si semiconductor element 13 is used as the capacitor embedded in the holding resin layer 20 together with the Si semiconductor element 13. The holding resin layer 20 is prevented from warping, the Si semiconductor element 13 is damaged, and the Si semiconductor element 13 and the Si capacitor 44 are prevented from peeling from the holding resin layer.
 以上、第1実施形態~第6実施形態にかかるキャパシタ付半導体装置100~600について説明した。しかしながら、本発明が上述した内容に限定されることはなく、発明の趣旨に沿って、種々の変更をなすことができる。 The capacitor semiconductor devices 100 to 600 according to the first to sixth embodiments have been described above. However, the present invention is not limited to the contents described above, and various modifications can be made in accordance with the spirit of the invention.
 たとえば、キャパシタ付半導体装置100~600では、Siキャパシタ4、14、24、34、44にトレンチキャパシタを使用しているが、Siキャパシタは、基体にSiを使用していれば良く、トレンチキャパシタには限定されず、他の種類のものであっても良い。 For example, in the semiconductor devices with capacitors 100 to 600, trench capacitors are used for the Si capacitors 4, 14, 24, 34, and 44. However, the Si capacitor only needs to use Si for the substrate, Is not limited and may be of other types.
 また、FO-WLPを使用した第6実施形態にかかるキャパシタ付半導体装置600においては、Siキャパタとして、トレンチキャパシタのみを備えたSiキャパシタ44を保持用樹脂層20に埋設しているが、これに代えて、他の実施形態で使用した、トレンチキャパシタと薄膜抵抗体15とを備えたSiキャパシタ14、トレンチキャパシタと薄膜高容量キャパシタ16とを備えたSiキャパシタ24、トレンチキャパシタと積層セラミックキャパシタ18とを備えたSiキャパシタ34などを保持用樹脂層20に埋設しても良い。 In the semiconductor device with a capacitor 600 according to the sixth embodiment using FO-WLP, the Si capacitor 44 having only the trench capacitor is embedded in the holding resin layer 20 as the Si capacitor. Instead, the Si capacitor 14 including the trench capacitor and the thin film resistor 15, the Si capacitor 24 including the trench capacitor and the thin film high-capacitance capacitor 16, the trench capacitor and the multilayer ceramic capacitor 18 used in the other embodiments are used. A Si capacitor 34 or the like provided with may be embedded in the holding resin layer 20.
 また、Siインターポーザ1に実装されるSiキャパシタの個数や、保持用樹脂層20に埋設されるSiキャパシタの個数は任意であり、図面に描画された個数には限定されない。 Further, the number of Si capacitors mounted on the Si interposer 1 and the number of Si capacitors embedded in the holding resin layer 20 are arbitrary, and are not limited to the number drawn in the drawing.
1・・・Siインターポーザ
2、11、23・・・バンプ
3、13・・・Si半導体素子(LSI素子など)
4、14、24、34、44・・・Siキャパシタ
5・・・Si基体
6・・・孔
7、17・・・絶縁層
8・・・第1電極層
9・・・誘電体層
10・・・第2電極層
12・・・封止用樹脂層
15・・・薄膜抵抗体
16・・・薄膜高容量キャパシタ
16a・・・導体多孔体層
16b・・・誘電体層
16c・・・導体層
18・・・積層セラミックキャパシタ
20・・・保持用樹脂層
21・・・フィルム
22・・・再配線層
DESCRIPTION OF SYMBOLS 1 ... Si interposer 2, 11, 23 ... Bump 3, 13 ... Si semiconductor element (LSI element etc.)
4, 14, 24, 34, 44 ... Si capacitor 5 ... Si substrate 6 ... hole 7, 17 ... insulating layer 8 ... first electrode layer 9 ... dielectric layer 10 .... Second electrode layer 12 ... Sealing resin layer 15 ... Thin film resistor 16 ... Thin film high capacity capacitor 16a ... Conductor porous body layer 16b ... Dielectric layer 16c ... Conductor Layer 18 ... multilayer ceramic capacitor 20 ... holding resin layer 21 ... film 22 ... rewiring layer

Claims (7)

