WO2018032864A1 - 纹路识别显示装置及其阵列基板和纹路识别单元 - Google Patents

纹路识别显示装置及其阵列基板和纹路识别单元 Download PDF

Info

Publication number
WO2018032864A1
WO2018032864A1 PCT/CN2017/087561 CN2017087561W WO2018032864A1 WO 2018032864 A1 WO2018032864 A1 WO 2018032864A1 CN 2017087561 W CN2017087561 W CN 2017087561W WO 2018032864 A1 WO2018032864 A1 WO 2018032864A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
output line
identification
identification output
Prior art date
Application number
PCT/CN2017/087561
Other languages
English (en)
French (fr)
Inventor
王鹏鹏
董学
吕敬
王海生
吴俊纬
丁小梁
刘英明
刘伟
韩艳玲
曹学友
张平
李昌峰
赵利军
许睿
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/573,228 priority Critical patent/US11036977B2/en
Publication of WO2018032864A1 publication Critical patent/WO2018032864A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/30Noise filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1347Preprocessing; Feature extraction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a texture recognition display device and an array substrate and a texture recognition unit included therein.
  • the function of optical grain recognition can be realized by using a photosensitive characteristic such as a PIN junction, and in order not to affect the normal display effect of the pixel 1, that is, the aperture ratio of the pixel 1 is not affected, as shown in FIG.
  • the photosensitive sensing unit 2 is disposed at a position corresponding to the gap between the pixels 1, that is, the photosensitive sensing unit 2 is disposed at a position corresponding to the non-display area.
  • the photosensitive sensing unit 2 receives the light reflected from the structure of the finger including the texture to generate a photocurrent. Since the light intensity reflected by the valley and the ridge is different, the generated photocurrent will also be different, thereby realizing the identification of the valley and the ridge of the structure including the texture.
  • the photosensitive sensing unit 2 includes a photodiode 21 for sensing a change in light intensity when a structure including a texture is pressed, and a control photodiode 21 for converting a change in light intensity into a different electrical signal.
  • the output of the control transistor 22 The drain of the control transistor 22 is connected to an electrode terminal of the photodiode 21, the source is connected to the identification output line 3, and the gate is connected to the scanning signal line 4. Due to the difference between the fingerprint valleys, the light source illuminates the finger to produce different reflections, so that the light intensity received by the photodiode 21 is different, different light current differences are generated, and the control transistor 22 is turned on by the scanning signal line 4.
  • the detection of the fingerprint valley ridge can be realized by recognizing the difference in current of each photodiode 21 sequentially read out by the output line 3 and deriving it to the detection circuit 5. Since the photodiode 21 needs to operate in a reverse bias state, the other electrode terminal of the photodiode 21 is generally connected to the fixed potential Vd.
  • the display light in the texture recognition display device also illuminates the photodiode 21 through different paths to form noise, which may eventually make the texture identification signal difficult. Identification.
  • the amplitude modulation technology can be used in the texture recognition time period, so that the texture recognition display device emits modulated light to the finger and then reflects to the photodiode 21.
  • the modulator generates a fixed frequency during the texture recognition period.
  • the square wave signal is divided into two paths, one for driving the pixel light to generate the modulated light signal, and the other for the demodulation of the texture recognition signal.
  • the modulated light signal When the finger is pressed to the texture recognition display device, the modulated light signal is reflected on the finger, and the reflected modulated light is irradiated onto the photodiode 21 to generate a photocurrent, and the photocurrent first enters the voltage conversion circuit to convert the photocurrent signal.
  • the photovoltage signal is then passed through the first filter amplifier circuit and then passed to the demodulation circuit for demodulation.
  • demodulating the texture identification signal it is necessary to use another signal outputted by the modulator, after demodulation by the demodulation circuit, and finally low-pass filtering by the second filter circuit having a low-pass filter.
  • the extracted fingerprint signal is converted into a digital signal after entering the analog-to-digital conversion circuit, and finally output to the CPU for subsequent processing to obtain a fingerprint image.
  • the modulated light can resist the interference of external light, environmental noise and electrical noise, and improve the signal to noise ratio.
  • a texture recognition display array substrate comprises: a plurality of pixel circuits arranged in an array arranged on the base substrate, and a plurality of control signal lines correspondingly connected to the pixel circuits of each row, and the plurality of photosensitive signals arranged in an array a sensing unit, a plurality of first identification output lines correspondingly connected to the photosensitive sensing units of each column, and a plurality of second identification output lines disposed in pairs with each of the first identification output lines, and respectively A detection circuit that identifies the output line and each of the second identification output lines.
  • each of the second identification output lines is connected to the detection circuit; the detection circuit is configured to, in the texture recognition period, the first signal according to the noise signal output by the second identification output line The electrical signal outputted by the output line is identified for denoising processing.
  • the first identification output line and the second identification output line disposed in pairs may be located at the same pixel circuit gap.
  • the first identification output line and the second identification output line disposed in pairs may be disposed in parallel with each other.
  • the second identification output line and the first identification output line may be disposed in the same layer, and the second identification output line and the first An identification output line can have the same line width.
  • the second identification output line may be connected to the detection circuit only at one end and suspended at the other end.
  • the detection circuit may include a plurality of detection sub-circuits.
  • Each of the detection sub-circuits is associated with and connected to each of the pair of the first identification output lines and the second identification output lines.
  • each of the detection sub-circuits includes: a difference circuit, configured to differentiate the electrical signals output by the first identification output line and the second identification output line to obtain a differential signal, thereby The electrical signal output by the first identification output line is subjected to denoising processing.
  • each of the detection sub-circuits includes:
  • a first voltage conversion circuit configured to convert the received current signal output by the first identification output line into a first voltage signal
  • a second voltage conversion circuit configured to convert the received current signal output by the second identification output line into a second voltage signal
  • a first filter amplifying circuit connected to the output end of the differential circuit, configured to filter and amplify the differential signal
  • a demodulation circuit connected to the output end of the first filter amplifying circuit, configured to demodulate a carrier signal according to a fingerprint sent by the received modulator, and perform modulation and demodulation on the filtered and amplified differential signal;
  • a second filter amplifying circuit connected to an output end of the demodulation circuit for The modulated differential signal is filtered and amplified;
  • an analog-to-digital conversion circuit connected to the output end of the second filter amplifying circuit, configured to perform analog signal to digital signal conversion on the filtered and amplified differential signal
  • differential circuit is coupled to an output of the first voltage conversion circuit and coupled to an output of the second voltage conversion circuit, configured to differentiate the first voltage signal and the second voltage signal The differential signal is obtained later.
  • each of the detection sub-circuits specifically includes:
  • a first voltage conversion circuit configured to convert the received current signal output by the first identification output line into a first voltage signal
  • a second voltage conversion circuit configured to convert the received current signal output by the second identification output line into a second voltage signal
  • a first filter amplifying circuit connected to the output end of the first voltage converting circuit, configured to filter and amplify the first voltage signal
  • a second filter amplifying circuit connected to the output end of the second voltage converting circuit, configured to filter and amplify the second voltage signal
  • a demodulation circuit connected to the output end of the differential circuit, configured to demodulate a carrier signal according to a fingerprint sent by the received modulator, and perform modulation and demodulation on the differential signal;
  • a third filter amplifying circuit connected to the output end of the demodulation circuit for filtering and amplifying the modulated and demodulated differential signal
  • an analog-to-digital conversion circuit connected to the output end of the third filter amplifying circuit, configured to perform analog signal to digital signal conversion on the filtered and amplified differential signal
  • the differential circuit is coupled to an output of the first filter amplifying circuit and an output of the second filter amplifying circuit, configured to filter the amplified first voltage signal and the filtered and amplified
  • the differential signal is obtained by performing a difference between the second voltage signals.
  • each of the detection sub-circuits includes:
  • a first voltage conversion circuit configured to convert the received current signal output by the first identification output line into a first voltage signal
  • a second voltage conversion circuit configured to convert the received current signal output by the second identification output line into a second voltage signal
  • a first filter amplifying circuit connected to the output end of the first voltage converting circuit, configured to filter and amplify the first voltage signal
  • a second filter amplifying circuit connected to the output end of the second voltage converting circuit, configured to filter and amplify the second voltage signal
  • a first demodulation circuit connected to the output end of the first filter amplifying circuit, configured to perform demodulation and demodulation on the first voltage signal that is filtered and amplified according to a fingerprint demodulated carrier signal sent by the received modulator ;
  • a second demodulation circuit connected to the output end of the second filter amplifying circuit, configured to perform demodulation and demodulation on the second voltage signal that is filtered and amplified according to the fingerprint demodulated carrier signal sent by the received modulator ;
  • a third filter amplifying circuit connected to an output end of the differential circuit for filtering and amplifying the differential signal
  • an analog-to-digital conversion circuit connected to the output end of the third filter amplifying circuit, configured to perform analog signal to digital signal conversion on the filtered and amplified differential signal,
  • differential circuit is coupled to an output of the first demodulation circuit and an output of the second demodulation circuit, configured to modulate the first voltage signal and undergo modulation and demodulation
  • the second voltage signal is differentiated to obtain the differential signal.
  • the fingerprint demodulation carrier signal may have the same signal frequency as the control signal.
  • the fingerprint demodulation carrier signal may have a specific fixed phase difference with the control signal.
  • the fixed phase difference may be 0 or 180 degrees.
  • a texture recognition display device comprising any one of the texture recognition display array substrates as described above.
  • a texture recognition unit includes: a photosensitive sensing unit, a first identification output line correspondingly connected to the photosensitive sensing unit, a second identification output line disposed in pair with the first identification output line, and each of the first A detection sub-circuit connecting the output line and each of the second identification output lines is identified. among them, The first identification output line and the second identification output line are arranged in the same direction; the second identification output line is only connected to the detection sub-circuit; the detection sub-circuit is configured to be used for In the texture recognition period, the electrical signal output by the first identification output line is subjected to denoising processing according to the noise signal output by the second identification output line.
