WO2018030324A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2018030324A1
WO2018030324A1 PCT/JP2017/028551 JP2017028551W WO2018030324A1 WO 2018030324 A1 WO2018030324 A1 WO 2018030324A1 JP 2017028551 W JP2017028551 W JP 2017028551W WO 2018030324 A1 WO2018030324 A1 WO 2018030324A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pump
motor shaft
housing
oil passage
Prior art date
Application number
PCT/JP2017/028551
Other languages
French (fr)
Japanese (ja)
Inventor
山口 康夫
勇樹 石川
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to DE112017004041.8T priority Critical patent/DE112017004041B4/en
Priority to CN201780049078.4A priority patent/CN109565222B/en
Priority to US16/323,643 priority patent/US10916992B2/en
Priority to JP2018533023A priority patent/JP6947181B2/en
Publication of WO2018030324A1 publication Critical patent/WO2018030324A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00

Definitions

  • the present invention relates to a drive device.
  • a rotating electric machine includes a case for storing a lubricating fluid for lubrication and cooling such as a stator and a rotor.
  • Patent Document 1 describes a rotating electrical machine mounted on a vehicle.
  • the rotating electrical machine as described above may be provided with a pump unit that sucks up oil stored in the case.
  • the rotor and the stator can be cooled by sucking up the oil by the pump unit and supplying the oil to the rotor and the stator, for example.
  • the pump unit is simply provided in the rotating electrical machine, it is necessary to provide an oil passage through which oil flows, and thus the structure of the rotating electrical machine is likely to be complicated, and the rotating electrical machine may be increased in size.
  • an object of the present invention is to provide a drive device having a structure that can be miniaturized while being provided with a pump unit capable of sending oil stored in a housing.
  • One aspect of the drive device includes a rotor having a motor shaft disposed along a central axis extending in one direction, a stator facing the rotor via a gap in a radial direction, the rotor, and the stator
  • a housing having a housing portion that can store oil and a pump shaft that is disposed along an axis different from the central axis in the housing and is driven via the motor shaft;
  • a transmission member that transmits the rotation of the motor shaft to the pump shaft, and the pump portion surrounds the external gear and is meshed with the external gear that is fixed to the pump shaft.
  • An internal gear, a pump chamber provided in the housing and containing the internal gear and the external gear, and oil in the pump chamber A suction port that can be inserted, and a discharge port that can discharge oil from the pump chamber, wherein the housing has a first oil passage connected to the discharge port, and the motor shaft is connected to the motor shaft.
  • a second oil passage provided inside and connected to the first oil passage; and a first through hole connecting the second oil passage and an outer peripheral surface of the motor shaft; The oil is opened in a region on the lower side in the vertical direction of the portion, and oil stored in the housing portion can be sucked into the pump chamber.
  • a drive device having a structure that can be miniaturized while being provided with a pump unit capable of sending oil stored in a housing.
  • FIG. 1 is a cross-sectional view showing the drive device of the present embodiment.
  • FIG. 2 is a view of the pump unit of this embodiment as viewed from the other side in the axial direction.
  • FIG. 3 is a cross-sectional view showing a part of the driving apparatus of the present embodiment.
  • the Z-axis direction shown in each figure is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side.
  • the vertical direction Z is the vertical direction of each figure.
  • the upper side in the vertical direction is simply referred to as “upper side”
  • the lower side in the vertical direction is simply referred to as “lower side”.
  • the drive device 1 includes a housing 10, a rotor 20 having a motor shaft 21 disposed along a central axis J ⁇ b> 1 extending in one direction, a rotation detection unit 80, and a stator 30.
  • the central axis J1 extends in the left-right direction in FIG. That is, in the present embodiment, the left-right direction in FIG. 1 corresponds to one direction.
  • a direction parallel to the axial direction of the central axis J1 is simply referred to as “axial direction”
  • a radial direction centered on the central axis J1 is simply referred to as “radial direction”
  • the central axis J1 is the center.
  • the circumferential direction is simply called “circumferential direction”.
  • the left side of FIG. 1 in the axial direction is referred to as “one axial side”
  • the right side of FIG. 1 in the axial direction is referred to as “the other axial side”. *
  • the housing 10 includes a main body portion 11, a first portion 12, and a second portion 13.
  • the main body 11, the first portion 12, and the second portion 13 are separate members.
  • the main body 11 has a bottomed cylindrical shape that opens to one side in the axial direction.
  • the main body part 11 includes a bottom part 11a, a main body cylinder part 11b, and a bearing holding part 11c.
  • the bottom portion 11a has an annular plate shape that expands in the radial direction.
  • the main body cylinder portion 11b has a cylindrical shape extending from the radially outer edge portion of the bottom portion 11a to one side in the axial direction.
  • the bearing holding portion 11c has a cylindrical shape protruding from the inner edge portion of the bottom portion 11a to one side in the axial direction.
  • the bearing holding portion 11c holds the bearing 71 on the inner side. *
  • the first portion 12 is a covered cylinder that opens to the other side in the axial direction.
  • the first portion 12 is attached to one side of the main body portion 11 in the axial direction.
  • the first portion 12 includes a lid portion 12a, a first cylinder portion 12b, and a bearing holding portion 12c.
  • the lid portion 12a has an annular plate shape that expands in the radial direction.
  • the lid portion 12 a covers one side of the stator 30 in the axial direction. That is, the first portion 12 covers one side of the stator 30 in the axial direction.
  • An opening 12f that penetrates the lid 12a in the axial direction is provided at the lower end of the lid 12a. That is, the first portion 12 has an opening 12 f that penetrates the first portion 12 in the axial direction.
  • the 1st cylinder part 12b is a cylindrical shape extended from the radial direction outer edge part of the cover part 12a to the other side of an axial direction.
  • the end portion on the other axial side of the first cylindrical portion 12b is fixed in contact with the end portion on the one axial side of the main body cylindrical portion 11b.
  • the bearing holding portion 12c has a cylindrical shape protruding from the inner edge portion of the lid portion 12a to the other side in the axial direction.
  • the bearing holding portion 12c holds the bearing 70 on the inner side. That is, the first portion 12 holds the bearing 70. *
  • the main body 11 and the first portion 12 are fixed to each other, whereby the accommodating portion 14 surrounded by the main body 11 and the first portion 12 is configured. That is, the housing 10 has the accommodating portion 14.
  • the accommodating portion 14 accommodates the rotor 20 and the stator 30 and can store the oil O.
  • the oil O is stored in the lower region of the accommodating portion 14.
  • the “region below the storage portion” includes a portion located below the center in the vertical direction Z of the storage portion. *
  • the liquid surface OS of the oil O stored in the storage unit 14 is located above the opening 12f.
  • the liquid surface OS of the oil O fluctuates as the oil O is sucked up by the pump unit 40, but is disposed below the rotor 20 at least when the rotor 20 rotates. Thereby, when the rotor 20 rotates, it can suppress that the oil O becomes rotational resistance of the rotor 20.
  • the second portion 13 is attached to one side of the first portion 12 in the axial direction.
  • the second portion 13 has a recess 13 a that is recessed from the surface on the other axial side of the second portion 13 to the one axial side.
  • the recess 13a overlaps the bearing holding portion 12c in the axial direction.
  • the recess 13a is closed by the surface on the one axial side of the first portion 12, that is, the surface on the one axial side of the lid 12a.
  • a space 13b surrounded by the inner side surface of the recess 13a and the surface on the one axial side of the first portion 12 is formed.
  • the central axis J1 passes through the space 13b. *
  • a pump chamber 46 is provided in the second portion 13. That is, the pump chamber 46 is provided in the housing 10.
  • the pump chamber 46 is recessed from the surface on the other axial side of the second portion 13 to the one axial side. More specifically, the pump chamber 46 is recessed from the surface on the other axial side at the lower end of the second portion 13 to the one axial side.
  • the outer shape of the pump chamber 46 viewed along the axial direction is circular.
  • the pump chamber 46 accommodates an internal gear 43 and an external gear 42 which will be described later. *
  • the upper portion of the opening on the other axial side of the pump chamber 46 is closed by the end surface on the one axial side of the lid 12 a. That is, the first portion 12 has a closing portion 12 d that closes a part of the opening on the other axial side of the pump chamber 46.
  • the closing part 12d is a part of the lower part of the lid part 12a.
  • the closing part 12d has a sliding bearing part 12e penetrating the closing part 12d in the axial direction.
  • the sliding bearing portion 12e is located between the pump chamber 46 and the accommodating portion 14 in the axial direction. One end of the sliding bearing portion 12 e in the axial direction opens into the pump chamber 46.
  • the end portion on the other side in the axial direction of the sliding bearing portion 12 e opens into the accommodating portion 14. At least a part of the sliding bearing portion 12e is disposed below the liquid surface OS of the oil O stored in the storage portion 14. In FIG. 1, the lower portion of the sliding bearing portion 12 e is disposed below the liquid level OS. As shown in FIG. 2, the outer shape of the plain bearing portion 12e viewed along the axial direction is circular.
  • the slide bearing portion is the same member as the first portion 12, but the first portion 12 has a slide bearing support portion that supports the slide bearing, and is held by a slide bearing member such as a sintered oil-impregnated bearing. May be. *
  • the lower end of the pump chamber 46 overlaps the opening 12f in the axial direction. Thereby, the lower end part of the pump chamber 46 faces the accommodating part 14 through the opening part 12f.
  • a lower end portion of the pump chamber 46 facing the accommodating portion 14 is a suction port 44. That is, the opening portion 12 f exposes the suction port 44 to the housing portion 14.
  • the second portion 13 is a separate member from the first portion 12, and thus it is easy to configure the pump chamber 46. *
  • the housing 10 includes a first oil passage 61 and a third oil passage 63.
  • the first oil passage 61 is provided in the second portion 13.
  • the first oil passage 61 extends in the vertical direction Z.
  • the first oil passage 61 extends from the position overlapping the upper end of the pump chamber 46 in the axial direction to the upper side of the central axis J1.
  • the first oil passage 61 is disposed on one axial side of the recess 13a.
  • the first oil passage 61 is connected to the space 13b through the connection hole 61a.
  • the connection hole 61a is, for example, a circular hole centered on the central axis J1.
  • the lower end portion of the first oil passage 61 is connected to the upper end portion of the pump chamber 46 from one side in the axial direction.
  • a portion where the first oil passage 61 is connected in the pump chamber 46 is a discharge port 45. That is, the first oil passage 61 is connected to the discharge port 45.
  • the third oil passage 63 is provided across the second portion 13, the first portion 12, and the main body portion 11. As shown in FIGS. 1 and 3, the third oil passage 63 includes a first extending portion 63a, a second extending portion 63b, a third extending portion 63e, a fourth extending portion 63f, and supply portions 63c and 63d. And having. *
  • the first extending portion 63 a extends in the vertical direction Z from the upper end portion of the first oil passage 61.
  • the third oil passage 63 is connected to the first oil passage 61.
  • the upper end portion of the first extending portion 63 a is located at the upper end portion of the second portion 13.
  • the second extending portion 63b extends from the upper end portion of the first extending portion 63a to the other side in the axial direction.
  • the end of the second extending portion 63b on the other side in the axial direction is located on the lid portion 12a.
  • the third extending portion 63e extends upward from the other axial end of the second extending portion 63b.
  • the upper end portion of the third extending portion 63e is located at the upper end portion of the lid portion 12a.
  • the fourth extending portion 63f extends from the upper end portion of the third extending portion 63e to the other side in the axial direction.
  • the fourth extending part 63f is provided across the first cylinder part 12b and the main body cylinder part 11b from the lid part 12a.
  • the fourth extending portion 63 f extends to the other side in the axial direction from the stator core 31.
  • the supply parts 63c and 63d extend downward from the fourth extending part 63f.
  • the supply parts 63c and 63d are provided in the main body cylinder part 11b.
  • the supply parts 63c and 63d open on the inner peripheral surface of the main body cylinder part 11b. Thereby, the supply parts 63c and 63d open to the accommodating part 14.
  • the supply part 63 c is disposed on one axial side of the stator core 31.
  • the supply portion 63d is disposed on the other side in the axial direction than the stator core 31.
  • the supply parts 63c and 63d are opposed to each other on the upper side of the coil 32 via a gap in the radial direction. That is, the third oil passage 63 opens into the accommodating portion 14 on the upper side of the stator 30.
  • the supply part 63d extends inward in the radial direction from the other axial end of the second extending part 63b.
  • the 3rd oil path 63 is provided ranging over the 2nd part 13, the 1st part 12, and the main-body part 11 which are another members,
  • stretching part which comprises the 3rd oil path 63 is provided. It is easy to process oil passages such as 63a and the second extending portion 63b.
  • the rotor 20 includes a motor shaft 21, a rotor core 22, a magnet 23, a first end plate 24, and a second end plate 25.
  • the motor shaft 21 has a cylindrical shape extending in the axial direction.
  • the motor shaft 21 has a large diameter portion 21a, a small diameter portion 21b, and an output portion 21e. *
  • the large diameter portion 21a is a portion to which the rotor core 22 is attached.
  • the end portion on the other side in the axial direction of the large diameter portion 21 a is rotatably supported by the bearing 71.
  • the small diameter portion 21b is connected to the large diameter portion 21a on one axial side of the large diameter portion 21a.
  • An end portion on one side in the axial direction of the small diameter portion 21 b is an end portion on one side in the axial direction of the motor shaft 21.
  • One end of the small diameter portion 21b in the axial direction is inserted into the space 13b.
  • the outer diameter of the small diameter portion 21b is smaller than the outer diameter of the large diameter portion 21a.
  • the end portion on the other side in the axial direction of the small diameter portion 21 b is rotatably supported by the bearing 70.
  • the bearings 70 and 71 rotatably support the motor shaft 21.
  • the bearings 70 and 71 are ball bearings, for example. *
  • the output part 21e is connected to the large diameter part 21a on the other axial side of the large diameter part 21a.
  • the output portion 21e is an end portion on the other axial side of the motor shaft 21.
  • the outer diameter of the output part 21e is smaller than the outer diameter of the large diameter part 21a and the outer diameter of the small diameter part 21b.
  • the output portion 21e protrudes outside the housing 10 through the bottom portion 11a in the axial direction.
  • the motor shaft 21 has a flange portion 21d.
  • the flange portion 21d protrudes radially outward from the outer peripheral surface of the large diameter portion 21a.
  • the flange portion 21d has an annular plate shape that is provided over the entire circumference of the outer peripheral surface of the large-diameter portion 21a.
  • the flange portion 21d is provided at a portion closer to the other side in the axial direction of the large diameter portion 21a.
  • a male screw portion is provided on the outer peripheral surface of the large diameter portion 21a near the one side in the axial direction.
  • a nut 90 is fastened to the male screw portion of the large diameter portion 21a. *
