WO2018032669A1 - 基于毫米波成像的全方位安检系统 - Google Patents

基于毫米波成像的全方位安检系统 Download PDF

Info

Publication number
WO2018032669A1
WO2018032669A1 PCT/CN2016/110009 CN2016110009W WO2018032669A1 WO 2018032669 A1 WO2018032669 A1 WO 2018032669A1 CN 2016110009 W CN2016110009 W CN 2016110009W WO 2018032669 A1 WO2018032669 A1 WO 2018032669A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
wave array
antenna
array antenna
millimeter
Prior art date
Application number
PCT/CN2016/110009
Other languages
English (en)
French (fr)
Inventor
赵术开
祁春超
冯智辉
陈寒江
Original Assignee
华讯方舟科技有限公司
深圳市无牙太赫兹科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华讯方舟科技有限公司, 深圳市无牙太赫兹科技有限公司 filed Critical 华讯方舟科技有限公司
Priority to US16/326,305 priority Critical patent/US11125906B2/en
Publication of WO2018032669A1 publication Critical patent/WO2018032669A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging

Definitions

  • the invention relates to the field of millimeter wave detection, in particular to an omnidirectional security inspection system based on millimeter wave imaging.
  • active millimeter wave imaging transmits a certain power of millimeter wave signal to the object to be measured, receives the reflected signal of the measured object, and reconstructs the image information of the measured object, while passive millimeter wave imaging uses the millimeter wave radiometer to collect the heat of the measured object. Radiation or background scattering produces an image. Obviously, active millimeter wave imaging is less affected by environmental factors, and the amount of information obtained is larger and the image quality is better.
  • the current active millimeter wave imaging system is generally a planar structure, and the object to be measured can only be detected from a fixed angle to form a two-dimensional image of the object to be inspected for inspection by a staff member, such as emitting millimeters to the front of the human body. If the person has a violation in the hair or in the heel, it is very likely that the two-dimensional image formed will not show a clear image of the illegal item, and the security inspection device will not issue an alarm because the illegal item is not detected. , causing missed inspections.
  • the three-dimensional image of the object to be measured is generated by millimeter wave detection, and the object to be tested can be detected in all directions, so that simultaneous detection of humans and objects can be realized. Fast, accurate and low cost.
  • a comprehensive security inspection system based on millimeter wave imaging including:
  • Support frame including multiple faces
  • a millimeter wave transmit link for generating a millimeter wave transmit signal
  • a plurality of millimeter wave array antennas disposed on different faces of the support frame for transmitting the millimeter wave transmission signals from different angles to the object to be measured, and receiving echo signals reflected from the object to be measured;
  • a millimeter wave receiving link for processing the echo signal and converting the echo signal into image data of the measured object
  • an image processing module configured to generate a three-dimensional image of the measured object according to the image data.
  • the plurality of faces of the support frame include a bottom surface, a top surface, a first side surface, and a second side surface, each of which is respectively provided with an antenna substrate, and the first side surface and the second side surface are two
  • the plurality of millimeter wave array antennas include a first millimeter wave array antenna disposed on the antenna substrate of the first side, a second millimeter wave array antenna disposed on the antenna substrate of the second side, a third millimeter wave array antenna disposed on the antenna substrate of the top surface and a fourth millimeter wave array antenna disposed on the antenna substrate of the bottom surface, the millimeter wave transmission link and the millimeter wave receiving link
  • Four sets of millimeter wave transceiver links are formed, and each set of millimeter wave transceiver links is respectively disposed on the antenna substrate on each side of the support frame.
  • the method further includes a driving device, a motion control module and a plurality of rails, each of the rails being respectively disposed on one surface of the supporting frame, and each antenna substrate is respectively disposed on a rail, the motion control module And an antenna substrate for controlling the driving device to drive the plurality of millimeter wave array antennas to move along the guide rail.
  • the guide rail of the bottom surface and the guide rail of the top surface are parallel to each other, and the guide rail of the first side surface and the guide rail of the second side surface are parallel to each other.
  • the motion control module is further configured to control an antenna substrate where the first millimeter wave array antenna and the second millimeter wave array antenna are located to move in the reverse direction along the rail, and control the third The antenna substrate in which the millimeter wave array antenna and the fourth millimeter wave array antenna are located moves in the opposite direction along the guide rail.
  • the motion control module is further configured to control an antenna substrate where the first millimeter wave array antenna and the second millimeter wave array antenna are located to sequentially move along the guide rail, and control the first The antenna substrates on which the three millimeter wave array antenna and the fourth millimeter wave array antenna are located are sequentially moved along the guide rails.
  • a plurality of millimeter wave array switches are further connected in one-to-one correspondence with the plurality of millimeter wave array antennas for controlling on and off of each of the plurality of millimeter wave array antennas.
  • the method further includes a scan control module, configured to sequentially transmit the millimeter wave transmit signals by the plurality of millimeter wave array switches at a preset timing, or sequentially receive the plurality of millimeter wave array switches An echo signal reflected from the measured object.
  • a scan control module configured to sequentially transmit the millimeter wave transmit signals by the plurality of millimeter wave array switches at a preset timing, or sequentially receive the plurality of millimeter wave array switches An echo signal reflected from the measured object.
  • the scan control module is further configured to control upper and lower millimeter wave array antennas formed by the first millimeter wave array antenna and the second millimeter wave array antenna, and the third millimeter wave array antenna and The left and right millimeter wave array antenna formed by the four millimeter wave array antenna transmits the millimeter wave transmission signal according to a preset time difference and receives the echo signal.
  • a display is further included for displaying the three-dimensional image.
  • an alarm module is further included for issuing an alarm reminder when the omnidirectional security system detects that the object to be tested is carrying a dangerous item.
  • the above-mentioned omnidirectional security inspection system based on millimeter wave imaging is provided with a millimeter wave antenna array on each surface of a support frame including a plurality of faces, and transmits a millimeter wave transmission signal to different angles of the object to be measured, and receives the signal from the object to be measured
  • the echo signal reflected from different angles is processed by the millimeter wave receiving link to obtain image data of the measured object, and a three-dimensional image of the measured object is obtained according to the image data;
  • Azimuth detection can detect people and objects at the same time, which is convenient and fast, and has high accuracy.
  • FIG. 1 is a system structural diagram of an omnidirectional security inspection system based on millimeter wave imaging in an embodiment
  • FIG. 2 is a circuit configuration diagram of an omnidirectional security inspection system based on millimeter wave imaging in another embodiment.
  • FIG. 1 is a system structural diagram of an omnidirectional security inspection system based on millimeter wave imaging in an embodiment
  • FIG. 2 is a circuit configuration diagram of an omnidirectional security inspection system based on millimeter wave imaging in another embodiment.
  • the omnidirectional security inspection system based on millimeter wave imaging includes a support frame 10, a millimeter wave transmission link 20, a plurality of millimeter wave array antennas 21, a millimeter wave reception link 22, and an image processing module 23.
  • the support frame 10 includes a plurality of faces, respectively a bottom surface, a top surface, a first side surface, and a second side surface.
  • the support frame 10 may be a rectangular parallelepiped frame in which the bottom surface and the top surface are parallel, and the first side surface and the second side surface are opposite sides and are parallel to each other.
  • the millimeter wave transmit link 20 is used to generate a millimeter wave transmit signal.
  • the millimeter wave transmit link 20 includes a first signal source, a first directional coupler, a first power amplifier, and a double frequency multiplier, an output of the first signal source coupled to an input of the first directional coupler And a through end of the first directional coupler is connected to an input end of the first power amplifier, and the double frequency doubler is connected between an output end of the first power amplifier and a transmitting antenna.
  • the millimeter wave signal emitted by the millimeter wave transmitting link 20 is a linear frequency modulated continuous wave, and the frequency range thereof is 20 GHz to 40 GHz, which can accurately detect the object to be tested.
  • a plurality of millimeter wave array antennas 21 are disposed on different faces of the support frame 10, and each of the millimeter wave array antennas is respectively disposed on one face of the support frame 10 for transmitting the same to the object to be measured from different angles.
  • the millimeter wave transmits a signal and receives an echo signal reflected from the object to be measured.
  • An antenna substrate 12 is disposed on each of four faces of the support frame 10, and the plurality of millimeter wave array antennas 21 include a first millimeter wave array antenna 211 disposed on the antenna substrate 12 of the first side, and are disposed in the first a second millimeter wave array antenna 212 on the antenna substrate 12 of the two sides, a third millimeter wave array antenna 213 disposed on the antenna substrate 12 of the top surface, and a fourth millimeter disposed on the antenna substrate 12 of the bottom surface
  • the wave array antenna 214, the millimeter wave transmitting link 20 and the millimeter wave receiving link 22 form four sets of millimeter wave transceiver links, each set of millimeter wave transceiver links being disposed on each side of the support frame 10 On the antenna substrate 12.