  • Some embodiments of the present disclosure may achieve at least one of the following beneficial effects and/or other benefits.
  • a plurality of second identification output lines disposed in pairs with the first identification output lines are added, and the control signal lines connected to the pixel circuits are lined.
  • the orthographic projections on the base substrate have overlapping regions with the orthographic projections of the first identification output line and the second identification output line disposed in pairs, respectively.
  • Parasitic capacitance is inevitably generated in the overlap region, and the control signal loaded to the control signal line is coupled to the first identification output line and the second identification output line through the parasitic capacitance, for the first identification output line and the second
  • the identification output line produces similar signal interference, while the first identification output line and the second identification output line also receive similar signal interference of other unknown noise.
  • the noise signal substantially the same as the first identification output line received by the second identification output line is used, and after the denoising process is performed on the electrical signal outputted by the first identification output line in the detection circuit, the A signal interference in the output electrical signal is recognized, thereby improving the signal-to-noise ratio of the texture recognition signal and ensuring the detection accuracy of the texture recognition signal.
  • FIG. 1 is a schematic structural view of an optical grain recognition display device in the prior art
  • FIG. 2 is a schematic diagram showing the circuit structure of an optical grain recognition display device in the prior art
  • FIG. 3 is a schematic structural diagram of a texture recognition display device according to an embodiment
  • FIG. 4 is a schematic structural view of an OLED pixel circuit
  • 5 is an equivalent circuit model diagram of identifying an output line in the texture recognition display device
  • FIG. 7 is a schematic cross-sectional view of a pixel circuit in a texture recognition display device according to an embodiment
  • FIG. 8 is a timing diagram of signals corresponding to FIG. 4 in a texture recognition display device according to an embodiment
  • FIG. 9 is a schematic structural diagram of a detection sub-circuit in a texture recognition display device according to an embodiment
  • FIG. 10 is a schematic structural diagram of a detection sub-circuit in a texture recognition display device according to an embodiment
  • FIG. 11 is a schematic structural diagram of a detection sub-circuit in a texture recognition display device according to an embodiment.
  • the texture recognition display device includes a texture recognition display array substrate and a detection circuit 600.
  • the texture recognition display device includes a plurality of pixel circuits 100 arranged in an array on the base substrate, and a plurality of control signal lines 200 correspondingly connected to the respective rows of pixel circuits 100 are arranged in an array.
  • the photosensitive sensing unit 300, the plurality of first identification output lines 400 correspondingly connected to the respective column photosensitive sensing units 300, and the plurality of second identification output lines 500 disposed in pairs with the first identification output lines 400, and respectively The first identification output line 400 and the detection circuit 600 connected to each of the second identification output lines 500.
  • the paired first identification output line 400 and the second identification output line 500 extend in the same direction.
  • Each of the second identification output lines 500 is connected only to the detection circuit 600.
  • the detection circuit 600 may be configured to perform a denoising process on the electrical signal output by the first identification output line 400 according to the noise signal output by the second identification output line 500 during the texture recognition period.
  • the texture recognition display device may include a plurality of texture recognition units.
  • the texture recognition unit includes: a photosensitive sensing unit 300, a first identification output line 400 correspondingly connected to the photosensitive sensing unit 300, and a second identification output line 500 disposed in pairs with the first identification output line 400, and respectively Each of the first identification output lines and each The second identification output line is connected to the detection sub-circuit.
  • the first identification output line 400 and the second identification output line 500 which are arranged in pairs, extend in the same direction.
  • the second identification output line 500 is only connected to the detection sub-circuit.
  • the detection sub-circuit may be configured to perform a denoising process on the electrical signal output by the first identification output line 400 according to the noise signal output by the second identification output line 500 during the texture recognition period.
  • the type of the pixel circuit 100 is not limited, and the OLED pixel circuit can be used for illumination.
  • the pixel circuit shown in FIG. 4 can be used, or the liquid crystal display circuit can be used for illumination.
  • the liquid crystal display circuit referred to herein includes a switching transistor and a pixel electrode, and liquid crystal molecules and a common electrode corresponding to the pixel electrode, and the first control signal line is specifically a gate signal line connected to the gate of the switching transistor.
  • the first control signal line serves as the equivalent square wave signal source V1, and passes through the first control signal line and the identification output line.
  • the equivalent parasitic capacitance C1 at the overlap is coupled to the identification output line, thereby interfering with the texture identification signal output by the photodiode 21 (as the equivalent signal source V0) to the identification output line.
  • R0 is the equivalent resistance of the photodiode 21 connected to the identification output line
  • R1 is the equivalent resistance of the identification output line
  • C0 is the equivalent ground capacitance of the identification output line
  • the rightmost side is connected to the operational amplifier U.
  • Capacitors and resistors are the capacitance and resistance required for transimpedance amplification.
  • the signal simulation of the model yields a simulation result of the voltage-time correspondence of the output signal of the identification output line as shown in FIG. 6. As shown in Fig. 6, after the output line of the identification output line is amplified by the transimpedance of the operational amplifier U, it will cause a peak interference of nearly 8V, which is very disadvantageous for the post-amplification processing of the signal.
  • a plurality of second identification output lines 500 disposed in pairs with the respective first identification output lines 400 are added, and the control signal line 200 connected to the pixel circuit 100 is on the substrate
  • the orthographic projections on the substrate will have overlapping regions with the orthographic projections of the first identification output line 400 and the second identification output line 500 that are disposed in pairs, respectively.
  • Parasitic capacitance is inevitably generated in the overlap region, and the control signal loaded to the control signal line 200 is coupled to the first identification output line 400 and the second identification output line 500 through the parasitic capacitance, for the first identification output line. 400 and second identification output line 500 produce similar signal interference.
  • the first identification output line 400 and the second identification output line 500 also receive signal interference of similar unknown noise.
  • the noise received by the second identification output line 500 is substantially the same as the first identification output line 400 during the texture recognition period.
  • the signal after denoising the electrical signal outputted by the first identification output line 400 in the detecting circuit, can remove the signal interference of the output signal of the first identification output line 400, thereby improving the signal-to-noise ratio of the texture recognition signal and ensuring The detection accuracy of the texture recognition signal.
  • the photosensitive sensing unit 300 can be generally disposed in the pixel circuit. A corresponding position at the gap between the 100, that is, the photosensitive sensing unit 300 is disposed at a position corresponding to the non-display area. It should be noted that, in FIG. 3, only the case where the photosensitive sensing unit 300 is disposed at the gap of each pixel circuit 100 is exemplarily illustrated, and the distribution density of the photosensitive sensing unit 300 and the pixel circuit 100 are not limited in specific implementation. The relationship of the distribution density.
  • the photosensitive sensing unit 300 generally includes: a photodiode 301 for sensing a change in light intensity when a fingerprint is pressed, and a control photodiode 301 for converting a change in light intensity to a different one.
  • the drain of the control transistor 302 can be connected to an electrode terminal of the photodiode 301, the source can be connected to the first identification output line 400, and the gate can be connected to the scan signal line 700.
  • the scan signal line 700 loads the scan drive signal
  • the control transistor 302 is in an on state, and the first identification output line 400 is electrically connected to the photodiode 301.
  • the light source illuminates the fingers to produce different reflections, so that the light intensity received by the photodiode 301 is different, resulting in different photocurrent differences.
  • the control transistor 302 is turned on by the scanning signal line 700.
  • the first identification output line 400 sequentially reads out the current difference of each photodiode 301 and leads it to the detection circuit 600, thereby detecting the grain valley. Since the photodiode 301 needs to operate in a reverse bias state, the other electrode terminal of the photodiode 301 is generally connected to the fixed potential Vd.
  • the first identification output of the paired settings may be made.
  • Line 400 and second identification output line 500 are as close as possible.
  • the first identification output line 400 and the second identification output line 500 which are disposed in pairs may be disposed at the gap of the same pixel circuit 100.
  • the present disclosure is not limited to setting the first identification output line 400 and the second identification output line 500 disposed in pairs at the gap of the same pixel circuit 100.
  • the distribution density of the photosensitive sensing unit 300 is smaller than the distribution density of the pixel circuit 100, that is, in the interval of the spaced pixel circuits 100.
  • the paired first identification output line 400 and the second identification output line 500 may be disposed at the gap between the adjacent two columns of pixel circuits 100.
  • the paired first identification output line 400 and the second identification output line 500 located at the same pixel circuit gap may be disposed in parallel with each other.
  • the first The identification output line 400 and the second identification output line 500 are disposed in the same layer and in parallel.
  • the first identification output line 400 and the second identification output line 500 may have the same line width.
  • the second identification in order to make the noise signal received by the second identification output line 500 as the same as the noise signal received by the first identification output line 400, the second identification may be set as shown in FIG.
  • the output line 500 that is, one end of the second identification output line 500 may be connected to the detection circuit 600, and the other end is suspended.
  • the specific structure of the integrated driving circuit will be described below by taking the pixel circuit 100 as an example, for example, the OLED pixel circuit shown in FIG.
  • the signal timing diagram of each port corresponding to the OLED pixel circuit shown in FIG. 4 is as shown in FIG. 8, wherein the reset signal terminal Reset, the scan signal terminal Gate, and the signal loaded by the control terminal EM are timing signals output through the integrated driving circuit.
  • the reference potential of the reference signal terminal Vint, the potential of the high-level signal terminal ELVDD and the low-level signal terminal ELVSS needs to be provided by an external FPC, and the data signal of the data signal terminal Vdata is provided by the source IC chip, and the fingerprint demodulation carrier signal is
  • the modulator provides a carrier signal to the demodulation circuit in the detection circuit.
