WO2018030222A1 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
WO2018030222A1
WO2018030222A1 PCT/JP2017/027926 JP2017027926W WO2018030222A1 WO 2018030222 A1 WO2018030222 A1 WO 2018030222A1 JP 2017027926 W JP2017027926 W JP 2017027926W WO 2018030222 A1 WO2018030222 A1 WO 2018030222A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
combustion engine
internal combustion
calculation unit
calculated
Prior art date
Application number
PCT/JP2017/027926
Other languages
French (fr)
Japanese (ja)
Inventor
哲志 市橋
智巳 米丸
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to DE112017003958.4T priority Critical patent/DE112017003958B4/en
Publication of WO2018030222A1 publication Critical patent/WO2018030222A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • F02D35/026Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature

Definitions

  • the present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to an internal combustion engine of a vehicle such as a two-wheeled vehicle.
  • an internal combustion engine of a vehicle such as a two-wheeled motor vehicle
  • the operation of the internal combustion engine is performed using a controller in cooperation with the fuel supply to the internal combustion engine, the supply of air, and the ignition of the mixture comprising fuel and air.
  • An electronically controlled internal combustion engine controller that electronically controls the state is employed.
  • such an internal combustion engine control device includes an intake air amount and a crank angle sensor for an internal combustion engine obtained by using respective detection signals from sensors such as an air flow sensor, a throttle opening sensor, and an intake manifold negative pressure sensor.
  • the fuel injection amount for realizing an appropriate air-fuel ratio in the internal combustion engine is calculated based on the rotational speed of the internal combustion engine obtained using this detection signal, and the fuel injection amount is injected into the internal combustion engine with this fuel injection amount.
  • the ignition is performed on the mixture of intake air and injected fuel at a predetermined ignition timing.
  • the limit values for the fuel injection amount and the ignition timing are set in consideration of the characteristics related to MBT (Minimum Advance for the Best Torque) and knock in the internal combustion engine. There is also. Further, in such an internal combustion engine control device, the fuel to the air-fuel mixture corresponding to the combustion state in the combustion chamber is detected by using detection signals from sensors such as an in-cylinder pressure sensor, a knock sensor, and an ion current sensor. Some have a configuration in which the injection amount and the ignition timing are each adjusted.
  • Patent Document 1 relates to an ignition timing control device for a spark ignition type internal combustion engine, and relates to the actual temperature of the combustion chamber wall portion of the internal combustion engine and the combustion chamber wall corresponding to the operation state of the internal combustion engine stored in advance. The temperature data in the steady state of a part is compared, The structure which calculates
  • Patent Document 2 relates to an internal combustion engine control device, and relates to a first temperature corresponding to the temperature of a first portion in a wall portion defining a combustion chamber of the internal combustion engine and an outer wall surface than the first portion in the wall portion.
  • part which is a side is disclosed.
  • the cooling capacity of the cooling system of the internal combustion engine has a correlation with the in-cylinder pressure of the internal combustion engine.
  • the first temperature corresponding to the temperature of the first part in the wall part defining the combustion chamber of the internal combustion engine and the first part in the wall part are outside the first part.
  • the coolant is a coolant
  • the water jacket in which the coolant passage is formed is used for the internal combustion engine.
  • the thermal conductivity of the coolant will also vary changed cooling capacity of the cooling system.
  • the change in the cooling capacity of the cooling system may affect the accuracy of the predetermined threshold, the internal combustion engine may not be able to operate at the best efficiency. There is room.
  • An object of the present invention is to provide an internal combustion engine control device capable of controlling the state.
  • the present invention defines a combustion chamber of an internal combustion engine and a difference between a first temperature, which is a temperature on the combustion chamber side of a wall portion in contact with a coolant, and a representative temperature of the internal combustion engine
  • the control unit calculates a reference target differential temperature from a parameter related to the operating state. Calculating a second temperature which is a temperature on the coolant side of the wall, calculating a target differential temperature by correcting the reference target differential temperature according to the second temperature, and calculating the target differential temperature. It is a first aspect to control the operation state according to a deviation between the difference temperature and the difference temperature.
  • the second aspect of the present invention includes that the parameters include the rotational speed of the internal combustion engine and the torque output by the internal combustion engine.
  • control unit in addition to the first or second aspect, the control unit further corrects the reference target differential temperature in consideration of a heat transfer time delay reflecting the heat transfer characteristics of the wall.
  • the calculation of the target differential temperature is a third aspect.
  • the control unit defines the combustion chamber of the internal combustion engine and is the first temperature that is the temperature on the combustion chamber side of the wall portion that contacts the coolant.
  • the difference temperature according to the second temperature the target difference temperature is calculated, and the operation state is controlled according to the deviation between the target difference temperature and the difference temperature. It is possible to improve the accuracy of the control target value in consideration of fluctuations in the cooling capacity of the engine, and to control the operating state of the internal combustion engine with more optimal efficiency.
  • the parameter relating to the operating state used by the control unit includes the rotational speed of the internal combustion engine and the torque output by the internal combustion engine
  • An accurate reference target differential temperature can be calculated, and based on this, the target differential temperature can be calculated, and the operating state of the internal combustion engine can be controlled with more optimal efficiency.
  • the control unit further corrects the reference target differential temperature in consideration of the heat transfer time delay reflecting the heat transfer characteristics of the wall. Therefore, the target differential temperature can be calculated with higher accuracy, and the operating state of the internal combustion engine can be controlled with more optimal efficiency.
  • FIG. 1A schematically shows the configuration of a water-cooled internal combustion engine and an internal combustion engine control device applied thereto in an embodiment of the present invention, and the amount of heat generated in the internal combustion engine is output while being transferred to a cooling system or an exhaust system. It is a fragmentary sectional view which shows a mode that it is consumed with the system
  • FIG. 1B is a schematic plan view of the combustion chamber shown in FIG. 1A, and also shows the temperature measurement position in the combustion chamber during the experiment in the present embodiment.
  • FIG. 2 shows the experimental results in the present embodiment.
  • Each of the inner surfaces of the combustion chamber when the ignition timing in the advance direction is changed with the rotational speed of the water-cooled internal combustion engine set to 5000 rpm and the opening degree of the throttle valve set to 48 degrees.
  • FIG. 3 shows the temperature distribution in the combustion chamber of the internal combustion engine when the air-fuel mixture is combusted when the internal combustion engine is air-cooled and has one intake valve and one exhaust valve. Specifically, (a) and (b) in FIG. 3 are when the rotational speed of the internal combustion engine is fixed at 2000 rpm and the carbon monoxide concentration in the exhaust gas is 0.5% and 0.7%. 3 shows the temperature distribution of the inner surface of the combustion chamber in order, and (c) to (g) in FIG.
  • FIG. 4 is a block diagram showing a configuration of an internal combustion engine control device applied to the water-cooled internal combustion engine in the present embodiment.
  • FIG. 5 shows the experimental results in this embodiment. The differential temperature when the ignition timing in the advance direction is changed with the rotational speed of the water-cooled internal combustion engine set at 5000 rpm and the throttle valve opening set at 40 degrees is shown in FIG. It is a graph shown with an output torque and a knock level.
  • FIG. 6 is a graph showing experimental results in the present embodiment, in which the differential temperature is compared with the peak in-cylinder pressure when the rotational speed of the water-cooled internal combustion engine is 5000 rpm and the opening of the throttle valve is 40 degrees. is there.
  • FIG. 7 is a schematic cross-sectional view of the water-cooled internal combustion engine in the present embodiment, and is a schematic diagram conceptually showing the content of correction of the reference target differential temperature in the internal combustion engine control device applied thereto.
  • FIG. 8 is a schematic diagram showing table data of differential temperature correction values used for correcting the reference target differential temperature in the internal combustion engine control apparatus applied to the water-cooled internal combustion engine in the present embodiment.
  • FIG. 9 is a schematic diagram showing a comparison between the target differential temperature before the filter process and the target differential temperature after the filter process in the internal combustion engine control apparatus applied to the water-cooled internal combustion engine in the present embodiment.
  • FIG. 10 is an experimental result when the compression ratio of the water-cooled internal combustion engine in the present embodiment varies when mass production is assumed, and the internal combustion engine has a predetermined rotational speed and a throttle valve opening degree.
  • 10 is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the comparative example.
  • FIG. (B) in the middle is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the present embodiment.
  • FIG. (B) in the middle is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the present embodiment.
  • 11 shows the experimental results when various fuel types are used in the present embodiment, and the advance direction of the internal combustion engine with the rotation speed of the water-cooled internal combustion engine as the predetermined rotation speed and the throttle valve opening as the predetermined opening degree.
  • 6 is a graph showing a target differential temperature, an output torque of the internal combustion engine, and a knock level when the ignition timing is changed.
  • 12 is a flowchart illustrating the flow of target difference temperature calculation processing executed by the internal combustion engine control device applied to the water-cooled internal combustion engine in the present embodiment.
  • FIG. 1A schematically shows a configuration of a water-cooled internal combustion engine and an internal combustion engine control device applied thereto in the present embodiment, and an output system while heat generated in the internal combustion engine is transferred to a cooling system or an exhaust system.
  • FIG. 1B is a schematic plan view of the combustion chamber shown in FIG. 1A, and shows the temperature measurement position in the combustion chamber at the time of the experiment in this embodiment. Also shown.
  • FIG. 2 shows the experimental results in this embodiment. The temperature at each position on the inner surface of the combustion chamber when the ignition timing in the advance direction is changed with the rotational speed of the internal combustion engine set to 5000 rpm and the opening degree of the throttle valve set to 48 degrees. Is a graph showing the output torque and knock level of the internal combustion engine.
  • FIG. 1B is a schematic plan view of the combustion chamber shown in FIG. 1A, and shows the temperature measurement position in the combustion chamber at the time of the experiment in this embodiment. Also shown.