  • the motor shaft 21 has a second oil passage 62 provided inside the motor shaft 21.
  • the second oil passage 62 is a bottomed hole that extends from the end on one axial side of the motor shaft 21 to the other axial side.
  • the second oil passage 62 extends from an end portion on one axial side of the small diameter portion 21b to an end portion on the other axial side of the large diameter portion 21a.
  • the inner peripheral surface of the second oil passage 62 has a cylindrical shape centered on the central axis J1.
  • the second oil passage 62 opens on one side in the axial direction.
  • the end of the second oil passage 62 on one side in the axial direction opposes the connecting hole 61a in the axial direction.
  • the second oil passage 62 is connected to the first oil passage 61 via the connection hole 61a. *
  • the motor shaft 21 has a first through hole 26 a that connects the second oil passage 62 and the outer peripheral surface of the motor shaft 21.
  • the first through hole 26a extends in the radial direction.
  • the first through hole 26a is provided in the large diameter portion 21a. Although illustration is omitted, a plurality of first through holes 26a are provided along the circumferential direction, for example. *
  • the rotor core 22 has an annular shape that is fitted to the motor shaft 21.
  • the rotor core 22 has a rotor through hole 22a that penetrates the rotor core 22 in the axial direction and a magnet insertion hole 22b that penetrates the rotor core 22 in the axial direction.
  • the rotor through hole 22a is disposed on the radially inner side than the magnet insertion hole 22b.
  • a plurality of magnet insertion holes 22b are provided along the circumferential direction.
  • the magnet 23 is inserted into the magnet insertion hole 22b. *
  • the first end plate 24 and the second end plate 25 have an annular plate shape that expands in the radial direction.
  • a large diameter portion 21 a is passed through the first end plate 24 and the second end plate 25.
  • the first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction while being in contact with the rotor core 22.
  • the first end plate 24 is disposed on one axial side of the rotor core 22.
  • the radially outer edge portion of the first end plate 24 is curved toward the other side in the axial direction, and contacts the radially outer edge portion of the surface on the one axial direction side of the rotor core 22.
  • the radially outer edge of the first end plate 24 overlaps with the opening on one axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from one axial side.
  • a portion radially inward from the radially outer edge portion of the first end plate 24 faces the surface on one side in the axial direction of the rotor core 22 in the axial direction through a gap 27a.
  • the first end plate 24 has an ejection hole 24 a that penetrates the first end plate 24 in the axial direction.
  • the ejection hole 24 a is disposed radially inward of the rotor through hole 22 a and radially outward of the nut 90.
  • the second end plate 25 is disposed on the other axial side of the rotor core 22.
  • the radially outer edge portion of the second end plate 25 is curved in one axial direction, and contacts the radially outer edge portion of the surface on the other axial side of the rotor core 22.
  • the radially outer edge of the second end plate 25 overlaps the opening on the other axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from the other axial side.
  • the magnet 23 inserted into the magnet insertion hole 22b is pressed by the first end plate 24 and the second end plate 25 on both sides in the axial direction. Therefore, the magnet 23 can be prevented from coming out of the magnet insertion hole 22b.
  • the radially inner portion of the second end plate 25 is radially opposed to the surface on the other axial side of the rotor core 22 via the gap 27b.
  • the gap 27b is connected to the axial gap 27a between the first end plate 24 and the rotor core 22 via the rotor through hole 22a.
  • the second end plate 25 has an ejection hole 25a penetrating the second end plate 25 in the axial direction.
  • the ejection hole 25a is disposed radially inward of the rotor through hole 22a and radially outward of the flange portion 21d.
  • the radial position of the ejection hole 25a is, for example, the same as the radial position of the ejection hole 24a. *
  • the first end plate 24, the rotor core 22, and the second end plate 25 are sandwiched in the axial direction by the nut 90 and the flange portion 21d.
  • the nut 90 presses the first end plate 24, the rotor core 22, and the second end plate 25 against the flange portion 21d.
  • the 1st end plate 24, the rotor core 22, and the 2nd end plate 25 are fixed with respect to the large diameter part 21a.
  • the rotation detector 80 shown in FIG. 1 detects the rotation of the rotor 20.
  • the rotation detection unit 80 is, for example, a VR (Variable Reluctance) type resolver.
  • the rotation detector 80 is disposed in the space 13b.
  • the rotation detection unit 80 includes a detected unit 81 and a sensor unit 82.
  • the detected part 81 has an annular shape extending in the circumferential direction.
  • the detected part 81 is fitted and fixed to the small diameter part 21b. More specifically, the detected portion 81 is fitted and fixed to a portion where the outer diameter of the step portion whose outer diameter decreases from the other axial side to the one axial side provided in the small diameter portion 21b. Is done.
  • the detected part 81 is made of a magnetic material. *
  • the sensor part 82 is fixed to the surface on one side in the axial direction of the lid part 12a.
  • the sensor unit 82 has an annular shape that surrounds the radially outer side of the detected portion 81.
  • the sensor unit 82 has a plurality of coils along the circumferential direction.
  • the stator 30 faces the rotor 20 via a gap in the radial direction.
  • the stator 30 includes a stator core 31 and a plurality of coils 32 attached to the stator core 31.
  • the stator core 31 has an annular shape centered on the central axis J1.
  • the outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the main body cylinder portion 11b.
  • the stator core 31 is opposed to the outer side in the radial direction of the rotor core 22 via a gap. *
  • the pump unit 40 is disposed at the lower end of the second portion 13.
  • the pump unit 40 includes a pump shaft 41, an external gear 42, an internal gear 43, the above-described pump chamber 46, a suction port 44, and a discharge port 45.
  • the pump shaft 41 is disposed in the housing 10 along a pump axis J2 that is an axis different from the central axis J1.
  • the pump shaft J2 is parallel to the central axis J1. That is, the pump shaft 41 extends in the axial direction of the motor shaft 21.
  • the pump shaft J2 is located below the center axis J1. *
  • the pump shaft 41 is disposed below the motor shaft 21 on one axial side of the stator 30. Therefore, by arranging the motor shaft 21 and the pump shaft 41 at a position at least partially overlapping in a direction orthogonal to the axial direction, the drive device 1 can be compared with the case where the motor shaft 21 and the pump shaft 41 are coaxial. It is easy to reduce the size in the axial direction.
  • the motor shaft 21 and the pump shaft 41 overlap in the vertical direction Z.
  • the pump chamber 46 and the first oil passage 61 are provided in the second portion 13 as described above. Thereby, the pump part 40 can be concentrated and arrange
  • the pump shaft 41 extends in the axial direction of the motor shaft 21, it is easier to reduce the size of the drive device 1 in the radial direction than when the pump shaft 41 is inclined with respect to the motor shaft 21. *
  • the pump shaft 41 is disposed in the accommodating portion 14. One end of the pump shaft 41 in the axial direction is inserted into the pump chamber 46 via the plain bearing portion 12e. The portion of the pump shaft 41 that is inserted into the sliding bearing portion 12e is supported by the sliding bearing portion 12e. As a result, the pump shaft 41 is rotatably supported around the pump shaft J2 by the sliding bearing portion 12e. Thus, according to this embodiment, the pump shaft 41 can be supported with a simple configuration. *
  • the sliding bearing portion 12e is disposed below the liquid surface OS of the oil O. Therefore, the oil O flows between the sliding bearing portion 12e and the pump shaft 41. Thereby, the oil O can be used as lubricating oil for the sliding bearing portion 12e, and the pump shaft 41 can be suitably rotatably supported by the sliding bearing portion 12e.
  • the external gear 42 is a gear that can rotate around the pump shaft J2.
  • the external gear 42 is fixed to the end portion on the one axial side of the pump shaft 41 and is accommodated in the pump chamber 46.
  • the external gear 42 has a plurality of tooth portions 42a on the outer peripheral surface.
  • the tooth profile of the tooth portion 42a of the external gear 42 is a trochoidal tooth profile.
  • the internal gear 43 is an annular gear that is rotatable around a rotation axis J3 that is eccentric with respect to the pump shaft J2.
  • the internal gear 43 is accommodated in the pump chamber 46.
  • Internal gear 4 3 surrounds the external gear 42 and meshes with the external gear 42.
  • the internal gear 43 has a plurality of tooth portions 43a on the inner peripheral surface.
  • the tooth profile of the tooth portion 43a of the internal gear 43 is a trochoidal tooth profile.
  • the suction port 44 is a portion of the pump chamber 46 that is exposed in the accommodating portion 14 through the opening 12f.
  • the suction port 44 has an arcuate shape that protrudes downward.
  • the suction port 44 opens to a lower region of the storage portion 14 and can suck oil O stored in the storage portion 14 into the pump chamber 46.
  • the suction port 44 is disposed below the rotor 20. At least a part of the suction port 44 is disposed below the liquid level OS of the oil O stored in the storage unit 14. In FIG. 1, the entire suction port 44 is disposed below the liquid level OS of the oil O.
  • the suction port 44 opens at the lower end of the accommodating portion 14.
  • the discharge port 45 is a portion that opens to the first oil passage 61 in the pump chamber 46.
  • the discharge port 45 opens to one axial side of the pump chamber 46.
  • the discharge port 45 can discharge the oil O from the pump chamber 46. *
  • the transmission member 50 includes a first gear 51 and a second gear 52.
  • the first gear 51 is a disc-shaped gear that can rotate around an axis parallel to the axial direction.
  • the first gear 51 is fixed to the end portion on one axial side of the large diameter portion 21a. More specifically, the first gear 51 has an outer diameter of the step portion 21f provided at the end portion on the one axial side of the large diameter portion 21a so that the outer diameter decreases from the other axial side toward the one axial side. It is fixed by being fitted to the smaller part.
  • the first gear 51 rotates around the central axis J1 together with the motor shaft 21.
  • the first gear 51 is sandwiched between the bearing 70 and the stepped surface facing the left of the stepped portion of the large diameter portion 21a. *
  • the second gear 52 is a disk-shaped gear that can rotate around an axis parallel to the axial direction.
  • the second gear 52 meshes with the first gear 51 on the lower side of the first gear 51.
  • the second gear 52 is fixed to the end portion on the other axial side of the pump shaft 41.
  • the second gear 52 rotates around the pump axis J2 together with the pump shaft 41.
  • the oil O flowing out of the first through hole 26a flows into the gap 27a.
  • a part of the oil O flowing into the gap 27a is ejected radially outward from the ejection hole 24a.
  • the other part of the oil O that has flowed into the gap 27a flows into the gap 27b through the rotor through hole 22a.
  • the oil O that has flowed into the gap 27b is ejected radially outward from the ejection hole 25a.
  • the oil O ejected radially outward from the ejection holes 24 a and 25 a is sprayed to the coil 32.
  • the coil 32 can be cooled by the oil O.
  • the 2nd oil path 62 is provided in the inside of the motor shaft 21, the rotor 20 can also be cooled with the oil O until it ejects from the ejection holes 24a and 25a.
  • the magnet 23 can be cooled, demagnetization of the magnet 23 can be suppressed.
  • FIG. 3 shows an example in which the oil O is ejected upward from the ejection holes 24a and 25a, but is not limited thereto. Since the rotor 20 rotates, the circumferential positions of the ejection holes 24 a and 25 a change as the rotor 20 rotates. Thereby, the direction of the oil O ejected from the ejection holes 24a and 25a changes in the circumferential direction, and the plurality of coils 32 arranged along the circumferential direction can be cooled by the oil O.
  • the other part of the oil O discharged from the discharge port 45 flows into the third oil passage 63 through the first oil passage 61 and the space 13b.
  • the oil O that has flowed into the third oil passage 63 flows out of the supply parts 63 c and 63 d and is supplied to the coil 32. Accordingly, the coil 32 can be further cooled by the oil O.
  • the third oil passage 63 opens into the accommodating portion 14 on the upper side of the stator 30, the oil O that has flowed out of the third oil passage 63 is supplied to the stator 30 from the upper side. Accordingly, the oil O can be supplied from the upper side to the lower side of the stator 30, and the entire stator 30 can be easily cooled by the oil O.
  • the pump unit 40 can be driven by the rotation of the motor shaft 21, and the oil O stored in the housing 10 can be sucked up by the pump unit 40 and supplied to the rotor 20 and the stator 30. Thereby, the rotor 20 and the stator 30 can be cooled using the oil O stored in the housing 10.
  • the oil O supplied to the stator 30 falls in the housing portion 14 and is stored again in the lower region of the housing portion 14. Thereby, the oil O in the accommodating part 14 can be circulated.
  • the suction port 44 for sucking the oil O into the pump chamber 46 opens in a lower region of the accommodating portion 14 where the oil O is stored. Therefore, the suction port 44 can be directly exposed to the oil O stored in the storage unit 14. This eliminates the need for an oil passage that guides the oil stored in the storage portion 14 into the pump chamber 46. Therefore, the oil path for sending the oil O by the pump unit 40 can be prevented from becoming complicated, and the structure of the drive device 1 including the pump unit 40 can be easily simplified. Thereby, according to this embodiment, the drive device 1 can be reduced in size. *
  • the suction port 44 since the suction port 44 is disposed below the rotor 20, the suction port 44 can be easily disposed below the liquid level OS of the oil O. Thereby, the oil O is easily sucked into the pump chamber 46 from the suction port 44. Further, even when the liquid level OS is arranged below the rotor 20, the suction port 44 can be arranged below the liquid level OS. Accordingly, it is possible to easily suck the oil O from the suction port 44 while suppressing the oil O from becoming the rotational resistance of the rotor 20 with the liquid level OS below the rotor 20. *
  • the suction port 44 since at least a part of the suction port 44 is disposed below the liquid surface OS of the oil O, the suction port 44 can be more easily exposed to the oil O stored in the storage unit 14. Thereby, the oil O is more easily sucked into the pump chamber 46 from the suction port 44.
  • the closing portion 12d that closes a part of the opening on the other axial side of the pump chamber 46 can be a part of the first portion 12, the second portion 13 is changed to the first portion 12.
  • a part of the opening on the other side in the axial direction of the pump chamber 46 can be closed by attaching to the pump chamber 46.
  • the present invention is not limited to the above-described embodiment, and other configurations can be employed.
  • the blocking part 12d may be provided in the second portion 13.
  • the pump chamber 46 may be provided in the first portion 12. In this case, the pump chamber 46 is recessed from the surface on the one side in the axial direction of the first portion 12 to the other side in the axial direction. Further, the first portion 12 and the second portion 13 may be a single member portion. *
  • the rotor core 22 may be fixed to the outer peripheral surface of the motor shaft 21 by press fitting or the like.
  • the first end plate 24 and the second end plate 25 may not be provided.
  • the oil O flowing out from the first through hole 26 a may be directly supplied to the coil 32, or a hole connected to the first through hole 26 a is provided in the rotor core 22 via the hole of the rotor core 22.
  • the oil O may be supplied to the coil 32.
  • the oil O may be supplied to the stator core 31.
  • the third oil passage 63 may not be provided. *
  • the pump shaft 41 may be inclined with respect to the motor shaft 21.
  • the plain bearing portion 12e may be above the liquid level OS.
  • the pump shaft 41 may be rotatably supported by a ball bearing.
  • the tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 may be a cycloid tooth profile or an involute tooth profile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