  • the timing of the display device can be divided into two stages, the display time period and the texture recognition time period.
  • the OLED pixel circuit is normally illuminated for display.
  • the control terminal EM inputs a square wave signal as a first control signal, and the square wave signal can cause the OLED pixel circuit to emit modulated light.
  • the fingerprint demodulation carrier signal provided by the demodulation circuit has no effect on the OLED pixel circuit, but can be demodulated by the detection circuit during the texture recognition phase.
  • the fingerprint demodulation carrier signal may have the same signal frequency as the control signal supplied from the control signal line 200 to the control terminal EM in order to resist interference and improve detection accuracy.
  • the fingerprint demodulation carrier signal can be controlled There is a specific fixed phase difference between the signals.
  • the fixed phase difference can be any value within 0-360 degrees. In one embodiment, the fixed phase difference is 0 or 180 degrees, and Figure 8 shows the case where the fixed phase difference is zero.
  • the signal timing chart shown in FIG. 8 is described by taking the time period of the display time period and the texture recognition time period as an example, but in actual operation, the operation timing is not limited to the time-sharing driving method, for example, driving without time sharing, or
  • the control terminal EM adopts a square wave signal, or only when the texture recognition function is turned on, the control terminal EM is changed into a square wave signal, and in other cases, the normal illumination display is performed.
  • the detection circuit 600 since the detection circuits 600 respectively connected to the respective first identification output lines 400 and the respective second identification output lines 500 need to be aligned in the texture recognition period The signal output from each of the first identification output lines 400 and the second identification output lines 500 is differentially processed to obtain a noise-removed texture identification signal. Therefore, the detection circuit 600 may specifically include: a plurality of detection sub-circuits. Each of the detection sub-circuits is associated with and connected to each of the pair of first identification output lines 400 and second identification output lines 500.
  • each of the detection sub-circuits may include: a difference circuit, configured to differentiate the electrical signals output by the first identification output line and the second identification output line to obtain a differential signal, thereby The electrical signal output by the first identification output line is subjected to denoising processing.
  • the circuit structure of the detecting sub-circuit can have various embodiments.
  • FIG. 9-11 respectively show three specific circuit structures, but the present disclosure is by no means limited to the three specific circuit structures. .
  • the detector circuit can also adopt other circuit structures, and the disclosure does not limit this.
  • FIG. 9 is a block diagram showing the structure of a detection sub-circuit in a texture recognition display device according to an embodiment.
  • the detecting sub-circuit may include:
  • the first voltage conversion circuit 901 is configured to convert the received current signal output by the first identification output line 400 into a first voltage signal
  • a second voltage conversion circuit 902 configured to convert the received current signal output by the second identification output line 500 into a second voltage signal
  • a differential circuit 903 respectively connected to the output end of the first voltage conversion circuit 901 and the output end of the second voltage conversion circuit 902 for differentiating the first voltage signal and the second voltage signal to obtain a differential signal;
  • a first filter amplifying circuit 904 connected to the output end of the differential circuit 903, configured to filter and amplify the differential signal
  • a demodulation circuit 905 connected to the output end of the first filter amplifying circuit 904, configured to demodulate the carrier signal according to the fingerprint sent by the received modulator, and perform modulation and demodulation on the filtered amplified differential signal;
  • a second filter amplifying circuit 906 connected to the output end of the demodulation circuit 905 for filtering and amplifying the modulated and demodulated differential signal
  • the analog-to-digital conversion circuit 907 connected to the output end of the second filter amplifying circuit 906 is configured to perform analog signal-to-digital signal conversion on the filtered and amplified differential signal.
  • the current signal lines output from the first identification output line 400 and the second identification output line 500 can be amplified by transimpedance and then differentiated. Processing, in this way, the amplification of the amplifier using the ultra-low bias current in the first stage can ensure the integrity of the signal, and then the signal mixed with strong noise is denoised, and the noise can be effectively removed while ensuring the integrity of the signal.
  • FIG. 10 is a block diagram showing the structure of a detection sub-circuit in a texture recognition display device according to an embodiment.
  • the detecting sub-circuit may include:
  • the first voltage conversion circuit 1001 is configured to convert the received current signal output by the first identification output line 400 into a first voltage signal
  • the second voltage conversion circuit 1002 is configured to convert the received current signal output by the second identification output line 500 into a second voltage signal
  • a first filter amplifying circuit 1003 connected to an output end of the first voltage converting circuit 1001, configured to filter and amplify the first voltage signal;
  • a second filter amplifying circuit 1004 connected to the output end of the second voltage converting circuit 1002, configured to filter and amplify the second voltage signal;
  • a differential circuit 1005 connected to the output end of the first filter amplifying circuit 1003 and the output end of the second filter amplifying circuit 1004, respectively, for differentiating the filtered amplified first voltage signal and the filtered amplified second voltage signal Obtaining a differential signal;
  • a demodulation circuit 1006 connected to the output end of the differential circuit 1005, configured to demodulate the carrier signal according to the fingerprint sent by the received modulator, and perform modulation and demodulation on the differential signal;
  • a third filter amplifying circuit 1007 connected to an output terminal of the demodulation circuit 1006 for pairing The modulated differential signal is filtered and amplified;
  • the analog-to-digital conversion circuit 1008 connected to the output end of the third filter amplifying circuit 1007 is configured to perform analog signal to digital signal conversion on the filtered and amplified differential signal.
  • the difference circuit 1005 is disposed in the first filter amplifying circuit 1003 and the second filter amplifying circuit 1004, the current signal lines output from the first identification output line 400 and the second identification output line 500 may be subjected to transimpedance amplification and filtered.
  • the amplification of the amplifier using the ultra-low bias current in the first stage can ensure the integrity of the signal, and then the signal mixed with strong noise can be denoised, and the signal can be guaranteed to be complete. Effectively remove noise.
  • FIG. 11 is a block diagram showing the structure of a detection sub-circuit in a texture recognition display device according to an embodiment. As shown in FIG. 11, the detecting sub-circuit may include:
  • the first voltage conversion circuit 1101 is configured to convert the received current signal output by the first identification output line 400 into a first voltage signal
  • a second voltage conversion circuit 1102 configured to convert the received current signal output by the second identification output line 500 into a second voltage signal
  • a first filter amplifying circuit 1103 connected to an output end of the first voltage converting circuit 1101, configured to filter and amplify the first voltage signal;
  • a second filter amplifying circuit 1104 connected to the output end of the second voltage converting circuit 1102, configured to filter and amplify the second voltage signal;
  • a first demodulation circuit 1105 connected to the output end of the first filter amplifying circuit 1103, configured to perform modulation and demodulation on the filtered and amplified first voltage signal according to the fingerprint demodulated carrier signal sent by the received modulator;
  • a second demodulation circuit 1106 connected to the output end of the second filter amplifying circuit 1104, configured to perform modulation and demodulation on the filtered and amplified second voltage signal according to the fingerprint demodulated carrier signal sent by the received modulator;
  • a differential circuit 1107 connected to the output end of the first demodulation circuit 1105 and the output end of the second demodulation circuit 1106, respectively, for performing the modulated first voltage signal and the modulated second voltage signal Obtain a differential signal after the difference;
  • a third filter amplifying circuit 1108 connected to the output of the differential circuit 1107 for filtering and amplifying the differential signal
  • An analog-to-digital conversion circuit 1109 connected to the output of the third filter amplifying circuit 1108, The analog signal to the digital signal is converted on the filtered and amplified differential signal.
  • the differential circuit 1107 is disposed in the first demodulation circuit 1105 and the second demodulation circuit 1106, the current signal lines output from the first identification output line 400 and the second identification output line 500 may be subjected to transimpedance amplification and filtered. After the demodulation process and differential processing, the noise can be effectively removed.
  • the above-mentioned texture recognition display device provided by the present disclosure may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, etc., and the disclosure does not limit this.
  • the texture recognition display device provided according to some embodiments of the present disclosure may be used not only for fingerprint detection but also for other recognition including texture features.
  • a plurality of second identification output lines disposed in pairs with the respective first identification output lines are added to the texture recognition display device, and the control signal lines connected to the pixel circuits are positive on the base substrate.
  • the projections have overlapping regions with the orthographic projections of the first identification output line and the second identification output line disposed in pairs, respectively.
  • Parasitic capacitance is inevitably generated in the overlap region, and the control signal loaded to the control signal line is coupled to the first identification output line and the second identification output line through the parasitic capacitance, for the first identification output line and the second Identifying the output line produces similar signal interference.
  • the first identification output line and the second identification output line also receive signal interference of similar unknown noise.
  • the noise signal substantially the same as the first identification output line received by the second identification output line is used, and after the denoising process is performed on the electrical signal outputted by the first identification output line in the detection circuit, the A signal interference of the output signal of the output line is recognized, thereby improving the signal-to-noise ratio of the texture recognition signal and ensuring the detection accuracy of the texture recognition signal.
  • first identification output line and “second identification output line” do not necessarily mean that the first identification output line is located in front of the second identification output line, nor does it mean that the first identification output line is in time. Two are identified before the output line is made Or perform an operation. In fact, these phrases are only used to identify different identification output lines.
  • any reference signs placed in parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of the elements or the The word “a” or “an” or “an” In the device or system claims enumerating several means, one or more of these means can be embodied in the same hardware item. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Position Input By Displaying (AREA)
  • Image Input (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种纹路识别显示装置以及其中包含的阵列基板和纹路识别单元。在阵列基板中,增加与各第一识别输出线(400)成对设置的第二识别输出线(500),与像素电路(100)连接的控制信号线(200)在衬底基板上的正投影会分别与成对设置的第一识别输出线(400)和第二识别输出线(500)具有交叠区域。在交叠区域会产生寄生电容,加载到控制信号线(200)的控制信号会通过寄生电容耦合到第一识别输出线(400)和第二识别输出线(500)上,对第一识别输出线(400)和第二识别输出线(500)产生相类似的信号干扰。在纹路识别时间段,利用第二识别输出线(500)接收到的与第一识别输出线(400)基本相同的噪声信号,在检测电路(600)中对第一识别输出线(400)输出的电信号进行去噪声处理后,可以去除第一识别输出线(400)输出电信号的信号干扰,从而能够提高纹路识别信号的信噪比,并且保证纹路识别信号的检测精度。

