WO2018032719A1 - 具有非接触气压搅拌装置的全自动生化分析仪及分析方法 - Google Patents

具有非接触气压搅拌装置的全自动生化分析仪及分析方法 Download PDF

Info

Publication number
WO2018032719A1
WO2018032719A1 PCT/CN2017/070575 CN2017070575W WO2018032719A1 WO 2018032719 A1 WO2018032719 A1 WO 2018032719A1 CN 2017070575 W CN2017070575 W CN 2017070575W WO 2018032719 A1 WO2018032719 A1 WO 2018032719A1
Authority
WO
WIPO (PCT)
Prior art keywords
cup
needle
air pressure
pneumatic
liquid
Prior art date
Application number
PCT/CN2017/070575
Other languages
English (en)
French (fr)
Inventor
徐新
周强
张陆军
缪建
万红春
潘有铭
魏炜
郭敏
Original Assignee
江苏英诺华医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏英诺华医疗技术有限公司 filed Critical 江苏英诺华医疗技术有限公司
Publication of WO2018032719A1 publication Critical patent/WO2018032719A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00534Mixing by a special element, e.g. stirrer
    • G01N2035/00544Mixing by a special element, e.g. stirrer using fluid flow

Definitions

  • the invention belongs to the technical field of medical inspection and detection, in particular to an automatic biochemical analyzer and an analysis method with a non-contact air pressure stirring device.
  • the automatic biochemical analyzer for medical testing often needs to stir a small amount of the reaction solution to fully mix and react to ensure the accuracy of the detection result.
  • the stirring device used in the existing automatic biochemical analyzer has magnetic stirring, deep aerating stirring and ultrasonic stirring.
  • the first two are contact agitation. Since the sample of each reaction solution is different from the reagent used, the agitator must be cleaned after stirring. Moreover, due to the different types of reagents contacted by the agitator, it is often difficult to achieve good results by simple water cleaning. Therefore, the reaction liquid remaining on the stirring head often affects the composition of the reaction liquid or the pH value when the next reaction liquid is stirred. The detection accuracy of the next sample.
  • Ultrasonic waves are non-contact agitation, but compared with the direct contact agitation method, the ultrasonic waves require a large amount of power to stir the same amount of liquid at the same time, and cause some damage to the instrument components such as the test cup.
  • the technical solution for achieving the object of the present invention is: an automatic biochemical analyzer with a non-contact pneumatic stirring device, the analyzer comprising a reagent plate, a sample tray, a reaction tray, a detecting device, a detecting cup cleaning device and a non-contact pneumatic stirring device ;
  • the reagent tray is used for placing a reagent bottle; the sample tray is for placing a sample tube or a sample cup; the reaction tray is for placing a test cup; and the detecting device is for detecting a light signal of the liquid in the test cup;
  • the test cup cleaning device is used for cleaning the test cup;
  • the non-contact air pressure stirring device is composed of an air pump, a pressure adjusting device, a connecting pipe and a pneumatic needle;
  • the air pump is used for bubbling air and ejecting through a pneumatic needle
  • the pneumatic needle is disposed above the detection cup for non-contact application of an impact air pressure to the surface of the liquid in the detection cup;
  • the pressure regulating device is used for adjusting the size, speed and time of the airflow emitted by the air pressure needle;
  • the connecting tube is used for connection of an air pump, a pneumatic needle, and a pressure regulating device.
  • An analytical method for an automatic biochemical analyzer with a non-contact pneumatic stirring device comprising the following steps:
  • Step 1 the analyzer gradually adds reagents and samples to the test cup on the reaction tray;
  • Step 2 moving the detection cup to the bottom of the air pressure needle, the air pressure needle sprays the impinging airflow into the detection cup, and adjusts the airflow size, speed and time in the air pressure needle through the pressure adjusting device; the impact airflow forms an impact on one or more positions of the liquid surface
  • the air pressure causes a pressure difference between the liquid level of the test cup to drive the liquid to flow, and the liquid in the test cup is stirred;
  • Step 3 performing light signal detection on the liquid in the detection cup by the detecting device
  • Step 4 After the test is completed, the test cup is cleaned by the test cup cleaning device, and the next cycle is detected after the cleaning.
  • the automatic biochemical analyzer and the analysis method with the non-contact air pressure stirring device of the present invention can quickly and directly stir the trace liquid in the detection cup through the non-contact air flow, thereby not having to consume excessive power and time, and avoiding The problem of cross-contamination caused by the direct contact of the stirring device with the reaction liquid;
  • the present invention is suitable for stirring and mixing of a small amount of liquid, and does not require cleaning of the agitator.
  • Fig. 1(a) is a schematic view showing the flow of liquid in the detecting cup when the pneumatic needle generates an impact air pressure to the left side of the liquid surface
  • Fig. 1(b) is a schematic diagram of liquid reflux after the pneumatic needle stops pressing
  • Fig. 1(c) is a detecting cup after stirring. Schematic diagram of the liquid level.
  • Fig. 2(a) and Fig. 2(b) are schematic diagrams showing the liquid flow in the sample tube when the two pneumatic needles at the relative positions above the liquid surface are alternately opened
  • Fig. 2(c) is a schematic view showing the liquid surface in the detection cup after the stirring.
  • Fig. 3(a) is a schematic view showing the flow of liquid in the test cup after the pneumatic needle generates an impact gas pressure in the middle of the liquid surface
  • Fig. 3(b) is a schematic diagram of the liquid reflux after the pneumatic needle stops pressing
  • Fig. 3(c) is the detection cup after stirring. Liquid level diagram.
  • Fig. 4(a) is a schematic view showing the flow of liquid in the cup after the impact of the elbow pressure needle at a certain angle to the middle of the liquid surface
  • Fig. 4(b) is a schematic diagram of the liquid return after the pressure needle stops pressing
  • Fig. 4(c) is After stirring, the schematic diagram of the liquid surface in the cup is detected
  • Fig. 4(d) is a plan view of Fig. 4(a).