One embodiment of this drive device comprises: a rotor; a stator; a housing that has a housing part that can store oil; a pump part that is driven via a motor shaft; and a transmission member that transmits the rotation of the motor shaft to a pump shaft. The pump part has: an external gear that is fixed to the pump shaft; an internal gear that surrounds the external gear and that meshes with the external gear; a pump chamber that is provided to the housing and that houses the internal gear and the external gear; an intake port that can take oil into the pump chamber; and a discharge port that can discharge oil from the pump chamber. The housing has a first oil passage that connects to the discharge port. The motor shaft has: a second oil passage that is provided inside the motor shaft and that connects to the first oil passage; and a first through hole that connects the second oil passage and an outer circumferential surface of the motor shaft. The intake port opens at a vertical direction lower region of the housing part and can take oil that is stored in the housing part into the pump chamber.

Description

駆動装置Drive device
本発明は、駆動装置に関する。 The present invention relates to a drive device.
ステータおよびロータ等の潤滑および冷却のための潤滑用流体を貯留するケースを備える回転電機が知られる。例えば、特許文献1では、車両に搭載される回転電機が記載される。 2. Description of the Related Art A rotating electric machine is known that includes a case for storing a lubricating fluid for lubrication and cooling such as a stator and a rotor. For example, Patent Document 1 describes a rotating electrical machine mounted on a vehicle.
特開2013-055728号公報JP 2013-055728 A
上記のような回転電機には、ケースに貯留されるオイルを吸い上げるポンプ部が設けられる場合がある。ポンプ部によってオイルを吸い上げて、例えばロータおよびステータにオイルを供給することで、ロータおよびステータを冷却することができる。しかし、単に回転電機にポンプ部を設けると、オイルが流れる油路を設ける必要等があるため、回転電機の構造が複雑化しやすく、回転電機が大型化する場合があった。  The rotating electrical machine as described above may be provided with a pump unit that sucks up oil stored in the case. The rotor and the stator can be cooled by sucking up the oil by the pump unit and supplying the oil to the rotor and the stator, for example. However, when the pump unit is simply provided in the rotating electrical machine, it is necessary to provide an oil passage through which oil flows, and thus the structure of the rotating electrical machine is likely to be complicated, and the rotating electrical machine may be increased in size. *
本発明は、上記事情に鑑みて、ハウジングに貯留されるオイルを送ることが可能なポンプ部を備えつつ、小型化できる構造を有する駆動装置を提供することを目的の一つとする。 In view of the above circumstances, an object of the present invention is to provide a drive device having a structure that can be miniaturized while being provided with a pump unit capable of sending oil stored in a housing.
本発明の駆動装置の一つの態様は、一方向に延びる中心軸に沿って配置されるモータシャフトを有するロータと、前記ロータと径方向に隙間を介して対向するステータと、前記ロータおよび前記ステータを収容するとともにオイルを貯留可能な収容部を有するハウジングと、前記ハウジング内において前記中心軸と異なる軸に沿って配置されるポンプシャフトを有し、前記モータシャフトを介して駆動されるポンプ部と、前記モータシャフトの回転を前記ポンプシャフトに伝達する伝達部材と、を備え、前記ポンプ部は、前記ポンプシャフトに固定される外歯歯車と、前記外歯歯車を囲み、前記外歯歯車と噛み合う内歯歯車と、前記ハウジングに設けられ、前記内歯歯車および前記外歯歯車を収容するポンプ室と、前記ポンプ室内にオイルを吸入可能な吸入口と、前記ポンプ室内からオイルを吐出可能な吐出口と、を有し、前記ハウジングは、前記吐出口と繋がる第1油路を有し、前記モータシャフトは、前記モータシャフトの内部に設けられ、前記第1油路と繋がる第2油路と、前記第2油路と前記モータシャフトの外周面とを繋ぐ第1貫通孔と、を有し、前記吸入口は、前記収容部の鉛直方向下側の領域に開口し、前記収容部に貯留されるオイルを前記ポンプ室内に吸入可能である。 One aspect of the drive device according to the present invention includes a rotor having a motor shaft disposed along a central axis extending in one direction, a stator facing the rotor via a gap in a radial direction, the rotor, and the stator A housing having a housing portion that can store oil and a pump shaft that is disposed along an axis different from the central axis in the housing and is driven via the motor shaft; A transmission member that transmits the rotation of the motor shaft to the pump shaft, and the pump portion surrounds the external gear and is meshed with the external gear that is fixed to the pump shaft. An internal gear, a pump chamber provided in the housing and containing the internal gear and the external gear, and oil in the pump chamber A suction port that can be inserted, and a discharge port that can discharge oil from the pump chamber, wherein the housing has a first oil passage connected to the discharge port, and the motor shaft is connected to the motor shaft. A second oil passage provided inside and connected to the first oil passage; and a first through hole connecting the second oil passage and an outer peripheral surface of the motor shaft; The oil is opened in a region on the lower side in the vertical direction of the portion, and oil stored in the housing portion can be sucked into the pump chamber.
本発明の一つの態様によれば、ハウジングに貯留されるオイルを送ることが可能なポンプ部を備えつつ、小型化できる構造を有する駆動装置が提供される。 According to one aspect of the present invention, there is provided a drive device having a structure that can be miniaturized while being provided with a pump unit capable of sending oil stored in a housing.
図1は、本実施形態の駆動装置を示す断面図である。FIG. 1 is a cross-sectional view showing the drive device of the present embodiment. 図2は、本実施形態のポンプ部を軸方向他方側から視た図である。FIG. 2 is a view of the pump unit of this embodiment as viewed from the other side in the axial direction. 図3は、本実施形態の駆動装置の一部を示す断面図である。FIG. 3 is a cross-sectional view showing a part of the driving apparatus of the present embodiment.
各図に示すZ軸方向は、正の側を上側とし、負の側を下側とする鉛直方向Zである。本実施形態では、鉛直方向Zは、各図の上下方向である。以下の説明においては、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。  The Z-axis direction shown in each figure is a vertical direction Z in which the positive side is the upper side and the negative side is the lower side. In the present embodiment, the vertical direction Z is the vertical direction of each figure. In the following description, the upper side in the vertical direction is simply referred to as “upper side”, and the lower side in the vertical direction is simply referred to as “lower side”. *
図1に示すように、本実施形態の駆動装置1は、ハウジング10と、一方向に延びる中心軸J1に沿って配置されるモータシャフト21を有するロータ20と、回転検出部80と、ステータ30と、ポンプ部40と、伝達部材50と、ベアリング70,71と、を備える。  As shown in FIG. 1, the drive device 1 according to the present embodiment includes a housing 10, a rotor 20 having a motor shaft 21 disposed along a central axis J <b> 1 extending in one direction, a rotation detection unit 80, and a stator 30. A pump unit 40, a transmission member 50, and bearings 70 and 71. *
中心軸J1は、図1の左右方向に延びる。すなわち、本実施形態においては、図1の左右方向が一方向に相当する。以下の説明においては、中心軸J1の軸方向と平行な方向を単に「軸方向」と呼び、中心軸J1を中心とする径方向を単に「径方向」と呼び、中心軸J1を中心とする周方向を単に「周方向」と呼ぶ。また、軸方向のうち図1の左側を、「軸方向一方側」と呼び、軸方向のうち図1の右側を、「軸方向他方側」と呼ぶ。  The central axis J1 extends in the left-right direction in FIG. That is, in the present embodiment, the left-right direction in FIG. 1 corresponds to one direction. In the following description, a direction parallel to the axial direction of the central axis J1 is simply referred to as “axial direction”, a radial direction centered on the central axis J1 is simply referred to as “radial direction”, and the central axis J1 is the center. The circumferential direction is simply called “circumferential direction”. Further, the left side of FIG. 1 in the axial direction is referred to as “one axial side”, and the right side of FIG. 1 in the axial direction is referred to as “the other axial side”. *
ハウジング10は、本体部11と、第1部分12と、第2部分13と、を有する。本実施形態において本体部11と第1部分12と第2部分13とは、互いに別部材である。本体部11は、軸方向一方側に開口する有底の筒状である。本体部11は、底部11aと、本体筒部11bと、ベアリング保持部11cと、を有する。底部11aは、径方向に拡がる円環板状である。本体筒部11bは、底部11aの径方向外縁部から軸方向一方側に延びる円筒状である。ベアリング保持部11cは、底部11aの内縁部から軸方向一方側に突出する円筒状である。ベアリング保持部11cは、内側においてベアリング71を保持する。  The housing 10 includes a main body portion 11, a first portion 12, and a second portion 13. In the present embodiment, the main body 11, the first portion 12, and the second portion 13 are separate members. The main body 11 has a bottomed cylindrical shape that opens to one side in the axial direction. The main body part 11 includes a bottom part 11a, a main body cylinder part 11b, and a bearing holding part 11c. The bottom portion 11a has an annular plate shape that expands in the radial direction. The main body cylinder portion 11b has a cylindrical shape extending from the radially outer edge portion of the bottom portion 11a to one side in the axial direction. The bearing holding portion 11c has a cylindrical shape protruding from the inner edge portion of the bottom portion 11a to one side in the axial direction. The bearing holding portion 11c holds the bearing 71 on the inner side. *
第1部分12は、軸方向他方側に開口する有蓋の筒状である。第1部分12は、本体部11の軸方向一方側に取り付けられる。第1部分12は、蓋部12aと、第1筒部12bと、ベアリング保持部12cと、を有する。蓋部12aは、径方向に拡がる円環板状である。蓋部12aは、ステータ30の軸方向一方側を覆う。すなわち、第1部分12は、ステータ30の軸方向一方側を覆う。蓋部12aの下側の端部には、蓋部12aを軸方向に貫通する開口部12fが設けられる。すなわち、第1部分12は、第1部分12を軸方向に貫通する開口部12fを有する。  The first portion 12 is a covered cylinder that opens to the other side in the axial direction. The first portion 12 is attached to one side of the main body portion 11 in the axial direction. The first portion 12 includes a lid portion 12a, a first cylinder portion 12b, and a bearing holding portion 12c. The lid portion 12a has an annular plate shape that expands in the radial direction. The lid portion 12 a covers one side of the stator 30 in the axial direction. That is, the first portion 12 covers one side of the stator 30 in the axial direction. An opening 12f that penetrates the lid 12a in the axial direction is provided at the lower end of the lid 12a. That is, the first portion 12 has an opening 12 f that penetrates the first portion 12 in the axial direction. *
第1筒部12bは、蓋部12aの径方向外縁部から軸方向他方側に延びる円筒状である。第1筒部12bの軸方向他方側の端部は、本体筒部11bの軸方向一方側の端部と接触して固定される。ベアリング保持部12cは、蓋部12aの内縁部から軸方向他方側に突出する円筒状である。ベアリング保持部12cは、内側においてベアリング70を保持する。すなわち、第1部分12は、ベアリング70を保持する。  The 1st cylinder part 12b is a cylindrical shape extended from the radial direction outer edge part of the cover part 12a to the other side of an axial direction. The end portion on the other axial side of the first cylindrical portion 12b is fixed in contact with the end portion on the one axial side of the main body cylindrical portion 11b. The bearing holding portion 12c has a cylindrical shape protruding from the inner edge portion of the lid portion 12a to the other side in the axial direction. The bearing holding portion 12c holds the bearing 70 on the inner side. That is, the first portion 12 holds the bearing 70. *
本体部11と第1部分12とが互いに固定されることで、本体部11と第1部分12とによって囲まれた収容部14が構成される。すなわち、ハウジング10は、収容部14を有する。収容部14は、ロータ20およびステータ30を収容するとともにオイルOを貯留可能である。オイルOは、収容部14の下側の領域に貯留される。本明細書において「収容部の下側の領域」とは、収容部の鉛直方向Zの中心よりも下側に位置する部分を含む。  The main body 11 and the first portion 12 are fixed to each other, whereby the accommodating portion 14 surrounded by the main body 11 and the first portion 12 is configured. That is, the housing 10 has the accommodating portion 14. The accommodating portion 14 accommodates the rotor 20 and the stator 30 and can store the oil O. The oil O is stored in the lower region of the accommodating portion 14. In this specification, the “region below the storage portion” includes a portion located below the center in the vertical direction Z of the storage portion. *
本実施形態において収容部14に貯留されるオイルOの液面OSは、開口部12fよりも上側に位置する。オイルOの液面OSは、ポンプ部40によってオイルOが吸い上げられることで変動するが、少なくともロータ20の回転時において、ロータ20よりも下側に配置される。これにより、ロータ20が回転する際に、オイルOがロータ20の回転抵抗となることを抑制できる。  In the present embodiment, the liquid surface OS of the oil O stored in the storage unit 14 is located above the opening 12f. The liquid surface OS of the oil O fluctuates as the oil O is sucked up by the pump unit 40, but is disposed below the rotor 20 at least when the rotor 20 rotates. Thereby, when the rotor 20 rotates, it can suppress that the oil O becomes rotational resistance of the rotor 20. FIG. *
第2部分13は、第1部分12の軸方向一方側に取り付けられる。第2部分13は、第2部分13の軸方向他方側の面から軸方向一方側に窪む凹部13aを有する。凹部13aは、ベアリング保持部12cと軸方向に重なる。凹部13aは、第1部分12の軸方向一方側の面、すなわち蓋部12aの軸方向一方側の面によって閉塞される。これにより、凹部13aの内側面と第1部分12の軸方向一方側の面とで囲まれた空間13bが構成される。空間13bには、中心軸J1が通る。  The second portion 13 is attached to one side of the first portion 12 in the axial direction. The second portion 13 has a recess 13 a that is recessed from the surface on the other axial side of the second portion 13 to the one axial side. The recess 13a overlaps the bearing holding portion 12c in the axial direction. The recess 13a is closed by the surface on the one axial side of the first portion 12, that is, the surface on the one axial side of the lid 12a. As a result, a space 13b surrounded by the inner side surface of the recess 13a and the surface on the one axial side of the first portion 12 is formed. The central axis J1 passes through the space 13b. *
第2部分13には、ポンプ室46が設けられる。すなわち、ポンプ室46は、ハウジング10に設けられる。ポンプ室46は、第2部分13の軸方向他方側の面から軸方向一方側に窪む。より詳細には、ポンプ室46は、第2部分13の下端部における軸方向他方側の面から軸方向一方側に窪む。図2に示すように、ポンプ室46の軸方向に沿って視た外形は、円形状である。ポンプ室46は、後述する内歯歯車43および外歯歯車42を収容する。  A pump chamber 46 is provided in the second portion 13. That is, the pump chamber 46 is provided in the housing 10. The pump chamber 46 is recessed from the surface on the other axial side of the second portion 13 to the one axial side. More specifically, the pump chamber 46 is recessed from the surface on the other axial side at the lower end of the second portion 13 to the one axial side. As shown in FIG. 2, the outer shape of the pump chamber 46 viewed along the axial direction is circular. The pump chamber 46 accommodates an internal gear 43 and an external gear 42 which will be described later. *
図1に示すように、ポンプ室46の軸方向他方側の開口の上側部分は、蓋部12aの軸方向一方側の端面によって閉塞される。すなわち、第1部分12は、ポンプ室46の軸方向他方側の開口の一部を閉塞する閉塞部12dを有する。本実施形態において閉塞部12dは、蓋部12aの下側部分の一部である。閉塞部12dは、閉塞部12dを軸方向に貫通するすべり軸受部12eを有する。すべり軸受部12eは、ポンプ室46と収容部14との軸方向の間に位置する。すべり軸受部12eの軸方向一方側の端部は、ポンプ室46に開口する。すべり軸受部12eの軸方向他方側の端部は、収容部14に開口する。すべり軸受部12eの少なくとも一部は、収容部14に貯留されるオイルOの液面OSよりも下側に配置される。図1では、すべり軸受部12eの下側部分が液面OSよりも下側に配置される。図2に示すように、すべり軸受部12eの軸方向に沿って視た外形は、円形状である。なお、本実施形態ではすべり軸受部を第1部分12と同一部材としているが、第1部分12がすべり軸受を支持するすべり軸受支持部を有し、焼結含油軸受等のすべり軸受部材が保持されていてもよい。  As shown in FIG. 1, the upper portion of the opening on the other axial side of the pump chamber 46 is closed by the end surface on the one axial side of the lid 12 a. That is, the first portion 12 has a closing portion 12 d that closes a part of the opening on the other axial side of the pump chamber 46. In the present embodiment, the closing part 12d is a part of the lower part of the lid part 12a. The closing part 12d has a sliding bearing part 12e penetrating the closing part 12d in the axial direction. The sliding bearing portion 12e is located between the pump chamber 46 and the accommodating portion 14 in the axial direction. One end of the sliding bearing portion 12 e in the axial direction opens into the pump chamber 46. The end portion on the other side in the axial direction of the sliding bearing portion 12 e opens into the accommodating portion 14. At least a part of the sliding bearing portion 12e is disposed below the liquid surface OS of the oil O stored in the storage portion 14. In FIG. 1, the lower portion of the sliding bearing portion 12 e is disposed below the liquid level OS. As shown in FIG. 2, the outer shape of the plain bearing portion 12e viewed along the axial direction is circular. In this embodiment, the slide bearing portion is the same member as the first portion 12, but the first portion 12 has a slide bearing support portion that supports the slide bearing, and is held by a slide bearing member such as a sintered oil-impregnated bearing. May be. *
ポンプ室46の下端部は、開口部12fと軸方向に重なる。これにより、ポンプ室46の下端部は、開口部12fを介して収容部14に面している。ポンプ室46のうち収容部14に面する下端部は、吸入口44である。すなわち、開口部12fは、吸入口44を収容部14に露出させる。本実施形態において第2部分13は、第1部分12と互いに別部材であるため、ポンプ室46を構成しやすい。  The lower end of the pump chamber 46 overlaps the opening 12f in the axial direction. Thereby, the lower end part of the pump chamber 46 faces the accommodating part 14 through the opening part 12f. A lower end portion of the pump chamber 46 facing the accommodating portion 14 is a suction port 44. That is, the opening portion 12 f exposes the suction port 44 to the housing portion 14. In the present embodiment, the second portion 13 is a separate member from the first portion 12, and thus it is easy to configure the pump chamber 46. *
図1に示すように、ハウジング10は、第1油路61と、第3油路63と、を有する。本実施形態において第1油路61は、第2部分13に設けられる。第1油路61は、鉛直方向Zに延びる。第1油路61は、ポンプ室46の上端部と軸方向に重なる位置から中心軸J1よりも上側まで延びる。第1油路61は、凹部13aの軸方向一方側に配置される。第1油路61は、接続孔部61aを介して空間13bと繋がる。接続孔部61aは、例えば、中心軸J1を中心とする円形状の孔である。第1油路61の下端部は、ポンプ室46の上端部に軸方向一方側から繋がる。ポンプ室46における第1油路61が繋がる部分は、吐出口45である。すなわち、第1油路61は、吐出口45と繋がる。  As shown in FIG. 1, the housing 10 includes a first oil passage 61 and a third oil passage 63. In the present embodiment, the first oil passage 61 is provided in the second portion 13. The first oil passage 61 extends in the vertical direction Z. The first oil passage 61 extends from the position overlapping the upper end of the pump chamber 46 in the axial direction to the upper side of the central axis J1. The first oil passage 61 is disposed on one axial side of the recess 13a. The first oil passage 61 is connected to the space 13b through the connection hole 61a. The connection hole 61a is, for example, a circular hole centered on the central axis J1. The lower end portion of the first oil passage 61 is connected to the upper end portion of the pump chamber 46 from one side in the axial direction. A portion where the first oil passage 61 is connected in the pump chamber 46 is a discharge port 45. That is, the first oil passage 61 is connected to the discharge port 45. *
第3油路63は、第2部分13、第1部分12および本体部11に跨って設けられる。図1および図3に示すように、第3油路63は、第1延伸部63aと、第2延伸部63bと、第3延伸部63eと、第4延伸部63fと、供給部63c,63dと、を有する。  The third oil passage 63 is provided across the second portion 13, the first portion 12, and the main body portion 11. As shown in FIGS. 1 and 3, the third oil passage 63 includes a first extending portion 63a, a second extending portion 63b, a third extending portion 63e, a fourth extending portion 63f, and supply portions 63c and 63d. And having. *

 図1に示すように、第1延伸部63aは、第1油路61の上端部から鉛直方向Zに延びる。これにより、第3油路63は、第1油路61と繋がる。第1延伸部63aの上端部は、第2部分13の上端部に位置する。第2延伸部63bは、第1延伸部63aの上端部から軸方向他方側に延びる。第2延伸部63bの軸方向他方側の端部は、蓋部12aに位置する。第3延伸部63eは、第2延伸部63bの軸方向他方側の端部から上側に延びる。第3延伸部63eの上端部は、蓋部12aの上端部に位置する。第4延伸部63fは、第3延伸部63eの上端部から軸方向他方側に延びる。第4延伸部63fは、蓋部12aから第1筒部12bおよび本体筒部11bに跨って設けられる。第4延伸部63fは、ステータコア31よりも軸方向他方側まで延びる。