  • Each millimeter wave array antenna includes a plurality of transmitting antennas and a plurality of receiving antennas.
  • the millimeter wave receiving link 22 is for processing the echo signal and converting the echo signal into image data of the object under test.
  • the millimeter wave receiving link 22 includes a second signal source, a second directional coupler, a first mixer, a second mixer, a third mixer, a second power amplifier, a third power amplifier, and a first two a frequency multiplier, a second frequency doubler and a low noise amplifier;
  • the second signal source is connected to the input end of the second directional coupler, and the output end of the second directional coupler is connected to the intermediate frequency end of the first mixer, first
  • the local oscillator end of the mixer is connected to the input end of the second power amplifier, the RF end of the first mixer is connected to the coupling end of the first directional coupler, and the output end of the second power amplifier is connected to the first double frequency multiplier
  • the output end of the first double frequency multiplier is connected to the local oscillator end of the second mixer, the radio frequency end of the second mixer is connected to the receiving antenna,
  • the millimeter wave receiving link 22 performs the down conversion of the received echo signal twice and sends it to the image processing module 23, which reduces the difficulty of the post image processing, so as to better establish a three-dimensional image of the measured object, after the above millimeter
  • the echo signal processed by the transmit transmit link 22 eliminates the problem of phase non-synchronization caused by the introduction of non-coherent dual signal sources in the millimeter wave transmit and receive link.
  • the image processing module 23 is configured to generate a three-dimensional image of the measured object according to the image data.
  • the image processing module 23 receives the image data obtained by the millimeter wave receiving link 22, performs Fourier transform on the image data based on the geometric features of the measured object, and then performs inverse Fourier transform to construct the measured object. Three-dimensional image.
  • the object to be measured may be a person and/or an object, and the millimeter wave array antenna is directed from the upper, lower, left and right sides of the object to be measured, or up and down four angles.
  • the millimeter wave detection signal is detected to detect the three-dimensional information of the object to be measured, and the object to be tested passes through the omnidirectional security inspection system to form a three-dimensional image thereof, and the security personnel can check whether the object to be tested carries according to the three-dimensional image.
  • Dangerous goods, clear and intuitive, no dead angle improve the accuracy of security inspection, convenient and fast, and the omnidirectional security inspection system is simple in structure, does not require complex control algorithms to achieve, low cost and practicality.
  • the omnidirectional security system further includes a driving device 25, a motion control module 24, and a plurality of guide rails 11, each of which is disposed on one face of the support frame 10, respectively.
  • a guide rail 11 is disposed, and each of the antenna substrates 12 is disposed on a rail 11 respectively.
  • the motion control module 24 is configured to control the driving device 25 to drive the antenna substrate 12 where the plurality of millimeter wave array antennas 21 are located.
  • the guide rail 11 moves.
  • the driving device 25 may be a driving motor having four driving motors for driving the four millimeter wave array antennas to move along the guide rail 11 on which they are located.
  • the guide rail 11 of the bottom surface and the guide rail 11 of the top surface are parallel to each other, and the guide rail 11 of the first side and the guide rail 11 of the second side are parallel to each other.
  • the plurality of millimeter wave array antennas 21 may be fixedly disposed on the side of the support frame 10.
  • the millimeter wave array antennas disposed on the respective sides of the support frame 10 may be acquired at one time.
  • the image data of the object corresponding to the angle is measured, thereby constructing the three-dimensional image thereof, and the movement of the millimeter wave array antenna is not required by the driving device, and the imaging is performed once, which can improve the efficiency of the security inspection.
  • the motion control module 24 is further configured to control the antenna substrate 12 where the first millimeter wave array antenna 211 and the second millimeter wave array antenna 212 are located to move in the reverse direction along the guide rail 11, and
  • the antenna substrate 12 on which the third millimeter wave array antenna 213 and the fourth millimeter wave array antenna 214 are located is controlled to move in the reverse direction along the guide rail 11. Controlling the reverse movement of the millimeter wave array antenna disposed in the opposite direction can reduce the interference when the millimeter wave array antenna transmits and receives signals.
  • the first millimeter wave array antenna 211 emits a millimeter wave signal from the right side to the object to be measured
  • the second millimeter The wave array antenna 212 transmits a millimeter wave signal from the left side to the object to be measured. If the two signals are simultaneously emitted from the opposite position, the received echo signal may be doped with the other party's transmitted signal and/or echo signal. If the millimeter wave array antennas in opposite directions move in the opposite direction, the two millimeter wave array antennas will only face each other for a short period of time, and the interference of the signals transmitted and received by each other is small.
  • the motion control module 24 is further configured to control the antenna substrate 12 where the first millimeter wave array antenna 211 and the second millimeter wave array antenna 212 are located to sequentially move along the guide rail 11 in sequence. And the antenna substrate 12 on which the third millimeter wave array antenna 213 and the fourth millimeter wave array antenna 214 are located are sequentially moved along the guide rails 11. Similarly, if the millimeter wave array antennas in the opposite direction move in the same direction in the same order, the two millimeter wave array antennas will not be in the right position, and the interference of the signals transmitted and received by each other is small, which improves the imaging quality of the omnidirectional security inspection system.
  • the omnidirectional security system further includes a plurality of millimeter wave array switches 26 connected in one-to-one correspondence with the plurality of millimeter wave array antennas 21 for controlling the plurality of millimeter wave array antennas 21 Each antenna is turned on and off.
  • Each millimeter wave array switch 26 includes a plurality of switches, each of which is connected in one-to-one correspondence with each of the millimeter wave arrays.
  • the omnidirectional security system further includes a scan control module 27 for causing the plurality of millimeter wave array antennas 21 to sequentially emit the plurality of millimeter wave array antennas 21 by a predetermined timing by controlling the plurality of millimeter wave array switches 26.
  • the millimeter wave transmits a signal, or sequentially receives an echo signal reflected from the object to be measured.
  • the scan control module 27 is further configured to control upper and lower millimeter wave array antennas formed by the first millimeter wave array antenna 211 and the second millimeter wave array antenna 212, and the third millimeter wave array
  • the left and right millimeter wave array antennas formed by the antenna 213 and the fourth millimeter wave array antenna 214 transmit the millimeter wave transmission signal and receive the echo signal according to a preset time difference.
  • the image information of the object to be measured from the upper and lower angles and the operation of acquiring the image information of the object to be measured are separated by a certain time difference, that is, up and down
  • the millimeter wave array antenna and the left and right millimeter wave array antennas transmit and receive signals at different times, and the two also transmit and receive signals according to a preset time difference by scanning, thereby improving the imaging quality of the three-dimensional image of the object under test.
  • the omnidirectional security system further includes a display 28 for displaying the three-dimensional image for viewing by security personnel.
  • the omnidirectional security system further includes an alarm module 29 for issuing an alarm reminder when the omnidirectional security system detects that the object to be tested is carrying a dangerous item.
  • the security device can work in two modes of operation:
  • the mode can also be set in the mode.
  • the corresponding judgment algorithm is given by the software to indicate the suspicious area for the security personnel to refer to.
  • a plurality of millimeter wave antenna arrays 21 are disposed on the support frame 10, and the millimeter wave transmission signals are transmitted to different angles of the object to be measured, and the echo signals reflected from different angles of the object to be measured are received, and
  • the millimeter wave receiving link 22 processes the echo signal to obtain image data of the measured object, and obtains a three-dimensional image of the measured object according to the image data, wherein the millimeter wave array antenna can be moved along the guide rail 11 by the motor.
  • the object to be measured may be three-dimensionally imaged by increasing the number of antennas.
  • the scanning control module 17 controls a plurality of millimeter wave array antennas. Between 21, between the transmitting antennas in the same millimeter wave array antenna, and between the receiving antennas to transmit and receive information according to a certain timing, reduce interference between signals, improve the quality of three-dimensional imaging, and display the imaging results.
  • an alarm reminder is sent through the alarm module 29; the omnidirectional security system While a full range of detection of the measured object, and the object of detection achieved, convenient, high accuracy, low cost simple structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种基于毫米波成像的全方位安检系统,包括支撑框架(10),该支撑框架(10)包括多个面、用于产生毫米波发射信号的毫米波发射链路(20)、多个毫米波阵列天线(21)、毫米波接收链路(22)和图像处理模块(23),所述毫米波阵列天线(21)设置在所述支撑框架(10)的不同面上,用于从不同角度向被测对象发射所述毫米波发射信号,并接收从所述被测对象反射回来的回波信号;通过在包括多个面的支撑框架(10)的每个面上设置毫米波阵列天线(21),向被测对象的不同角度发射毫米波发射信号,并接收从被测对象的不同角度反射回来的回波信号,从而该构建被测物体的三维图像,可以实现被测对象的全方位检测,可以对人和物同时进行检测,方便快捷,准确度高。

