WO2018032504A1 - 一种数据传输方法及基站 - Google Patents

一种数据传输方法及基站 Download PDF

Info

Publication number
WO2018032504A1
WO2018032504A1 PCT/CN2016/096046 CN2016096046W WO2018032504A1 WO 2018032504 A1 WO2018032504 A1 WO 2018032504A1 CN 2016096046 W CN2016096046 W CN 2016096046W WO 2018032504 A1 WO2018032504 A1 WO 2018032504A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
secondary station
terminal
primary
primary station
Prior art date
Application number
PCT/CN2016/096046
Other languages
English (en)
French (fr)
Inventor
甘久斌
李汉涛
李振宇
任占阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/096046 priority Critical patent/WO2018032504A1/zh
Priority to CN201680087853.0A priority patent/CN109479200A/zh
Publication of WO2018032504A1 publication Critical patent/WO2018032504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • H04W16/20Network planning tools for indoor coverage or short range network deployment

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and a base station.
  • the 3rd Generation Partnership Project (3GPP) licensed spectrum is becoming less and less sufficient to provide higher network capacity.
  • the prior art provides two solutions.
  • the first solution is to apply Carrier Aggregation (CA) technology to authorized auxiliary access.
  • LAA Licensed Assisted Access
  • DC Dual Connectivity
  • the licensed spectrum resources and unlicensed spectrum resources can be comprehensively utilized by using the above CA technology or DC technology.
  • the main business of mobile broadband networks occurs indoors, and the proportion of indoor services is close to 70%.
  • the effect of improving indoor coverage is the key for operators to retain users.
  • the first one is: Carrier A has a primary station deployed outdoors, and Carrier A also has a secondary station in the room.
  • the second type is: Carrier A has a primary station deployed outdoors.
  • the operator B or the enterprise deploys the auxiliary station indoors, and the operator A and the operator B can share the auxiliary station in the room.
  • the primary station uses the licensed spectrum resources
  • the secondary station uses the unlicensed spectrum resources.
  • CA technology or DC technology enables effective coordination between outdoor main stations and indoor auxiliary stations.
  • the embodiment of the invention discloses a data transmission method and a base station, which can enable the primary station and the secondary station to cooperate effectively, thereby achieving the purpose of improving the coverage and capacity of the operator, and at the same time, improving the service rate of the terminal.
  • the embodiment of the invention discloses a data transmission method, which is applied to a communication system including a primary station and at least one secondary station, and includes:
  • the primary station transmits a signal in the first cell by using a narrowband coverage enhancement technology; the primary station accesses the terminal in the first cell; the primary station sends the first to-be-transmitted data to the first secondary station, so that the The first secondary station transmits the first to-be-transmitted data to the terminal, where the first secondary station has a common coverage area with the first cell.
  • the narrowband coverage enhancement technology is only one of the coverage enhancement technologies.
  • the primary station may also use other coverage enhancement techniques to cover the signal to the indoor, for example, using a carrier with a lower frequency, or using other coverage better.
  • Wireless communication methods such as Global System for Mobile Communication (GSM), Universal Mobile Telecommunications System (UMTS), and the like.
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • the primary station may be referred to as a macro cell, and the first secondary station may be referred to as a small cell.
  • the primary station generally operates in the licensed spectrum, and the first secondary station generally operates in the unlicensed spectrum.
  • the first cell is a cell within the coverage of the primary station.
  • the primary station can use the narrowband coverage enhancement technology to transmit signals in the first cell, so that the primary station can assist the secondary station to allow the terminal to access the first cell of the primary station, and further, the primary station will transmit the first to be transmitted.
  • the data is sent to the first secondary station, and the first secondary station can transmit the first data to be transmitted to the terminal, so that the primary station and the secondary station can cooperate effectively, thereby improving the coverage and capacity of the operator, and simultaneously improving the indoor terminal. Business rate.
  • the narrowband coverage enhancement technique includes an enhanced machine type communication eMTC or a narrowband internet of things NB-IoT.
  • the primary station and the first secondary station adopt a carrier aggregation CA technology
  • the sending, by the primary station, the first to-be-transmitted data to the first secondary station includes:
  • the primary station sends the first to-be-transmitted data to the first secondary station on the medium access control MAC layer.
  • the communication system adopts Carrier Aggregation (CA) technology, and the licensed spectrum of the primary station can be aggregated with the license-free spectrum of the first secondary station, or the permission of the primary station can be The frequency point is aggregated with the licensed frequency of the first secondary station.
  • CA Carrier Aggregation
  • the ideal backhaul between the primary station and the first secondary station that is, there is no packet loss or delay when data transmission between the primary station and the first secondary station
  • the primary station and the first auxiliary Station data splitting anchor in media access control
  • the (Media Access Control, MAC) layer implements data offloading through dynamic scheduling of the MAC layer of the CA.
  • the primary station and the first secondary station adopt a dual-connect DC technology
  • the sending, by the primary station, the first to-be-transmitted data to the first secondary station includes:
  • the primary station sends the first to-be-transmitted data to the first secondary station on the PDCP layer of the packet data convergence protocol.
  • the communication system adopts dual connectivity (DC) technology, and the terminal is simultaneously connected to connect through non-ideal backhaul (that is, there is a phenomenon of packet loss or delay when data transmission between base stations occurs).
  • the base station performs data communication, for example, the terminal is simultaneously connected to the primary station and the first secondary station.
  • the data offload anchor of the primary station and the first secondary station is in the Packet Data Convergence Protocol (PDCP) layer of the primary station, and the primary station performs data splitting on the PDCP layer.
  • PDCP Packet Data Convergence Protocol
  • the primary station is configured to authenticate the terminal and transmit control signaling of the terminal.
  • the indoor auxiliary station is only responsible for data transmission, and the outdoor main station can also transmit data.
  • the method further includes:
  • the primary station Sending, by the primary station, a frequency point measurement request to the terminal; the primary station receiving a first frequency point measurement result reported by the terminal; the primary station according to the first frequency point measurement result from the at least one auxiliary
  • the first secondary station is selected in the station.
  • the primary station may select a secondary station with better signal quality from the multiple secondary stations as the first secondary station to improve the service rate of the terminal.
  • the method further includes:
  • the primary station selects a second secondary station from the at least one secondary station according to the second frequency point measurement result sent by the terminal;
  • the primary station may Selecting a second secondary station from the at least one secondary station according to the second frequency point measurement result sent by the terminal, and then sending the second to-be-transmitted data to the second secondary station, to trigger the second secondary station to transmit the second to-be-transmitted data.
  • the primary station may Selecting a second secondary station from the at least one secondary station according to the second frequency point measurement result sent by the terminal, and then sending the second to-be-transmitted data to the second secondary station, to trigger the second secondary station to transmit the second to-be-transmitted data.
  • the primary station may select the second secondary station from the at least one secondary station.
  • the primary station may indicate the signal transmission power and the idle channel assessment CCA threshold used by each secondary station (eg, the first secondary station and the second secondary station) to Perform interference coordination control.
  • the primary station can perform the handover of the secondary station, which can ensure that the received signal of the terminal is relatively strong, and the service rate of the terminal is improved.
  • the method further includes:
  • the primary station performs interference coordination control on the at least one secondary station.
  • the interference coordination control performed by the primary station on the at least one secondary station includes:
  • the primary station indicates, to each of the at least one secondary station, a signal transmission power and a clear channel assessment CCA threshold value adopted by each of the secondary stations, wherein, in the at least one secondary station Any two secondary stations, a third secondary station and a fourth secondary station, if the signal received by the terminal within the coverage of the third secondary station is higher than the signal received by the terminal within the coverage of the fourth secondary station.
  • the signal transmission power used by the third secondary station is smaller than the signal transmission power used by the fourth secondary station, and the CCA threshold used by the third secondary station is greater than the CCA threshold used by the fourth secondary station. value.
  • the CCA threshold the larger the signal received by the terminal within the coverage of the secondary station, the greater the signal transmission power that the primary station indicates to the secondary station, and the smaller the CCA threshold.
  • a second aspect of the embodiment of the present invention discloses a base station, where the base station is a primary station, and includes:
  • a first sending unit configured to send a signal in the first cell by using a narrowband coverage enhancement technology
  • An access unit configured to access a terminal in the first cell
  • a second sending unit configured to send the first to-be-transmitted data to the first secondary station, so that the first secondary station transmits the first to-be-transmitted data to the terminal, where the first secondary station A coverage area common to the first cell.
  • the narrowband coverage enhancement technique includes an enhanced machine type communication eMTC or a narrowband internet of things NB-IoT.
  • the primary station and the first secondary station adopt a carrier aggregation CA technology
  • the manner in which the second sending unit sends the first to-be-transmitted data to the first secondary station is specifically:
  • the primary station and the first secondary station adopt a dual-connect DC technology
  • the manner in which the second sending unit sends the first to-be-transmitted data to the first secondary station is specifically:
  • the first to-be-transmitted data is transmitted to the first secondary station at the PDCP layer of the packet data convergence protocol.
  • the primary station is configured to authenticate the terminal and transmit control signaling of the terminal.
  • the first sending unit is further configured to: after the access unit accesses the terminal in the first cell, send a frequency point measurement request to the terminal;
  • the base station further includes:
  • a receiving unit configured to receive a first frequency point measurement result reported by the terminal
  • a selecting unit configured to select the first secondary station from the at least one secondary station according to the first frequency point measurement result.
  • the selecting unit is further configured to select a second secondary station from the at least one secondary station according to the second frequency point measurement result sent by the terminal;
  • the second sending unit is further configured to send the second to-be-transmitted data to the second secondary station, to trigger the second secondary station to transmit the second to-be-transmitted data to the terminal.
  • the base station further includes:
  • control unit configured to perform interference coordination control on the at least one secondary station.
  • the manner in which the control unit performs interference coordination control on the at least one secondary station is specifically:
  • the primary station indicates, to each of the at least one secondary station, a signal transmission power and a clear channel assessment CCA threshold value adopted by each of the secondary stations, wherein, in the at least one secondary station Any two secondary stations, a third secondary station and a fourth secondary station, if the signal received by the terminal within the coverage of the third secondary station is higher than the signal received by the terminal within the coverage of the fourth secondary station.
  • the signal transmission power used by the third secondary station is smaller than the signal transmission power used by the fourth secondary station, and the CCA threshold used by the third secondary station is greater than the CCA threshold used by the fourth secondary station. value.
  • the primary station and the secondary station can cooperate effectively to improve the coverage and capacity of the operator, and at the same time, improve the service rate of the terminal.
  • a third aspect of the embodiments of the present invention discloses a base station, the base station including: a processor, a receiver, a transmitter, and a memory, the memory configured to store an instruction, the processor configured to run the The instructions are executed by the processor to perform some or all of the steps of any of the methods of the first aspect of the embodiments of the present invention.
  • the base station performs part or all of the steps of any of the methods, the primary station and the secondary station can cooperate effectively to improve the coverage and capacity of the operator, and at the same time, improve the service rate of the terminal.
  • a fourth aspect of the embodiments of the present invention discloses a computer storage medium storing a program, the program specifically comprising instructions for performing some or all of the steps of any of the first aspects of the embodiments of the present invention.
  • the method described in the present invention is applicable to scenarios of an outdoor primary station and an indoor secondary station.
  • the method described in the present invention is equally applicable to outdoor near-end and far-end scenarios, where, outdoor The near end can be seen in the indoor auxiliary station of the invention, and the outdoor remote end can be seen as the main station outside the invention.
  • the foregoing method is applicable to the downlink data sending process.
  • the foregoing method is also applicable to the uplink data sending process, and details are not described herein again.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system according to an embodiment of the present invention
  • FIG. 1.1 is a schematic diagram of a base station deployment scenario disclosed in an embodiment of the present invention.
  • FIG. 1.2 is a schematic diagram of another base station deployment scenario disclosed in the embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another data transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the embodiment of the invention discloses a data transmission method and a base station, which can effectively coordinate the outdoor main station and the indoor auxiliary station to achieve the purpose of improving the indoor coverage and capacity of the operator, and at the same time, improve the service rate of the indoor terminal. The details are described below separately.
  • FIG. 1 is a schematic diagram of a network architecture of a communication system according to an embodiment of the present invention.
  • the network architecture shown in FIG. 1 is a networking architecture in which a primary station is used outdoors and a secondary station is used indoors.
  • the network architecture shown in Figure 1 can be applied to Long-term Evolution (LTE) systems or Long-term Evolution Advanced (LTE-A) systems, especially for licensed spectrum-assisted access LTE.
  • LTE Long-term Evolution
  • LTE-A Long-term Evolution Advanced
  • LAA-LTE License Assisted Access Long-term Evolution
  • the LAA-LTE system refers to an LTE system in which a licensed spectrum and an unlicensed spectrum are used together by Carrier Aggregation (CA) or non-CA.
  • CA Carrier Aggregation
  • non-CA mode can be dual connectivity (DC) or unlicensed spectrum independent use (Unlicensed Standalone).
  • the first networking scenario is to use CA technology to aggregate licensed spectrum and unlicensed spectrum, that is, the carrier included in the licensed spectrum or licensed spectrum or the cell working on the licensed spectrum as the primary serving cell, the license-free spectrum or license-free
  • the carrier included in the spectrum or the cell working on the unlicensed spectrum serves as a secondary serving cell, wherein the primary serving cell and the secondary serving cell may be deployed together (ie, a common outdoor station or an indoor secondary station), or may be a non-common station.
  • the ideal backhaul path refers to the phenomenon that there is no packet loss or delay when transmitting data between two serving cells, which is not ideal.
  • the transmission path refers to the phenomenon of packet loss or delay when data is transmitted between two serving cells.
  • the second networking scenario is an unlicensed standalone scenario, where the unlicensed spectrum is used as a standalone carrier.
  • the serving cell on the unlicensed spectrum can provide independent access and does not need to work.
  • Access to the cell on the licensed spectrum you can access A cell corresponding to the unlicensed spectrum.
  • the licensed spectrum is also the licensed spectrum
  • the unlicensed spectrum is also the unlicensed spectrum.
  • the system to which the present invention is applicable is not limited to the LTE/LTE-A system, and can also be applied to the wireless interworking capability (WiMax), the Worldwide Interoperability for Microwave Access (WiMax), and the wideband code division.
  • WiMax wireless interworking capability
  • WiMax Worldwide Interoperability for Microwave Access