As shown in FIG. 1, the first extending portion 63 a extends in the vertical direction Z from the upper end portion of the first oil passage 61. As a result, the third oil passage 63 is connected to the first oil passage 61. The upper end portion of the first extending portion 63 a is located at the upper end portion of the second portion 13. The second extending portion 63b extends from the upper end portion of the first extending portion 63a to the other side in the axial direction. The end of the second extending portion 63b on the other side in the axial direction is located on the lid portion 12a. The third extending portion 63e extends upward from the other axial end of the second extending portion 63b. The upper end portion of the third extending portion 63e is located at the upper end portion of the lid portion 12a. The fourth extending portion 63f extends from the upper end portion of the third extending portion 63e to the other side in the axial direction. The fourth extending part 63f is provided across the first cylinder part 12b and the main body cylinder part 11b from the lid part 12a. The fourth extending portion 63 f extends to the other side in the axial direction from the stator core 31.
図3に示すように、供給部63c,63dは、第4延伸部63fから下側に延びる。供給部63c,63dは、本体筒部11bに設けられる。供給部63c,63dは、本体筒部11bの内周面に開口する。これにより、供給部63c,63dは、収容部14に開口する。供給部63cは、ステータコア31よりも軸方向一方側に配置される。供給部63dは、ステータコア31よりも軸方向他方側に配置される。供給部63c,63dは、コイル32の上側において径方向に隙間を介して対向する。すなわち、第3油路63は、ステータ30の上側において収容部14に開口する。供給部63dは、第2延伸部63bの軸方向他方側の端部から径方向内側に延びる。  As shown in FIG. 3, the supply parts 63c and 63d extend downward from the fourth extending part 63f. The supply parts 63c and 63d are provided in the main body cylinder part 11b. The supply parts 63c and 63d open on the inner peripheral surface of the main body cylinder part 11b. Thereby, the supply parts 63c and 63d open to the accommodating part 14. The supply part 63 c is disposed on one axial side of the stator core 31. The supply portion 63d is disposed on the other side in the axial direction than the stator core 31. The supply parts 63c and 63d are opposed to each other on the upper side of the coil 32 via a gap in the radial direction. That is, the third oil passage 63 opens into the accommodating portion 14 on the upper side of the stator 30. The supply part 63d extends inward in the radial direction from the other axial end of the second extending part 63b. *
本実施形態では、第3油路63が、別部材である第2部分13と第1部分12と本体部11とに跨って設けられることで、第3油路63を構成する第1延伸部63aおよび第2延伸部63b等の油路を加工しやすい。  In this embodiment, the 3rd oil path 63 is provided ranging over the 2nd part 13, the 1st part 12, and the main-body part 11 which are another members, The 1st extending | stretching part which comprises the 3rd oil path 63 is provided. It is easy to process oil passages such as 63a and the second extending portion 63b. *
図1に示すように、ロータ20は、モータシャフト21と、ロータコア22と、マグネット23と、第1エンドプレート24と、第2エンドプレート25と、を有する。モータシャフト21は、軸方向に延びる円柱状である。モータシャフト21は、大径部21aと、小径部21bと、出力部21eと、を有する。  As shown in FIG. 1, the rotor 20 includes a motor shaft 21, a rotor core 22, a magnet 23, a first end plate 24, and a second end plate 25. The motor shaft 21 has a cylindrical shape extending in the axial direction. The motor shaft 21 has a large diameter portion 21a, a small diameter portion 21b, and an output portion 21e. *
大径部21aは、ロータコア22が取り付けられる部分である。大径部21aの軸方向他方側の端部は、ベアリング71に回転可能に支持される。小径部21bは、大径部21aの軸方向一方側において大径部21aに繋がる。小径部21bの軸方向一方側の端部は、モータシャフト21の軸方向一方側の端部である。小径部21bの軸方向一方側の端部は、空間13b内に挿入される。小径部21bの外径は、大径部21aの外径よりも小さい。小径部21bの軸方向他方側の端部は、ベアリング70に回転可能に支持される。ベアリング70,71は、モータシャフト21を回転可能に支持する。ベアリング70,71は、例えば、ボールベアリングである。  The large diameter portion 21a is a portion to which the rotor core 22 is attached. The end portion on the other side in the axial direction of the large diameter portion 21 a is rotatably supported by the bearing 71. The small diameter portion 21b is connected to the large diameter portion 21a on one axial side of the large diameter portion 21a. An end portion on one side in the axial direction of the small diameter portion 21 b is an end portion on one side in the axial direction of the motor shaft 21. One end of the small diameter portion 21b in the axial direction is inserted into the space 13b. The outer diameter of the small diameter portion 21b is smaller than the outer diameter of the large diameter portion 21a. The end portion on the other side in the axial direction of the small diameter portion 21 b is rotatably supported by the bearing 70. The bearings 70 and 71 rotatably support the motor shaft 21. The bearings 70 and 71 are ball bearings, for example. *
出力部21eは、大径部21aの軸方向他方側において大径部21aに繋がる。出力部21eは、モータシャフト21の軸方向他方側の端部である。出力部21eの外径は、大径部21aの外径および小径部21bの外径よりも小さい。出力部21eは、底部11aを軸方向に貫通してハウジング10の外部に突出する。  The output part 21e is connected to the large diameter part 21a on the other axial side of the large diameter part 21a. The output portion 21e is an end portion on the other axial side of the motor shaft 21. The outer diameter of the output part 21e is smaller than the outer diameter of the large diameter part 21a and the outer diameter of the small diameter part 21b. The output portion 21e protrudes outside the housing 10 through the bottom portion 11a in the axial direction. *
モータシャフト21は、フランジ部21dを有する。フランジ部21dは、大径部21aの外周面から径方向外側に突出する。フランジ部21dは、大径部21aの外周面の一周に亘って設けられる円環板状である。フランジ部21dは、大径部21aの軸方向他方側寄りの部分に設けられる。大径部21aの軸方向一方側寄りの部分における外周面には、雄ネジ部が設けられる。大径部21aの雄ネジ部には、ナット90が締め込まれる。  The motor shaft 21 has a flange portion 21d. The flange portion 21d protrudes radially outward from the outer peripheral surface of the large diameter portion 21a. The flange portion 21d has an annular plate shape that is provided over the entire circumference of the outer peripheral surface of the large-diameter portion 21a. The flange portion 21d is provided at a portion closer to the other side in the axial direction of the large diameter portion 21a. A male screw portion is provided on the outer peripheral surface of the large diameter portion 21a near the one side in the axial direction. A nut 90 is fastened to the male screw portion of the large diameter portion 21a. *
モータシャフト21は、モータシャフト21の内部に設けられる第2油路62を有する。第2油路62は、モータシャフト21の軸方向一方側の端部から軸方向他方側に窪んで延びる有底の穴部である。第2油路62は、小径部21bの軸方向一方側の端部から大径部21aの軸方向他方側の端部まで延びる。本実施形態において第2油路62の内周面は、中心軸J1を中心とする円筒状である。第2油路62は、軸方向一方側に開口する。第2油路62の軸方向一方側の端部は、接続孔部61aと軸方向に対向する。第2油路62は、接続孔部61aを介して第1油路61と繋がる。  The motor shaft 21 has a second oil passage 62 provided inside the motor shaft 21. The second oil passage 62 is a bottomed hole that extends from the end on one axial side of the motor shaft 21 to the other axial side. The second oil passage 62 extends from an end portion on one axial side of the small diameter portion 21b to an end portion on the other axial side of the large diameter portion 21a. In the present embodiment, the inner peripheral surface of the second oil passage 62 has a cylindrical shape centered on the central axis J1. The second oil passage 62 opens on one side in the axial direction. The end of the second oil passage 62 on one side in the axial direction opposes the connecting hole 61a in the axial direction. The second oil passage 62 is connected to the first oil passage 61 via the connection hole 61a. *
モータシャフト21は、第2油路62とモータシャフト21の外周面とを繋ぐ第1貫通孔26aを有する。第1貫通孔26aは、径方向に延びる。第1貫通孔26aは、大径部21aに設けられる。図示は省略するが、第1貫通孔26aは、例えば、周方向に沿って複数設けられる。  The motor shaft 21 has a first through hole 26 a that connects the second oil passage 62 and the outer peripheral surface of the motor shaft 21. The first through hole 26a extends in the radial direction. The first through hole 26a is provided in the large diameter portion 21a. Although illustration is omitted, a plurality of first through holes 26a are provided along the circumferential direction, for example. *
ロータコア22は、モータシャフト21に嵌め合わされる円環状である。ロータコア22は、ロータコア22を軸方向に貫通するロータ貫通孔22aと、ロータコア22を軸方向に貫通するマグネット挿入孔22bと、を有する。ロータ貫通孔22aは、マグネット挿入孔22bよりも径方向内側に配置される。マグネット挿入孔22bは、周方向に沿って複数設けられる。マグネット23は、マグネット挿入孔22bに挿入される。  The rotor core 22 has an annular shape that is fitted to the motor shaft 21. The rotor core 22 has a rotor through hole 22a that penetrates the rotor core 22 in the axial direction and a magnet insertion hole 22b that penetrates the rotor core 22 in the axial direction. The rotor through hole 22a is disposed on the radially inner side than the magnet insertion hole 22b. A plurality of magnet insertion holes 22b are provided along the circumferential direction. The magnet 23 is inserted into the magnet insertion hole 22b. *
第1エンドプレート24および第2エンドプレート25は、径方向に拡がる円環板状である。第1エンドプレート24および第2エンドプレート25には、大径部21aが通される。第1エンドプレート24と第2エンドプレート25とは、ロータコア22と接触した状態で、ロータコア22を軸方向に挟む。  The first end plate 24 and the second end plate 25 have an annular plate shape that expands in the radial direction. A large diameter portion 21 a is passed through the first end plate 24 and the second end plate 25. The first end plate 24 and the second end plate 25 sandwich the rotor core 22 in the axial direction while being in contact with the rotor core 22. *
図3に示すように、第1エンドプレート24は、ロータコア22の軸方向一方側に配置される。第1エンドプレート24の径方向外縁部は、軸方向他方側に湾曲し、ロータコア22の軸方向一方側の面のうち径方向外縁部と接触する。第1エンドプレート24の径方向外縁部は、マグネット挿入孔22bの軸方向一方側の開口部と軸方向に重なり、マグネット挿入孔22bに挿入されたマグネット23を軸方向一方側から押さえる。第1エンドプレート24の径方向外縁部よりも径方向内側の部分は、ロータコア22の軸方向一方側の面と軸方向に隙間27aを介して対向する。隙間27aには、第1貫通孔26aの径方向外側の端部が開口する。第1エンドプレート24は、第1エンドプレート24を軸方向に貫通する噴出孔24aを有する。噴出孔24aは、ロータ貫通孔22aよりも径方向内側で、ナット90よりも径方向外側に配置される。  As shown in FIG. 3, the first end plate 24 is disposed on one axial side of the rotor core 22. The radially outer edge portion of the first end plate 24 is curved toward the other side in the axial direction, and contacts the radially outer edge portion of the surface on the one axial direction side of the rotor core 22. The radially outer edge of the first end plate 24 overlaps with the opening on one axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from one axial side. A portion radially inward from the radially outer edge portion of the first end plate 24 faces the surface on one side in the axial direction of the rotor core 22 in the axial direction through a gap 27a. An end portion on the radially outer side of the first through hole 26a opens in the gap 27a. The first end plate 24 has an ejection hole 24 a that penetrates the first end plate 24 in the axial direction. The ejection hole 24 a is disposed radially inward of the rotor through hole 22 a and radially outward of the nut 90. *
第2エンドプレート25は、ロータコア22の軸方向他方側に配置される。第2エンドプレート25の径方向外縁部は、軸方向一方側に湾曲し、ロータコア22の軸方向他方側の面のうち径方向外縁部と接触する。第2エンドプレート25の径方向外縁部は、マグネット挿入孔22bの軸方向他方側の開口部と軸方向に重なり、マグネット挿入孔22bに挿入されたマグネット23を軸方向他方側から押さえる。これにより、マグネット挿入孔22bに挿入されたマグネット23は、軸方向の両側を第1エンドプレート24と第2エンドプレート25とによって押さえられる。したがって、マグネット23がマグネット挿入孔22bから抜け出ることを抑制できる。  The second end plate 25 is disposed on the other axial side of the rotor core 22. The radially outer edge portion of the second end plate 25 is curved in one axial direction, and contacts the radially outer edge portion of the surface on the other axial side of the rotor core 22. The radially outer edge of the second end plate 25 overlaps the opening on the other axial side of the magnet insertion hole 22b in the axial direction, and presses the magnet 23 inserted into the magnet insertion hole 22b from the other axial side. Thereby, the magnet 23 inserted into the magnet insertion hole 22b is pressed by the first end plate 24 and the second end plate 25 on both sides in the axial direction. Therefore, the magnet 23 can be prevented from coming out of the magnet insertion hole 22b. *