  • FIG. 2 shows the experimental results in this embodiment. The temperature at each position on the
  • FIG. 3 shows the temperature distribution in the combustion chamber of the internal combustion engine when the air-fuel mixture is combusted when the internal combustion engine is air-cooled and has one intake valve and one exhaust valve. Specifically, (a) in FIG. 3 and (b) in FIG. 3 fix the rotational speed of the internal combustion engine at 2000 rpm, and the carbon monoxide concentration in the exhaust gas is 0.5% and 0.7%. 3 shows the temperature distribution on the inner surface of the combustion chamber in order, and (g) in FIG. 3 to (g) in FIG. 3 indicate the carbon monoxide concentration in the exhaust gas of the internal combustion engine.
  • the temperature distribution of the inner surface of the combustion chamber when the rotation number is fixed to 0.5% and the rotation speed is 1400 rpm, 1800 rpm, 2000 rpm, 2200 rpm, and 2400 rpm is shown in order.
  • the torque and the knock level are shown on the same vertical axis.
  • the internal combustion engine 1 includes a cylinder block 2 that is mounted on a vehicle such as a two-wheeled vehicle (not shown) and has one or a plurality of cylinders 2a.
  • a coolant passage 3 is formed in a side wall of a portion of the cylinder block 2 corresponding to the cylinder 2a through which a coolant that is a coolant for cooling the cylinder block 2 flows.
  • FIG. 1A shows an example in which the number of cylinders 2a is only one for convenience.
  • the internal combustion engine 1 is not limited to such a water-cooled type, and is an air-cooled type that does not have the coolant passage 3 and uses the surrounding air as a coolant for cooling the cylinder block 2. Also good.
  • Piston 4 is arranged inside cylinder 2a.
  • the piston 4 is connected to the crankshaft 6 via a connecting rod 5.
  • the crankshaft 6 is provided with a rotor 7 that rotates coaxially therewith.
  • a plurality of tooth portions (retractors) 7 a juxtaposed in a predetermined pattern in the circumferential direction are provided upright.
  • the cylinder head 8 is assembled to the upper part of the cylinder block 2.
  • the inner wall surface of the cylinder block 2, the upper surface of the piston 4, and the inner wall surface of the cylinder head 8 cooperate to define the combustion chamber 9 of the cylinder 2a.
  • the coolant passage 3 may be formed in the cylinder head 8 in addition to the cylinder block 2.
  • the cylinder head 8 is provided with a spark plug 10 that ignites a mixture of fuel and air in the combustion chamber 9. There may be a plurality of spark plugs 10 for each combustion chamber 9.
  • the cylinder head 8 is assembled with an intake pipe 11 that communicates with the combustion chamber 9.
  • an intake passage 11 a that communicates the combustion chamber 9 and the intake pipe 11 is formed.
  • An intake valve 12 is provided at a corresponding connection portion between the combustion chamber 9 and the intake passage 11a.
  • the intake pipe 11 may be a manifold according to the number of cylinders 2a, and the number of intake passages 11a is equal to the number of cylinders 2a.
  • the number of intake valves 12 for each combustion chamber 9 is assumed to be two in the case of the water-cooled internal combustion engine 1, and is assumed to be one in the case of the air-cooled internal combustion engine 1. May be the number.
  • the intake pipe 11 is provided with an injector 13 for injecting fuel therein.
  • the intake pipe 11 is provided with a throttle valve 14 on the upstream side of the injector 13.
  • the throttle valve 14 is a component of a throttle device (not shown), and the main body of the throttle device is assembled to the intake pipe 11.
  • the injector 13 may inject fuel directly into the corresponding combustion chamber 9.
  • the number of injectors 13 and throttle valves 14 may be plural.
  • an exhaust pipe 15 communicating with the combustion chamber 9 corresponding to the cylinder head 8 is assembled to the cylinder head 8.
  • An exhaust passage 15a is formed in the cylinder head 8 to communicate the combustion chamber 9 and the exhaust passage 15a.
  • An exhaust valve 16 is provided at a corresponding connection portion between the combustion chamber 9 and the exhaust pipe 15.
  • the exhaust pipe 15 may be a manifold according to the number of cylinders 2a, and the number of exhaust passages 15a is equal to the number of cylinders 2a and exhaust pipes 15.
  • the number of exhaust valves 16 for each combustion chamber 9 is assumed to be two in the case of the water-cooled internal combustion engine 1 and one in the case of the air-cooled internal combustion engine 1. May be any other number.
  • Equation 1 the total amount of heat generated in the internal combustion engine 1 is assumed as shown in the following formula (Equation 1) on the assumption that the cooling function of the cooling system of the internal combustion engine 1 does not fail.
  • QT is equal to the sum of the amount of heat Qtq converted to the torque output from the internal combustion engine 1, the amount of heat Qw cooled by the internal combustion engine 1, and the amount of heat Qex discharged by the exhaust of the internal combustion engine 1.
  • the amount of heat Qtq converted into the torque output from the engine 1 and the amount of heat Qw of cooling of the internal combustion engine 1 are in a proportional relationship.
  • the cooling heat quantity Qw can be expressed by h representing the heat transfer coefficient of the heat passage portion from the combustion chamber 9 to the coolant, h representing the cooling surface area of the combustion chamber 9, and t representing the time.
  • h representing the heat transfer coefficient of the heat passage portion from the combustion chamber 9 to the coolant
  • h representing the cooling surface area of the combustion chamber 9
  • t representing the time.
  • Equation 2 The heat transfer coefficient h in the equation (Equation 2) is expressed by the following equation (Equation 3) which is Eichenberg's equation, the third root of the piston 4 speed (piston speed) Cm, the internal pressure of the cylinder 2a ( The in-cylinder pressure increases in proportion to the square root of p and the square root of the combustion gas temperature (combustion gas temperature) Tg of the internal combustion engine 1. Therefore, a positive correlation is established between the differential temperature TCCD and the torque in an arbitrary operation state of the internal combustion engine 1. Note that, in principle, this argument holds even when the internal combustion engine 1 is an air-cooled type.
  • Each squish area is shown spaced apart from the center and approaching the spark plug 10.
  • the region where the temperature rise is most prominent among the squish region 1 to the squish region 5 is the squish region 2, which is the intake side squish region approaching the center of the combustion chamber 9. It can be seen that the temperature increase in the squish area on the side appears more sharply than the temperature increase in the squish area on the exhaust side.
  • symbol K in FIG. 3 shows the temperature range in each area
  • the symbol D is a temperature range of 150 ° C. or higher and lower than 155 ° C.
  • the symbol E is a temperature range of 145 ° C. or higher and lower than 150 ° C.
  • Symbol F is a temperature range of 140 ° C. or more and less than 145 ° C.
  • Symbol G is a temperature range of 135 ° C. or more and less than 140 ° C.
  • Symbol H is a temperature range of 130 ° C. or more and less than 135 ° C.
  • Symbol I is 125 ° C. or more and 130 ° C.
  • symbol J represents a temperature range of 120 ° C. or more and less than 125 ° C.
  • symbol K represents a temperature range of 115 ° C. or more and less than 120 ° C., respectively.
  • FIG. 4 is a block diagram showing a configuration of an internal combustion engine control device applied to the water-cooled internal combustion engine in the present embodiment.
  • FIG. 5 shows the experimental results in this embodiment. The differential temperature when the ignition timing in the advance direction is changed with the rotational speed of the water-cooled internal combustion engine set at 5000 rpm and the throttle valve opening set at 40 degrees is shown in FIG. It is a graph shown with an output torque and a knock level.
  • FIG. 6 is a graph showing experimental results in the present embodiment, in which the differential temperature is compared with the peak in-cylinder pressure when the rotational speed of the water-cooled internal combustion engine is 5000 rpm and the opening of the throttle valve is 40 degrees. is there.
  • FIG. 5 shows the experimental results in this embodiment. The differential temperature when the ignition timing in the advance direction is changed with the rotational speed of the water-cooled internal combustion engine set at 5000 rpm and the throttle valve opening set at 40 degrees is shown in FIG. It is a graph shown with an output torque and a knock level.
  • FIG. 7 is a schematic cross-sectional view of the water-cooled internal combustion engine in the present embodiment, and is a schematic diagram conceptually showing the content of correction of the reference target differential temperature in the internal combustion engine control device applied thereto.
  • FIG. 8 is a schematic diagram showing table data of differential temperature correction values used for correcting the reference target differential temperature in the internal combustion engine control apparatus applied to the water-cooled internal combustion engine in the present embodiment.
  • FIG. 9 is a schematic diagram showing a comparison between the target differential temperature before the filter process and the target differential temperature after the filter process in the internal combustion engine control apparatus applied to the water-cooled internal combustion engine in the present embodiment.
  • 10 is an experimental result when the compression ratio of the water-cooled internal combustion engine in the present embodiment varies when mass production is assumed, and the internal combustion engine has a predetermined rotational speed and a throttle valve opening degree.
  • 10 is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the comparative example.
  • FIG. (B) in the middle is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the present embodiment.
  • FIG. 11 shows experimental results when various fuel types are used in the present embodiment. The progress of the internal combustion engine is determined by setting the rotation speed of the water-cooled internal combustion engine to a predetermined rotation speed and the opening of the throttle valve to a predetermined opening.
  • FIG. 5 It is a graph which shows the target differential temperature, the output torque of an internal combustion engine, and a knock level when changing the ignition timing in the angular direction.
  • the differential temperature and the knock level are shown on the same vertical axis
  • the target differential temperature and torque are shown on the same vertical axis for convenience.
  • the internal combustion engine control apparatus 100 in this embodiment is electrically connected to a coolant temperature sensor 21, a crank angle sensor 22, an intake air temperature sensor 23, a throttle opening sensor 24, and a wall temperature sensor 25.
  • ECU Electronic Control Unit
  • the cooling water temperature sensor 21 is attached to the cylinder block 2 in a state of entering the coolant passage 3, detects the temperature of the coolant flowing in the coolant passage 3 (coolant temperature), and an electric signal indicating the detected coolant temperature. Is input to the ECU 102.