  • WiMax Worldwide Interoperability for Microwave Access
  • WiMax Worldwide Interoperability for Microwave Access
  • WiMax Worldwide Interoperability for Microwave Access
  • WiMax Worldwide Interoperability for Microwave Access
  • WiMax Worldwide Interoperability for Microwave Access
  • WiMax Worldwide Interoperability for Microwave Access
  • the system architecture includes: a primary station, at least one secondary station, and at least one terminal.
  • the primary station and the secondary station can be connected by wire, or through a wireless connection, and the primary station and the secondary station can be ideal.
  • the main station is generally deployed by the operator outdoors, located at the top of the building and the tower.
  • the beam coverage is large, usually up to several kilometers. However, due to the influence of buildings and trees, the coverage of the main station is uneven. Blind zone. The higher the frequency band, the weaker the ability of the main station to penetrate the room.
  • the primary station generally works in the licensed spectrum.
  • the secondary station can be deployed indoors by the operator or deployed indoors by the enterprise.
  • the secondary station is a base station device with low transmission power and small coverage, working in an unlicensed spectrum, with a transmission power ranging from 100 mW to 5 W, covering a range of 10 to 200 m, and the auxiliary station generally operates in a license-free spectrum.
  • FIG. 1.1 is a schematic diagram of a base station deployment scenario disclosed in the embodiment of the present invention.
  • Carrier A has a primary station deployed outdoors, and Carrier A also has secondary stations deployed indoors.
  • the primary station of the operator A uses the narrowband coverage enhancement technology to transmit signals in the first cell, and the secondary station in the auxiliary room allows the terminal of the operator A to access the first cell.
  • the data from the core network A is transmitted by the operator A.
  • the primary station of operator A divides the data, and some of the data flows from the primary station of operator A supporting the licensed spectrum to the terminal of operator A, and the other part of the data is from the operator A of the unlicensed spectrum.
  • the station flows to the terminal of operator A.
  • the primary station of the operator A and the secondary station of the operator A may be an ideal backhaul or a non-ideal backhaul.
  • the secondary station of the operator A may be a secondary station independently used by the license-free spectrum, or may be Auxiliary station of LAA.
  • the ideal backhaul refers to the phenomenon that there is no packet loss or delay when transmitting data between the primary station and the secondary station
  • the non-ideal backhaul refers to the loss or delay of data transmission between the primary station and the secondary station. phenomenon.
  • the primary station and the secondary station of the same operator can cooperate effectively, and the primary station narrows the bandwidth of the signal by using narrowband coverage enhancement technology, thereby improving the transmission power of the signal.
  • the terminal is connected to the primary station, and the primary station diverts the data that needs to be transmitted to the indoor terminal to the indoor auxiliary station having the capability of the unlicensed frequency band to perform the purpose of improving the indoor coverage and capacity of the operator, and at the same time, improving the indoor terminal service. rate.
  • FIG. 1.2 is a schematic diagram of another base station deployment scenario disclosed in the embodiment of the present invention.
  • Carrier A has a primary station deployed outdoors.
  • the carrier A has a neutral node (ie, a secondary station) deployed indoors
  • Carrier B only has a primary station deployed outdoors, and no secondary stations are deployed indoors.
  • the coordination method for the primary station of the operator A and the secondary station of the operator A is the same as that described in FIG. 1.1, and details are not described herein again. For details, refer to the description in FIG.
  • the main station of the operator B uses a narrowband coverage enhancement technology to send a signal in the first cell, assists the secondary station in the indoor, allows the terminal of the operator B to access the first cell, and further, the data from the core network B is operated.
  • the primary station of the operator B can be divided by the secondary station sharing the operator A, and part of the data flows from the primary station of the operator B supporting the licensed spectrum to the terminal of the operator B, and the other part of the data is supported.
  • the secondary station of operator A of the license-free spectrum flows to the terminal of operator B.
  • the primary station of the operator A and the secondary station of the operator A may be an ideal backhaul or a non-ideal backhaul.
  • the secondary station of the operator A may be a secondary station independently used by the license-free spectrum, or may be Auxiliary station of LAA; between the main station of operator B and the auxiliary station of operator B, it may be an ideal backhaul or a non-ideal backhaul.
  • the auxiliary station of operator B may be an auxiliary station independently used by the license-free spectrum. It can also be a secondary station of LAA.
  • the unlicensed spectrum can be shared among multiple operators, and the operator without indoor coverage can use the coverage enhancement technology to send in the first cell.
  • the auxiliary station of the indoor coverage operator is leased to make the indoor primary station and the indoor auxiliary station cooperate effectively, thereby improving the indoor coverage and capacity of the operator, and at the same time, improving the indoor terminal service rate.
  • the operator's primary station can perform data offloading in two ways.
  • the first type the communication system uses carrier aggregation CA technology, and the primary station is to be transmitted on the media access control MAC layer. The data is sent to the secondary station;
  • the second type the communication system adopts the dual-connection DC technology, and the primary station transmits the data to be transmitted to the secondary station on the PDCP layer of the packet data convergence protocol.
  • the data may be offloaded through the core network.
  • the core network establishes a first bearer with the primary station, and the core network and the secondary station establish a second bearer, and the core network sends the first data to the terminal by using the first bearer.
  • the core network sends the second data to the terminal by using the second bearer.
  • the primary station is mainly used for management of control planes, such as access, authentication and authentication.
  • the secondary station is mainly used for data transmission on the data plane.
  • the primary station can also be used for data transmission.
  • the licensed spectrum is used on the primary station and the unlicensed spectrum is used on the secondary station.
  • the narrowband coverage enhancement technology may include enhanced Machine Type Communications (eMTC:) or Narrow Band-Internet of Things (NB-IoT).
  • the method described in the embodiments of the present invention is also applicable to the outdoor near-end and far-end scenarios, and the outdoor near-end can be viewed as an auxiliary station in the invention, and the outdoor remote end can be seen as the outdoor main station in the invention. .
  • FIG. 2 is a schematic flowchart diagram of a data transmission method according to an embodiment of the present invention.
  • the data transmission method is written from multiple sides such as a primary station, a secondary station, and a terminal.
  • the method is applicable to the scenario described in FIG. 1.1 and FIG. 1.2, and the method includes the following steps:
  • the primary station transmits a signal in the first cell by using a narrowband coverage enhancement technique.
  • the primary station may be a base station deployed by an operator outdoors.
  • the primary station may use a narrowband coverage enhancement technology to transmit a signal in the first cell, in order to solve the problem, in the embodiment of the present invention, the network of the primary station is difficult to be used indoors or the network of the primary station is weak.
  • the narrowband coverage enhancement technology may include enhanced machine type communication (enhanced Machine Type) Communications, eMTC) or Narrow Band-Internet of Things (NB-IoT), etc.
  • the first cell is a cell within the coverage of the primary station.
  • the primary station may use a narrowband coverage enhancement technique to transmit a common signal carried on the common channel in the first cell.
  • the common signal may include, but is not limited to, a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), a Physical Broadcast Channel (PBCH), and a Master Information Block (MIB).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • MIB Master Information Block
  • the primary station may also use other coverage enhancement technologies to generate signals into the room, for example, using a carrier with a lower frequency (such as 900 MHz), or using other coverage better.
  • Wireless communication methods such as Global System for Mobile Communication (GSM), Universal Mobile Telecommunications System (UMTS), etc.).
  • the terminal accesses the first cell.
  • the indoor secondary station does not have the access function
  • the outdoor primary station uses the narrowband coverage enhancement technology to narrow the bandwidth of the signal, and improve the transmission power of the signal to achieve the terminal access at the primary station.
  • the primary station also needs to authenticate the terminal located in the indoor, and the terminal located indoors is a terminal that needs to access the cell corresponding to the primary station. After the authentication is passed, that is, after the identity of the indoor terminal is legal, the primary station can charge the terminal.
  • the primary station sends a frequency point measurement request to the terminal.
  • the primary station may send a frequency point measurement request to the terminal, where the frequency point measurement request is used to request the terminal to perform measurement on the frequency point.
  • the frequency measurement request may include at least one frequency point where the indoor secondary station is located, may be an unlicensed frequency point, or may be an authorized frequency point, wherein the unlicensed frequency points are, for example, 2.4 GHz, 5.8 GHz, and the like.
  • the terminal sends the first frequency point measurement result to the primary station.
  • the terminal may extract the frequency point in the frequency point measurement request, and perform measurement on the frequency point to obtain the first frequency point measurement result, usually,
  • the first frequency point measurement result may include a cell identifier (cell ID), and the reference signal receives the work.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the identity of each cell can correspond to one secondary station
  • the RSRP value ranges from -44 to -140 dBm
  • RSRQ The value ranges from -3 to -19.5. The larger the values of RSRP and RSRQ, the stronger the received signal.
  • the primary station selects the first secondary station from the at least one secondary station according to the first frequency point measurement result.
  • the primary station may determine the multiple secondary stations by using the identifier of the at least one cell in the first frequency point measurement result, and further, The secondary station having the strongest signal is determined as the first secondary station from at least one secondary station according to the strength of the signal.
  • the first secondary station has a common coverage area with the first cell.
  • the primary station sends the first to-be-transmitted data to the first secondary station.
  • the primary station may further according to the self-load level and the service quality of the service (Quality of Service, QoS).
  • QoS Quality of Service
  • the demand determines the diversion strategy. For example, if the load level is relatively heavy or the QoS requirement of the service is high, more data can be offloaded to the first secondary station.
  • the first to-be-transmitted data is data that the current primary station needs to transmit to the terminal in the room, and is mainly service data.
  • the primary station and the first secondary station adopt a carrier aggregation CA technology, and the manner in which the primary station sends the first to-be-transmitted data to the first secondary station is specifically:
  • the primary station sends the first to-be-transmitted data to the first secondary station on the medium access control MAC.
  • the backhaul (BH) is between the primary station and the first secondary station, that is, there is no packet loss or delay when data is transmitted between the primary station and the first secondary station.
  • the data offload anchor of the primary station and the first secondary station is in the Media Access Control (MAC) layer, and the data is offloaded through dynamic scheduling of the MAC layer of the CA.
  • MAC Media Access Control
  • the primary station and the first secondary station adopt Carrier Aggregation (CA) technology, and may aggregate the licensed spectrum of the primary station with the license-free spectrum of the first secondary station, or may permit the primary station.
  • the frequency point is aggregated with the licensed frequency of the first secondary station.
  • the LTE device can use the licensed spectrum as the primary component carrier (PCC) or the primary cell (PCell) in the CA mode, and the unlicensed spectrum is used as a secondary member.
  • Primary Component Carrier (SCC) or Secondary Cell (SCell) so that LTE equipment can inherit the traditional advantages of LTE equipment for wireless communication through licensed spectrum, such as mobility, security, quality of service, and simultaneous processing.
  • SCC Secondary Component Carrier
  • SCell Secondary Cell
  • the primary station and the first secondary station adopt dual-connected DC technology, and the manner in which the primary station sends the first to-be-transmitted data to the first secondary station is specifically:
  • the primary station sends the first to-be-transmitted data to the first secondary station by the packet data convergence protocol PDCP.
  • the primary station and the first secondary station are non-ideal backhaul (BackHaul, BH), that is, there is a packet loss or delay when data is transmitted between the primary station and the first secondary station.
  • the data offload anchor of the primary station and the first secondary station is in the Packet Data Convergence Protocol (PDCP) layer of the primary station, and the data is offloaded through the PDCP layer of the DC.
  • PDCP Packet Data Convergence Protocol
  • a dual connectivity is a mode in which the UE is in a Radio Resource Control CONNECTED (RRC_CONNECTED) state, and is configured with a primary cell group (MCG) and a secondary cell group. (Secondary Cell Group, SCG).
  • RRC_CONNECTED Radio Resource Control CONNECTED
  • MCG primary cell group
  • SCG Secondary Cell Group
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the UE in the RRC_CONNECTED state can be configured to use the radio resources provided by two different base station eNBs, and the two eNBs are connected by the X2 interface, and one is used as the primary station MeNB. One is used as a secondary station SeNB.
  • the UE is connected to the MeNB and the SeNB, respectively.
  • the first secondary station transmits the first to-be-transmitted data to the terminal.
  • the primary station may further instruct the first secondary station to use the first signal transmission power and the first idle channel to evaluate the CCA threshold, and the first secondary station receives the first signal transmission power and the first After the CCA threshold is evaluated by the idle channel, the first secondary station may, according to the first idle channel evaluation CCA threshold, send the first to-be-transmitted data to the terminal according to the first signal transmission power when the channel is idle. In this way, the primary station is facilitated to perform interference coordination control on at least one secondary station in the room.
  • the primary station may use a narrowband coverage enhancement technique to transmit a signal in the first cell, so that the primary station can assist the secondary station to allow the terminal to access the first cell corresponding to the primary station. Further, the primary station sends the first to-be-transmitted data to the first secondary station, and the first secondary station can transmit the first to-be-transmitted data to the terminal, so that the primary station and the secondary station can effectively cooperate to improve the operator coverage. And the purpose of capacity, at the same time, to increase the service rate of the terminal.
  • FIG. 3 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present invention.
  • the data transmission method is written from multiple sides such as a primary station, a secondary station, and a terminal, and the method is applicable to the scenarios described in FIG. 1.1 and FIG.
  • the method includes the following steps:
  • the primary station sends the first to-be-transmitted data to the first secondary station, and instructs the first secondary station to use the first signal transmission power and the first idle channel to evaluate the CCA threshold.
  • the primary station can monitor the strength of the auxiliary station signal received by each terminal in the real-time, and the indoor terminal can also report the strength of the signal received by the auxiliary station in real time.
  • the primary station may be capable of self-organizing network (Self-Organizing Network) capability, indicating the signal transmission power and the idle channel assessment adopted by at least one secondary station located indoors according to the strength of the secondary station signal received by each terminal located indoors ( Clear Channel Assessment (CCA) threshold, so that the primary station can macroscopically perform interference coordination control between multiple auxiliary stations in the room.
  • Self-Organizing Network Self-Organizing Network
  • CCA Clear Channel Assessment
  • the primary station for the primary station and different secondary stations in the room, the primary station must be an independent service terminal, so the primary station has all the LTE channel functions, and the secondary station can only have some functions, corresponding to different protocol versions. . As shown in the following table:
  • R13/ R14/ R14+ is the protocol version supported by the secondary station, Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), paging message Paging, system message System Info, random access