Description

基于毫米波成像的全方位安检系统
【技术领域】
本发明涉及毫米波检测领域,特别是涉及一种基于毫米波成像的全方位安检系统。
【背景技术】
在毫米波探测技术领域,有主动式毫米波成像和被动式毫米波成像。主动式毫米波成像通过发射一定功率的毫米波信号于被测对象,接收被测对象反射信号,重建被测对象的图像信息,而被动式毫米波成像是利用毫米波辐射计采集被测对象的热辐射或者背景散射生成图像。显然,主动式毫米波成像受环境因素影响更小,获得的信息量更大,图像质量较好。
但是,目前的主动式毫米波成像系统一般为平面式结构,只能从一个固定的角度对被测对象进行检测,形成被测对象的二维图像供工作人员检查,如向人体的正面发射毫米波进行安检,若这个人在头发里或者鞋跟中藏有违规物品,很有可能形成的二维图像中无法显示出违规物品的清晰图像,并由于未探测到违规物品安检设备不发出报警提醒,造成漏检。
【发明内容】
基于此,有必要提供一种基于毫米波成像的全方位安检系统,通过毫米波探测生成被测对象的三维图像,对被测对象进行全方位的检测,可以实现人和物的同时检测,方便快捷、准确度高、成本低。
一种基于毫米波成像的全方位安检系统,包括:
支撑框架,包括多个面;
毫米波发射链路,用于产生毫米波发射信号;
多个毫米波阵列天线,设置在所述支撑框架的不同面上,用于从不同角度向被测对象发射所述毫米波发射信号,并接收从所述被测对象反射回来的回波信号;
毫米波接收链路,用于处理所述回波信号,并将所述回波信号转化为所述被测对象的图像数据;
图像处理模块,用于根据所述图像数据生成所述被测对象的三维图像。
在其中一个实施例中,所述支撑框架的多个面包括底面、顶面、第一侧面和第二侧面,每个面上分别设置有天线基板,所述第一侧面和第二侧面为两相对侧面,所述多个毫米波阵列天线包括设置在所述第一侧面的天线基板上的第一毫米波阵列天线、设置在所述第二侧面的天线基板上的第二毫米波阵列天线、设置在所述顶面的天线基板上的第三毫米波阵列天线和设置在所述底面的天线基板上的第四毫米波阵列天线,所述毫米波发射链路和所述毫米波接收链路形成四组毫米波收发链路,每组毫米波收发链路分别设置在所述支撑框架每个面的天线基板上。
在其中一个实施例中,还包括驱动设备、运动控制模块和多个导轨,每个导轨分别设置在所述支撑框架的一个面上,各天线基板分别设置在一个导轨上,所述运动控制模块用于控制所述驱动设备带动所述多个毫米波阵列天线所在的天线基板沿着所述导轨运动。
在其中一个实施例中,所述底面的导轨和所述顶面的导轨相互平行,所述第一侧面的导轨和第二侧面的导轨相互平行。
在其中一个实施例中,所述运动控制模块还用于控制所述第一毫米波阵列天线和第二毫米波阵列天线所在的天线基板沿着所述导轨反向运动,以及控制所述第三毫米波阵列天线和第四毫米波阵列天线所在的天线基板沿着所述导轨反向运动。
在其中一个实施例中,所述运动控制模块还用于控制所述第一毫米波阵列天线和第二毫米波阵列天线所在的天线基板沿着所述导轨按照先后顺序运动,以及控制所述第三毫米波阵列天线和第四毫米波阵列天线所在的天线基板沿着所述导轨按照先后顺序运动。
在其中一个实施例中,还包括多个毫米波阵列开关,与所述多个毫米波阵列天线一一对应连接,用于控制所述多个毫米波阵列天线中每个天线的接通和关断。
在其中一个实施例中,还包括扫描控制模块,用于通过控制所述多个毫米波阵列开关使得所述多个毫米波阵列天线按预设时序依次发射所述毫米波发射信号,或依次接收从所述被测对象反射回来的回波信号。
在其中一个实施例中,所述扫描控制模块还用于控制所述第一毫米波阵列天线和第二毫米波阵列天线形成的上下毫米波阵列天线,与所述第三毫米波阵列天线和第四毫米波阵列天线形成的左右毫米波阵列天线按照预设时差发射所述毫米波发射信号和接收所述回波信号。
在其中一个实施例中,还包括显示器,用于显示所述三维图像。
在其中一个实施例中,还包括报警模块,用于在所述全方位安检系统检测出所述被测对象夹带有危险物品时发出报警提醒。
上述基于毫米波成像的全方位安检系统,在包括多个面的支撑框架的每个面上设置毫米波天线阵列,向被测对象的不同角度发射毫米波发射信号,并接收从被测对象的不同角度反射回来的回波信号,由毫米波接收链路对该回波信号进行处理得到被测对象的图像数据,并根据该图像数据得到被测物体的三维图像;可以实现被测对象的全方位检测,可以对人和物同时进行检测,方便快捷,准确度高。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是一实施例中基于毫米波成像的全方位安检系统的系统结构图;
图2是另一实施例中基于毫米波成像的全方位安检系统的电路结构图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参见图1和图2,图1是一实施例中基于毫米波成像的全方位安检系统的系统结构图,图2是另一实施例中基于毫米波成像的全方位安检系统的电路结构图。
在本实施例中该基于毫米波成像的全方位安检系统,包括支撑框架10、毫米波发射链路20、多个毫米波阵列天线21、毫米波接收链路22和图像处理模块23。
支撑框架10包括多个面,分别为底面、顶面、第一侧面和第二侧面。该支撑框架10可以为长方体框架,其中,底面和顶面平行,第一侧面和第二侧面为两相对侧面,互相平行。
毫米波发射链路20用于产生毫米波发射信号。该毫米波发射链路20包括第一信号源、第一定向耦合器、第一功率放大器和二倍频器,所述第一信号源的输出端连接所述第一定向耦合器的输入端,所述第一定向耦合器的直通端连接所述第一功率放大器的输入端,所述二倍频器连接在所述第一功率放大器的输出端和发射天线之间。该毫米波发射链路20发出的毫米波信号为线性调频连续波,其频率范围为20GHz~40GHz,可以实现被测对象的准确检测。
多个毫米波阵列天线21设置在所述支撑框架10的不同面上,每个毫米波阵列天线分别设置在所述支撑框架10的一个面上,用于从不同角度向被测对象发射所述毫米波发射信号,并接收从所述被测对象反射回来的回波信号。
