WO2018030375A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2018030375A1
WO2018030375A1 PCT/JP2017/028693 JP2017028693W WO2018030375A1 WO 2018030375 A1 WO2018030375 A1 WO 2018030375A1 JP 2017028693 W JP2017028693 W JP 2017028693W WO 2018030375 A1 WO2018030375 A1 WO 2018030375A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor shaft
axial direction
oil
pump chamber
axial
Prior art date
Application number
PCT/JP2017/028693
Other languages
French (fr)
Japanese (ja)
Inventor
山口 康夫
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to US16/323,641 priority Critical patent/US10941768B2/en
Priority to JP2018533482A priority patent/JP7010224B2/en
Priority to DE112017003991.6T priority patent/DE112017003991B4/en
Priority to CN201780049081.6A priority patent/CN109563828B/en
Publication of WO2018030375A1 publication Critical patent/WO2018030375A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0096Heating; Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
    • F16N7/40Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems in a closed circulation system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/225Detecting coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/008Enclosed motor pump units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/005Removing contaminants, deposits or scale from the pump; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/103Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/14Lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/206Oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N1/00Constructional modifications of parts of machines or apparatus for the purpose of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N13/00Lubricating-pumps
    • F16N13/20Rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/18Electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2280/00Valves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/193Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil with provision for replenishing the cooling medium; with means for preventing leakage of the cooling medium