  • the message RA the radio resource control signaling (RRC), the physical downlink control channel (Physical Downlink Control Channel, PDCCH), the physical downlink shared channel (PDSCH), and the physical uplink control channel (Physical) Uplink Control Channel (PUCCH), Physical Uplink Shared Channel (PUSCH), Physical Control Format Indicator Channel (PCFICH), Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PDCCH Physical Downlink Control Channel
  • PDSCH physical downlink shared channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the primary station has all the channels, signals, messages and signaling
  • the secondary stations supporting different protocol versions can use the related technologies mentioned in the present invention.
  • the secondary station supporting the R13 protocol has two channels, namely, PDCCH and PDSCH
  • the secondary station supporting the R14 protocol has three channels, namely, PDCCH, PDSCH, and PUSCH
  • the secondary station supporting the R14+ protocol has five channels, that is, PDCCH, PDSCH, PUCCH, PUSCH, PCFICH/PHICH
  • the secondary stations of the unlicensed independent use cell have all the channels.
  • the first secondary station transmits the first to-be-transmitted data to the terminal by using the first signal transmission power and the first idle channel evaluation CCA threshold.
  • the first secondary station may first determine whether the current channel is idle according to the first idle channel evaluation CCA threshold, and if idle, the first secondary station may transmit the first to be transmitted with the first signal transmission power. Data is transmitted to the terminal. In this way, it is advantageous to coordinate the interference control between the auxiliary stations.
  • the primary station switches the data of the terminal to be switched from the first secondary station to the primary station.
  • the primary station can monitor the strength of the signal received by the terminal in the terminal during the mobile terminal, and the terminal can also report to the primary station in real time that the terminal receives the signal of the secondary station in the mobile process. Strong and weak. In the case that the terminal moves to the area without the coverage of the first secondary station, that is, the signal that the terminal currently receives the first secondary station is weak. At this time, the primary station needs to change the data offloading direction of the terminal, and the data of the terminal can be shunted. Go to switch from the first secondary station to the primary station.
  • the terminal sends a second frequency point measurement result to the primary station.
  • the primary station may send a frequency point measurement request to the terminal in real time, requesting the terminal to perform frequency point measurement, and report the frequency point measurement result, or, optionally, the terminal
  • the frequency point measurement can be performed in real time, and the frequency point measurement result is actively reported.
  • the second frequency point measurement result is different from the first frequency point measurement result in the foregoing, where the second frequency point measurement result is that when the terminal moves to an area without the auxiliary station coverage,
  • the frequency point measurement result received by the primary station, and the second frequency point measurement result may include an identifier of the cell, and the strength of the signal at each frequency point.
  • the identifier of each cell may correspond to one secondary station.
  • the primary station selects a second secondary station from the at least one secondary station according to the second frequency point measurement result sent by the terminal.
  • the primary station may determine the multiple secondary stations by using the identifiers of the multiple cells in the second frequency point measurement result according to the primary station, and further, may be from at least one secondary station according to the signal strength. The secondary station with the strongest signal is determined as the second secondary station.
  • the primary station sends the second to-be-transmitted data to the second secondary station, and instructs the second secondary station to use the second signal transmission power and the second idle channel to evaluate the CCA threshold.
  • the second to-be-transmitted data is data that needs to be transmitted to the terminal, and the second to-be-transmitted data is different from the first to-be-transmitted data.
  • the stronger the signal received by the terminal within the coverage of the secondary station the smaller the signal transmission power used by the primary station to indicate the secondary station, the larger the CCA threshold; the coverage of the secondary station
  • the weaker the signal received by the terminal the larger the signal transmission power used by the primary station to indicate the secondary station is, and the smaller the CCA threshold is.
  • the first secondary station and the second secondary station if the signal strength received by the terminal in the coverage of the first secondary station is higher than the signal strength received by the terminal in the coverage of the second secondary station.
  • the first signal transmission power used by the first secondary station is smaller than the second signal transmission power used by the second secondary station, and the first CCA threshold used by the first secondary station is greater than the second secondary station.
  • the second secondary station transmits the second to-be-transmitted data to the terminal by using the second signal transmission power and the second idle channel evaluation CCA threshold.
  • the first secondary station and the second secondary station respectively use the signal transmission power indicated by the primary station and the CCA threshold value for data transmission, so that the interference coordination control between the primary station and the multiple secondary stations can be realized.
  • the primary station performs the switching of the secondary station, thereby ensuring that the indoor terminal receives a relatively strong signal and improves the service rate of the indoor terminal.
  • FIG. 4 is a schematic flowchart diagram of another data transmission method according to an embodiment of the present invention.
  • the data transmission method is written from multiple sides such as a primary station, a secondary station, and a terminal, and the method is applicable to the scenarios described in FIG. 1.1 and FIG.
  • the method includes the following steps:
  • the primary station sends the first to-be-transmitted data to the first secondary station, and instructs the first secondary station to use the first signal transmission power and the first idle channel to evaluate the CCA threshold.
  • the first secondary station transmits the first to-be-transmitted data to the terminal by using the first signal transmission power and the first idle channel evaluation CCA threshold.
  • the terminal sends a third frequency point measurement result for the third secondary station to the primary station.
  • the terminal may actively send the frequency point measurement result to the primary station.
  • the terminal may actively send the signal to the primary station.
  • the third frequency point measurement result for the third secondary station if the signal received by the cell corresponding to the third secondary station is stronger than the signal received by the cell corresponding to the first secondary station where the terminal is currently located, the terminal may actively send the signal to the primary station.
  • the third frequency point measurement result for the third secondary station if the signal received by the cell corresponding to the third secondary station is stronger than the signal received by the cell corresponding to the first secondary station where the terminal is currently located, the terminal may actively send the signal to the primary station.
  • the primary station determines, according to the third frequency point measurement result, that the secondary station needs to be switched.
  • the primary station may receive the signal received by the first secondary station where the terminal is currently located according to the third frequency point measurement result. Comparing with the signal received by the third secondary station, if the signal received by the third secondary station is stronger than the signal received by the first secondary station where the terminal is currently located, the primary station may determine that the secondary station needs to be switched.
  • the primary station branches the data of the terminal to switch from the first secondary station to the third secondary station.
  • the primary station sends the third to-be-transmitted data to the third secondary station, and instructs the third secondary station to use the third signal transmission power and the third idle channel to evaluate the CCA threshold.
  • the stronger the signal received by the terminal within the coverage of the secondary station the smaller the signal transmission power used by the primary station to indicate the secondary station, the larger the CCA threshold; the coverage of the secondary station
  • the weaker the signal received by the terminal the larger the signal transmission power used by the primary station to indicate the secondary station is, and the smaller the CCA threshold is.
  • the first secondary station and the third secondary station if the signal strength received by the terminal in the coverage of the first secondary station is higher than the signal strength received by the terminal in the coverage of the third secondary station.
  • the first signal transmission power used by the first secondary station is smaller than the third signal transmission power used by the third secondary station, and the first CCA threshold used by the first secondary station is greater than the third secondary station.
  • the third secondary station transmits the third to-be-transmitted data to the terminal by using the third signal transmission power and the third idle channel evaluation CCA threshold.
  • the terminal can detect the signal strength of the neighboring area in real time, and find the signal of the neighboring area.
  • the terminal can actively send the third frequency point measurement result for the third secondary station to the primary station, triggering the primary station to perform the secondary station switching, which is beneficial to ensure that the signal received by the terminal is relatively strong, and the indoor terminal is enhanced.
  • the terminal uses the signal transmission power indicated by the primary station and the CCA threshold to transmit data, so that the coordinated coordination control between the primary station and multiple secondary stations can be realized.
  • FIG. 5 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station is a primary station, and the base station is used to perform some or all of the steps of the data transmission method described in FIG. 2 to FIG. 4 .
  • the base station 500 can include:
  • the first sending unit 501 is configured to send a signal in the first cell by using a narrowband coverage enhancement technology
  • An access unit 502 configured to access a terminal in the first cell
  • the second sending unit 503 is configured to send the first to-be-transmitted data to the first secondary station, so that the first secondary station transmits the first to-be-transmitted data to the terminal, where the first auxiliary The station has a common coverage area with the first cell.
  • the narrowband coverage enhancement technology includes an enhanced machine type communication eMTC or a narrowband Internet of Things NB-IoT.
  • the primary station and the first secondary station adopt a carrier aggregation CA technology
  • the manner in which the second sending unit 503 sends the first to-be-transmitted data to the first secondary station is specifically:
  • the manner in which the primary station and the first secondary station adopt dual-connected DC technology, and the second sending unit 503 sends the first data to be transmitted to the first secondary station is specifically:
  • the first to-be-transmitted data is transmitted to the first secondary station at the PDCP layer of the packet data convergence protocol.
  • the primary station is configured to authenticate the terminal and transmit control signaling of the terminal.
  • FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station is a primary station, and the base station is used to perform some or all of the steps of the data transmission method described in FIG. 2 to FIG. 3 .
  • the base station shown in Figure 6 is in the figure 5 further optimized based on the base station, the base station shown in FIG. 6 includes all the units of the base station shown in FIG.
  • the first sending unit 501 is further configured to: after the access unit 502 accesses the terminal in the first cell, send a frequency point measurement request to the terminal;
  • the base station 500 described in FIG. 6 further includes:
  • the receiving unit 504 is configured to receive the first frequency point measurement result reported by the terminal;
  • the selecting unit 505 is configured to select the first secondary station from the at least one secondary station according to the first frequency point measurement result.
  • the selecting unit 505 is further configured to select a second secondary station from the at least one secondary station according to the second frequency point measurement result sent by the terminal;
  • the second sending unit 503 is further configured to send the second to-be-transmitted data to the second secondary station, to trigger the second secondary station to transmit the second to-be-transmitted data to the terminal.
  • the base station 500 described in FIG. 6 may further include:
  • the control unit 506 is configured to perform interference coordination control on the at least one secondary station.
  • control unit 506 performs interference coordination control on the at least one secondary station.
  • the narrowband coverage enhancement technology may be used to transmit a signal in the first cell, so that the primary station can assist the secondary station to allow the terminal to access the first cell corresponding to the primary station. Further, the primary station sends the first to-be-transmitted data to the first secondary station, and the first secondary station can transmit the first to-be-transmitted data to the terminal, so that the primary station and the secondary station can effectively cooperate to improve the operator coverage. And the purpose of capacity, at the same time, to increase the service rate of the terminal.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station shown in FIG. 7 may be used to perform some or all of the steps of the data transmission method described in FIG. 2 to FIG. 3 .
  • the base station 700 may include: at least one processor 701, such as a CPU (Central Processing Unit), at least one receiver 702, at least one transmitter 703, and a memory 704, wherein the processing The 701, the receiver 702, the transmitter 703, and the memory 704 are respectively connected to the communication bus.
  • the memory 704 may be a high speed RAM memory or a non-volatile memory.
  • the structure of the base station 700 shown in FIG. 7 does not constitute a limitation of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may also include more than that shown in FIG. More or less parts, or some parts, or different parts.
  • the processor 701 is a control center of the base station 700, and may be a central processing unit (CPU).
  • the processor 701 connects various parts of the entire base station 700 by using various interfaces and lines, and is stored or executed in the memory 704 by running or executing.
  • the narrowband coverage enhancement technology includes an enhanced machine type communication eMTC or a narrowband Internet of Things NB-IoT.
  • the primary station and the first secondary station adopt a carrier aggregation CA technology
  • the manner in which the processor sends the first to-be-transmitted data to the first secondary station by using the transmitter 703 is specifically:
  • the primary station and the first secondary station adopt a dual-connection DC technology
  • the manner in which the processor sends the first to-be-transmitted data to the first secondary station by using the transmitter 703 is specifically:
  • the first to-be-transmitted data is transmitted to the first secondary station at the PDCP layer of the packet data convergence protocol.
  • the primary station is configured to authenticate the terminal and transmit control signaling of the terminal.
  • the processor is further configured to invoke program code stored in the memory, to perform the following steps:
  • processor 701 is further configured to invoke program code stored in the memory 704, to perform the following steps:
  • the primary station selects a second secondary station from the at least one secondary station according to the second frequency point measurement result sent by the terminal;
  • processor 701 is further configured to invoke program code stored in the memory 704, to perform the following steps:
  • performing interference coordination control on the at least one secondary station by the processor 701 includes:
  • the narrowband coverage enhancement technology may be used to transmit a signal in the first cell, so that the primary station can assist the secondary station to allow the terminal to access the first cell corresponding to the primary station, and further, The primary station sends the first to-be-transmitted data to the first secondary station, and the first secondary station can transmit the first to-be-transmitted data to the terminal, so that the primary station and the secondary station can effectively cooperate to improve the coverage and capacity of the operator. Purpose, at the same time, to improve the service rate of the terminal.
  • FIG. 8 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • the communication system 800 is a primary station 801, a secondary station 802, a core network 803, and a terminal 804.
  • the communication system 800 is configured to perform the data transmission method described in the foregoing method embodiments.
  • the primary station 801 may be the base station 500 described in any one of FIG. 5 to FIG. 6, or may be the base station 700 described in FIG. 7, and the secondary station 802 may be the first secondary station described in the foregoing embodiment.
  • the second auxiliary station or the third auxiliary station may also be other auxiliary stations.
  • the core network 803 establishes a first bearer with the primary station 801, the core network 803 and the secondary station 802 establish a second bearer, and the core network 803 passes the first bearer to the terminal 804. Sending the first data, the core network 803 sends the second data to the terminal 804 by using the second bearer.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place, or It can also be distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the units in the apparatus of the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种数据传输方法及基站,其中,该方法包括:主站采用窄带覆盖增强技术在第一小区发送信号;所述主站在所述第一小区中接入终端;所述主站将第一待传输数据发送至第一辅站,以使得所述第一辅站将所述第一待传输数据传输给所述终端。本发明实施例能够使得主站和辅站有效协同,达到提升运营商室内覆盖和容量的目的,同时,提升终端的业务速率。