  • FIG. 5 is a schematic structural view of an analyzer in Embodiment 5 of the present invention.
  • Figure 6 is a schematic view showing the structure of an analyzer in Embodiment 7 of the present invention.
  • the invention relates to an automatic biochemical analyzer with a non-contact air pressure stirring device, which comprises a reagent tray, a sample tray, a reaction tray, a detecting device, a detecting cup cleaning device and a non-contact air pressure stirring device;
  • the reagent tray is used for placing a reagent bottle; the sample tray is for placing a sample tube or a sample cup; the reaction tray is for placing a test cup; and the detecting device is for detecting a light signal of the liquid in the test cup;
  • the test cup cleaning device is used for cleaning the test cup;
  • the non-contact air pressure stirring device is composed of an air pump, a pressure adjusting device, a connecting pipe and a pneumatic needle;
  • the air pump is used for bubbling air and ejecting through a pneumatic needle to generate an impinging pressure to form an uneven pressure on the surface of the agitated liquid;
  • the pneumatic needle is disposed above the detection cup for non-contact application of an impact air pressure to the surface of the liquid in the detection cup;
  • the pressure regulating device is used for adjusting the size, speed and time of the airflow emitted by the air pressure needle;
  • the connecting tube is used for connection of an air pump, a pneumatic needle, and a pressure regulating device.
  • the pneumatic needle is used for non-contact local application of impact air pressure to the surface of the liquid in the detection cup by less than 50%, which drives the liquid in the cup to flow due to uneven pressure, and mixes the liquid in the detection cup.
  • the pneumatic needles are more than one, and are all disposed above the same detection cup; when the rotation of the reaction tray is stopped, the respective pneumatic needles flow differently to the local injection air pressure of one detection cup to realize the liquid in the detection cup due to different parts.
  • the surface is subjected to different air pressures to form a liquid flow in the test cup. When the gas pressure point is changed and stopped, the liquid flows in another state, so that the liquid in the test cup is mixed.
  • the pneumatic needles are one or more, and each of the pneumatic needles is disposed above the different detection cup positions of the instrument reaction disk.
  • each of the gas pressure needles simultaneously injects air pressure to the liquid surface of the plurality of detection cups at the same time, and simultaneously agitates the liquids in the plurality of detection cups.
  • the fully automatic biochemical analyzer further comprises a cleaning device for cleaning the inner and outer surfaces of the pneumatic needle.
  • the angle between the outlet direction of the pneumatic needle and the liquid level is greater than 30 degrees.
  • the pressure regulating device is an adjustable valve or an adjustable pressure tank for controlling the continuous or intermittent application of air pressure by the pneumatic needle.
  • the non-contact air pressure stirring device further includes a heating and temperature control device, and the heating and warming
  • the control device comprises a heater and a thermostat controller, and the heater and the thermostat controller are arranged around the outer periphery of the pneumatic needle for respectively heating and maintaining the constant temperature of the gas in the pneumatic needle.
  • the temperature of the gas ejected by the pneumatic needle is 20-50 °C.
  • the automatic biochemical analyzer further comprises a pneumatic needle moving device, wherein the pneumatic needle moving device is used for driving the pneumatic needle to perform angle adjustment or horizontal movement during operation, and fully stirring the liquid by applying different pressure to the liquid surface.
  • the invention also provides an analysis method of an automatic biochemical analyzer with a non-contact air pressure stirring device, comprising the following steps:
  • Step 1 The instrument automatically adds reagents and samples to each test cup on the reaction tray according to the detection needs;
  • Step 2 moving the detection cup to the bottom of the air pressure needle, the air pressure needle sprays the impinging airflow into the detection cup, and adjusts the airflow size, speed and time in the air pressure needle through the pressure adjusting device; the impact airflow forms an impact on one or more positions of the liquid surface
  • the air pressure causes a pressure difference between the liquid level of the test cup to drive the liquid to flow, and the liquid in the test cup is stirred;
  • Step 3 performing light signal detection on the liquid in the detection cup by the detecting device
  • Step 4 After the test is completed, the test cup is cleaned by the test cup cleaning device, and the next cycle is detected after the cleaning.
  • step 2 the pneumatic needles are arranged in two groups at different positions of the same detection cup position, and when the stirring is performed, the two needle wheels inject gas, that is, when one of the needles is jetted, the other needle is stopped, so that the needle is sprayed.
  • the air pressure cross-action detects different surfaces of the liquid in the cup, so that high-pressure-low-pressure conversion occurs in different local rotations of the liquid in the test cup, driving the liquid in the detection cup to flow more quickly and completely.
  • the pneumatic needle is angularly adjusted or horizontally moved during the jet agitation, so that the high pressure of different local sites is generated in the detection cup, and a multi-state liquid flow is formed in one detection process.
  • the utility model relates to an automatic biochemical analyzer with a non-contact air pressure stirring device.
  • the main structure of the instrument comprises a reagent tray, a sample tray, a reaction tray, a detecting device, a detecting cup cleaning device and a non-contact air pressure stirring device.
  • the reagent tray is used for placing a reagent bottle;
  • the sample tray is for placing a sample tube or a sample cup;
  • the reaction tray is for placing a test cup;
  • the detecting device is for detecting a light signal of the liquid in the test cup; Description a test cup cleaning device for cleaning the test cup;