Definitions

  • the present invention relates to a drive device.
  • This application is based on US Provisional Application No. 62 / 372,411 filed on Aug. 09, 2016, U.S. Provisional Application Nos. 62 / 402,027 and 12/2016 filed on Sep. 30, 2016. Claimed priority based on US Provisional Patent Application No. 62 / 439,201 filed on May 27, the contents of which are incorporated herein by reference.
  • Patent Document 1 describes a rotating electrical machine mounted on a vehicle.
  • Rotating electric machines as described above may be provided with a pump unit that sucks up oil stored in the case.
  • the rotor and the stator can be cooled by sucking up the oil by the pump unit and supplying the oil to the rotor and the stator, for example.
  • the pump unit it is conceivable to drive the pump unit with a shaft.
  • the pump unit includes an external gear fixed to the rotating shaft of the rotating electrical machine and an internal gear that meshes with the external gear.
  • the external gear fixed to the rotation shaft may be displaced from the internal gear and the external gear may be strongly pressed against the internal gear. is there. For this reason, the external gear and the internal gear may be worn and the pump unit may be damaged.
  • an object of the present invention is to provide a drive device that can suppress damage to the pump unit.
  • One aspect of the drive device includes a rotor having a motor shaft disposed along a central axis extending in one direction and a rotor core fixed to the motor shaft, and is opposed to the rotor via a gap in a radial direction.
  • a stator that houses the rotor and the stator, and has a housing portion that can store oil, and a pump portion that is driven via the motor shaft.
  • An external gear fixed to one end in the axial direction, an internal gear that surrounds the radially outer side of the external gear and meshes with the external gear, and the internal gear and the external gear are accommodated.
  • a drive device that can suppress damage to the pump unit is provided.
  • FIG. 1 is a cross-sectional view showing the drive device of the present embodiment.
  • FIG. 2 is a view of the pump unit of this embodiment as viewed from the other side in the axial direction.
  • FIG. 3 is a cross-sectional view showing a part of the driving apparatus of the present embodiment.
  • FIG. 4 is a cross-sectional view showing a part of the drive device of the present embodiment.
  • FIG. 5 is a cross-sectional view showing a part of a driving apparatus which is another example of the present embodiment.
  • the Z-axis direction shown in each figure is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side.
  • the vertical direction Z is the vertical direction of each figure.
  • the upper side in the vertical direction is simply referred to as “upper side”
  • the lower side in the vertical direction is simply referred to as “lower side”.
  • the drive device 1 of the present embodiment includes a housing 10, a rotor 20 having a motor shaft 20 a disposed along a central axis J ⁇ b> 1 extending in one direction, a rotation detection unit 80, and a stator 30. And a pump unit 40 and bearings 70 and 71.
  • the central axis J1 extends in the left-right direction in FIG. That is, in the present embodiment, the left-right direction in FIG. 1 corresponds to one direction.
  • a direction parallel to the axial direction of the central axis J1 is simply referred to as “axial direction”
  • a radial direction centered on the central axis J1 is simply referred to as “radial direction”
  • the central axis J1 is the center.
  • the circumferential direction is simply called “circumferential direction”.
  • the left side of FIG. 1 in the axial direction is referred to as “one axial side”
  • the right side of FIG. 1 in the axial direction is referred to as “the other axial side”.
  • the housing 10 has a main body part 11, an inner lid part 12, and an outer lid part 13.
  • the main body 11, the inner lid 12, and the outer lid 13 are separate members.
  • the main body 11 has a bottomed cylindrical shape that opens to one side in the axial direction.
  • the main body part 11 includes a bottom part 11a, a main body cylinder part 11b, and a bearing holding part 11c.
  • the bottom portion 11a has an annular plate shape that expands in the radial direction.
  • the main body cylinder portion 11b has a cylindrical shape extending from the radially outer edge portion of the bottom portion 11a to one side in the axial direction.
  • the bearing holding portion 11c has a cylindrical shape protruding from the inner edge portion of the bottom portion 11a to one side in the axial direction.
  • the bearing holding portion 11c holds the bearing 71 on the inner peripheral surface.
  • the inner lid 12 is attached to one side of the main body 11 in the axial direction.
  • the inner lid portion 12 includes an annular plate portion 12a, an outer cylinder portion 12b, an inner cylinder portion 12c, an inner cylinder bottom portion 12d, and a bearing holding portion 12e.
  • the annular plate portion 12a has an annular plate shape that extends in the radial direction.
  • the annular plate portion 12 a covers one side of the stator 30 in the axial direction. That is, the inner lid portion 12 covers one side of the stator 30 in the axial direction.
  • An opening 12f that penetrates the annular plate portion 12a in the axial direction is provided at the lower end portion of the annular plate portion 12a. The opening 12f is exposed inside the accommodating portion 14 described later.
  • the outer cylinder portion 12b has a cylindrical shape extending from the radially outer edge portion of the annular plate portion 12a to the other side in the axial direction.
  • the end portion on the other side in the axial direction of the outer tube portion 12b is fixed in contact with the end portion on the one side in the axial direction of the main body tube portion 11b.
  • the inner cylinder portion 12c has a cylindrical shape extending from the radially inner edge of the annular plate portion 12a to the other side in the axial direction.
  • the inner cylinder bottom portion 12d has an annular shape that extends radially inward from the other axial end of the inner cylinder portion 12c.
  • the inner lid portion 12 is provided with a second recess 12g that is recessed from the surface on the one axial side of the inner lid portion 12 to the other axial side. That is, the inner lid part 12 has the 2nd recessed part 12g.
  • the surface on the one side in the axial direction of the inner lid portion 12 is the surface on the one side in the axial direction of the annular plate portion 12a.
  • the inner side surface of the second recess 12g includes a radially inner side surface of the inner cylinder portion 12c and a surface on one axial side of the inner cylinder bottom portion 12d.
  • the bearing holding portion 12e has a cylindrical shape that protrudes from the surface on the other axial side of the inner cylinder bottom portion 12d to the other axial side.
  • the bearing holding part 12e holds the bearing 70 on the inner peripheral surface. That is, the inner lid portion 12 holds the bearing 70.
  • the housing part 14 surrounded by the body part 11 and the inner lid part 12 is configured by fixing the body part 11 and the inner lid part 12 to each other. That is, the housing 10 has the accommodating portion 14.
  • the accommodating portion 14 accommodates the rotor 20 and the stator 30 and can store the oil O.
  • the oil O is stored in the lower region in the vertical direction inside the accommodating portion 14.
  • the “vertical lower region in the interior of the housing portion” includes a portion located below the center in the vertical direction Z within the housing portion.
  • the liquid surface OS of the oil O stored in the storage unit 14 is located above the opening 12f. As a result, the opening 12 f is exposed to the oil O stored in the storage portion 14.
  • the liquid surface OS of the oil O fluctuates as the oil O is sucked up by the pump unit 40, but is disposed below the rotor 20 at least when the rotor 20 rotates. Thereby, when the rotor 20 rotates, it can suppress that the oil O becomes rotational resistance of the rotor 20.
  • the outer lid portion 13 is attached to one side of the inner lid portion 12 in the axial direction.
  • the outer lid portion 13 includes an outer lid main body portion 13a and a plug body portion 13b.
  • the outer lid body 13a expands in the radial direction.
  • the outer lid main body portion 13a includes a lid plate portion 13c and a protruding portion 13d.
  • the lid plate portion 13c has a disk shape that expands in the radial direction.
  • the radially outer edge portion of the lid plate portion 13c is fixed to the radially outer edge portion of the annular plate portion 12a.
  • the surface on the other side in the axial direction of the cover plate portion 13c is in contact with the surface on the one side in the axial direction of the annular plate portion 12a.
  • the protruding portion 13d protrudes from the center portion of the lid plate portion 13c to the other side in the axial direction.
  • the protruding portion 13d is inserted into the inner cylinder portion 12c from one side in the axial direction.
  • the protruding portion 13d is disposed at an interval on one side in the axial direction of the inner cylinder bottom portion 12d.
  • the outer lid body 13a has a first recess 13e and a shaft insertion hole 13f. That is, the outer lid portion 13 has a shaft insertion hole 13f.
  • the first recess 13e is recessed from the surface on one side in the axial direction of the outer lid main body 13a to the other side in the axial direction.
  • the 1st recessed part 13e is provided in the center part of the outer cover main-body part 13a, and is provided ranging over the cover board part 13c and the protrusion part 13d.
  • the shaft insertion hole 13f penetrates from the bottom surface of the first recess 13e to the other surface in the axial direction of the protrusion 13d.
  • the shaft insertion hole 13f penetrates from the bottom surface of the first recess 13e to the inside of the housing 10.
  • the shaft insertion hole 13f opens inside the second recess 12g.
  • the shaft insertion hole 13f connects the inside of the first recess 13e and the inside of the second recess 12g.
  • the central axis J1 passes through the shaft insertion hole 13f.
  • the plug body 13b is fitted into the first recess 13e and fixed to the outer lid main body 13a.
  • the plug part 13b closes the opening on the one axial side of the first recess 13e.
  • the plug part 13b covers one side in the axial direction of the motor shaft 20a. That is, the outer lid portion 13 covers one axial side of the motor shaft 20a.
  • the plug body portion 13b has a flange portion 13g that protrudes radially outward at an end portion on one axial side.
  • the flange portion 13g contacts the surface on one side in the axial direction of the lid plate portion 13c. Thereby, the plug part 13b can be positioned in an axial direction.
  • a pump chamber 46 is provided in the outer lid portion 13.
  • the pump chamber 46 is provided between the axial direction other side surface of the plug part 13b and the bottom surface of the first recess 13e.
  • the surface on the other axial side of the pump chamber 46 is the bottom surface of the first recess 13e. That is, the shaft insertion hole 13 f penetrates the outer lid portion 13 from the surface on the other axial side of the pump chamber 46 to the surface on the other axial side of the outer lid portion 13.
  • the surface on the one axial side of the pump chamber 46 is the surface on the other axial side of the plug body portion 13b.
  • the pump chamber 46 is an end on the other side in the axial direction of the inside of the first recess 13e.
  • the pump chamber 46 is disposed on the radially inner side of the inner cylinder portion 12c, that is, inside the second recess 12g.
  • the central axis J1 passes through the pump chamber 46.
  • the outer shape of the pump chamber 46 is circular when viewed in the axial direction.
  • the pump chamber 46 accommodates an internal gear 43 and an external gear 42 which will be described later.
  • the outer lid portion 13 has a support portion 13h.
  • 13 h of support parts are parts located in the other axial direction side of the 1st recessed part 13e among the protrusion parts 13d.
  • the support portion 13h has an annular shape that surrounds the radially outer side of the motor shaft 20a.
  • the support portion 13h has an annular shape centered on the central axis J1.
  • the radially inner side surface of the support portion 13h is the radially inner side surface of the shaft insertion hole 13f. That is, the support portion 13h constitutes at least a part of the radially inner side surface of the shaft insertion hole 13f.
  • the surface on one side in the axial direction of the support portion 13 h is the bottom surface of the first recess 13 e and the surface on the other side in the axial direction of the pump chamber 46. That is, the support portion 13 h constitutes at least a part of the surface on the other axial side of the pump chamber 46. In the present embodiment, the support portion 13h is a part of the outer lid main body portion 13a that is a single member.
  • the housing 10 has a first oil passage 61 and a third oil passage 63.
  • the first oil passage 61 is provided in the outer lid portion 13. More specifically, the first oil passage 61 is provided in the plug body 13b. Therefore, the configuration of the first oil passage 61 can be easily changed by replacing the plug body portion 13b.
  • the first oil passage 61 is disposed on one axial side of the pump chamber 46.
  • the first oil passage 61 connects the upper end portion of the pump chamber 46 and the central portion of the pump chamber 46 on one axial side of the pump chamber 46. A portion of the first oil passage 61 connected to the pump chamber 46 opens on the surface on the other axial side of the plug body portion 13b.
  • the upper end connected to the first oil passage 61 in the pump chamber 46 is a discharge port 45. That is, the first oil passage 61 is connected to the discharge port 45.
  • a central portion connected to the first oil passage 61 in the pump chamber 46 is a connection port 61a.
  • the discharge port 45 and the connection port 61a are, for example, circular.
  • the discharge port 45 is disposed above the connection port 61a.
  • the central axis J1 passes through the connection port 61a.
  • the third oil passage 63 extends upward from the opening 12f.
  • the third oil passage 63 is connected to the lower region in the vertical direction inside the housing portion 14 through the opening 12f.
  • the upper end portion of the third oil passage 63 is connected to the pump chamber 46 on the other axial side of the pump chamber 46.
  • the portion where the third oil passage 63 is connected in the pump chamber 46 is the suction port 44. That is, the third oil passage 63 connects the lower region in the vertical direction inside the housing portion 14 and the suction port 44.
  • the suction port 44 has, for example, a circular shape.
  • the suction port 44 is disposed below the discharge port 45 and the connection port 61a.
  • the suction port 44 is disposed below the central axis J1.
  • the third oil passage 63 has a first portion 63a, a second portion 63b, and a third portion 63c.
  • the first portion 63a extends upward from the opening 12f.
  • the upper end portion of the first portion 63a is located above the inner peripheral surface of the lower end portion of the inner cylinder portion 12c.
  • a groove that is recessed in the axial direction on one side from the surface on the other side in the axial direction of the cover plate portion 13c and extends in the vertical direction Z is closed by the surface on the one side in the axial direction of the annular plate portion 12a. Composed. Accordingly, the first portion 63a is disposed between the inner lid portion 12 and the outer lid portion 13 in the axial direction.
  • the second portion 63b extends from the upper end of the first portion 63a to the other side in the axial direction.
  • the second portion 63b is configured such that a groove that is recessed upward from the lower surface of the protruding portion 13d and extends to the other side in the axial direction is closed by the inner peripheral surface of the inner cylindrical portion 12c. Accordingly, the second portion 63b is disposed between the inner lid portion 12 and the outer lid portion 13 in the radial direction.
  • the third portion 63c extends upward from the other axial end of the second portion 63b.
  • the third portion 63c is provided on the protruding portion 13d.
  • the upper end portion of the third portion 63c is provided on the support portion 13h.
  • the third portion 63c is disposed on the radially inner side of the inner cylinder portion 12c.
  • the third portion 63 c is connected to the suction port 44.
  • at least a part of the third oil passage 63 is disposed between the inner lid portion 12 and the outer lid portion 13 in the axial direction. Therefore, at least a part of the third oil passage 63 can be configured by the inner lid portion 12 and the outer lid portion 13 fixed to each other, and the third oil passage 63 can be easily manufactured.
  • the rotor 20 includes a motor shaft 20a, a bush 53, a rotor core 22, a magnet 23, a first end plate 24, and a second end plate 25.
  • the motor shaft 20 a includes a motor shaft main body 21 and an attachment member 50.
  • the motor shaft body 21 has a cylindrical shape extending in the axial direction.
  • the motor shaft main body 21 has a large diameter portion 21a, a first medium diameter portion 21b, a second medium diameter portion 21c, a small diameter portion 21d, and an output portion 21e.
  • the large diameter portion 21a is a portion to which the rotor core 22 is attached.
  • a male screw portion is provided on the outer peripheral surface of the end portion on one axial side of the large diameter portion 21a.
  • a nut 90 is fastened to the male screw portion of the large diameter portion 21a.
  • the first medium diameter portion 21b is connected to the large diameter portion 21a on one axial side of the large diameter portion 21a.
  • the outer diameter of the first medium diameter portion 21b is smaller than the outer diameter of the large diameter portion 21a.
  • the end portion on the other axial side of the first medium diameter portion 21b is rotatably supported by the bearing 70.
  • the second medium diameter portion 21c is connected to the large diameter portion 21a on the other axial side of the large diameter portion 21a.
  • the outer diameter of the second medium diameter portion 21c is smaller than the outer diameter of the large diameter portion 21a.
  • the end portion on the one axial side of the second medium diameter portion 21c is rotatably supported by the bearing 71.
  • the bearings 70 and 71 rotatably support the motor shaft 20a.
  • the bearings 70 and 71 are ball bearings, for example.
  • the small diameter portion 21d is connected to the first medium diameter portion 21b on one axial side of the first medium diameter portion 21b.
  • An end portion on one side in the axial direction of the small diameter portion 21 d is an end portion on one side in the axial direction of the motor shaft main body 21.
  • the end portion on one side in the axial direction of the small diameter portion 21d is disposed on the radially inner side of the inner cylinder portion 12c.
  • the outer diameter of the small diameter portion 21d is smaller than the outer diameter of the first medium diameter portion 21b. That is, the small diameter portion 21d is a portion whose outer diameter decreases toward one side in the axial direction.
  • the output part 21e is connected to the second medium diameter part 21c on the other axial side of the second medium diameter part 21c.
  • the output portion 21e is an end portion on the other side in the axial direction of the motor shaft main body 21.
  • the outer diameter of the output part 21e is smaller than the outer diameter of the small diameter part 21d.
  • the output portion 21e protrudes outside the housing 10 through the bottom portion 11a in the axial direction.
  • the motor shaft main body 21 has a flange portion 21f.
  • the flange portion 21f protrudes radially outward from the outer peripheral surface of the large diameter portion 21a.
  • the flange portion 21f has an annular plate shape that is provided over the circumference of the outer peripheral surface of the large diameter portion 21a.
  • the flange portion 21f is provided at the end portion on the other axial side of the large diameter portion 21a.
  • the motor shaft main body 21 has a hole 21g extending from the end on one side in the axial direction of the motor shaft main body 21 to the other side in the axial direction.
  • the hole 21g is a bottomed hole that opens to one side in the axial direction. That is, the end on the other axial side of the hole 21g is closed.
  • the attachment member 50 is fixed to one side of the motor shaft main body 21 in the axial direction.
  • the attachment member 50 is fitted into the hole 21g and fixed.
  • the attachment member 50 has a cylindrical shape that opens on both sides in the axial direction.
  • the attachment member 50 has a cylindrical shape centered on the central axis J1.
  • the attachment member 50 extends to one side in the axial direction from the motor shaft main body 21 and passes through the shaft insertion hole 13f. Thereby, the motor shaft 20a is passed through the shaft insertion hole 13f.
  • the mounting member 50 includes a fitting part 51 and a fixing part 52.
  • the fitting part 51 is a part fitted in the hole part 21g.
  • the fitting portion 51 is fixed to the inner peripheral surface of the end portion on one side in the axial direction of the hole portion 21g, and extends from the inside of the hole portion 21g to one side in the axial direction than the motor shaft main body 21.
  • One end of the fitting portion 51 in the axial direction is inserted into the shaft insertion hole 13f. That is, at least a part of the fitting portion 51 is inserted into the shaft insertion hole 13f.
  • the fixing part 52 is located on one side of the fitting part 51 in the axial direction.
  • the fixing portion 52 is connected to the end portion on one side in the axial direction of the fitting portion 51.
  • the outer diameter of the fixing portion 52 is larger than the outer diameter of the fitting portion 51 and larger than the inner diameter of the shaft insertion hole 13f.
  • the fixed portion 52 is a diameter-expanded portion whose outer diameter increases from the other side in the axial direction toward one side in the axial direction.
  • the fixing portion 52 is inserted into the pump chamber 46.
  • the fixed portion 52 is disposed to face one side in the axial direction of the support portion 13h. Therefore, it can suppress by the support part 13h that the fixing
  • the inner diameter of the shaft insertion hole 13f is smaller than the outer diameter of the fixed portion 52, the inner diameter of the shaft insertion hole 13f can be made relatively small. Thereby, it is easy to suppress the oil O in the pump chamber 46 from leaking through the shaft insertion hole 13f.
  • a gap is provided between the fixed portion 52 and the support portion 13h in the axial direction. Therefore, when the motor shaft 20a rotates, it can suppress that the fixing
  • the inner diameter of the fitting part 51 and the inner diameter of the fixed part 52 are, for example, the same.
  • the external gear 42 which will be described later is fixed to the mounting member 50.
  • the external gear 42 is fixed to the radially outer surface of the fixing portion 52. More specifically, the fixing portion 52 is fitted and fixed in a fixing hole portion 42b that penetrates the external gear 42 in the axial direction.
  • the portion of the motor shaft 20a where the external gear 42 is fixed is the fixed portion 52.
  • the fitting portion 51 having an outer diameter smaller than that of the fixing portion 52 is fitted into the hole portion 21g, and the external gear 42 is attached to the fixing portion 52 having an outer diameter larger than that of the fitting portion 51. Fix it.
  • the inner diameter of the hole portion 21g can be made smaller than the inner diameter of the fixed hole portion 42b of the external gear 42. Therefore, it is easy to make the internal diameter of the hole 21g comparatively small, and it can suppress that the rigidity of the motor shaft main body 21 falls.
  • the assembler attaches the outer lid portion 13 to the inner lid portion 12, and then inserts the fitting portion 51 into the shaft insertion hole 13f from the left opening of the first recess 13e, thereby
  • the attachment member 50 is fixed to the motor shaft main body 21 by being fitted in the hole 21g of the 21.
  • the motor shaft 20a has a second oil passage 62 provided inside the motor shaft 20a.
  • the second oil passage 62 is a bottomed hole that extends from the end on one side in the axial direction of the motor shaft 20a to the other side in the axial direction.
  • the second oil passage 62 opens on one side in the axial direction.
  • the second oil passage 62 extends from the end on the one axial side of the mounting member 50 to the end on the other axial side of the second medium diameter portion 21 c and extends across the mounting member 50 and the motor shaft main body 21. It is done.
  • the second oil passage 62 is configured by connecting the inside of the attachment member 50 and the hole 21g in the axial direction. That is, the radially inner side surface of the mounting member 50 constitutes a part of the radially inner side surface of the second oil passage 62.
  • the inner edge of the second oil passage 62 has a circular shape centered on the central axis J1 in the cross section orthogonal to the axial direction.
  • the inner diameter of the portion provided in the mounting member 50 in the second oil passage 62 is smaller than the inner diameter of the portion provided in the motor shaft main body 21 in the second oil passage 62. That is, the inner diameter of the mounting member 50 is smaller than the inner diameter of the hole 21g.
  • the second oil passage 62 is connected to the first oil passage 61 through the inside of the attachment member 50 because the opening on the one axial side of the attachment member 50 is connected to the connection port 61a. That is, the second oil passage 62 opens into the first oil passage 61 at the end portion on the one axial side of the motor shaft 20a.
  • the motor shaft 20a has first oil supply holes 26a and 26b and second oil supply holes 26c and 26d that connect the second oil passage 62 and the outer peripheral surface of the motor shaft 20a.
  • the first oil supply holes 26a and 26b and the second oil supply holes 26c and 26d extend in the radial direction.
  • the first oil supply holes 26a and 26b are provided in the large diameter portion 21a.
  • the first oil supply holes 26a and 26b are disposed between the nut 90 and the flange portion 21f in the axial direction.
  • the radially outer end of the first oil supply hole 26 a opens in the axial gap 27 a between the first end plate 24 and the rotor core 22.
  • the radially outer end of the first oil supply hole 26 b opens in the axial gap 27 b between the second end plate 25 and the rotor core 22.
  • the second oil supply hole 26c is provided in the first medium diameter portion 21b.
  • the radially outer end of the second oil supply hole 26c opens on the radially inner side of the bearing holding portion 12e on one axial side of the bearing 70.
  • the second oil supply hole 26d is provided in the second medium diameter portion 21c.
  • the radially outer end of the second oil supply hole 26d opens on the radially inner side of the bearing holding portion 11c on the other axial side of the bearing 71.
  • a plurality of first oil supply holes 26a and 26b and second oil supply holes 26c and 26d are provided along the circumferential direction.
  • the first oil supply holes 26a and 26b correspond to first through holes.
  • the bush 53 extends in the axial direction and has a cylindrical shape centered on the central axis J1.
  • the bush 53 is fitted and fixed to the motor shaft 20a. More specifically, the bush 53 is fitted and fixed to the fitting portion 51 from the radially outer side.
  • the bush 53 is press-fitted into the fitting portion 51, for example. At least a part of the bush 53 is arranged between the support portion 13h and the motor shaft 20a in the radial direction. That is, at least a part of the bush 53 is inserted into the shaft insertion hole 13f.
  • the end of the bush 53 on one side in the axial direction from the center in the axial direction of the bush 53 to the portion on the other side in the axial direction is between the support portion 13 h and the fitting portion 51 in the radial direction. Be placed.
  • the end portion on the one axial side of the bush 53 is in contact with the end portion on the other axial side of the fixed portion 52.
  • the end of the bush 53 on the other side in the axial direction protrudes to the other side in the axial direction from the support portion 13h.
  • a gap is provided between the end on the other axial side of the bush 53 and the end on the one axial side of the motor shaft main body 21.
  • the motor shaft 20a is rotatably supported by the support portion 13h via the bush 53. That is, the support portion 13h rotatably supports the motor shaft 20a on the radially outer side of the motor shaft 20a.
  • the support portion 13h supports the attachment member 50 in a rotatable manner. More specifically, the fitting portion 51 of the support portion 13h is rotatably supported.
  • the support portion rotatably supports the motor shaft means that the motor shaft is rotatable about the central axis J1, and the support portion suppresses the movement of the motor shaft in the radial direction, and This includes rotating the motor shaft sliding directly or indirectly with respect to the radially inner end of the support portion.
  • the motor shaft rotates indirectly while sliding with respect to the radially inner end portion of the support portion means that the member fixed to the outer peripheral surface of the motor shaft slides with respect to the radially inner end portion of the support portion. Including rotating.
  • the outer peripheral surface of the bush 53 fixed to the motor shaft 20a rotates while sliding with respect to the radially inner end portion of the support portion 13h.
  • the radially inner end of the support portion 13h is the inner peripheral surface of the shaft insertion hole 13f.
  • the rotor core 22 has an annular shape fixed to the motor shaft main body 21.
  • the rotor core 22 is fitted into the large diameter portion 21a.
  • the rotor core 22 has a magnet insertion hole 22b that penetrates the rotor core 22 in the axial direction.
  • a plurality of magnet insertion holes 22b are provided along the circumferential direction.
  • the magnet 23 is inserted into the magnet insertion hole 22b.
  • the first end plate 24 and the second end plate 25 have an annular plate shape that expands in the radial direction.
  • a large diameter portion 21 a is passed through the first end plate 24 and the second end plate 25.
  • the first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction while being in contact with the rotor core 22.
  • the first end plate 24 is disposed on one side of the rotor core 22 in the axial direction.
  • the radially outer edge portion of the first end plate 24 protrudes to the other side in the axial direction, and contacts the radially outer edge portion of the surface on the one axial side of the rotor core 22.
  • the radially outer edge of the first end plate 24 overlaps with the opening on one axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from one axial side.
  • a portion radially inward from the radially outer edge portion of the first end plate 24 faces the surface on one side in the axial direction of the rotor core 22 in the axial direction through a gap 27a.
  • the first end plate 24 has an ejection groove 24a that is recessed from the surface on the one side in the axial direction of the first end plate 24 toward the other side in the axial direction.
  • the ejection groove 24a extends in the radial direction.
  • the radially inner end of the ejection groove 24a penetrates the first end plate 24 in the axial direction and is connected to the gap 27a.
  • the radially outer end of the ejection groove 24a opens to the radially outer side of the first end plate 24, and opposes a coil 32, which will be described later, with a gap in the radial direction.
  • the 1st oil supply hole 26a is connected with the inside of the accommodating part 14 via the clearance gap 27a and the ejection groove 24a.
  • the opening on the one axial side in the radially inner portion of the ejection groove 24 a is closed by a washer 91 that is sandwiched and fixed between the nut 90 and the first end plate 24 in the axial direction.
  • the washer 91 has an annular plate shape that expands in the radial direction.
  • the second end plate 25 is disposed on the other axial side of the rotor core 22.
  • the radially outer edge portion of the second end plate 25 projects to one side in the axial direction and contacts the radially outer edge portion of the surface on the other axial side of the rotor core 22.
  • the radially outer edge of the second end plate 25 overlaps the opening on the other axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from the other axial side.
  • the magnet 23 inserted into the magnet insertion hole 22b is pressed by the first end plate 24 and the second end plate 25 on both sides in the axial direction. Therefore, the magnet 23 can be prevented from coming out of the magnet insertion hole 22b.
  • the portion on the radially inner side of the radially outer edge portion of the second end plate 25 is opposed to the surface on the other axial side of the rotor core 22 in the axial direction with a gap 27b.
  • the second end plate 25 has an ejection groove 25 a that is recessed from the surface on the other axial side of the second end plate 25 to the one axial side.
  • the ejection groove 25a extends in the radial direction.
  • the radially inner end of the ejection groove 25a penetrates the second end plate 25 in the axial direction and is connected to the gap 27b.
  • the radially outer end of the ejection groove 25a opens to the radially outer side of the second end plate 25, and opposes the coil 32, which will be described later, with a gap in the radial direction.
  • the 1st oil supply hole 26b is connected with the inside of the accommodating part 14 via the clearance gap 27b and the ejection groove 25a.
  • the opening on the other side in the axial direction in the radially inner portion of the ejection groove 25a is closed by the flange portion 21f.
  • the first end plate 24, the rotor core 22, and the second end plate 25 are sandwiched in the axial direction by the nut 90, the washer 91, and the flange portion 21f.
  • the nut 90 presses the first end plate 24, the rotor core 22, and the second end plate 25 against the flange portion 21f via the washer 91.
  • the 1st end plate 24, the rotor core 22, and the 2nd end plate 25 are fixed to the motor shaft 20a.
  • the rotation detector 80 shown in FIG. 1 detects the rotation of the rotor 20.
  • the rotation detection unit 80 is, for example, a VR (Variable Reluctance) type resolver.
  • the rotation detector 80 is disposed on the radially inner side of the inner cylinder portion 12c.
  • the rotation detection unit 80 includes a detected unit 81 and a sensor unit 82.
  • the detected part 81 is a ring extending in the circumferential direction.
  • the detected part 81 is fitted and fixed to the motor shaft 20a. More specifically, the detected portion 81 is fitted and fixed to the small diameter portion 21d. The surface on the other axial side of the radially inner edge of the detected portion 81 is in contact with the step between the first medium diameter portion 21b and the small diameter portion 21d.
  • the detected portion 81 overlaps the mounting member 50 in the radial direction. Therefore, the motor shaft 20a can be easily downsized in the axial direction as compared with the case where the detected portion 81 and the attachment member 50 are arranged in the axial direction without overlapping in the radial direction.
  • the detected part 81 is made of a magnetic material.
  • “some objects overlap in a certain direction” includes that some objects overlap when viewed along a certain direction. That is, that the detected portion 81 and the attachment member 50 overlap in the radial direction includes the overlap of the detected portion 81 and the attachment member 50 when viewed along the radial direction.
  • the sensor part 82 is disposed between the inner lid part 12 and the outer lid part 13 in the axial direction. More specifically, the sensor part 82 is fixed to the surface on the one axial side of the inner cylinder bottom part 12d on the radially inner side of the inner cylinder part 12c. That is, the sensor unit 82 is attached to the inner lid unit 12. Therefore, it is easy to attach the sensor unit 82.
  • the sensor part 82 is arrange
  • the sensor part 82 is an annular shape that surrounds the radially outer side of the detected part 81.
  • the sensor unit 82 has a plurality of coils along the circumferential direction.
  • an induced voltage corresponding to the circumferential position of the detected portion 81 is generated in the coil of the sensor portion 82.
  • the sensor unit 82 detects the rotation of the detected unit 81 by detecting the induced voltage.
  • the rotation detector 80 detects the rotation of the rotor 20 by detecting the rotation of the motor shaft 20a.
  • the stator 30 faces the rotor 20 via a gap in the radial direction.
  • the stator 30 includes a stator core 31 and a plurality of coils 32 attached to the stator core 31.
  • the stator core 31 has an annular shape centered on the central axis J1.
  • the outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the main body cylinder portion 11b.
  • the stator core 31 is opposed to the outer side in the radial direction of the rotor core 22 via a gap.
  • the pump part 40 is provided in the center part of the outer lid part 13.
  • the pump part 40 is arrange
  • the pump unit 40 includes an external gear 42, an internal gear 43, the above-described pump chamber 46, a suction port 44, a discharge port 45, and a storage unit 48.
  • the external gear 42 is a gear that can rotate around the central axis J1.
  • the external gear 42 is fixed to an end portion on one axial side of the motor shaft 20a. More specifically, the external gear 42 is fixed to the outer peripheral surface of the fixing portion 52. Therefore, the external gear 42 can be fixed to the motor shaft main body 21 via the mounting member 50. Thereby, the external gear 42 can be fixed to the motor shaft main body 21 without changing the dimensions of the motor shaft main body 21 and the external gear 42 by adjusting the dimensions of the mounting member 50.
  • the external gear 42 is accommodated in the pump chamber 46. As shown in FIG. 2, the external gear 42 has a plurality of tooth portions 42a on the outer peripheral surface.
  • the tooth profile of the tooth portion 42a of the external gear 42 is a trochoidal tooth profile.
  • the internal gear 43 is an annular gear that is rotatable around a rotation axis J2 that is eccentric with respect to the central axis J1.
  • the internal gear 43 is accommodated in the pump chamber 46.
  • the internal gear 43 surrounds the radially outer side of the external gear 42 and meshes with the external gear 42.
  • the internal gear 43 has a plurality of tooth portions 43a on the inner peripheral surface.
  • the tooth profile of the tooth portion 43a of the internal gear 43 is a trochoidal tooth profile.
  • the opening on the one axial side of the first recess 13e is closed by the plug portion 13b.
  • the pump chamber 46 can be configured, and the internal gear 43 and the external gear 42 can be accommodated in the pump chamber 46. Therefore, the assembly of the pump unit 40 can be facilitated.
  • the suction port 44 is connected to the third oil passage 63. As shown in FIG. 1, the suction port 44 opens to the other axial side of the pump chamber 46. The suction port 44 is connected to a gap between the external gear 42 and the internal gear 43. The suction port 44 allows the oil O stored in the storage portion 14 to pass through the opening 12f and the third oil passage 63 in the pump chamber 46, more specifically, between the external gear 42 and the internal gear 43. Inhalable. As shown in FIG. 2, the suction port 44 is disposed above the lower end of the storage portion 48 and above the lower end of the external gear 42.
  • the discharge port 45 is connected to the first oil passage 61. As shown in FIG. 1, the discharge port 45 opens on one axial side of the pump chamber 46. The discharge port 45 is connected to a gap between the external gear 42 and the internal gear 43. The discharge port 45 can discharge the oil O from the inside of the pump chamber 46, more specifically, from the gap between the external gear 42 and the internal gear 43.
  • the reservoir 48 is connected to the pump chamber 46 on one axial side of the vertical lower region of the pump chamber 46.
  • the shape of the storage portion 48 is an arc shape that protrudes downward when viewed in the axial direction. Part of the oil O sucked into the pump chamber 46 from the suction port 44 flows into the storage portion 48.
  • the suction port 44 is disposed above the lower end of the storage unit 48, even when the pump unit 40 is stopped, at least a part of the oil O that has flowed into the storage unit 48 flows from the suction port 44. It is stored in the storage unit 48 without returning to the storage unit 14. Thereby, when the pump part 40 is stopped, the lower part of the external gear 42 in the pump chamber 46 and the lower part of the internal gear 43 are in contact with the oil O in the storage part 48. Can be.
  • the oil O that has flowed into the second oil passage 62 receives a force radially outward due to the centrifugal force of the rotating motor shaft 20 a, and the first oil supply holes 26 a and 26 b and the second oil supply holes 26 a and 26 b. It flows out of the motor shaft 20a through the oil supply holes 26c and 26d.
  • the first oil supply hole 26a opens in the axial gap 27a between the first end plate 24 and the rotor core 22, the oil O flowing out of the first oil supply hole 26a flows into the gap 27a. And the oil O which flowed into the clearance gap 27a is ejected toward the radial direction outer side from the ejection groove 24a.
  • the opening on the one axial side in the radially inner portion of the ejection groove 24 a is closed by the washer 91, so that the oil O that has flowed into the ejection groove 24 a is guided radially outward by the washer 91. It's easy to do.
  • the oil O flowing out of the first oil supply hole 26b flows into the gap 27b.
  • the oil O which flowed into the clearance gap 27b is ejected toward the radial direction outer side from the ejection groove 25a.
  • the opening on the other axial side in the radially inner portion of the ejection groove 25a is closed by the flange portion 21f, so the oil O that has flowed into the ejection groove 25a is directed radially outward by the flange portion 21f. Easy to guide.
  • the oil O ejected radially outward from the ejection grooves 24 a and 25 a is sprayed to the coil 32. Thereby, the coil 32 can be cooled by the oil O.
  • the second oil passage 62 is provided inside the motor shaft 20a, the rotor 20 can be cooled by the oil O until it is ejected from the ejection grooves 24a and 25a.
  • the oil O discharged from the discharge port 45 in the present embodiment is guided to the rotor 20 and the stator 30.
  • the oil O flowing out of the second oil supply hole 26c is supplied to the bearing 70. Since the second oil supply hole 26d opens to the inside of the bearing holding portion 11c in the radial direction, the oil O flowing out of the second oil supply hole 26d is supplied to the bearing 71. Thereby, the oil O can be used as a lubricant for the bearings 70 and 71.
  • FIG. 4 shows an example in which the oil O is ejected upward from the ejection grooves 24a and 25a
  • the present invention is not limited to this. Since the rotor 20 rotates, the circumferential positions of the ejection grooves 24 a and 25 a change as the rotor 20 rotates. Thereby, the direction of the oil O ejected from the ejection grooves 24a and 25a changes in the circumferential direction, and the plurality of coils 32 arranged along the circumferential direction can be cooled by the oil O.
  • the pump unit 40 can be driven by the rotation of the motor shaft 20a, and the oil O stored in the housing 10 is sucked up by the pump unit 40 and supplied to the rotor 20, the stator 30, and the bearings 70 and 71. be able to.
  • the oil O stored in the housing 10 can be used to cool the rotor 20 and the stator 30, and the lubricity between the bearings 70 and 71 and the motor shaft body 21 can be improved.
  • the oil O supplied to the stator 30 and the bearings 70 and 71 falls in the housing portion 14 and is stored again in the lower region inside the housing portion 14. Thereby, the oil O in the accommodating part 14 can be circulated.
  • the support portion 13h rotatably supports the motor shaft 20a on the radially outer side of the motor shaft 20a, and at least part of the axially other side surface of the pump chamber 46 and the shaft insertion hole 13f. It constitutes at least a part of the radially inner side surface.
  • the motor shaft 20 a can be supported in the vicinity of the pump chamber 46. Therefore, even if the coaxial accuracy between the rotor 20 and the stator 30 is relatively low, the motor shaft 20a can be prevented from tilting with respect to the pump portion 40, and the shaft accuracy of the motor shaft 20a with respect to the pump portion 40 can be suppressed. Can be placed well.
  • the pump chamber 46 it can suppress that the external gear 42 fixed to the motor shaft 20a shifts
  • the support portion 13h constitutes at least a part of the other axial surface of the pump chamber 46 and at least a part of the radially inner side surface of the shaft insertion hole 13f.
  • the oil O flows into the shaft insertion hole 13f, and it is easy to supply the oil O between the support portion 13h and the motor shaft 20a in the radial direction.
  • oil O can be utilized as a lubricant, and the motor shaft 20a supported by the support portion 13h can be smoothly rotated.
  • the bush 53 fixed to the motor shaft 20a is disposed between the support portion 13h and the motor shaft 20a in the radial direction. Therefore, the bush 53 enables the motor shaft 20a supported by the support portion 13h to be rotated more smoothly. Furthermore, since the oil O in the pump chamber 46 flows between the support portion 13h and the bush 53 in the radial direction, the bush 53 can be made more slippery with respect to the support portion 13h, and the motor shaft 20a can be rotated more smoothly. Can do.
  • the support portion 13h has an annular shape surrounding the outer side in the radial direction of the motor shaft 20a. Therefore, the entire circumference of the motor shaft 20a can be supported by the support portion 13h, and the motor shaft 20a can be supported more stably.
  • the support part 13h supports the attachment member 50 rotatably. Therefore, the outer diameter of the portion of the motor shaft 20a supported by the support portion 13h can be reduced regardless of the outer diameter of the motor shaft main body 21. Accordingly, the inner diameter of the shaft insertion hole 13f can be easily reduced, and the amount of oil O leaking from the pump chamber 46 through the shaft insertion hole 13f can be reduced while supplying the oil O as a lubricant to the shaft insertion hole 13f. Further, when the bush 53 is provided as in the present embodiment, the bush 53 may be fixed to the mounting member 50, and the bush 53 can be easily attached.
  • the first oil passage 61 and the second oil passage 62 are provided, so that the oil O discharged from the discharge port 45 can be sent into the motor shaft 20a. Further, since the first oil supply holes 26a and 26b and the second oil supply holes 26c and 26d are provided, the oil O flowing into the second oil passage 62 can be supplied to the stator 30 and the bearings 70 and 71.
  • the second oil passage 62 provided in the motor shaft 20a opens to the first oil passage 61 connected to the discharge port 45 at the end portion on one axial side of the motor shaft 20a. . Since the external gear 42 is fixed to the end portion on the one axial side of the motor shaft 20a, the end portion on the one axial side of the motor shaft 20a is disposed at a position relatively close to the discharge port 45. Therefore, the length of the first oil passage 61 connecting the discharge port 45 and the second oil passage 62 can be shortened. Therefore, according to the present embodiment, the total length of the oil passage from the opening 12f to the second oil passage 62 can be easily shortened. Thereby, it is easy to send the oil O to the second oil passage 62 provided inside the motor shaft 20a. Further, the structure of the driving device 1 can be easily simplified, and the manufacturing of the driving device 1 can be facilitated.
  • the second oil passage 62 is configured such that the inside of the attachment member 50 and the hole 21 g are connected in the axial direction, and are connected to the first oil passage 61 via the inside of the attachment member 50. . Therefore, the oil O can be allowed to flow into the second oil passage 62 from the mounting member 50 while fixing the external gear 42 to the mounting member 50.
  • the motor shaft main body 21 and the external gear 42 can be fixed via the mounting member 50 without changing the dimensions of the motor shaft main body 21 and the external gear 42, and the second oil It is easy to open the path 62 to the first oil path 61.
  • the present invention is not limited to the above-described embodiment, and other configurations can be adopted.
  • the support portion 13h may not be annular.
  • a plurality of support portions 13h may be provided at intervals from each other along the circumferential direction.
  • the shape of the support portion 13h is not particularly limited as long as the motor shaft 20a can be rotatably supported.
  • 13 h of support parts may be provided in the outer cover part 13 as another member.
  • the entire bush 53 may be disposed between the support portion 13h and the motor shaft 20a in the radial direction. The bush 53 may not be provided.
  • the external gear 42 may be directly fixed to the motor shaft main body 21 without using the attachment member 50.
  • the second oil passage 62 may be provided only inside the motor shaft main body 21, for example.
  • the attachment member 50 may be fixed to the outer peripheral surface of the motor shaft main body 21.
  • the mounting member 50 may be a member having a uniform outer diameter over the entire axial direction. That is, the outer diameter of the fitting part 51 and the outer diameter of the fixing part 52 may be the same. In this case, for example, if the outer diameter of the fixed portion 52 is made the same as the outer diameter of the fitting portion 51 shown in FIG. 1, the outer diameter of the external gear 42 to which the fixed portion 52 is fixed can be reduced. is there. Thereby, the outer diameter of the internal gear 43 can be reduced, and the inner diameter of the pump chamber 46 can be reduced. Therefore, the outer diameter of the protrusion 13d provided with the pump chamber 46 can be reduced, and the distance between the radial outer surface of the protrusion 13d and the inner peripheral surface of the second recess 12g can be increased.
  • the sensor unit 82 can be brought closer to the outer lid unit 13. Thereby, it is easy to miniaturize the entire driving device 1 in the axial direction.
  • the part which protrudes in the axial direction one side among the sensor parts 82 is a coil which the sensor part 82 has, for example.
  • the mounting member 50 may be composed of two or more members.
  • the attachment member 50 includes a first tubular member fitted into the hole portion 21g, and a second tubular member fitted to the first tubular member and extending to one side in the axial direction from the motor shaft main body 21. You may have.
  • the external gear 42 is fixed to the end portion on the one axial side of the second cylindrical member.
  • the motor shaft 20a may not be provided with the attachment member 50 but may be a single member.
  • the motor shaft 20 a may not have the second oil passage 62.
  • the rotor core 22 may be fixed to the outer peripheral surface of the motor shaft main body 21 by press fitting or the like. In this case, the first end plate 24 and the second end plate 25 may not be provided. In this case, the oil O flowing out from the first oil supply holes 26a and 26b may be directly supplied to the coil 32, or a hole connected to the first oil supply holes 26a and 26b is provided in the rotor core 22. Oil O may be supplied to the coil 32 through the hole of the rotor core 22. Further, the oil O may be supplied to the stator core 31.
  • the location to which the oil O discharged from the discharge port 45 is supplied is not particularly limited, and may be supplied to only one or two of the rotor 20, the stator 30, and the bearings 70 and 71, for example. However, it may not be supplied to either.
  • the oil O discharged from the discharge port 45 may be supplied to, for example, the inner side surface of the upper area in the vertical direction of the storage unit 14.
  • the stator 30 can be indirectly cooled by cooling the housing 10.
  • any one or more of the first oil supply holes 26a and 26b and the second oil supply holes 26c and 26d may not be provided.
  • the tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 may be a cycloid tooth profile or an involute tooth profile.
  • the mounting member 150 may have a third oil supply hole 151a. That is, the motor shaft 120a has a third oil supply hole 151a.
  • the third oil supply hole 151 a is provided in the fitting portion 151.
  • the third oil supply hole 151a connects the second oil passage 62 and the outer peripheral surface of the motor shaft 120a.
  • the third oil supply hole 151a opens on the outer peripheral surface of the portion of the motor shaft 120a that faces the support portion 13h in the radial direction. Accordingly, the oil O in the second oil passage 62 is easily supplied between the support portion 13h and the motor shaft 120a by the third oil supply hole 151a. Therefore, the motor shaft 120a can be rotated more smoothly.
  • the opening on the radially outer side of the third oil supply hole 151 a faces the radially inner side surface of the bush 153.
  • the bush 153 is a porous member and allows the oil O to pass in the radial direction.
  • the oil O flowing into the third oil supply hole 151a from the second oil passage 62 passes through the bush 153 and is supplied between the bush 153 and the support portion 13h in the radial direction. Therefore, the bush 153 can be more easily slipped with respect to the support portion 13h, and the motor shaft 120a can be rotated more smoothly.
  • the third oil supply hole 151a corresponds to a second through hole.
  • the third oil supply hole 151a is formed on the outer periphery of the motor shaft 120a at the portion where the bush is not provided. You may open to the surface. In this case, the radially outer opening of the third oil supply hole 151a is opposed to the radially inner end of the support portion 13h via a gap in the radial direction. In this case, the bush 153 may not be a porous member.
  • the use of the drive device of the above-described embodiment is not particularly limited.
  • the drive device of the above-described embodiment is mounted on a vehicle, for example.
  • each structure mentioned above can be suitably combined in the range which is not mutually contradictory.