Description

纹路识别显示装置及其阵列基板和纹路识别单元
相关申请
本申请要求2016年8月15日提交的申请号为201610671900.8的中国专利申请的优先权,该优先权申请的全部公开内容通过引用并入此处。
技术领域
本发明涉及显示技术领域,尤其涉及一种纹路识别显示装置以及其中包含的阵列基板和纹路识别单元。
背景技术
随着显示技术的飞速发展,具有纹路识别功能的显示面板已经逐渐遍及人们的生活中。目前,在纹路识别显示装置中可以利用诸如PIN结的光敏特性实现光学纹路识别的功能,并且为了不影响像素1的正常显示效果,即不影响像素1的开口率,如图1所示,一般将光敏感应单元2设置于与像素1之间间隙处对应的位置,即光敏感应单元2设置于非显示区域对应的位置。光敏感应单元2会接收手指包含纹路的结构反射回来的光线而产生光电流,由于谷和脊反射的光线强度不同,产生的光电流也会不同,从而实现识别包含纹路的结构的谷和脊的功能。
具体地,光敏感应单元2包括:以手指为例,用于感测包含纹路的结构按压时带来光强变化的光敏二极管21,以及用于控制光敏二极管21将光强变化转换为不同电信号输出的控制晶体管22。其中,控制晶体管22的漏极会与光敏二极管21的一电极端相连,源极与识别输出线3相连,栅极与扫描信号线4相连。由于指纹谷脊间的差异,光源照射到手指上的会产生不同的反射,从而使光敏二极管21接收到的光强不一样,产生不同的光电流差异,通过扫描信号线4开启控制晶体管22,识别输出线3依次读取出的各个光敏二极管21的电流差异并将其导出至检测电路5,即可实现对指纹谷脊的检测。由于光敏二极管21需要工作在反偏状态,光敏二极管21的另一电极端一般与固定电位Vd连接。
由于在光敏二极管21接收手指指纹反射回来的光线产生光电流的同时,纹路识别显示装置中的显示用光也会经过不同的路径照射到光敏二极管21上从而形成噪声,最终可能导致纹路识别信号难以辨识。基于此,目前在纹路识别时间段可以利用调幅技术,使纹路识别显示装置发出调制光照射到手指后反射至光敏二极管21,如图2所示,在纹路识别时间段,调制器产生一个固定频率的方波信号,该方波信号分成两路,一路用于驱动像素发光产生调制的光信号,另一路则用于纹路识别信号的解调。当手指按到纹路识别显示装置时,调制的光信号会照射到手指上发生反射,反射后的调制光照射到光敏二极管21上产生光电流,该光电流首先进入电压转换电路将光电流信号转换为光电压信号,然后经过第一滤波放大电路后进入到解调电路进行解调。在对纹路识别信号进行解调时,需要使用到调制器输出的另一路信号,经过解调电路的解调后,最后再通过具有低通滤波器的第二滤波电路进行低通滤波,就得到了提取的指纹信号,在进入模数转换电路后将模拟信号转换成数字信号,最终输出到CPU进行后续处理得到指纹图像。利用调制光可以抵抗外界光、环境噪声、电噪声的干扰,提高信噪比。
发明内容
但是,在上述现有技术的光敏感应单元2中,在使用调制光时,在对纹路识别信号进行解调时无法去除同频率同相位的噪声,因此,如何有效去除识别输出线的噪声干扰,提高得到的纹路识别信号的信噪比,从而保证纹路识别的检测精度,是本领域技术人员亟需解决的技术问题。
为了解决或缓解上述现有技术中的至少一个缺陷,根据一个方面提供了一种纹路识别显示阵列基板。所述纹路识别显示阵列基板包括:设置在衬底基板上的呈阵列排布的多个像素电路,与各行所述像素电路对应连接的多条控制信号线,呈阵列排布的的多个光敏感应单元,与各列所述光敏感应单元对应连接的多条第一识别输出线,与各所述第一识别输出线成对设置的多条第二识别输出线,以及分别与各所述第一识别输出线和各所述第二识别输出线连接的检测电路。其中,成对设置的所述第一识别输出线和所述第二识别输出线的延伸方向相 同;各所述第二识别输出线仅与所述检测电路相连;所述检测电路被配置用于在纹路识别时间段,根据所述第二识别输出线输出的噪声信号,对所述第一识别输出线输出的电信号进行去噪声处理。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,成对设置的所述第一识别输出线和第二识别输出线可以位于同一所述像素电路间隙处。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,成对设置的所述第一识别输出线和第二识别输出线可以相互平行设置。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,所述第二识别输出线与所述第一识别输出线可以同层设置,且所述第二识别输出线与所述第一识别输出线可以具有相同的线宽。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,所述第二识别输出线可以仅一端与所述检测电路相连,另一端悬空设置。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,所述检测电路可以包括多个检测子电路。每一个检测子电路与每一对所述第一识别输出线和第二识别输出线一一对应且相连。
在一种可能的实现方式中,每一个检测子电路包括:差分电路,用于对所述所述第一识别输出线和第二识别输出线输出的电信号进行差分后得到差分信号,从而对所述第一识别输出线输出的电信号进行去噪声处理。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,每一个检测子电路包括:
第一电压转换电路,用于将接收到的所述第一识别输出线输出的电流信号转换为第一电压信号;
第二电压转换电路,用于将接收到的所述第二识别输出线输出的电流信号转换为第二电压信号;
与所述差分电路的输出端连接的第一滤波放大电路,用于对所述差分信号进行滤波放大;
与所述第一滤波放大电路的输出端连接的解调电路,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的差分信号进行调制解调;
与所述解调电路的输出端连接的第二滤波放大电路,用于对经过 调制解调后的差分信号进行滤波放大;和
与所述第二滤波放大电路的输出端连接的模数转换电路,用于对经过滤波放大后的调制解调后的差分信号进行模拟信号到数字信号的转换,
其中所述差分电路连接到所述第一电压转换电路的输出端和所述第二电压转换电路的输出端连接,被配置用于对所述第一电压信号和所述第二电压信号进行差分后得到所述差分信号。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,每一个检测子电路,具体包括:
第一电压转换电路,用于将接收到的所述第一识别输出线输出的电流信号转换为第一电压信号;
第二电压转换电路,用于将接收到的所述第二识别输出线输出的电流信号转换为第二电压信号;
与所述第一电压转换电路的输出端连接的第一滤波放大电路,用于对所述第一电压信号进行滤波放大;
与所述第二电压转换电路的输出端连接的第二滤波放大电路,用于对所述第二电压信号进行滤波放大;
与所述差分电路的输出端连接的解调电路,用于根据接收到的调制器发送的指纹解调载波信号,对所述差分信号进行调制解调;
与所述解调电路的输出端连接的第三滤波放大电路,用于对经过调制解调后的差分信号进行滤波放大;和
与所述第三滤波放大电路的输出端连接的模数转换电路,用于对经过滤波放大后的调制解调后的差分信号进行模拟信号到数字信号的转换,
其中所述差分电路连接到所述第一滤波放大电路的输出端和所述第二滤波放大电路的输出端,被配置用于对经过滤波放大的所述第一电压信号和经过滤波放大的所述第二电压信号进行差分后得到所述差分信号。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,每一个检测子电路包括:
第一电压转换电路,用于将接收到的所述第一识别输出线输出的电流信号转换为第一电压信号;
第二电压转换电路,用于将接收到的所述第二识别输出线输出的电流信号转换为第二电压信号;
与所述第一电压转换电路的输出端连接的第一滤波放大电路,用于对所述第一电压信号进行滤波放大;
与所述第二电压转换电路的输出端连接的第二滤波放大电路,用于对所述第二电压信号进行滤波放大;
与所述第一滤波放大电路的输出端连接的第一解调电路,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的所述第一电压信号进行调制解调;
与所述第二滤波放大电路的输出端连接的第二解调电路,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的所述第二电压信号进行调制解调;
与所述差分电路的输出端连接的第三滤波放大电路,用于对所述差分信号进行滤波放大;和
与所述第三滤波放大电路的输出端连接的模数转换电路,用于对经过滤波放大后的差分信号进行模拟信号到数字信号的转换,
其中所述差分电路连接到所述第一解调电路的输出端和所述第二解调电路的输出端,被配置用于对经过调制解调的所述第一电压信号和经过调制解调的所述第二电压信号进行差分后得到所述差分信号。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,所述指纹解调载波信号可以与所述控制信号具有相同的信号频率。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,所述指纹解调载波信号可以与所述控制信号之间具有特定的固定相位差。
在一种可能的实现方式中,在上述纹路识别显示阵列基板中,所述固定相位差可以是0或180度。
根据另一个方面,提供了一种纹路识别显示装置,包括如上所述的任何一个纹路识别显示阵列基板。