第2エンドプレート25の径方向外縁部よりも径方向内側の部分は、ロータコア22の軸方向他方側の面と軸方向に隙間27bを介して対向する。隙間27bは、ロータ貫通孔22aを介して、第1エンドプレート24とロータコア22との軸方向の隙間27aと繋がる。第2エンドプレート25は、第2エンドプレート25を軸方向に貫通する噴出孔25aを有する。噴出孔25aは、ロータ貫通孔22aよりも径方向内側で、フランジ部21dよりも径方向外側に配置される。噴出孔25aの径方向位置は、例えば、噴出孔24aの径方向位置と同じである。  The radially inner portion of the second end plate 25 is radially opposed to the surface on the other axial side of the rotor core 22 via the gap 27b. The gap 27b is connected to the axial gap 27a between the first end plate 24 and the rotor core 22 via the rotor through hole 22a. The second end plate 25 has an ejection hole 25a penetrating the second end plate 25 in the axial direction. The ejection hole 25a is disposed radially inward of the rotor through hole 22a and radially outward of the flange portion 21d. The radial position of the ejection hole 25a is, for example, the same as the radial position of the ejection hole 24a. *
第1エンドプレート24とロータコア22と第2エンドプレート25とは、ナット90とフランジ部21dとによって軸方向に挟持される。ナット90が大径部21aの雄ネジ部に締め込まれることで、ナット90が第1エンドプレート24とロータコア22と第2エンドプレート25とをフランジ部21dに押し付ける。これにより、第1エンドプレート24とロータコア22と第2エンドプレート25とは、大径部21aに対して固定される。  The first end plate 24, the rotor core 22, and the second end plate 25 are sandwiched in the axial direction by the nut 90 and the flange portion 21d. When the nut 90 is tightened into the male screw portion of the large diameter portion 21a, the nut 90 presses the first end plate 24, the rotor core 22, and the second end plate 25 against the flange portion 21d. Thereby, the 1st end plate 24, the rotor core 22, and the 2nd end plate 25 are fixed with respect to the large diameter part 21a. *
図1に示す回転検出部80は、ロータ20の回転を検出する。本実施形態において回転検出部80は、例えば、VR(Variable Reluctance)型レゾルバである。回転検出部80は、空間13b内に配置される。回転検出部80は、被検出部81と、センサ部82と、を有する。被検出部81は、周方向に延びる環状である。被検出部81は、小径部21bに嵌め合わされて固定される。より詳細には、被検出部81は、小径部21bに設けられた軸方向他方側から軸方向一方側に向かって外径が小さくなる段差部の外径が小さくなった部分に嵌め合わされて固定される。被検出部81は、磁性体製である。  The rotation detector 80 shown in FIG. 1 detects the rotation of the rotor 20. In the present embodiment, the rotation detection unit 80 is, for example, a VR (Variable Reluctance) type resolver. The rotation detector 80 is disposed in the space 13b. The rotation detection unit 80 includes a detected unit 81 and a sensor unit 82. The detected part 81 has an annular shape extending in the circumferential direction. The detected part 81 is fitted and fixed to the small diameter part 21b. More specifically, the detected portion 81 is fitted and fixed to a portion where the outer diameter of the step portion whose outer diameter decreases from the other axial side to the one axial side provided in the small diameter portion 21b. Is done. The detected part 81 is made of a magnetic material. *
センサ部82は、蓋部12aの軸方向一方側の面に固定される。センサ部82は、被検出部81の径方向外側を囲む環状である。センサ部82は、周方向に沿って複数のコイルを有する。モータシャフト21とともに被検出部81が回転することによって、センサ部82のコイルには、被検出部81の周方向位置に応じた誘起電圧が生じる。センサ部82は、誘起電圧を検出することで、被検出部81の回転を検出する。これにより、回転検出部80は、モータシャフト21の回転を検出して、ロータ20の回転を検出する。  The sensor part 82 is fixed to the surface on one side in the axial direction of the lid part 12a. The sensor unit 82 has an annular shape that surrounds the radially outer side of the detected portion 81. The sensor unit 82 has a plurality of coils along the circumferential direction. When the detected part 81 rotates together with the motor shaft 21, an induced voltage corresponding to the circumferential position of the detected part 81 is generated in the coil of the sensor part 82. The sensor unit 82 detects the rotation of the detected unit 81 by detecting the induced voltage. Accordingly, the rotation detection unit 80 detects the rotation of the motor shaft 21 and detects the rotation of the rotor 20. *
ステータ30は、ロータ20と径方向に隙間を介して対向する。ステータ30は、ステータコア31と、ステータコア31に装着される複数のコイル32と、を有する。ステータコア31は、中心軸J1を中心とした円環状である。ステータコア31の外周面は、本体筒部11bの内周面に固定される。ステータコア31は、ロータコア22の径方向外側に隙間を介して対向する。  The stator 30 faces the rotor 20 via a gap in the radial direction. The stator 30 includes a stator core 31 and a plurality of coils 32 attached to the stator core 31. The stator core 31 has an annular shape centered on the central axis J1. The outer peripheral surface of the stator core 31 is fixed to the inner peripheral surface of the main body cylinder portion 11b. The stator core 31 is opposed to the outer side in the radial direction of the rotor core 22 via a gap. *
ポンプ部40は、第2部分13の下端部に配置される。ポンプ部40は、ポンプシャフト41と、外歯歯車42と、内歯歯車43と、上述したポンプ室46と、吸入口44と、吐出口45と、を有する。ポンプシャフト41は、ハウジング10内において中心軸J1と異なる軸であるポンプ軸J2に沿って配置される。本実施形態においてポンプ軸J2は、中心軸J1と平行である。すなわち、ポンプシャフト41は、モータシャフト21の軸方向に延びる。ポンプ軸J2は、中心軸J1よりも下側に位置する。  The pump unit 40 is disposed at the lower end of the second portion 13. The pump unit 40 includes a pump shaft 41, an external gear 42, an internal gear 43, the above-described pump chamber 46, a suction port 44, and a discharge port 45. The pump shaft 41 is disposed in the housing 10 along a pump axis J2 that is an axis different from the central axis J1. In the present embodiment, the pump shaft J2 is parallel to the central axis J1. That is, the pump shaft 41 extends in the axial direction of the motor shaft 21. The pump shaft J2 is located below the center axis J1. *
ポンプシャフト41は、ステータ30よりも軸方向一方側においてモータシャフト21よりも下側に配置される。そのため、モータシャフト21とポンプシャフト41とを軸方向と直交する方向に少なくとも一部が重なる位置に配置することで、モータシャフト21とポンプシャフト41とを同軸とする場合に比べて、駆動装置1を軸方向に小型化しやすい。図1では、モータシャフト21とポンプシャフト41とは、鉛直方向Zに重なる。また、本実施形態では、上述したようにポンプ室46および第1油路61は、第2部分13に設けられる。これにより、ポンプ部40をステータ30よりも軸方向一方側に集約して配置することができ、駆動装置1をより軸方向に小型化しやすい。また、ポンプシャフト41がモータシャフト21の軸方向に延びるため、ポンプシャフト41がモータシャフト21に対して傾く場合に比べて、駆動装置1を径方向に小型化しやすい。  The pump shaft 41 is disposed below the motor shaft 21 on one axial side of the stator 30. Therefore, by arranging the motor shaft 21 and the pump shaft 41 at a position at least partially overlapping in a direction orthogonal to the axial direction, the drive device 1 can be compared with the case where the motor shaft 21 and the pump shaft 41 are coaxial. It is easy to reduce the size in the axial direction. In FIG. 1, the motor shaft 21 and the pump shaft 41 overlap in the vertical direction Z. In the present embodiment, the pump chamber 46 and the first oil passage 61 are provided in the second portion 13 as described above. Thereby, the pump part 40 can be concentrated and arrange | positioned to the axial direction one side rather than the stator 30, and it is easy to make the drive device 1 smaller in an axial direction. In addition, since the pump shaft 41 extends in the axial direction of the motor shaft 21, it is easier to reduce the size of the drive device 1 in the radial direction than when the pump shaft 41 is inclined with respect to the motor shaft 21. *
ポンプシャフト41は、収容部14に配置される。ポンプシャフト41の軸方向一方側の端部は、すべり軸受部12eを介してポンプ室46内に挿入される。ポンプシャフト41のうちすべり軸受部12eに挿入される部分は、すべり軸受部12eによって支持される。これにより、ポンプシャフト41は、すべり軸受部12eによってポンプ軸J2周りに回転可能に支持される。このようにして、本実施形態によれば、ポンプシャフト41を簡単な構成で支持できる。  The pump shaft 41 is disposed in the accommodating portion 14. One end of the pump shaft 41 in the axial direction is inserted into the pump chamber 46 via the plain bearing portion 12e. The portion of the pump shaft 41 that is inserted into the sliding bearing portion 12e is supported by the sliding bearing portion 12e. As a result, the pump shaft 41 is rotatably supported around the pump shaft J2 by the sliding bearing portion 12e. Thus, according to this embodiment, the pump shaft 41 can be supported with a simple configuration. *
また、上述したように本実施形態では、すべり軸受部12eの少なくとも一部がオイルOの液面OSよりも下側に配置される。そのため、すべり軸受部12eとポンプシャフト41との間にオイルOが流入する。これにより、オイルOをすべり軸受部12eの潤滑油として利用することができ、ポンプシャフト41をすべり軸受部12eによって好適に回転可能に支持できる。  Further, as described above, in the present embodiment, at least a part of the sliding bearing portion 12e is disposed below the liquid surface OS of the oil O. Therefore, the oil O flows between the sliding bearing portion 12e and the pump shaft 41. Thereby, the oil O can be used as lubricating oil for the sliding bearing portion 12e, and the pump shaft 41 can be suitably rotatably supported by the sliding bearing portion 12e. *
外歯歯車42は、ポンプ軸J2周りに回転可能な歯車である。外歯歯車42は、ポンプシャフト41の軸方向一方側の端部に固定され、ポンプ室46内に収容される。図2に示すように、外歯歯車42は、外周面に複数の歯部42aを有する。外歯歯車42の歯部42aの歯形は、トロコイド歯形である。  The external gear 42 is a gear that can rotate around the pump shaft J2. The external gear 42 is fixed to the end portion on the one axial side of the pump shaft 41 and is accommodated in the pump chamber 46. As shown in FIG. 2, the external gear 42 has a plurality of tooth portions 42a on the outer peripheral surface. The tooth profile of the tooth portion 42a of the external gear 42 is a trochoidal tooth profile. *
内歯歯車43は、ポンプ軸J2に対して偏心する回転軸J3周りに回転可能な円環状の歯車である。内歯歯車43は、ポンプ室46内に収容される。内歯歯車4
3は、外歯歯車42を囲み、外歯歯車42と噛み合う。内歯歯車43は、内周面に複数の歯部43aを有する。内歯歯車43の歯部43aの歯形は、トロコイド歯形である。このように、外歯歯車42の歯部42aの歯形および内歯歯車43の歯部43aの歯形がトロコイド歯形であるため、トロコイドポンプを構成することができる。したがって、ポンプ部40から生じる騒音を低減でき、ポンプ部40から吐出されるオイルOの圧力および量を安定させやすい。 
The internal gear 43 is an annular gear that is rotatable around a rotation axis J3 that is eccentric with respect to the pump shaft J2. The internal gear 43 is accommodated in the pump chamber 46. Internal gear 4
3 surrounds the external gear 42 and meshes with the external gear 42. The internal gear 43 has a plurality of tooth portions 43a on the inner peripheral surface. The tooth profile of the tooth portion 43a of the internal gear 43 is a trochoidal tooth profile. Thus, since the tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 are trochoidal tooth profiles, a trochoid pump can be configured. Therefore, noise generated from the pump unit 40 can be reduced, and the pressure and amount of the oil O discharged from the pump unit 40 can be easily stabilized.
上述したように吸入口44は、ポンプ室46のうち開口部12fを介して収容部14内に露出する部分である。本実施形態において吸入口44は、下側に凸となる弓形状である。吸入口44は、収容部14の下側の領域に開口し、収容部14に貯留されるオイルOをポンプ室46内に吸入可能である。本実施形態において吸入口44は、ロータ20よりも下側に配置される。吸入口44の少なくとも一部は、収容部14に貯留されるオイルOの液面OSよりも下側に配置される。図1では、吸入口44の全体が、オイルOの液面OSよりも下側に配置される。図1に示すように、本実施形態では、吸入口44は、収容部14の下端部に開口する。上述したように吐出口45は、ポンプ室46のうち第1油路61に開口する部分である。吐出口45は、ポンプ室46の軸方向一方側に開口する。吐出口45は、ポンプ室46内からオイルOを吐出可能である。  As described above, the suction port 44 is a portion of the pump chamber 46 that is exposed in the accommodating portion 14 through the opening 12f. In the present embodiment, the suction port 44 has an arcuate shape that protrudes downward. The suction port 44 opens to a lower region of the storage portion 14 and can suck oil O stored in the storage portion 14 into the pump chamber 46. In the present embodiment, the suction port 44 is disposed below the rotor 20. At least a part of the suction port 44 is disposed below the liquid level OS of the oil O stored in the storage unit 14. In FIG. 1, the entire suction port 44 is disposed below the liquid level OS of the oil O. As shown in FIG. 1, in the present embodiment, the suction port 44 opens at the lower end of the accommodating portion 14. As described above, the discharge port 45 is a portion that opens to the first oil passage 61 in the pump chamber 46. The discharge port 45 opens to one axial side of the pump chamber 46. The discharge port 45 can discharge the oil O from the pump chamber 46. *
伝達部材50は、第1ギア51と、第2ギア52と、を有する。第1ギア51は、軸方向と平行な軸周りに回転可能な円板状の歯車である。第1ギア51は、大径部21aの軸方向一方側の端部に固定される。より詳細には、第1ギア51は、大径部21aの軸方向一方側の端部に設けられた軸方向他方側から軸方向一方側に向かって外径が小さくなる段差部21fの外径が小さくなった部分に嵌め合わされて固定される。第1ギア51は、モータシャフト21とともに中心軸J1周りに回転する。第1ギア51は、大径部21aの段差部の左向きの段差面とベアリング70とに軸方向に挟まれる。  The transmission member 50 includes a first gear 51 and a second gear 52. The first gear 51 is a disc-shaped gear that can rotate around an axis parallel to the axial direction. The first gear 51 is fixed to the end portion on one axial side of the large diameter portion 21a. More specifically, the first gear 51 has an outer diameter of the step portion 21f provided at the end portion on the one axial side of the large diameter portion 21a so that the outer diameter decreases from the other axial side toward the one axial side. It is fixed by being fitted to the smaller part. The first gear 51 rotates around the central axis J1 together with the motor shaft 21. The first gear 51 is sandwiched between the bearing 70 and the stepped surface facing the left of the stepped portion of the large diameter portion 21a. *
