WO2018018401A1 - 基于毫米波成像的便携式安检设备 - Google Patents

基于毫米波成像的便携式安检设备 Download PDF

Info

Publication number
WO2018018401A1
WO2018018401A1 PCT/CN2016/091684 CN2016091684W WO2018018401A1 WO 2018018401 A1 WO2018018401 A1 WO 2018018401A1 CN 2016091684 W CN2016091684 W CN 2016091684W WO 2018018401 A1 WO2018018401 A1 WO 2018018401A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
security device
portable security
disposed
measured
Prior art date
Application number
PCT/CN2016/091684
Other languages
English (en)
French (fr)
Inventor
陈寒江
祁春超
冯智辉
刘艳丽
候晓翔
王荣
Original Assignee
华讯方舟科技有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华讯方舟科技有限公司, 深圳市太赫兹科技创新研究院 filed Critical 华讯方舟科技有限公司
Priority to PCT/CN2016/091684 priority Critical patent/WO2018018401A1/zh
Priority to US16/320,959 priority patent/US11391861B2/en
Publication of WO2018018401A1 publication Critical patent/WO2018018401A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/027Constructional details of housings, e.g. form, type, material or ruggedness

Definitions

  • the invention relates to millimeter wave imaging technology, in particular to a portable security inspection device based on millimeter wave imaging.
  • active millimeter wave imaging transmits a certain power of millimeter wave signal to the object to be measured, receives the reflected signal of the measured object, and reconstructs the image information of the measured object, while passive millimeter wave imaging uses the millimeter wave radiometer to collect the heat of the measured object. Radiation or background scattering produces an image.
  • active millimeter-wave imaging is less affected by environmental factors, obtaining more information and better image quality.
  • the current active millimeter wave imaging system has an overall large size, poor portability, and high cost, which is difficult to promote.
  • a portable security inspection device based on millimeter wave imaging disclosed in the present application.
  • a portable security device based on millimeter wave imaging comprising:
  • a millimeter wave transmitting link disposed on the handheld body, the millimeter wave transmitting link for generating a millimeter wave transmitting signal
  • a millimeter wave array antenna disposed on the handheld body, the millimeter wave array antenna configured to transmit the millimeter wave transmission signal to an object to be measured, and receive an echo signal reflected from the object to be measured;
  • a millimeter wave receiving link is disposed on the handheld body, and the millimeter wave receiving link is configured to process the echo signal and convert the echo signal into image data of the measured object.
  • FIG. 1 is a front elevational view of a portable security inspection device based on millimeter wave imaging in an embodiment
  • FIG. 2 is a side view of a portable security inspection device based on millimeter wave imaging in an embodiment
  • FIG. 3 is a front elevational view of a portable security inspection device based on millimeter wave imaging in another embodiment
  • FIG. 4 is a rear elevational view of a portable security inspection device based on millimeter wave imaging in an embodiment
  • Figure 5 is a block diagram showing the signal processing of a portable security device based on millimeter wave imaging in an embodiment.
  • FIG. 1 is a front view of a portable security inspection apparatus based on millimeter wave imaging in an embodiment
  • FIG. 2 is a side view of a portable security inspection apparatus based on millimeter wave imaging in an embodiment.
  • the millimeter wave imaging-based portable security device includes a handheld body 1, a millimeter wave transmitting link 10, a millimeter wave array antenna 11 and a millimeter wave receiving link 12.
  • the hand-held body 1 includes a hand-held handle 101 and a scanning racquet 100.
  • the hand-held handle 101 and the scanning racquet 100 can be fixedly connected or can be connected by a knob so that the scanning racquet 100 can be rotated at any angle around the scanning handle.
  • the millimeter wave transmitting link 10 is disposed on the hand-held body 1 for generating a millimeter wave transmitting signal.
  • the millimeter wave transmit link 10 includes a radio frequency signal source, a first frequency multiplier, a first wideband filter, and a first low noise amplifier, and an output of the radio frequency signal source is coupled to the first frequency multiplier.
  • the input end of the first frequency multiplier is connected to the input end of the first wideband filter, the output end of the first wideband filter is connected to the input end of the first low noise amplifier, and the input end of the first low noise amplifier is connected to the transmitting antenna .
  • the first frequency multiplier, the first wideband filter and the first low noise amplifier can be set in multiple stages, and the first frequency multiplier in each stage is a frequency multiplier of a small multiple, after multiple times of frequency doubling processing
  • the target frequency doubling signal can reduce the noise in the target frequency doubling signal and improve the purity of the target frequency doubling signal, that is, the purity of the millimeter wave transmitting signal.
  • the millimeter wave array antenna 11 is disposed on the handheld body 1 for transmitting the millimeter wave transmission signal to the object to be measured, and receiving an echo signal reflected from the object to be measured.
  • the millimeter wave array antenna 11 includes a plurality of transmitting antennas 111 and a plurality of receiving antennas 112, and the distance between adjacent ones of the transmitting antennas 111 or the receiving antennas 112 ranges from 1/4 working wavelengths to working wavelengths, adjacent to each other.
  • the distance between the transmitting antenna 111 and the receiving antenna 112 ranges from 1/4 operating wavelength to the operating wavelength, and the operating wavelength is the wavelength corresponding to the center frequency of the millimeter wave signal.