根据另一个方面,提供了一种纹路识别单元。该纹路识别单元包括:光敏感应单元,与所述光敏感应单元对应连接的第一识别输出线,与述第一识别输出线成对设置的第二识别输出线,以及分别与各所述第一识别输出线和各所述第二识别输出线连接的检测子电路。其中, 成对设置的所述第一识别输出线和所述第二识别输出线的延伸方向相同;所述第二识别输出线仅与所述检测子电路相连;所述检测子电路,被配置用于在纹路识别时间段,根据所述第二识别输出线输出的噪声信号,对所述第一识别输出线输出的电信号进行去噪声处理。
本公开的一些实施例可以实现如下有益效果中的至少一个有益效果和/或其它有益效果。
在本公开的一些实施例所提供的一种纹路识别显示阵列基板中,增加了与各第一识别输出线成对设置的多条第二识别输出线,与像素电路连接的控制信号线在衬底基板上的正投影会分别与成对设置的第一识别输出线和第二识别输出线的正投影具有交叠区域。在交叠区域不可避免地会产生寄生电容,加载到控制信号线的控制信号就会通过该寄生电容耦合到第一识别输出线和第二识别输出线上,对第一识别输出线和第二识别输出线产生相类似的信号干扰,同时第一识别输出线和第二识别输出线还会接收到相类似的其他未知噪声的信号干扰。在纹路识别时间段,利用第二识别输出线接收到的与第一识别输出线基本相同的噪声信号,在检测电路中对第一识别输出线输出的电信号进行去噪声处理后,可以去除第一识别输出线输出电信号中的信号干扰,从而能够提高纹路识别信号的信噪比,保证纹路识别信号的检测精度。
附图说明
为了更清楚地说明本公开一些实施例的技术方案,本公开提供了下列附图以便在实施例描述时使用。应当意识到,下面描述中的附图仅仅涉及一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,所述其它的附图也在本发明的范围内。
图1为现有技术中光学纹路识别显示装置的结构示意图;
图2为现有技术中光学纹路识别显示装置的电路结构示意图;
图3为根据一个实施例提供的纹路识别显示装置的结构示意图;
图4为一种OLED像素电路的结构示意图;
图5为纹路识别显示装置中识别输出线的等效电路模型图;
图6为纹路识别显示装置中识别输出线输出信号的电压与时间对 应关系的仿真结果图;
图7为根据一个实施例提供的纹路识别显示装置中一个像素电路的截面示意图;
图8为根据一个实施例提供的纹路识别显示装置中与图4对应的信号时序图;
图9为根据一个实施例提供的纹路识别显示装置中检测子电路的结构示意图;
图10为根据一个实施例提供的纹路识别显示装置中检测子电路的结构示意图;
图11为根据一个实施例提供的纹路识别显示装置中检测子电路的结构示意图。
具体实施方式
为了能够更清楚地理解一些实施例的目的、技术方案和优点,下面结合附图和具体实施方式,对这些实施例提供的纹路识别显示装置及驱动方法的具体实施方式进行详细地说明。
根据一个实施例提供了一种纹路识别显示装置。如图3所示,该纹路识别显示装置包括纹路识别显示阵列基板和检测电路600。具体而言,该纹路识别显示装置包括:设置在衬底基板上的呈阵列排布的多个像素电路100,与各行像素电路100对应连接的多条控制信号线200,呈阵列排布的多个光敏感应单元300,与各列光敏感应单元300对应连接的多条第一识别输出线400,与各第一识别输出线400成对设置的多条第二识别输出线500,以及分别与各第一识别输出线400和各第二识别输出线500连接的检测电路600。如图所示,成对设置的第一识别输出线400和第二识别输出线500的延伸方向相同。各第二识别输出线500仅与检测电路600相连。检测电路600可以被配置用于在纹路识别时间段,根据第二识别输出线500输出的噪声信号,对第一识别输出线400输出的电信号进行去噪声处理。
另外需要指出的是,在上述纹路识别显示装置可以包括多个纹路识别单元。该纹路识别单元包括:光敏感应单元300,与所述光敏感应单元300对应连接的第一识别输出线400,与述第一识别输出线400成对设置的第二识别输出线500,以及分别与各所述第一识别输出线和各 所述第二识别输出线连接的检测子电路。成对设置的所述第一识别输出线400和所述第二识别输出线500的延伸方向相同。所述第二识别输出线500仅与所述检测子电路相连。所述检测子电路可以被被配置用于在纹路识别时间段,根据所述第二识别输出线500输出的噪声信号,对所述第一识别输出线400输出的电信号进行去噪声处理。
在具体实施时,在上述纹路识别显示装置中,并不限定像素电路100的类型,可以采用OLED像素电路实现发光,例如可以采用例如图4所示的像素电路,也可以采用液晶显示电路实现发光。这里所指的液晶显示电路包括开关晶体管和像素电极,以及与像素电极对应的液晶分子和公共电极,此时第一控制信号线具体为与开关晶体管的栅极相连的栅极信号线。
通过如图5所示的现有纹路识别显示装置中的识别输出线的等效电路模型可知,第一控制信号线作为等效方波信号源V1,通过在第一控制信号线与识别输出线的交叠处的等效寄生电容C1耦合到识别输出线上,从而对光敏二极管21(作为等效信号源V0)向识别输出线输出的纹路识别信号产生干扰。其中,R0为与识别输出线连接的光敏二极管21的等效电阻,R1为识别输出线的等效电阻,C0为识别输出线的等效对地电容,最右侧的与运算放大器U连接的电容和电阻为跨阻放大所需的电容和电阻。对该模型进行信号仿真后得到如图6所示的识别输出线输出信号的电压与时间对应关系的仿真结果。如图6所示,识别输出线输出信号经过运算放大器U的跨阻放大后,会造成将近8V的尖峰干扰,这对信号的后期放大处理非常不利。
在根据一个实施例提供的上述纹路识别显示装置中,增加了与各第一识别输出线400成对设置的多条第二识别输出线500,与像素电路100连接的控制信号线200在衬底基板上的正投影会分别与成对设置的第一识别输出线400和第二识别输出线500的正投影具有交叠区域。在交叠区域不可避免的会产生寄生电容,加载到控制信号线200的控制信号就会通过该寄生电容耦合到第一识别输出线400和第二识别输出线500上,对第一识别输出线400和第二识别输出线500产生相类似的信号干扰。同时第一识别输出线400和第二识别输出线500还会接收到相类似的其他未知噪声的信号干扰。在纹路识别时间段,利用第二识别输出线500接收到的与第一识别输出线400基本相同的噪声 信号,在检测电路中对第一识别输出线400输出的电信号进行去噪声处理后,可以去除第一识别输出线400输出电信号的信号干扰,从而能够提高纹路识别信号的信噪比,保证纹路识别信号的检测精度。
在一个实施例中,在具体实施时,为了不影响像素电路100的正常显示效果,即不影响像素电路100的开口率,如图3所示,一般可以将光敏感应单元300设置于与像素电路100之间间隙处对应的位置,即光敏感应单元300设置于非显示区域对应的位置。需要指出的是,图3中仅是举例性示意出了在各像素电路100的间隙处均设置光敏感应单元300的情况,在具体实施时并不限定光敏感应单元300的分布密度和像素电路100的分布密度的关系。
在一个实施例中,如图3所示,光敏感应单元300一般包括:用于感测指纹按压时带来光强变化的光敏二极管301,以及用于控制光敏二极管301将光强变化转换为不同电信号输出的控制晶体管302。其中,控制晶体管302的漏极可以与光敏二极管301的一电极端相连,源极可以与第一识别输出线400相连,栅极可以与扫描信号线700相连。在扫描信号线700加载扫描驱动信号时,控制晶体管302处于导通状态,第一识别输出线400与光敏二极管301电连接。由于指纹或掌纹谷脊间的差异,光源照射到手指上的会产生不同的反射,从而使光敏二极管301接收到的光强不一样,产生不同的光电流差异。通过扫描信号线700开启控制晶体管302,第一识别输出线400依次读取出各个光敏二极管301的电流差异并将其导出至检测电路600,即可实现对纹路谷脊的检测。由于光敏二极管301需要工作在反偏状态,光敏二极管301的另一电极端一般与固定电位Vd连接。
在具体实施时,为了使第二识别输出线500接收到的噪声信号尽可能与第一识别输出线400接收到的噪声信号相同,在一个实施例中,可以使成对设置的第一识别输出线400和第二识别输出线500尽量靠近。此时,如图3所示,可以将成对设置的第一识别输出线400和第二识别输出线500设置于同一像素电路100间隙处。当然,本领域普通技术人员能够理解,本公开并不局限于将成对设置的第一识别输出线400和第二识别输出线500设置于同一像素电路100间隙处。在具体实施时,还可以采取其它方式,例如:当光敏感应单元300的分布密度小于像素电路100的分布密度时,即在间隔的像素电路100间隙 处设置光敏感应单元300时,可以在相邻的两列像素电路100间隙处设置成对的第一识别输出线400和第二识别输出线500。
在根据一个实施例提供的纹路识别显示装置中,还可以将位于同一像素电路间隙处的成对设置的第一识别输出线400和第二识别输出线500相互平行设置。
在一个实施例中,在具体实施时,为了使第二识别输出线500接收到的噪声信号尽可能与第一识别输出线400接收到的噪声信号相同,可以如图7所示,将第一识别输出线400和第二识别输出线500同层且平行设置。在一个实施例中,第一识别输出线400和第二识别输出线500可以具有相同的线宽。
在一个实施例中,在具体实施时,为了使第二识别输出线500接收到的噪声信号尽可能与第一识别输出线400接收到的噪声信号相同,可以如图3所示设置第二识别输出线500,即第二识别输出线500的一端可以与检测电路600相连,另一端悬空设置。
下面均是以像素电路100具体采用例如图4所示的OLED像素电路为例说明集成驱动电路的具体结构。与图4所示的OLED像素电路对应的各端口的信号时序图如图8所示,其中复位信号端Reset、扫描信号端Gate和控制端EM加载的信号是通过集成驱动电路输出的时序信号,参考信号端Vint的参考电位,高电平信号端ELVDD和低电平信号端ELVSS的电位需要外接FPC提供,数据信号端Vdata的数据信号是由源极IC芯片提供,指纹解调载波信号是由调制器提供给检测电路中的解调电路的载波信号。