在支撑框架10的四个面上分别设置有天线基板12,多个毫米波阵列天线21包括设置在所述第一侧面的天线基板12上的第一毫米波阵列天线211、设置在所述第二侧面的天线基板12上的第二毫米波阵列天线212、设置在所述顶面的天线基板12上的第三毫米波阵列天线213和设置在所述底面的天线基板12上的第四毫米波阵列天线214,所述毫米波发射链路20和所述毫米波接收链路22形成四组毫米波收发链路,每组毫米波收发链路分别设置在所述支撑框架10每个面的天线基板12上。
每个毫米波阵列天线包括多个发射天线和多个接收天线。
毫米波接收链路22用于处理所述回波信号,并将所述回波信号转化为所述被测对象的图像数据。该毫米波接收链路22包括第二信号源、第二定向耦合器、第一混频器、第二混频器、第三混频器、第二功率放大器、第三功率放大器、第一二倍频器、第二二倍频器和低噪声放大器组成;第二信号源连接第二定向耦合器的输入端,第二定向耦合器的输出端连接第一混频器的中频端,第一混频器的本振端连接第二功率放大器的输入端,第一混频器的射频端连接第一定向耦合器的耦合端,第二功率放大器的输出端连接第一二倍频器的输入端,第一二倍频器的输出端连接第二混频器的本振端,第二混频器的射频端连接接收天线,第二混频器的中频端连接第三混频器的射频端,第二定向耦合器的耦合端连接第三功率放大器的输入端,第三功率放大器的输出端连接第二二倍频器的输入端,第二二倍频器的输出端连接第三混频器的本振端,第二二倍频器的中频端连接低噪声放大器的输入端,低噪声放大器的输出端连接图像处理模块。
上述毫米波接收链路22对接收的回波信号进行两次下变频后发送给图像处理模块23,减小了后期图像处理的难度,以便更好的建立被测对象的三维图像,经过上述毫米波收发射链路22处理后的回波信号消除了毫米波收发链路中非相干双信号源的引入带来的相位不同步的问题。
图像处理模块23,用于根据所述图像数据生成所述被测对象的三维图像。图像处理模块23接收到毫米波接收链路22处理后得到的图像数据,对该图像数据进行基于被测对象几何特征的傅里叶变换,然后进行傅里叶逆变换,从而构建被测对象的三维图像。
在利用上述全方位安检系统对被测对象进行安全检测的过程中,该被测对象可以是人和/或物品,毫米波阵列天线从被测对象的上下左右,或上下前后四个角度向其发射毫米波探测信号对其进行检测,可以充分获取被测对象的三维信息,被测对象经过该全方位安检系统后,形成其三维图像,安检人员可以根据上述三维图像检查被测对象是否携带有危险物品,清晰直观无死角,提高了安检的准确度,方便快捷,且该全方位安检系统结构简单,不需要复杂的控制算法来实现,成本低廉,实用性强。
在其中一个实施例中,该全方位安检系统还包括驱动设备25、运动控制模块24和多个导轨11,每个导轨11分别设置在所述支撑框架10的一个面上,四个面上分别设置有一个导轨11,上述各天线基板12分别设置在一个导轨11上,所述运动控制模块24用于控制所述驱动设备25带动所述多个毫米波阵列天线21所在的天线基板12沿着所述导轨11运动。该驱动设备25可以为驱动电机,该驱动电机有四个,分别用于驱动上述四个毫米波阵列天线沿其所在的导轨11运动。
在其中一个实施例中,底面的导轨11和所述顶面的导轨11相互平行,第一侧面的导轨11和第二侧面的导轨11相互平行。
此外,上述多个毫米波阵列天线21可以固定设置在支撑框架10的侧面上,通过增加发射天线和接收天线的个数,使得设置在支撑框架10各个侧面的毫米波阵列天线可以一次性获取被测对象对应角度的图像数据,从而构建其三维图像,无需驱动设备控制毫米波阵列天线运动,一次成像,可以提高安检的效率。
在其中一个实施例中,所述运动控制模块24还用于控制所述第一毫米波阵列天线211和第二毫米波阵列天线212所在的天线基板12沿着所述导轨11反向运动,以及控制所述第三毫米波阵列天线213和第四毫米波阵列天线214所在的天线基板12沿着所述导轨11反向运动。控制设置在相对方向的毫米波阵列天线反向运动,可以减少毫米波阵列天线收发信号时的干扰,例如,第一毫米波阵列天线211从右侧向被测对象发射毫米波信号,第二毫米波阵列天线212从左侧向被测对象发射毫米波信号,若这两个信号同时从正对的位置发出,其接收的回波信号可能会掺杂有对方的发射信号和/或回波信号,若相对方向的毫米波阵列天线反向运动,这两个毫米波阵列天线只有一个短暂的时间会正对,彼此收发信号的干扰小。
在其中一个实施例中,所述运动控制模块24还用于控制所述第一毫米波阵列天线211和第二毫米波阵列天线212所在的天线基板12沿着所述导轨11按照先后顺序运动,以及控制所述第三毫米波阵列天线213和第四毫米波阵列天线214所在的天线基板12沿着所述导轨11按照先后顺序运动。同样的,若相对方向的毫米波阵列天线按照先后顺序同向运动,这两个毫米波阵列天线不会处于正对位置,彼此收发信号的干扰小,提高了该全方位安检系统的成像质量。
在其中一个实施例中,该全方位安检系统还包括多个毫米波阵列开关26,与所述多个毫米波阵列天线21一一对应连接,用于控制所述多个毫米波阵列天线21中每个天线的接通和关断。每个毫米波阵列开关26包括多个开关,每个开关与毫米波阵列中的每个天线一一对应连接。
在其中一个实施例中,该全方位安检系统还包括扫描控制模块27,用于通过控制所述多个毫米波阵列开关26使得所述多个毫米波阵列天线21按预设时序依次发射所述毫米波发射信号,或依次接收从所述被测对象反射回来的回波信号。通过扫描的方式控制每个毫米波阵列天线发射和接收信号,减小了同一个毫米波阵列天线上的多个发射天线或多个接收天线在收发信号过程中的干扰,提高了成像的质量。
在其中一个实施例中,所述扫描控制模块27还用于控制所述第一毫米波阵列天线211和第二毫米波阵列天线212形成的上下毫米波阵列天线,与所述第三毫米波阵列天线213和第四毫米波阵列天线214形成的左右毫米波阵列天线按照预设时差发射所述毫米波发射信号和接收所述回波信号。为了减小全方位检测过程中不同的毫米波阵列天线之间收发信号的干扰,使得从上下角度采集被测对象图像信息和从前后采集被测对象图像信息的操作之间相隔一定时差,即上下毫米波阵列天线和左右毫米波阵列天线不同时收发信号,二者也是通过扫描的方式按照预设时差收发信号,提高被测对象三维图像的成像的质量。