Abstract

One embodiment of a drive device of the present invention is provided with a rotor, a stator, a housing having an accommodating part that can retain oil, and a pump that is driven via a motor shaft. The pump comprises an external gear that is fixed to one end of the motor shaft in the axial direction, and an internal gear that surrounds the outside of the external gear in the radial direction and meshes with the external gear, a pump chamber that accommodates the internal gear and the external gear, a suction port that can suction oil inside the pump chamber, and a discharge port that can discharge oil from inside the pump chamber. The housing has an outer lid that is provided to the pump chamber. The outer lid comprises a shaft insertion hole, which penetrates the outer lid from the surface on the other side of the pump chamber in the axial direction to the surface on the other side of the outer lid in the axial direction, through which the motor shaft passes, and a support part that constitutes at least a portion of the surface on the other side of the pump chamber in the axial direction and at least a portion of the inner surface of the shaft insertion hole in the radial direction. The support part rotatably supports the motor shaft on the outside of the motor shaft in the radial direction.

Description

駆動装置Drive device
 本発明は、駆動装置に関する。本願は、2016年08月09日に出願された米国特許仮出願第62/372,411号、2016年09月30日に出願された米国特許仮出願第62/402,027号および2016年12月27日に出願された米国特許仮出願第62/439,201に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a drive device. This application is based on US Provisional Application No. 62 / 372,411 filed on Aug. 09, 2016, U.S. Provisional Application Nos. 62 / 402,027 and 12/2016 filed on Sep. 30, 2016. Claimed priority based on US Provisional Patent Application No. 62 / 439,201 filed on May 27, the contents of which are incorporated herein by reference.
 ステータおよびロータ等の潤滑および冷却のための潤滑用流体を貯留するケースを備える回転電機が知られる。例えば、特許文献1では、車両に搭載される回転電機が記載される。 A rotating electrical machine having a case for storing a lubricating fluid for lubricating and cooling the stator and the rotor is known. For example, Patent Document 1 describes a rotating electrical machine mounted on a vehicle.
特開2013-055728号公報JP 2013-055728 A
 上記のような回転電機には、ケースに貯留されるオイルを吸い上げるポンプ部が設けられる場合がある。ポンプ部によってオイルを吸い上げて、例えばロータおよびステータにオイルを供給することで、ロータおよびステータを冷却することができる。この場合、シャフトでポンプ部を駆動することが考えられる。この場合、例えば、ポンプ部は、回転電機の回転軸に固定される外歯歯車と、外歯歯車と噛み合う内歯歯車と、を有する。 Rotating electric machines as described above may be provided with a pump unit that sucks up oil stored in the case. The rotor and the stator can be cooled by sucking up the oil by the pump unit and supplying the oil to the rotor and the stator, for example. In this case, it is conceivable to drive the pump unit with a shaft. In this case, for example, the pump unit includes an external gear fixed to the rotating shaft of the rotating electrical machine and an internal gear that meshes with the external gear.
 ここで、ロータとステータとの同軸精度が比較的低い場合、回転軸に固定される外歯歯車が内歯歯車に対してずれて配置され、外歯歯車が内歯歯車に強く押し付けられる場合がある。そのため、外歯歯車および内歯歯車が摩耗し、ポンプ部が損傷する場合があった。 Here, when the coaxial accuracy between the rotor and the stator is relatively low, the external gear fixed to the rotation shaft may be displaced from the internal gear and the external gear may be strongly pressed against the internal gear. is there. For this reason, the external gear and the internal gear may be worn and the pump unit may be damaged.
 本発明は、上記事情に鑑みて、ポンプ部が損傷することを抑制できる駆動装置を提供することを目的の一つとする。 In view of the above circumstances, an object of the present invention is to provide a drive device that can suppress damage to the pump unit.
 本発明の駆動装置の一つの態様は、一方向に延びる中心軸に沿って配置されるモータシャフトおよび前記モータシャフトに固定されるロータコアを有するロータと、前記ロータと径方向に隙間を介して対向するステータと、前記ロータおよび前記ステータを収容するとともにオイルを貯留可能な収容部を有するハウジングと、前記モータシャフトを介して駆動されるポンプ部と、を備え、前記ポンプ部は、前記モータシャフトの軸方向一方側の端部に固定される外歯歯車と、前記外歯歯車の径方向外側を囲み、前記外歯歯車と噛み合う内歯歯車と、前記内歯歯車および前記外歯歯車を収容するポンプ室と、前記ポンプ室内にオイルを吸入可能な吸入口と、前記ポンプ室内からオイルを吐出可能な吐出口と、を有し、前記ハウジングは、前記ポンプ室が設けられる外蓋部を有し、前記外蓋部は、前記ポンプ室の軸方向他方側の面から前記外蓋部の軸方向他方側の面まで前記外蓋部を貫通し、前記モータシャフトが通されるシャフト挿入孔と、前記ポンプ室の軸方向他方側の面の少なくとも一部および前記シャフト挿入孔の径方向内側面の少なくとも一部を構成する支持部と、を有し、前記支持部は、前記モータシャフトの径方向外側において前記モータシャフトを回転可能に支持する。 One aspect of the drive device according to the present invention includes a rotor having a motor shaft disposed along a central axis extending in one direction and a rotor core fixed to the motor shaft, and is opposed to the rotor via a gap in a radial direction. A stator that houses the rotor and the stator, and has a housing portion that can store oil, and a pump portion that is driven via the motor shaft. An external gear fixed to one end in the axial direction, an internal gear that surrounds the radially outer side of the external gear and meshes with the external gear, and the internal gear and the external gear are accommodated. A pump chamber; a suction port capable of sucking oil into the pump chamber; and a discharge port capable of discharging oil from the pump chamber; An outer lid portion provided with a pump chamber, and the outer lid portion penetrates the outer lid portion from a surface on the other axial side of the pump chamber to a surface on the other axial side of the outer lid portion, and A shaft insertion hole through which the motor shaft is passed, and a support portion constituting at least a part of the axially other side surface of the pump chamber and at least a part of a radially inner side surface of the shaft insertion hole, The support portion rotatably supports the motor shaft on the radially outer side of the motor shaft.
 本発明の一つの態様によれば、ポンプ部が損傷することを抑制できる駆動装置が提供される。 According to one aspect of the present invention, a drive device that can suppress damage to the pump unit is provided.
図1は、本実施形態の駆動装置を示す断面図である。FIG. 1 is a cross-sectional view showing the drive device of the present embodiment. 図2は、本実施形態のポンプ部を軸方向他方側から視た図である。FIG. 2 is a view of the pump unit of this embodiment as viewed from the other side in the axial direction. 図3は、本実施形態の駆動装置の一部を示す断面図である。FIG. 3 is a cross-sectional view showing a part of the driving apparatus of the present embodiment. 図4は、本実施形態の駆動装置の一部を示す断面図である。FIG. 4 is a cross-sectional view showing a part of the drive device of the present embodiment. 図5は、本実施形態の他の一例である駆動装置の一部を示す断面図である。FIG. 5 is a cross-sectional view showing a part of a driving apparatus which is another example of the present embodiment.
 各図に示すZ軸方向は、正の側を上側とし、負の側を下側とする鉛直方向Zである。本実施形態では、鉛直方向Zは、各図の上下方向である。以下の説明においては、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。 The Z-axis direction shown in each figure is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side. In the present embodiment, the vertical direction Z is the vertical direction of each figure. In the following description, the upper side in the vertical direction is simply referred to as “upper side”, and the lower side in the vertical direction is simply referred to as “lower side”.
 図1に示すように、本実施形態の駆動装置1は、ハウジング10と、一方向に延びる中心軸J1に沿って配置されるモータシャフト20aを有するロータ20と、回転検出部80と、ステータ30と、ポンプ部40と、ベアリング70,71と、を備える。 As shown in FIG. 1, the drive device 1 of the present embodiment includes a housing 10, a rotor 20 having a motor shaft 20 a disposed along a central axis J <b> 1 extending in one direction, a rotation detection unit 80, and a stator 30. And a pump unit 40 and bearings 70 and 71.
 中心軸J1は、図1の左右方向に延びる。すなわち、本実施形態においては、図1の左右方向が一方向に相当する。以下の説明においては、中心軸J1の軸方向と平行な方向を単に「軸方向」と呼び、中心軸J1を中心とする径方向を単に「径方向」と呼び、中心軸J1を中心とする周方向を単に「周方向」と呼ぶ。また、軸方向のうち図1の左側を、「軸方向一方側」と呼び、軸方向のうち図1の右側を、「軸方向他方側」と呼ぶ。 The central axis J1 extends in the left-right direction in FIG. That is, in the present embodiment, the left-right direction in FIG. 1 corresponds to one direction. In the following description, a direction parallel to the axial direction of the central axis J1 is simply referred to as “axial direction”, a radial direction centered on the central axis J1 is simply referred to as “radial direction”, and the central axis J1 is the center. The circumferential direction is simply called “circumferential direction”. Further, the left side of FIG. 1 in the axial direction is referred to as “one axial side”, and the right side of FIG. 1 in the axial direction is referred to as “the other axial side”.
 ハウジング10は、本体部11と、内蓋部12と、外蓋部13と、を有する。本実施形態において本体部11と内蓋部12と外蓋部13とは、互いに別部材である。本体部11は、軸方向一方側に開口する有底の筒状である。本体部11は、底部11aと、本体筒部11bと、ベアリング保持部11cと、を有する。底部11aは、径方向に拡がる円環板状である。本体筒部11bは、底部11aの径方向外縁部から軸方向一方側に延びる円筒状である。ベアリング保持部11cは、底部11aの内縁部から軸方向一方側に突出する円筒状である。ベアリング保持部11cは、内周面にベアリング71を保持する。 The housing 10 has a main body part 11, an inner lid part 12, and an outer lid part 13. In the present embodiment, the main body 11, the inner lid 12, and the outer lid 13 are separate members. The main body 11 has a bottomed cylindrical shape that opens to one side in the axial direction. The main body part 11 includes a bottom part 11a, a main body cylinder part 11b, and a bearing holding part 11c. The bottom portion 11a has an annular plate shape that expands in the radial direction. The main body cylinder portion 11b has a cylindrical shape extending from the radially outer edge portion of the bottom portion 11a to one side in the axial direction. The bearing holding portion 11c has a cylindrical shape protruding from the inner edge portion of the bottom portion 11a to one side in the axial direction. The bearing holding portion 11c holds the bearing 71 on the inner peripheral surface.
 内蓋部12は、本体部11の軸方向一方側に取り付けられる。内蓋部12は、円環板部12aと、外筒部12bと、内筒部12cと、内筒底部12dと、ベアリング保持部12eと、を有する。円環板部12aは、径方向に拡がる円環板状である。円環板部12aは、ステータ30の軸方向一方側を覆う。すなわち、内蓋部12は、ステータ30の軸方向一方側を覆う。円環板部12aの下側の端部には、円環板部12aを軸方向に貫通する開口部12fが設けられる。開口部12fは、後述する収容部14の内部に露出する。 The inner lid 12 is attached to one side of the main body 11 in the axial direction. The inner lid portion 12 includes an annular plate portion 12a, an outer cylinder portion 12b, an inner cylinder portion 12c, an inner cylinder bottom portion 12d, and a bearing holding portion 12e. The annular plate portion 12a has an annular plate shape that extends in the radial direction. The annular plate portion 12 a covers one side of the stator 30 in the axial direction. That is, the inner lid portion 12 covers one side of the stator 30 in the axial direction. An opening 12f that penetrates the annular plate portion 12a in the axial direction is provided at the lower end portion of the annular plate portion 12a. The opening 12f is exposed inside the accommodating portion 14 described later.
 外筒部12bは、円環板部12aの径方向外縁部から軸方向他方側に延びる円筒状である。外筒部12bの軸方向他方側の端部は、本体筒部11bの軸方向一方側の端部と接触して固定される。内筒部12cは、円環板部12aの径方向内縁部から軸方向他方側に延びる円筒状である。内筒底部12dは、内筒部12cの軸方向他方側の端部から径方向内側に拡がる円環状である。内筒部12cと内筒底部12dとによって、内蓋部12には、内蓋部12の軸方向一方側の面から軸方向他方側に窪む第2凹部12gが設けられる。すなわち、内蓋部12は、第2凹部12gを有する。内蓋部12の軸方向一方側の面とは、本実施形態では円環板部12aの軸方向一方側の面である。第2凹部12gの内側面は、内筒部12cの径方向内側面と内筒底部12dの軸方向一方側の面とを含む。 The outer cylinder portion 12b has a cylindrical shape extending from the radially outer edge portion of the annular plate portion 12a to the other side in the axial direction. The end portion on the other side in the axial direction of the outer tube portion 12b is fixed in contact with the end portion on the one side in the axial direction of the main body tube portion 11b. The inner cylinder portion 12c has a cylindrical shape extending from the radially inner edge of the annular plate portion 12a to the other side in the axial direction. The inner cylinder bottom portion 12d has an annular shape that extends radially inward from the other axial end of the inner cylinder portion 12c. Due to the inner cylinder portion 12c and the inner cylinder bottom portion 12d, the inner lid portion 12 is provided with a second recess 12g that is recessed from the surface on the one axial side of the inner lid portion 12 to the other axial side. That is, the inner lid part 12 has the 2nd recessed part 12g. In this embodiment, the surface on the one side in the axial direction of the inner lid portion 12 is the surface on the one side in the axial direction of the annular plate portion 12a. The inner side surface of the second recess 12g includes a radially inner side surface of the inner cylinder portion 12c and a surface on one axial side of the inner cylinder bottom portion 12d.
 ベアリング保持部12eは、内筒底部12dの軸方向他方側の面から軸方向他方側に突出する円筒状である。ベアリング保持部12eは、内周面にベアリング70を保持する。すなわち、内蓋部12は、ベアリング70を保持する。 The bearing holding portion 12e has a cylindrical shape that protrudes from the surface on the other axial side of the inner cylinder bottom portion 12d to the other axial side. The bearing holding part 12e holds the bearing 70 on the inner peripheral surface. That is, the inner lid portion 12 holds the bearing 70.
 本体部11と内蓋部12とが互いに固定されることで、本体部11と内蓋部12とによって囲まれた収容部14が構成される。すなわち、ハウジング10は、収容部14を有する。収容部14は、ロータ20およびステータ30を収容するとともにオイルOを貯留可能である。オイルOは、収容部14の内部における鉛直方向下側領域に貯留される。本明細書において「収容部の内部における鉛直方向下側領域」とは、収容部の内部における鉛直方向Zの中心よりも下側に位置する部分を含む。 The housing part 14 surrounded by the body part 11 and the inner lid part 12 is configured by fixing the body part 11 and the inner lid part 12 to each other. That is, the housing 10 has the accommodating portion 14. The accommodating portion 14 accommodates the rotor 20 and the stator 30 and can store the oil O. The oil O is stored in the lower region in the vertical direction inside the accommodating portion 14. In this specification, the “vertical lower region in the interior of the housing portion” includes a portion located below the center in the vertical direction Z within the housing portion.
 本実施形態において収容部14に貯留されるオイルOの液面OSは、開口部12fよりも上側に位置する。これにより、開口部12fは、収容部14に貯留されるオイルOに露出する。オイルOの液面OSは、ポンプ部40によってオイルOが吸い上げられることで変動するが、少なくともロータ20の回転時において、ロータ20よりも下側に配置される。これにより、ロータ20が回転する際に、オイルOがロータ20の回転抵抗となることを抑制できる。 In the present embodiment, the liquid surface OS of the oil O stored in the storage unit 14 is located above the opening 12f. As a result, the opening 12 f is exposed to the oil O stored in the storage portion 14. The liquid surface OS of the oil O fluctuates as the oil O is sucked up by the pump unit 40, but is disposed below the rotor 20 at least when the rotor 20 rotates. Thereby, when the rotor 20 rotates, it can suppress that the oil O becomes rotational resistance of the rotor 20. FIG.
 外蓋部13は、内蓋部12の軸方向一方側に取り付けられる。外蓋部13は、外蓋本体部13aと、栓体部13bと、を有する。外蓋本体部13aは、径方向に拡がる。外蓋本体部13aは、蓋板部13cと、突出部13dと、を有する。蓋板部13cは、径方向に拡がる円板状である。蓋板部13cの径方向外縁部は、円環板部12aの径方向外縁部に固定される。蓋板部13cの軸方向他方側の面は、円環板部12aの軸方向一方側の面と接触する。突出部13dは、蓋板部13cの中央部から軸方向他方側に突出する。突出部13dは、内筒部12cに軸方向一方側から挿入される。突出部13dは、内筒底部12dの軸方向一方側に間隔を空けて配置される。 The outer lid portion 13 is attached to one side of the inner lid portion 12 in the axial direction. The outer lid portion 13 includes an outer lid main body portion 13a and a plug body portion 13b. The outer lid body 13a expands in the radial direction. The outer lid main body portion 13a includes a lid plate portion 13c and a protruding portion 13d. The lid plate portion 13c has a disk shape that expands in the radial direction. The radially outer edge portion of the lid plate portion 13c is fixed to the radially outer edge portion of the annular plate portion 12a. The surface on the other side in the axial direction of the cover plate portion 13c is in contact with the surface on the one side in the axial direction of the annular plate portion 12a. The protruding portion 13d protrudes from the center portion of the lid plate portion 13c to the other side in the axial direction. The protruding portion 13d is inserted into the inner cylinder portion 12c from one side in the axial direction. The protruding portion 13d is disposed at an interval on one side in the axial direction of the inner cylinder bottom portion 12d.
 外蓋本体部13aは、第1凹部13eと、シャフト挿入孔13fと、を有する。すなわち、外蓋部13は、シャフト挿入孔13fを有する。第1凹部13eは、外蓋本体部13aの軸方向一方側の面から軸方向他方側に窪む。第1凹部13eは、外蓋本体部13aの中央部に設けられ、蓋板部13cと突出部13dとに跨って設けられる。シャフト挿入孔13fは、第1凹部13eの底面から突出部13dの軸方向他方側の面まで貫通する。すなわち、シャフト挿入孔13fは、第1凹部13eの底面からハウジング10の内部まで貫通する。シャフト挿入孔13fは、第2凹部12gの内部に開口する。これにより、シャフト挿入孔13fは、第1凹部13eの内部と第2凹部12gの内部とを繋ぐ。シャフト挿入孔13fには、中心軸J1が通る。 The outer lid body 13a has a first recess 13e and a shaft insertion hole 13f. That is, the outer lid portion 13 has a shaft insertion hole 13f. The first recess 13e is recessed from the surface on one side in the axial direction of the outer lid main body 13a to the other side in the axial direction. The 1st recessed part 13e is provided in the center part of the outer cover main-body part 13a, and is provided ranging over the cover board part 13c and the protrusion part 13d. The shaft insertion hole 13f penetrates from the bottom surface of the first recess 13e to the other surface in the axial direction of the protrusion 13d. That is, the shaft insertion hole 13f penetrates from the bottom surface of the first recess 13e to the inside of the housing 10. The shaft insertion hole 13f opens inside the second recess 12g. Thereby, the shaft insertion hole 13f connects the inside of the first recess 13e and the inside of the second recess 12g. The central axis J1 passes through the shaft insertion hole 13f.
 栓体部13bは、第1凹部13eに嵌め込まれて外蓋本体部13aに固定される。栓体部13bは、第1凹部13eの軸方向一方側の開口を閉塞する。栓体部13bは、モータシャフト20aの軸方向一方側を覆う。すなわち、外蓋部13は、モータシャフト20aの軸方向一方側を覆う。栓体部13bは、軸方向一方側の端部に径方向外側に突出する鍔部13gを有する。鍔部13gは、蓋板部13cの軸方向一方側の面に接触する。これにより、栓体部13bを軸方向に位置決めできる。 The plug body 13b is fitted into the first recess 13e and fixed to the outer lid main body 13a. The plug part 13b closes the opening on the one axial side of the first recess 13e. The plug part 13b covers one side in the axial direction of the motor shaft 20a. That is, the outer lid portion 13 covers one axial side of the motor shaft 20a. The plug body portion 13b has a flange portion 13g that protrudes radially outward at an end portion on one axial side. The flange portion 13g contacts the surface on one side in the axial direction of the lid plate portion 13c. Thereby, the plug part 13b can be positioned in an axial direction.
 外蓋部13には、ポンプ室46が設けられる。ポンプ室46は、栓体部13bの軸方向他方側の面と第1凹部13eの底面との軸方向の間に設けられる。本実施形態においてポンプ室46の軸方向他方側の面は、第1凹部13eの底面である。すなわち、シャフト挿入孔13fは、ポンプ室46の軸方向他方側の面から外蓋部13の軸方向他方側の面まで外蓋部13を貫通する。ポンプ室46の軸方向一方側の面は、栓体部13bの軸方向他方側の面である。ポンプ室46は、第1凹部13eの内部のうちの軸方向他方側の端部である。ポンプ室46は、内筒部12cの径方向内側、すなわち第2凹部12gの内部に配置される。ポンプ室46には、中心軸J1が通る。図2に示すように、軸方向視において、ポンプ室46の外形は、円形状である。ポンプ室46は、後述する内歯歯車43および外歯歯車42を収容する。 A pump chamber 46 is provided in the outer lid portion 13. The pump chamber 46 is provided between the axial direction other side surface of the plug part 13b and the bottom surface of the first recess 13e. In the present embodiment, the surface on the other axial side of the pump chamber 46 is the bottom surface of the first recess 13e. That is, the shaft insertion hole 13 f penetrates the outer lid portion 13 from the surface on the other axial side of the pump chamber 46 to the surface on the other axial side of the outer lid portion 13. The surface on the one axial side of the pump chamber 46 is the surface on the other axial side of the plug body portion 13b. The pump chamber 46 is an end on the other side in the axial direction of the inside of the first recess 13e. The pump chamber 46 is disposed on the radially inner side of the inner cylinder portion 12c, that is, inside the second recess 12g. The central axis J1 passes through the pump chamber 46. As shown in FIG. 2, the outer shape of the pump chamber 46 is circular when viewed in the axial direction. The pump chamber 46 accommodates an internal gear 43 and an external gear 42 which will be described later.
 図3に示すように、外蓋部13は、支持部13hを有する。支持部13hは、突出部13dのうち第1凹部13eの軸方向他方側に位置する部分である。支持部13hは、モータシャフト20aの径方向外側を囲む環状である。本実施形態において支持部13hは、中心軸J1を中心とする円環状である。支持部13hの径方向内側面は、シャフト挿入孔13fの径方向内側面である。すなわち、支持部13hは、シャフト挿入孔13fの径方向内側面の少なくとも一部を構成する。支持部13hの軸方向一方側の面は、第1凹部13eの底面であり、ポンプ室46の軸方向他方側の面である。すなわち、支持部13hは、ポンプ室46の軸方向他方側の面の少なくとも一部を構成する。本実施形態において支持部13hは、単一の部材である外蓋本体部13aの一部である。 As shown in FIG. 3, the outer lid portion 13 has a support portion 13h. 13 h of support parts are parts located in the other axial direction side of the 1st recessed part 13e among the protrusion parts 13d. The support portion 13h has an annular shape that surrounds the radially outer side of the motor shaft 20a. In the present embodiment, the support portion 13h has an annular shape centered on the central axis J1. The radially inner side surface of the support portion 13h is the radially inner side surface of the shaft insertion hole 13f. That is, the support portion 13h constitutes at least a part of the radially inner side surface of the shaft insertion hole 13f. The surface on one side in the axial direction of the support portion 13 h is the bottom surface of the first recess 13 e and the surface on the other side in the axial direction of the pump chamber 46. That is, the support portion 13 h constitutes at least a part of the surface on the other axial side of the pump chamber 46. In the present embodiment, the support portion 13h is a part of the outer lid main body portion 13a that is a single member.
 図1に示すように、ハウジング10は、第1油路61と、第3油路63と、を有する。第1油路61は、外蓋部13に設けられる。より詳細には、第1油路61は、栓体部13bに設けられる。そのため、栓体部13bを交換することで、容易に第1油路61の構成を変えることができる。第1油路61は、ポンプ室46の軸方向一方側に配置される。第1油路61は、ポンプ室46の軸方向一方側において、ポンプ室46の上端部とポンプ室46の中央部とを繋ぐ。第1油路61におけるポンプ室46と繋がる部分は、栓体部13bの軸方向他方側の面に開口する。 As shown in FIG. 1, the housing 10 has a first oil passage 61 and a third oil passage 63. The first oil passage 61 is provided in the outer lid portion 13. More specifically, the first oil passage 61 is provided in the plug body 13b. Therefore, the configuration of the first oil passage 61 can be easily changed by replacing the plug body portion 13b. The first oil passage 61 is disposed on one axial side of the pump chamber 46. The first oil passage 61 connects the upper end portion of the pump chamber 46 and the central portion of the pump chamber 46 on one axial side of the pump chamber 46. A portion of the first oil passage 61 connected to the pump chamber 46 opens on the surface on the other axial side of the plug body portion 13b.