Description

一种数据传输方法及基站 技术领域
本发明涉及通信技术领域,尤其涉及一种数据传输方法及基站。
背景技术
随着通信业务量的急剧增加,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)授权频谱显得越来越不足以提供更高的网络容量。由于非授权频谱资源要大于授权频谱资源,为了有效利用非授权频谱资源,现有技术中提供了两种方案,第一种方案:将载波聚合(Carrier Aggregation,CA)技术应用在授权辅助接入(Licensed Assisted Access,LAA)中;第二种方案:采用双连接(Dual Connectivity,DC)技术。使用上述CA技术或者DC技术可以综合利用授权频谱资源和非授权频谱资源。
据统计,移动宽带网络的主要业务发生在室内,室内业务占比接近70%,提升室内覆盖的效果是运营商留住用户的关键。实践中发现存在如下两种场景,第一种是:运营商A在室外部署有主站,该运营商A在室内也部署有辅站,第二种是:运营商A在室外部署有主站,运营商B或企业在室内部署有辅站,运营商A和运营商B可以共享室内的辅站。其中,主站使用授权频谱资源,辅站使用非授权频谱资源。
针对上述两种场景,由于室外主站在室内的穿透能力很弱,室外主站无法将信号覆盖至室内,室内的终端就无法同时接收到室外主站和室内辅站的信号,目前无法使用CA技术或DC技术使得室外主站和室内辅站有效协同。
发明内容
本发明实施例公开了一种数据传输方法及基站,能够使得主站和辅站有效协同,达到提升运营商覆盖和容量的目的,同时,提升终端的业务速率。
本发明实施例公开了一种数据传输方法,应用于包括主站以及至少一个辅站的通信系统中,包括:
主站采用窄带覆盖增强技术在第一小区发送信号;所述主站在所述第一小区中接入终端;所述主站将第一待传输数据发送至第一辅站,以使得所述第一辅站将所述第一待传输数据传输给所述终端,其中,所述第一辅站与所述第一小区有共同的覆盖区域。
其中,窄带覆盖增强技术只是覆盖增强技术中的一种,可选的,主站还可以采用其他覆盖增强技术将信号覆盖至室内,比如:使用更低频率的载波,或者使用其他覆盖较好的无线通信方法,比如全球移动通信系统(Global System for Mobile Communication,GSM),通用移动通信系统(Universal Mobile Telecommunications System,UMTS)等。其中,主站可以称为宏站(Macro cell),第一辅站可以称为小站(Small Cell)。主站一般工作在许可频谱,第一辅站一般工作在免许可频谱。第一小区为主站覆盖范围内的小区。
可见,主站可以采用窄带覆盖增强技术在第一小区发送信号,这样,主站就可以辅助辅站,让终端接入到主站的第一小区中,进一步地,主站将第一待传输数据发送至第一辅站,第一辅站就可以将第一待传输数据传输给终端,从而能够使得主站和辅站有效协同,达到提升运营商覆盖和容量的目的,同时,提升室内终端的业务速率。
在一个可能的实施方式中,所述窄带覆盖增强技术包括增强的机器类通信eMTC或窄带物联网NB-IoT。
在一个可能的实施方式中,所述主站与所述第一辅站采用载波聚合CA技术,所述主站将第一待传输数据发送至第一辅站包括:
所述主站在媒体接入控制MAC层上将第一待传输数据发送至第一辅站。
在该可选的实施方式中,通信系统采用载波聚合(Carrier Aggregation,CA)技术,可以将主站的许可频谱与第一辅站的免许可频谱聚合在一起,或者,可以将主站的许可频点与第一辅站的许可频点聚合在一起。这种方式中,主站和第一辅站之间是理想回传(即主站与第一辅站之间进行数据传输时不存在丢包或者时延的现象),主站和第一辅站的数据分流锚点在媒体接入控制 (Media Access Control,MAC)层,通过CA的MAC层的动态调度来实现数据分流。
在一个可能的实施方式中,所述主站与所述第一辅站采用双连接DC技术,所述主站将第一待传输数据发送至第一辅站包括:
所述主站在分组数据汇聚协议PDCP层上将第一待传输数据发送至第一辅站。
在该可选的实施方式中,通信系统采用双连接(Dual Connectivity,DC)技术,终端同时连接到通过非理想回传(即基站之间进行数据传输时存在丢包或者时延的现象)相连的基站进行数据通讯,比如终端同时连接到主站和第一辅站。这种情况下,主站和第一辅站的数据分流锚点在主站的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层,主站在PDCP层上进行数据分流。
在一个可能的实施方式中,所述主站用于对所述终端鉴权,并传输所述终端的控制信令。其中,室内的辅站只负责数据的传输,此外,室外的主站也可以进行数据的传输。
在一个可能的实施方式中,所述主站在所述第一小区中接入终端之后,所述方法还包括:
所述主站向所述终端发送频点测量请求;所述主站接收所述终端上报的第一频点测量结果;所述主站根据所述第一频点测量结果从所述至少一个辅站中选择所述第一辅站。
在该可选的实施方式中,主站可以从多个辅站中选择信号质量较好的辅站作为第一辅站,以提高终端的业务速率。
在一个可能的实施方式中,所述方法还包括:
所述主站根据所述终端发送的第二频点测量结果从所述至少一个辅站中选择第二辅站;
所述主站将第二待传输数据发送至所述第二辅站,以触发所述第二辅站将所述第二待传输数据传输给所述终端。
具体的,在该可选的实施方式中,在终端移动到无第一辅站覆盖的区域的情况下,或者,在所述终端移动到第二辅站覆盖的区域的情况下,主站可以根据终端发送的第二频点测量结果从至少一个辅站中选择第二辅站,然后再将第二待传输数据发送至第二辅站,以触发第二辅站将第二待传输数据传输给终端。其中,在所述终端移动到第二辅站覆盖的区域的情况下,如果主站可以根据终端发送的第二频点测量结果确定终端在第二辅站覆盖的区域接收到的信号强度高于在第一辅站覆盖的区域接收到的信号强度,主站可以从至少一个辅站中选择第二辅站。
其中,针对至少一个辅站中的每一个辅站,主站可以指示每一个辅站(如第一辅站、第二辅站)所采用的信号发射功率和空闲信道评估CCA门限值,以进行干扰协调控制。
可见,在终端移动的情况下,主站可以进行辅站的切换,能够确保终端接收到信号比较强,提升终端的业务速率。
在一个可能的实施方式中,所述方法还包括:
所述主站对所述至少一个辅站进行干扰协调控制。
在一个可能的实施方式中,所述主站对所述至少一个辅站进行干扰协调控制包括:
所述主站对所述至少一个辅站中的每一个辅站指示所述每一个辅站所采用的信号发射功率和空闲信道评估CCA门限值,其中,对所述至少一个辅站中的任意两个辅站,第三辅站和第四辅站,若所述第三辅站覆盖范围内的终端接收到的信号强度高于所述第四辅站覆盖范围内的终端接收到的信号强度,所述第三辅站采用的信号发射功率小于所述第四辅站采用的信号发射功率,所述第三辅站采用的CCA门限值大于所述第四辅站采用的CCA门限值。
其中,针对每个所述辅站,在所述辅站覆盖范围内的终端接收到的信号越强,则所述主站指示所述辅站采用的信号发射功率就越小,CCA门限值越大;在所述辅站覆盖范围内的终端接收到的信号越弱,则所述主站指示所述辅站采用的信号发射功率就越大,CCA门限值越小。
本发明实施例第二方面公开了一种基站,所述基站为主站,包括:
第一发送单元,用于采用窄带覆盖增强技术在第一小区发送信号;
接入单元,用于在所述第一小区中接入终端;
第二发送单元,用于将第一待传输数据发送至第一辅站,以使得所述第一辅站将所述第一待传输数据传输给所述终端,其中,所述第一辅站与所述第一小区有共同的覆盖区域。
在一个可能的实施方式中,所述窄带覆盖增强技术包括增强的机器类通信eMTC或窄带物联网NB-IoT。
在一个可能的实施方式中,所述主站与所述第一辅站采用载波聚合CA技术,所述第二发送单元将第一待传输数据发送至第一辅站的方式具体为:
在媒体接入控制MAC层上将第一待传输数据发送至第一辅站。
在一个可能的实施方式中,所述主站与所述第一辅站采用双连接DC技术,所述第二发送单元将第一待传输数据发送至第一辅站的方式具体为:
在分组数据汇聚协议PDCP层将第一待传输数据发送至第一辅站。
在一个可能的实施方式中,所述主站用于对所述终端鉴权,并传输所述终端的控制信令。
在一个可能的实施方式中,所述第一发送单元还用于所述接入单元在所述第一小区中接入终端之后,向所述终端发送频点测量请求;
所述基站还包括:
接收单元,用于接收所述终端上报的第一频点测量结果;
选择单元,用于根据所述第一频点测量结果从所述至少一个辅站中选择所述第一辅站。
在一个可能的实施方式中,所述选择单元,还用于根据所述终端发送的第二频点测量结果从所述至少一个辅站中选择第二辅站;
所述第二发送单元,还用于将第二待传输数据发送至所述第二辅站,以触发所述第二辅站将所述第二待传输数据传输给所述终端。
在一个可能的实施方式中,所述基站还包括:
控制单元,用于对所述至少一个辅站进行干扰协调控制。
在一个可能的实施方式中,所述控制单元对所述至少一个辅站进行干扰协调控制的方式具体为:
所述主站对所述至少一个辅站中的每一个辅站指示所述每一个辅站所采用的信号发射功率和空闲信道评估CCA门限值,其中,对所述至少一个辅站中的任意两个辅站,第三辅站和第四辅站,若所述第三辅站覆盖范围内的终端接收到的信号强度高于所述第四辅站覆盖范围内的终端接收到的信号强度,所述第三辅站采用的信号发射功率小于所述第四辅站采用的信号发射功率,所述第三辅站采用的CCA门限值大于所述第四辅站采用的CCA门限值。
可见,该基站执行第一方面任一方法的部分或全部步骤时能够使得主站和辅站有效协同,达到提升运营商覆盖和容量的目的,同时,提升终端的业务速率。
本发明实施例第三方面公开了一种基站,所述基站包括:处理器、接收器、发送器以及存储器,所述存储器被配置用于存储指令,所述处理器被配置用于运行所述指令,所述处理器运行所述指令以执行本发明实施例第一方面任一方法的部分或全部步骤。其中,该基站执行第一方面任一方法的部分或全部步骤时能够使得主站和辅站有效协同,达到提升运营商覆盖和容量的目的,同时,提升终端的业务速率。
本发明实施例第四方面公开了一种计算机存储介质,所述计算机存储介质存储有程序,所述程序具体包括用于执行本发明实施例第一方面任一方法的部分或全部步骤的指令。
需要说明的是,本发明中所描述的方法适用于室外主站和室内辅站的场景,可选的,本发明所述描述的方法同样适用于室外近端和远端的场景,其中,室外近端可以看成本发明中室内的辅站,室外远端可以看成本发明中室外的主站。
需要说明的是,上述方法适用于下行数据发送流程,可选的,上述方法同样适用于上行数据发送流程,在此不再赘述。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种通信系统的网络架构示意图;
图1.1是本发明实施例公开的一种基站部署场景示意图;
图1.2是本发明实施例公开的另一种基站部署场景示意图;
图2是本发明实施例公开的一种数据传输方法的流程示意图;
图3是本发明实施例公开的另一种数据传输方法的流程示意图;
图4是本发明实施例公开的另一种数据传输方法的流程示意图;
图5是本发明实施例公开的一种基站的结构示意图;
图6是本发明实施例公开的另一种基站的结构示意图;
图7是本发明实施例公开的另一种基站的结构示意图;
图8是本发明实施例公开的一种通信系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”和“第二”、等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、 产品或设备固有的其它步骤或单元。
本发明实施例公开了一种数据传输方法及基站,能够使得室外主站和室内辅站有效协同,达到提升运营商室内覆盖和容量的目的,同时,提升室内终端的业务速率。以下分别进行详细说明。
为了更好理解本发明实施例公开的一种数据传输方法,下面先对本发明实施例适用的网络架构进行描述。
请参见图1,图1是本发明实施例公开的一种通信系统的网络架构示意图,其中,图1所示的网络架构为室外采用主站和室内采用辅站的组网架构。图1所示的网络架构可以适用于长期演进(Long-term Evolution,LTE)系统或长期演进技术升级(Long-term Evolution Advanced,LTE-A)系统中,尤其适用于许可频谱辅助接入的LTE系统,即辅助授权接入长期演进(License Assisted Access Long-term Evolution,LAA-LTE)系统。