  • the coolant temperature is used as the representative temperature of the internal combustion engine 1 (internal combustion engine representative temperature).
  • the internal combustion engine representative temperature the oil temperature of the lubricating oil of the internal combustion engine 1 and the like may be used as necessary. It is possible to use the oil temperature or the like detected by an oil temperature sensor or the like.
  • the representative temperature of the internal combustion engine may be the oil temperature or the like of the lubricating oil of the internal combustion engine 1 detected by an oil temperature sensor or the like.
  • the crank angle sensor 22 is attached to a lower case or the like (not shown) assembled to the lower part of the cylinder block 2 so as to face the tooth portion 7 a formed on the outer peripheral surface of the rotor 7, and with the rotation of the crankshaft 6.
  • the angular velocity of the crankshaft 6 is detected by detecting the rotating tooth portion 7a.
  • the crank angle sensor 22 inputs an electrical signal indicating the detected angular velocity to the ECU 102.
  • the intake air temperature sensor 23 is attached to the intake pipe 11 so as to enter the intake pipe 11, detects the temperature of the air flowing into the intake pipe 11, and outputs an electric signal indicating the detected temperature of the ECU 102 to the ECU 102. To enter.
  • the throttle opening sensor 24 is attached to the main body of the throttle device, detects the opening of the throttle valve 14, and inputs an electric signal indicating the detected opening to the ECU 102.
  • the wall temperature sensor 25 is a member defining the combustion chamber 9, that is, a wall surface of the cylinder block 2 or the cylinder head 8, and a heat receiving portion is mounted on the combustion chamber 9 side. And an electric signal indicating the detected temperature of the wall portion on the combustion chamber 9 side is input to the ECU 102.
  • the wall temperature sensor 25 is a portion of the wall surface on the intake valve 12 side, which is a portion where a flame generated when the air-fuel mixture in the combustion chamber 9 is ignited by the spark plug 10 and ignited is difficult to propagate.
  • the temperature of the wall portion corresponding to the wall surface temperature on the intake valve 12 side is a temperature at a portion where the flame generated by the ignition of the air-fuel mixture in the combustion chamber 9 is difficult to propagate. This temperature is sensitive to the combustion state of the air-fuel mixture in the chamber 9.
  • the wall temperature sensor 25 shows an example in which a heat receiving portion is mounted on the combustion chamber 9 side in the wall portion of the cylinder head 8 as a member defining the combustion chamber 9.
  • the ECU 102 operates using electric power from a battery provided in the vehicle, and includes a microcomputer 104, A / D (Analog to Digil) conversion circuits 201a and 201b, a waveform shaping circuit 202, and a drive circuit 301.
  • a microcomputer 104 includes a microcomputer 104, A / D (Analog to Digil) conversion circuits 201a and 201b, a waveform shaping circuit 202, and a drive circuit 301.
  • the microcomputer 104 includes a memory 106 and a CPU (Central Processing Unit) 108.
  • a CPU Central Processing Unit
  • the memory 106 is configured by various nonvolatile and volatile storage devices, and stores a control program for the operation state control processing of the internal combustion engine and various control data.
  • the non-volatile storage device functions as a working area that temporarily stores control data (such as the fuel injection amount instruction value and ignition timing) used when the ECU 102 executes the internal combustion engine operating state control process.
  • the CPU 108 controls the overall operation of the ECU 102 using electrical signals from the coolant temperature sensor 21, the crank angle sensor 22, the intake air temperature sensor 23, the throttle opening sensor 24, and the wall temperature sensor 25.
  • Calculation unit 203, torque calculation unit 204, wall temperature calculation unit 205, cooling water temperature calculation unit 206, differential temperature calculation unit 207, reference target differential temperature calculation unit 208, correction term calculation unit 209, target differential temperature calculation unit 210, operation A state control unit 211, a comparison unit 212, and an ignition timing calculation unit 213 are provided.
  • the rotation speed calculation unit 203, the torque calculation unit 204, the wall temperature calculation unit 205, the cooling water temperature calculation unit 206, the differential temperature calculation unit 207, the reference target differential temperature calculation unit 208, the correction term calculation unit 209, and the target differential temperature calculation Unit 210, operation state control unit 211, comparison unit 212, and ignition timing calculation unit 213 are functional blocks when the CPU 108 reads out necessary control programs and control data from the memory 106 and executes internal combustion engine operation state control processing and the like. As shown.
  • the A / D conversion circuit 201a converts the analog electrical signal input from the wall temperature sensor 25 into a digital format and inputs it to the wall temperature calculation unit 205.
  • the A / D conversion circuit 201 b converts the analog electrical signal input from the cooling water temperature sensor 21 into a digital format and inputs it to the cooling water temperature calculation unit 206.
  • the waveform shaping circuit 202 performs a shaping process such as a smoothing process on the electric signal input from the crank angle sensor 22, and then inputs the electric signal to the rotation speed calculation unit 203 and the torque calculation unit 204.
  • the rotation speed calculation unit 203 calculates the rotation speed of the internal combustion engine 1 using the electrical signal input from the waveform shaping circuit 202.
  • the rotation speed of the internal combustion engine 1 calculated by the rotation speed calculation unit 203 in this way is the reference Used by the target differential temperature calculation unit 208.
  • the torque calculation unit 204 calculates the output torque (torque) of the internal combustion engine 1 using the electrical signal input from the waveform shaping circuit 202.
  • the torque of the internal combustion engine 1 calculated by the torque calculation unit 204 in this way is the reference Used by the target differential temperature calculation unit 208.
  • the torque calculation unit 204 may perform a predetermined filtering process so that the calculated torque value of the internal combustion engine 1 changes smoothly.
  • the wall temperature calculation unit 205 uses the electric signal input from the A / D conversion circuit 201a to define the combustion chamber 9 of the internal combustion engine 1 on the combustion chamber 9 side of the wall of the cylinder block 2 or the cylinder head 8.
  • the temperature (wall surface temperature) is calculated, and the temperature on the combustion chamber 9 side of the wall calculated by the wall temperature calculating unit 205 in this way is used by the differential temperature calculating unit 207 and the correction term calculating unit 209.
  • the temperature of the wall portion on the combustion chamber 9 side is the temperature of the internal combustion engine 1 that directly reflects the combustion state of the air-fuel mixture in the combustion chamber 9 of the internal combustion engine 1, and as described above, 9 is a temperature that reacts sensitively to a combustion state such as combustion disturbance of the air-fuel mixture in the fuel tank 9, that is, a heat receiving state on the wall surface of the combustion chamber 9.
  • the heat receiving state of the wall surface of the combustion chamber 9 is affected by the internal pressure level of the cylinder of the internal combustion engine 1 and the occurrence of knocking.
  • the internal pressure level of the cylinder and the occurrence of knocking are determined by the internal combustion engine. It is influenced by the ignition timing of the engine 1.
  • the wall temperature calculation unit 205 may perform a predetermined filtering process so that the calculated temperature value of the wall on the combustion chamber 9 side changes smoothly.
  • the temperature on the combustion chamber 9 side of the wall portion can be evaluated as a temperature that directly reflects the amount of generated heat generated in the cylinder of the internal combustion engine 1, such a wall portion.
  • the temperature on the combustion chamber 9 side of the internal combustion engine 1 and the fuel injection amount supplied to the combustion chamber 9 in the cylinder of the internal combustion engine 1 are also generally correlated with each other. The temperature on the side can be used not only for controlling the ignition timing but also for controlling the fuel injection amount.
  • the cooling water temperature calculation unit 206 calculates the coolant temperature flowing through the coolant passage 3 as the representative temperature of the internal combustion engine using the electric signal input from the A / D conversion circuit 201b, and the cooling water temperature calculation unit 206 calculates in this way.
  • the coolant temperature thus used is used in the differential temperature calculation unit 207 and the correction term calculation unit 209.
  • the coolant temperature is a representative temperature of the internal combustion engine 1 representatively showing the temperature of the internal combustion engine, that is, a representative temperature of the internal combustion engine, and a temperature reflecting a cooling heat amount for cooling the cylinder of the internal combustion engine 1. It can be evaluated.
  • the coolant temperature is a temperature that does not react sensitively to the combustion state of the air-fuel mixture in the combustion chamber 9 as compared with the temperature of the wall portion on the combustion chamber 9 side calculated by the wall temperature calculation unit 205.
  • the coolant temperature calculation unit 206 may perform a predetermined filtering process on the coolant temperature so calculated so that the coolant temperature value changes smoothly.
  • the temperature of the lubricating oil of the internal combustion engine 1 may be used as the representative internal combustion engine temperature. Even when the internal combustion engine 1 is air-cooled, the temperature of the lubricating oil of the internal combustion engine 1 can be used as the representative internal combustion engine temperature.
  • the difference temperature calculation unit 207 calculates a difference temperature that is a difference value between the temperature on the combustion chamber 9 side of the wall calculated by the wall temperature calculation unit 205 and the coolant temperature calculated by the cooling water temperature calculation unit 206.
  • the difference temperature calculated by the difference temperature calculation unit 207 is used in the internal combustion engine operation state control process of the operation state control unit 211.
  • the temperature on the combustion chamber 9 side of the wall calculated by the wall temperature calculation unit 205 is a temperature that reacts sensitively to the combustion state of the air-fuel mixture in the combustion chamber 9 of the internal combustion engine 1, and the cooling water temperature calculation unit Since the coolant temperature calculated by 206 is a temperature that does not react sensitively to the combustion state of the air-fuel mixture in the combustion chamber 9, the difference temperature is large when the combustion state in the combustion chamber 9 is good. On the other hand, when the ignition timing is retarded and the output of the internal combustion engine 1 is low, a small value is shown. Therefore, the differential temperature is an index indicating whether the combustion state in the combustion chamber 9 is good or bad, and also reflects the cooling capacity of the cooling system of the internal combustion engine 1.
  • the ignition timing of the internal combustion engine 1 affects the internal pressure level of the cylinder of the internal combustion engine 1 and the occurrence of knocking.