在其中一个实施例中,该全方位安检系统还包括显示器28,用于显示所述三维图像,以供安检人员查看。
在其中一个实施例中,该全方位安检系统还包括报警模块29,用于在所述全方位安检系统检测出所述被测对象夹带有危险物品时发出报警提醒。
该安检设备可以工作在两种工作模式下:
a.当对人体进行安检时,若通过上述安检设备检测到该人体携带有危险物品,发出报警提醒;
b.当对物品进行安检时,若通过上述安检设备检测到该物品内藏有危险物品,不发出报警提醒,由安检人员通过显示器19的图像进行判断;同时,在该模式下也可以设定相应的判断算法由软件给出可疑区域的标注供安检人员参考。
上述全方位安检系统,在支撑框架10上设置多个毫米波天线阵列21,向被测对象的不同角度发射毫米波发射信号,并接收从被测对象的不同角度反射回来的回波信号,由毫米波接收链路22对该回波信号进行处理得到被测对象的图像数据,并根据该图像数据得到被测物体的三维图像,其中,该毫米波阵列天线可以通过电机带动沿导轨11运动,以实现被测对象的全方位检测,也可以通过增加天线个数固定设置对被测对象一次三维成像,在对被测对象进行检测的过程中,由扫描控制模块17控制多个毫米波阵列天线21之间、同一个毫米波阵列天线中的发射天线之间、接收天线之间按照一定的时序收发信息,减小信号之间的干扰,提高三维成像的质量,并对成像结果进行显示,在检测到被测对象中携带有危险物品时通过报警模块29发出报警提醒;该全方位安检系统可以对被测对象进行全方位的检测,实现人和物的同时检测,方便快捷,准确度高、结构简单成本低。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种基于毫米波成像的全方位安检系统,其特征在于,包括:
    支撑框架,包括多个面;
    毫米波发射链路,用于产生毫米波发射信号;
    多个毫米波阵列天线,设置在所述支撑框架的不同面上,用于从不同角度向被测对象发射所述毫米波发射信号,并接收从所述被测对象反射回来的回波信号;
    毫米波接收链路,用于处理所述回波信号,并将所述回波信号转化为所述被测对象的图像数据;
    图像处理模块,用于根据所述图像数据生成所述被测对象的三维图像。
  2. 根据权利要求1所述的全方位安检系统,其特征在于,所述支撑框架的多个面包括底面、顶面、第一侧面和第二侧面,每个面上分别设置有天线基板,所述第一侧面和第二侧面为两相对侧面,所述多个毫米波阵列天线包括设置在所述第一侧面的天线基板上的第一毫米波阵列天线、设置在所述第二侧面的天线基板上的第二毫米波阵列天线、设置在所述顶面的天线基板上的第三毫米波阵列天线和设置在所述底面的天线基板上的第四毫米波阵列天线,所述毫米波发射链路和所述毫米波接收链路形成四组毫米波收发链路,每组毫米波收发链路分别设置在所述支撑框架每个面的天线基板上。
  3. 根据权利要求2所述的全方位安检系统,其特征在于,还包括驱动设备、运动控制模块和多个导轨,每个导轨分别设置在所述支撑框架的一个面上,各天线基板分别设置在一个导轨上,所述运动控制模块用于控制所述驱动设备带动所述多个毫米波阵列天线所在的天线基板沿着所述导轨运动。
  4. 根据权利要求3所述的全方位安检系统,其特征在于,所述底面的导轨和所述顶面的导轨相互平行,所述第一侧面的导轨和第二侧面的导轨相互平行。
  5. 根据权利要求3所述的全方位安检系统,其特征在于,所述运动控制模块还用于控制所述第一毫米波阵列天线和第二毫米波阵列天线所在的天线基板沿着所述导轨反向运动,以及控制所述第三毫米波阵列天线和第四毫米波阵列天线所在的天线基板沿着所述导轨反向运动。
  6. 根据权利要求3所述的全方位安检系统,其特征在于,所述运动控制模块还用于控制所述第一毫米波阵列天线和第二毫米波阵列天线所在的天线基板沿着所述导轨按照先后顺序运动,以及控制所述第三毫米波阵列天线和第四毫米波阵列天线所在的天线基板沿着所述导轨按照先后顺序运动。
  7. 根据权利要求2所述的全方位安检系统,其特征在于,还包括多个毫米波阵列开关,与所述多个毫米波阵列天线一一对应连接,用于控制所述多个毫米波阵列天线中每个天线的接通和关断。
  8. 根据权利要求7所述的全方位安检系统,其特征在于,还包括扫描控制模块,用于通过控制所述多个毫米波阵列开关使得所述多个毫米波阵列天线按预设时序依次发射所述毫米波发射信号,或依次接收从所述被测对象反射回来的回波信号。
  9. 根据权利要求8所述的全方位安检系统,其特征在于,所述扫描控制模块还用于控制所述第一毫米波阵列天线和第二毫米波阵列天线形成的上下毫米波阵列天线,与所述第三毫米波阵列天线和第四毫米波阵列天线形成的左右毫米波阵列天线按照预设时差发射所述毫米波发射信号和接收所述回波信号。
  10. 根据权利要求1所述的全方位安检系统,其特征在于,还包括显示器,用于显示所述三维图像。
  11. 根据权利要求1所述的全方位安检系统,其特征在于,还包括报警模块,用于在所述全方位安检系统检测出所述被测对象夹带有危险物品时发出报警提醒。
PCT/CN2016/110009 2016-08-18 2016-12-15 基于毫米波成像的全方位安检系统 WO2018032669A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/326,305 US11125906B2 (en) 2016-08-18 2016-12-15 Millimeter wave imaging-based omni-directional security detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610686275.4 2016-08-18
CN201610686275.4A CN106291732B (zh) 2016-08-18 2016-08-18 基于毫米波成像的全方位安检系统

Publications (1)

Publication Number Publication Date
WO2018032669A1 true WO2018032669A1 (zh) 2018-02-22

Family

ID=57679966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110009 WO2018032669A1 (zh) 2016-08-18 2016-12-15 基于毫米波成像的全方位安检系统

Country Status (3)

Country Link
US (1) US11125906B2 (zh)
CN (1) CN106291732B (zh)
WO (1) WO2018032669A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459792A (zh) * 2018-04-11 2019-03-12 清华大学 场景监控式毫米波扫描成像系统和安全检查方法
WO2020023673A1 (en) 2018-07-24 2020-01-30 Smiths Interconnect, Inc. Standoff detection system
EP3674748A1 (en) * 2018-12-28 2020-07-01 Nuctech Company Limited Millimeter wave security check gate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799538A (zh) * 2018-12-29 2019-05-24 清华大学 安检设备及其控制方法
CN109597140A (zh) * 2019-01-23 2019-04-09 齐鲁工业大学 双平板扫描毫米波人体安检系统
US11308712B2 (en) * 2019-03-29 2022-04-19 Board Of Trustees Of Michigan State University Imaging system using WiFi signals
CN110275219A (zh) * 2019-05-23 2019-09-24 深圳市华讯方舟太赫兹科技有限公司 太赫兹成像检测装置
CN110146932A (zh) * 2019-05-23 2019-08-20 深圳市华讯方舟太赫兹科技有限公司 太赫兹成像检测装置
CN110515133A (zh) * 2019-08-13 2019-11-29 博微太赫兹信息科技有限公司 一种快速毫米波人体成像安检门
CN110794399B (zh) * 2019-10-29 2022-03-29 北京无线电计量测试研究所 一种主动式毫米波三维成像安检装置
CN112068126A (zh) * 2020-08-25 2020-12-11 电子科技大学 用于人体全身安检的主动毫米波成像系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114162A (ja) * 2013-12-10 2015-06-22 マスプロ電工株式会社 ミリ波撮像装置
CN104991283A (zh) * 2015-07-13 2015-10-21 深圳市一体太赫兹科技有限公司 一种面式毫米波扫描的三维全息成像安检系统
CN105510912A (zh) * 2015-12-25 2016-04-20 深圳市太赫兹科技创新研究院 基于毫米波全息三维成像的人体安检系统及方法
CN105607056A (zh) * 2015-12-28 2016-05-25 深圳市太赫兹科技创新研究院 人体安检系统和方法
CN105759269A (zh) * 2016-04-25 2016-07-13 深圳市无牙太赫兹科技有限公司 三维全息成像的安检系统及方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975968A (en) * 1989-10-27 1990-12-04 Spatial Dynamics, Ltd. Timed dielectrometry surveillance method and apparatus
US5170170A (en) * 1991-08-13 1992-12-08 State University Of New York Radiation imaging utilizing data reconstruction to provide transforms which accurately reflect wave propagation characteristics
US5859609A (en) * 1991-08-30 1999-01-12 Battelle Memorial Institute Real-time wideband cylindrical holographic surveillance system
US5455590A (en) * 1991-08-30 1995-10-03 Battelle Memorial Institute Real-time holographic surveillance system
US20030118216A1 (en) * 1996-09-04 2003-06-26 Goldberg David A. Obtaining person-specific images in a public venue
US6057761A (en) * 1997-01-21 2000-05-02 Spatial Dynamics, Ltd. Security system and method
US7365672B2 (en) * 2001-03-16 2008-04-29 Battelle Memorial Institute Detection of a concealed object
US7405692B2 (en) * 2001-03-16 2008-07-29 Battelle Memorial Institute Detecting concealed objects at a checkpoint
US7194236B2 (en) * 2001-09-28 2007-03-20 Trex Enterprises Corp. Millimeter wave imaging system
US6937182B2 (en) * 2001-09-28 2005-08-30 Trex Enterprises Corp. Millimeter wave imaging system
US7248204B2 (en) * 2001-09-28 2007-07-24 Trex Enterprises Corp Security system with metal detection and mm-wave imaging
WO2004008182A1 (en) * 2002-07-12 2004-01-22 Pathminder Inc. Human detection device
US7633518B2 (en) * 2002-10-25 2009-12-15 Quantum Magnetics, Inc. Object detection portal with video display overlay
US7948428B2 (en) * 2003-08-12 2011-05-24 Trex Enterprises Corp. Millimeter wave imaging system with frequency scanning antenna
US7385549B2 (en) * 2003-08-12 2008-06-10 Trex Enterprises Corp Millimeter wave portal imaging system
US7432846B2 (en) * 2003-08-12 2008-10-07 Trex Enterprises Corp. Millimeter wave imaging system
WO2005086620A2 (en) * 2003-10-10 2005-09-22 L-3 Communications Security And Detection Systems Mmw contraband screening system
US7809109B2 (en) * 2004-04-09 2010-10-05 American Science And Engineering, Inc. Multiple image collection and synthesis for personnel screening
US7205926B2 (en) * 2004-04-14 2007-04-17 Safeview, Inc. Multi-source surveillance system
US7123185B2 (en) * 2004-04-14 2006-10-17 Safeview, Inc. Enhanced surveilled subject imaging
US7180441B2 (en) * 2004-04-14 2007-02-20 Safeview, Inc. Multi-sensor surveillance portal
US7973697B2 (en) * 2004-04-14 2011-07-05 L-3 Communications Security And Detection Systems, Inc. Surveillance systems and methods with subject-related screening
US8345918B2 (en) * 2004-04-14 2013-01-01 L-3 Communications Corporation Active subject privacy imaging
US7202808B2 (en) * 2004-04-14 2007-04-10 Safeview, Inc. Surveilled subject privacy imaging
US7265709B2 (en) * 2004-04-14 2007-09-04 Safeview, Inc. Surveilled subject imaging with object identification
US8350747B2 (en) * 2004-04-14 2013-01-08 L-3 Communications Security And Detection Systems, Inc. Surveillance with subject screening
US7253766B2 (en) * 2004-09-24 2007-08-07 Battelle Memorial Institute Three-dimensional surface/contour processing based on electromagnetic radiation interrogation
US7386150B2 (en) * 2004-11-12 2008-06-10 Safeview, Inc. Active subject imaging with body identification
US6965340B1 (en) * 2004-11-24 2005-11-15 Agilent Technologies, Inc. System and method for security inspection using microwave imaging
US7183963B2 (en) * 2005-03-24 2007-02-27 Agilent Technologies, Inc. System and method for inspecting transportable items using microwave imaging
DE102005016106A1 (de) * 2005-04-08 2006-10-19 Smiths Heimann Gmbh Verfahren und Vorrichtung zur Abbildung von Prüfobjekten mit Hilfe von Millimeterwellen, insbesondere zur Kontrolle von Personen auf verdächtige Gegenstände
US7378658B2 (en) * 2005-09-20 2008-05-27 Coherent, Inc. Security portal with THz trans-receiver
US7844081B2 (en) * 2006-05-15 2010-11-30 Battelle Memorial Institute Imaging systems and methods for obtaining and using biometric information
JP4963640B2 (ja) * 2006-10-10 2012-06-27 キヤノン株式会社 物体情報取得装置及び方法
US7804442B2 (en) * 2007-01-24 2010-09-28 Reveal Imaging, Llc Millimeter wave (MMW) screening portal systems, devices and methods
WO2009036507A1 (en) * 2007-09-19 2009-03-26 Teledyne Australia Pty Ltd Imaging system and method
DE102007045103A1 (de) * 2007-09-20 2009-04-02 Loeffler Technology Gmbh Verfahren und Vorrichtung zur synthetischen Bildgebung
IL186884A (en) * 2007-10-24 2014-04-30 Elta Systems Ltd Object simulation system and method
US20110102597A1 (en) * 2008-02-14 2011-05-05 Robert Patrick Daly Millimeter Wave Concealed Object Detection System Using Portal Deployment
DE102008011350A1 (de) * 2008-02-27 2009-09-03 Loeffler Technology Gmbh Vorrichtung und Verfahren zur Echtzeiterfassung von elektromagnetischer THz-Strahlung
US20150301167A1 (en) * 2009-12-18 2015-10-22 Christopher Gary Sentelle Detection of movable objects
EP2609580B1 (en) * 2010-08-25 2018-03-14 Clairvoyant Technology LLC Rf metal detector and electronic article surveillance system using same
KR20120072048A (ko) * 2010-12-23 2012-07-03 한국전자통신연구원 밀리미터파를 이용한 인체 치수 측정 장치
US8670021B2 (en) * 2011-07-19 2014-03-11 Apstec Systems Ltd Method for stand off inspection of target in monitored space
CN102393536B (zh) * 2011-10-30 2014-10-22 北京无线电计量测试研究所 一种人体安检系统利用频分空分技术的扫描方法
US20130121529A1 (en) * 2011-11-15 2013-05-16 L-3 Communications Security And Detection Systems, Inc. Millimeter-wave subject surveillance with body characterization for object detection
US9316732B1 (en) * 2012-04-05 2016-04-19 Farrokh Mohamadi Standoff screening apparatus for detection of concealed weapons
DE102013218555A1 (de) * 2013-07-18 2015-01-22 Rohde & Schwarz Gmbh & Co. Kg System und Verfahren zur Ausleuchtung und Abbildung eines Objekts
CN104375141A (zh) * 2013-08-15 2015-02-25 同方威视技术股份有限公司 毫米波三维全息扫描成像设备及检查方法
JP6290036B2 (ja) * 2013-09-25 2018-03-07 株式会社東芝 検査装置及び検査システム
US10295664B2 (en) * 2013-12-06 2019-05-21 Northeastern University On the move millimeter wave interrogation system with a hallway of multiple transmitters and receivers
DE102014210227A1 (de) * 2014-01-23 2015-07-23 Rohde & Schwarz Gmbh & Co. Kg System und Verfahren zur effizienten Abtastung von Gegenständen
US9891314B2 (en) * 2014-03-07 2018-02-13 Rapiscan Systems, Inc. Ultra wide band detectors
CN104375193A (zh) * 2014-11-07 2015-02-25 深圳市一体投资控股集团有限公司 一种安检成像方法及系统
CN105510911B (zh) * 2015-12-25 2018-05-04 深圳市华讯方舟太赫兹科技有限公司 基于线性调频的多人人体安检设备及方法
CN105572667B (zh) * 2015-12-28 2018-06-29 深圳市无牙太赫兹科技有限公司 包裹安全检测系统和方法
CN206224001U (zh) * 2016-08-18 2017-06-06 华讯方舟科技有限公司 基于毫米波成像的全方位安检系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114162A (ja) * 2013-12-10 2015-06-22 マスプロ電工株式会社 ミリ波撮像装置
CN104991283A (zh) * 2015-07-13 2015-10-21 深圳市一体太赫兹科技有限公司 一种面式毫米波扫描的三维全息成像安检系统
CN105510912A (zh) * 2015-12-25 2016-04-20 深圳市太赫兹科技创新研究院 基于毫米波全息三维成像的人体安检系统及方法
CN105607056A (zh) * 2015-12-28 2016-05-25 深圳市太赫兹科技创新研究院 人体安检系统和方法
CN105759269A (zh) * 2016-04-25 2016-07-13 深圳市无牙太赫兹科技有限公司 三维全息成像的安检系统及方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459792A (zh) * 2018-04-11 2019-03-12 清华大学 场景监控式毫米波扫描成像系统和安全检查方法
EP3553570A1 (en) * 2018-04-11 2019-10-16 Tsinghua University Millimeter wave scanning imaging system for scene monitoring and security inspection method
CN109459792B (zh) * 2018-04-11 2024-05-10 清华大学 场景监控式毫米波扫描成像系统和安全检查方法
WO2020023673A1 (en) 2018-07-24 2020-01-30 Smiths Interconnect, Inc. Standoff detection system
EP3827280A4 (en) * 2018-07-24 2022-04-27 Smiths Detection-Watford Limited REMOTE DETECTION SYSTEM
IL280373B1 (en) * 2018-07-24 2024-05-01 Smiths Interconnect Inc A system for detecting objects in space
US11994585B2 (en) 2018-07-24 2024-05-28 Smiths Interconnect, Inc. Standoff detection system
IL280373B2 (en) * 2018-07-24 2024-09-01 Smiths Interconnect Inc A system for detecting objects in space
EP3674748A1 (en) * 2018-12-28 2020-07-01 Nuctech Company Limited Millimeter wave security check gate
US20200209384A1 (en) * 2018-12-28 2020-07-02 Nuctech Company Limited Millimeter wave security check gate