第2ギア52は、軸方向と平行な軸周りに回転可能な円板状の歯車である。第2ギア52は、第1ギア51の下側において第1ギア51と噛み合う。第2ギア52は、ポンプシャフト41の軸方向他方側の端部に固定される。第2ギア52は、ポンプシャフト41ともにポンプ軸J2周りに回転する。モータシャフト21の回転に伴って第1ギア51が回転すると、第1ギア51と噛み合う第2ギア52が回転し、ポンプシャフト41が回転する。これにより、伝達部材50は、モータシャフト21の回転をポンプシャフト41に伝達する。  The second gear 52 is a disk-shaped gear that can rotate around an axis parallel to the axial direction. The second gear 52 meshes with the first gear 51 on the lower side of the first gear 51. The second gear 52 is fixed to the end portion on the other axial side of the pump shaft 41. The second gear 52 rotates around the pump axis J2 together with the pump shaft 41. When the first gear 51 rotates along with the rotation of the motor shaft 21, the second gear 52 that meshes with the first gear 51 rotates, and the pump shaft 41 rotates. Thereby, the transmission member 50 transmits the rotation of the motor shaft 21 to the pump shaft 41. *
ロータ20が回転してモータシャフト21が回転すると、伝達部材50を介してポンプシャフト41が回転して、外歯歯車42が回転する。これにより、外歯歯車42と噛み合う内歯歯車43が回転して、吸入口44からポンプ室46内に吸入されるオイルOが、外歯歯車42と内歯歯車43との間を介して、吐出口45へと送られる。このようにして、ポンプ部40は、モータシャフト21を介して駆動される。吐出口45から吐出されたオイルOの一部は、第1油路61を介して、第2油路62へと流入する。図3に矢印で示すように、第2油路62に流入したオイルOは、回転するモータシャフト21の遠心力によって、径方向外側に力を受け、第1貫通孔26aを通ってモータシャフト21の外部へと流出する。  When the rotor 20 rotates and the motor shaft 21 rotates, the pump shaft 41 rotates through the transmission member 50, and the external gear 42 rotates. As a result, the internal gear 43 that meshes with the external gear 42 rotates, and the oil O sucked into the pump chamber 46 from the suction port 44 passes between the external gear 42 and the internal gear 43. It is sent to the discharge port 45. In this way, the pump unit 40 is driven via the motor shaft 21. A part of the oil O discharged from the discharge port 45 flows into the second oil passage 62 via the first oil passage 61. As indicated by an arrow in FIG. 3, the oil O that has flowed into the second oil passage 62 receives a force radially outward due to the centrifugal force of the rotating motor shaft 21, passes through the first through hole 26a, and the motor shaft 21. Out to the outside. *
本実施形態では、第1貫通孔26aは第1エンドプレート24とロータコア22との軸方向の隙間27aに開口するため、第1貫通孔26aから流出したオイルOは隙間27aに流入する。そして、隙間27aに流入したオイルOの一部は、噴出孔24aから径方向外側に向けて噴出される。一方、隙間27aに流入したオイルOの他の一部は、ロータ貫通孔22aを通って隙間27bに流入する。隙間27bに流入したオイルOは、噴出孔25aから径方向外側に向けて噴出される。噴出孔24a,25aから径方向外側に噴出されたオイルOは、コイル32に吹き付けられる。これにより、オイルOによってコイル32を冷却することができる。また、第2油路62は、モータシャフト21の内部に設けられるため、噴出孔24a,25aから噴出されるまでのオイルOによって、ロータ20を冷却することもできる。特に、マグネット23を冷却することができるので、マグネット23の減磁を抑制できる。  In the present embodiment, since the first through hole 26a opens in the axial gap 27a between the first end plate 24 and the rotor core 22, the oil O flowing out of the first through hole 26a flows into the gap 27a. A part of the oil O flowing into the gap 27a is ejected radially outward from the ejection hole 24a. On the other hand, the other part of the oil O that has flowed into the gap 27a flows into the gap 27b through the rotor through hole 22a. The oil O that has flowed into the gap 27b is ejected radially outward from the ejection hole 25a. The oil O ejected radially outward from the ejection holes 24 a and 25 a is sprayed to the coil 32. Thereby, the coil 32 can be cooled by the oil O. Moreover, since the 2nd oil path 62 is provided in the inside of the motor shaft 21, the rotor 20 can also be cooled with the oil O until it ejects from the ejection holes 24a and 25a. In particular, since the magnet 23 can be cooled, demagnetization of the magnet 23 can be suppressed. *
なお、図3では、噴出孔24a,25aからオイルOが上側に噴出される例を示すが、これに限られない。ロータ20は回転するため、噴出孔24a,25aの周方向位置は、ロータ20の回転に伴って変化する。これにより、噴出孔24a,25aから噴出されるオイルOの向きは、周方向に変化し、周方向に沿って配置される複数のコイル32をオイルOによって冷却することができる。  FIG. 3 shows an example in which the oil O is ejected upward from the ejection holes 24a and 25a, but is not limited thereto. Since the rotor 20 rotates, the circumferential positions of the ejection holes 24 a and 25 a change as the rotor 20 rotates. Thereby, the direction of the oil O ejected from the ejection holes 24a and 25a changes in the circumferential direction, and the plurality of coils 32 arranged along the circumferential direction can be cooled by the oil O. *
また、吐出口45から吐出されたオイルOの他の一部は、第1油路61および空間13bを介して、第3油路63へと流入する。第3油路63に流入したオイルOは、供給部63c,63dから流出され、コイル32に供給される。これにより、オイルOによってコイル32をより冷却できる。本実施形態では、第3油路63がステータ30の上側において収容部14に開口するため、第3油路63から流出したオイルOは、ステータ30に上側から供給される。これにより、オイルOをステータ30の上側から下側に沿って供給することができ、ステータ30全体をオイルOによって冷却しやすい。  Further, the other part of the oil O discharged from the discharge port 45 flows into the third oil passage 63 through the first oil passage 61 and the space 13b. The oil O that has flowed into the third oil passage 63 flows out of the supply parts 63 c and 63 d and is supplied to the coil 32. Accordingly, the coil 32 can be further cooled by the oil O. In the present embodiment, since the third oil passage 63 opens into the accommodating portion 14 on the upper side of the stator 30, the oil O that has flowed out of the third oil passage 63 is supplied to the stator 30 from the upper side. Accordingly, the oil O can be supplied from the upper side to the lower side of the stator 30, and the entire stator 30 can be easily cooled by the oil O. *
以上のようにして、モータシャフト21の回転によってポンプ部40を駆動することができ、ポンプ部40によってハウジング10に貯留されるオイルOを吸い上げてロータ20およびステータ30に供給することができる。これにより、ハウジング10に貯留されるオイルOを利用して、ロータ20およびステータ30を冷却することができる。ステータ30に供給されたオイルOは、収容部14内を落下して、再び収容部14の下側の領域に貯留される。これにより、収容部14内のオイルOを循環させることができる。  As described above, the pump unit 40 can be driven by the rotation of the motor shaft 21, and the oil O stored in the housing 10 can be sucked up by the pump unit 40 and supplied to the rotor 20 and the stator 30. Thereby, the rotor 20 and the stator 30 can be cooled using the oil O stored in the housing 10. The oil O supplied to the stator 30 falls in the housing portion 14 and is stored again in the lower region of the housing portion 14. Thereby, the oil O in the accommodating part 14 can be circulated. *
本実施形態によれば、オイルOをポンプ室46に吸入する吸入口44が、オイルOが貯留される収容部14の下側の領域に開口する。そのため、収容部14に貯留されるオイルOに直接的に吸入口44を露出させることができる。これにより、収容部14に貯留されるオイルをポンプ室46内へと導く油路が不要である。したがって、ポンプ部40によってオイルOを送るための油路が複雑化することを抑制でき、ポンプ部40を備える駆動装置1の構造を簡単化しやすい。これにより、本実施形態によれば、駆動装置1を小型化できる。  According to the present embodiment, the suction port 44 for sucking the oil O into the pump chamber 46 opens in a lower region of the accommodating portion 14 where the oil O is stored. Therefore, the suction port 44 can be directly exposed to the oil O stored in the storage unit 14. This eliminates the need for an oil passage that guides the oil stored in the storage portion 14 into the pump chamber 46. Therefore, the oil path for sending the oil O by the pump unit 40 can be prevented from becoming complicated, and the structure of the drive device 1 including the pump unit 40 can be easily simplified. Thereby, according to this embodiment, the drive device 1 can be reduced in size. *
また、本実施形態によれば、吸入口44がロータ20よりも下側に配置されるため、吸入口44をオイルOの液面OSよりも下側に配置しやすい。これにより、吸入口44からポンプ室46内にオイルOを吸入しやすい。また、液面OSがロータ20より下側に配置される場合であっても、吸入口44を液面OSよりも下側に配置することが可能になる。これにより、液面OSをロータ20よりも下側にしてオイルOがロータ20の回転抵抗になることを抑制しつつ、吸入口44からオイルOを吸入しやすくできる。  In addition, according to the present embodiment, since the suction port 44 is disposed below the rotor 20, the suction port 44 can be easily disposed below the liquid level OS of the oil O. Thereby, the oil O is easily sucked into the pump chamber 46 from the suction port 44. Further, even when the liquid level OS is arranged below the rotor 20, the suction port 44 can be arranged below the liquid level OS. Accordingly, it is possible to easily suck the oil O from the suction port 44 while suppressing the oil O from becoming the rotational resistance of the rotor 20 with the liquid level OS below the rotor 20. *
本実施形態では、吸入口44の少なくとも一部がオイルOの液面OSよりも下側に配置されるため、収容部14に貯留されるオイルOに吸入口44をより露出させやすい。これにより、吸入口44からポンプ室46内にオイルOをより吸入しやすい。  In the present embodiment, since at least a part of the suction port 44 is disposed below the liquid surface OS of the oil O, the suction port 44 can be more easily exposed to the oil O stored in the storage unit 14. Thereby, the oil O is more easily sucked into the pump chamber 46 from the suction port 44. *
また、本実施形態によれば、ポンプ室46の軸方向他方側の開口の一部を閉塞する閉塞部12dを第1部分12の一部とできるため、第2部分13を第1部分12に対して取り付けることで、ポンプ室46の軸方向他方側の開口の一部を閉塞できる。これにより、ポンプ室46を閉塞する部材を別途設ける必要がなく、駆動装置1の部品点数を低減しやすい。また、第1部分12に開口部12fを設けることで、容易にポンプ室46の吸入口44を収容部14に露出させることができる。  In addition, according to the present embodiment, since the closing portion 12d that closes a part of the opening on the other axial side of the pump chamber 46 can be a part of the first portion 12, the second portion 13 is changed to the first portion 12. A part of the opening on the other side in the axial direction of the pump chamber 46 can be closed by attaching to the pump chamber 46. Thereby, it is not necessary to separately provide a member for closing the pump chamber 46, and the number of parts of the driving device 1 can be easily reduced. Further, by providing the opening portion 12 f in the first portion 12, the suction port 44 of the pump chamber 46 can be easily exposed to the housing portion 14. *
本発明は上述の実施形態に限られず、他の構成を採用することもできる。閉塞部12dは、第2部分13に設けられてもよい。ポンプ室46は、第1部分12に設けられてもよい。この場合、ポンプ室46は、第1部分12の軸方向一方側の面から軸方向他方側に窪む。また、第1部分12と第2部分13とは単一の部材の部分であってもよい。  The present invention is not limited to the above-described embodiment, and other configurations can be employed. The blocking part 12d may be provided in the second portion 13. The pump chamber 46 may be provided in the first portion 12. In this case, the pump chamber 46 is recessed from the surface on the one side in the axial direction of the first portion 12 to the other side in the axial direction. Further, the first portion 12 and the second portion 13 may be a single member portion. *
ロータコア22は、モータシャフト21の外周面に圧入等により固定されてもよい。この場合、第1エンドプレート24および第2エンドプレート25は設けられなくてもよい。また、この場合、第1貫通孔26aから流出したオイルOが直接的にコイル32に供給されてもよいし、第1貫通孔26aと繋がる孔がロータコア22に設けられ、ロータコア22の孔を介してオイルOがコイル32に供給されてもよい。また、オイルOは、ステータコア31に供給されてもよい。また、第3油路63は設けられなくてもよい。  The rotor core 22 may be fixed to the outer peripheral surface of the motor shaft 21 by press fitting or the like. In this case, the first end plate 24 and the second end plate 25 may not be provided. In this case, the oil O flowing out from the first through hole 26 a may be directly supplied to the coil 32, or a hole connected to the first through hole 26 a is provided in the rotor core 22 via the hole of the rotor core 22. Thus, the oil O may be supplied to the coil 32. Further, the oil O may be supplied to the stator core 31. Further, the third oil passage 63 may not be provided. *
ポンプシャフト41は、モータシャフト21に対して傾いてもよい。すべり軸受部12eは、液面OSより上側であってもよい。ポンプシャフト41は、ボールベアリングによって回転可能に支持されてもよい。外歯歯車42の歯部42aの歯形および内歯歯車43の歯部43aの歯形は、サイクロイド歯形であってもよいし、インボリュート歯形であってもよい。  The pump shaft 41 may be inclined with respect to the motor shaft 21. The plain bearing portion 12e may be above the liquid level OS. The pump shaft 41 may be rotatably supported by a ball bearing. The tooth profile of the tooth portion 42a of the external gear 42 and the tooth profile of the tooth portion 43a of the internal gear 43 may be a cycloid tooth profile or an involute tooth profile. *
なお、上述した実施形態の駆動装置の用途は、特に限定されない。また、上述した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 In addition, the use of the drive apparatus of embodiment mentioned above is not specifically limited. Moreover, each structure mentioned above can be suitably combined in the range which is not mutually contradictory.