  • the non-contact air pressure stirring device comprises an air pump, a pressure adjusting device, a heating and temperature control device, a connecting pipe and a first air pressure needle;
  • the air pump is used for blowing air into the first air pressure needle to generate an impact air pressure;
  • the pressure adjusting device For adjusting the airflow size, speed and time in the first air pressure needle;
  • the connecting tube is used for connecting the air pump, the first air pressure needle and the pressure adjusting device;
  • the first air pressure needle is used for non-contacting, the liquid surface in the detecting cup is less than 50 Partial application of impact air pressure to drive the liquid in the cup to flow due to uneven pressure, mixing the liquid in the test cup;
  • the heating and temperature control device includes a heater and a thermostat controller, surrounded by a heater and a thermostat It is disposed on the outer circumference of the first pneumatic needle, and is used for heating and maintaining the constant temperature of the gas in the first pneumatic needle.
  • the first pneumatic needle 1 is disposed on the side above the liquid surface of the detection cup 2, and the first pneumatic needle 1 forms an impact pressure on the liquid surface 3, so that the partial pressure at the liquid surface 3 is greater than other portions.
  • the liquid level of the high pressure portion is lowered, the local liquid flows to the low pressure region, and the liquid surface of the relatively low pressure portion rises due to the liquid extrusion in other regions, so that the liquid in the cup flows.
  • Fig. 1(c) is a schematic diagram of the liquid surface position under normal conditions.
  • the present embodiment is provided with two pneumatic needles, namely a second pneumatic needle 4 and a third pneumatic needle 5, respectively located at a relative position above the liquid surface, and mutually open one side pneumatic needle.
  • the impact air pressure is formed;
  • Fig. 2(c) is a schematic view of the liquid level position under normal conditions.
  • Fig. 3(a) is a schematic view showing the flow of liquid in the test cup after the pneumatic needle generates an impact gas pressure in the middle of the liquid surface
  • Fig. 3(b) is a schematic diagram of the liquid reflux after the pneumatic needle stops pressing
  • Fig. 3(c) is the detection cup after stirring. Liquid level diagram.
  • Fig. 4(a) is a schematic view showing the flow of liquid in the cup after the impact pressure of the elbow pressure needle 7 is generated at an angle of 45° to the middle of the liquid surface
  • Fig. 4(b) is a schematic diagram of the liquid return after the pressure of the elbow pressure needle is stopped
  • Fig. 4(d) is the top view of Fig. 4(a).
  • an automatic biochemical analyzer with a non-contact air pressure stirring device of the embodiment is provided with four gas pressure stirring positions, and the instrument automatically selects a reagent R1 in the reagent disk 9 according to the detection requirement.
  • the reagent addition position is added to the test cup 2 of the reaction disk 11; after that, the reaction disk 11 is automatically rotated, and the detection cup 2 is moved forward by one rotation with each rotation of the reaction disk.
  • the instrument automatically The sample S in the sample tray 8A is added to the reaction tray 11 to detect the cup 2; the reaction tray 11 continues to rotate and drives the detection cup to move forward.
  • the pneumatic needle When the detection cup is turned to the first stirring position M1, the pneumatic needle ejects the impinging airflow into the detection cup.
  • the pressure regulating device is used to adjust the air flow size, speed and time in the air pressure needle; the impinging air flow forms an impact air pressure on one or more positions of the liquid surface, so that the air pressure difference is formed on the liquid level of the detecting cup, and the liquid flows, and the reagent R1 in the detecting cup is Sample S is stirred for the first time.
  • the pneumatic needle cleaning device automatically cleans the pneumatic needle; when the detection cup is turned to the second stirring position M2, the pneumatic needle advances the reagents R1 and S in the test cup in the same manner. The second agitated to mix well detect liquid in the cup, the cleaning means for automatically cleaning pneumatic pressure needle after the needle stirring.
  • the reaction tray 11 continues to rotate and drives the detection cup to move forward.
  • the instrument automatically adds the reagent two R2 in the reagent tray 10 to the reaction tray 11 to detect the cup 2, and the reaction tray 11 continues to rotate and drive.
  • the detection cup moves forward.
  • the air pressure is first stirred for the reagent R1, the sample S and the reagent two R2 in the detection cup, and the pneumatic needle cleaning device automatically cleans the pneumatic needle after stirring;
  • the test cup is turned to the fourth stirring position M4
  • the air pressure is subjected to the second stirring of the reagent one R1, the sample S and the reagent two R2 in the detecting cup, and the pneumatic needle cleaning device automatically cleans the pneumatic needle after stirring.
  • the light signal is detected by the detecting device for the mixed liquid in the detecting cup, and after the detecting is completed, the detecting cup is cleaned by the detecting cup cleaning device.
  • the difference between this embodiment and the embodiment 5 is that the analyzer only sets two pneumatic needle stirring positions, that is, the first stirring position M1 and the third stirring position M3, when the reagent-R1 and the sample S are mixed.
  • the analyzer only sets two pneumatic needle stirring positions, that is, the first stirring position M1 and the third stirring position M3, when the reagent-R1 and the sample S are mixed.
  • the difference between this embodiment and the embodiment 5 is that the sample S, the reagent one R1 and the reagent two R2 shares a disk 8B, the sample is placed on the outer ring, and the reagent is placed on the inner ring.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种具有非接触气压搅拌装置的全自动生化分析仪及分析方法,分析仪包括试剂盘(9,10)、样品盘(8A)、反应盘(11)、检测装置、检测杯清洗装置和非接触气压搅拌装置,非接触气压搅拌装置由空气泵、压力调节装置、连接管和气压针组成,非接触气压搅拌装置通过气压针向检测杯(2)中液体表面局部不均匀喷射气流,驱使杯内液体由于所受压力不均而形成流动,达到混匀检测杯(2)中液体的效果。通过应用非接触气压搅拌装置使得对全自动生化分析仪检测杯(2)中微量液体搅拌实现非接触方式,可有效避免、减少全自动生化分析仪检测时不同试剂及样品间的交叉污染,从而提高检测准确性,并显著减少清洗所用水量。