 ポンプ室46における第1油路61と繋がる上端部は、吐出口45である。すなわち、第1油路61は、吐出口45と繋がる。ポンプ室46における第1油路61と繋がる中央部は、接続口61aである。図2に示すように、吐出口45と接続口61aとは、例えば、円形状である。吐出口45は、接続口61aよりも上側に配置される。接続口61aには、中心軸J1が通る。 The upper end connected to the first oil passage 61 in the pump chamber 46 is a discharge port 45. That is, the first oil passage 61 is connected to the discharge port 45. A central portion connected to the first oil passage 61 in the pump chamber 46 is a connection port 61a. As shown in FIG. 2, the discharge port 45 and the connection port 61a are, for example, circular. The discharge port 45 is disposed above the connection port 61a. The central axis J1 passes through the connection port 61a.
 図1に示すように、第3油路63は、開口部12fから上側に延びる。第3油路63は、開口部12fを介して、収容部14の内部における鉛直方向下側領域と繋がる。第3油路63の上端部は、ポンプ室46の軸方向他方側において、ポンプ室46と繋がる。ポンプ室46における第3油路63が繋がる部分は、吸入口44である。すなわち、第3油路63は、収容部14の内部における鉛直方向下側領域と吸入口44とを繋ぐ。図2に示すように、吸入口44は、例えば、円形状である。吸入口44は、吐出口45および接続口61aよりも下側に配置される。吸入口44は、中心軸J1よりも下側に配置される。 1, the third oil passage 63 extends upward from the opening 12f. The third oil passage 63 is connected to the lower region in the vertical direction inside the housing portion 14 through the opening 12f. The upper end portion of the third oil passage 63 is connected to the pump chamber 46 on the other axial side of the pump chamber 46. The portion where the third oil passage 63 is connected in the pump chamber 46 is the suction port 44. That is, the third oil passage 63 connects the lower region in the vertical direction inside the housing portion 14 and the suction port 44. As shown in FIG. 2, the suction port 44 has, for example, a circular shape. The suction port 44 is disposed below the discharge port 45 and the connection port 61a. The suction port 44 is disposed below the central axis J1.
 図1に示すように、第3油路63は、第1部分63aと、第2部分63bと、第3部分63cと、を有する。第1部分63aは、開口部12fから上側に延びる。第1部分63aの上端部は、内筒部12cの下端部の内周面よりも上側に位置する。第1部分63aは、例えば、蓋板部13cの軸方向他方側の面から軸方向一方側に窪み鉛直方向Zに延びる溝が、円環板部12aの軸方向一方側の面によって閉塞されて構成される。これにより、第1部分63aは、内蓋部12と外蓋部13との軸方向の間に配置される。 As shown in FIG. 1, the third oil passage 63 has a first portion 63a, a second portion 63b, and a third portion 63c. The first portion 63a extends upward from the opening 12f. The upper end portion of the first portion 63a is located above the inner peripheral surface of the lower end portion of the inner cylinder portion 12c. In the first portion 63a, for example, a groove that is recessed in the axial direction on one side from the surface on the other side in the axial direction of the cover plate portion 13c and extends in the vertical direction Z is closed by the surface on the one side in the axial direction of the annular plate portion 12a. Composed. Accordingly, the first portion 63a is disposed between the inner lid portion 12 and the outer lid portion 13 in the axial direction.
 第2部分63bは、第1部分63aの上端部から軸方向他方側に延びる。第2部分63bは、突出部13dの下側の面から上側に窪み軸方向他方側に延びる溝が、内筒部12cの内周面によって閉塞されて構成される。これにより、第2部分63bは、内蓋部12と外蓋部13との径方向の間に配置される。 The second portion 63b extends from the upper end of the first portion 63a to the other side in the axial direction. The second portion 63b is configured such that a groove that is recessed upward from the lower surface of the protruding portion 13d and extends to the other side in the axial direction is closed by the inner peripheral surface of the inner cylindrical portion 12c. Accordingly, the second portion 63b is disposed between the inner lid portion 12 and the outer lid portion 13 in the radial direction.
 第3部分63cは、第2部分63bの軸方向他方側の端部から上側に延びる。第3部分63cは、突出部13dに設けられる。第3部分63cの上端部は、支持部13hに設けられる。第3部分63cは、内筒部12cの径方向内側に配置される。第3部分63cは、吸入口44と繋がる。本実施形態によれば、第3油路63の少なくとも一部は、内蓋部12と外蓋部13との軸方向の間に配置される。そのため、互いに固定される内蓋部12と外蓋部13とによって第3油路63の少なくとも一部を構成することができ、第3油路63を容易に作製できる。 The third portion 63c extends upward from the other axial end of the second portion 63b. The third portion 63c is provided on the protruding portion 13d. The upper end portion of the third portion 63c is provided on the support portion 13h. The third portion 63c is disposed on the radially inner side of the inner cylinder portion 12c. The third portion 63 c is connected to the suction port 44. According to the present embodiment, at least a part of the third oil passage 63 is disposed between the inner lid portion 12 and the outer lid portion 13 in the axial direction. Therefore, at least a part of the third oil passage 63 can be configured by the inner lid portion 12 and the outer lid portion 13 fixed to each other, and the third oil passage 63 can be easily manufactured.
 ロータ20は、モータシャフト20aと、ブッシュ53と、ロータコア22と、マグネット23と、第1エンドプレート24と、第2エンドプレート25と、を有する。モータシャフト20aは、モータシャフト本体21と、取付部材50と、を有する。モータシャフト本体21は、軸方向に延びる円柱状である。モータシャフト本体21は、大径部21aと、第1中径部21bと、第2中径部21cと、小径部21dと、出力部21eと、を有する。 The rotor 20 includes a motor shaft 20a, a bush 53, a rotor core 22, a magnet 23, a first end plate 24, and a second end plate 25. The motor shaft 20 a includes a motor shaft main body 21 and an attachment member 50. The motor shaft body 21 has a cylindrical shape extending in the axial direction. The motor shaft main body 21 has a large diameter portion 21a, a first medium diameter portion 21b, a second medium diameter portion 21c, a small diameter portion 21d, and an output portion 21e.
 大径部21aは、ロータコア22が取り付けられる部分である。大径部21aの軸方向一方側の端部における外周面には、雄ネジ部が設けられる。大径部21aの雄ネジ部には、ナット90が締め込まれる。第1中径部21bは、大径部21aの軸方向一方側において大径部21aに繋がる。第1中径部21bの外径は、大径部21aの外径よりも小さい。第1中径部21bの軸方向他方側の端部は、ベアリング70に回転可能に支持される。 The large diameter portion 21a is a portion to which the rotor core 22 is attached. A male screw portion is provided on the outer peripheral surface of the end portion on one axial side of the large diameter portion 21a. A nut 90 is fastened to the male screw portion of the large diameter portion 21a. The first medium diameter portion 21b is connected to the large diameter portion 21a on one axial side of the large diameter portion 21a. The outer diameter of the first medium diameter portion 21b is smaller than the outer diameter of the large diameter portion 21a. The end portion on the other axial side of the first medium diameter portion 21b is rotatably supported by the bearing 70.
 第2中径部21cは、大径部21aの軸方向他方側において大径部21aに繋がる。第2中径部21cの外径は、大径部21aの外径よりも小さい。第2中径部21cの軸方向一方側の端部は、ベアリング71に回転可能に支持される。ベアリング70,71は、モータシャフト20aを回転可能に支持する。ベアリング70,71は、例えば、ボールベアリングである。 The second medium diameter portion 21c is connected to the large diameter portion 21a on the other axial side of the large diameter portion 21a. The outer diameter of the second medium diameter portion 21c is smaller than the outer diameter of the large diameter portion 21a. The end portion on the one axial side of the second medium diameter portion 21c is rotatably supported by the bearing 71. The bearings 70 and 71 rotatably support the motor shaft 20a. The bearings 70 and 71 are ball bearings, for example.
 小径部21dは、第1中径部21bの軸方向一方側において第1中径部21bに繋がる。小径部21dの軸方向一方側の端部は、モータシャフト本体21の軸方向一方側の端部である。小径部21dの軸方向一方側の端部は、内筒部12cの径方向内側に配置される。小径部21dの外径は、第1中径部21bの外径よりも小さい。すなわち、小径部21dは、軸方向一方側に向かって外径が小さくなる部分である。 The small diameter portion 21d is connected to the first medium diameter portion 21b on one axial side of the first medium diameter portion 21b. An end portion on one side in the axial direction of the small diameter portion 21 d is an end portion on one side in the axial direction of the motor shaft main body 21. The end portion on one side in the axial direction of the small diameter portion 21d is disposed on the radially inner side of the inner cylinder portion 12c. The outer diameter of the small diameter portion 21d is smaller than the outer diameter of the first medium diameter portion 21b. That is, the small diameter portion 21d is a portion whose outer diameter decreases toward one side in the axial direction.
 出力部21eは、第2中径部21cの軸方向他方側において第2中径部21cに繋がる。出力部21eは、モータシャフト本体21の軸方向他方側の端部である。出力部21eの外径は、小径部21dの外径よりも小さい。出力部21eは、底部11aを軸方向に貫通してハウジング10の外部に突出する。 The output part 21e is connected to the second medium diameter part 21c on the other axial side of the second medium diameter part 21c. The output portion 21e is an end portion on the other side in the axial direction of the motor shaft main body 21. The outer diameter of the output part 21e is smaller than the outer diameter of the small diameter part 21d. The output portion 21e protrudes outside the housing 10 through the bottom portion 11a in the axial direction.
 モータシャフト本体21は、フランジ部21fを有する。フランジ部21fは、大径部21aの外周面から径方向外側に突出する。フランジ部21fは、大径部21aの外周面の一周に亘って設けられる円環板状である。フランジ部21fは、大径部21aの軸方向他方側の端部に設けられる。モータシャフト本体21は、モータシャフト本体21の軸方向一方側の端部から軸方向他方側に延びる穴部21gを有する。穴部21gは、軸方向一方側に開口する有底の穴である。すなわち、穴部21gの軸方向他方側の端部は、閉塞される。 The motor shaft main body 21 has a flange portion 21f. The flange portion 21f protrudes radially outward from the outer peripheral surface of the large diameter portion 21a. The flange portion 21f has an annular plate shape that is provided over the circumference of the outer peripheral surface of the large diameter portion 21a. The flange portion 21f is provided at the end portion on the other axial side of the large diameter portion 21a. The motor shaft main body 21 has a hole 21g extending from the end on one side in the axial direction of the motor shaft main body 21 to the other side in the axial direction. The hole 21g is a bottomed hole that opens to one side in the axial direction. That is, the end on the other axial side of the hole 21g is closed.
 図3に示すように、取付部材50は、モータシャフト本体21の軸方向一方側に固定される。取付部材50は、穴部21gに嵌め合わされて固定される。取付部材50は、軸方向両側に開口する筒状である。本実施形態において取付部材50は、中心軸J1と中心とする円筒状である。取付部材50は、モータシャフト本体21よりも軸方向一方側に延びて、シャフト挿入孔13fに通される。これにより、シャフト挿入孔13fには、モータシャフト20aが通される。 As shown in FIG. 3, the attachment member 50 is fixed to one side of the motor shaft main body 21 in the axial direction. The attachment member 50 is fitted into the hole 21g and fixed. The attachment member 50 has a cylindrical shape that opens on both sides in the axial direction. In the present embodiment, the attachment member 50 has a cylindrical shape centered on the central axis J1. The attachment member 50 extends to one side in the axial direction from the motor shaft main body 21 and passes through the shaft insertion hole 13f. Thereby, the motor shaft 20a is passed through the shaft insertion hole 13f.
 取付部材50は、嵌合部51と、固定部52と、を有する。嵌合部51は、穴部21gに嵌め合わされる部分である。嵌合部51は、穴部21gの軸方向一方側の端部の内周面に固定され、穴部21g内からモータシャフト本体21よりも軸方向一方側まで延びる。嵌合部51の軸方向一方側の端部は、シャフト挿入孔13fに挿入される。すなわち、嵌合部51の少なくとも一部は、シャフト挿入孔13fに挿入される。 The mounting member 50 includes a fitting part 51 and a fixing part 52. The fitting part 51 is a part fitted in the hole part 21g. The fitting portion 51 is fixed to the inner peripheral surface of the end portion on one side in the axial direction of the hole portion 21g, and extends from the inside of the hole portion 21g to one side in the axial direction than the motor shaft main body 21. One end of the fitting portion 51 in the axial direction is inserted into the shaft insertion hole 13f. That is, at least a part of the fitting portion 51 is inserted into the shaft insertion hole 13f.
 固定部52は、嵌合部51の軸方向一方側に位置する。固定部52は、嵌合部51の軸方向一方側の端部に繋がる。固定部52の外径は、嵌合部51の外径よりも大きく、シャフト挿入孔13fの内径よりも大きい。固定部52は、軸方向他方側から軸方向一方側に向かって外径が大きくなった拡径部である。固定部52は、ポンプ室46内に挿入される。固定部52は、支持部13hの軸方向一方側に対向して配置される。そのため、固定部52が軸方向他方側に移動することを支持部13hによって抑制できる。これにより、モータシャフト20aが後述する外歯歯車42から外れることを抑制できる。また、シャフト挿入孔13fの内径が固定部52の外径よりも小さいため、シャフト挿入孔13fの内径を比較的小さくできる。これにより、ポンプ室46内のオイルOがシャフト挿入孔13fを介して漏れることを抑制しやすい。 The fixing part 52 is located on one side of the fitting part 51 in the axial direction. The fixing portion 52 is connected to the end portion on one side in the axial direction of the fitting portion 51. The outer diameter of the fixing portion 52 is larger than the outer diameter of the fitting portion 51 and larger than the inner diameter of the shaft insertion hole 13f. The fixed portion 52 is a diameter-expanded portion whose outer diameter increases from the other side in the axial direction toward one side in the axial direction. The fixing portion 52 is inserted into the pump chamber 46. The fixed portion 52 is disposed to face one side in the axial direction of the support portion 13h. Therefore, it can suppress by the support part 13h that the fixing | fixed part 52 moves to the other side of an axial direction. Thereby, it can suppress that motor shaft 20a remove | deviates from the external gear 42 mentioned later. Further, since the inner diameter of the shaft insertion hole 13f is smaller than the outer diameter of the fixed portion 52, the inner diameter of the shaft insertion hole 13f can be made relatively small. Thereby, it is easy to suppress the oil O in the pump chamber 46 from leaking through the shaft insertion hole 13f.
 図示は省略するが、固定部52と支持部13hとの軸方向の間には、隙間が設けられる。そのため、モータシャフト20aが回転した際に固定部52が支持部13hと擦れることを抑制でき、モータシャフト20aを滑らかに回転させることができる。嵌合部51の内径と固定部52の内径とは、例えば、同じである。 Although not shown, a gap is provided between the fixed portion 52 and the support portion 13h in the axial direction. Therefore, when the motor shaft 20a rotates, it can suppress that the fixing | fixed part 52 rubs with the support part 13h, and can rotate the motor shaft 20a smoothly. The inner diameter of the fitting part 51 and the inner diameter of the fixed part 52 are, for example, the same.
 取付部材50には、後述する外歯歯車42が固定される。本実施形態では、外歯歯車42は、固定部52の径方向外側面に固定される。より詳細には、外歯歯車42を軸方向に貫通する固定孔部42bに、固定部52が嵌め合わされて固定される。すなわち、本実施形態においてモータシャフト20aにおける外歯歯車42が固定された部分は、固定部52である。このように、本実施形態によれば、固定部52より外径が小さい嵌合部51を穴部21gに嵌め合わせ、嵌合部51よりも外径が大きい固定部52に外歯歯車42を固定する。そのため、穴部21gの内径を外歯歯車42の固定孔部42bの内径よりも小さくできる。これにより、穴部21gの内径を比較的小さくしやすく、モータシャフト本体21の剛性が低下することを抑制できる。 The external gear 42 which will be described later is fixed to the mounting member 50. In the present embodiment, the external gear 42 is fixed to the radially outer surface of the fixing portion 52. More specifically, the fixing portion 52 is fitted and fixed in a fixing hole portion 42b that penetrates the external gear 42 in the axial direction. In other words, in the present embodiment, the portion of the motor shaft 20a where the external gear 42 is fixed is the fixed portion 52. Thus, according to the present embodiment, the fitting portion 51 having an outer diameter smaller than that of the fixing portion 52 is fitted into the hole portion 21g, and the external gear 42 is attached to the fixing portion 52 having an outer diameter larger than that of the fitting portion 51. Fix it. Therefore, the inner diameter of the hole portion 21g can be made smaller than the inner diameter of the fixed hole portion 42b of the external gear 42. Thereby, it is easy to make the internal diameter of the hole 21g comparatively small, and it can suppress that the rigidity of the motor shaft main body 21 falls.
 本実施形態において、組立者は、例えば、外蓋部13を内蓋部12に取り付けた後に、第1凹部13eの左側の開口から嵌合部51をシャフト挿入孔13fに挿し込み、モータシャフト本体21の穴部21gに嵌め合わせることで、取付部材50をモータシャフト本体21に固定する。 In the present embodiment, the assembler, for example, attaches the outer lid portion 13 to the inner lid portion 12, and then inserts the fitting portion 51 into the shaft insertion hole 13f from the left opening of the first recess 13e, thereby The attachment member 50 is fixed to the motor shaft main body 21 by being fitted in the hole 21g of the 21.
 モータシャフト20aは、モータシャフト20aの内部に設けられる第2油路62を有する。第2油路62は、モータシャフト20aの軸方向一方側の端部から軸方向他方側に窪んで延びる有底の穴部である。第2油路62は、軸方向一方側に開口する。第2油路62は、取付部材50の軸方向一方側の端部から第2中径部21cの軸方向他方側の端部まで延びて、取付部材50とモータシャフト本体21とに跨って設けられる。第2油路62は、取付部材50の内部と穴部21gとが軸方向に繋がって構成される。すなわち、取付部材50の径方向内側面は、第2油路62の径方向内側面の一部を構成する。 The motor shaft 20a has a second oil passage 62 provided inside the motor shaft 20a. The second oil passage 62 is a bottomed hole that extends from the end on one side in the axial direction of the motor shaft 20a to the other side in the axial direction. The second oil passage 62 opens on one side in the axial direction. The second oil passage 62 extends from the end on the one axial side of the mounting member 50 to the end on the other axial side of the second medium diameter portion 21 c and extends across the mounting member 50 and the motor shaft main body 21. It is done. The second oil passage 62 is configured by connecting the inside of the attachment member 50 and the hole 21g in the axial direction. That is, the radially inner side surface of the mounting member 50 constitutes a part of the radially inner side surface of the second oil passage 62.
 本実施形態において軸方向と直交する断面において第2油路62の内縁は、中心軸J1を中心とする円形状である。第2油路62における取付部材50に設けられる部分の内径は、第2油路62におけるモータシャフト本体21に設けられる部分の内径よりも小さい。すなわち、取付部材50の内径は、穴部21gの内径よりも小さい。取付部材50の軸方向一方側の開口が接続口61aと繋がることで、第2油路62は、取付部材50の内部を介して第1油路61と繋がる。すなわち、第2油路62は、モータシャフト20aの軸方向一方側の端部において第1油路61に開口する。 In the present embodiment, the inner edge of the second oil passage 62 has a circular shape centered on the central axis J1 in the cross section orthogonal to the axial direction. The inner diameter of the portion provided in the mounting member 50 in the second oil passage 62 is smaller than the inner diameter of the portion provided in the motor shaft main body 21 in the second oil passage 62. That is, the inner diameter of the mounting member 50 is smaller than the inner diameter of the hole 21g. The second oil passage 62 is connected to the first oil passage 61 through the inside of the attachment member 50 because the opening on the one axial side of the attachment member 50 is connected to the connection port 61a. That is, the second oil passage 62 opens into the first oil passage 61 at the end portion on the one axial side of the motor shaft 20a.
 図4に示すように、モータシャフト20aは、第2油路62とモータシャフト20aの外周面とを繋ぐ第1オイル供給孔26a,26bおよび第2オイル供給孔26c,26dを有する。第1オイル供給孔26a,26bおよび第2オイル供給孔26c,26dは、径方向に延びる。第1オイル供給孔26a,26bは、大径部21aに設けられる。第1オイル供給孔26a,26bは、軸方向において、ナット90とフランジ部21fとの間に配置される。第1オイル供給孔26aの径方向外側の端部は、第1エンドプレート24とロータコア22との軸方向の隙間27aに開口する。第1オイル供給孔26bの径方向外側の端部は、第2エンドプレート25とロータコア22との軸方向の隙間27bに開口する。 As shown in FIG. 4, the motor shaft 20a has first oil supply holes 26a and 26b and second oil supply holes 26c and 26d that connect the second oil passage 62 and the outer peripheral surface of the motor shaft 20a. The first oil supply holes 26a and 26b and the second oil supply holes 26c and 26d extend in the radial direction. The first oil supply holes 26a and 26b are provided in the large diameter portion 21a. The first oil supply holes 26a and 26b are disposed between the nut 90 and the flange portion 21f in the axial direction. The radially outer end of the first oil supply hole 26 a opens in the axial gap 27 a between the first end plate 24 and the rotor core 22. The radially outer end of the first oil supply hole 26 b opens in the axial gap 27 b between the second end plate 25 and the rotor core 22.
 第2オイル供給孔26cは、第1中径部21bに設けられる。第2オイル供給孔26cの径方向外側の端部は、ベアリング70の軸方向一方側においてベアリング保持部12eの径方向内側に開口する。第2オイル供給孔26dは、第2中径部21cに設けられる。第2オイル供給孔26dの径方向外側の端部は、ベアリング71の軸方向他方側においてベアリング保持部11cの径方向内側に開口する。第1オイル供給孔26a,26bおよび第2オイル供給孔26c,26dは、例えば、それぞれ周方向に沿って複数設けられる。本実施形態において第1オイル供給孔26a,26bは、第1貫通孔に相当する。 The second oil supply hole 26c is provided in the first medium diameter portion 21b. The radially outer end of the second oil supply hole 26c opens on the radially inner side of the bearing holding portion 12e on one axial side of the bearing 70. The second oil supply hole 26d is provided in the second medium diameter portion 21c. The radially outer end of the second oil supply hole 26d opens on the radially inner side of the bearing holding portion 11c on the other axial side of the bearing 71. For example, a plurality of first oil supply holes 26a and 26b and second oil supply holes 26c and 26d are provided along the circumferential direction. In the present embodiment, the first oil supply holes 26a and 26b correspond to first through holes.
 図3に示すように、ブッシュ53は、軸方向に延び、中心軸J1を中心とする円筒状である。ブッシュ53は、モータシャフト20aに嵌め合わされて固定される。より詳細には、ブッシュ53は、嵌合部51に径方向外側から嵌め合わされて固定される。ブッシュ53は、例えば、嵌合部51に圧入される。ブッシュ53の少なくとも一部は、支持部13hとモータシャフト20aとの径方向の間に配置される。すなわち、ブッシュ53の少なくとも一部は、シャフト挿入孔13fに挿入される。本実施形態においては、ブッシュ53の軸方向一方側の端部からブッシュ53の軸方向の中心よりも軸方向他方側の部分までが、支持部13hと嵌合部51との径方向の間に配置される。ブッシュ53の軸方向一方側の端部は、固定部52の軸方向他方側の端部に接触する。ブッシュ53の軸方向他方側の端部は、支持部13hよりも軸方向他方側に突出する。ブッシュ53の軸方向他方側の端部とモータシャフト本体21の軸方向一方側の端部との間には、隙間が設けられる。 As shown in FIG. 3, the bush 53 extends in the axial direction and has a cylindrical shape centered on the central axis J1. The bush 53 is fitted and fixed to the motor shaft 20a. More specifically, the bush 53 is fitted and fixed to the fitting portion 51 from the radially outer side. The bush 53 is press-fitted into the fitting portion 51, for example. At least a part of the bush 53 is arranged between the support portion 13h and the motor shaft 20a in the radial direction. That is, at least a part of the bush 53 is inserted into the shaft insertion hole 13f. In the present embodiment, the end of the bush 53 on one side in the axial direction from the center in the axial direction of the bush 53 to the portion on the other side in the axial direction is between the support portion 13 h and the fitting portion 51 in the radial direction. Be placed. The end portion on the one axial side of the bush 53 is in contact with the end portion on the other axial side of the fixed portion 52. The end of the bush 53 on the other side in the axial direction protrudes to the other side in the axial direction from the support portion 13h. A gap is provided between the end on the other axial side of the bush 53 and the end on the one axial side of the motor shaft main body 21.