其中,LAA-LTE系统指将许可频谱和免许可频谱通过载波聚合(Carrier Aggregation,CA)或者非CA的方式在一起使用的LTE系统。其中,非CA的方式可以为双连接(Dual connectivity,DC)或免许可频谱独立使用(Unlicensed Standalone)。
具体的,可以有如下2种组网场景。第一种组网场景为使用CA技术将许可频谱和免许可频谱聚合在一起,即将许可频谱或许可频谱包括的载波或工作在许可频谱上的小区作为主服务小区,将免许可频谱或免许可频谱包括的载波或工作在免许可频谱上的小区作为辅服务小区,其中,主服务小区和辅服务小区可以共站(即共室外的主站或室内的辅站)部署,也可以是非共站部署,两个服务小区之间有理想或者非理想的回传路径,其中,理想的回传路径是指两个服务小区之间传输数据时不存在丢包或者时延的现象,非理想的回传路径是指两个服务小区之间传输数据时存在丢包或者时延的现象。
第二种组网场景为免许可频谱独立使用(Unlicensed Standalone)的场景,即将免许可频谱作为独立载波工作的场景,在免许可频谱上的服务小区可以提供独立接入功能,不需要通过工作在许可频谱上小区的辅助,就可以接入 非许可频谱对应的小区。其中,许可频谱也即授权频谱,非许可频谱也即非授权频谱。
需要说明的是,本发明适用的系统并不局限于LTE/LTE-A系统,还可以适用于于无线保真WiFi、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMax)、宽频码分多址(Wide band Code Division Multiple Acess,WCDMA)、时分同步的码分多址(Time Division-Synchronous Code Division Multiple Access,TDSCDMA)、全球移动通信系统(Global System for Mobile Communication,GSM)、紫蜂Zigbee、蓝牙等无线通信系统。
如图1所示,该系统架构包括:主站、至少一个辅站以及至少一个终端,主站与辅站之间可以通过有线连接,或者通过无线连接,主站与辅站之间可以是理想回传(ideal backhaul)或非理想回传(Non-ideal backhaul),其中,主站可以称为宏站(Macro cell),辅站可以称为小站(Small Cell)。
主站一般由运营商部署在室外,位于楼顶和铁塔等高处,波束覆盖范围大,通常可以达到数公里,但因受到建筑物、树木的影响,主站的覆盖效果不均匀,存在大量的盲区。频段越高主站对室内的穿透能力就越弱。主站一般工作在许可频谱。
辅站可以由运营商部署在室内,也可以由企业部署在室内。通常,辅站是一种低发射功率、小范围覆盖的基站设备,工作在非授权的频谱,发射功率在100mW到5W之间,覆盖10~200m的范围,辅站一般工作在免许可频谱。
本发明中,主要针对两种部署场景。
请一并参见图1.1,图1.1是本发明实施例公开的一种基站部署场景示意图。如图1.1所示,运营商A在室外部署有主站,该运营商A在室内也部署有辅站。运营商A的主站采用窄带覆盖增强技术在第一小区发送信号,辅助室内的辅站,让运营商A的终端接入第一小区中,进一步地,来自核心网A的数据经运营商A的主站时,运营商A的主站将数据进行分流,一部分数据从支持许可频谱的运营商A的主站流向运营商A的终端,另一部分数据从支持免许可频谱的运营商A的辅站流向运营商A的终端。
其中,运营商A的主站和运营商A的辅站之间可以是理想回传,也可以是非理想回传,运营商A的辅站可以是免许可频谱独立使用的辅站,也可以是LAA的辅站。其中,理想回传是指主站和辅站之间传输数据时不存在丢包或者时延的现象,非理想回传是指主站和辅站之间传输数据时存在丢包或者时延的现象。
可见,在图1.1所描述的这种基站部署场景下,同一运营商的主站和辅站可以有效协同,主站通过采用窄带覆盖增强技术将信号的带宽变窄,提高信号的发射功率以实现终端在主站接入,同时主站将需要传输给室内终端的数据分流到具备非授权频段能力的室内辅站进行分流,从而达到提升运营商室内覆盖和容量的目的,同时,提升室内终端业务速率。
请一并参见图1.2,图1.2是本发明实施例公开的另一种基站部署场景示意图。如图1.2所示,运营商A在室外部署有主站,该运营商A在室内部署有中立节点(即辅站),而运营商B只在室外部署有主站,在室内没有部署辅站。其中,针对运营商A的主站和运营商A的辅站的协调方法与图1.1所述的相同,在此不再赘述,具体请参见图1.1的描述。
其中,运营商B的主站采用窄带覆盖增强技术在第一小区发送信号,辅助室内的辅站,让运营商B的终端接入第一小区中,进一步地,来自核心网B的数据经运营商B的主站时,运营商B的主站可以通过共享运营商A的辅站进行分流,一部分数据从支持许可频谱的运营商B的主站流向运营商B的终端,另一部分数据从支持免许可频谱的运营商A的辅站流向运营商B的终端。
其中,运营商A的主站和运营商A的辅站之间可以是理想回传,也可以是非理想回传,运营商A的辅站可以是免许可频谱独立使用的辅站,也可以是LAA的辅站;运营商B的主站和运营商B的辅站之间可以是理想回传,也可以是非理想回传,运营商B的辅站可以是免许可频谱独立使用的辅站,也可以是LAA的辅站.
可见,在图1.2所描述的这种基站部署场景下,多个运营商之间对免许可频谱可以共享,无室内覆盖能的运营商可以采用覆盖增强技术在第一小区发送 信号后,通过租用有室内覆盖运营商的辅站进行分流,使得室内主站和室内辅站有效协同,达到提升运营商室内覆盖和容量的目的,同时,提升室内终端业务速率。
其中,针对图1.1以及图1.2的场景,运营商的主站可以通过两种方式进行数据分流,第一种:通信系统采用载波聚合CA技术,主站在媒体接入控制MAC层上将待传输数据发送至辅站;第二种:通信系统采用双连接DC技术,主站在分组数据汇聚协议PDCP层上将待传输数据发送至辅站。
此外,可选的,还可以通过核心网进行数据分流,具体的,核心网与主站建立第一承载、核心网与辅站建立第二承载,核心网通过第一承载向终端发送第一数据,核心网通过第二承载向终端发送第二数据。
其中,主站主要用于控制面的管理,比如接入、认证和鉴权,辅站主要用于数据面的数据传输,此外,主站也可以用于数据传输。通常,主站上使用授权频谱,辅站上使用非授权频谱。其中,窄带覆盖增强技术可以包括增强的机器类通信(enhanced Machine Type Communications,eMTC:)或窄带物联网(Narrow Band-Internet of Things,NB-IoT)等。
需要说明的是,本发明实施例中描述的方法同样适用于室外近端和远端的场景,室外近端可以看成本发明中室内的辅站,室外远端可以看成本发明中室外的主站。
请参见图2,图2是本发明实施例公开的一种数据传输方法的流程示意图。其中,该数据传输方法是从主站、辅站以及终端等多侧来撰写的,该方法适用于图1.1以及图1.2所述的场景,该方法包括以下步骤:
201、主站采用窄带覆盖增强技术在第一小区发送信号。
本发明实施例中,该主站可以为运营商部署在室外的基站。一般而言,主站的网络很难打入室内或者主站在室内的网络覆盖较弱,为了解决这个问题,本发明实施例中,主站可以采用窄带覆盖增强技术在第一小区发送信号,其中,该窄带覆盖增强技术可以包括增强的机器类通信(enhanced Machine Type  Communications,eMTC)或窄带物联网(Narrow Band-Internet of Things,NB-IoT)等,该第一小区为主站覆盖范围内的小区。
具体的,主站可以采用窄带覆盖增强技术在第一小区发送公共信道上承载的公共信号。该公共信号可以包括但不限于主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS),物理广播信号(Physical Broadcast Channel,PBCH),广播信号(Master Information Block,MIB)。
需要说明的是,本发明实施例中,可选的,主站还可以使用其他的覆盖增强技术将信号打入室内,比如:使用更低频率(如900MHz)的载波,或者使用其他覆盖较好的无线通信方法(比如全球移动通信系统(Global System for Mobile Communication,GSM),通用移动通信系统(Universal Mobile Telecommunications System,UMTS)等。
202、终端接入到第一小区中。
本发明实施例中,室内的辅站不具备接入功能,室外的主站采用窄带覆盖增强技术将信号的带宽变窄,提高信号的发射功率以实现终端在主站接入。
其中,主站还需要对位于室内的终端进行鉴权,该位于室内的终端为需要接入主站对应的小区中的终端。在鉴权通过后,即室内的终端的身份合法后,主站就可以对该终端进行计费。
203、主站向终端发送频点测量请求。
本发明实施例中,在室内的终端接入到主站对应的小区之后,主站可以向终端发送频点测量请求,其中,该频点测量请求用于请求终端在该频点上进行测量,该频点测量请求可以包括室内辅站所在的至少一个频点,可以是非授权频点,也可以是授权频点,其中,非授权频点比如2.4GHz、5.8GHz等。
204、终端向主站发送第一频点测量结果。
本发明实施例中,终端接收到主站发送的频点测量请求之后,终端可以提取频点测量请求中的频点,并在该频点上进行测量,获得第一频点测量结果,通常,该第一频点测量结果可以包括小区的标识(cell ID),参考信号接收功 率(Reference Signal Receiving Power,RSRP),参考信号接收质量(Reference Signal Receiving Quality,RSRQ),其中,每个小区的标识可以对应一个辅站,RSRP的取值范围为-44~-140dBm,RSRQ的取值范围:-3~-19.5,RSRP以及RSRQ的值越大表明接收到的信号越强。
205、主站根据第一频点测量结果从至少一个辅站中选择第一辅站。
本发明实施例中,主站接收到终端发送的第一频点测量结果之后,主站就可以通过第一频点测量结果中的至少一个小区的标识来确定多个辅站,进一步地,可以根据信号强弱从至少一个辅站中将信号最强的辅站确定为第一辅站。其中,第一辅站与第一小区有共同的覆盖区域。
206、主站将第一待传输数据发送至第一辅站。
本发明实施例中,主站根据第一频点测量结果从多个辅站中选择第一辅站之后,进一步地,主站还可以根据自身负载水平和业务的服务质量(Quality of Service,QoS)需求确定分流策略。比如:自身负载水平比较重或者业务的QoS需求较高,则可以将较多的数据分流到第一辅站。其中,该第一待传输数据为当前主站需要传给室内的终端的数据,主要为业务数据。
作为一种可选的实施方式,主站与第一辅站采用载波聚合CA技术,主站将第一待传输数据发送至第一辅站的方式具体为:
主站在媒体接入控制MAC上将第一待传输数据发送至第一辅站。
在该可选的实施方式中,主站与第一辅站之间是理想回传(Back Haul,BH),即主站与第一辅站之间进行数据传输时不存在丢包或者时延的现象。主站和第一辅站的数据分流锚点在媒体接入控制(Media Access Control,MAC)层,通过CA的MAC层的动态调度来实现数据分流。
其中,主站与所述第一辅站采用载波聚合(Carrier Aggregation,CA)技术,可以将主站的许可频谱与第一辅站的免许可频谱聚合在一起,或者,可以将主站的许可频点与第一辅站的许可频点聚合在一起。在LTE系统中,LTE设备可以通过CA的方式,将许可频谱作为主成员载波(Primary Component Carrier,PCC)或主小区(Primary Cell,PCell),将免许可频谱作为辅成员载 波(Secondary Component Carrier,SCC)或辅小区(Secondary Cell,SCell),这样LTE设备既可以通过许可频谱继承LTE设备用于无线通信的传统优势,例如在移动性、安全性、服务质量以及同时处理多用户调度方面的优势,又可以利用免许可频谱的频谱资源。
作为另一种可选的实施方式,主站与第一辅站采用双连接DC技术,主站将第一待传输数据发送至第一辅站的方式具体为:
主站在分组数据汇聚协议PDCP将第一待传输数据发送至第一辅站。
在该可选的实施方式中,主站与第一辅站之间是非理想回传(BackHaul,BH),即主站与第一辅站之间进行数据传输时存在丢包或者时延的现象。主站和第一辅站的数据分流锚点在主站的分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层,通过DC的PDCP层来实现数据分流。