从图8所示的信号时序图可以看出,显示装置的时序可以分为两个阶段,显示时间段和纹路识别时间段。在显示时间段,OLED像素电路正常发光进行显示。在进入纹路识别时间段后,控制端EM输入作为第一控制信号的方波信号,该方波信号即可使OLED像素电路发出调制光。解调电路提供的指纹解调载波信号对于OLED像素电路并无作用,只是在纹路识别阶段时,可以被检测电路利用进行信号解调。
并且,在根据一个实施例提供的纹路识别显示装置中,指纹解调载波信号可以与控制信号线200提供至控制端EM的控制信号具有相同的信号频率,以便抵抗干扰,提高检测精度。
在一个实施例中,,在具体实施时,指纹解调载波信号可以与控 制信号之间具有特定的固定相位差。该固定相位差可以是0-360度之内的任何数值。在一个实施例中,,该固定相位差为0或180度,图8示出了固定相位差为0的情况。
图8所示的信号时序图是以显示时间段和纹路识别时间段分时驱动为例进行说明,但是在实际操作时,操作时序不限于分时驱动的方式,例如可以不分时驱动,或者在显示时间段和纹路识别时间段控制端EM均采用方波信号,或者只在开启纹路识别功能时,将控制端EM改成方波信号,其他情况下均正常发光显示等。
在具体实施时,在根据一个实施例提供的纹路识别显示装置中,由于分别与各第一识别输出线400和各第二识别输出线500连接的检测电路600,需要在纹路识别时间段对成对设置的各第一识别输出线400和各第二识别输出线500输出的信号进行差分处理,以便得到去除噪声后的纹路识别信号,因此,检测电路600可以具体包括:多个检测子电路,每一个检测子电路与每一对第一识别输出线400和第二识别输出线500一一对应且相连。
在一个实施例中,每一个检测子电路可以包括:差分电路,用于对所述所述第一识别输出线和第二识别输出线输出的电信号进行差分后得到差分信号,从而对所述第一识别输出线输出的电信号进行去噪声处理。
在具体实施时,所述检测子电路的电路结构可以有多种实施方式,例如图9-11分别示出了三种具体的电路结构,但是本公开绝不限于所述三种具体的电路结构。本领域普通技术人员能够理解,所述检测子电路还可以采用其它的电路结构,本公开对此不作任何限制。
图9示出了根据一个实施例提供的纹路识别显示装置中检测子电路的结构示意图。如图9所示,检测子电路可以包括:
第一电压转换电路901,用于将接收到的第一识别输出线400输出的电流信号转换为第一电压信号;
第二电压转换电路902,用于将接收到的第二识别输出线500输出的电流信号转换为第二电压信号;
与第一电压转换电路901的输出端和第二电压转换电路902的输出端分别连接的差分电路903,用于对第一电压信号和第二电压信号进行差分后得到差分信号;
与差分电路903的输出端连接的第一滤波放大电路904,用于对差分信号进行滤波放大;
与第一滤波放大电路904的输出端连接的解调电路905,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的差分信号进行调制解调;
与解调电路905的输出端连接的第二滤波放大电路906,用于对经过调制解调后的差分信号进行滤波放大;和
与第二滤波放大电路906的输出端连接的模数转换电路907,用于对经过滤波放大后的调制解调后的差分信号进行模拟信号到数字信号的转换。
将差分电路903设置于第一电压转换电路901和第二电压转换电路902之后,可以使从第一识别输出线400和第二识别输出线500输出的电流信号线进行跨阻放大后再进行差分处理,这样,在第一级使用超低偏置电流的放大器进行放大可以保证信号的完整性,之后将混有较强噪声的信号进行去噪,可以在保证信号完整的情况下有效去除噪声。
图10示出了根据一个实施例提供的纹路识别显示装置中检测子电路的结构示意图。如图10所示,检测子电路可以包括:
第一电压转换电路1001,用于将接收到的第一识别输出线400输出的电流信号转换为第一电压信号;
第二电压转换电路1002,用于将接收到的第二识别输出线500输出的电流信号转换为第二电压信号;
与第一电压转换电路1001的输出端连接的第一滤波放大电路1003,用于对第一电压信号进行滤波放大;
与第二电压转换电路1002的输出端连接的第二滤波放大电路1004,用于对第二电压信号进行滤波放大;
与第一滤波放大电路1003的输出端和第二滤波放大电路1004的输出端分别连接的差分电路1005,用于对经过滤波放大的第一电压信号和经过滤波放大的第二电压信号进行差分后得到差分信号;
与差分电路1005的输出端连接的解调电路1006,用于根据接收到的调制器发送的指纹解调载波信号,对差分信号进行调制解调;
与解调电路1006的输出端连接的第三滤波放大电路1007,用于对 经过调制解调后的差分信号进行滤波放大;和
与第三滤波放大电路1007的输出端连接的模数转换电路1008,用于对经过滤波放大后的调制解调后的差分信号进行模拟信号到数字信号的转换。
将差分电路1005设置于第一滤波放大电路1003和第二滤波放大电路1004之后,可以使从第一识别输出线400和第二识别输出线500输出的电流信号线进行跨阻放大且经过滤波处理后再进行差分处理,这样,在第一级使用超低偏置电流的放大器进行放大可以保证信号的完整性,之后将混有较强噪声的信号进行去噪,可以在保证信号完整的情况下有效去除噪声。
图11示出了根据一个实施例提供的纹路识别显示装置中检测子电路的结构示意图。如图11所示,检测子电路可以包括:
第一电压转换电路1101,用于将接收到的第一识别输出线400输出的电流信号转换为第一电压信号;
第二电压转换电路1102,用于将接收到的第二识别输出线500输出的电流信号转换为第二电压信号;
与第一电压转换电路1101的输出端连接的第一滤波放大电路1103,用于对第一电压信号进行滤波放大;
与第二电压转换电路1102的输出端连接的第二滤波放大电路1104,用于对第二电压信号进行滤波放大;
与第一滤波放大电路1103的输出端连接的第一解调电路1105,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的第一电压信号进行调制解调;
与第二滤波放大电路1104的输出端连接的第二解调电路1106,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的第二电压信号进行调制解调;
与第一解调电路1105的输出端和第二解调电路1106的输出端分别连接的差分电路1107,用于对经过调制解调的第一电压信号和经过调制解调的第二电压信号进行差分后得到差分信号;
与差分电路1107的输出端连接的第三滤波放大电路1108,用于对差分信号进行滤波放大;和
与第三滤波放大电路1108的输出端连接的模数转换电路1109,用 于对经过滤波放大后的差分信号进行模拟信号到数字信号的转换。
将差分电路1107设置于第一解调电路1105和第二解调电路1106之后,可以使从第一识别输出线400和第二识别输出线500输出的电流信号线进行跨阻放大且经过滤波处理和解调处理后再进行差分处理,可以有效去除噪声。
本公开所提供的上述纹路识别显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开对此不做任何限制。根据本公开一些实施例提供的纹路识别显示装置不仅可以用于指纹检测,还可以用于其他包括纹路特征结构的识别。
根据本公开的一些实施例,在纹路识别显示装置中增加了与各第一识别输出线成对设置的多条第二识别输出线,与像素电路连接的控制信号线在衬底基板上的正投影会分别与成对设置的第一识别输出线和第二识别输出线的正投影具有交叠区域。在交叠区域不可避免地会产生寄生电容,加载到控制信号线的控制信号就会通过该寄生电容耦合到第一识别输出线和第二识别输出线上,对第一识别输出线和第二识别输出线产生相类似的信号干扰。同时第一识别输出线和第二识别输出线还会接收到相类似的其他未知噪声的信号干扰。在纹路识别时间段,利用第二识别输出线接收到的与第一识别输出线基本相同的噪声信号,在检测电路中对第一识别输出线输出的电信号进行去噪声处理后,可以去除第一识别输出线输出电信号的信号干扰,从而能够提高纹路识别信号的信噪比,保证纹路识别信号的检测精度。
可以理解的是,以上所述仅为本发明的示例性实施方式,但本发明的保护范围并不局限于此。应当指出的是,在不脱离本发明的精神和原理的前提下,本领域的普通技术人员可轻易想到各种变化或替换,这些变化或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所附权利要求的保护范围为准。
本申请使用了诸如“第一”、“第二”、“第三”等之类的措词。在无附加上下文时,使用这样的措词并不旨在暗示排序,实际上它们仅仅用于标识目的。例如短语“第一识别输出线”和“第二识别输出线”未必意味着第一识别输出线在位置上位于第二识别输出线之前,也不意味着在时间上第一识别输出线在第二识别输出线之前被制成 或执行操作。实际上,这些短语仅仅用来标识不同的识别输出线。
在权利要求书中,任何置于括号中的附图标记都不应当解释为限制权利要求。术语“包括”并不排除除了权利要求中所列出的元件或步骤之外的元件或步骤的存在。元件前的词语“一”或“一个”并不排除存在多个这样的元件。在列举了若干装置的设备或系统权利要求中,这些装置中的一个或多个能够在同一个硬件项目中体现。仅仅某些措施记载在相互不同的从属权利要求中这个事实并不表明这些措施的组合不能被有利地使用。