  • the internal pressure level of the cylinder and the occurrence of knocking occur on the wall surface of the combustion chamber 9 of the internal combustion engine 1.
  • the difference temperature that affects the state of heat reception and that is the difference between the temperature on the combustion chamber 9 side of the wall of the combustion chamber 9 and the internal combustion engine representative temperature such as the coolant temperature of the internal combustion engine is the combustion chamber 9 Therefore, the differential temperature can be applied to the ignition timing control when the operation state control unit 211 controls the operation state of the internal combustion engine 1. .
  • the differential temperature can be applied to the control of the fuel injection amount when the operation state control unit 211 controls the operation state of the internal combustion engine 1 as necessary.
  • the experimental results shown in FIG. 6 show that there is a very good positive correlation between the difference temperature and the peak in-cylinder pressure. If the ignition timing is fixed, there is a positive correlation between the peak in-cylinder pressure and the average effective pressure, so there is a positive correlation between the torque of the internal combustion engine 1 and the differential temperature at MBT. Thus, if there is a positive correlation between the torque of the internal combustion engine 1 and the differential temperature, the internal combustion engine is controlled by setting the differential temperature as the target differential temperature so that the differential temperature of the actual machine becomes the target differential temperature. 1 can be operated in the best torque state.
  • the reference target difference temperature calculation unit 208 calculates the reference target difference temperature from the parameters related to the operating state of the internal combustion engine 1, and the reference target difference temperature calculated by the reference target difference temperature calculation unit 208 in this way is the correction term calculation unit 209. And the target differential temperature calculation unit 210.
  • the reference target differential temperature is a reference value of the target differential temperature that is the target value of the differential temperature calculated by the differential temperature calculation unit 207, and is a level that the internal combustion engine 1 can ignore the knock level. Thus, it is calculated as an ideal value of the differential temperature when in an operating state in which the best torque is output.
  • a parameter relating to the operating state of the internal combustion engine 1 a reference target differential temperature that is an ideal value when the internal combustion engine 1 is in an operating state in which the internal combustion engine 1 outputs the best torque is obtained. Therefore, it is necessary to set the extracted parameter as indicating the actual operating state of the internal combustion engine 1. From this point of view, it is preferable to set the rotational speed of the internal combustion engine 1 and the torque output by the internal combustion engine 1 at the rotational speed as parameters relating to the operating state of the internal combustion engine 1.
  • the reference target differential temperature calculation unit 208 defines the reference target differential temperature value corresponding to the data stored in advance in the memory 106, that is, the parameter value relating to the operating state of the internal combustion engine 1.
  • the table data and the map data are read from the memory 106, and the parameter values relating to the operating state of the internal combustion engine 1 that is actually operated are compared with the data read from the memory 106.
  • the value of the reference target differential temperature corresponding to the value of the parameter relating to the operating state of the internal combustion engine 1 that is being operated is calculated.
  • the rotational speed of the internal combustion engine 1 and the torque output by the internal combustion engine 1 at the rotational speed are set as parameters relating to the operating state of the internal combustion engine 1
  • the data stored in advance in the memory 106 is , Defining the value of the rotational speed of the internal combustion engine 1 and the value of the torque output by the internal combustion engine 1 at the rotational speed corresponding to the two axes orthogonal to each other, and the third axis orthogonal to the two axes, It becomes the form of map data in which the value of the reference target differential temperature is defined corresponding to the value of the rotation speed and the value of the torque.
  • the reference target differential temperature calculation unit 208 reads the map data from the memory 106 and refers to the map data, and the torque calculation unit 204 calculates the rotation number of the internal combustion engine 1 calculated by the rotation number calculation unit 203. The reference target differential temperature corresponding to the torque of the internal combustion engine 1 is calculated.
  • the correction term calculation unit 209 uses the coolant temperature calculated by the cooling water temperature calculation unit 206 and the reference target difference temperature calculated by the reference target difference temperature calculation unit 208 to correct the correction value in the correction term for correcting the reference target difference temperature.
  • the correction value calculated by the correction term calculation unit 209 in this way is used by the target differential temperature calculation unit 210.
  • This correction value is mainly for adjusting the reference target differential temperature in consideration of the time variation of the cooling capacity of the cooling system so that the amount of heat exceeding the allowable heat amount of the internal combustion engine 1 does not occur in the correction value.
  • the temperature of the wall surface on the side of the coolant passage 3 typically formed in the wall portion of the cylinder block 2 defining the combustion chamber 9 is the coolant.
  • the correction term calculation unit 209 reads from the memory 106 data stored in advance in the memory 106, that is, table data in which the value of the temperature correlation coefficient is defined corresponding to the value of the coolant temperature.
  • the coolant temperature value calculated by the coolant temperature calculation unit 206 is compared with the table data read from the memory 106, and the temperature phase relationship corresponding to the coolant temperature value calculated by the coolant temperature calculation unit 206 from the data is compared. Calculate the value of the number.
  • the correction term calculation unit 209 multiplies the temperature correlation coefficient by the reference target difference temperature calculated by the reference target difference temperature calculation unit 208, and the temperature of the wall portion on the combustion chamber 9 side and the coolant passage 3 of the wall portion. Calculate the temperature drop between the side temperatures.
  • the correction term calculation unit 209 calculates the temperature of the wall portion on the coolant passage 3 side by subtracting the temperature drop from the temperature of the wall portion on the combustion chamber 9 side calculated by the wall portion temperature calculation unit 205.
  • the correction term calculation unit 209 reads from the memory 106 data stored in advance in the memory 106, that is, table data in which a differential temperature correction value is defined corresponding to the temperature value of the wall on the coolant passage 3 side.
  • the temperature on the coolant passage 3 side of the wall portion calculated by the correction term calculation unit 209 is compared with the table data read from the memory 106, and the wall portion calculated by the correction term calculation unit 209 is calculated from the data.
  • a differential temperature correction value corresponding to the temperature value on the coolant passage 3 side is calculated.
  • the cooling capacity of the cooling system includes the speed of the vehicle on which the internal combustion engine 1 is mounted, the representative temperature of the internal combustion engine 1, the intake air temperature, the oil temperature, and the cylinder. Since the temperature depends on the surface temperature of the outer skin of the block or the like, the temperature corresponding to the temperature on the coolant passage 3 side of the wall portion in the water-cooled internal combustion engine 1 is detected as the representative temperature of the internal combustion engine 1. It can be calculated by correcting the position and multiplying this by a correlation coefficient corresponding to the vehicle speed and the intake air temperature.
  • the target difference temperature calculation unit 210 uses the difference temperature correction value calculated by the correction term calculation unit 209 to correct the reference target difference temperature calculated by the reference target difference temperature calculation unit 208 to calculate the target difference temperature. As described above, the target difference temperature calculated by the target difference temperature calculation unit 210 is used by the operation state control unit 211. Specifically, the target difference temperature calculation unit 210 adds the difference temperature correction value calculated by the correction term calculation unit 209 to the value of the reference target difference temperature calculated by the reference target difference temperature calculation unit 208, so that the target difference temperature Will be calculated. At this time, the target differential temperature calculation unit 210 takes into account the time delay of heat transfer from the combustion chamber 9 to the wall portion reflecting the heat transfer characteristics of the wall portion defining the combustion chamber 9 of the internal combustion engine 1.
  • the reference target differential temperature may be further corrected.
  • the target differential temperature calculation unit 210 calculates a filtering coefficient corresponding to when the output of the internal combustion engine 1 increases and decreases, and a standard obtained by correcting the filtering coefficient using the differential temperature correction value.
  • the target differential temperature is calculated by multiplying the target differential temperature.
  • the difference temperature TCCD is a difference value between the temperature TCC on the combustion chamber 9 side of the wall calculated by the wall temperature calculation unit 205 and the coolant temperature TW calculated by the cooling water temperature calculation unit 206. Therefore, the amount of heat generated by the combustion of the internal combustion engine 1 corresponds to the amount of heat transmitted to the cooling system. That is, the differential temperature TCCD changes depending on whether the internal combustion engine 1 is knocked or the level of the in-cylinder pressure. Therefore, the differential temperature TCCD can be evaluated as a parameter directly indicating the soundness of combustion of the internal combustion engine 1.
  • the difference temperature TCCD is an increase / decrease in the temperature TCCR on the coolant passage 3 side of the wall (TCCR ′ in FIG. 7).
  • the target difference temperature calculation unit 210 corrects the reference target difference temperature TCCBPM calculated by the reference target difference temperature calculation unit 208 using the difference temperature correction value DTCCR calculated by the correction term calculation unit 209 (FIG. 7, indicated as TCCBPM ′ and TCCBPM ′′).
  • the table data shown in FIG. 8 is an example of table data used when the correction term calculation unit 209 calculates a differential temperature correction value for correcting the reference target differential temperature by the target differential temperature calculation unit 210.
  • FIG. The mode of change of the differential temperature correction value on the right side in the middle corresponds to the nucleate boiling point and the film boiling point of the coolant.
  • the target differential temperature calculation unit 210 has a time delay of heat transfer from the combustion chamber 9 to the wall portion reflecting the heat transfer characteristics of the wall portion defining the combustion chamber 9 of the internal combustion engine 1.
  • the operating state control unit 211 controls the operation of the internal combustion engine control device 100 as a whole. Specifically, the operating state control unit 211 uses the electrical signal input from the intake air temperature sensor 23 to the ECU 102 to calculate the opening of the throttle valve 14 calculated by the CPU 108, and the electrical signal input from the intake air temperature sensor 23 to the ECU 102. On the basis of the temperature of the air flowing into the intake pipe 11 calculated by the CPU 108, the differential temperature calculated by the differential temperature calculation unit 207, the target differential temperature calculated by the target differential temperature calculation unit 210, and the like. An indication value of the fuel injection amount is calculated.
  • the operation state control unit 211 executes the internal combustion engine operation state control process for controlling the operation state by applying the ignition timing and the fuel injection amount instruction value calculated in this way to the internal combustion engine 1.