其中,双连接(Dual Connectivity,DC)是UE在无线资源控制连接(Radio Resource Control CONNECTED,RRC_CONNECTED)态下的一种模式,配置了一个主小区组(Master Cell Group,MCG)和一个辅小区组(Secondary Cell Group,SCG)。如果接入网(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)支持DC,RRC_CONNECTED态的UE可以配置为使用两个不同基站eNB提供的无线资源,两个eNB由X2接口连接,一个作为主站MeNB,一个作为辅站SeNB。DC中,UE分别与MeNB和SeNB相连接。
207、第一辅站将第一待传输数据传输给终端。
作为另一种可选的实施方式,主站还可以指示第一辅站采用第一信号发射功率以及第一空闲信道评估CCA门限值,第一辅站接收到该第一信号发射功率以及第一空闲信道评估CCA门限值之后,第一辅站可以根据第一空闲信道评估CCA门限值在信道空闲的时候,按照第一信号发射功率将第一待传输数据发送至传输给终端。这样,有利于主站对室内的至少一个辅站进行干扰协调控制。
在图2所描述的方法流程中,主站可以采用窄带覆盖增强技术在第一小区发送信号,这样,主站就可以辅助辅站,让终端接入到主站对应的第一小区中, 进一步地,主站将第一待传输数据发送至第一辅站,第一辅站就可以将第一待传输数据传输给终端,从而能够使得主站和辅站有效协同,达到提升运营商覆盖和容量的目的,同时,提升终端的业务速率。
请参见图3,图3是本发明实施例公开的另一种数据传输方法的流程示意图。其中,该数据传输方法是从主站、辅站以及终端等多侧来撰写的,该方法适用于图1.1以及图1.2所述的场景。该方法包括以下步骤:
301、主站将第一待传输数据发送至第一辅站,并指示第一辅站采用第一信号发射功率以及第一空闲信道评估CCA门限值。
本发明实施例中,主站可以实时监测室内各个终端接收到辅站信号的强弱,同时,室内终端也可以实时上报自身接收到辅站信号的强弱。主站可以集中自组网(Self-Organizing Network)能力,根据位于室内的每个终端接收到辅站信号的强弱来指示位于室内的至少一个辅站所采用的信号发射功率以及空闲信道评估(Clear Channel Assessment,CCA)门限值,这样,主站就可以宏观的进行室内多个辅站间的干扰协调控制。
本发明实施例中,针对主站以及室内的不同辅站,主站必须是可以独立服务终端的,因此主站具备所有的LTE信道功能,辅站可以仅具备部分功能,对应了不同的协议版本。如下表所示:
Figure PCTCN2016096046-appb-000001
其中,R13/ R14/ R14+为辅站支持的协议版本,主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS),寻呼消息Paging,系统消息System Info,随机接入消息RA,无线资源控制信令(Radio Resource Control,RRC),物理下行控制信道(Physical Downlink Control Channel,PDCCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),物理上行链路控制信道(Physical Uplink Control Channel,PUCCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH),物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH),物理HARQ指示信道(Physical Hybrid-ARQ Indicator Channel,PHICH)。
其中,主站上具备所有信道、信号、消息以及信令,支持不同协议版本的辅站均可以使用本发明中提到的相关技术。其中,支持R13协议的辅站具备2个信道,即PDCCH和PDSCH,支持R14协议的辅站具备3个信道,即PDCCH、PDSCH以及PUSCH,支持R14+协议的辅站具备5个信道,即PDCCH、PDSCH、 PUCCH、PUSCH、PCFICH/PHICH,非授权独立使用小区的辅站具备所有的信道。
302、第一辅站采用第一信号发射功率以及第一空闲信道评估CCA门限值将第一待传输数据传输给终端。
本发明实施例中,第一辅站可以先根据第一空闲信道评估CCA门限值来确定当前的信道是否空闲,如果空闲,则第一辅站可以以第一信号发射功率将第一待传输数据传输给终端。这样,有利于各辅站间的干扰协调控制。
303、在终端移动到无第一辅站覆盖的区域的情况下,主站将终端的数据分流走向从第一辅站切换到主站。
本发明实施例中,主站可以实时监测终端移动过程中终端接收到辅站的信号的强弱,同时,终端在移动过程中,终端也可以实时向主站上报终端接收到辅站的信号的强弱。在终端移动到无第一辅站覆盖的区域的情况下,也即终端当前接收到第一辅站的信号很弱,此时,主站需要改变终端的数据分流走向,可以将终端的数据分流走向从第一辅站切换到主站。
304、终端向主站发送第二频点测量结果。
本发明实施例中,终端接入主站对应的小区之后,主站可以实时向终端发送频点测量请求,以请求终端进行频点测量,并上报频点测量结果,或者,可选的,终端可以实时进行频点测量,并主动上报频点测量结果。
其中,在本发明实施例中,该第二频点测量结果不同于上文中的第一频点测量结果,该第二频点测量结果为在终端移动到无辅站覆盖的区域的情况下,主站接收到的频点测量结果,该第二频点测量结果可以包括小区的标识,每个频点上信号的强弱。其中,每个小区的标识可以对应一个辅站。
305、主站根据终端发送的第二频点测量结果从至少一个辅站中选择第二辅站。
本发明实施例中,主站可以根据主站就可以通过第二频点测量结果中的多个小区的标识来确定多个辅站,进一步地,可以根据信号强弱从至少一个辅站中将信号最强的辅站确定为第二辅站。
306、主站将第二待传输数据发送至第二辅站,并指示第二辅站采用第二信号发射功率以及第二空闲信道评估CCA门限值。
其中,该第二待传输数据为当前需要传输给终端的数据,该第二待传输数据不同于第一待传输数据。
其中,针对每个辅站,在辅站覆盖范围内的终端接收到的信号越强,则主站指示辅站采用的信号发射功率就越小,CCA门限值越大;在辅站覆盖范围内的终端接收到的信号越弱,则主站指示辅站采用的信号发射功率就越大,CCA门限值越小。
举例来说,针对第一辅站和第二辅站,若所述第一辅站覆盖范围内的终端接收到的信号强度高于所述第二辅站覆盖范围内的终端接收到的信号强度,所述第一辅站采用的第一信号发射功率小于所述第二辅站采用的第二信号发射功率,所述第一辅站采用的第一CCA门限值大于所述第二辅站采用的第二CCA门限值。
307、第二辅站采用第二信号发射功率以及第二空闲信道评估CCA门限值将第二待传输数据传输给终端。
本发明实施例中,第一辅站和第二辅站分别采用主站指示的信号发射功率以及CCA门限值进行数据的传输,这样可以实现主站对多个辅站间的干扰协调控制,同时,在终端移动到无辅站覆盖的区域的情况下,主站进行辅站的切换,能够确保室内终端接收到信号比较强,提升室内终端的业务速率。
请参见图4,图4是本发明实施例公开的另一种数据传输方法的流程示意图。其中,该数据传输方法是从主站、辅站以及终端等多侧来撰写的,该方法适用于图1.1以及图1.2所述的场景。该方法包括以下步骤:
401、主站将第一待传输数据发送至第一辅站,并指示第一辅站采用第一信号发射功率以及第一空闲信道评估CCA门限值。
402、第一辅站采用第一信号发射功率以及第一空闲信道评估CCA门限值将第一待传输数据传输给终端。
403、在终端移动到第三辅站覆盖的区域的情况下,终端向主站发送针对第三辅站的第三频点测量结果。
本发明实施例中,终端在移动的过程中,如果发现邻区的信号比终端当前所在的小区的信号较好,则终端可以主动向主站发送频点测量结果。
比如:终端在移动的过程中,如果发现在第三辅站对应的小区接收到的信号比终端当前所在第一辅站对应的小区接收到的信号要强,这时,终端可以主动向主站发送针对第三辅站的第三频点测量结果。
404、主站根据第三频点测量结果,确定需要进行辅站的切换。
本发明实施例中,主站接收到终端发送的针对第三辅站的第三频点测量结果之后,主站可以根据第三频点测量结果,将终端当前所在第一辅站接收到的信号与第三辅站接收到的信号进行比较,如果第三辅站接收到的信号比终端当前所在第一辅站接收到的信号要强,则主站可以确定需要进行辅站的切换。
405、主站将终端的数据分流走向从第一辅站切换到第三辅站。
406、主站将第三待传输数据发送至第三辅站,并指示第三辅站采用第三信号发射功率以及第三空闲信道评估CCA门限值。
其中,针对每个辅站,在辅站覆盖范围内的终端接收到的信号越强,则主站指示辅站采用的信号发射功率就越小,CCA门限值越大;在辅站覆盖范围内的终端接收到的信号越弱,则主站指示辅站采用的信号发射功率就越大,CCA门限值越小。
举例来说,针对第一辅站和第三辅站,若所述第一辅站覆盖范围内的终端接收到的信号强度高于所述第三辅站覆盖范围内的终端接收到的信号强度,所述第一辅站采用的第一信号发射功率小于所述第三辅站采用的第三信号发射功率,所述第一辅站采用的第一CCA门限值大于所述第三辅站采用的第二CCA门限值。
407、第三辅站采用第三信号发射功率以及第三空闲信道评估CCA门限值将第三待传输数据传输给终端。
本发明实施例中,终端可以实时检测邻区的信号强弱,当发现邻区的信号 比较强时,终端可以主动地向主站发送针对第三辅站的第三频点测量结果,触发主站进行辅站的切换,这样有利于确保终端接收到的信号比较强,提升室内终端的业务速率;同时,终端采用主站指示的信号发射功率以及CCA门限值进行数据的传输,这样可以实现主站对多个辅站间的干扰协调控制。
请参见图5,图5是本发明实施例公开的一种基站的结构示意图。其中,该基站为主站,该基站用于执行图2~图4中所描述的数据传输方法的部分或全部步骤,具体请参见图2~图4中的描述,在此不再赘述。该基站500可以包括:
第一发送单元501,用于采用窄带覆盖增强技术在第一小区发送信号;
接入单元502,用于在所述第一小区中接入终端;
第二发送单元503,用于将第一待传输数据发送至第一辅站,以使得所述第一辅站将所述第一待传输数据传输给所述终端,其中,所述第一辅站与所述第一小区有共同的覆盖区域。
其中,所述窄带覆盖增强技术包括增强的机器类通信eMTC或窄带物联网NB-IoT。
可选的,所述主站与所述第一辅站采用载波聚合CA技术,所述第二发送单元503将第一待传输数据发送至第一辅站的方式具体为:
在媒体接入控制MAC层上将第一待传输数据发送至第一辅站。
可选的,所述主站与所述第一辅站采用双连接DC技术,所述第二发送单元503将第一待传输数据发送至第一辅站的方式具体为:
在分组数据汇聚协议PDCP层将第一待传输数据发送至第一辅站。
其中,所述主站用于对所述终端鉴权,并传输所述终端的控制信令。
请参见图6,图6是本发明实施例公开的另一种基站的结构示意图。其中,该基站为主站,该基站用于执行图2~图3中所描述的数据传输方法的部分或全部步骤,具体请参见图2~图3中的描述,在此不再赘述。图6所述的基站是在图 5所述基站的基础上进一步优化得到的,图6所述的基站除了包括图5所述基站的所有单元外,
所述第一发送单元501,还用于所述接入单元502在所述第一小区中接入终端之后,向所述终端发送频点测量请求;
图6所述的基站500还包括:
接收单元504,用于接收所述终端上报的第一频点测量结果;
选择单元505,用于根据所述第一频点测量结果从所述至少一个辅站中选择所述第一辅站。
可选的,所述选择单元505,还有用于根据所述终端发送的第二频点测量结果从所述至少一个辅站中选择第二辅站;
所述第二发送单元503,还用于将第二待传输数据发送至所述第二辅站,以触发所述第二辅站将所述第二待传输数据传输给所述终端。
可选的,图6所述的基站500还可以包括:
控制单元506,用于对所述至少一个辅站进行干扰协调控制。
所述控制单元506对所述至少一个辅站进行干扰协调控制的方式具体为:
对所述至少一个辅站中的每一个辅站指示所述每一个辅站所采用的信号发射功率和空闲信道评估CCA门限值,其中,对所述至少一个辅站中的任意两个辅站,第三辅站和第四辅站,若所述第三辅站覆盖范围内的终端接收到的信号强度高于所述第四辅站覆盖范围内的终端接收到的信号强度,所述第三辅站采用的信号发射功率小于所述第四辅站采用的信号发射功率,所述第三辅站采用的CCA门限值大于所述第四辅站采用的CCA门限值。