Claims (15)

  1. 一种纹路识别显示阵列基板,包括:设置在衬底基板上的呈阵列排布的多个像素电路,与各行所述像素电路对应连接的多条控制信号线,呈阵列排布的的多个光敏感应单元,与各列所述光敏感应单元对应连接的多条第一识别输出线,与各所述第一识别输出线成对设置的多条第二识别输出线,以及分别与各所述第一识别输出线和各所述第二识别输出线连接的检测电路;其中,
    成对设置的所述第一识别输出线和所述第二识别输出线的延伸方向相同;
    各所述第二识别输出线仅与所述检测电路相连;
    所述检测电路被配置用于在纹路识别时间段,根据所述第二识别输出线输出的噪声信号,对所述第一识别输出线输出的电信号进行去噪声处理。
  2. 如权利要求1所述的纹路识别显示阵列基板,其中,成对设置的所述第一识别输出线和第二识别输出线位于同一所述像素电路间隙处。
  3. 如权利要求2所述的纹路识别显示阵列基板,其中,成对设置的所述第一识别输出线和第二识别输出线相互平行设置。
  4. 如权利要求1所述的纹路识别显示阵列基板,其中,所述第二识别输出线与所述第一识别输出线同层且平行设置,且所述第二识别输出线与所述第一识别输出线具有相同的线宽。
  5. 如权利要求1所述的纹路识别显示阵列基板,其中,所述第二识别输出线仅一端与所述检测电路相连,另一端悬空设置。
  6. 如权利要求1所述的纹路识别显示阵列基板,其中,所述检测电路包括:多个检测子电路,每一个检测子电路与每一对所述第一识别输出线和第二识别输出线一一对应且相连。
  7. 如权利要求6所述的纹路识别显示阵列基板,其中,每一个检测子电路包括:
    差分电路,用于对所述所述第一识别输出线和第二识别输出线输出的电信号进行差分后得到差分信号,从而对所述第一识别输出线输出的电信号进行去噪声处理。
  8. 如权利要求7所述的纹路识别显示阵列基板,其中,每一个检测子电路还包括:
    第一电压转换电路,用于将接收到的所述第一识别输出线输出的电流信号转换为第一电压信号;
    第二电压转换电路,用于将接收到的所述第二识别输出线输出的电流信号转换为第二电压信号;
    与所述差分电路的输出端连接的第一滤波放大电路,用于对所述差分信号进行滤波放大;
    与所述第一滤波放大电路的输出端连接的解调电路,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的差分信号进行调制解调;
    与所述解调电路的输出端连接的第二滤波放大电路,用于对经过调制解调后的差分信号进行滤波放大;和
    与所述第二滤波放大电路的输出端连接的模数转换电路,用于对经过滤波放大后的调制解调后的差分信号进行模拟信号到数字信号的转换,
    其中所述差分电路连接到所述第一电压转换电路的输出端和所述第二电压转换电路的输出端连接,被配置用于对所述第一电压信号和所述第二电压信号进行差分后得到所述差分信号。
  9. 如权利要求7所述的纹路识别显示阵列基板,其中,每一个检测子电路还包括:
    第一电压转换电路,用于将接收到的所述第一识别输出线输出的电流信号转换为第一电压信号;
    第二电压转换电路,用于将接收到的所述第二识别输出线输出的电流信号转换为第二电压信号;
    与所述第一电压转换电路的输出端连接的第一滤波放大电路,用于对所述第一电压信号进行滤波放大;
    与所述第二电压转换电路的输出端连接的第二滤波放大电路,用于对所述第二电压信号进行滤波放大;
    与所述差分电路的输出端连接的解调电路,用于根据接收到的调制器发送的指纹解调载波信号,对所述差分信号进行调制解调;
    与所述解调电路的输出端连接的第三滤波放大电路,用于对经过 调制解调后的差分信号进行滤波放大;和
    与所述第三滤波放大电路的输出端连接的模数转换电路,用于对经过滤波放大后的调制解调后的差分信号进行模拟信号到数字信号的转换,
    其中所述差分电路连接到所述第一滤波放大电路的输出端和所述第二滤波放大电路的输出端,被配置用于对经过滤波放大的所述第一电压信号和经过滤波放大的所述第二电压信号进行差分后得到所述差分信号。
  10. 如权利要求7所述的纹路识别显示阵列基板,其中,每一个检测子电路还包括:
    第一电压转换电路,用于将接收到的所述第一识别输出线输出的电流信号转换为第一电压信号;
    第二电压转换电路,用于将接收到的所述第二识别输出线输出的电流信号转换为第二电压信号;
    与所述第一电压转换电路的输出端连接的第一滤波放大电路,用于对所述第一电压信号进行滤波放大;
    与所述第二电压转换电路的输出端连接的第二滤波放大电路,用于对所述第二电压信号进行滤波放大;
    与所述第一滤波放大电路的输出端连接的第一解调电路,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的所述第一电压信号进行调制解调;
    与所述第二滤波放大电路的输出端连接的第二解调电路,用于根据接收到的调制器发送的指纹解调载波信号,对经过滤波放大的所述第二电压信号进行调制解调;
    与所述差分电路的输出端连接的第三滤波放大电路,用于对所述差分信号进行滤波放大;和
    与所述第三滤波放大电路的输出端连接的模数转换电路,用于对经过滤波放大后的差分信号进行模拟信号到数字信号的转换,
    其中所述差分电路连接到所述第一解调电路的输出端和所述第二解调电路的输出端,被配置用于对经过调制解调的所述第一电压信号和经过调制解调的所述第二电压信号进行差分后得到所述差分信号。
  11. 如权利要求8-10中任一项所述的纹路识别显示阵列基板,其 中,所述指纹解调载波信号与所述控制信号具有相同的信号频率。
  12. 如权利要求11所述的纹路识别显示阵列基板,其中,所述指纹解调载波信号与所述控制信号之间具有特定的固定相位差。
  13. 如权利要求12所述的纹路识别显示阵列基板,其中,所述固定相位差为0或180度。
  14. 一种纹路识别显示装置,包括如权利要求1-13中任何一项所述的纹路识别显示阵列基板。
  15. 一种纹路识别单元,包括:光敏感应单元,与所述光敏感应单元对应连接的第一识别输出线,与述第一识别输出线成对设置的第二识别输出线,以及分别与各所述第一识别输出线和各所述第二识别输出线连接的检测子电路;其中,
    成对设置的所述第一识别输出线和所述第二识别输出线的延伸方向相同;
    所述第二识别输出线仅与所述检测子电路相连;
    所述检测子电路,被配置用于在纹路识别时间段,根据所述第二识别输出线输出的噪声信号,对所述第一识别输出线输出的电信号进行去噪声处理。
PCT/CN2017/087561 2016-08-15 2017-06-08 纹路识别显示装置及其阵列基板和纹路识别单元 WO2018032864A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/573,228 US11036977B2 (en) 2016-08-15 2017-06-08 Identity recognition display device, and array substrate and identity recognition circuit thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610671900.8 2016-08-15
CN201610671900.8A CN106157891B (zh) 2016-08-15 2016-08-15 一种纹路识别显示装置