1…駆動装置、10…ハウジング、12…第1部分、12d…閉塞部、12e…軸受部、12f…開口部、13…第2部分、14…収容部、20…ロータ、21…モータシャフト、26a…第1貫通孔、30…ステータ、40…ポンプ部、41…ポンプシャフト、42…外歯歯車、42a,43a…歯部、43…内歯歯車、44…吸入口、45…吐出口、46…ポンプ室、50…伝達部材、61…第1油路、62…第2油路、63…第3油路、70,71…ベアリング、J1…中心軸、O…オイル、OS…液面、Z…鉛直方向



DESCRIPTION OF SYMBOLS 1 ... Drive device, 10 ... Housing, 12 ... 1st part, 12d ... Closure part, 12e ... Bearing part, 12f ... Opening part, 13 ... 2nd part, 14 ... Storage part, 20 ... Rotor, 21 ... Motor shaft, 26a ... 1st through-hole, 30 ... Stator, 40 ... Pump part, 41 ... Pump shaft, 42 ... External gear, 42a, 43a ... Tooth part, 43 ... Internal gear, 44 ... Suction port, 45 ... Discharge port, 46 ... pump chamber, 50 ... transmission member, 61 ... first oil passage, 62 ... second oil passage, 63 ... third oil passage, 70, 71 ... bearing, J1 ... central axis, O ... oil, OS ... liquid level , Z ... vertical direction