 本実施形態においてモータシャフト20aは、ブッシュ53を介して支持部13hに回転可能に支持される。すなわち、支持部13hは、モータシャフト20aの径方向外側においてモータシャフト20aを回転可能に支持する。本実施形態において支持部13hは、取付部材50を回転可能に支持する。より詳細には、支持部13hの嵌合部51を回転可能に支持する。 In this embodiment, the motor shaft 20a is rotatably supported by the support portion 13h via the bush 53. That is, the support portion 13h rotatably supports the motor shaft 20a on the radially outer side of the motor shaft 20a. In the present embodiment, the support portion 13h supports the attachment member 50 in a rotatable manner. More specifically, the fitting portion 51 of the support portion 13h is rotatably supported.
 本明細書において「支持部がモータシャフトを回転可能に支持する」とは、モータシャフトが中心軸J1周りに回転可能な状態で、支持部によってモータシャフトの径方向の移動が抑制され、かつ、モータシャフトが直接的または間接的に、支持部の径方向内端部に対して滑りながら回転することを含む。「モータシャフトが間接的に支持部の径方向内端部に対して滑りながら回転する」とは、モータシャフトの外周面に固定された部材が支持部の径方向内端部に対して滑りながら回転することを含む。本実施形態では、モータシャフト20aに固定されたブッシュ53の外周面が支持部13hの径方向内端部に対して滑りながら回転する。支持部13hの径方向内端部は、シャフト挿入孔13fの内周面である。 In this specification, “the support portion rotatably supports the motor shaft” means that the motor shaft is rotatable about the central axis J1, and the support portion suppresses the movement of the motor shaft in the radial direction, and This includes rotating the motor shaft sliding directly or indirectly with respect to the radially inner end of the support portion. “The motor shaft rotates indirectly while sliding with respect to the radially inner end portion of the support portion” means that the member fixed to the outer peripheral surface of the motor shaft slides with respect to the radially inner end portion of the support portion. Including rotating. In the present embodiment, the outer peripheral surface of the bush 53 fixed to the motor shaft 20a rotates while sliding with respect to the radially inner end portion of the support portion 13h. The radially inner end of the support portion 13h is the inner peripheral surface of the shaft insertion hole 13f.
 図1に示すように、ロータコア22は、モータシャフト本体21に固定される円環状である。本実施形態においてロータコア22は、大径部21aに嵌め合わされる。ロータコア22は、ロータコア22を軸方向に貫通するマグネット挿入孔22bを有する。マグネット挿入孔22bは、周方向に沿って複数設けられる。マグネット23は、マグネット挿入孔22bに挿入される。 As shown in FIG. 1, the rotor core 22 has an annular shape fixed to the motor shaft main body 21. In the present embodiment, the rotor core 22 is fitted into the large diameter portion 21a. The rotor core 22 has a magnet insertion hole 22b that penetrates the rotor core 22 in the axial direction. A plurality of magnet insertion holes 22b are provided along the circumferential direction. The magnet 23 is inserted into the magnet insertion hole 22b.
 第1エンドプレート24および第2エンドプレート25は、径方向に拡がる円環板状である。第1エンドプレート24および第2エンドプレート25には、大径部21aが通される。第1エンドプレート24と第2エンドプレート25とは、ロータコア22と接触した状態で、ロータコア22を軸方向に挟む。 The first end plate 24 and the second end plate 25 have an annular plate shape that expands in the radial direction. A large diameter portion 21 a is passed through the first end plate 24 and the second end plate 25. The first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction while being in contact with the rotor core 22.
 図4に示すように、第1エンドプレート24は、ロータコア22の軸方向一方側に配置される。第1エンドプレート24の径方向外縁部は、軸方向他方側に突出し、ロータコア22の軸方向一方側の面のうち径方向外縁部と接触する。第1エンドプレート24の径方向外縁部は、マグネット挿入孔22bの軸方向一方側の開口部と軸方向に重なり、マグネット挿入孔22bに挿入されたマグネット23を軸方向一方側から押さえる。第1エンドプレート24の径方向外縁部よりも径方向内側の部分は、ロータコア22の軸方向一方側の面と軸方向に隙間27aを介して対向する。 As shown in FIG. 4, the first end plate 24 is disposed on one side of the rotor core 22 in the axial direction. The radially outer edge portion of the first end plate 24 protrudes to the other side in the axial direction, and contacts the radially outer edge portion of the surface on the one axial side of the rotor core 22. The radially outer edge of the first end plate 24 overlaps with the opening on one axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from one axial side. A portion radially inward from the radially outer edge portion of the first end plate 24 faces the surface on one side in the axial direction of the rotor core 22 in the axial direction through a gap 27a.
 第1エンドプレート24は、第1エンドプレート24の軸方向一方側の面から軸方向他方側に窪む噴出溝24aを有する。噴出溝24aは、径方向に延びる。噴出溝24aの径方向内側の端部は、第1エンドプレート24を軸方向に貫通して隙間27aと繋がる。噴出溝24aの径方向外側の端部は、第1エンドプレート24の径方向外側に開口し、後述するコイル32と径方向に隙間を介して対向する。これにより、第1オイル供給孔26aは、隙間27aおよび噴出溝24aを介して収容部14の内部に繋がる。噴出溝24aの径方向内側の部分における軸方向一方側の開口は、ナット90と第1エンドプレート24との軸方向の間に挟まれて固定されるワッシャ91によって閉塞される。ワッシャ91は、径方向に拡がる円環板状である。 The first end plate 24 has an ejection groove 24a that is recessed from the surface on the one side in the axial direction of the first end plate 24 toward the other side in the axial direction. The ejection groove 24a extends in the radial direction. The radially inner end of the ejection groove 24a penetrates the first end plate 24 in the axial direction and is connected to the gap 27a. The radially outer end of the ejection groove 24a opens to the radially outer side of the first end plate 24, and opposes a coil 32, which will be described later, with a gap in the radial direction. Thereby, the 1st oil supply hole 26a is connected with the inside of the accommodating part 14 via the clearance gap 27a and the ejection groove 24a. The opening on the one axial side in the radially inner portion of the ejection groove 24 a is closed by a washer 91 that is sandwiched and fixed between the nut 90 and the first end plate 24 in the axial direction. The washer 91 has an annular plate shape that expands in the radial direction.
 第2エンドプレート25は、ロータコア22の軸方向他方側に配置される。第2エンドプレート25の径方向外縁部は、軸方向一方側に突出し、ロータコア22の軸方向他方側の面のうち径方向外縁部と接触する。第2エンドプレート25の径方向外縁部は、マグネット挿入孔22bの軸方向他方側の開口部と軸方向に重なり、マグネット挿入孔22bに挿入されたマグネット23を軸方向他方側から押さえる。これにより、マグネット挿入孔22bに挿入されたマグネット23は、軸方向の両側を第1エンドプレート24と第2エンドプレート25とによって押さえられる。したがって、マグネット23がマグネット挿入孔22bから抜け出ることを抑制できる。 The second end plate 25 is disposed on the other axial side of the rotor core 22. The radially outer edge portion of the second end plate 25 projects to one side in the axial direction and contacts the radially outer edge portion of the surface on the other axial side of the rotor core 22. The radially outer edge of the second end plate 25 overlaps the opening on the other axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from the other axial side. Thereby, the magnet 23 inserted into the magnet insertion hole 22b is pressed by the first end plate 24 and the second end plate 25 on both sides in the axial direction. Therefore, the magnet 23 can be prevented from coming out of the magnet insertion hole 22b.
 第2エンドプレート25の径方向外縁部よりも径方向内側の部分は、ロータコア22の軸方向他方側の面と軸方向に隙間27bを介して対向する。第2エンドプレート25は、第2エンドプレート25の軸方向他方側の面から軸方向一方側に窪む噴出溝25aを有する。噴出溝25aは、径方向に延びる。噴出溝25aの径方向内側の端部は、第2エンドプレート25を軸方向に貫通して隙間27bと繋がる。噴出溝25aの径方向外側の端部は、第2エンドプレート25の径方向外側に開口し、後述するコイル32と径方向に隙間を介して対向する。これにより、第1オイル供給孔26bは、隙間27bおよび噴出溝25aを介して収容部14の内部に繋がる。噴出溝25aの径方向内側の部分における軸方向他方側の開口は、フランジ部21fによって閉塞される。 The portion on the radially inner side of the radially outer edge portion of the second end plate 25 is opposed to the surface on the other axial side of the rotor core 22 in the axial direction with a gap 27b. The second end plate 25 has an ejection groove 25 a that is recessed from the surface on the other axial side of the second end plate 25 to the one axial side. The ejection groove 25a extends in the radial direction. The radially inner end of the ejection groove 25a penetrates the second end plate 25 in the axial direction and is connected to the gap 27b. The radially outer end of the ejection groove 25a opens to the radially outer side of the second end plate 25, and opposes the coil 32, which will be described later, with a gap in the radial direction. Thereby, the 1st oil supply hole 26b is connected with the inside of the accommodating part 14 via the clearance gap 27b and the ejection groove 25a. The opening on the other side in the axial direction in the radially inner portion of the ejection groove 25a is closed by the flange portion 21f.
 第1エンドプレート24とロータコア22と第2エンドプレート25とは、ナット90およびワッシャ91とフランジ部21fとによって軸方向に挟持される。ナット90が大径部21aの雄ネジ部に締め込まれることで、ナット90がワッシャ91を介して、第1エンドプレート24とロータコア22と第2エンドプレート25とをフランジ部21fに押し付ける。これにより、第1エンドプレート24とロータコア22と第2エンドプレート25とは、モータシャフト20aに固定される。 The first end plate 24, the rotor core 22, and the second end plate 25 are sandwiched in the axial direction by the nut 90, the washer 91, and the flange portion 21f. When the nut 90 is tightened into the male screw portion of the large-diameter portion 21a, the nut 90 presses the first end plate 24, the rotor core 22, and the second end plate 25 against the flange portion 21f via the washer 91. Thereby, the 1st end plate 24, the rotor core 22, and the 2nd end plate 25 are fixed to the motor shaft 20a.
 図1に示す回転検出部80は、ロータ20の回転を検出する。本実施形態において回転検出部80は、例えば、VR(Variable Reluctance)型レゾルバである。回転検出部80は、内筒部12cの径方向内側に配置される。回転検出部80は、被検出部81と、センサ部82と、を有する。 The rotation detector 80 shown in FIG. 1 detects the rotation of the rotor 20. In the present embodiment, the rotation detection unit 80 is, for example, a VR (Variable Reluctance) type resolver. The rotation detector 80 is disposed on the radially inner side of the inner cylinder portion 12c. The rotation detection unit 80 includes a detected unit 81 and a sensor unit 82.
 被検出部81は、周方向に延びる環状である。被検出部81は、モータシャフト20aに嵌め合わされて固定される。より詳細には、被検出部81は、小径部21dに嵌め合わされて固定される。被検出部81の径方向内縁部における軸方向他方側の面は、第1中径部21bと小径部21dとの間の段差に接触する。被検出部81は、取付部材50と径方向に重なる。そのため、被検出部81と取付部材50とが径方向に重ならずに軸方向に離れて配置される場合に比べて、モータシャフト20aを軸方向に小型化しやすい。被検出部81は、磁性体製である。 The detected part 81 is a ring extending in the circumferential direction. The detected part 81 is fitted and fixed to the motor shaft 20a. More specifically, the detected portion 81 is fitted and fixed to the small diameter portion 21d. The surface on the other axial side of the radially inner edge of the detected portion 81 is in contact with the step between the first medium diameter portion 21b and the small diameter portion 21d. The detected portion 81 overlaps the mounting member 50 in the radial direction. Therefore, the motor shaft 20a can be easily downsized in the axial direction as compared with the case where the detected portion 81 and the attachment member 50 are arranged in the axial direction without overlapping in the radial direction. The detected part 81 is made of a magnetic material.
 なお、本明細書において「ある対象同士が、ある方向に重なる」とは、ある方向に沿って視た場合に、ある対象同士が重なることを含む。すなわち、被検出部81と取付部材50とが径方向に重なるとは、径方向に沿って視た場合に、被検出部81と取付部材50とが重なることを含む。 In addition, in this specification, “some objects overlap in a certain direction” includes that some objects overlap when viewed along a certain direction. That is, that the detected portion 81 and the attachment member 50 overlap in the radial direction includes the overlap of the detected portion 81 and the attachment member 50 when viewed along the radial direction.
 センサ部82は、内蓋部12と外蓋部13との軸方向の間に配置される。より詳細には、センサ部82は、内筒部12cの径方向内側において、内筒底部12dの軸方向一方側の面に固定される。すなわち、センサ部82は、内蓋部12に取り付けられる。そのため、センサ部82を取り付けやすい。センサ部82は、第2凹部12g内に配置される。そのため、内蓋部12を本体部11に取り付けた後に、第2凹部12gの軸方向一方側の開口から第2凹部12g内にセンサ部82を挿入して配置することができる。したがって、センサ部82を配置することが容易である。 The sensor part 82 is disposed between the inner lid part 12 and the outer lid part 13 in the axial direction. More specifically, the sensor part 82 is fixed to the surface on the one axial side of the inner cylinder bottom part 12d on the radially inner side of the inner cylinder part 12c. That is, the sensor unit 82 is attached to the inner lid unit 12. Therefore, it is easy to attach the sensor unit 82. The sensor part 82 is arrange | positioned in the 2nd recessed part 12g. Therefore, after attaching the inner lid part 12 to the main body part 11, the sensor part 82 can be inserted and arranged in the second recessed part 12g from the opening on one side in the axial direction of the second recessed part 12g. Therefore, it is easy to arrange the sensor unit 82.
 センサ部82は、被検出部81の径方向外側を囲む環状である。センサ部82は、周方向に沿って複数のコイルを有する。モータシャフト20aとともに被検出部81が回転することによって、センサ部82のコイルには、被検出部81の周方向位置に応じた誘起電圧が生じる。センサ部82は、誘起電圧を検出することで、被検出部81の回転を検出する。これにより、回転検出部80は、モータシャフト20aの回転を検出して、ロータ20の回転を検出する。 The sensor part 82 is an annular shape that surrounds the radially outer side of the detected part 81. The sensor unit 82 has a plurality of coils along the circumferential direction. When the detected portion 81 rotates together with the motor shaft 20a, an induced voltage corresponding to the circumferential position of the detected portion 81 is generated in the coil of the sensor portion 82. The sensor unit 82 detects the rotation of the detected unit 81 by detecting the induced voltage. Thereby, the rotation detector 80 detects the rotation of the rotor 20 by detecting the rotation of the motor shaft 20a.
 ステータ30は、ロータ20と径方向に隙間を介して対向する。ステータ30は、ステータコア31と、ステータコア31に装着される複数のコイル32と、を有する。ステータコア31は、中心軸J1を中心とした円環状である。ステータコア31の外周面は、本体筒部11bの内周面に固定される。ステータコア31は、ロータコア22の径方向外側に隙間を介して対向する。 The stator 30 faces the rotor 20 via a gap in the radial direction. The stator 30 includes a stator core 31 and a plurality of coils 32 attached to the stator core 31. The stator core 31 has an annular shape centered on the central axis J1. The outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the main body cylinder portion 11b. The stator core 31 is opposed to the outer side in the radial direction of the rotor core 22 via a gap.
 ポンプ部40は、外蓋部13の中央部に設けられる。ポンプ部40は、モータシャフト20aの軸方向一方側に配置される。ポンプ部40は、外歯歯車42と、内歯歯車43と、上述したポンプ室46と、吸入口44と、吐出口45と、貯留部48と、を有する。外歯歯車42は、中心軸J1周りに回転可能な歯車である。外歯歯車42は、モータシャフト20aの軸方向一方側の端部に固定される。より詳細には、外歯歯車42は、固定部52の外周面に固定される。そのため、取付部材50を介して外歯歯車42をモータシャフト本体21に固定できる。これにより、取付部材50の寸法を調整することで、モータシャフト本体21の寸法および外歯歯車42の寸法を変えずに、外歯歯車42をモータシャフト本体21に固定できる。 The pump part 40 is provided in the center part of the outer lid part 13. The pump part 40 is arrange | positioned at the axial direction one side of the motor shaft 20a. The pump unit 40 includes an external gear 42, an internal gear 43, the above-described pump chamber 46, a suction port 44, a discharge port 45, and a storage unit 48. The external gear 42 is a gear that can rotate around the central axis J1. The external gear 42 is fixed to an end portion on one axial side of the motor shaft 20a. More specifically, the external gear 42 is fixed to the outer peripheral surface of the fixing portion 52. Therefore, the external gear 42 can be fixed to the motor shaft main body 21 via the mounting member 50. Thereby, the external gear 42 can be fixed to the motor shaft main body 21 without changing the dimensions of the motor shaft main body 21 and the external gear 42 by adjusting the dimensions of the mounting member 50.
 外歯歯車42は、ポンプ室46内に収容される。図2に示すように、外歯歯車42は、外周面に複数の歯部42aを有する。外歯歯車42の歯部42aの歯形は、トロコイド歯形である。 The external gear 42 is accommodated in the pump chamber 46. As shown in FIG. 2, the external gear 42 has a plurality of tooth portions 42a on the outer peripheral surface. The tooth profile of the tooth portion 42a of the external gear 42 is a trochoidal tooth profile.
 内歯歯車43は、中心軸J1に対して偏心する回転軸J2周りに回転可能な円環状の歯車である。内歯歯車43は、ポンプ室46内に収容される。内歯歯車43は、外歯歯車42の径方向外側を囲み、外歯歯車42と噛み合う。内歯歯車43は、内周面に複数の歯部43aを有する。内歯歯車43の歯部43aの歯形は、トロコイド歯形である。このように、外歯歯車42の歯部42aの歯形および内歯歯車43の歯部43aの歯形がトロコイド歯形であるため、トロコイドポンプを構成することができる。したがって、ポンプ部40から生じる騒音を低減でき、ポンプ部40から吐出されるオイルOの圧力および量を安定させやすい。 The internal gear 43 is an annular gear that is rotatable around a rotation axis J2 that is eccentric with respect to the central axis J1. The internal gear 43 is accommodated in the pump chamber 46. The internal gear 43 surrounds the radially outer side of the external gear 42 and meshes with the external gear 42. The internal gear 43 has a plurality of tooth portions 43a on the inner peripheral surface. The tooth profile of the tooth portion 43a of the internal gear 43 is a trochoidal tooth profile. Thus, since the tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 are trochoidal tooth profiles, a trochoid pump can be configured. Therefore, noise generated from the pump unit 40 can be reduced, and the pressure and amount of the oil O discharged from the pump unit 40 can be easily stabilized.
 本実施形態では、第1凹部13eの軸方向一方側の開口から内歯歯車43および外歯歯車42を挿入した後に、栓体部13bによって第1凹部13eの軸方向一方側の開口を閉塞することで、ポンプ室46を構成することができるとともに、内歯歯車43および外歯歯車42をポンプ室46に収容できる。そのため、ポンプ部40の組み立てを容易にできる。 In the present embodiment, after the internal gear 43 and the external gear 42 are inserted from the opening on the one axial side of the first recess 13e, the opening on the one axial side of the first recess 13e is closed by the plug portion 13b. Thus, the pump chamber 46 can be configured, and the internal gear 43 and the external gear 42 can be accommodated in the pump chamber 46. Therefore, the assembly of the pump unit 40 can be facilitated.
 上述したように吸入口44は、第3油路63と繋がる。図1に示すように、吸入口44は、ポンプ室46の軸方向他方側に開口する。吸入口44は、外歯歯車42と内歯歯車43との隙間と繋がる。吸入口44は、開口部12fおよび第3油路63を介して、収容部14に貯留されるオイルOを、ポンプ室46内、より詳細には外歯歯車42と内歯歯車43との隙間内に吸入可能である。図2に示すように、吸入口44は、貯留部48の下側の端部よりも上側、かつ、外歯歯車42の下側の端部よりも上側に配置される。 As described above, the suction port 44 is connected to the third oil passage 63. As shown in FIG. 1, the suction port 44 opens to the other axial side of the pump chamber 46. The suction port 44 is connected to a gap between the external gear 42 and the internal gear 43. The suction port 44 allows the oil O stored in the storage portion 14 to pass through the opening 12f and the third oil passage 63 in the pump chamber 46, more specifically, between the external gear 42 and the internal gear 43. Inhalable. As shown in FIG. 2, the suction port 44 is disposed above the lower end of the storage portion 48 and above the lower end of the external gear 42.
 上述したように吐出口45は、第1油路61と繋がる。図1に示すように、吐出口45は、ポンプ室46の軸方向一方側に開口する。吐出口45は、外歯歯車42と内歯歯車43との隙間と繋がる。吐出口45は、ポンプ室46内、より詳細には外歯歯車42と内歯歯車43との隙間内からオイルOを吐出可能である。 As described above, the discharge port 45 is connected to the first oil passage 61. As shown in FIG. 1, the discharge port 45 opens on one axial side of the pump chamber 46. The discharge port 45 is connected to a gap between the external gear 42 and the internal gear 43. The discharge port 45 can discharge the oil O from the inside of the pump chamber 46, more specifically, from the gap between the external gear 42 and the internal gear 43.
 貯留部48は、ポンプ室46の鉛直方向下側領域の軸方向一方側においてポンプ室46と繋がる。図2に示すように、軸方向視において貯留部48の形状は、下側に凸となる弓形状である。貯留部48には、吸入口44からポンプ室46内に吸入されたオイルOの一部が流入する。 The reservoir 48 is connected to the pump chamber 46 on one axial side of the vertical lower region of the pump chamber 46. As shown in FIG. 2, the shape of the storage portion 48 is an arc shape that protrudes downward when viewed in the axial direction. Part of the oil O sucked into the pump chamber 46 from the suction port 44 flows into the storage portion 48.
 吸入口44は、貯留部48の下側の端部よりも上側に配置されるため、ポンプ部40が停止しても、貯留部48に流入したオイルOの少なくとも一部は、吸入口44から収容部14内に戻らずに、貯留部48内に貯留される。これにより、ポンプ部40が停止している際に、ポンプ室46内の外歯歯車42の下側の部分および内歯歯車43の下側の部分を貯留部48内のオイルOと接触した状態にすることができる。したがって、ポンプ部40を再度駆動した際に、外歯歯車42の歯部42aと内歯歯車43の歯部43aとの間、およびポンプ室46の内周面と内歯歯車43の外周面との間にオイルOを介在させることができ、焼き付きが生じることを抑制できる。 Since the suction port 44 is disposed above the lower end of the storage unit 48, even when the pump unit 40 is stopped, at least a part of the oil O that has flowed into the storage unit 48 flows from the suction port 44. It is stored in the storage unit 48 without returning to the storage unit 14. Thereby, when the pump part 40 is stopped, the lower part of the external gear 42 in the pump chamber 46 and the lower part of the internal gear 43 are in contact with the oil O in the storage part 48. Can be. Therefore, when the pump portion 40 is driven again, the space between the tooth portion 42 a of the external gear 42 and the tooth portion 43 a of the internal gear 43, the inner peripheral surface of the pump chamber 46, and the outer peripheral surface of the internal gear 43 Oil O can be interposed between the two, and seizure can be suppressed.
 ロータ20が回転してモータシャフト20aが回転すると、モータシャフト20aに固定された外歯歯車42が回転する。これにより、外歯歯車42と噛み合う内歯歯車43が回転して、吸入口44からポンプ室46内に吸入されるオイルOが、外歯歯車42と内歯歯車43との間を介して、吐出口45へと送られる。このようにして、ポンプ部40は、モータシャフト20aを介して駆動される。吐出口45から吐出されたオイルOは、第1油路61に流入し、接続口61aから第2油路62へと流入する。図4に矢印で示すように、第2油路62に流入したオイルOは、回転するモータシャフト20aの遠心力によって、径方向外側に力を受け、第1オイル供給孔26a,26bおよび第2オイル供給孔26c,26dを通ってモータシャフト20aの外部へと流出する。 When the rotor 20 rotates and the motor shaft 20a rotates, the external gear 42 fixed to the motor shaft 20a rotates. As a result, the internal gear 43 that meshes with the external gear 42 rotates, and the oil O sucked into the pump chamber 46 from the suction port 44 passes between the external gear 42 and the internal gear 43. It is sent to the discharge port 45. In this way, the pump unit 40 is driven via the motor shaft 20a. The oil O discharged from the discharge port 45 flows into the first oil passage 61 and flows into the second oil passage 62 from the connection port 61a. As indicated by an arrow in FIG. 4, the oil O that has flowed into the second oil passage 62 receives a force radially outward due to the centrifugal force of the rotating motor shaft 20 a, and the first oil supply holes 26 a and 26 b and the second oil supply holes 26 a and 26 b. It flows out of the motor shaft 20a through the oil supply holes 26c and 26d.
 本実施形態では、第1オイル供給孔26aは第1エンドプレート24とロータコア22との軸方向の隙間27aに開口するため、第1オイル供給孔26aから流出したオイルOは隙間27aに流入する。そして、隙間27aに流入したオイルOは、噴出溝24aから径方向外側に向けて噴出される。本実施形態では、噴出溝24aの径方向内側の部分における軸方向一方側の開口がワッシャ91によって閉塞されるため、噴出溝24a内に流入したオイルOをワッシャ91によって径方向外側に向けて案内しやすい。 In the present embodiment, since the first oil supply hole 26a opens in the axial gap 27a between the first end plate 24 and the rotor core 22, the oil O flowing out of the first oil supply hole 26a flows into the gap 27a. And the oil O which flowed into the clearance gap 27a is ejected toward the radial direction outer side from the ejection groove 24a. In the present embodiment, the opening on the one axial side in the radially inner portion of the ejection groove 24 a is closed by the washer 91, so that the oil O that has flowed into the ejection groove 24 a is guided radially outward by the washer 91. It's easy to do.