Also Published As

Publication number Publication date
CN106291732A (zh) 2017-01-04
CN106291732B (zh) 2018-03-02
US11125906B2 (en) 2021-09-21
US20190187327A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2018032669A1 (zh) 基于毫米波成像的全方位安检系统
US20190004171A1 (en) Millimeter wave holographic three-dimensional imaging detection system and method
WO2018018401A1 (zh) 基于毫米波成像的便携式安检设备
EP2837956B1 (en) Millimetre wave three dimensional holographic scan imaging apparatus and method for inspecting a human body or an article
US11500088B2 (en) Millimeter-wave real-time imaging based safety inspection system and safety inspection method
EP2837955B1 (en) Millimetre wave three dimensional holographic scan imaging apparatus and method for inspecting a human body or an article
RU2595303C2 (ru) Сканирующее устройство для формирования трехмерного голографического изображения в миллиметровом диапазоне волн и способ обследования с помощью такого устройства
WO2017185553A1 (zh) 三维全息成像的安检系统及方法
US20190324135A1 (en) Methods and Systems for Near-Field Microwave Imaging
WO2017107283A1 (zh) 基于线性调频的多人人体安检设备及方法
WO2020134335A1 (zh) 用于主动式微波毫米波安检设备的电磁成像装置
CN105372665B (zh) 一种红外毫米波测距设备及方法
CN105699493B (zh) 高铁无损检测系统和方法
CN206224001U (zh) 基于毫米波成像的全方位安检系统
CN101910865A (zh) 用于借助微波来空间分辨地检测和重构物体的方法和装置
AU2019201619A1 (en) Extensible Millimeter Wave Security Inspection System, Scanning Unit and Security Inspection Method for Human Body
CN106094048A (zh) 基于毫米波成像的便携式安检设备
CN105572667B (zh) 包裹安全检测系统和方法
CN105606630B (zh) 导弹外壳无损检测系统和方法
CN206209131U (zh) 基于毫米波成像的便携式安检设备
EP3553570B1 (en) Millimeter wave scanning imaging system for scene monitoring and security inspection method
WO2017185545A1 (zh) 鞋内物品检测设备
CN105629229B (zh) 飞机无损检测系统和方法
Tu et al. Real-time millimeter-wave imaging for moving targets realized in a sparse array based on InP-HBT MMICs
CN211856904U (zh) 一种主动式太赫兹成像系统装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913421

Country of ref document: EP

Kind code of ref document: A1