Claims (10)




  1. 一方向に延びる中心軸に沿って配置されるモータシャフトを有するロータと、



    前記ロータと径方向に隙間を介して対向するステータと、



    前記ロータおよび前記ステータを収容するとともにオイルを貯留可能な収容部を有するハウジングと、



    前記ハウジング内において前記中心軸と異なる軸に沿って配置されるポンプシャフトを有し、前記モータシャフトを介して駆動されるポンプ部と、



    前記モータシャフトの回転を前記ポンプシャフトに伝達する伝達部材と、



    を備え、



    前記ポンプ部は、



     前記ポンプシャフトに固定される外歯歯車と、



     前記外歯歯車を囲み、前記外歯歯車と噛み合う内歯歯車と、



     前記ハウジングに設けられ、前記内歯歯車および前記外歯歯車を収容するポンプ室と、



     前記ポンプ室内にオイルを吸入可能な吸入口と、



     前記ポンプ室内からオイルを吐出可能な吐出口と、



    を有し、



    前記ハウジングは、前記吐出口と繋がる第1油路を有し、



    前記モータシャフトは、



     前記モータシャフトの内部に設けられ、前記第1油路と繋がる第2油路と、



     前記第2油路と前記モータシャフトの外周面とを繋ぐ第1貫通孔と、



    を有し、



    前記吸入口は、前記収容部の鉛直方向下側の領域に開口し、前記収容部に貯留されるオイルを前記ポンプ室内に吸入可能である、駆動装置。





    A rotor having a motor shaft disposed along a central axis extending in one direction;



    A stator facing the rotor via a gap in the radial direction;



    A housing having an accommodating portion capable of accommodating the rotor and the stator and storing oil;



    A pump unit having a pump shaft disposed along an axis different from the central axis in the housing, and driven by the motor shaft;



    A transmission member for transmitting rotation of the motor shaft to the pump shaft;



    With



    The pump part is



    An external gear fixed to the pump shaft;



    An internal gear surrounding the external gear and meshing with the external gear;



    A pump chamber provided in the housing and accommodating the internal gear and the external gear;



    A suction port capable of sucking oil into the pump chamber;



    A discharge port capable of discharging oil from the pump chamber;



    Have



    The housing has a first oil passage connected to the discharge port,



    The motor shaft is



    A second oil passage provided inside the motor shaft and connected to the first oil passage;



    A first through hole connecting the second oil passage and the outer peripheral surface of the motor shaft;



    Have



    The suction opening opens in a region on the lower side in the vertical direction of the housing portion, and is capable of sucking oil stored in the housing portion into the pump chamber.





  2. 前記吸入口は、前記ロータよりも鉛直方向下側に配置される、請求項1に記載の駆動装置。





    The drive device according to claim 1, wherein the suction port is disposed vertically below the rotor.





  3. 前記吸入口の少なくとも一部は、前記収容部に貯留されるオイルの液面よりも鉛直方向下側に配置される、請求項1または2に記載の駆動装置。





    3. The drive device according to claim 1, wherein at least a part of the suction port is disposed on a lower side in a vertical direction than a liquid level of oil stored in the housing portion.


  4. 前記ロータの回転時において、前記収容部に貯留されるオイルの液面は、前記ロータよりも鉛直方向下側に配置される、請求項3に記載の駆動装置。


    4. The drive device according to claim 3, wherein when the rotor rotates, a liquid level of oil stored in the housing portion is arranged on a lower side in a vertical direction than the rotor.


  5. 前記ハウジングは、



     前記モータシャフトを回転可能に支持するベアリングを保持し、前記ステータの軸方向一方側を覆う第1部分と、



     前記第1部分の軸方向一方側に取り付けられ、前記ポンプ室が設けられる第2部分と、



    を有し、



    前記ポンプ室は、前記第2部分の軸方向他方側の面から軸方向一方側に窪み、



    前記第1部分は、



     前記ポンプ室の軸方向他方側の開口の一部を閉塞する閉塞部と、



     前記第1部分を軸方向に貫通し前記吸入口を前記収容部に露出させる開口部と、



     を有する、請求項1から4のいずれか一項に記載の駆動装置。


    The housing is



    A first portion that holds a bearing that rotatably supports the motor shaft and covers one side of the stator in the axial direction;



    A second portion attached to one axial side of the first portion and provided with the pump chamber;



    Have



    The pump chamber is recessed from the surface on the other axial side of the second portion to the one axial side,



    The first part is



    A closing part for closing a part of the opening on the other axial side of the pump chamber;



    An opening that penetrates the first portion in the axial direction and exposes the suction port to the housing portion;



    5. The drive device according to claim 1, comprising:





  6. 前記閉塞部は、前記閉塞部を軸方向に貫通するすべり軸受部を有し、



    前記すべり軸受部は、前記ポンプ室と前記収容部との軸方向の間に位置し、



    前記ポンプシャフトは、前記すべり軸受部によって回転可能に支持される、請求項5に記載の駆動装置。





    The closing portion has a sliding bearing portion that penetrates the closing portion in the axial direction,



    The sliding bearing portion is located between the pump chamber and the housing portion in the axial direction,



    The drive device according to claim 5, wherein the pump shaft is rotatably supported by the sliding bearing portion.


  7. 前記すべり軸受部の少なくとも一部は、前記収容部に貯留されるオイルの液面よりも鉛直方向下側に配置される、請求項6に記載の駆動装置。


    The drive device according to claim 6, wherein at least a part of the sliding bearing portion is disposed on a lower side in a vertical direction than a liquid level of oil stored in the housing portion.





  8. 前記ポンプシャフトは、前記モータシャフトの軸方向に延び、かつ、前記ステータよりも軸方向一方側において前記モータシャフトよりも鉛直方向下側に配置され、



     前記第1油路は、前記第2部分に設けられる、請求項5から7のいずれか一項に記載の駆動装置。





    The pump shaft extends in the axial direction of the motor shaft, and is disposed on a lower side in the vertical direction than the motor shaft on one axial side of the stator.



    The drive device according to any one of claims 5 to 7, wherein the first oil passage is provided in the second portion.





  9. 前記ハウジングは、前記第1油路に繋がる第3油路を有し、



    前記第3油路は、前記ステータの鉛直方向上側において前記収容部に開口する、請求項1から8のいずれか一項に記載の駆動装置。





    The housing has a third oil passage connected to the first oil passage,



    The drive device according to any one of claims 1 to 8, wherein the third oil passage opens into the housing portion on a vertical upper side of the stator.





  10. 前記外歯歯車の歯部の歯形および前記内歯歯車の歯部の歯形は、トロコイド歯形である、請求項1から9のいずれか一項に記載の駆動装置。



    The drive device according to any one of claims 1 to 9, wherein a tooth shape of the tooth portion of the external gear and a tooth shape of the tooth portion of the internal gear are trochoidal tooth shapes.
PCT/JP2017/028551 2016-08-09 2017-08-07 Drive device WO2018030324A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017004041.8T DE112017004041B4 (en) 2016-08-09 2017-08-07 DRIVE DEVICE
CN201780049078.4A CN109565222B (en) 2016-08-09 2017-08-07 Drive device
US16/323,643 US10916992B2 (en) 2016-08-09 2017-08-07 Drive device
JP2018533023A JP6947181B2 (en) 2016-08-09 2017-08-07 Drive device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662372411P 2016-08-09 2016-08-09
US62/372411 2016-08-09
US201662402027P 2016-09-30 2016-09-30
US62/402027 2016-09-30
US201662439201P 2016-12-27 2016-12-27
US62/439201 2016-12-27
JP2017-072170 2017-03-31
JP2017072170 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018030324A1 true WO2018030324A1 (en) 2018-02-15

Family

ID=61162386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028551 WO2018030324A1 (en) 2016-08-09 2017-08-07 Drive device

Country Status (1)

Country Link
WO (1) WO2018030324A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020141475A (en) * 2019-02-28 2020-09-03 本田技研工業株式会社 Rotary electric machine
CN112020817A (en) * 2018-04-27 2020-12-01 日本电产株式会社 Motor unit and control method of motor unit
JP6912028B1 (en) * 2020-03-18 2021-07-28 株式会社明電舎 Rotating machine
CN113346680A (en) * 2020-02-18 2021-09-03 日本电产株式会社 Motor and driving device
WO2021187166A1 (en) * 2020-03-18 2021-09-23 株式会社明電舎 Rotating machine
WO2023234183A1 (en) * 2022-05-31 2023-12-07 ヤマハ発動機株式会社 Motor and motor unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004603A (en) * 2008-06-18 2010-01-07 Honda Motor Co Ltd Drive motor unit for vehicle
JP2011004487A (en) * 2009-06-17 2011-01-06 Honda Motor Co Ltd Motor
JP2016111918A (en) * 2014-12-04 2016-06-20 アティエヴァ、インコーポレイテッド Motor cooling system
JP2016181954A (en) * 2015-03-23 2016-10-13 Ntn株式会社 In-wheel motor drive unit
JP2017063542A (en) * 2015-09-24 2017-03-30 Ntn株式会社 In-wheel motor drive drive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010004603A (en) * 2008-06-18 2010-01-07 Honda Motor Co Ltd Drive motor unit for vehicle
JP2011004487A (en) * 2009-06-17 2011-01-06 Honda Motor Co Ltd Motor
JP2016111918A (en) * 2014-12-04 2016-06-20 アティエヴァ、インコーポレイテッド Motor cooling system
JP2016181954A (en) * 2015-03-23 2016-10-13 Ntn株式会社 In-wheel motor drive unit
JP2017063542A (en) * 2015-09-24 2017-03-30 Ntn株式会社 In-wheel motor drive drive

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112020817A (en) * 2018-04-27 2020-12-01 日本电产株式会社 Motor unit and control method of motor unit
CN112020817B (en) * 2018-04-27 2023-10-03 日本电产株式会社 Motor unit and control method of motor unit
JP2020141475A (en) * 2019-02-28 2020-09-03 本田技研工業株式会社 Rotary electric machine
CN111628612A (en) * 2019-02-28 2020-09-04 本田技研工业株式会社 Rotating electrical machine
JP7233966B2 (en) 2019-02-28 2023-03-07 本田技研工業株式会社 Rotating electric machine
CN113346680A (en) * 2020-02-18 2021-09-03 日本电产株式会社 Motor and driving device
JP6912028B1 (en) * 2020-03-18 2021-07-28 株式会社明電舎 Rotating machine
WO2021187166A1 (en) * 2020-03-18 2021-09-23 株式会社明電舎 Rotating machine
WO2023234183A1 (en) * 2022-05-31 2023-12-07 ヤマハ発動機株式会社 Motor and motor unit

Similar Documents

Publication Publication Date Title
WO2018030324A1 (en) Drive device
JP6947181B2 (en) Drive device
JP6927223B2 (en) Drive device
WO2010044416A1 (en) Electric pump unit
WO2018030325A1 (en) Drive device
CN110915108B (en) Motor
US10958137B2 (en) Drive device
WO2018030345A1 (en) Drive device
CN111033972B (en) Drive device
CN111033971B (en) Drive device
CN111033969B (en) Drive device
WO2020031999A1 (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533023

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17839395

Country of ref document: EP

Kind code of ref document: A1