Publications (1)

Publication Number Publication Date
WO2018032864A1 true WO2018032864A1 (zh) 2018-02-22

Family

ID=57330104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087561 WO2018032864A1 (zh) 2016-08-15 2017-06-08 纹路识别显示装置及其阵列基板和纹路识别单元

Country Status (3)

Country Link
US (1) US11036977B2 (zh)
CN (1) CN106157891B (zh)
WO (1) WO2018032864A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106157891B (zh) 2016-08-15 2018-10-12 京东方科技集团股份有限公司 一种纹路识别显示装置
CN106980842B (zh) 2017-04-01 2020-02-18 京东方科技集团股份有限公司 指纹识别模块和显示基板
CN107425038B (zh) 2017-06-09 2020-01-21 武汉天马微电子有限公司 一种有机发光显示面板及其制造方法、以及电子设备
CN107195264B (zh) * 2017-07-18 2019-07-30 京东方科技集团股份有限公司 光探测器及其驱动方法、显示面板及显示装置
KR101913650B1 (ko) * 2017-11-06 2018-10-31 크루셜텍 (주) 디스플레이 영역에서의 생체 이미지 판독 장치
CN108256507B (zh) * 2018-02-23 2021-01-26 京东方科技集团股份有限公司 一种指纹识别器件及触控面板
CN108491801B (zh) 2018-03-26 2021-06-01 武汉天马微电子有限公司 显示面板和显示装置
CN108509899B (zh) * 2018-03-29 2021-03-09 上海天马微电子有限公司 一种显示面板和显示装置
CN108511496B (zh) * 2018-03-30 2020-10-09 上海天马有机发光显示技术有限公司 一种有机发光显示面板及有机发光显示装置
CN108735154B (zh) 2018-05-31 2020-03-10 京东方科技集团股份有限公司 光信号降噪模组、光信号降噪方法和显示面板
US10679034B2 (en) * 2018-06-08 2020-06-09 Synaptics Incorporated Short latency fingerprint sensing
CN109147593A (zh) * 2018-08-31 2019-01-04 Oppo广东移动通信有限公司 显示组件和电子设备
CN111626278B (zh) * 2019-02-28 2024-04-16 京东方科技集团股份有限公司 纹路识别装置以及纹路识别装置的操作方法
CN110010046B (zh) * 2019-04-22 2022-07-19 京东方科技集团股份有限公司 显示面板、其检测方法及显示装置
CN110286512B (zh) * 2019-06-24 2022-03-22 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110278299B (zh) * 2019-06-24 2021-10-19 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110286717B (zh) 2019-06-24 2021-07-02 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110286716B (zh) * 2019-06-24 2021-03-19 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110290242B (zh) * 2019-06-24 2021-04-30 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110290243B (zh) 2019-06-24 2022-07-08 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110266847B (zh) * 2019-06-24 2021-07-13 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110263727B (zh) * 2019-06-24 2022-03-22 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110276188B (zh) * 2019-06-26 2021-05-25 Oppo广东移动通信有限公司 控制方法、电子设备及非易失性计算机可读存储介质
CN110277057B (zh) * 2019-06-28 2021-01-26 京东方科技集团股份有限公司 一种显示面板、信号处理方法及显示装置
US11581374B2 (en) 2019-08-06 2023-02-14 Boe Technology Group Co. Ltd. Display substrate and method of manufacturing the same, display device
GB2595671B (en) * 2020-06-02 2022-10-19 X Fab Global Services Gmbh Optical sensor comprising a photodiode array
TWI795803B (zh) * 2021-06-11 2023-03-11 瑞鼎科技股份有限公司 影像感測器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060256093A1 (en) * 2005-05-12 2006-11-16 Takehide Furukawa Display device with a touch screen
CN101178524A (zh) * 2006-11-09 2008-05-14 三星电子株式会社 具有集成触摸面板的lcd
CN102239461A (zh) * 2008-09-26 2011-11-09 苹果公司 用于触摸面板的差分感测
CN105047689A (zh) * 2015-08-12 2015-11-11 京东方科技集团股份有限公司 有机发光二极管显示基板及其光反射表面结构识别方法
CN105373772A (zh) * 2015-10-09 2016-03-02 京东方科技集团股份有限公司 光学指纹/掌纹识别器件、触控显示面板和显示装置
CN106157891A (zh) * 2016-08-15 2016-11-23 京东方科技集团股份有限公司 一种纹路识别显示装置
CN205900068U (zh) * 2016-08-15 2017-01-18 京东方科技集团股份有限公司 一种纹路识别显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079102A (zh) * 2007-06-28 2007-11-28 中南大学 基于统计方法的指纹识别方法
CN100590644C (zh) * 2008-06-27 2010-02-17 哈尔滨工业大学 点线结合的指纹识别方法
CN101350066A (zh) * 2008-09-12 2009-01-21 哈尔滨工业大学 基于四特征点拓扑结构的指纹识别方法
US9367173B2 (en) 2012-01-17 2016-06-14 Apple Inc. Finger sensor having pixel sensing circuitry for coupling electrodes and pixel sensing traces and related methods
US9552525B2 (en) * 2013-09-08 2017-01-24 Apple Inc. Noise reduction in biometric images
JP2015185823A (ja) * 2014-03-26 2015-10-22 ソニー株式会社 固体撮像素子、及び、撮像装置
CN104182745B (zh) * 2014-08-15 2017-09-22 深圳市汇顶科技股份有限公司 指纹感应信号的处理方法、系统及指纹识别终端
CN104537371A (zh) * 2014-12-23 2015-04-22 博康智能网络科技股份有限公司 指纹纹理图像的去噪增强方法及其系统
CN105447438B (zh) * 2015-02-13 2017-05-31 比亚迪股份有限公司 指纹检测电路及电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060256093A1 (en) * 2005-05-12 2006-11-16 Takehide Furukawa Display device with a touch screen
CN101178524A (zh) * 2006-11-09 2008-05-14 三星电子株式会社 具有集成触摸面板的lcd
CN102239461A (zh) * 2008-09-26 2011-11-09 苹果公司 用于触摸面板的差分感测
CN105047689A (zh) * 2015-08-12 2015-11-11 京东方科技集团股份有限公司 有机发光二极管显示基板及其光反射表面结构识别方法
CN105373772A (zh) * 2015-10-09 2016-03-02 京东方科技集团股份有限公司 光学指纹/掌纹识别器件、触控显示面板和显示装置
CN106157891A (zh) * 2016-08-15 2016-11-23 京东方科技集团股份有限公司 一种纹路识别显示装置
CN205900068U (zh) * 2016-08-15 2017-01-18 京东方科技集团股份有限公司 一种纹路识别显示装置

Also Published As

Publication number Publication date
US20180357464A1 (en) 2018-12-13
CN106157891A (zh) 2016-11-23
CN106157891B (zh) 2018-10-12
US11036977B2 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2018032864A1 (zh) 纹路识别显示装置及其阵列基板和纹路识别单元
JP6707624B2 (ja) テクスチャ認識表示装置および駆動方法
WO2017206598A1 (zh) 指纹识别组件、显示装置和指纹识别方法
US10503955B2 (en) Device with improved circuit positioning
WO2017036079A1 (zh) 指纹识别元件、指纹识别方法、显示器件及显示装置
US11328527B2 (en) Ultrasonic fingerprint sensor, display substrate and driving method thereof, and display device
CN110176203B (zh) 阵列基板及显示装置
WO2018176805A1 (zh) 一种显示面板、显示装置及其驱动方法
US10726230B2 (en) Display panel, driving method therefor, and display device
US9704011B2 (en) Array substrate, driving method thereof, and display apparatus
US9773149B2 (en) Fingerprint identification module, drive control circuit, display substrate and display device
EP3346417B1 (en) Surface structure identification unit, circuit and identification method, and electronic device
US20090252385A1 (en) Apparatus and Method for Reducing Noise In Fingerprint Sensing Circuits
KR101072533B1 (ko) 광 검출기 어레이
WO2017036094A1 (zh) 光电传感器及其驱动方法、阵列基板和显示装置
WO2020020310A1 (zh) 光检测电路及电子设备、驱动方法、光学识别方法和装置
US20170286740A1 (en) Fingerprint sensor and display apparatus
US10430635B2 (en) Fingerprint identification sensor, fingerprint identification method and electronic device
US20190237591A1 (en) Light detecting device, light detecting method and display device
CN109685020B (zh) 整合型触控显示装置及其驱动方法
CN205900068U (zh) 一种纹路识别显示装置
CN106873832B (zh) 一种光学感应式触控屏、触控显示装置及触控检测方法
CN106959384B (zh) 一种光电检测电路、显示面板及显示装置
KR20160056760A (ko) 이미지 스캔이 가능한 플렉서블 디스플레이 장치 및 이의 구동 방법
CN205900069U (zh) 一种纹路识别显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17840840

Country of ref document: EP

Kind code of ref document: A1