  1.  Siにより形成された少なくとも1つのSi半導体素子と、
     Siにより形成された少なくとも1つのSiキャパシタと、を備え、
     前記Si半導体素子と前記Siキャパシタとが、それぞれ、Siにより形成された1つのSiインターポーザに実装されることにより、または、1つの保持用樹脂層に一方の主面を露出させて埋設されることにより、平面方向に並べて配置された、キャパシタ付半導体装置。
    At least one Si semiconductor element formed of Si;
    And at least one Si capacitor formed of Si,
    The Si semiconductor element and the Si capacitor are each mounted on one Si interposer formed of Si, or embedded in one holding resin layer with one main surface exposed. Thus, the semiconductor device with a capacitor arranged side by side in the plane direction.
  2.  前記Si半導体素子と前記Siキャパシタとが、それぞれ、前記Siインターポーザに実装され、
     実装された前記Si半導体素子と前記Siキャパシタとを覆うように、前記Siインターポーザの主面上に封止用樹脂層が形成された、請求項1に記載されたキャパシタ付半導体装置。
    The Si semiconductor element and the Si capacitor are each mounted on the Si interposer,
    The semiconductor device with a capacitor according to claim 1, wherein a sealing resin layer is formed on a main surface of the Si interposer so as to cover the mounted Si semiconductor element and the Si capacitor.
  3.  前記Si半導体素子と前記Siキャパシタとが、それぞれ、前記保持用樹脂層に一方の主面を露出させて埋設され、
     前記Si半導体素子と前記Siキャパシタとが露出された前記保持用樹脂層の主面上に、再配線層が形成された、請求項1に記載されたキャパシタ付半導体装置。
    The Si semiconductor element and the Si capacitor are each embedded in the holding resin layer with one main surface exposed,
    The semiconductor device with a capacitor according to claim 1, wherein a rewiring layer is formed on a main surface of the holding resin layer from which the Si semiconductor element and the Si capacitor are exposed.
  4.  前記Siキャパシタが、Siにより形成されたSi基体に孔が形成され、前記孔に形成されたトレンチキャパシタである、請求項1ないし3のいずれか1項に記載されたキャパシタ付半導体装置。 The semiconductor device with a capacitor according to any one of claims 1 to 3, wherein the Si capacitor is a trench capacitor formed in the hole by forming a hole in a Si base made of Si.
  5.  前記Siキャパシタ上に、導体多孔体層と、誘電体層と、導体層とが順に積層された薄膜高容量キャパシタが形成され、
     前記Siキャパシタと、前記薄膜高容量キャパシタとが、並列に接続された、請求項1ないし4のいずれか1項に記載されたキャパシタ付半導体装置。
    On the Si capacitor, a thin film high-capacity capacitor in which a conductive porous layer, a dielectric layer, and a conductive layer are sequentially laminated is formed.
    5. The semiconductor device with a capacitor according to claim 1, wherein the Si capacitor and the thin film high-capacitance capacitor are connected in parallel. 6.
  6.  前記Siキャパシタに、積層セラミックキャパシタが実装され、
     前記Siキャパシタと、前記積層セラミックキャパシタとが、並列に接続された、請求項1ないし5のいずれか1項に記載されたキャパシタ付半導体装置。
    A multilayer ceramic capacitor is mounted on the Si capacitor,
    The semiconductor device with a capacitor according to claim 1, wherein the Si capacitor and the multilayer ceramic capacitor are connected in parallel.
  7.  前記Siキャパシタの表面に薄膜抵抗体が形成され、
     前記Siキャパシタと、前記薄膜抵抗体とが、直列に接続された、請求項4ないし6のいずれか1項に記載されたキャパシタ付半導体装置。
    A thin film resistor is formed on the surface of the Si capacitor,
    The semiconductor device with a capacitor according to claim 4, wherein the Si capacitor and the thin film resistor are connected in series.
PCT/JP2017/024085 2016-08-19 2017-06-30 Semiconductor device with capacitor WO2018034067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016161029 2016-08-19
JP2016-161029 2016-08-19

Publications (1)

Publication Number Publication Date
WO2018034067A1 true WO2018034067A1 (en) 2018-02-22

Family

ID=61197277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024085 WO2018034067A1 (en) 2016-08-19 2017-06-30 Semiconductor device with capacitor

Country Status (2)