Description

具有非接触气压搅拌装置的全自动生化分析仪及分析方法 技术领域
本发明属于医学检验检测技术领域,特别是一种具有非接触气压搅拌装置的全自动生化分析仪及分析方法。
背景技术
目前医学检验用全自动生化分析仪常常需要对微量的反应液进行搅拌使其充分混匀并反应,确保检测结果的准确性。
现有全自动生化分析仪所使用的搅拌装置有磁力搅拌、深层充气搅拌及超声波搅拌等方式。前两种均为接触式搅拌,由于每一反应液的样本和所使用的试剂不同,因此搅拌后必须要对搅拌器进行清洗。而且由于搅拌器所接触的试剂类型不同,单纯水清洗往往难以达到良好效果,因此常常由于搅拌头上残留的反应液,对下一个反应液搅拌时使该反应液成份,或pH值发生改变影响下一个样本的检测精度。超声波为非接触式搅拌,但是与直接接触式搅拌方式相比较,超声波在相同时间搅拌相同量液体所需功率较大,并且对检测杯等仪器部件会造成一定的损伤。
发明内容
本发明的目的在于提供一种具有非接触气压搅拌装置的全自动生化分析仪及分析方法。
实现本发明目的的技术方案为:一种具有非接触气压搅拌装置的全自动生化分析仪,该分析仪包括试剂盘、样品盘、反应盘、检测装置、检测杯清洗装置和非接触气压搅拌装置;
所述试剂盘用于放置试剂瓶;所述样品盘用于放置样品管或样品杯;所述反应盘用于放置检测杯;所述检测装置用于对检测杯中液体进行光信号检测;所述检测杯清洗装置用于清洗检测杯;
所述非接触气压搅拌装置由空气泵、压力调节装置、连接管和气压针组成;
所述空气泵用于鼓入空气并通过气压针喷出;
所述气压针设置在检测杯上方,用于非接触的向检测杯内液体表面施加冲击气压;
所述压力调节装置用于调节气压针喷出的气流大小、速度和时间;
所述连接管用于空气泵、气压针以及压力调节装置的连接。
一种具有非接触气压搅拌装置的全自动生化分析仪的分析方法,包括以下步骤:
步骤1、分析仪按照检测需要,逐步将试剂、样品加入反应盘上的检测杯中;
步骤2、移动检测杯至气压针下方,气压针向检测杯内喷出冲击气流,并通过压力调节装置调节气压针内气流大小、速度和时间;冲击气流对液面一个或多个位置形成冲击气压,使检测杯液面形成气压差,带动液体流动,完成检测杯中液体搅拌;
步骤3、通过检测装置对检测杯内液体进行光信号检测;
步骤4、完成检测后,通过检测杯清洗装置对检测杯进行清洗,清洗后继续进行下一循环的检测。
与现有技术相比,本发明的显著效果为:
(1)本发明的具有非接触气压搅拌装置的全自动生化分析仪及分析方法通过非接触式气流对检测杯中微量液体快速、直接搅拌,既可以不必消耗过大的功率和时间,又避免了搅拌装置直接与反应液接触导致的交叉污染问题;(2)本发明适用于微量液体的搅拌混匀,且不需要对搅拌器进行清洗。
附图说明
图1(a)为气压针向液面左侧产生冲击气压时检测杯中液体流动示意图,图1(b)为气压针停止施压后液体回流示意图,图1(c)为搅拌后检测杯中液面示意图。
图2(a)和图2(b)分别为位于液面上方相对位置的两个气压针交互开启时,样品管中液体流动示意图,图2(c)为搅拌后检测杯中液面示意图。
图3(a)为气压针向液面中部产生冲击气压后检测杯中液体流动示意图,图3(b)为气压针停止施压后液体回流示意图,图3(c)为搅拌后检测杯中液面示意图。
图4(a)为弯头气压针以一定角度向液面中部产生冲击气压后检测杯中液体流动示意图,图4(b)为气压针停止施压后液体回流示意图,图4(c)为搅拌后检测杯中液面示意图,图4(d)为图4(a)的俯视图。
图5为本发明实施例5中分析仪结构示意图。
图6为本发明实施例7中分析仪结构示意图。
具体实施方式
本发明的一种具有非接触气压搅拌装置的全自动生化分析仪,该分析仪包括试剂盘、样品盘、反应盘、检测装置、检测杯清洗装置和非接触气压搅拌装置;