  • the operating state control unit 211 includes a comparison unit 212 and an ignition timing calculation unit 213 as functional blocks for calculating an instruction value of the ignition timing, focusing on the control of the ignition timing in the internal combustion engine operation state control process. .
  • the comparison unit 212 compares the difference temperature value calculated by the difference temperature calculation unit 207 with the target difference temperature value calculated by the target difference temperature calculation unit 210, and determines the magnitude relationship between them.
  • the magnitude relationship determined by the comparison unit 212 is used by the ignition timing calculation unit 213.
  • the ignition timing calculation unit 213 determines that the difference temperature value calculated by the difference temperature calculation unit 207 is larger than the target difference temperature value calculated by the target difference temperature calculation unit 210 based on the magnitude relationship determined by the comparison unit 212. Calculates the ignition timing instruction value obtained by retarding the currently applied ignition timing instruction value by a predetermined amount, and the difference temperature value calculated by the difference temperature calculation unit 207 is calculated by the target difference temperature calculation unit 210. If it is smaller than the value of the differential temperature, the ignition timing command value is calculated by advancing the command value of the currently applied ignition timing by a predetermined amount.
  • the drive circuit 301 uses an ignition coil or the like in accordance with a control signal input from the operation state control unit 211.
  • the ignition timing of the internal combustion engine 1 is controlled by driving the spark plug 10.
  • the variation width W1 of the torque of the internal combustion engine by the internal combustion engine operating state control process with a general fixed ignition timing that does not use the temperature is about 3.6% FS ratio.
  • the variation width W2 of the torque of the internal combustion engine 1 by the internal combustion engine operating state control process with the ignition timing control using the comparative target differential temperature of this embodiment as shown in (b) is shown in (a) of FIG. It can be seen that when the target differential temperature for comparison exhibiting the knock level equivalent to the knock level at the fixed ignition timing is set, it is improved to about 1.6% FS ratio.
  • the internal combustion engine control apparatus 100 having the above-described configuration substantially performs the individual difference of the internal combustion engine 1 by executing the target difference temperature calculation process shown below when executing the internal combustion engine operating state control process.
  • a target differential temperature that realizes the operating state of the internal combustion engine 1 with the optimum efficiency is calculated in an unaffected manner.
  • the operation of the internal combustion engine control apparatus 100 when executing the target differential temperature calculation process will be described with further reference to FIG.
  • FIG. 12 is a flowchart illustrating the flow of target difference temperature calculation processing executed by the internal combustion engine control device 100 according to this embodiment.
  • the flowchart of the target difference temperature calculation process shown in FIG. 12 is in accordance with the timing at which the internal combustion engine control apparatus 100 is operated when the ignition switch of the vehicle is switched from the OFF state to the ON state and the internal combustion engine operation state control process is executed.
  • the target differential temperature calculation process proceeds to step S1.
  • the target differential temperature calculation process is the internal combustion engine operation state control process in which a necessary control program and control data are read from the memory 106 while the internal combustion engine control apparatus 100 is in an operating state and the internal combustion engine operation state control process is being executed. It is repeatedly executed every predetermined control cycle.
  • the torque calculation unit 204 calculates the torque DCBCPFLT output from the internal combustion engine 1 using the electrical signal input from the waveform shaping circuit 202.
  • the torque calculation unit 204 performs a filtering process of multiplying the torque DCBCP once calculated by a predetermined filtering coefficient CDCBPREF so that the torque value of the internal combustion engine 1 calculated by the torque calculation unit 204 changes smoothly.
  • Torque DCBCPFLT is calculated.
  • the value of the filtering coefficient CDCBPREF the value read from the memory 106 by the torque calculation unit 204 is used. Thereby, the process of step S1 is completed and the target difference temperature calculation process proceeds to the process of step S2.
  • the target differential temperature calculation unit 210 takes into account the time delay of heat transfer from the combustion chamber 9 to the wall portion that reflects the heat transfer characteristics of the wall portion that defines the combustion chamber 9 of the internal combustion engine 1.
  • a filtering coefficient CDBPREF is calculated.
  • the target differential temperature calculation unit 210 reads out the table data of the filtering coefficient CDBPREF reflecting the time delay of heat transfer according to the increase and decrease of the output of the internal combustion engine 1 from the memory 106, and refers to this.
  • the value of the filtering coefficient CDBPREF corresponding to when the output of the internal combustion engine 1 increases or decreases is calculated.
  • the reference target difference temperature calculation unit 208 reads out map data in which the value of the reference target difference temperature TCCBPM is defined from the memory 106 in correspondence with the value of the parameter relating to the operating state of the internal combustion engine 1, The value of the parameter relating to the operating state of the internal combustion engine 1 that is being operated at the same time is compared with the data read from the memory 106, and from this data, the reference target differential temperature corresponding to the value of the parameter relating to the operating state of the internal combustion engine 1 Calculate the value of TCCBPM.
  • the reference target differential temperature calculation unit 208 uses the rotation speed of the internal combustion engine 1 and the torque output from the internal combustion engine 1 as parameters relating to the operating state of the internal combustion engine 1, and the data referred to by the map data is map data. It is a form.
  • the reference target differential temperature calculation unit 208 sets the rotation speed NE of the internal combustion engine 1 calculated by the rotation speed calculation unit 203 in the process of the step not shown in the present process as the value of the rotation speed of the internal combustion engine 1.
  • the value of the torque DCBCPFLT of the internal combustion engine 1 calculated by the torque calculation unit 204 in step S1 in the current process is used. Thereby, the process of step S3 is completed and the target difference temperature calculation process proceeds to the process of step S4.
  • the correction term calculation unit 209 reads out the table data in which the value of the temperature correlation coefficient MTCCR is defined corresponding to the value of the coolant temperature from the memory 106, and is a step in which illustration is omitted in the current process
  • the coolant temperature value calculated by the cooling water temperature calculation unit 206 in the process of the above and the table data read from the memory 106 are collated, and the temperature corresponding to the coolant temperature value calculated by the cooling water temperature calculation unit 206 from the data is compared.
  • the value of the correlation coefficient MTCCR is calculated.
  • the correction term calculation unit 209 uses the coolant temperature TWTCDFLT value calculated by the cooling water temperature calculation unit 206 by performing a predetermined filtering process as the coolant temperature value. Thereby, the process of step S4 is completed and the target difference temperature calculation process proceeds to the process of step S5.
  • the correction term calculation unit 209 uses the value of the temperature correlation coefficient MTCCR calculated by the correction term calculation unit 209 in the process of step S4 in the current process as the reference target in the process of step S3 in the current process.
  • a temperature drop MTCBPF between the temperature of the wall portion on the combustion chamber 9 side and the temperature of the wall portion on the coolant passage 3 side is calculated.
  • the correction term calculation unit 209 determines the value of the drop temperature MTCBPF calculated by the correction term calculation unit 209 in the process of step S5 in the current process as a wall in the process of step not shown in the current process.
  • the temperature TCCR of the wall portion on the side of the coolant passage 3 is calculated by subtracting from the temperature value of the wall portion on the side of the combustion chamber 9 calculated by the portion temperature calculation unit 205.
  • the correction term calculation unit 209 calculates the temperature TCCFLT on the combustion chamber 9 side of the wall calculated by the wall temperature calculation unit 205 by performing a predetermined filtering process as the temperature value on the combustion chamber 9 side of the wall. The value is used. Thereby, the process of step S6 is completed and the target difference temperature calculation process proceeds to the process of step S7.
  • step S7 the correction term calculation unit 209 reads out the table data in which the differential temperature correction value is defined corresponding to the temperature value on the coolant passage 3 side of the wall from the memory 106, and the step in this process
  • the temperature TCCR on the coolant passage 3 side of the wall calculated by the correction term calculation unit 209 in the process of S6 is compared with the table data read from the memory 106, and the wall calculated by the correction term calculation unit 209 from the data is compared.
  • the temperature difference correction value DTCCR corresponding to the value of the temperature TCCR on the coolant passage 3 side of the part is calculated.
  • the target difference temperature calculation unit 210 uses the difference temperature correction value DTCCR calculated by the correction term calculation unit 209 in the process of step S7 in the current process as the reference target difference in the process of step S3 in the current process.
  • the target difference temperature TCCDBP0 is calculated by adding to the value of the reference target difference temperature TCCBPM calculated by the temperature calculation unit 208.
  • the target differential temperature calculation unit 210 calculates the filtering coefficient CDBPREF according to the increase and decrease of the output of the internal combustion engine 1 calculated by the target differential temperature calculation unit 210 in the process of step S2 in the current process.
  • the target differential temperature TCCDBP0 is calculated by multiplying the value by the target differential temperature TCCDBP0 calculated by the target differential temperature calculation unit 210 in step S8 of the current process.
  • the control unit 102 defines the combustion chamber 9 of the internal combustion engine 1 and at the temperature on the combustion chamber 9 side of the wall portion that contacts the coolant.
  • a differential temperature that is a differential value between a certain first temperature and a representative temperature of the internal combustion engine 1 is calculated, a reference target differential temperature is calculated from a parameter relating to the operating state, and a second temperature that is a temperature on the coolant side of the wall portion.
  • the target difference temperature is calculated by correcting the reference target difference temperature according to the second temperature and the operation state is controlled according to the deviation between the target difference temperature and the difference temperature, With a simple configuration, it is possible to improve the accuracy of the control target value in consideration of fluctuations in the cooling capacity of the internal combustion engine 1, and to control the operating state of the internal combustion engine with more optimal efficiency.
  • the parameters relating to the operating state used by the control unit 102 include the rotational speed of the internal combustion engine 1 and the torque output by the internal combustion engine, and therefore a more accurate reference.
  • the target differential temperature is calculated, and based on this, the target differential temperature can be calculated, and the operating state of the internal combustion engine 1 can be controlled with more optimal efficiency.