  • the millimeter wave signals received or transmitted by each of the millimeter wave array antennas 11 are not interfered with each other, and the quality of imaging by the millimeter wave signals is ensured, wherein the transmitting antenna 111 is for transmitting the millimeter wave transmitting signals, and the receiving antenna 112 And configured to receive an echo signal reflected from the object to be measured, where the echo signal is a reflected signal when the millimeter wave passes the object to be measured, and the transmitting antenna 111 and the receiving antenna 112 sequentially transmit and receive signals by scanning Transceiver signals to ensure that the signals sent and received do not interfere with each other, and the imaging effect is good.
  • the wider the frequency band of the millimeter wave signal the higher the resolution and the better the imaging effect.
  • the plurality of transmitting antennas 111 and the plurality of receiving antennas 112 are respectively arranged in a row on one side of the handheld body 1, that is, the front side of the scanning beat 100, and the array of the transmitting antenna 111 and the receiving antenna 112 are arranged in a row, one column
  • the transmitting antenna 111 and the column of receiving antennas 112 are arranged side by side, and a certain number of millimeter wave antennas are disposed on the hand-held body 1 to form a millimeter wave array antenna.
  • the surface area of the scanning racquet 100 is small and light, and the object to be tested is used by the security device.
  • the hand grip 101 is held, and the active millimeter wave scan is performed on the human body by scanning the beat 100.
  • the operation is flexible, and the local position of the human body can be easily scanned, and the security inspection is comprehensive, and the millimeter wave imaging effect is good, and the improvement is improved.
  • the accuracy and efficiency of security is improved.
  • the array of the transmitting antennas 111 and the array of receiving antennas 112 are arranged at intervals, including a plurality of columns of transmitting antennas 111 and a plurality of columns of receiving antennas 112 arranged side by side, the millimeter wave array antenna 11 by increasing the number of antennas to achieve a larger scanning area, when detecting the human body, the security inspection device of the embodiment does not require handheld movement detection when scanning the human body part, and the imaging can be obtained by aligning the parts requiring security inspection. All the image information to the part, the imaging speed is fast, the security check speed is accelerated, and the security check efficiency is improved. and
  • the millimeter wave receiving link 12 is disposed on the handheld body 1 for processing the echo signal and converting the echo signal into image data of the object under test.
  • the millimeter wave receiving link 12 includes a local oscillator signal source, a second frequency multiplier, a second wideband filter, a second low noise amplifier, a first mixer, a third low noise amplifier, and a first intermediate frequency signal source.
  • a quadrature demodulator, a fourth low noise amplifier, a third wideband filter, a fourth wideband filter, a fifth wideband filter, a fifth low noise amplifier, and a sixth low noise amplifier are formed.
  • the output end of the local oscillator signal source is connected to the input end of the second frequency multiplier, the output end of the second multiplier is connected to the input end of the second wideband filter, and the output end of the second wideband filter is connected to the second low noise amplifier.
  • the output of the second low noise amplifier is connected to the local oscillator signal input end of the first mixer, and the first mixer high frequency modulated wave input terminal is connected to the output end of the third low noise amplifier, and the third low noise amplifier
  • the input end is connected to the receiving antenna
  • the output of the first mixer is connected to the input end of the third wideband filter
  • the output end of the third wideband filter is connected to the input end of the fourth low noise amplifier
  • the output of the fourth low noise amplifier is The terminal is connected to an input end of the first quadrature demodulator
  • the other input end of the first quadrature demodulator is connected to the output end of the first intermediate frequency signal source, and the same component output end of the first quadrature demodulator Connecting to the input end of the fourth wideband filter, the quadrature component output end of the first quadrature demodulator is connected to the input end of the fifth wideband filter, and the output end of the fourth wideband filter is connected to the input end of the fifth low noise amplifier,
  • the hand grips the handle 101, and the scan shot 100 is aligned with the object to be measured.
  • the millimeter wave transmission link 10 After the millimeter wave transmission link 10 generates the millimeter wave signal, it is emitted through the transmitting antenna 111, and is reflected by the object to be measured.
  • the millimeter wave receiving link 12 After the echo signal is received by the receiving antenna 112, the millimeter wave receiving link 12 processes the echo signal to obtain image information of the measured object, which is used as a reference for the security check result.
  • the device has a simple structure and flexible use. The local position of the measured object can be checked and the imaging effect is good. It replaces the traditional metal detector and handheld X-ray imager, and is complementary to the active millimeter wave imaging system, which is suitable for a large number of scenes, such as subway stations, passenger stations and important places.
  • FIG. 5 is a block diagram of signal processing of a portable security device based on millimeter wave imaging in an embodiment.
  • the security device further includes a millimeter wave array switch 13 disposed on the handheld body 1 and connected to the millimeter wave array antenna 11 for controlling the turn-on and turn-on of each of the millimeter wave array antennas 11. Shut down.
  • the electronic switch can be controlled by the switch to control the millimeter wave array antenna 11 to receive signals through one receiving antenna or one transmitting antenna at a time. , where acceptance and transmission can be performed simultaneously to ensure the quality of imaging.