 第1オイル供給孔26bは第2エンドプレート25とロータコア22との軸方向の隙間27bに開口するため、第1オイル供給孔26bから流出したオイルOは隙間27bに流入する。そして、隙間27bに流入したオイルOは、噴出溝25aから径方向外側に向けて噴出される。本実施形態では、噴出溝25aの径方向内側の部分における軸方向他方側の開口がフランジ部21fによって閉塞されるため、噴出溝25a内に流入したオイルOをフランジ部21fによって径方向外側に向けて案内しやすい。 Since the first oil supply hole 26b opens in the axial gap 27b between the second end plate 25 and the rotor core 22, the oil O flowing out of the first oil supply hole 26b flows into the gap 27b. And the oil O which flowed into the clearance gap 27b is ejected toward the radial direction outer side from the ejection groove 25a. In the present embodiment, the opening on the other axial side in the radially inner portion of the ejection groove 25a is closed by the flange portion 21f, so the oil O that has flowed into the ejection groove 25a is directed radially outward by the flange portion 21f. Easy to guide.
 噴出溝24a,25aから径方向外側に噴出されたオイルOは、コイル32に吹き付けられる。これにより、オイルOによってコイル32を冷却することができる。本実施形態では、第2油路62は、モータシャフト20aの内部に設けられるため、噴出溝24a,25aから噴出されるまでのオイルOによって、ロータ20を冷却することもできる。このように、本実施形態において吐出口45から吐出されるオイルOは、ロータ20とステータ30とに導かれる。 The oil O ejected radially outward from the ejection grooves 24 a and 25 a is sprayed to the coil 32. Thereby, the coil 32 can be cooled by the oil O. In the present embodiment, since the second oil passage 62 is provided inside the motor shaft 20a, the rotor 20 can be cooled by the oil O until it is ejected from the ejection grooves 24a and 25a. Thus, the oil O discharged from the discharge port 45 in the present embodiment is guided to the rotor 20 and the stator 30.
 第2オイル供給孔26cはベアリング保持部12eの径方向内側に開口するため、第2オイル供給孔26cから流出したオイルOは、ベアリング70に供給される。第2オイル供給孔26dはベアリング保持部11cの径方向内側に開口するため、第2オイル供給孔26dから流出したオイルOは、ベアリング71に供給される。これにより、オイルOをベアリング70,71の潤滑剤として利用できる。 Since the second oil supply hole 26c opens inward in the radial direction of the bearing holding portion 12e, the oil O flowing out of the second oil supply hole 26c is supplied to the bearing 70. Since the second oil supply hole 26d opens to the inside of the bearing holding portion 11c in the radial direction, the oil O flowing out of the second oil supply hole 26d is supplied to the bearing 71. Thereby, the oil O can be used as a lubricant for the bearings 70 and 71.
 なお、図4では、噴出溝24a,25aからオイルOが上側に噴出される例を示すが、これに限られない。ロータ20は回転するため、噴出溝24a,25aの周方向位置は、ロータ20の回転に伴って変化する。これにより、噴出溝24a,25aから噴出されるオイルOの向きは、周方向に変化し、周方向に沿って配置される複数のコイル32をオイルOによって冷却することができる。 Although FIG. 4 shows an example in which the oil O is ejected upward from the ejection grooves 24a and 25a, the present invention is not limited to this. Since the rotor 20 rotates, the circumferential positions of the ejection grooves 24 a and 25 a change as the rotor 20 rotates. Thereby, the direction of the oil O ejected from the ejection grooves 24a and 25a changes in the circumferential direction, and the plurality of coils 32 arranged along the circumferential direction can be cooled by the oil O.
 以上のようにして、モータシャフト20aの回転によってポンプ部40を駆動することができ、ポンプ部40によってハウジング10に貯留されるオイルOを吸い上げてロータ20、ステータ30およびベアリング70,71に供給することができる。これにより、ハウジング10に貯留されるオイルOを利用して、ロータ20およびステータ30を冷却することができるとともに、ベアリング70,71とモータシャフト本体21との間の潤滑性を向上できる。ステータ30およびベアリング70,71に供給されたオイルOは、収容部14内を落下して、再び収容部14の内部における下側の領域に貯留される。これにより、収容部14内のオイルOを循環させることができる。 As described above, the pump unit 40 can be driven by the rotation of the motor shaft 20a, and the oil O stored in the housing 10 is sucked up by the pump unit 40 and supplied to the rotor 20, the stator 30, and the bearings 70 and 71. be able to. Thus, the oil O stored in the housing 10 can be used to cool the rotor 20 and the stator 30, and the lubricity between the bearings 70 and 71 and the motor shaft body 21 can be improved. The oil O supplied to the stator 30 and the bearings 70 and 71 falls in the housing portion 14 and is stored again in the lower region inside the housing portion 14. Thereby, the oil O in the accommodating part 14 can be circulated.
 本実施形態によれば、支持部13hは、モータシャフト20aの径方向外側においてモータシャフト20aを回転可能に支持し、ポンプ室46の軸方向他方側の面の少なくとも一部およびシャフト挿入孔13fの径方向内側面の少なくとも一部を構成する。これにより、ポンプ室46の近傍においてモータシャフト20aを支持することができる。したがって、例えロータ20とステータ30との同軸精度が比較的低い場合であっても、ポンプ部40に対してモータシャフト20aが傾くことを抑制でき、モータシャフト20aをポンプ部40に対して軸精度よく配置できる。これにより、ポンプ室46内において、モータシャフト20aに固定される外歯歯車42が内歯歯車43に対してずれて配置されることを抑制できる。そのため、外歯歯車42が内歯歯車43に強く押し付けられることを抑制でき、外歯歯車42および内歯歯車43が摩耗することを抑制できる。以上により、本実施形態によれば、ポンプ部40が損傷することを抑制できる駆動装置1が得られる。 According to the present embodiment, the support portion 13h rotatably supports the motor shaft 20a on the radially outer side of the motor shaft 20a, and at least part of the axially other side surface of the pump chamber 46 and the shaft insertion hole 13f. It constitutes at least a part of the radially inner side surface. Thereby, the motor shaft 20 a can be supported in the vicinity of the pump chamber 46. Therefore, even if the coaxial accuracy between the rotor 20 and the stator 30 is relatively low, the motor shaft 20a can be prevented from tilting with respect to the pump portion 40, and the shaft accuracy of the motor shaft 20a with respect to the pump portion 40 can be suppressed. Can be placed well. Thereby, in the pump chamber 46, it can suppress that the external gear 42 fixed to the motor shaft 20a shifts | deviates with respect to the internal gear 43, and is arrange | positioned. Therefore, it is possible to suppress the external gear 42 from being strongly pressed against the internal gear 43, and it is possible to suppress the external gear 42 and the internal gear 43 from being worn. As described above, according to the present embodiment, it is possible to obtain the drive device 1 that can prevent the pump unit 40 from being damaged.
 また、本実施形態によれば、支持部13hがポンプ室46の軸方向他方側の面の少なくとも一部およびシャフト挿入孔13fの径方向内側面の少なくとも一部を構成するため、ポンプ室46内のオイルOがシャフト挿入孔13fに流れ込み、支持部13hとモータシャフト20aとの径方向の間にオイルOを供給しやすい。これにより、オイルOを潤滑剤として利用することができ、支持部13hによって支持されたモータシャフト20aを滑らかに回転させることができる。 Further, according to the present embodiment, the support portion 13h constitutes at least a part of the other axial surface of the pump chamber 46 and at least a part of the radially inner side surface of the shaft insertion hole 13f. The oil O flows into the shaft insertion hole 13f, and it is easy to supply the oil O between the support portion 13h and the motor shaft 20a in the radial direction. Thereby, oil O can be utilized as a lubricant, and the motor shaft 20a supported by the support portion 13h can be smoothly rotated.
 本実施形態では、支持部13hとモータシャフト20aとの径方向の間には、モータシャフト20aに固定されたブッシュ53の少なくとも一部が配置される。そのため、ブッシュ53により、支持部13hに支持されたモータシャフト20aをより滑らかに回転させることができる。さらに、ポンプ室46内のオイルOは支持部13hとブッシュ53との径方向の間に流れ込むため、支持部13hに対してブッシュ53をより滑りやすくでき、モータシャフト20aをより滑らかに回転させることができる。 In the present embodiment, at least a part of the bush 53 fixed to the motor shaft 20a is disposed between the support portion 13h and the motor shaft 20a in the radial direction. Therefore, the bush 53 enables the motor shaft 20a supported by the support portion 13h to be rotated more smoothly. Furthermore, since the oil O in the pump chamber 46 flows between the support portion 13h and the bush 53 in the radial direction, the bush 53 can be made more slippery with respect to the support portion 13h, and the motor shaft 20a can be rotated more smoothly. Can do.
 また、本実施形態によれば、支持部13hは、モータシャフト20aの径方向外側を囲む環状である。そのため、支持部13hによってモータシャフト20aの全周を支持することができ、モータシャフト20aをより安定して支持できる。 Further, according to the present embodiment, the support portion 13h has an annular shape surrounding the outer side in the radial direction of the motor shaft 20a. Therefore, the entire circumference of the motor shaft 20a can be supported by the support portion 13h, and the motor shaft 20a can be supported more stably.
 また、本実施形態によれば、支持部13hは、取付部材50を回転可能に支持する。そのため、モータシャフト本体21の外径によらず、モータシャフト20aにおける支持部13hに支持される部分の外径を小さくできる。これにより、シャフト挿入孔13fの内径を小さくしやすく、シャフト挿入孔13fに潤滑剤としてオイルOを供給しつつも、ポンプ室46からシャフト挿入孔13fを介して漏れるオイルOの量を低減できる。また、本実施形態のようにブッシュ53を設ける場合に、ブッシュ53を取付部材50に固定すればよく、ブッシュ53の取り付けが容易である。 Moreover, according to this embodiment, the support part 13h supports the attachment member 50 rotatably. Therefore, the outer diameter of the portion of the motor shaft 20a supported by the support portion 13h can be reduced regardless of the outer diameter of the motor shaft main body 21. Accordingly, the inner diameter of the shaft insertion hole 13f can be easily reduced, and the amount of oil O leaking from the pump chamber 46 through the shaft insertion hole 13f can be reduced while supplying the oil O as a lubricant to the shaft insertion hole 13f. Further, when the bush 53 is provided as in the present embodiment, the bush 53 may be fixed to the mounting member 50, and the bush 53 can be easily attached.
 また本実施形態によれば、第1油路61および第2油路62が設けられることで、吐出口45から吐出されたオイルOをモータシャフト20aの内部に送ることができる。また第1オイル供給孔26a,26bおよび第2オイル供給孔26c,26dが設けられるため、第2油路62内に流入したオイルOをステータ30およびベアリング70,71に供給することができる。 Further, according to the present embodiment, the first oil passage 61 and the second oil passage 62 are provided, so that the oil O discharged from the discharge port 45 can be sent into the motor shaft 20a. Further, since the first oil supply holes 26a and 26b and the second oil supply holes 26c and 26d are provided, the oil O flowing into the second oil passage 62 can be supplied to the stator 30 and the bearings 70 and 71.
 また、本実施形態によれば、モータシャフト20a内に設けられた第2油路62は、モータシャフト20aの軸方向一方側の端部において、吐出口45と繋がる第1油路61に開口する。モータシャフト20aの軸方向一方側の端部には、外歯歯車42が固定されるため、モータシャフト20aの軸方向一方側の端部は、吐出口45と比較的近い位置に配置される。したがって、吐出口45と第2油路62とを繋ぐ第1油路61の長さを短くできる。そのため、本実施形態によれば、開口部12fから第2油路62までの油路の全長を短くしやすい。これにより、モータシャフト20aの内部に設けられる第2油路62へとオイルOを送りやすい。また、駆動装置1の構造を簡単化しやすく、駆動装置1の製造を容易にできる。 Further, according to the present embodiment, the second oil passage 62 provided in the motor shaft 20a opens to the first oil passage 61 connected to the discharge port 45 at the end portion on one axial side of the motor shaft 20a. . Since the external gear 42 is fixed to the end portion on the one axial side of the motor shaft 20a, the end portion on the one axial side of the motor shaft 20a is disposed at a position relatively close to the discharge port 45. Therefore, the length of the first oil passage 61 connecting the discharge port 45 and the second oil passage 62 can be shortened. Therefore, according to the present embodiment, the total length of the oil passage from the opening 12f to the second oil passage 62 can be easily shortened. Thereby, it is easy to send the oil O to the second oil passage 62 provided inside the motor shaft 20a. Further, the structure of the driving device 1 can be easily simplified, and the manufacturing of the driving device 1 can be facilitated.
 また、本実施形態によれば、第2油路62は、取付部材50の内部と穴部21gとが軸方向に繋がって構成され、取付部材50の内部を介して第1油路61と繋がる。そのため、取付部材50に外歯歯車42を固定しつつ、取付部材50から第2油路62内にオイルOを流入させることができる。これにより、上述したように、モータシャフト本体21の寸法および外歯歯車42の寸法を変えずに、取付部材50を介してモータシャフト本体21と外歯歯車42とを固定できるとともに、第2油路62を第1油路61に開口させやすい。 Further, according to the present embodiment, the second oil passage 62 is configured such that the inside of the attachment member 50 and the hole 21 g are connected in the axial direction, and are connected to the first oil passage 61 via the inside of the attachment member 50. . Therefore, the oil O can be allowed to flow into the second oil passage 62 from the mounting member 50 while fixing the external gear 42 to the mounting member 50. Thus, as described above, the motor shaft main body 21 and the external gear 42 can be fixed via the mounting member 50 without changing the dimensions of the motor shaft main body 21 and the external gear 42, and the second oil It is easy to open the path 62 to the first oil path 61.
 本発明は上述の実施形態に限られず、他の構成を採用することもできる。支持部13hは、環状でなくてもよい。支持部13hは、例えば、周方向に沿って互いに間隔を空けて複数設けられてもよい。また、支持部13hの形状は、モータシャフト20aを回転可能に支持できるならば、特に限定されない。支持部13hは、別部材として外蓋部13に設けられてもよい。ブッシュ53は、全体が支持部13hとモータシャフト20aとの径方向の間に配置されてもよい。ブッシュ53は、設けられなくてもよい。 The present invention is not limited to the above-described embodiment, and other configurations can be adopted. The support portion 13h may not be annular. For example, a plurality of support portions 13h may be provided at intervals from each other along the circumferential direction. Further, the shape of the support portion 13h is not particularly limited as long as the motor shaft 20a can be rotatably supported. 13 h of support parts may be provided in the outer cover part 13 as another member. The entire bush 53 may be disposed between the support portion 13h and the motor shaft 20a in the radial direction. The bush 53 may not be provided.
 外歯歯車42は、取付部材50を介さずにモータシャフト本体21に直接的に固定されてもよい。この場合、第2油路62は、例えば、モータシャフト本体21の内部にのみ設けられてもよい。また、取付部材50は、モータシャフト本体21の外周面に固定されてもよい。 The external gear 42 may be directly fixed to the motor shaft main body 21 without using the attachment member 50. In this case, the second oil passage 62 may be provided only inside the motor shaft main body 21, for example. Further, the attachment member 50 may be fixed to the outer peripheral surface of the motor shaft main body 21.
 また、取付部材50は、軸方向の全体に亘って外径が均一な部材であってもよい。すなわち、嵌合部51の外径と固定部52の外径とは、互いに同じであってもよい。この場合、例えば固定部52の外径を図1に示す嵌合部51の外径と同じにして小さくすると、固定部52の固定される外歯歯車42の外径を小さくすることが可能である。これにより、内歯歯車43の外径を小さくすることができ、ポンプ室46の内径を小さくできる。したがって、ポンプ室46が設けられた突出部13dの外径を小さくでき、突出部13dの径方向外側面と第2凹部12gの内周面との径方向の間を大きくできる。そのため、突出部13dの径方向外側面と第2凹部12gの内周面との径方向の間に、例えば、センサ部82のうち軸方向一方側に突出する部分を配置することが可能となり、よりセンサ部82を外蓋部13に近づけることができる。これにより、駆動装置1全体を軸方向に小型化しやすい。なお、センサ部82のうち軸方向一方側に突出する部分とは、例えば、センサ部82が有するコイルである。 Further, the mounting member 50 may be a member having a uniform outer diameter over the entire axial direction. That is, the outer diameter of the fitting part 51 and the outer diameter of the fixing part 52 may be the same. In this case, for example, if the outer diameter of the fixed portion 52 is made the same as the outer diameter of the fitting portion 51 shown in FIG. 1, the outer diameter of the external gear 42 to which the fixed portion 52 is fixed can be reduced. is there. Thereby, the outer diameter of the internal gear 43 can be reduced, and the inner diameter of the pump chamber 46 can be reduced. Therefore, the outer diameter of the protrusion 13d provided with the pump chamber 46 can be reduced, and the distance between the radial outer surface of the protrusion 13d and the inner peripheral surface of the second recess 12g can be increased. Therefore, for example, it is possible to arrange a portion of the sensor portion 82 that protrudes on one side in the axial direction between the radial outer surface of the protruding portion 13d and the inner peripheral surface of the second recess 12g. Thus, the sensor unit 82 can be brought closer to the outer lid unit 13. Thereby, it is easy to miniaturize the entire driving device 1 in the axial direction. In addition, the part which protrudes in the axial direction one side among the sensor parts 82 is a coil which the sensor part 82 has, for example.
 また、取付部材50は、2つ以上の部材によって構成されてもよい。この場合、取付部材50は、穴部21g内に嵌め合わされる第1筒状部材と、第1筒状部材に嵌め合わされてモータシャフト本体21よりも軸方向一方側に延びる第2筒状部材と、を有してもよい。この場合、第2筒状部材の軸方向一方側の端部に外歯歯車42が固定される。また、モータシャフト20aは、取付部材50を有さず、単一の部材であってもよい。モータシャフト20aは、第2油路62を有しなくてもよい。 The mounting member 50 may be composed of two or more members. In this case, the attachment member 50 includes a first tubular member fitted into the hole portion 21g, and a second tubular member fitted to the first tubular member and extending to one side in the axial direction from the motor shaft main body 21. You may have. In this case, the external gear 42 is fixed to the end portion on the one axial side of the second cylindrical member. Further, the motor shaft 20a may not be provided with the attachment member 50 but may be a single member. The motor shaft 20 a may not have the second oil passage 62.
 ロータコア22は、モータシャフト本体21の外周面に圧入等により固定されてもよい。この場合、第1エンドプレート24および第2エンドプレート25は設けられなくてもよい。また、この場合、第1オイル供給孔26a,26bから流出したオイルOが直接的にコイル32に供給されてもよいし、第1オイル供給孔26a,26bと繋がる孔がロータコア22に設けられ、ロータコア22の孔を介してオイルOがコイル32に供給されてもよい。また、オイルOは、ステータコア31に供給されてもよい。 The rotor core 22 may be fixed to the outer peripheral surface of the motor shaft main body 21 by press fitting or the like. In this case, the first end plate 24 and the second end plate 25 may not be provided. In this case, the oil O flowing out from the first oil supply holes 26a and 26b may be directly supplied to the coil 32, or a hole connected to the first oil supply holes 26a and 26b is provided in the rotor core 22. Oil O may be supplied to the coil 32 through the hole of the rotor core 22. Further, the oil O may be supplied to the stator core 31.
 また、吐出口45から吐出されるオイルOが供給される箇所は、特に限定されず、例えば、ロータ20、ステータ30およびベアリング70,71のいずれか1つあるいは2つのみに供給されてもよいし、いずれにも供給されなくてもよい。吐出口45から吐出されるオイルOは、例えば、収容部14の鉛直方向上側領域の内側面に供給されてもよい。この場合、ハウジング10が冷却されることで、間接的にステータ30を冷却することができる。また、第1オイル供給孔26a,26bおよび第2オイル供給孔26c,26dのうちのいずれか1つ以上が設けられなくてもよい。外歯歯車42の歯部42aの歯形および内歯歯車43の歯部43aの歯形は、サイクロイド歯形であってもよいし、インボリュート歯形であってもよい。 Moreover, the location to which the oil O discharged from the discharge port 45 is supplied is not particularly limited, and may be supplied to only one or two of the rotor 20, the stator 30, and the bearings 70 and 71, for example. However, it may not be supplied to either. The oil O discharged from the discharge port 45 may be supplied to, for example, the inner side surface of the upper area in the vertical direction of the storage unit 14. In this case, the stator 30 can be indirectly cooled by cooling the housing 10. Also, any one or more of the first oil supply holes 26a and 26b and the second oil supply holes 26c and 26d may not be provided. The tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 may be a cycloid tooth profile or an involute tooth profile.
 また、図5に示すモータシャフト120aのように、取付部材150は、第3オイル供給孔151aを有してもよい。すなわち、モータシャフト120aは、第3オイル供給孔151aを有する。図5において第3オイル供給孔151aは、嵌合部151に設けられる。第3オイル供給孔151aは、第2油路62とモータシャフト120aの外周面とを繋ぐ。第3オイル供給孔151aは、モータシャフト120aのうち支持部13hと径方向に対向する部分の外周面に開口する。これにより、第3オイル供給孔151aによって、第2油路62内のオイルOを支持部13hとモータシャフト120aとの間に供給しやすい。そのため、モータシャフト120aをより滑らかに回転させることができる。 Further, like the motor shaft 120a shown in FIG. 5, the mounting member 150 may have a third oil supply hole 151a. That is, the motor shaft 120a has a third oil supply hole 151a. In FIG. 5, the third oil supply hole 151 a is provided in the fitting portion 151. The third oil supply hole 151a connects the second oil passage 62 and the outer peripheral surface of the motor shaft 120a. The third oil supply hole 151a opens on the outer peripheral surface of the portion of the motor shaft 120a that faces the support portion 13h in the radial direction. Accordingly, the oil O in the second oil passage 62 is easily supplied between the support portion 13h and the motor shaft 120a by the third oil supply hole 151a. Therefore, the motor shaft 120a can be rotated more smoothly.
 図5の構成において、第3オイル供給孔151aの径方向外側の開口は、ブッシュ153の径方向内側面と対向する。この構成において、ブッシュ153は、多孔質部材であり、オイルOを径方向に通過させる。これにより、第2油路62から第3オイル供給孔151aに流入したオイルOは、ブッシュ153を通過してブッシュ153と支持部13hとの径方向の間に供給される。したがって、支持部13hに対してブッシュ153をより滑りやすくでき、モータシャフト120aをより滑らかに回転させることができる。第3オイル供給孔151aは、第2貫通孔に相当する。 5, the opening on the radially outer side of the third oil supply hole 151 a faces the radially inner side surface of the bush 153. In this configuration, the bush 153 is a porous member and allows the oil O to pass in the radial direction. As a result, the oil O flowing into the third oil supply hole 151a from the second oil passage 62 passes through the bush 153 and is supplied between the bush 153 and the support portion 13h in the radial direction. Therefore, the bush 153 can be more easily slipped with respect to the support portion 13h, and the motor shaft 120a can be rotated more smoothly. The third oil supply hole 151a corresponds to a second through hole.
 なお、モータシャフト120aと支持部13hとの径方向の間においてブッシュが設けられていない箇所がある場合には、第3オイル供給孔151aは、ブッシュが設けられていない箇所においてモータシャフト120aの外周面に開口してもよい。この場合、第3オイル供給孔151aの径方向外側の開口は、支持部13hの径方向内側の端部と径方向に隙間を介して対向する。また、この場合、ブッシュ153は、多孔質部材でなくてもよい。 When there is a portion where the bush is not provided between the motor shaft 120a and the support portion 13h in the radial direction, the third oil supply hole 151a is formed on the outer periphery of the motor shaft 120a at the portion where the bush is not provided. You may open to the surface. In this case, the radially outer opening of the third oil supply hole 151a is opposed to the radially inner end of the support portion 13h via a gap in the radial direction. In this case, the bush 153 may not be a porous member.
 なお、上述した実施形態の駆動装置の用途は、特に限定されない。上述した実施形態の駆動装置は、例えば、車両に搭載される。また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 In addition, the use of the drive device of the above-described embodiment is not particularly limited. The drive device of the above-described embodiment is mounted on a vehicle, for example. Moreover, each structure mentioned above can be suitably combined in the range which is not mutually contradictory.
 1…駆動装置、10…ハウジング、13…外蓋部、13f…シャフト挿入孔、13h…支持部、14…収容部、20…ロータ、20a,120a…モータシャフト、21…モータシャフト本体、21g…穴部、22…ロータコア、26a,26b…第1オイル供給孔(第1貫通孔)、27a,27b…隙間、30…ステータ、40…ポンプ部、42…外歯歯車、43…内歯歯車、44…吸入口、45…吐出口、46…ポンプ室、50,150…取付部材、52…固定部(拡径部)、53,153…ブッシュ、61…第1油路、62…第2油路、151a…第3オイル供給孔(第2貫通孔)、J1…中心軸、O…オイル DESCRIPTION OF SYMBOLS 1 ... Drive device, 10 ... Housing, 13 ... Outer cover part, 13f ... Shaft insertion hole, 13h ... Supporting part, 14 ... Storage part, 20 ... Rotor, 20a, 120a ... Motor shaft, 21 ... Motor shaft main body, 21g ... Hole part, 22 ... rotor core, 26a, 26b ... first oil supply hole (first through hole), 27a, 27b ... gap, 30 ... stator, 40 ... pump part, 42 ... external gear, 43 ... internal gear, 44 ... Suction port, 45 ... Discharge port, 46 ... Pump chamber, 50,150 ... Mounting member, 52 ... Fixed portion (expanded diameter portion), 53,153 ... Bush, 61 ... First oil passage, 62 ... Second oil Road, 151a, third oil supply hole (second through hole), J1, central axis, O, oil