  • control unit 102 further corrects the reference target differential temperature by taking into account the heat transfer time delay reflecting the heat transfer characteristics of the wall portion, thereby obtaining the target differential temperature. Therefore, the target differential temperature can be calculated with higher accuracy, and the operating state of the internal combustion engine 1 can be controlled with more optimal efficiency.
  • the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects.
  • the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects.
  • it can be changed as appropriate without departing from the scope.
  • the present invention improves the accuracy of the control target value by taking into account the fluctuation of the cooling capacity of the internal combustion engine with a simple configuration, and can control the operating state of the internal combustion engine with more optimum efficiency.
  • the present invention provides an engine control device, and is expected to be widely applicable to internal combustion engine control devices such as vehicles because of its general-purpose universal character.

Abstract

In an internal combustion engine control device (100), a control unit (102) calculates a differential temperature that is the differential between a first temperature, which is the temperature of the combustion chamber (9)-side of a wall that defines a combustion chamber (9) in an internal combustion engine (1) and is in contact with a coolant, and a representative temperature for the internal combustion engine (1); calculates a reference target differential temperature on the basis of parameters related to the operating state; calculates a second temperature, which is the temperature of the coolant-side of the wall; calculates a target differential temperature by correcting the reference target differential temperature in accordance with the second temperature; and controls the operating state in accordance with the deviation between the target differential temperature and the differential temperature.

Description

内燃機関制御装置Internal combustion engine control device
 本発明は、内燃機関制御装置に関し、特に二輪自動車等の車両の内燃機関に適用される内燃機関制御装置に関する。 The present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to an internal combustion engine of a vehicle such as a two-wheeled vehicle.
 近年、二輪自動車等の車両の内燃機関に対しては、コントローラを用いて、内燃機関に対する燃料の供給、空気の供給並びに燃料及び空気から成る混合気への点火を協働させながら内燃機関の運転状態を電子制御する電子制御式の内燃機関制御装置が採用されている。 In recent years, for an internal combustion engine of a vehicle such as a two-wheeled motor vehicle, the operation of the internal combustion engine is performed using a controller in cooperation with the fuel supply to the internal combustion engine, the supply of air, and the ignition of the mixture comprising fuel and air. An electronically controlled internal combustion engine controller that electronically controls the state is employed.
 具体的には、かかる内燃機関制御装置は、エアフローセンサ、スロットル開度センサ及び吸気マニホルド負圧センサ等のセンサからの各々の検出信号を用いて得られる内燃機関に対する吸入空気量やクランク角センサからの検出信号を用いて得られる内燃機関回転数等に基づき、内燃機関での適切な空燃比を実現するための燃料噴射量を算出して、この燃料噴射量で内燃機関に対して燃料噴射を実行すると共に、所定の点火時期で吸入空気及び噴射燃料の混合気に対して点火を実行する構成を有する。また、この際、内燃機関制御装置においては、内燃機関におけるMBT(Minimum advance for the Best Torque)及びノック等に関する特性を考慮して、燃料噴射量及び点火時期における限界値が各々設定されている場合もある。また、このような内燃機関制御装置の中には、筒内圧センサ、ノックセンサ及びイオン電流センサ等のセンサからの各々の検出信号を用いて、燃焼室内の燃焼状態に応じた混合気への燃料噴射量及び点火時期の調整を各々実行する構成を有するものもある。 Specifically, such an internal combustion engine control device includes an intake air amount and a crank angle sensor for an internal combustion engine obtained by using respective detection signals from sensors such as an air flow sensor, a throttle opening sensor, and an intake manifold negative pressure sensor. The fuel injection amount for realizing an appropriate air-fuel ratio in the internal combustion engine is calculated based on the rotational speed of the internal combustion engine obtained using this detection signal, and the fuel injection amount is injected into the internal combustion engine with this fuel injection amount. And the ignition is performed on the mixture of intake air and injected fuel at a predetermined ignition timing. Further, at this time, in the internal combustion engine control device, the limit values for the fuel injection amount and the ignition timing are set in consideration of the characteristics related to MBT (Minimum Advance for the Best Torque) and knock in the internal combustion engine. There is also. Further, in such an internal combustion engine control device, the fuel to the air-fuel mixture corresponding to the combustion state in the combustion chamber is detected by using detection signals from sensors such as an in-cylinder pressure sensor, a knock sensor, and an ion current sensor. Some have a configuration in which the injection amount and the ignition timing are each adjusted.
 かかる状況下で、特許文献1は、火花点火式内燃機関の点火時期制御装置に関し、内燃機関の燃焼室壁部の実際の温度と、予め記憶された内燃機関の運転状態に対応する燃焼室壁部の定常状態における温度データと、を比較し、その偏差に応じて内燃機関の点火時期を補正するための補正量を求める構成を開示する。 Under such circumstances, Patent Document 1 relates to an ignition timing control device for a spark ignition type internal combustion engine, and relates to the actual temperature of the combustion chamber wall portion of the internal combustion engine and the combustion chamber wall corresponding to the operation state of the internal combustion engine stored in advance. The temperature data in the steady state of a part is compared, The structure which calculates | requires the correction amount for correct | amending the ignition timing of an internal combustion engine according to the deviation is disclosed.
 また、特許文献2は、内燃機関制御装置に関し、内燃機関の燃焼室を画成する壁部における第1の部位の温度に対応した第1の温度と壁部における第1の部位よりも外壁面側である第2の部位の温度に対応した第2の温度との差分に基づいて、内燃機関の運転状態を制御する構成を開示する。 Patent Document 2 relates to an internal combustion engine control device, and relates to a first temperature corresponding to the temperature of a first portion in a wall portion defining a combustion chamber of the internal combustion engine and an outer wall surface than the first portion in the wall portion. The structure which controls the operating state of an internal combustion engine based on the difference with 2nd temperature corresponding to the temperature of the 2nd site | part which is a side is disclosed.
特開平2-223677号公報Japanese Patent Laid-Open No. 2-223677 国際公開WO2016/104186号International Publication WO2016 / 104186
 しかしながら、本発明者の検討によれば、特許文献1の構成では、内燃機関の点火時期が必要以上に遅角されることを防止し、内燃機関の出力及び効率の向上を図ると共に、その内燃機関を搭載した車両の加速性能の改善を図るものではあるが、内燃機関の燃焼室壁部の温度が内燃機関の筒内圧力に相関を持つことに着目して、燃焼室壁部の温度のみを制御パラメータにするものであるため、内燃機関の運転状態の制御の精度の向上に一定の限界が存在してこの点で改良の余地がある。 However, according to the study of the present inventor, in the configuration of Patent Document 1, the ignition timing of the internal combustion engine is prevented from being retarded more than necessary, and the output and efficiency of the internal combustion engine are improved. Although it is intended to improve the acceleration performance of a vehicle equipped with an engine, paying attention to the fact that the temperature of the combustion chamber wall of the internal combustion engine has a correlation with the in-cylinder pressure of the internal combustion engine, only the temperature of the combustion chamber wall Therefore, there is a certain limit in improving the accuracy of control of the operating state of the internal combustion engine, and there is room for improvement in this respect.
 また、本発明者の一部が共通する特許文献2の構成では、内燃機関の燃焼室壁部の温度の他に内燃機関の冷却系の冷却能力が内燃機関の筒内圧力に相関を持つことに着目して冷却系の冷却能力をも考慮し、内燃機関の燃焼室を画成する壁部における第1の部位の温度に対応した第1の温度と壁部における第1の部位よりも外壁面側である第2の部位の温度に対応した第2の温度との差分温度を用い、それと所定の閾値と比較することにより、ノックが生じることのない限界的な進角時期に点火時期を設定すること等を可能として、内燃機関の運転状態の制御の精度の向上を図るものであるが、例えばクーラントが冷却液である場合、それが流通するクーラント通路が形成されるウォータジャケットは内燃機関のシリンダブロック等の一部に設けられるため、燃焼室で生じた熱が伝熱することによるクーラント通路の壁面の温度の変化によって、クーラントの熱伝導率が変化して冷却系の冷却能力も変化してしまうことになる。このように冷却系の冷却能力の変化は、所定の閾値の的確性へも影響を及ぼすことがあるため、内燃機関をベストな効率で運転することができなくなる場合があってこの点で改良の余地がある。 Further, in the configuration of Patent Document 2 in which a part of the inventor is common, in addition to the temperature of the combustion chamber wall portion of the internal combustion engine, the cooling capacity of the cooling system of the internal combustion engine has a correlation with the in-cylinder pressure of the internal combustion engine. In consideration of the cooling capacity of the cooling system, the first temperature corresponding to the temperature of the first part in the wall part defining the combustion chamber of the internal combustion engine and the first part in the wall part are outside the first part. By using a difference temperature from the second temperature corresponding to the temperature of the second part on the wall surface side and comparing it with a predetermined threshold value, the ignition timing is set to a limit advance timing at which knock does not occur. For example, when the coolant is a coolant, the water jacket in which the coolant passage is formed is used for the internal combustion engine. On some cylinder blocks, etc. Because kicked by a change in temperature of the wall surface of the coolant passage due to heat generated in the combustion chamber is heat transfer, so that the thermal conductivity of the coolant will also vary changed cooling capacity of the cooling system. Thus, since the change in the cooling capacity of the cooling system may affect the accuracy of the predetermined threshold, the internal combustion engine may not be able to operate at the best efficiency. There is room.
 つまり、現状では、特に軽量、且つ、小型であることが要求される二輪車用等の車両に好適に適用され得るような、簡便な構成で、内燃機関の冷却能力の変動をも考慮して所定の閾値を含めた制御目標値の精度を向上し、より最適な効率で内燃機関の運転状態を制御可能な内燃機関制御装置の実現が待望された状況にあるといえる。 In other words, at present, it is a simple configuration that can be suitably applied to a vehicle such as a two-wheeled vehicle that is particularly required to be lightweight and small, and is determined in consideration of fluctuations in the cooling capacity of the internal combustion engine. It can be said that there is a long-awaited situation for realizing an internal combustion engine control apparatus that can improve the accuracy of the control target value including the threshold value and control the operation state of the internal combustion engine with more optimal efficiency.