所述试剂盘用于放置试剂瓶;所述样品盘用于放置样品管或样品杯;所述反应盘用于放置检测杯;所述检测装置用于对检测杯中液体进行光信号检测;所述检测杯清洗装置用于清洗检测杯;
所述非接触气压搅拌装置由空气泵、压力调节装置、连接管和气压针组成;
所述空气泵用于鼓入空气并通过气压针喷出,产生冲击气压在被搅拌的液体表面形成不均匀的压力;
所述气压针设置在检测杯上方,用于非接触的向检测杯内液体表面施加冲击气压;
所述压力调节装置用于调节气压针喷出的气流大小、速度和时间;
所述连接管用于空气泵、气压针以及压力调节装置的连接。
进一步的,所述气压针用于非接触的向检测杯内液体表面小于50%的局部施加冲击气压,驱使杯内液体由于所受压力不均而形成流动,混匀检测杯中液体。
进一步的,所述气压针为1个以上,且均设置在同一检测杯上方;当反应盘旋转停止时,各气压针轮流对一个检测杯液面不同局部喷射气压实现检测杯内液体由于不同局部表面所承受的气压不同,而形成检测杯内液体流动,在气压点改变及停止时,液体再发生另一状态的流动,因此对检测杯内的液体达到混匀的效果。
进一步,所述气压针为1个以上,各气压针分别设置在仪器反应盘不同检测杯位置的上方。当反应盘旋转停止时,各气压针同时分别对多个检测杯内液面局部喷射气压,同时搅拌多个检测杯内液体。
进一步的,该全自动生化分析仪还包括清洗装置,用于清洗气压针内外表面。
进一步的,所述气压针出口方向与液面水平面的夹角大于30度。
进一步的,压力调节装置为可调阀门或可调压力罐,用于控制气压针连续或间断施加气压。
进一步的,所述非接触气压搅拌装置还包括加热及温控装置,所述加热及温 控装置包括加热器和恒温控制器,加热器和恒温控制器环抱设置在气压针外周,分别用于对气压针内气体进行加热和保持恒温。所述气压针所喷出的气体温度为20-50℃。
进一步的,该全自动生化分析仪还包括气压针移动装置,所述气压针移动装置用于驱动气压针在工作时进行角度调整或水平移动,通过对液面不同局部施压而充分搅拌液体。
本发明还提供一种具有非接触气压搅拌装置的全自动生化分析仪的分析方法,包括以下步骤:
步骤1、仪器自动按照检测需要,逐步将试剂、样品加入反应盘上的各检测杯中;
步骤2、移动检测杯至气压针下方,气压针向检测杯内喷出冲击气流,并通过压力调节装置调节气压针内气流大小、速度和时间;冲击气流对液面一个或多个位置形成冲击气压,使检测杯液面形成气压差,带动液体流动,完成检测杯中液体搅拌;
步骤3、通过检测装置对检测杯内液体进行光信号检测;
步骤4、完成检测后,通过检测杯清洗装置对检测杯进行清洗,清洗后继续进行下一循环的检测。
进一步的,步骤2中气压针为两个一组设置于同一检测杯位置的不同位点,在执行搅拌时两个针轮流喷气体,即其中一个针喷气时,另一针停止,这样轮流喷出的气压交叉作用检测杯内液体不同表面,使得检测杯内液体不同局部轮流出现高压-低压转换,驱动检测杯内液体更快速、彻底的流动。
进一步的,气压针在喷气搅拌过程中进行角度调整或水平移动,使得检测杯内产生不同局部位点的高气压,在一个检测过程中形成多状态的液体流动。
下面结合附图和实施例对本发明作进一步说明。
实施例1
一种具有非接触气压搅拌装置的全自动生化分析仪,仪器主要结构包括试剂盘、样品盘、反应盘、检测装置、检测杯清洗装置和非接触气压搅拌装置。
所述试剂盘用于放置试剂瓶;所述样品盘用于放置样品管或样品杯;所述反应盘用于放置检测杯;所述检测装置用于对检测杯中液体进行光信号检测;所述 检测杯清洗装置用于清洗检测杯;