Claims (9)

  1.  一方向に延びる中心軸に沿って配置されるモータシャフトおよび前記モータシャフトに固定されるロータコアを有するロータと、
     前記ロータと径方向に隙間を介して対向するステータと、
     前記ロータおよび前記ステータを収容するとともにオイルを貯留可能な収容部を有するハウジングと、
     前記モータシャフトを介して駆動されるポンプ部と、
     を備え、
     前記ポンプ部は、
      前記モータシャフトの軸方向一方側の端部に固定される外歯歯車と、
      前記外歯歯車の径方向外側を囲み、前記外歯歯車と噛み合う内歯歯車と、
      前記内歯歯車および前記外歯歯車を収容するポンプ室と、
      前記ポンプ室内にオイルを吸入可能な吸入口と、
      前記ポンプ室内からオイルを吐出可能な吐出口と、
     を有し、
     前記ハウジングは、前記ポンプ室が設けられる外蓋部を有し、
     前記外蓋部は、
      前記ポンプ室の軸方向他方側の面から前記外蓋部の軸方向他方側の面まで前記外蓋部を貫通し、前記モータシャフトが通されるシャフト挿入孔と、
      前記ポンプ室の軸方向他方側の面の少なくとも一部および前記シャフト挿入孔の径方向内側面の少なくとも一部を構成する支持部と、
     を有し、
     前記支持部は、前記モータシャフトの径方向外側において前記モータシャフトを回転可能に支持する、駆動装置。
    A rotor having a motor shaft disposed along a central axis extending in one direction and a rotor core fixed to the motor shaft;
    A stator facing the rotor via a gap in the radial direction;
    A housing having an accommodating portion capable of accommodating the rotor and the stator and storing oil;
    A pump unit driven via the motor shaft;
    With
    The pump part is
    An external gear fixed to an end portion on one axial side of the motor shaft;
    An internal gear that surrounds the radially outer side of the external gear and meshes with the external gear;
    A pump chamber for housing the internal gear and the external gear;
    A suction port capable of sucking oil into the pump chamber;
    A discharge port capable of discharging oil from the pump chamber;
    Have
    The housing has an outer lid portion in which the pump chamber is provided,
    The outer lid part is
    A shaft insertion hole through which the motor shaft is passed from the surface on the other axial side of the pump chamber to the surface on the other axial side of the outer lid,
    A support portion constituting at least a part of a surface on the other axial side of the pump chamber and at least a part of a radially inner side surface of the shaft insertion hole;
    Have
    The said support part is a drive device which supports the said motor shaft rotatably in the radial direction outer side of the said motor shaft.
  2.  前記ハウジングは、前記吐出口と繋がる第1油路を有し、
     前記モータシャフトは、
      前記モータシャフトの内部に設けられ、前記第1油路と繋がる第2油路と、
      前記第2油路と前記モータシャフトの外周面とを繋ぎ、前記収容部の内部に繋がる第1貫通孔と、
     を有する、請求項1に記載の駆動装置。
    The housing has a first oil passage connected to the discharge port,
    The motor shaft is
    A second oil passage provided inside the motor shaft and connected to the first oil passage;
    A first through hole that connects the second oil passage and the outer peripheral surface of the motor shaft, and is connected to the inside of the accommodating portion;
    The drive device according to claim 1, comprising:
  3.  前記モータシャフトは、前記第2油路と前記モータシャフトの外周面とを繋ぐ第2貫通孔を有し、
     前記第2貫通孔は、前記モータシャフトのうち前記支持部と径方向に対向する部分の外周面に開口する、請求項2に記載の駆動装置。
    The motor shaft has a second through hole that connects the second oil passage and the outer peripheral surface of the motor shaft,
    3. The drive device according to claim 2, wherein the second through-hole opens on an outer peripheral surface of a portion of the motor shaft that faces the support portion in a radial direction.
  4.  前記モータシャフトは、
      前記ロータコアが固定されるモータシャフト本体と、
      前記モータシャフト本体の軸方向一方側に固定され、前記外歯歯車が固定される取付部材と、
     を有し、
     前記支持部は、前記取付部材を回転可能に支持する、請求項2または3に記載の駆動装置。
    The motor shaft is
    A motor shaft body to which the rotor core is fixed;
    An attachment member fixed to one side in the axial direction of the motor shaft main body and to which the external gear is fixed;
    Have
    The drive device according to claim 2, wherein the support portion rotatably supports the attachment member.
  5.  前記モータシャフト本体は、前記モータシャフト本体の軸方向一方側の端部から軸方向他方側に延びる穴部を有し、
     前記取付部材は、前記穴部に嵌め合わされて固定され、軸方向両側に開口する筒状であり、
     前記第2油路は、前記取付部材の内部と前記穴部とが軸方向に繋がって構成され、前記取付部材の内部を介して前記第1油路と繋がる、請求項4に記載の駆動装置。
    The motor shaft body has a hole extending from the end on one side in the axial direction of the motor shaft body to the other side in the axial direction;
    The mounting member is fitted and fixed in the hole, and has a cylindrical shape that opens on both sides in the axial direction.
    5. The drive device according to claim 4, wherein the second oil passage is configured such that an inside of the attachment member and the hole portion are connected in an axial direction, and the second oil passage is connected to the first oil passage through the inside of the attachment member. .
  6.  前記ロータは、前記モータシャフトに嵌め合わされて固定される円筒状のブッシュを有し、
     前記ブッシュの少なくとも一部は、前記支持部と前記モータシャフトとの径方向の間に配置される、請求項1から5のいずれか一項に記載の駆動装置。
    The rotor has a cylindrical bush that is fitted and fixed to the motor shaft,
    6. The drive device according to claim 1, wherein at least a part of the bush is disposed between a radial direction of the support portion and the motor shaft.
  7.  前記支持部は、前記モータシャフトの径方向外側を囲む環状である、請求項1から6のいずれか一項に記載の駆動装置。 The drive device according to any one of claims 1 to 6, wherein the support portion has an annular shape surrounding a radially outer side of the motor shaft.
  8.  前記モータシャフトにおける前記外歯歯車が固定された部分は、軸方向他方側から軸方向一方側に向かって外径が大きくなった拡径部であり、前記支持部の軸方向一方側に対向して配置される、請求項1から7のいずれか一項に記載の駆動装置。 The portion of the motor shaft to which the external gear is fixed is a diameter-expanded portion whose outer diameter increases from the other axial side toward the one axial side, and faces the one axial side of the support portion. The drive device according to any one of claims 1 to 7, wherein the drive device is arranged as described above.
  9.  前記拡径部と前記支持部との軸方向の間には、隙間が設けられる、請求項8に記載の駆動装置。 The drive device according to claim 8, wherein a gap is provided between the diameter-enlarged portion and the support portion in the axial direction.
PCT/JP2017/028693 2016-08-09 2017-08-08 Drive device WO2018030375A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/323,641 US10941768B2 (en) 2016-08-09 2017-08-08 Drive device
JP2018533482A JP7010224B2 (en) 2016-08-09 2017-08-08 Drive
DE112017003991.6T DE112017003991B4 (en) 2016-08-09 2017-08-08 DRIVE DEVICE
CN201780049081.6A CN109563828B (en) 2016-08-09 2017-08-08 Drive device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662372411P 2016-08-09 2016-08-09
US62/372411 2016-08-09
US201662402027P 2016-09-30 2016-09-30
US62/402027 2016-09-30
US201662439201P 2016-12-27 2016-12-27
US62/439201 2016-12-27
JP2017-071397 2017-03-31
JP2017071397 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018030375A1 true WO2018030375A1 (en) 2018-02-15

Family

ID=61162159

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/JP2017/028600 WO2018030345A1 (en) 2016-08-09 2017-08-07 Drive device
PCT/JP2017/028691 WO2018030373A1 (en) 2016-08-09 2017-08-08 Drive device
PCT/JP2017/028692 WO2018030374A1 (en) 2016-08-09 2017-08-08 Drive device
PCT/JP2017/028693 WO2018030375A1 (en) 2016-08-09 2017-08-08 Drive device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
PCT/JP2017/028600 WO2018030345A1 (en) 2016-08-09 2017-08-07 Drive device
PCT/JP2017/028691 WO2018030373A1 (en) 2016-08-09 2017-08-08 Drive device
PCT/JP2017/028692 WO2018030374A1 (en) 2016-08-09 2017-08-08 Drive device

Country Status (3)

Country Link
JP (1) JP7010224B2 (en)
CN (1) CN112049792B (en)
WO (4) WO2018030345A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112106281A (en) * 2018-04-27 2020-12-18 日本电产株式会社 Motor unit
WO2020071462A1 (en) * 2018-10-05 2020-04-09 日本電産株式会社 Dynamo-electric machine and motor unit
WO2020202931A1 (en) * 2019-03-29 2020-10-08 日本電産株式会社 Motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229487U (en) * 1985-08-08 1987-02-23
JP2004218521A (en) * 2003-01-15 2004-08-05 Honda Motor Co Ltd Rotary fluid machine
JP2011033148A (en) * 2009-08-04 2011-02-17 Jtekt Corp Electric pump unit for transmission
WO2016033015A1 (en) * 2014-08-25 2016-03-03 Carrier Corporation Gear pump with dual pressure relief

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3392567B2 (en) * 1994-07-28 2003-03-31 三菱重工業株式会社 Scroll type fluid machine
JP2002340159A (en) 2001-05-18 2002-11-27 Toyota Motor Corp Oil pump device
JP3911135B2 (en) 2001-05-28 2007-05-09 株式会社ジェイテクト Motor driven hydraulic pump device
JP4241712B2 (en) * 2005-10-19 2009-03-18 パナソニック株式会社 Hermetic electric compressor
JP4900683B2 (en) 2006-09-13 2012-03-21 アイシン精機株式会社 Hydraulic supply device
JP5049892B2 (en) * 2008-06-18 2012-10-17 本田技研工業株式会社 Vehicle drive motor unit
EP2463556B1 (en) * 2009-08-04 2018-04-25 JTEKT Corporation Electric pump unit
JP6369194B2 (en) * 2014-07-23 2018-08-08 株式会社ジェイテクト Electric pump unit
JP2016089769A (en) 2014-11-07 2016-05-23 アイシン精機株式会社 Electric pump
JP2016096612A (en) * 2014-11-12 2016-05-26 トヨタ自動車株式会社 motor
CN105114302A (en) * 2015-09-08 2015-12-02 温州市康松汽车零部件有限公司 Efficient energy-saving brushless diesel pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229487U (en) * 1985-08-08 1987-02-23
JP2004218521A (en) * 2003-01-15 2004-08-05 Honda Motor Co Ltd Rotary fluid machine
JP2011033148A (en) * 2009-08-04 2011-02-17 Jtekt Corp Electric pump unit for transmission
WO2016033015A1 (en) * 2014-08-25 2016-03-03 Carrier Corporation Gear pump with dual pressure relief

Also Published As

Publication number Publication date
CN112049792A (en) 2020-12-08
JP7010224B2 (en) 2022-01-26
CN112049792B (en) 2022-10-04
WO2018030345A1 (en) 2018-02-15
WO2018030373A1 (en) 2018-02-15
JPWO2018030375A1 (en) 2019-06-13
WO2018030374A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6927223B2 (en) Drive device
JP6947181B2 (en) Drive device
WO2018030324A1 (en) Drive device
WO2018030325A1 (en) Drive device
CN109643934B (en) Drive device
WO2018030375A1 (en) Drive device
JPWO2019021696A1 (en) motor
US10958137B2 (en) Drive device
CN111033971B (en) Drive device
WO2018030347A1 (en) Drive device
WO2019049464A1 (en) Drive device
JP2009303444A (en) Flat motor
WO2019039060A1 (en) Drive device
KR102405642B1 (en) Electric pump
JPWO2020031999A1 (en) motor
JP2012193722A (en) Electric pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533482

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17839446

Country of ref document: EP

Kind code of ref document: A1