在图5~图6所描述的基站500中,可以采用窄带覆盖增强技术在第一小区发送信号,这样,主站就可以辅助辅站,让终端接入到主站对应的第一小区中,进一步地,主站将第一待传输数据发送至第一辅站,第一辅站就可以将第一待传输数据传输给终端,从而能够使得主站和辅站有效协同,达到提升运营商覆盖和容量的目的,同时,提升终端的业务速率。
请参阅图7,图7是本发明实施例公开的另一种基站的结构示意图。其中,图7所示的基站可以用于执行图2~图3所描述的数据传输方法的部分或全部步骤,具体请参见图2~图3中的描述,在此不再赘述。如图7所示,该基站700可以包括:至少一个处理器701,例如CPU(Central Processing Unit,中央处理器),至少一个接收器702、至少一个发送器703以及存储器704,其中,所述处理器701、接收器702、发送器703以及存储器704分别连接通信总线。存储器704可以是高速RAM存储器,也可以是非易失性的存储器(non-volatile memory)。本领域技术人员可以理解,图7中示出的基站700的结构并不构成对本发明的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图7所示的更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,处理器701为基站700的控制中心,可以是中央处理器(Central Processing Unit,CPU),处理器701利用各种接口和线路连接整个基站700的各个部分,通过运行或执行存储在存储器704内的软件程序和/或模块,以及调用存储在存储器704内存储的程序代码,用于执行以下操作:
采用窄带覆盖增强技术在第一小区发送信号;
在所述第一小区中接入终端;
通过所述发送器703将第一待传输数据发送至第一辅站,以触发所述第一辅站将所述第一待传输数据传输给所述终端,其中,所述第一辅站与所述第一小区有共同的覆盖区域。
其中,所述窄带覆盖增强技术包括增强的机器类通信eMTC或窄带物联网NB-IoT。
可选的,所述主站与所述第一辅站采用载波聚合CA技术,所述处理器通过所述发送器703将第一待传输数据发送至第一辅站的方式具体为:
在媒体接入控制MAC层上将第一待传输数据发送至第一辅站。
可选的,所述主站与所述第一辅站采用双连接DC技术,所述处理器通过所述发送器703将第一待传输数据发送至第一辅站的方式具体为:
在分组数据汇聚协议PDCP层将第一待传输数据发送至第一辅站。
其中,所述主站用于对所述终端鉴权,并传输所述终端的控制信令。
可选的,所述在所述第一小区中接入终端之后,所述处理器还用于调用所述存储器中存储的程序代码,用于执行以下步骤:
通过所述发送器703向所述终端发送频点测量请求;
通过所述接收器702接收所述终端上报的第一频点测量结果;
根据所述第一频点测量结果从所述至少一个辅站中选择第一辅站。
可选的,所述处理器701还用于调用所述存储器704中存储的程序代码,用于执行以下步骤:
所述主站根据所述终端发送的第二频点测量结果从所述至少一个辅站中选择第二辅站;
所述主站将第二待传输数据发送至所述第二辅站,以触发所述第二辅站将所述第二待传输数据传输给所述终端。
可选的,所述处理器701还用于调用所述存储器704中存储的程序代码,用于执行以下步骤:
对所述至少一个辅站进行干扰协调控制。
可选的,所述处理器701对所述至少一个辅站进行干扰协调控制包括:
对所述至少一个辅站中的每一个辅站指示所述每一个辅站所采用的信号发射功率和空闲信道评估CCA门限值,其中,对所述至少一个辅站中的任意两个辅站,第三辅站和第四辅站,若所述第三辅站覆盖范围内的终端接收到的信号强度高于所述第四辅站覆盖范围内的终端接收到的信号强度,所述第三辅站采用的信号发射功率小于所述第四辅站采用的信号发射功率,所述第三辅站采用的CCA门限值大于所述第四辅站采用的CCA门限值。
在图7所描述的基站700中,可以采用窄带覆盖增强技术在第一小区发送信号,这样,主站就可以辅助辅站,让终端接入到主站对应的第一小区中,进一步地,主站将第一待传输数据发送至第一辅站,第一辅站就可以将第一待传输数据传输给终端,从而能够使得主站和辅站有效协同,达到提升运营商覆盖和容量的目的,同时,提升终端的业务速率。
请参阅图8,图8是本发明实施例公开的一种通信系统的结构示意图。如图8所示,该通信系统800主站801、辅站802、核心网803以及终端804。其中,该通信系统800用于执行上述方法实施例中所描述的数据传输方法,具体请参见图2~图4中所描述的,在此不再赘述。其中,主站801可以为图5~图6中任一项所描述的基站500,或者可以为图7中所描述的基站700,辅站802可以为上述实施例中所描述的第一辅站、第二辅站或第三辅站,还可以是其他的辅站。
其中,所述核心网803与所述主站801建立第一承载、所述核心网803与所述辅站802建立第二承载,所述核心网803通过所述第一承载向所述终端804发送第一数据,所述核心网803通过所述第二承载向所述终端804发送第二数据。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例装置中的单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的一种数据传输方法及基站进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种数据传输方法,应用于包括主站以及至少一个辅站的通信系统中,其特征在于,包括:
    所述主站采用窄带覆盖增强技术在第一小区发送信号;
    所述主站在所述第一小区中接入终端;
    所述主站将第一待传输数据发送至第一辅站,以使得所述第一辅站将所述第一待传输数据传输给所述终端,其中,所述第一辅站与所述第一小区有共同的覆盖区域。
  2. 根据权利要求1所述的方法,其特征在于,所述窄带覆盖增强技术包括增强的机器类通信eMTC或窄带物联网NB-IoT。
  3. 根据权利要求1或2所述的方法,其特征在于,所述主站与所述第一辅站采用载波聚合CA技术,所述主站将第一待传输数据发送至第一辅站包括:
    所述主站在媒体接入控制MAC层上将第一待传输数据发送至所述第一辅站。
  4. 根据权利要求1或2所述的方法,其特征在于,所述主站与所述第一辅站采用双连接DC技术,所述主站将第一待传输数据发送至第一辅站包括:
    所述主站在分组数据汇聚协议PDCP层上将第一待传输数据发送至所述第一辅站。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,所述主站用于对所述终端鉴权,并传输所述终端的控制信令。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述主站在所述第一小区中接入终端之后,所述方法还包括:
    所述主站向所述终端发送频点测量请求;
    所述主站接收所述终端上报的第一频点测量结果;
    所述主站根据所述第一频点测量结果从所述至少一个辅站中选择所述第一辅站。
  7. 根据权利要求6所述的方法,其特征在于,所述方法之后还包括:
    所述主站根据所述终端发送的第二频点测量结果从所述至少一个辅站中选择第二辅站;
    所述主站将第二待传输数据发送至所述第二辅站,以触发所述第二辅站将所述第二待传输数据传输给所述终端。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,所述方法还包括:
    所述主站对所述至少一个辅站进行干扰协调控制。
  9. 根据权利要求8所述的方法,其特征在于,所述主站对所述至少一个辅站进行干扰协调控制包括:
    所述主站对所述至少一个辅站中的每一个辅站指示所述每一个辅站所采用的信号发射功率和空闲信道评估CCA门限值,其中,对所述至少一个辅站中的任意两个辅站,第三辅站和第四辅站,若所述第三辅站覆盖范围内的终端接收到的信号强度高于所述第四辅站覆盖范围内的终端接收到的信号强度,所述第三辅站采用的信号发射功率小于所述第四辅站采用的信号发射功率,所述第三辅站采用的CCA门限值大于所述第四辅站采用的CCA门限值。
  10. 一种基站,应用于包括主站以及至少一个辅站的通信系统中,其特征在于,所述基站为主站,包括:处理器、接收器、发送器以及存储器,其中,所述处理器、接收器、发送器以及存储器分别连接通信总线,所述存储器中存储一组程序代码,且所述处理器用于调用所述存储器中存储的程序代码,用于执行以下步骤:
    采用窄带覆盖增强技术在第一小区发送信号;
    在所述第一小区中接入终端;
    通过所述发送器将第一待传输数据发送至第一辅站,以触发所述第一辅站将所述第一待传输数据传输给所述终端,其中,所述第一辅站与所述第一小区有共同的覆盖区域。
  11. 根据权利要求10所述的基站,其特征在于,所述窄带覆盖增强技术包括增强的机器类通信eMTC或窄带物联网NB-IoT。
  12. 根据权利要求10或11所述的基站,其特征在于,所述主站与所述第一 辅站采用载波聚合CA技术,所述处理器通过所述发送器将第一待传输数据发送至第一辅站的方式具体为:
    在媒体接入控制MAC层上将第一待传输数据发送至所述第一辅站。
  13. 根据权利要求10或11所述的基站,其特征在于,所述主站与所述第一辅站采用双连接DC技术,所述处理器通过所述发送器将第一待传输数据发送至第一辅站的方式具体为:
    在分组数据汇聚协议PDCP层将第一待传输数据发送至第一辅站。
  14. 根据权利要求10~13任一项所述的基站,其特征在于,所述主站用于对所述终端鉴权,并传输所述终端的控制信令。
  15. 根据权利要求10~14任一项所述的基站,其特征在于,所述在所述第一小区中接入终端之后,所述处理器还用于调用所述存储器中存储的程序代码,用于执行以下步骤:
    通过所述发送器向所述终端发送频点测量请求;
    通过所述接收器接收所述终端上报的第一频点测量结果;
    根据所述第一频点测量结果从所述至少一个辅站中选择所述第一辅站。
  16. 根据权利要求15所述的基站,其特征在于,所述处理器还用于调用所述存储器中存储的程序代码,用于执行以下步骤:
    所述主站根据所述终端发送的第二频点测量结果从所述至少一个辅站中选择第二辅站;
    所述主站将第二待传输数据发送至所述第二辅站,以触发所述第二辅站将所述第二待传输数据传输给所述终端。
  17. 根据权利要求10~16任一项所述的基站,其特征在于,所述处理器还用于调用所述存储器中存储的程序代码,用于执行以下步骤:
    对所述至少一个辅站进行干扰协调控制。
  18. 根据权利要求17所述的基站,其特征在于,所述处理器对所述至少一个辅站进行干扰协调控制包括:
    对所述至少一个辅站中的每一个辅站指示所述每一个辅站所采用的信号 发射功率和空闲信道评估CCA门限值,其中,对所述至少一个辅站中的任意两个辅站,第三辅站和第四辅站,若所述第三辅站覆盖范围内的终端接收到的信号强度高于所述第四辅站覆盖范围内的终端接收到的信号强度,所述第三辅站采用的信号发射功率小于所述第四辅站采用的信号发射功率,所述第三辅站采用的CCA门限值大于所述第四辅站采用的CCA门限值。
  19. 一种通信系统,其特征在于,包括如权利要求10-18任一项所述的主站、至少一个辅站、核心网以及至少一个终端。
  20. 根据权利要求19所述的通信系统,其特征在于,所述核心网与所述主站建立第一承载、所述核心网与所述辅站建立第二承载,所述核心网通过所述第一承载向所述终端发送第一数据,所述核心网通过所述第二承载向所述终端发送第二数据。
PCT/CN2016/096046 2016-08-19 2016-08-19 一种数据传输方法及基站 WO2018032504A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/096046 WO2018032504A1 (zh) 2016-08-19 2016-08-19 一种数据传输方法及基站
CN201680087853.0A CN109479200A (zh) 2016-08-19 2016-08-19 一种数据传输方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/096046 WO2018032504A1 (zh) 2016-08-19 2016-08-19 一种数据传输方法及基站

Publications (1)

Publication Number Publication Date
WO2018032504A1 true WO2018032504A1 (zh) 2018-02-22

Family

ID=61196265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096046 WO2018032504A1 (zh) 2016-08-19 2016-08-19 一种数据传输方法及基站

Country Status (2)

Country Link
CN (1) CN109479200A (zh)
WO (1) WO2018032504A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500246A (zh) * 2008-01-31 2009-08-05 大唐移动通信设备有限公司 基于设有中继站的通信系统的数据收发方法及装置
US20120257585A1 (en) * 2011-04-05 2012-10-11 John Sydor Cognitive wifi radio network
CN103888963A (zh) * 2012-12-21 2014-06-25 华为技术有限公司 无线网络临时标识的配置方法、站点和用户设备
CN104284357A (zh) * 2013-07-02 2015-01-14 华为技术有限公司 一种处理数据传输异常的方法及系统、宏基站
CN105075314A (zh) * 2013-02-13 2015-11-18 株式会社Kt 激活或去激活小小区的方法及其装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8676220B2 (en) * 2008-04-03 2014-03-18 Samsung Electronics Co., Ltd. Apparatus and method for operating hierarchical cell in broadband wireless communication system
CN102223647B (zh) * 2011-06-16 2014-03-12 京信通信系统(中国)有限公司 一种毫微微基站的配置方法和装置
US10154483B2 (en) * 2012-09-12 2018-12-11 Qualcomm Incorporated Coverage enhancement techniques for machine type communication devices in a wireless network
CN104254082B (zh) * 2014-09-24 2018-12-18 大唐移动通信设备有限公司 一种调整微微基站覆盖范围的方法和装置
CN106550312A (zh) * 2015-09-18 2017-03-29 中兴通讯股份有限公司 调度控制方法及通信节点

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500246A (zh) * 2008-01-31 2009-08-05 大唐移动通信设备有限公司 基于设有中继站的通信系统的数据收发方法及装置
US20120257585A1 (en) * 2011-04-05 2012-10-11 John Sydor Cognitive wifi radio network
CN103888963A (zh) * 2012-12-21 2014-06-25 华为技术有限公司 无线网络临时标识的配置方法、站点和用户设备
CN105075314A (zh) * 2013-02-13 2015-11-18 株式会社Kt 激活或去激活小小区的方法及其装置
CN104284357A (zh) * 2013-07-02 2015-01-14 华为技术有限公司 一种处理数据传输异常的方法及系统、宏基站

Also Published As

Publication number Publication date
CN109479200A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP6668378B2 (ja) ワイヤレス通信ネットワークにおけるリレー接続を管理するためのシステム、方法、および装置
US10064078B2 (en) Wireless communications method, user equipment, and network node
CN107409428B (zh) Wlan与3gpp之间的业务聚合建立方法与装置
US10104566B2 (en) Reporting WiFi channel measurements to a cellular radio network
KR102020350B1 (ko) 무선이동통신시스템에서 d2d 통신을 지원/사용하는 단말기의 이동성을 지원하는 방안
CN109565726A (zh) 用于辅基站移动性的方法和装置
US9860835B2 (en) Method for cell selection in multi-rat environment
US9820324B2 (en) Network control of terminals with respect to multiple radio access networks
WO2013113202A1 (zh) 用于ue网络切换的信息处理方法和基站
WO2022148489A1 (zh) 切换处理方法与装置、终端、网络设备和存储介质
US10912001B2 (en) Method for selecting an access network based on carrier aggregation information
JP6797904B2 (ja) デバイス間の送信および受信に関する周波数の決定
GB2507829A (en) Mobile terminal handover in a network implementing coordinated multipoint transmission
WO2016180213A1 (zh) AP组信息处理方法及eNB
KR20240053570A (ko) 이동 통신 시스템에서 통신을 수행하는 방법 및 장치
US11381979B2 (en) Standalone unlicensed spectrum carrier aggregation combinations using dynamic frequency selection (DFS) spectrum
CN105659662B (zh) 一种分流的方法及装置
JP2018527823A (ja) Wlan−lteアグリゲーションにおける測定報告のためのワイヤレス通信デバイス、ネットワークノード及びそれらにおける方法
WO2019178776A1 (zh) 传输信息的方法和设备
JP2018524933A (ja) Rat間測定報告
WO2014161192A1 (zh) 一种数据的传输方法、通信设备和通信系统
WO2016119441A1 (zh) 业务迁移方法及装置
Martikainen et al. Mobility and reliability in lte-5g dual connectivity scenarios
WO2016029409A1 (zh) 一种数据传输方法及装置
WO2018032504A1 (zh) 一种数据传输方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913260

Country of ref document: EP

Kind code of ref document: A1