 本発明は、以上の検討を経てなされたものであり、簡便な構成で、内燃機関の冷却能力の変動をも考慮して制御目標値の精度を向上し、より最適な効率で内燃機関の運転状態を制御可能な内燃機関制御装置を提供することを目的とする。 The present invention has been made through the above-described studies. With a simple configuration, the accuracy of the control target value is improved in consideration of fluctuations in the cooling capacity of the internal combustion engine, and the operation of the internal combustion engine is performed with more optimal efficiency. An object of the present invention is to provide an internal combustion engine control device capable of controlling the state.
 以上の目的を達成するべく、本発明は、内燃機関の燃焼室を画成すると共にクーラントに接する壁部の前記燃焼室側の温度である第1の温度と前記内燃機関の代表温度との差分値である差分温度を算出し、前記差分温度に基づいて内燃機関の運転状態を制御する制御部を備えた内燃機関制御装置において、前記制御部は、前記運転状態に関するパラメータから基準目標差分温度を算出し、前記壁部のクーラント側の温度である第2の温度を算出し、前記基準目標差分温度を前記第2の温度に応じて補正することにより目標差分温度を算出し、前記目標差分温度と前記差分温度との偏差に応じて、前記運転状態を制御することを第1の局面とする。 In order to achieve the above object, the present invention defines a combustion chamber of an internal combustion engine and a difference between a first temperature, which is a temperature on the combustion chamber side of a wall portion in contact with a coolant, and a representative temperature of the internal combustion engine In the internal combustion engine control device including a control unit that calculates a differential temperature that is a value and controls an operating state of the internal combustion engine based on the differential temperature, the control unit calculates a reference target differential temperature from a parameter related to the operating state. Calculating a second temperature which is a temperature on the coolant side of the wall, calculating a target differential temperature by correcting the reference target differential temperature according to the second temperature, and calculating the target differential temperature. It is a first aspect to control the operation state according to a deviation between the difference temperature and the difference temperature.
 本発明は、第1の局面に加えて、前記パラメータとして、前記内燃機関の回転数及び前記内燃機関が出力するトルクが含まれることを第2の局面とする。 In addition to the first aspect, the second aspect of the present invention includes that the parameters include the rotational speed of the internal combustion engine and the torque output by the internal combustion engine.
 本発明は、第1又は第2の局面に加えて、前記制御部は、前記壁部の伝熱特性を反映した伝熱時間遅れを加味して、更に前記基準目標差分温度を補正することにより前記目標差分温度を算出することを第3の局面とする。 In the present invention, in addition to the first or second aspect, the control unit further corrects the reference target differential temperature in consideration of a heat transfer time delay reflecting the heat transfer characteristics of the wall. The calculation of the target differential temperature is a third aspect.
 以上の本発明の第1の局面にかかる内燃機関制御装置によれば、制御部が、内燃機関の燃焼室を画成すると共にクーラントに接する壁部の燃焼室側の温度である第1の温度と内燃機関の代表温度との差分値である差分温度を算出し、運転状態に関するパラメータから基準目標差分温度を算出し、壁部のクーラント側の温度である第2の温度を算出し、基準目標差分温度を第2の温度に応じて補正することにより目標差分温度を算出し、目標差分温度と差分温度との偏差に応じて、運転状態を制御するものであるため、簡便な構成で、内燃機関の冷却能力の変動をも考慮して制御目標値の精度を向上し、より最適な効率で内燃機関の運転状態を制御することができる。 According to the internal combustion engine control apparatus according to the first aspect of the present invention described above, the control unit defines the combustion chamber of the internal combustion engine and is the first temperature that is the temperature on the combustion chamber side of the wall portion that contacts the coolant. A differential temperature that is a differential value between the engine and the representative temperature of the internal combustion engine, a reference target differential temperature is calculated from a parameter relating to the operating state, a second temperature that is a coolant side temperature of the wall is calculated, and a reference target By correcting the difference temperature according to the second temperature, the target difference temperature is calculated, and the operation state is controlled according to the deviation between the target difference temperature and the difference temperature. It is possible to improve the accuracy of the control target value in consideration of fluctuations in the cooling capacity of the engine, and to control the operating state of the internal combustion engine with more optimal efficiency.
 また、本発明の第2の局面にかかる内燃機関制御装置によれば、制御部が用いる運転状態に関するパラメータとして、内燃機関の回転数及び内燃機関が出力するトルクが含まれるものであるため、より精度のよい基準目標差分温度を算出して、これに基づき目標差分温度を算出することができ、より最適な効率で内燃機関の運転状態を制御することができる。 Further, according to the internal combustion engine control apparatus according to the second aspect of the present invention, since the parameter relating to the operating state used by the control unit includes the rotational speed of the internal combustion engine and the torque output by the internal combustion engine, An accurate reference target differential temperature can be calculated, and based on this, the target differential temperature can be calculated, and the operating state of the internal combustion engine can be controlled with more optimal efficiency.
 また、本発明の第3の局面にかかる内燃機関制御装置によれば、制御部が、壁部の伝熱特性を反映した伝熱時間遅れを加味して、更に基準目標差分温度を補正することにより目標差分温度を算出するものであるため、より精度のよい目標差分温度を算出することができ、より最適な効率で内燃機関の運転状態を制御することができる。 Moreover, according to the internal combustion engine control device according to the third aspect of the present invention, the control unit further corrects the reference target differential temperature in consideration of the heat transfer time delay reflecting the heat transfer characteristics of the wall. Therefore, the target differential temperature can be calculated with higher accuracy, and the operating state of the internal combustion engine can be controlled with more optimal efficiency.
図1Aは、本発明の実施形態における水冷式の内燃機関及びそれに適用される内燃機関制御装置の構成を模式的に示すと共に、内燃機関で発生した熱量が冷却系や排気系に伝熱しながら出力系で消費される様子を模式的示す部分断面図である。FIG. 1A schematically shows the configuration of a water-cooled internal combustion engine and an internal combustion engine control device applied thereto in an embodiment of the present invention, and the amount of heat generated in the internal combustion engine is output while being transferred to a cooling system or an exhaust system. It is a fragmentary sectional view which shows a mode that it is consumed with the system | strain typically. 図1Bは、図1Aに示す燃焼室の模式的な平面図であって、本実施形態における実験時での燃焼室内の温度測定位置を併せて示すものである。FIG. 1B is a schematic plan view of the combustion chamber shown in FIG. 1A, and also shows the temperature measurement position in the combustion chamber during the experiment in the present embodiment. 図2は、本実施形態における実験結果で、水冷式の内燃機関の回転数を5000rpm及びスロットルバルブの開度を48度として進角方向の点火時期を変化したときの燃焼室の内表面の各位置における温度を、内燃機関の出力トルク及びノックレベルと共に示すグラフである。FIG. 2 shows the experimental results in the present embodiment. Each of the inner surfaces of the combustion chamber when the ignition timing in the advance direction is changed with the rotational speed of the water-cooled internal combustion engine set to 5000 rpm and the opening degree of the throttle valve set to 48 degrees. It is a graph which shows the temperature in a position with the output torque and knock level of an internal combustion engine. 図3は、本実施形態における実験結果で、内燃機関が空冷式で吸気バルブ及び排気バルブが各1個設けられている場合の混合気の燃焼時の内燃機関の燃焼室内の温度分布を示し、詳しくは、図3中の(a)及び(b)は、内燃機関の回転数を2000rpmに固定し、かつ、排気ガス中の一酸化炭素濃度が0.5%及び0.7%であるときの燃焼室の内表面の温度分布を順に対応して示し、また図3中の(c)から(g)は、内燃機関の排気ガス中の一酸化炭素濃度を0.5%に固定し、かつ、回転数が1400rpm、1800rpm、2000rpm、2200rpm及び2400rpmであるときの燃焼室の内表面の温度分布を順に対応して示す。FIG. 3 shows the temperature distribution in the combustion chamber of the internal combustion engine when the air-fuel mixture is combusted when the internal combustion engine is air-cooled and has one intake valve and one exhaust valve. Specifically, (a) and (b) in FIG. 3 are when the rotational speed of the internal combustion engine is fixed at 2000 rpm and the carbon monoxide concentration in the exhaust gas is 0.5% and 0.7%. 3 shows the temperature distribution of the inner surface of the combustion chamber in order, and (c) to (g) in FIG. 3 fix the carbon monoxide concentration in the exhaust gas of the internal combustion engine to 0.5%, And the temperature distribution of the inner surface of a combustion chamber when rotation speed is 1400 rpm, 1800 rpm, 2000 rpm, 2200 rpm, and 2400 rpm is shown correspondingly in order. 図4は、本実施形態における水冷式の内燃機関に適用される内燃機関制御装置の構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of an internal combustion engine control device applied to the water-cooled internal combustion engine in the present embodiment. 図5は、本実施形態における実験結果で、水冷式の内燃機関の回転数を5000rpm及びスロットルバルブの開度を40度として進角方向の点火時期を変化したときの差分温度を、内燃機関の出力トルク及びノックレベルと共に示すグラフである。FIG. 5 shows the experimental results in this embodiment. The differential temperature when the ignition timing in the advance direction is changed with the rotational speed of the water-cooled internal combustion engine set at 5000 rpm and the throttle valve opening set at 40 degrees is shown in FIG. It is a graph shown with an output torque and a knock level. 図6は、本実施形態における実験結果で、水冷式の内燃機関の回転数を5000rpm及びスロットルバルブの開度を40度としたときに、差分温度とピーク筒内圧とを対比させて示すグラフである。FIG. 6 is a graph showing experimental results in the present embodiment, in which the differential temperature is compared with the peak in-cylinder pressure when the rotational speed of the water-cooled internal combustion engine is 5000 rpm and the opening of the throttle valve is 40 degrees. is there. 図7は、本実施形態における水冷式の内燃機関の模式的な断面図であり、それに適用される内燃機関制御装置での基準目標差分温度の補正の内容を概念的に示す模式図である。FIG. 7 is a schematic cross-sectional view of the water-cooled internal combustion engine in the present embodiment, and is a schematic diagram conceptually showing the content of correction of the reference target differential temperature in the internal combustion engine control device applied thereto. 図8は、本実施形態における水冷式の内燃機関に適用される内燃機関制御装置での基準目標差分温度の補正に用いられる差分温度補正値のテーブルデータを示す模式図である。FIG. 8 is a schematic diagram showing table data of differential temperature correction values used for correcting the reference target differential temperature in the internal combustion engine control apparatus applied to the water-cooled internal combustion engine in the present embodiment. 図9は、本実施形態における水冷式の内燃機関に適用される内燃機関制御装置でのフィルタ処理前の目標差分温度及びフィルタ処理後の目標差分温度を比較して示す模式図である。FIG. 9 is a schematic diagram showing a comparison between the target differential temperature before the filter process and the target differential temperature after the filter process in the internal combustion engine control apparatus applied to the water-cooled internal combustion engine in the present embodiment. 図10は、本実施形態における水冷式の内燃機関の圧縮比が量産想定時にばらついた場合の実験結果で、内燃機関の回転数を所定回転数及びスロットルバルブの開度を所定開度として内燃機関の出力トルク及びノックレベルを示すグラフであり、詳しくは、図10中の(a)は、比較例の内燃機関運転状態制御処理による内燃機関の出力トルク及びノックレベルを示すグラフであり、図10中の(b)は、本実施形態の内燃機関運転状態制御処理による内燃機関の出力トルク及びノックレベルを示すグラフである。FIG. 10 is an experimental result when the compression ratio of the water-cooled internal combustion engine in the present embodiment varies when mass production is assumed, and the internal combustion engine has a predetermined rotational speed and a throttle valve opening degree. 10 is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the comparative example. Specifically, FIG. (B) in the middle is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the present embodiment. 図11は、本実施形態における種々の燃料種を用いた場合の実験結果で、水冷式の内燃機関の回転数を所定回転数及びスロットルバルブの開度を所定開度として内燃機関の進角方向の点火時期を変化したときの目標差分温度、内燃機関の出力トルク及びノックレベルを示すグラフである。FIG. 11 shows the experimental results when various fuel types are used in the present embodiment, and the advance direction of the internal combustion engine with the rotation speed of the water-cooled internal combustion engine as the predetermined rotation speed and the throttle valve opening as the predetermined opening degree. 6 is a graph showing a target differential temperature, an output torque of the internal combustion engine, and a knock level when the ignition timing is changed. 12は、本実施形態における水冷式の内燃機関に適用される内燃機関制御装置が実行する目標差分温度算出処理の流れを例示するフローチャートである。12 is a flowchart illustrating the flow of target difference temperature calculation processing executed by the internal combustion engine control device applied to the water-cooled internal combustion engine in the present embodiment.