  • the security device further includes a scan control module 14 disposed on the handheld body 1 and coupled to the millimeter wave array switch 11 for causing the millimeter wave array by controlling the millimeter wave array switch 13.
  • the antenna 11 sequentially transmits the millimeter wave transmission signal at a preset timing or receives an echo signal reflected from the object to be measured. The reception and transmission of signals are achieved by scanning.
  • the security device further includes a position measuring module 15 disposed on the handheld body 1 for measuring a distance between the measured object and the security device and the pair of millimeter wave array antennas 11
  • the measured object performs a scanning displacement when the hand movement detection is performed.
  • the security inspection device may or may not move in the process of performing security check on the object to be tested, and the position measurement module 15 obtains the linear distance between the measured object and the security inspection device and the scanning displacement during the hand movement by real-time measurement, and records
  • the moving path of the security device relative to the object to be measured, the moving path of the security device and the image information acquired by the scanning beat 100 constitute a two-dimensional image plane, thereby obtaining image information of the hand-held motion detecting region of the measured object.
  • the security device further includes a data acquisition module 16 disposed on the handheld body 1, the data acquisition module 16 including an analog to digital converter 161 and a programmable logic circuit 162, the analog to digital converter 161
  • An input terminal is coupled to the output of the millimeter wave receiving link 12, and an input of the programmable logic circuit 162 is coupled to an output of the position measuring module 15 and an output of the analog to digital conversion circuit 161.
  • the millimeter wave receiving link 12 processes the echo signal, converts it into a digital signal by the high resolution analog-to-digital converter 161, and sends it to the programmable logic circuit 162.
  • the position measuring module 15 acquires the position information of the security device. After the digital signal corresponding to the moving path is sent to the programmable logic circuit 162, the programmable logic circuit 162 collects the two digital signals.
  • the security device further includes an anti-shake processing module 17 disposed on the handheld body 1 and connected to the data acquisition module 16 for compensating the security device and the measured object according to the distance.
  • the distance between the two is such that the image data of the object to be measured acquired by the millimeter wave array antenna 11 is in the same plane. Since the security device needs to be used by hand, there may be an effect of hand shake affecting imaging during use, and the position measuring module 15 obtains a linear distance between the security device and the measured object in real time, and the anti-shake processing module 17 according to the The linear distance compensates for the deviation between the straight line distances obtained in one scanning operation, so that the image information acquired by the security inspection device is in the same plane.
  • the security device further includes an imaging processing module 18 disposed on the handheld body 1 and coupled to the anti-shake processing module 17 for converting the image data into a two-dimensional image output.
  • the data acquisition module 16 and the imaging processing module 18 are disposed on the side of the scan racquet 100.
  • the security device further includes a display 19 coupled to the imaging processing module 18 for displaying the two-dimensional image.
  • the display 19 is a liquid crystal display disposed on the back side of the scan racquet 100 as shown in FIG.
  • the security device further includes an alarm module 20 disposed on the handheld body 1 for issuing an alarm reminder when the security device detects that the object to be tested is carrying a dangerous item.
  • the alarm module 20 is disposed on the side of the scan racquet 100, and the alarm module 20 can emit an alarm signal such as voice and/or vibration.
  • the security device further includes a mode switching module 21 disposed on the handheld body 1.
  • the input end of the mode switching module 21 is coupled to the imaging processing module 18, and the output of the mode switching module 21
  • the alarm module 20 is connected to switch the working mode of the security device, and the security device includes two working modes: an alarm reminder and an alarm reminder when the detected object is loaded with dangerous articles.
  • the security device can work in two modes of operation:
  • the mode can also be set in the mode.
  • the corresponding judgment algorithm is given by the software to indicate the suspicious area for the security personnel to refer to.
  • the hand grips the handle 101, and the image data of the object to be measured is acquired by transmitting and receiving the millimeter wave signal, and the position information of the security device is detected by the position measuring unit 15, and the position information includes The distance between the security device and the measured object and the moving path thereof are subjected to anti-shake processing on the image data acquired by the scan shot 100 according to the distance, so that the acquired image data of the measured object is in the same plane, thereby avoiding the influence of hand shake.
  • the image quality, the moving path and the acquired image data constitute a two-dimensional image plane, thereby obtaining image data of the hand-held movement detection area of the object to be measured, and processing the image data to be displayed on the back surface of the scanning surface 100, and the security personnel can
  • the displayed image clearly judges whether the object to be tested carries dangerous articles, and can also issue an alarm reminder when detecting dangerous objects.
  • the security inspection device can perform security inspection on the local position of the measured object, which is convenient and flexible to use, and has good imaging effect. .

Landscapes

  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于毫米波成像的便携式安检设备,包括手持本体(1),该手持本体(1)上设置有用于产生毫米波发射信号的毫米波发射链路(10),用于向被测对象发射毫米波发射信号,并接收从被测对象反射回来的回波信号的毫米波阵列天线(11),和用于处理回波信号,并将回波信号转化为被测对象的图像数据的毫米波接收链路(12)。

Description

基于毫米波成像的便携式安检设备
【技术领域】
本发明涉及毫米波成像技术,特别涉及一种基于毫米波成像的便携式安检设备。
【背景技术】
在毫米波探测技术领域,有主动式毫米波成像和被动式毫米波成像。主动式毫米波成像通过发射一定功率的毫米波信号于被测对象,接收被测对象反射信号,重建被测对象的图像信息,而被动式毫米波成像是利用毫米波辐射计采集被测对象的热辐射或者背景散射生成图像。一般而言,主动式毫米波成像受环境因素影响更小,获得的信息量更大,图像质量较好。
但是,目前的主动式毫米波成像系统整体尺寸过大,便携性差,而且成本高,难以推广使用。
【发明内容】
本申请公开的一种基于毫米波成像的便携式安检设备。
一种基于毫米波成像的便携式安检设备,包括:
手持本体;
毫米波发射链路,设置于所述手持本体上,所述毫米波发射链路用于产生毫米波发射信号;
毫米波阵列天线,设置于所述手持本体上,所述毫米波阵列天线用于向被测对象发射所述毫米波发射信号,并接收从所述被测对象反射回来的回波信号;及
毫米波接收链路,设置于所述手持本体上,所述毫米波接收链路用于处理所述回波信号,并将所述回波信号转化为所述被测对象的图像数据。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1是一实施例中的基于毫米波成像的便携式安检设备的主视图;
图2是一实施例中的基于毫米波成像的便携式安检设备的侧视图;
图3是另一实施例中的基于毫米波成像的便携式安检设备的主视图;
图4是一实施例中的基于毫米波成像的便携式安检设备的后视图;
图5是一实施例中的基于毫米波成像的便携式安检设备的信号处理框图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参见图1和图2,图1是一实施例中的基于毫米波成像的便携式安检设备的主视图,图2是一实施例中的基于毫米波成像的便携式安检设备的侧视图。
本实施例中,该基于毫米波成像的便携式安检设备包括手持本体1、毫米波发射链路10、毫米波阵列天线11及毫米波接收链路12。
该手持本体1包括手持柄101和扫描拍100,手持柄101和扫描拍100可以固定连接,也可以通过旋钮连接,使得扫描拍100可以绕该扫描柄旋转任意角度。毫米波发射链路10设置于手持本体1上,用于产生毫米波发射信号。
在其中一个实施例中,该毫米波发射链路10包括射频信号源、第一倍频器、第一宽带滤波器和第一低噪声放大器,射频信号源的输出端连接第一倍频器的输入端,第一倍频器的输出端连接第一宽带滤波器的输入端,第一宽带滤波器的输出端连接第一低噪声放大器的输入端,第一低噪声放大器的输入端连接发射天线。
其中,第一倍频器、第一宽带滤波器和第一低噪声放大器可以多级设置,每一级中的第一倍频器为小倍数的倍频器,经过多次倍频处理后达到目标倍频信号,可以减小目标倍频信号中的噪声,提高目标倍频信号的纯度,即毫米波发射信号的纯度。
毫米波阵列天线11设置于所述手持本体1上,用于向被测对象发射所述毫米波发射信号,并接收从所述被测对象反射回来的回波信号。
该毫米波阵列天线11包括多个发射天线111和多个接收天线112,相邻的所述发射天线111或接收天线112之间的距离范围为1/4工作波长至工作波长,相邻的所述发射天线111和接收天线112之间的距离范围为1/4工作波长至工作波长,所述工作波长为所述毫米波信号的中心频率对应的波长。使得毫米波阵列天线11中的每个天线接收或发射的毫米波信号不会互相干扰,保证通过该毫米波信号成像的质量,其中发射天线111用于发射所述毫米波发射信号,接收天线112用于接收从所述被测对象反射回来的回波信号,该回波信号为毫米波经过被测对象时的反射信号,该发射天线111和接收天线112在收发信号时是通过扫描的方式依次收发信号的,保证收发的信号之间不会彼此干扰,成像效果好。毫米波信号的频带越宽,分辨率越高,成像效果越好。
多个发射天线111和所述多个接收天线112分别成列设置在所述手持本体1的一面,即扫描拍100的正面,成列的所述发射天线111和接收天线112间隔排列设置,一列发射天线111和一列接收天线112并排设置,将一定数量的毫米波天线设置在手持本体1上形成毫米波阵列天线,扫描拍100的表面积小,重量轻,在使用该安检设备对被测对象,如人体进行安检时,握住手持柄101,通过扫描拍100对人体进行主动式毫米波扫描,操作灵活,可以轻松扫描人体的局部位置,安检全面无遗漏,同时毫米波成像效果好,提高了安检的准确度和效率。
参见图3,在其中一个实施例中,成列的所述发射天线111和成列的接收天线112间隔排列设置,包括多列发射天线111和多列接收天线112并排设置,该毫米波阵列天线11通过增加天线的数量来实现更大的扫描面积,在对人体进行检测时,通过该实施例的安检设备对人体局部进行扫描时无需手持移动检测,对准需要安检的部位一次成像便可以获取到该部位的全部图像信息,成像速度快,加快了安检速度,提高了安检效率。及
毫米波接收链路12设置于所述手持本体1上,用于处理所述回波信号,并将所述回波信号转化为所述被测对象的图像数据。
该毫米波接收链路12包括本振信号源、第二倍频器、第二宽带滤波器、第二低噪声放大器、第一混频器、第三低噪声放大器、第一中频信号源、第一正交解调器、第四低噪声放大器、第三宽带滤波器、第四宽带滤波器、第五宽带滤波器、第五低噪声放大器、第六低噪声放大器组成。
本振信号源的输出端连接第二倍频器的输入端,第二倍频器的输出端连接第二宽带滤波器的输入端,第二宽带滤波器的输出端连接第二低噪声放大器的输入端,第二低噪声放大器的输出端连接第一混频器的本振信号输入端,第一混频器高频调制波输入端连接第三低噪声放大器的输出端,第三低噪声放大器的输入端连接接收天线,第一混频器的输出端连接第三宽带滤波器的输入端,第三宽带滤波器的输出端连接第四低噪声放大器的输入端,第四低噪声放大器的输出端连接第一正交解调器一输入端,所述第一正交解调器的另一输入端连接第一中频信号源的输出端,第一正交解调器的同向分量输出端连接第四宽带滤波的输入端,所述第一正交解调器的正交分量输出端连接第五宽带滤波的输入端,第四宽带滤波的输出端连接第五低噪声放大器的输入端,第五宽带滤波的输出端连接第六低噪声放大器的输入端。该毫米波接收链路和发射链路设置在手持本体1的侧面。
在使用上述安检设备时,手握手持柄101,将扫描拍100对准被测对象,毫米波发射链路10产生毫米波信号之后,通过发射天线111发出,遇到被测物体后产生反射形成回波信号,接收天线112接收该回波信号之后,毫米波接收链路12对该回波信号进行处理得到被测对象的图像信息,将其作为安检结果的参考,该设备结构简单,使用灵活,可以对被测对象的局部位置进行安检,成像效果好。从而代替传统的金属探测器和手持X光成像仪,与主动式毫米波成像系统互补,适用于需求数量较多的场景,比如地铁站、客运站以及重要场所等。
参见图5,图5是一实施例中的基于毫米波成像的便携式安检设备的信号处理框图。
本实施例中,该安检设备还包括设置在手持本体1上的毫米波阵列开关13,连接所述毫米波阵列天线11,用于控制所述毫米波阵列天线11中每一个天线的接通和关断。毫米波信号在发送和接收的过程中,为了保证信号之间的干扰最小,通过开关,即可控电子开关来控制毫米波阵列天线11每次只通过一个接收天线接收信号或一个发射天线发射信号,其中接受和发送可以同时进行,保障成像的质量。
在其中一个实施例中,该安检设备还包括设置在手持本体1上的扫描控制模块14,连接所述毫米波阵列开关11,用于通过控制所述毫米波阵列开关13使得所述毫米波阵列天线11按预设时序依次发射所述毫米波发射信号,或接收从所述被测对象反射回来的回波信号。信号的接收和发送均通过扫描的方式来实现。
在其中一个实施例中,该安检设备还包括设置在手持本体1上的位置测量模块15,用于测量所述被测对象与所述安检设备之间的距离和所述毫米波阵列天线11对所述被测对象进行手持移动检测时的扫描位移。该安检设备在对被测对象进行安检的过程中可以手持移动也可以不移动,位置测量模块15通过实时测量获取被测物体和该安检设备之间的直线距离和手持移动时的扫描位移,记录该安检设备相对于被测物体的移动路径,该安检设备的移动路径和扫描拍100获取的图像信息构成二维图像平面,从而得到被测对象手持移动检测区域的图像信息。
在其中一个实施例中,该安检设备还包括设置在手持本体1上的数据采集模块16,所述数据采集模块16包括模数转换器161和可编程逻辑电路162,所述模数转换器161的输入端连接所述毫米波接收链路12的输出端,所述可编程逻辑电路162的输入端连接所述位置测量模块15的输出端和所述模数转换电路161的输出端。毫米波接收链路12对上述回波信号进行处理之后,经高分辨率的模数转换器161转换为数字信号后发送给可编程逻辑电路162,位置测量模块15获取到该安检设备的位置信息和移动路径对应的数字信号之后,发送给可编程逻辑电路162,可编程逻辑电路162对这两路数字信号进行采集。
在其中一个实施例中,该安检设备还包括设置在手持本体1上的防抖处理模块17,连接所述数据采集模块16,用于根据所述距离补偿所述安检设备与所述被测对象之间的距离偏差,使得通过所述毫米波阵列天线11获取的所述被测对象的图像数据在同一平面。由于该安检设备需要手持使用,在使用的过程中可能会存在手部抖动影响成像的效果,位置测量模块15实时获取该安检设备与被测物体之间的直线距离,防抖处理模块17根据该直线距离对一次扫描操作中获取的该直线距离之间的偏差进行补偿,使得该安检设备获取的图像信息在同一平面。
在其中一个实施例中,该安检设备还包括设置在手持本体1上的成像处理模块18,连接所述防抖处理模块17,用于将所述图像数据转化为二维图像输出。
数据采集模块16和成像处理模块18设置在扫描拍100的侧面。
在其中一个实施例中,该安检设备还包括显示器19,连接所述成像处理模块18,用于显示所述二维图像。该显示器19为液晶显示器,设置在扫描拍100的背面,如图4所示。
在其中一个实施例中,该安检设备还包括设置在手持本体1上的报警模块20,用于在所述安检设备检测出所述被测对象夹带有危险物品时发出报警提醒。该报警模块20设置在扫描拍100的侧面,该报警模块20可以发出语音和/或震动等报警信号。
在其中一个实施例中,该安检设备还包括设置在手持本体1上的模式切换模块21,所述模式切换模块21的输入端连接所述成像处理模块18,所述模式切换模块21的输出端连接所述报警模块20,用于切换所述安检设备的工作模式,所述安检设备包括在检测出所述被测对象夹带有危险物品时发出报警提醒和不发出报警提醒两种工作模式。
该安检设备可以工作在两种工作模式下:
a.当对人体进行安检时,若通过上述安检设备检测到该人体携带有危险物品,发出报警提醒;
b.当对物品进行安检时,若通过上述安检设备检测到该物品内藏有危险物品,不发出报警提醒,由安检人员通过显示器19的图像进行判断;同时,在该模式下也可以设定相应的判断算法由软件给出可疑区域的标注供安检人员参考。
上述安检设备,在使用的过程中,手握手持柄101,通过扫描拍100收发毫米波信号获取被测对象的图像数据,并通过位置测量单元15检测该安检设备的位置信息,该位置信息包括该安检设备与被测对象的距离和其移动路径,根据该距离对扫描拍100获取到的图像数据进行防抖处理,使得获取到的被测对象的图像数据在同一平面,避免手部抖动影响成像质量,该移动路径和获取的该图像数据构成二维图像平面,从而得到被测对象手持移动检测区域的图像数据,将该图像数据进行处理后显示在扫面拍100的背面,安检人员可以通过显示的图像清楚的判断被测对象是否携带有危险物品,同时也可以在检测到危险物品时发出报警提醒,该安检设备可以对被测对象的局部位置进行安检,使用方便灵活,成像效果好。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种基于毫米波成像的便携式安检设备,包括:
    手持本体;
    毫米波发射链路,设置于所述手持本体上,所述毫米波发射链路用于产生毫米波发射信号;
    毫米波阵列天线,设置于所述手持本体上,所述毫米波阵列天线用于向被测对象发射所述毫米波发射信号,并接收从所述被测对象反射回来的回波信号;及
    毫米波接收链路,设置于所述手持本体上,所述毫米波接收链路用于处理所述回波信号,并将所述回波信号转化为所述被测对象的图像数据。
  2. 根据权利要求1所述的便携式安检设备,其特征在于,所述毫米波阵列天线包括多个发射天线和多个接收天线,相邻的所述发射天线或接收天线之间的距离范围为1/4工作波长至工作波长,相邻的所述发射天线和接收天线之间的距离范围为1/4工作波长至工作波长,所述工作波长为所述毫米波信号的中心频率对应的波长。
  3. 根据权利要求2所述的便携式安检设备,其特征在于,所述多个发射天线和所述多个接收天线分别成列设置在所述手持本体的一面,成列的所述发射天线和成列的所述接收天线间隔排列设置。
  4. 根据权利要求2所述的便携式安检设备,其特征在于,还包括设置在手持本体上的毫米波阵列开关,连接所述毫米波阵列天线,用于控制所述毫米波阵列天线中每一个天线的接通和关断。
  5. 根据权利要求4所述的便携式安检设备,其特征在于,还包括设置在手持本体上的扫描控制模块,连接所述毫米波阵列开关,用于通过控制所述毫米波阵列开关使得所述毫米波阵列天线按预设时序依次发射所述毫米波发射信号,或接收从所述被测对象反射回来的回波信号。
  6. 根据权利要求1所述的便携式安检设备,其特征在于,还包括设置在手持本体上的位置测量模块,用于测量所述被测对象与所述便携式安检设备之间的距离和所述毫米波阵列天线对所述被测对象进行手持移动检测时的扫描位移。
  7. 根据权利要求6所述的便携式安检设备,其特征在于,还包括设置在手持本体上的数据采集模块,所述数据采集模块包括模数转换器和可编程逻辑电路,所述模数转换器的输入端连接所述毫米波接收链路的输出端,所述可编程逻辑电路的输入端连接所述位置测量模块的输出端和所述模数转换电路的输出端。
  8. 根据权利要求7所述的便携式安检设备,其特征在于,还包括设置在手持本体上的防抖处理模块,连接所述数据采集模块,用于根据所述距离补偿所述便携式安检设备与所述被测对象之间的距离偏差,使得通过所述毫米波阵列天线获取的所述被测对象的图像数据在同一平面。
  9. 根据权利要求8所述的便携式安检设备,其特征在于,还包括设置在手持本体上的成像处理模块,连接所述防抖处理模块,用于将所述图像数据转化为二维图像输出。
  10. 根据权利要求9所述的便携式安检设备,其特征在于,还包括显示器,连接所述成像处理模块,用于显示所述二维图像,所述显示器设置在所述手持本体的一面。
  11. 根据权利要求1所述的便携式安检设备,其特征在于,还包括设置在手持本体上的报警模块,用于在所述便携式安检设备检测出所述被测对象夹带有危险物品时发出报警提醒。
  12. 根据权利要求11所述的便携式安检设备,其特征在于,还包括设置在手持本体上的模式切换模块,所述模式切换模块的输入端连接所述成像处理模块,所述模式切换模块的输出端连接所述报警模块,用于切换所述便携式安检设备的工作模式,所述便携式安检设备包括在检测出所述被测对象夹带有危险物品时发出报警提醒和不发出报警提醒两种工作模式。
PCT/CN2016/091684 2016-07-26 2016-07-26 基于毫米波成像的便携式安检设备 WO2018018401A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/091684 WO2018018401A1 (zh) 2016-07-26 2016-07-26 基于毫米波成像的便携式安检设备
US16/320,959 US11391861B2 (en) 2016-07-26 2016-07-26 Portable security inspection device based on millimetre wave imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/091684 WO2018018401A1 (zh) 2016-07-26 2016-07-26 基于毫米波成像的便携式安检设备

Publications (1)

Publication Number Publication Date
WO2018018401A1 true WO2018018401A1 (zh) 2018-02-01

Family

ID=61015284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091684 WO2018018401A1 (zh) 2016-07-26 2016-07-26 基于毫米波成像的便携式安检设备

Country Status (2)

Country Link
US (1) US11391861B2 (zh)
WO (1) WO2018018401A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3647826A4 (en) * 2018-08-17 2022-03-09 Tsinghua University MULTIPLE TRANSMISSION AND MULTIPLE RECEPTION ARRANGEMENTS FOR ACTIVE MILLIMETER WAVE SECURITY INSPECTION IMAGING AND HUMAN BODY SECURITY INSPECTION METHOD AND APPARATUS

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210155349U (zh) * 2018-03-09 2020-03-17 同方威视技术股份有限公司 可扩展式毫米波安检系统及扫描单元
CN109407164B (zh) * 2018-12-28 2024-06-21 同方威视技术股份有限公司 毫米波安检设备及其多频带毫米波收发系统
US20210405179A1 (en) * 2020-06-25 2021-12-30 Lassen Peak, Inc. Systems and Methods for Noninvasive Detection of Impermissible Objects
CN112130167A (zh) * 2020-07-03 2020-12-25 北京中电科卫星导航系统有限公司 一种移动式毫米波人体安检系统
US11982734B2 (en) 2021-01-06 2024-05-14 Lassen Peak, Inc. Systems and methods for multi-unit collaboration for noninvasive detection of concealed impermissible objects
US12000924B2 (en) 2021-01-06 2024-06-04 Lassen Peak, Inc. Systems and methods for noninvasive detection of impermissible objects
CN113156432B (zh) * 2021-05-07 2023-08-15 南京邮电大学 一种便携式微波成像系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135629A (zh) * 2010-12-21 2011-07-27 中国科学院上海微系统与信息技术研究所 一种用于全息成像安检系统的毫米波收发模块
WO2012140587A2 (en) * 2011-04-15 2012-10-18 Ariel-University Research And Development Company, Ltd. Passive millimeter-wave detector
CN202939690U (zh) * 2012-11-30 2013-05-15 邹小琴 一种法院用便携式安检器
CN105510911A (zh) * 2015-12-25 2016-04-20 深圳市太赫兹科技创新研究院 基于线性调频的多人人体安检设备及方法
CN105607056A (zh) * 2015-12-28 2016-05-25 深圳市太赫兹科技创新研究院 人体安检系统和方法
CN106094048A (zh) * 2016-07-26 2016-11-09 华讯方舟科技有限公司 基于毫米波成像的便携式安检设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009519436A (ja) * 2005-11-09 2009-05-14 キネティック リミテッド 受動的検出装置
US7844081B2 (en) * 2006-05-15 2010-11-30 Battelle Memorial Institute Imaging systems and methods for obtaining and using biometric information
US20140300503A9 (en) * 2007-12-18 2014-10-09 Microsemi Corporation Millimeter wave energy sensing wand and method
US20140300502A9 (en) * 2007-12-18 2014-10-09 Brijot Imaging Systems, Inc. Millimeter Wave Energy Sensing Wand and Method
USD663634S1 (en) * 2011-02-18 2012-07-17 Microsemi Corporation Hand held scanner
US9715012B2 (en) * 2013-04-25 2017-07-25 Battelle Memorial Institute Footwear scanning systems and methods
CN106537179B (zh) * 2014-06-30 2019-04-19 博迪戴特股份有限公司 用于确定不规则对象的大小的手持多传感器系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135629A (zh) * 2010-12-21 2011-07-27 中国科学院上海微系统与信息技术研究所 一种用于全息成像安检系统的毫米波收发模块
WO2012140587A2 (en) * 2011-04-15 2012-10-18 Ariel-University Research And Development Company, Ltd. Passive millimeter-wave detector
CN202939690U (zh) * 2012-11-30 2013-05-15 邹小琴 一种法院用便携式安检器
CN105510911A (zh) * 2015-12-25 2016-04-20 深圳市太赫兹科技创新研究院 基于线性调频的多人人体安检设备及方法
CN105607056A (zh) * 2015-12-28 2016-05-25 深圳市太赫兹科技创新研究院 人体安检系统和方法
CN106094048A (zh) * 2016-07-26 2016-11-09 华讯方舟科技有限公司 基于毫米波成像的便携式安检设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3647826A4 (en) * 2018-08-17 2022-03-09 Tsinghua University MULTIPLE TRANSMISSION AND MULTIPLE RECEPTION ARRANGEMENTS FOR ACTIVE MILLIMETER WAVE SECURITY INSPECTION IMAGING AND HUMAN BODY SECURITY INSPECTION METHOD AND APPARATUS

Also Published As

Publication number Publication date
US11391861B2 (en) 2022-07-19
US20190293833A1 (en) 2019-09-26

Similar Documents

Publication Publication Date Title
WO2018018401A1 (zh) 基于毫米波成像的便携式安检设备
US9477812B2 (en) Random body movement cancellation for non-contact vital sign detection
US20210088649A1 (en) Millimeter-wave real-time imaging based safety inspection system and safety inspection method
US11313963B2 (en) Millimeter wave holographic three-dimensional imaging detection system and method
US10928499B2 (en) Millimeter-wave radar sensor system for gesture and movement analysis
CA2951220C (en) Handheld multi-sensor system for sizing irregular objects
Kiriazi et al. Dual-frequency technique for assessment of cardiopulmonary effective RCS and displacement
CN104076358B (zh) 一种被动式毫米波成像安检设备
CN106094048A (zh) 基于毫米波成像的便携式安检设备
WO2014003404A1 (en) Mobile ultrasound diagnosis system using two-dimensional array data and mobile ultrasound diagnosis probe device and ultrasound diagnosis apparatus for the system
US20040210131A1 (en) Method and system for measuring a position, position measuring device, and an in vivo radio device
WO2013162244A1 (en) Mobile ultrasound diagnosis probe apparatus for using two-dimension array data, mobile ultrasound diagnosis system using the same
CN105699493B (zh) 高铁无损检测系统和方法
CN106405491B (zh) 基于软件无线电的无人机监测系统
CN108152821A (zh) 一种主动毫米波成像安全检测系统及安全检测方法
CN110764068A (zh) 一种多探头准远场电磁散射截面(rcs)外推测试系统
CN105425233B (zh) 用于移动设备的测距与跟随定位的装置及方法
CN206209131U (zh) 基于毫米波成像的便携式安检设备
CN113296094B (zh) 面向人体监护的小型化非接触雷达系统
CN102508307B (zh) 毫米波成像扫描检测系统及其检测方法
CN108646239A (zh) 一种基于雷达和光电技术的探测识别装置
CN105629229B (zh) 飞机无损检测系统和方法
WO2017185545A1 (zh) 鞋内物品检测设备
Li et al. Design guidelines for radio frequency non-contact vital sign detection
Kiriazi et al. Radar cross section of human cardiopulmonary activity for recumbent subject

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16909982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16909982

Country of ref document: EP

Kind code of ref document: A1