Country Link
TW (1) TWI651741B (en)
WO (1) WO2018034067A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557633A1 (en) * 2018-04-20 2019-10-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High voltage capacitor for integration into electrical power modules and method for the production thereof
JP2020009602A (en) * 2018-07-06 2020-01-16 東芝ライテック株式会社 Power supply circuit and luminaire
US11705442B2 (en) 2020-09-11 2023-07-18 Kabushiki Kaisha Toshiba Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230011666A1 (en) * 2021-07-09 2023-01-12 Mediatek Singapore Pte. Ltd. Semiconductor package structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176106A (en) * 2000-09-14 2002-06-21 Vishay Intertechnology Inc High-accuracy high-frequency capacitor formed on semiconductor board
JP2002190426A (en) * 2000-12-21 2002-07-05 New Japan Radio Co Ltd Capacitor and its manufacturing method
JP2004087959A (en) * 2002-08-28 2004-03-18 Fujitsu Ltd Composite capacitor
JP2007234843A (en) * 2006-03-01 2007-09-13 Fujitsu Ltd Thin-film capacitor element, interposer, manufacturing method therefor, and semiconductor device
US20140145300A1 (en) * 2012-11-26 2014-05-29 Broadcom Corporation Integration of chips and silicon-based trench capacitors using low parasitic silicon-level connections
JP2015185615A (en) * 2014-03-20 2015-10-22 株式会社東芝 Semiconductor device and electronic circuit device
WO2016052221A1 (en) * 2014-09-30 2016-04-07 株式会社村田製作所 Semiconductor package and mounting structure thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176106A (en) * 2000-09-14 2002-06-21 Vishay Intertechnology Inc High-accuracy high-frequency capacitor formed on semiconductor board
JP2002190426A (en) * 2000-12-21 2002-07-05 New Japan Radio Co Ltd Capacitor and its manufacturing method
JP2004087959A (en) * 2002-08-28 2004-03-18 Fujitsu Ltd Composite capacitor
JP2007234843A (en) * 2006-03-01 2007-09-13 Fujitsu Ltd Thin-film capacitor element, interposer, manufacturing method therefor, and semiconductor device
US20140145300A1 (en) * 2012-11-26 2014-05-29 Broadcom Corporation Integration of chips and silicon-based trench capacitors using low parasitic silicon-level connections
JP2015185615A (en) * 2014-03-20 2015-10-22 株式会社東芝 Semiconductor device and electronic circuit device
WO2016052221A1 (en) * 2014-09-30 2016-04-07 株式会社村田製作所 Semiconductor package and mounting structure thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3557633A1 (en) * 2018-04-20 2019-10-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. High voltage capacitor for integration into electrical power modules and method for the production thereof
JP2020009602A (en) * 2018-07-06 2020-01-16 東芝ライテック株式会社 Power supply circuit and luminaire
JP7121922B2 (en) 2018-07-06 2022-08-19 東芝ライテック株式会社 Power supply circuit and lighting device
US11705442B2 (en) 2020-09-11 2023-07-18 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
TW201820356A (en) 2018-06-01
TWI651741B (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP3843708B2 (en) Semiconductor device, manufacturing method thereof, and thin film capacitor
JP5576334B2 (en) Semiconductor device, wiring board and manufacturing method thereof
JP2023022078A (en) Bonded structures with integrated passive component
US7839649B2 (en) Circuit board structure having embedded semiconductor element and fabrication method thereof
US6784530B2 (en) Circuit component built-in module with embedded semiconductor chip and method of manufacturing
US9847299B2 (en) Semiconductor package and mounting structure thereof
WO2018034067A1 (en) Semiconductor device with capacitor
WO2004047167A1 (en) Semiconductor device, wiring substrate, and method for manufacturing wiring substrate
US11037868B2 (en) Semiconductor device package and method of manufacturing the same
JP2005327984A (en) Electronic component and method of manufacturing electronic-component mounting structure
JP2008227348A (en) Semiconductor device and its manufacturing method
JP2011044613A (en) Electronic component and method of manufacturing the same
US20180226391A1 (en) Thin film lc component and mounting structure of same
JP6981537B2 (en) High frequency module
CN102842597B (en) Semiconductor chip and semiconductor device
JP2011044614A (en) Electronic component and method of manufacturing the same
TW201511624A (en) Component-embedded substrate and manufacturing method for same
JP5456989B2 (en) Manufacturing method of electronic parts
JP4844392B2 (en) Semiconductor device and wiring board
JPWO2009028596A1 (en) Passive element embedded substrate, manufacturing method, and semiconductor device
US6878572B2 (en) High capacitance package substrate
TW200933831A (en) Integrated circuit package and the method for fabricating thereof
US9640477B1 (en) Semiconductor package and method of producing the semiconductor package
JP2008034694A (en) Passive element
JP7130047B2 (en) Integrated circuit module structure and fabrication method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP