WO2018032677A1 - 一种铸造具有纳米和微米混合晶粒结构材料的装置和方法 - Google Patents

一种铸造具有纳米和微米混合晶粒结构材料的装置和方法 Download PDF

Info

Publication number
WO2018032677A1
WO2018032677A1 PCT/CN2016/111355 CN2016111355W WO2018032677A1 WO 2018032677 A1 WO2018032677 A1 WO 2018032677A1 CN 2016111355 W CN2016111355 W CN 2016111355W WO 2018032677 A1 WO2018032677 A1 WO 2018032677A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
nano
axis motion
aluminum
alloy
Prior art date
Application number
PCT/CN2016/111355
Other languages
English (en)
French (fr)
Inventor
王自东
王涛
陈晓华
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Publication of WO2018032677A1 publication Critical patent/WO2018032677A1/zh
Priority to US16/278,736 priority Critical patent/US10799948B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/08Shaking, vibrating, or turning of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/02Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis
    • B22D13/023Centrifugal casting; Casting by using centrifugal force of elongated solid or hollow bodies, e.g. pipes, in moulds rotating around their longitudinal axis the longitudinal axis being horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C

Definitions

  • the invention relates to a metal nanostructure casting material and a preparation method and device thereof. Specifically, it is a method and apparatus for preparing a large-sized nanostructured material obtained by solidifying a liquid metal directly to obtain nano-scale and micro-scale mixed crystal grains, and a large-sized nanometer having nanometer-scale and micro-scale mixed crystal grains thus prepared. Structural casting of aluminum-silicon alloys, etc.
  • Al-Si is one of the most widely used alloys due to its excellent castability, wear resistance and corrosion resistance.
  • Al-Si alloy itself, such as hypoeutectic Al-Si alloy, its as-cast microstructure
  • Document 1
  • the application of disturbance to the molten metal during solidification is also an effective method for refining crystal grains, such as ultrasonic vibration treatment of sub-eutectic Al-Si alloys [Article 11 HRKotadia, A.Das, Journal of Alloys And Compounds. 620 (2015) 1–4; Document Twelve H. Puga, S. Costa, J. Barbosa, S. Ribeiro, M. Prokic, Journal of Materials Processing Technology.
  • the treated hypoeutectic Al-Si alloy has equiaxed and spheroidized primary crystal ⁇ -Al structure, which significantly refines the size of primary crystal ⁇ -Al from tens to hundreds of micrometers, and eutectic Si is also obtained.
  • a certain degree of refinement, but a limitation of this method is that the area where the treatment effect is good is only about a few centimeters in the range close to the vibration source, which results in the method not being applied to a large casting process.
  • Electromagnetic stirring is also an effective method for imparting disturbance to the molten metal in solidification.
  • Venkateswarlu uses another method of Al-2Si through a channel with a diameter of 10 mm and a length of 60 mm to obtain an ⁇ -Al size of 0.7 um and a Si size of 1.08 um [15].
  • Cardoso obtained the ⁇ -Al size of Al-10Si through a channel of 20 mm in length and 70 mm in length at 200 ° C to reach 653 nm [Ref. 16].
  • Gutierrez-Urrutia can obtain Al-wt% Si through a channel with a diameter of 20 mm and a length of 60 mm, and the ⁇ -Al size can reach 420 nm and the Si size can reach 1.4 um [Ref. 17].
  • the ECAP method requires the casting to pass through a small-sized equal-channel corner, which usually has a circular cross-sectional passage of several tens of millimeters in diameter, which greatly limits the size and shape of the material, and the resulting nano-scale grain size of the structural member. And shape is limited.
  • hypoeutectic Al-Si alloy there is a need for a method that can greatly refine ⁇ -Al and eutectic Si while being applied to large-sized and complex-shaped castings and is easy to implement.
  • a traditional idea for refining the grain size of castings pursuing a large cooling rate or introducing a large number of nucleation cores, by which more cores are formed in the molten metal, and the increase in the number of cores increases the number of grains. Thereby limiting the space for each grain growth and achieving the effect of refining the grains.
  • This traditional approach makes it difficult to obtain large-sized castings with a matrix size of several hundred nanometers.
  • a first object of the present invention is to provide a casting apparatus and method for directly obtaining a nanostructured material in which an ⁇ -Al matrix is mixed with crystal grains of a nanometer and a micron order by solidifying a liquid metal at a low cost.
  • a device for casting materials with nanometer and micrometer mixed grain structure characterized by a cabin system, a melting system, a pouring system, a mold, a rotating disk, a coupling shaft I, a coupling shaft II, an intermediate coupling seat, and a coupling shaft III, the coupling shaft IV, the bottom support seat, the six-axis motion system I, the six-axis motion system II, the centrifugal barrel; the mold is set in the centrifugal barrel, the centrifugal barrel passes the rotating disk and the coupling shaft I and the six-axis motion system I Connected; the six-axis motion system I is connected to the six-axis motion system II through the coupling shaft II, the intermediate coupling seat, the coupling shaft III, and the six-axis motion system II is fixed on the bottom support seat by the coupling shaft IV; six of the single six-axis motion system
  • the axis motion primitives correspond to six motors respectively.
  • the rotary table Under the motor control, the rotary table performs six-axis motion, that is, three linear motions in the x, y, and z directions, and the rotational motion R of the rotary table is along the direction perpendicular to the rotating disk.
  • the linear motion M and the tilting motion T of the rotating disk, the tilting angle of the rotating disk is represented by ⁇ ; in practice, the number of six-axis motion system sets is selected as needed.
  • the degree of superheat For the composition of different metals, in the casting process, it is necessary to control the degree of superheat. During the casting cooling process, the degree of subcooling needs to be controlled, the mold is placed in the equipment, and a strong composite shear flow is generated inside the molten metal.
  • the metal material is nickel, aluminum, iron, copper, titanium; or the metal material is nickel, aluminum, iron, copper. Or titanium alloy; or, the metal material is aluminum silicon alloy, titanium aluminum, iron aluminum, nickel aluminum metal intermetallic compound.
  • the smelting and casting process is carried out in a vacuum or non-vacuum.
  • the formed aluminum matrix phase has a grain size of from 10 nm to 5000 nm, and the eutectic silicon phase grain size is from 10 nm to 10 ⁇ m.
  • the second phase of the nano-silicon particles is dispersed in a large amount in the aluminum matrix phase, and the size of the nano-silicon particles is between 1 nm and 100 nm.
  • the preparation method is simple. By adopting the method of the invention, the novel nano-grain and micro-grain are prepared directly in the metal materials of nickel, aluminum, iron, copper, titanium and their alloys by using the casting method without rolling or extruding, and the crystal is increased by this method. The number of grains and the size of the grains are limited, and the base of the prepared casting is composed of mixed nano-grains and micro-grains.
  • the metal material prepared by the invention has superior comprehensive properties, such as high strength and high plasticity.
  • the mold is made into a composite motion of two sets of rotational motions, and finally a cast aluminum-silicon alloy having a bulk micro-nano grain structure is prepared.
  • the tensile strength of the Al-7wt%Si aluminum-silicon alloy aluminum substrate prepared by the invention is increased by more than 70%, and the elongation is increased by more than three times.
  • the metal grain size prepared by this method is reduced from the current micron order to the submicron or nanometer level, potentially making the brittle material into a ductile material and improving the strength and toughness of the metal material, the polymer material and the inorganic non-metal material.
  • Figure 1 is a schematic diagram of the composition of a composite exercise device.
  • Figure 2 is a schematic diagram of the motion of a single six-axis motion system in Figure 1.
  • the distance between the two sets of six-axis motion system and the system connection shaft bracket is a.
  • Fig. 3 is a low-dimensional scanning and high-power transmission topography of the Al-7wt% Si alloy cross section.
  • (b) a white at the position of (a) TEM topography of one of the enlarged regions of the aluminum matrix phase, wherein the ⁇ -Al matrix consists of white large-sized aluminum grains (grain size several hundred nm - several um) and surrounding black grain boundary regions; c) TEM topography of another magnified region of the white aluminum matrix phase at position A of Figure a, where the ⁇ -Al matrix size is around a few hundred nm;
  • Fig. 4 is a comparison of stress-strain curves of tensile engineering of Al-7wt%Si alloy under casting and conventional casting under strong convection. Tensile strength increased by more than 70% and elongation increased by more than three times.
  • Fig. 5 is a comparative scan of the fracture morphology of Al-7wt%Si alloy under casting and conventional casting under strong convection.
  • the conventional cast Al-7wt%Si alloy exhibits cleavage fracture, and the cleavage planes of the large pieces are separated by tearing edges;
  • the cleavage surface of the Al-7wt%Si alloy prepared by strong convection casting is reduced, The dimples appear in the tensile fracture.
  • Al-7wt%Si alloy is taken as an example to study the crystals obtained by solidification of nano-scale and micro-scale.
  • 99.8% of industrial pure aluminum and 99.9% of industrial pure silicon were placed in the graphite crucible in Fig. 1, and the medium frequency induction heating furnace was smelted, and the furnace cavity was evacuated to 6.0 ⁇ 10 -2 Pa, and charged with high-purity Ar gas.
  • the cavity is maintained at a pressure of 0.04 Mp, the metal in the crucible is rapidly heated to 1000 ° C and then kept for 1 hour, cooled to 750 ° C, and the superheat of the entire casting process is maintained between 50 ° C and 100 ° C, and the alloy liquid is poured into the preheating to
  • the rectangular parallelepiped graphite mold with an inner dimension of 250 ° C of 70 mm ⁇ 80 mm ⁇ 110 mm and a wall thickness of 10 mm, in order to prevent the molten metal from spilling, the mold is capped after the casting is completed, and the degree of subcooling of the molten metal during solidification may be 0.1 ° C. -50 ° C.
  • the R parameter in the six-axis motion system II (13) is not a fixed degree, but a continuous rotation
  • the R parameter of the six-axis motion system I (12) is not a fixed degree but a continuous rotation, and the R parameter corresponds to
  • the crystals obtained by solidification of the nano-scale and micro-scale were obtained.
  • 99.8% of industrial pure aluminum and 99.9% of industrial pure silicon were placed in the graphite crucible in Fig. 1, and the medium frequency induction heating furnace was smelted, and the furnace cavity was evacuated to 6.0 ⁇ 10 -2 Pa, and charged with high-purity Ar gas.
  • the cavity is maintained at a pressure of 0.04 Mp, the metal in the crucible is rapidly heated to 1000 ° C and then kept for 1 hour, cooled to 750 ° C, and the superheat of the entire casting process is maintained between 50 ° C and 100 ° C, and the alloy liquid is poured into the preheating to
  • the rectangular parallelepiped graphite mold with an inner dimension of 250 ° C of 70 mm ⁇ 80 mm ⁇ 110 mm and a wall thickness of 10 mm, in order to prevent the molten metal from spilling, the mold is capped after the casting is completed, and the degree of subcooling of the molten metal during solidification may be 0.1 ° C. -50 ° C.
  • the R parameter is not a fixed degree, but a continuous rotation.
  • the R parameter is not a fixed degree, but is continuously rotated.
  • Al-7wt%Si alloy is taken as an example to study the crystals obtained by solidification of nano-scale and micro-scale.
  • 99.8% of industrial pure aluminum and 99.9% of industrial pure silicon were placed in the graphite crucible in Fig. 1, and the medium frequency induction heating furnace was smelted, and the furnace cavity was evacuated to 6.0 ⁇ 10 -2 Pa, and charged with high-purity Ar gas.
  • the cavity is maintained at a pressure of 0.04 Mp, the metal in the crucible is rapidly heated to 1000 ° C and then kept for 1 hour, cooled to 750 ° C, and the superheat of the entire casting process is maintained between 50 ° C and 100 ° C, and the alloy liquid is poured into the preheating to
  • the rectangular parallelepiped graphite mold with an inner dimension of 250 ° C of 70 mm ⁇ 80 mm ⁇ 110 mm and a wall thickness of 10 mm, in order to prevent the molten metal from spilling, the mold is capped after the casting is completed, and the degree of subcooling of the molten metal during solidification may be 0.1 ° C. -50 ° C.
  • the R parameter is not a fixed degree, but a continuous rotation.
  • the middle R parameter is not a fixed degree, but is continuously rotated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种具有纳米和微米混合晶粒结构材料的铸造装置,装置由舱体系统(1)、加热系统(2)、铸型(4)及浇注系统(3)、多轴复合运动系统组成。还公开了一种采用该装置的制备工艺,其包括步骤:合金熔炼,合金熔体保温后浇入铸型中,铸型放入六轴运动系统中的离心桶中,铸型进行复合运动,合金熔体凝固,即制备出纳米级和微米级尺寸混合晶粒的多尺度纳米结构块体铸造铝硅合金。该工艺铸造工期短,成本低廉,提高了金属材料强度和塑性,同时在高分子材料和无机非金属材料中有潜在应用,采用该工艺制备的具有块体铸造铝硅合金,抗拉强度提升70%以上,延伸率提升3倍以上。

Description

一种铸造具有纳米和微米混合晶粒结构材料的装置和方法 技术领域:
本发明涉及金属纳米结构铸造材料及其制备方法与装置。具体地说,是将液态金属凝固后直接得到纳米级和微米级混合晶粒的大尺寸纳米结构材料的制备方法和装置,以及由此制备的具有纳米级和微米级混合晶粒的大尺寸纳米结构铸造铝硅合金等。
背景技术
Al-Si由于其优异的铸造性,耐磨及耐腐蚀性能使其成为应用最广泛的合金之一,但是由于Al-Si合金本身的原因,如亚共晶Al-Si合金,其铸态组织中往往存在片层状Si及α-Al的柱状晶组织,这严重影响着亚共晶Al-Si合金的性能,因此获得细化的等轴状的α-Al及细化的共晶Si显得尤为重要[文献一:
J.E.Gruzleski,B.M.Closset,The Treatment of Liquid Aluminum,AmericanFoundrymen's Society,Silicon Alloys USA,1990.]。
为了提高亚共晶Al-Si合金的性能,人们采取了多种方式来细化α-Al及共晶Si,通过加入Al-Ti-B或者Nb-B来细化α-Al[文献二Tongmin Wang,Hongwang Fu,Zongning Chen,Jun Xu,Jing Zhu,Fei Cao,Tingju Li,Journal of Alloys and Compounds.511(2012)45–49;文献三M.Nowak,L.Bolzoni,N.Hari Babu,Materials and Design.66(2015)366–375;文献四L.Bolzoni,M.Nowak,N.Hari Babu,Materials and Design.66(2015)376–383]。通过加入Na或者Sr来细化共晶Si[文献五L.Lu,K.Nogita,A.K.Dahle,Mater.Sci.Eng.A.399(2005)244–253;文献六N S Tiedje,J Hattel,J A Taylor and M A Easton,The 3rd International Conference on Advances in Solidification Processes.27(2011)012033],二者同时加入也可以得到很好的效果[文献七L.Lu,A.K.Dahle,Mater.Sci.Eng.A.435–436(2006)288–296.文献八S.A.Kori,B.S.Murty,M.Chakraborty,Mater.Sci.Eng.A.283(2000)94–104.],然而变质剂孕育剂的加入在合金中引入了其他元素,可能生成不必要的金属间化合物化合物[文献九D.Qiu,J.A.Taylor,M-X.Zhang,P.M.Kelly,Acta Materialia.55(2007)1447–1456],同时有证据显示Al-Ti-B及Sr之间存在 细化之间的相互干扰[文献十L.Lu,A.K.Dahle,Mater.Sci.Eng.A.435–436(2006)288–296]。对凝固过程中的金属液施加扰动也是一种有效的细化晶粒的方法,如对亚共晶成分的Al-Si合金进行超声震动处理[文献十一H.R.Kotadia,A.Das,Journal of Alloys and Compounds.620(2015)1–4;文献十二H.Puga,S.Costa,J.Barbosa,S.Ribeiro,M.Prokic,Journal of Materials Processing Technology.211(2011)1729–1735],这样处理过后的亚共晶Al-Si合金有着等轴的及球化的初晶α-Al组织,显著细化初晶α-Al的尺寸几十至几百微米不等,同时共晶Si也得到了一定程度的细化,但是这种方法的一个局限是处理效果好的区域仅在距离振动源很近的范围约几厘米附近,这就导致该方法不能应用于很大的铸件处理。电磁搅拌也是一种对凝固中的金属液施加扰动的有效方法,它可以细化α-Al的同时得到等轴状的α-Al组织,但是这种方法不能有效的细化共晶Si的尺寸[文献十三E.J.Zoqui,M.Paes,E.Es-Sadiqi,Journal of Materials Processing Technology 120(2002)365–373;文献十四S.Nafisi,D.Emadi,M.T.Shehata,R.Ghomashchi,Mater.Sci.Eng.A.432(2006)71–83],限制了强度提高的效果。对液态Al-Si合金的处理方式虽然多样,但是以上方法最多将晶粒尺寸细化到数十微米,得不到纳米级的晶粒。
目前较普遍的获得Al-Si合金获得纳米级或者亚微米级晶粒尺寸的方法是在固态下进行大变形的等通道转角挤压方法(ECAP)处理[文献十五K.Venkateswarlu,Gautam Das,A.K.Pramanik,Cheng Xu,Terence G.Langdon,Mater.Sci.Eng.A.427(2006)188–194;文献十六K.Regina Cardoso,M.A.
Figure PCTCN2016111355-appb-000001
K.Valdés León,D.G.Morris,Mater.Sci.Eng.A.587(2013)387–396.;文献十七I.Gutierrez-Urrutia,M.A.
Figure PCTCN2016111355-appb-000002
D.G.Morris,Acta Materialia.55(2007)1319–1330]。Venkateswarlu用这种方法另Al-2Si通过一个直径10mm长60mm的通道得到的α-Al尺寸可以达到0.7um而Si尺寸可以达到1.08um[文献十五]。Cardoso用这种方法将Al-10Si在200℃下通过一个直径20mm长70mm的通道得到的α-Al尺寸可以达到653nm[文献十六]。Gutierrez-Urrutia用这种方法将Al-7wt%Si通过一个直径20mm长60mm的通道得到的α-Al尺寸可以达到420nm而Si尺寸可以达到1.4um[文献十七]。ECAP方法需要铸件通过一个尺寸不大的等通道的转角,这个 通道通常只有几十毫米直径的圆形截面通道,这就大大限制材料的尺寸和形状,得到的纳米级晶粒尺寸的结构件尺寸和形状受限。
对于亚共晶Al-Si合金来说,需要一种能够大幅细化α-Al及共晶Si,同时又能应用于大尺寸及复杂形状铸件且易于实施的方法。对于细化铸件晶粒尺寸的一个传统思路:追求大的冷却速度或者引入大量的形核核心,通过这种方法来在金属液中形成较多的核心,核心的增多增加了晶粒的数量,从而限制了每个晶粒生长的空间,达到细化晶粒的效果。这种传统思路很难获得基体具有几百个纳米级晶粒尺度的大尺寸铸件。
根据Wang关于液态金属中晶粒由晶核开始生长过程中界面演变的基本模型[文献十八Mingwen Chen,Zidong Wang,Jian-Jun Xu,Journal of Crystal Growth.385(2014)115–120],晶粒在生长过程中,由于剪切流和各向异性参数的综合作用会在晶粒中部形成凹陷部位,在剪切流作用下,凹陷部位容易熔断破碎,形成两个更小的晶粒,从而可以细化晶粒尺寸。
发明内容
本发明的第一个目的在于提出一种低成本将液态金属凝固后直接得到α-Al基体由纳米级和微米级混合晶粒的纳米结构材料的铸造设备和方法。
为达到上述目的,本发明采用的设备原理示意如图1所示
一种铸造具有纳米和微米混合晶粒结构材料的装置,其特征是装置由舱体系统、熔炼系统、浇注系统、铸型、转动盘,联接轴I,联接轴II,中间联接座,联接轴III,联接轴IV,底部支撑座,六轴运动系统I,六轴运动系统II,离心桶组成;铸型设在离心桶之内,离心桶通过转动盘和联接轴I与六轴运动系统I相连;六轴运动系统I通过联接轴II、中间联接座、联接轴III与六轴运动系统II相连;六轴运动系统II通过联接轴IV固定在底部支撑座上;单个六轴运动系统的六轴运动基元分别对应六个电机,在电机控制下转动台进行六轴运动,即三种沿x、y、z方向的直线运动,转动台的旋转运动R,沿着垂直于转动盘方向的直线运动M以及转动盘的倾斜运动T,转动盘的倾斜角度用θ表示;实际中根据需要选用六轴运动系统套数。
如上所述的铸造具有纳米和微米混合晶粒结构材料的装置中,六轴运动基元系统的转动盘运动轨迹参数的取值范围:R=-180°—+180°,X=-2500mm—+2500mm, Y=-2500mm—+2500mm,Z=0—1000mm,T=-80°—+80°,M=0-1000mm;
两套六轴运动系统中距离R1=0-3000mm,R2=0-3000mm。
一种采用如上所述装置铸造具有纳米和微米混合晶粒结构材料的方法,其特征在于,包括以下步骤:
(1)准备金属及合金坯料;
(2)金属及合金放于熔炼系统的坩埚中,铸型放入离心桶中,铸型周围填充有耐火保温材料;
(3)将坩埚中的金属加热到一定温度后保温,然后浇入到预热的铸型中;
(4)驱动六轴运动系统,离心桶按设定的路径运动,然后冷却。
针对不同的金属的成分,铸造浇铸过程中,需要控制过热度,铸造冷却过程中,需要控制过冷度,铸型放入设备中运动,金属液内部产生强的复合剪切流。
6.如权利要求4所述铸造具有纳米和微米混合晶粒结构材料的方法,其特适用的金属材料为镍、铝、铁、铜、钛;或者,金属材料为镍、铝、铁、铜、钛的合金;或者,金属材料为铝硅合金、钛铝、铁铝、镍铝金属间化合物。
熔炼和铸造过程是在真空或非真空中进行的。
按照如上所述铸造具有纳米和微米混合晶粒结构材料的方法生产多尺度块体纳米结构铸造铝硅合金的方法,其特征在于:硅含量为2wt.%-12wt.%;铸造浇铸过程中,过热度控制在50℃-100℃之间;铸造冷却过程中,过冷度控制在0.1℃-50℃之间;铸型放入设备中运动,金属液内部产生强的复合剪切流;所形成的铝基体相的晶粒尺寸从10nm—5000nm,共晶硅相晶粒尺寸为10nm—10um。
铝基体相中大量弥散分布着第二相纳米硅颗粒,纳米硅颗粒尺寸为1nm—100nm之间。
本发明的优点在于:
1.制备方法简单。采用本发明方法,不用轧制或挤压,直接利用铸造方法在镍、铝、铁、铜、钛及其合金的金属材料中制备新型纳米晶粒、微米晶粒,通过这种方法来增加晶粒的数量和限制晶粒的尺寸,制备出的铸件的基体由混合的纳米晶粒及微米晶粒组成。
2.本发明制备的金属材料具有优越的综合性能,比如兼具高强度和高塑性。以Al-7wt%Si合金为例子,固定两套六轴运动系统的参数:X=0mm,Y=0mm,Z=0mm, T=0°,M=0mm,两个转动台做R旋转运动。结果是,铸型做两套旋转运动的复合运动,最后制备出具有块体微纳米晶粒结构的铸造铝硅合金。与传统铝硅合金相比,本发明制备的Al-7wt%Si铝硅合金铝基体抗拉强度提升70%以上,伸长率提升3倍以上。
3.应用性强。这种方法制备的金属晶粒尺度从目前微米级降到亚微米级或纳米级,潜在能使脆性材料变成韧性材料,提高金属材料、高分子材料和无机非金属材料的强度和韧性。
附图说明
通过下面结合附图关于本发明的具体实施方式的详细描述,将有助于更清楚完整地理解本发明的其它特征、细节和优点。
图1复合运动设备组成原理图。1-舱体系统,2-熔炼系统,3-浇注系统,4-铸型,5-转动盘,6-联接轴I,7-联接轴II,8-中间联接座,9-联接轴III,10-联接轴IV,11-底部支撑座,12-六轴运动系统I,13-六轴运动系统II,14-离心桶。
图2图1中的单个六轴运动系统的运动原理图。其中两套六轴运动系统和系统连接轴支架的距离为a。
图3Al-7wt%Si合金横截面低倍扫描及高倍透射形貌图。(a)复合剪切运动处理的Al-7wt%Si合金横截面扫描形貌图,合金由白色的铝基体相和相间分布的黑色硅相组成;(b)图(a)A处位置的白色铝基体相其中一个放大区域的TEM形貌图,其中α-Al基体由白色的大尺寸铝晶粒(晶粒尺寸几百nm-几个um)和围绕在周围的黑色晶界区域组成;(c)图(a)A处位置的白色铝基体相的另外一个放大区域的TEM形貌图,其中α-Al基体尺寸为几百个nm左右;(d)图(c)小尺寸铝晶粒内弥散分布着硅颗粒,同时,在两个小尺寸铝晶粒间有虚线表示的共晶组织,共晶片间距为12nm左右。
图4强对流作用下铸造和传统铸造情况下的Al-7wt%Si合金拉伸工程应力应变曲线对比图。抗拉强度提升超过70%,延伸率提升了三倍以上。
图5强对流作用下铸造和传统铸造情况下的Al-7wt%Si合金断口形貌对比扫描图。(a)传统铸造Al-7wt%Si合金呈解理断裂,大片的解理面之间有撕裂棱相隔开;(b)强对流铸造制备的Al-7wt%Si合金解理面减少,拉伸断口出现韧窝。
具体实施方式:
下面通过示范性实施例详细描述本发明。需指出的是,本领域的技术人员很容易理解,以下实施例仅仅为以举例方式给出的关于本发明的方法的一些示范性实施例,并不意味着对本发明进行任何限制。
实施例1:
本文以Al-7wt%Si合金为例,研究金属凝固后得到纳米级和微米级混合的晶粒。将99.8%的工业纯铝和99.9%的工业纯硅放入图1中石墨坩埚中,中频感应加热炉熔炼,将炉腔抽真空到6.0×10-2Pa,充入高纯Ar气,炉腔保持0.04Mp的压力,将坩埚中的金属快速加热到1000℃后保温1小时,冷却至750℃,整个浇铸过程过热度保持在50℃-100℃之间,将合金液浇入预热至250℃的内部尺寸为70mm×80mm×110mm壁厚10mm的长方体石墨铸型中,为了防止金属液洒出,浇铸完成后对铸型加盖封闭,凝固过程中金属液过冷度可以为0.1℃-50℃。
定义图1和图2中设备参数:X=0mm,Y=0mm,Z=0mm,T=0°,M=0mm,六轴运动系统II(13)中R参数不是固定度数,而是连续旋转,R参数对应的圆盘半径为R1=150mm,R参数对应的圆盘转速n1=75rpm;六轴运动系统I(12)中R参数也不是固定度数,而是连续旋转,R参数对应的圆盘半径为R2=100mm,R参数对应的圆盘转速为n2=450rpm。合金液浇入铸型后进行15min的强对流处理,冷却后取出合金。强对流作用下Al-7wt%Si合金材料的横截面组织形貌扫描、Al-7wt%Si组织的透射照片、拉伸工程应力应变曲线及拉伸断口形貌分别如图3、图4、图5所示。可见,铸造Al-7wt%Si材料由纳米和微米混合晶粒组成。
实施例2:
以Al-7wt%Si合金为例,研究金属凝固后得到纳米级和微米级混合的晶粒。将99.8%的工业纯铝和99.9%的工业纯硅放入图1中石墨坩埚中,中频感应加热炉熔炼,将炉腔抽真空到6.0×10-2Pa,充入高纯Ar气,炉腔保持0.04Mp的压力,将坩埚中的金属快速加热到1000℃后保温1小时,冷却至750℃,整个浇铸过程过热度保持在50℃-100℃之间,将合金液浇入预热至250℃的内部尺寸为70mm×80mm×110mm壁厚10mm的长方体石墨铸型中,为了防止金属液洒出,浇铸完成后对铸型加盖封闭,凝固过程中金属液过冷度可以为0.1℃-50℃。
六轴运动系统II(13)中R参数不是固定度数,而是连续旋转,R参数对应的圆盘半径为R1=150mm,R参数对应的圆盘转速n1=100rpm;六轴运动系统I(12) 中R参数也不是固定度数,而是连续旋转,R参数对应的圆盘半径为R2=100mm,R参数对应的圆盘转速为n2=100rpm。合金液浇入铸型后进行15min的强对流处理,冷却后取出合金。
实施例3:
本文以Al-7wt%Si合金为例,研究金属凝固后得到纳米级和微米级混合的晶粒。将99.8%的工业纯铝和99.9%的工业纯硅放入图1中石墨坩埚中,中频感应加热炉熔炼,将炉腔抽真空到6.0×10-2Pa,充入高纯Ar气,炉腔保持0.04Mp的压力,将坩埚中的金属快速加热到1000℃后保温1小时,冷却至750℃,整个浇铸过程过热度保持在50℃-100℃之间,将合金液浇入预热至250℃的内部尺寸为70mm×80mm×110mm壁厚10mm的长方体石墨铸型中,为了防止金属液洒出,浇铸完成后对铸型加盖封闭,凝固过程中金属液过冷度可以为0.1℃-50℃。
六轴运动系统II(13)中R参数不是固定度数,而是连续旋转,R参数对应的圆盘半径为R1=150mm,R参数对应的圆盘转速n1=100rpm;六轴运动系统I(12)中R参数也不是固定度数,而是连续旋转,R参数对应的圆盘半径为R2=100mm,R参数对应的圆盘转速为n2=500rpm。合金液浇入铸型后进行15min的强对流处理,冷却后取出合金。

Claims (9)

  1. 一种铸造具有纳米和微米混合晶粒结构材料的装置,其特征是装置由舱体系统、熔炼系统、浇注系统、铸型、转动盘,联接轴I,联接轴II,中间联接座,联接轴III,联接轴IV,底部支撑座,六轴运动系统I,六轴运动系统II,离心桶组成;铸型设在离心桶之内,离心桶通过转动盘和联接轴I与六轴运动系统I相连;六轴运动系统I通过联接轴II、中间联接座、联接轴III与六轴运动系统II相连;六轴运动系统II通过联接轴IV固定在底部支撑座上;单个六轴运动系统的六轴运动基元分别对应六个电机,在电机控制下转动台进行六轴运动,即三种沿x、y、z方向的直线运动,转动台的旋转运动R,沿着垂直于转动盘方向的直线运动M以及转动盘的倾斜运动T,转动盘的倾斜角度用θ表示;实际中可根据需要选用六轴运动系统套数。
  2. 如权利要求1所述的铸造具有纳米和微米混合晶粒结构材料的装置,其特征在于,六轴运动基元系统的转动盘运动轨迹参数的取值范围:R=-180°—+180°,X=-2500mm—+2500mm,Y=-2500mm—+2500mm,Z=0—1000mm,T=-80°—+80°,M=0-1000mm。
  3. 如权利要求1所述的铸造具有纳米和微米混合晶粒结构材料的装置,其特征在于,两套六轴运动系统中距离R1=0-3000mm,R2=0-3000mm。
  4. 一种采用如权利要求1所述装置铸造具有纳米和微米混合晶粒结构材料的方法,其特征在于,包括以下步骤:
    (1)准备金属及合金坯料;
    (2)金属及合金放于熔炼系统的坩埚中,铸型放入离心桶中,铸型周围填充有耐火保温材料;
    (3)将坩埚中的金属加热到一定温度后保温,然后浇入到预热的铸型中;
    (4)驱动六轴运动系统,离心桶按设定的路径运动,然后冷却。
  5. 如权利要求4所述铸造具有纳米和微米混合晶粒结构材料的方法,其特征在于:针对不同的金属的成分,铸造浇铸过程中,需要控制过热度,铸造冷却过程中,需要控制过冷度,铸型放入设备中运动,金属液内部产生强的复合剪切流。
  6. 如权利要求4所述铸造具有纳米和微米混合晶粒结构材料的方法,其特征在于:适用的金属材料为镍、铝、铁、铜、钛;或者,金属材料为镍、铝、铁、 铜、钛的合金;或者,金属材料为钛铝、铁铝、镍铝金属间化合物。
  7. 如权利要求4所述铸造具有纳米和微米混合晶粒结构材料的方法,其特征在于:熔炼和铸造过程是在真空或非真空中进行的。
  8. 一种采用权利要求4所述铸造具有纳米和微米混合晶粒结构材料的方法生产多尺度块体纳米结构铸造铝硅合金,其特征在于:硅含量为2wt.%-12wt.%;铸造浇铸过程中,过热度控制在50℃-100℃之间;铸造冷却过程中,过冷度控制在0.1℃-50℃之间;铸型放入设备中运动,金属液内部产生强的复合剪切流;所形成的铝基体相的晶粒尺寸从10nm—5000nm,共晶硅相晶粒尺寸为10nm—10um。
  9. 如权利要求4所述生产多尺度块体纳米结构铸造铝硅合金的方法,其特征在于:铝基体相中大量弥散分布着第二相纳米硅颗粒,纳米硅颗粒尺寸为1nm—100nm之间。
PCT/CN2016/111355 2016-08-19 2016-12-21 一种铸造具有纳米和微米混合晶粒结构材料的装置和方法 WO2018032677A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/278,736 US10799948B2 (en) 2016-08-19 2019-02-19 Method and apparatus for casting a material comprising of nano-micro duplex grain structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610696626.X 2016-08-19
CN201610696626.XA CN106111950B (zh) 2016-08-19 2016-08-19 一种铸造具有纳米和微米混合晶粒结构材料的装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/278,736 Continuation US10799948B2 (en) 2016-08-19 2019-02-19 Method and apparatus for casting a material comprising of nano-micro duplex grain structure

Publications (1)

Publication Number Publication Date
WO2018032677A1 true WO2018032677A1 (zh) 2018-02-22

Family

ID=57280232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111355 WO2018032677A1 (zh) 2016-08-19 2016-12-21 一种铸造具有纳米和微米混合晶粒结构材料的装置和方法

Country Status (3)

Country Link
US (1) US10799948B2 (zh)
CN (1) CN106111950B (zh)
WO (1) WO2018032677A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106111950B (zh) * 2016-08-19 2018-05-01 北京科技大学 一种铸造具有纳米和微米混合晶粒结构材料的装置和方法
CN109460578B (zh) * 2018-10-12 2023-07-04 山东理工大学 一种非真离心力场作用下的数学建模方法
CN110538977B (zh) * 2019-09-17 2021-04-16 北京科技大学 一种减弱合金偏析的多维剪切流铸造装置和方法
CN114273645B (zh) * 2021-12-27 2024-03-29 山东康普锡威新材料科技有限公司 一种利用高频振动制备超细晶材料的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756911A2 (de) * 1995-08-02 1997-02-05 ALD Vacuum Technologies GmbH Verfahren und Vorrichtung zum Herstellen von Partikeln aus gerichtet erstarrten Gusskörpern
US20070077319A1 (en) * 2005-09-22 2007-04-05 Hon Hai Precision Industry Co., Ltd. Apparatus and method for making nanopowder
CN101487108A (zh) * 2008-12-05 2009-07-22 北京科技大学 一种纳米弥散相增强铜合金的制备方法
CN102330612A (zh) * 2011-10-13 2012-01-25 重庆大学 一种颗粒增强铝硅钛合金气缸套及其制备方法
CN103495720A (zh) * 2013-09-10 2014-01-08 北京科技大学 一种制备原位纳米颗粒强化q195钢的方法
CN105328169A (zh) * 2015-09-28 2016-02-17 扬中中科维康智能科技有限公司 一种六轴向多维振动铸造平台
CN106111950A (zh) * 2016-08-19 2016-11-16 北京科技大学 一种铸造具有纳米和微米混合晶粒结构材料的装置和方法
CN205927083U (zh) * 2016-08-19 2017-02-08 北京科技大学 一种铸造具有纳米和微米混合晶粒结构材料的装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE593804C (de) * 1932-03-13 1935-09-24 Julius Von Bosse Dr Verfahren zur Herstellung modellgetreuer Gussstuecke nach dem Schleuderverfahren, insbesondere fuer zahnaerztliche Zwecke
US2037618A (en) * 1934-05-31 1936-04-14 Webster I Carpenter Motor driven casting machine
US2961703A (en) * 1957-07-16 1960-11-29 Kimble Glass Co Centrifugal molding apparatus
JPS5949807B2 (ja) * 1978-08-11 1984-12-05 株式会社オハラ 衝撃式歯科遠心鋳造装置
CN102409188B (zh) * 2011-11-21 2014-08-13 南昌航空大学 离心激冷制备半固态合金的方法
CN203418111U (zh) * 2013-06-26 2014-02-05 连云港源钰金属制品有限公司 一种真空铸造设备
CN104772451B (zh) * 2015-04-29 2016-08-24 安徽理工大学 三平移一转动四自由度混联振动铸造机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756911A2 (de) * 1995-08-02 1997-02-05 ALD Vacuum Technologies GmbH Verfahren und Vorrichtung zum Herstellen von Partikeln aus gerichtet erstarrten Gusskörpern
US20070077319A1 (en) * 2005-09-22 2007-04-05 Hon Hai Precision Industry Co., Ltd. Apparatus and method for making nanopowder
CN101487108A (zh) * 2008-12-05 2009-07-22 北京科技大学 一种纳米弥散相增强铜合金的制备方法
CN102330612A (zh) * 2011-10-13 2012-01-25 重庆大学 一种颗粒增强铝硅钛合金气缸套及其制备方法
CN103495720A (zh) * 2013-09-10 2014-01-08 北京科技大学 一种制备原位纳米颗粒强化q195钢的方法
CN105328169A (zh) * 2015-09-28 2016-02-17 扬中中科维康智能科技有限公司 一种六轴向多维振动铸造平台
CN106111950A (zh) * 2016-08-19 2016-11-16 北京科技大学 一种铸造具有纳米和微米混合晶粒结构材料的装置和方法
CN205927083U (zh) * 2016-08-19 2017-02-08 北京科技大学 一种铸造具有纳米和微米混合晶粒结构材料的装置

Also Published As

Publication number Publication date
CN106111950A (zh) 2016-11-16
CN106111950B (zh) 2018-05-01
US20190176230A1 (en) 2019-06-13
US10799948B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
Zhu et al. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting
US10799948B2 (en) Method and apparatus for casting a material comprising of nano-micro duplex grain structure
Dehnavi et al. Effects of continuous and discontinuous ultrasonic treatments on mechanical properties and microstructural characteristics of cast Al413–SiCnp nanocomposite
Nie et al. Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration
CN105861886B (zh) 一种用于空调压缩机缸体的铝硅合金及其制备方法
Zhao et al. Microstructure and mechanical properties of rheo-diecasted A390 alloy
Tao et al. The effects of Er addition on the microstructure and properties of an in situ nano ZrB2-reinforced A356. 2 composite
Yan et al. Evolution of solidification structures and mechanical properties of high-Si Al alloys under permanent magnetic stirring
JP2011136370A (ja) アルミニウム基複合材料体の製造方法
Nie et al. Fabrication of SiC particles-reinforced magnesium matrix composite by ultrasonic vibration
Dong et al. Enhancement of mechanical properties in high silicon gravity cast AlSi9Mg alloy refined by Al3Ti3B master alloy
Gan et al. Super-gravity field assisted homogeneous distribution of sub-micron eutectic Si in Al–Si alloy
Xie et al. Nanoparticulate dispersion, microstructure refinement and strengthening mechanisms in Ni-coated SiCp/Al-Cu nanocomposites
Li et al. Fabrication of nano-SiC particulate reinforced Mg-8Al-1Sn composites by powder metallurgy combined with hot extrusion
Wang et al. Formation of Si nanoparticle in Al matrix for Al-7wt.% Si alloy during complex shear flow casting
Kannan et al. Advanced liquid state processing techniques for ex-situ discontinuous particle reinforced nanocomposites: A review
Heo et al. Investigating the micro-structures of A356 semi-solids based on electromagnetic stirring currents and crucible materials
WO2023241681A1 (zh) 一种铝合金添加剂及其制备方法和应用
Kumar et al. Artificial age hardening behavior of a squeeze cast CoCrFeMnNi high entropy alloy reinforced 6082-aluminium matrix composite
Yao et al. Role of in-situ nanocrystalline in solidification behaviors manipulation, microstructure refinement, and mechanical properties enhancement of Al-Cu4/Al-Mg1 alloys
Mohammadi Badizi et al. Effects of electromagnetic frequency and SiC nanoparticles on the microstructure refinement and mechanical properties of Al A357-1.5 wt% SiC nanocomposites
CN205927083U (zh) 一种铸造具有纳米和微米混合晶粒结构材料的装置
Mehta et al. Effects of amplitude of die vibration on cast structure of Al4. 5Cu alloy
Nouri et al. Mechanical properties enhancement of cast Al-8.5 Fe-1.3 V-1.7 Si (FVS0812) alloy by friction stir processing
Dar et al. Strength-Ductility Relationship of Squeezed In-Situ (ZrB2+ Al3Zr/Al2O3) Nanoparticles-Reinforced 6016Al Matrix Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913429

Country of ref document: EP

Kind code of ref document: A1