所述非接触气压搅拌装置包括空气泵、压力调节装置、加热及温控装置、连接管和第一气压针;空气泵用于向第一气压针内鼓入空气,产生冲击气压;压力调节装置用于调节第一气压针内气流大小、速度和时间;连接管用于连接空气泵、第一气压针和压力调节装置;所述第一气压针用于非接触的向检测杯内液体表面小于50%的局部施加冲击气压,驱使杯内液体由于所受压力不均而形成流动,混匀检测杯中液体;所述加热及温控装置包括加热器和恒温控制器,加热器和恒温控制器环抱设置在第一气压针外周,分别用于对第一气压针内气体进行加热和保持恒温。
结合图1(a),所述第一气压针1设置在检测杯2液面上方一侧,第一气压针1对液面3处形成冲击气压,使液面3处局部压力大于其它部分,而受到高压部分液面下降,局部液体流向低压区域,而相对低压部分液面由于其它区域液体挤压而上升,使得杯中的液体发生流动。
结合图1(b)当第一气压针停止施压,原局部受到高压部分压力减小恢复正常,液体回流;图1(c)为正常状态下液面位置示意图。
实施例2
结合图2(a)和图2(b),本实施例设置有两个气压针,即第二气压针4和第三气压针5,分别位于液面上方相对位置,交互开启一侧气压针形成冲击气压;图2(c)为正常状态下液面位置示意图。
实施例3
结合图3,本实施例与实施例1的区别在于,采用第四气压针6替换第一气压针1,第四气压针6设置在液面中部。图3(a)为气压针向液面中部产生冲击气压后检测杯中液体流动示意图,图3(b)为气压针停止施压后液体回流示意图,图3(c)为搅拌后检测杯中液面示意图。
实施例4
结合图4,本实施例与实施例1的区别在于,采用弯头气压针7替换第一气压针1,弯头气压针7针头处为弯头,产生的冲击气压与水平面呈45°角。图4(a)为弯头气压针7以45°角度向液面中部产生冲击气压后检测杯中液体流动示意图,图4(b)为弯头气压针停止施压后液体回流示意图,图4(c)为搅拌 后检测杯中液面示意图,图4(d)为图4(a)的俯视图。
实施例5
结合图5,本实施例的一种具有非接触气压搅拌装置的全自动生化分析仪,分析仪设置4个气压针搅拌位,仪器自动按照检测需要,将试剂盘9中试剂一R1在第一加试剂位加入反应盘11的检测杯2中;之后反应盘11自动旋转,检测杯2随着每次反应盘的旋转前移一位,当检测杯2转至加样品位时,仪器自动将样品盘8A中样品S加入反应盘11检测杯2中;反应盘11继续旋转并带动检测杯前移,当检测杯转至第一搅拌位M1时,气压针向检测杯内喷出冲击气流,通过压力调节装置调节气压针内气流大小、速度和时间;冲击气流对液面一个或多个位置形成冲击气压,使检测杯液面形成气压差,带动液体流动,对检测杯中试剂一R1和样品S进行第一次搅拌,搅拌后气压针清洗装置自动清洗气压针;当检测杯转至第二搅拌位M2时,气压针按照同样方式对检测杯中试剂一R1和样品S进行第二次搅拌,以便充分混匀检测杯中液体,搅拌后气压针清洗装置自动清洗气压针。
反应盘11继续旋转并带动检测杯前移,当检测杯转至第二加试剂位时,仪器自动将试剂盘10中试剂二R2加入反应盘11检测杯2中,反应盘11继续旋转并带动检测杯前移,当检测杯转至第三搅拌位M3时,气压针对检测杯中试剂一R1、样品S和试剂二R2进行第一次搅拌,搅拌后气压针清洗装置自动清洗气压针;当检测杯转至第四搅拌位M4时,气压针对检测杯中试剂一R1、样品S和试剂二R2进行第二次搅拌,搅拌后气压针清洗装置自动清洗气压针。通过检测装置对检测杯内混匀液体进行光信号检测,检测完毕后通过检测杯清洗装置对检测杯进行清洗。
实施例6
结合图5,本实施例与实施例5的区别在于,分析仪仅设置2个气压针搅拌位,即第一搅拌位M1和第三搅拌位M3,当装有试剂一R1和样品S的混合液的检测杯转至第一搅拌位M1位时进行一次搅拌,装有试剂一R1、样品S和试剂二R2混合液的检测杯转至第三搅拌位M3位时进行一次搅拌。
实施例7
结合图6,本实施例与实施例5的区别在于,样品S、试剂一R1和试剂二 R2共用一个盘8B,外圈放置样品,内圈放置试剂。

Claims (10)

  1. 一种具有非接触气压搅拌装置的全自动生化分析仪,其特征在于,该分析仪包括试剂盘、样品盘、反应盘、检测装置、检测杯清洗装置和非接触气压搅拌装置;
    所述试剂盘用于放置试剂瓶;所述样品盘用于放置样品管或样品杯;所述反应盘用于放置检测杯;所述检测装置用于对检测杯中液体进行光信号检测;所述检测杯清洗装置用于清洗检测杯;
    所述非接触气压搅拌装置由空气泵、压力调节装置、连接管和气压针组成;
    所述空气泵用于鼓入空气并通过气压针喷出;
    所述气压针设置在检测杯上方,用于非接触的向检测杯内液体表面施加冲击气压;
    所述压力调节装置用于调节气压针喷出的气流大小、速度和时间;
    所述连接管用于空气泵、气压针以及压力调节装置的连接。
  2. 根据权利要求1所述的具有非接触气压搅拌装置的全自动生化分析仪,其特征在于,所述气压针为1个以上,且均设置在同一检测杯上方。
  3. 根据权利要求1所述的具有非接触气压搅拌装置的全自动生化分析仪,其特征在于,所述气压针为1个以上,各气压针分别设置在仪器反应盘不同检测杯位置的上方。
  4. 根据权利要求1所述的具有非接触气压搅拌装置的全自动生化分析仪,其特征在于,该全自动生化分析仪还包括清洗装置,用于清洗气压针内外表面。
  5. 根据权利要求1所述的具有非接触气压搅拌装置的全自动生化分析仪,其特征在于,所述气压针出口气流方向与液面水平面的夹角大于30度。
  6. 根据权利要求1所述的具有非接触气压搅拌装置的全自动生化分析仪,其特征在于,压力调节装置为可调阀门或可调压力罐,用于控制气压针连续或间断施加气压。
  7. 根据权利要求1所述的具有非接触气压搅拌装置的全自动生化分析仪,其特征在于,所述非接触气压搅拌装置还包括加热及温控装置,所述加热及温控装置包括加热器和恒温控制器,分别用于对气压针内气体进行加热和保持恒温。
  8. 根据权利要求1所述的具有非接触气压搅拌装置的全自动生化分析仪,其特征在于,该全自动生化分析仪还包括气压针移动装置,所述气压针移动装置 用于驱动气压针在工作时进行角度调整或水平移动,通过对液面不同局部施压而充分搅拌液体。
  9. 一种基于权利要求1所述具有非接触气压搅拌装置的全自动生化分析仪的分析方法,其特征在于,该方法包括以下步骤:
    步骤1、分析仪按照检测需要,逐步将试剂、样品加入反应盘上的检测杯中;
    步骤2、移动检测杯至气压针下方,气压针向检测杯内喷出冲击气流,并通过压力调节装置调节气压针内气流大小、速度和时间;冲击气流对液面一个或多个位置形成冲击气压,使检测杯液面形成气压差,带动液体流动,完成检测杯中液体搅拌;
    步骤3、通过检测装置对检测杯内液体进行光信号检测;
    步骤4、完成检测后,通过检测杯清洗装置对检测杯进行清洗,清洗后继续进行下一循环的检测。
  10. 根据权利要求9所述的具有非接触气压搅拌装置的全自动生化分析仪的分析方法,其特征在于,气压针两个一组设置于同一检测杯位置的不同位点,在执行搅拌时两个针轮流喷气体,即其中一个气压针喷气时,另一个气压针停止喷气。
PCT/CN2017/070575 2016-08-17 2017-01-08 具有非接触气压搅拌装置的全自动生化分析仪及分析方法 WO2018032719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610688975.7A CN106093445A (zh) 2016-08-17 2016-08-17 具有非接触气压搅拌装置的全自动生化分析仪及分析方法
CN201610688975.7 2016-08-17

Publications (1)

Publication Number Publication Date
WO2018032719A1 true WO2018032719A1 (zh) 2018-02-22

Family

ID=58070737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070575 WO2018032719A1 (zh) 2016-08-17 2017-01-08 具有非接触气压搅拌装置的全自动生化分析仪及分析方法

Country Status (2)

Country Link
CN (1) CN106093445A (zh)
WO (1) WO2018032719A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311111A (zh) * 2021-05-18 2021-08-27 内蒙古显鸿科技股份有限公司 一种融合机器学习和lstm的大气污染物溶度预测方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106093445A (zh) * 2016-08-17 2016-11-09 江苏英诺华医疗技术有限公司 具有非接触气压搅拌装置的全自动生化分析仪及分析方法
CN112624684B (zh) * 2020-10-26 2022-05-20 西安科技大学 一种电致变色混凝土砖及其生产工艺与制造设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020072122A1 (en) * 1990-03-02 2002-06-13 Ventana Medical Systems, Inc. Automated biological reaction apparatus
CN1963527A (zh) * 2005-11-10 2007-05-16 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪及其分析方法
CN101169450A (zh) * 2006-10-27 2008-04-30 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析方法及装置
CN101726616A (zh) * 2008-10-31 2010-06-09 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其工作方法
CN101865927A (zh) * 2009-04-17 2010-10-20 武汉医尔特科技有限公司 一种新型全自动血型分析仪
CN102221626A (zh) * 2010-04-14 2011-10-19 深圳迈瑞生物医疗电子股份有限公司 一种全自动生化分析仪及其工作方法
CN104422779A (zh) * 2013-08-22 2015-03-18 钟伟明 全自动免疫分析仪
CN105510613A (zh) * 2015-12-21 2016-04-20 利多(香港)有限公司 试剂混匀传送装置和混匀方法
CN106093445A (zh) * 2016-08-17 2016-11-09 江苏英诺华医疗技术有限公司 具有非接触气压搅拌装置的全自动生化分析仪及分析方法
CN206020436U (zh) * 2016-08-17 2017-03-15 江苏英诺华医疗技术有限公司 具有非接触气压搅拌装置的全自动生化分析仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858471A (ja) * 1981-10-02 1983-04-07 Toshiba Corp 自動生化学分析装置における撹拌装置
JPS58137758A (ja) * 1982-02-10 1983-08-16 Omron Tateisi Electronics Co 血液撹拌装置
DE60129868T2 (de) * 2000-03-27 2008-05-08 Arkray, Inc. Verfahren zum Rühren einer Flüssigkeit
JP4166621B2 (ja) * 2003-05-16 2008-10-15 オリンパス株式会社 自動分析装置
CN201408191Y (zh) * 2008-10-17 2010-02-17 深圳市锦瑞电子有限公司 一种生化分析仪恒温系统
CN201845019U (zh) * 2010-10-08 2011-05-25 重庆州泰生物科技有限公司 检测样本孵育系统及反应杯运送座
CN102147406B (zh) * 2011-02-14 2013-08-28 四川迈克生物科技股份有限公司 全自动化学发光免疫分析仪

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020072122A1 (en) * 1990-03-02 2002-06-13 Ventana Medical Systems, Inc. Automated biological reaction apparatus
CN1963527A (zh) * 2005-11-10 2007-05-16 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析仪及其分析方法
CN101169450A (zh) * 2006-10-27 2008-04-30 深圳迈瑞生物医疗电子股份有限公司 全自动生化分析方法及装置
CN101726616A (zh) * 2008-10-31 2010-06-09 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其工作方法
CN101865927A (zh) * 2009-04-17 2010-10-20 武汉医尔特科技有限公司 一种新型全自动血型分析仪
CN102221626A (zh) * 2010-04-14 2011-10-19 深圳迈瑞生物医疗电子股份有限公司 一种全自动生化分析仪及其工作方法
CN104422779A (zh) * 2013-08-22 2015-03-18 钟伟明 全自动免疫分析仪
CN105510613A (zh) * 2015-12-21 2016-04-20 利多(香港)有限公司 试剂混匀传送装置和混匀方法
CN106093445A (zh) * 2016-08-17 2016-11-09 江苏英诺华医疗技术有限公司 具有非接触气压搅拌装置的全自动生化分析仪及分析方法
CN206020436U (zh) * 2016-08-17 2017-03-15 江苏英诺华医疗技术有限公司 具有非接触气压搅拌装置的全自动生化分析仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311111A (zh) * 2021-05-18 2021-08-27 内蒙古显鸿科技股份有限公司 一种融合机器学习和lstm的大气污染物溶度预测方法及系统

Also Published As

Publication number Publication date
CN106093445A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2018032719A1 (zh) 具有非接触气压搅拌装置的全自动生化分析仪及分析方法
CN208026308U (zh) 一种配液自动计量装置
CN105103268A (zh) 基板处理装置以及基板处理方法
CN106199024A (zh) 全自动生化分析仪及生化检测系统
CN206020436U (zh) 具有非接触气压搅拌装置的全自动生化分析仪
CN205941575U (zh) 全自动生化分析仪
CN208121108U (zh) 一种高效酶解罐
CN107596939A (zh) 检测装置、搅拌器及脱泡方法
CN205731006U (zh) 一种药液搅拌器
JP2005003610A (ja) 分注装置及びこれを備えた自動分析装置
CN206450697U (zh) 全自动生化分析仪
JP2017146182A (ja) 自動分析装置及びその洗浄方法
JP2013053935A (ja) 自動分析装置
JP2005249535A (ja) 分注プローブ及びこれを備えた自動分析装置
CN206109376U (zh) 反应板、反应平台及核酸分子杂交仪
CN206450696U (zh) 具有喷气装置的全自动生化分析仪
JP2010101873A (ja) 噴射ノズル、液体排出方法及び自動分析装置
CN115478006A (zh) 一种细胞培养液检测系统
CN109012537A (zh) 一种具有高效换热功能的节能型反应釜
TWI836596B (zh) 智能多通道染片機及其染片方法
WO2001077691A1 (fr) Analyseur chimique
JP2011099807A (ja) 化学分析装置
CN110694532B (zh) 一种药理学实验用的混合加热装置
CN210314280U (zh) 一种酵母活化装置
CN106596991A (zh) 具有喷气装置的全自动生化分析仪及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17840697

Country of ref document: EP

Kind code of ref document: A1