 以下、図面を適宜参照して、本発明の実施形態における内燃機関制御装置につき、詳細に説明する。 Hereinafter, an internal combustion engine control apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 [内燃機関の構成〕
 まず、図1Aから図3を参照して、本実施形態における内燃機関制御装置が適用される内燃機関の構成について説明する。
[Configuration of internal combustion engine]
First, a configuration of an internal combustion engine to which the internal combustion engine control device according to the present embodiment is applied will be described with reference to FIGS. 1A to 3.
 図1Aは、本実施形態における水冷式の内燃機関及びそれに適用される内燃機関制御装置の構成を模式的に示すと共に、内燃機関で発生した熱量が冷却系や排気系に伝熱しながら出力系で消費される様子を模式的示す部分断面図であり、また図1Bは、図1Aに示す燃焼室の模式的な平面図であって、本実施形態における実験時での燃焼室内の温度測定位置を併せて示す。図2は、本実施形態における実験結果で、内燃機関の回転数を5000rpm及びスロットルバルブの開度を48度として進角方向の点火時期を変化したときの燃焼室の内表面の各位置における温度を、内燃機関の出力トルク及びノックレベルと共に示すグラフである。図3は、本実施形態における実験結果で、内燃機関が空冷式で吸気バルブ及び排気バルブが各1個設けられている場合の混合気の燃焼時の内燃機関の燃焼室内の温度分布を示し、詳しくは、図3中の(a)及び図3中の(b)は、内燃機関の回転数を2000rpmに固定し、かつ、排気ガス中の一酸化炭素濃度が0.5%及び0.7%であるときの燃焼室の内表面の温度分布を順に対応して示し、また図3中の(c)から図3中の(g)は、内燃機関の排気ガス中の一酸化炭素濃度を0.5%に固定し、かつ、回転数が1400rpm、1800rpm、2000rpm、2200rpm及び2400rpmであるときの燃焼室の内表面の温度分布を順に対応して示す。なお、図2では、便宜上、トルク及びノックレベルを同一の縦軸に表記している。 FIG. 1A schematically shows a configuration of a water-cooled internal combustion engine and an internal combustion engine control device applied thereto in the present embodiment, and an output system while heat generated in the internal combustion engine is transferred to a cooling system or an exhaust system. FIG. 1B is a schematic plan view of the combustion chamber shown in FIG. 1A, and shows the temperature measurement position in the combustion chamber at the time of the experiment in this embodiment. Also shown. FIG. 2 shows the experimental results in this embodiment. The temperature at each position on the inner surface of the combustion chamber when the ignition timing in the advance direction is changed with the rotational speed of the internal combustion engine set to 5000 rpm and the opening degree of the throttle valve set to 48 degrees. Is a graph showing the output torque and knock level of the internal combustion engine. FIG. 3 shows the temperature distribution in the combustion chamber of the internal combustion engine when the air-fuel mixture is combusted when the internal combustion engine is air-cooled and has one intake valve and one exhaust valve. Specifically, (a) in FIG. 3 and (b) in FIG. 3 fix the rotational speed of the internal combustion engine at 2000 rpm, and the carbon monoxide concentration in the exhaust gas is 0.5% and 0.7%. 3 shows the temperature distribution on the inner surface of the combustion chamber in order, and (g) in FIG. 3 to (g) in FIG. 3 indicate the carbon monoxide concentration in the exhaust gas of the internal combustion engine. The temperature distribution of the inner surface of the combustion chamber when the rotation number is fixed to 0.5% and the rotation speed is 1400 rpm, 1800 rpm, 2000 rpm, 2200 rpm, and 2400 rpm is shown in order. In FIG. 2, for the sake of convenience, the torque and the knock level are shown on the same vertical axis.
 図1Aに示すように、内燃機関1は、図示を省略する二輪自動車等の車両に搭載され、1又は複数の気筒2aを有するシリンダブロック2を備えている。シリンダブロック2の気筒2aに対応する部分の側壁内には、シリンダブロック2を冷却するための冷却液であるクーラントが流通するクーラント通路3が形成されている。なお、図1A中では、便宜上、気筒2aの個数を1個のみとした例を示している。また、内燃機関1は、このような水冷式に限定されるものではなく、クーラント通路3を有さずに、シリンダブロック2を冷却するためのクーラントとしてその周囲の空気を用いる空冷式であってもよい。 As shown in FIG. 1A, the internal combustion engine 1 includes a cylinder block 2 that is mounted on a vehicle such as a two-wheeled vehicle (not shown) and has one or a plurality of cylinders 2a. A coolant passage 3 is formed in a side wall of a portion of the cylinder block 2 corresponding to the cylinder 2a through which a coolant that is a coolant for cooling the cylinder block 2 flows. FIG. 1A shows an example in which the number of cylinders 2a is only one for convenience. Further, the internal combustion engine 1 is not limited to such a water-cooled type, and is an air-cooled type that does not have the coolant passage 3 and uses the surrounding air as a coolant for cooling the cylinder block 2. Also good.
 気筒2aの内部には、ピストン4が配置されている。ピストン4は、コンロッド5を介してクランクシャフト6に連結されている。クランクシャフト6には、それと共に同軸に回転するロータ7が設けられている。ロータ7の外周面には、その周方向に所定のパターンで並置された複数の歯部(リラクタ)7aが立設されている。 Piston 4 is arranged inside cylinder 2a. The piston 4 is connected to the crankshaft 6 via a connecting rod 5. The crankshaft 6 is provided with a rotor 7 that rotates coaxially therewith. On the outer peripheral surface of the rotor 7, a plurality of tooth portions (retractors) 7 a juxtaposed in a predetermined pattern in the circumferential direction are provided upright.
 シリンダブロック2の上部には、シリンダヘッド8が組み付けられている。シリンダブロック2の内壁面、ピストン4の上面、及びシリンダヘッド8の内壁面は、協働して気筒2aの燃焼室9を画成している。なお、クーラント通路3は、シリンダブロック2に加えシリンダヘッド8に形成されていてもよい。 The cylinder head 8 is assembled to the upper part of the cylinder block 2. The inner wall surface of the cylinder block 2, the upper surface of the piston 4, and the inner wall surface of the cylinder head 8 cooperate to define the combustion chamber 9 of the cylinder 2a. The coolant passage 3 may be formed in the cylinder head 8 in addition to the cylinder block 2.
 シリンダヘッド8には、燃焼室9内の燃料及び空気から成る混合気に点火する点火プラグ10が設けられている。各燃焼室9に対する点火プラグ10の個数は、複数であってもよい。 The cylinder head 8 is provided with a spark plug 10 that ignites a mixture of fuel and air in the combustion chamber 9. There may be a plurality of spark plugs 10 for each combustion chamber 9.
 シリンダヘッド8には、燃焼室9と対応して連通する吸気管11が組み付けられている。シリンダヘッド8内には、燃焼室9と吸気管11とを対応して連通する吸気通路11aが形成されている。燃焼室9と吸気通路11aとの対応する接続部位には、吸気バルブ12が設けられている。なお、吸気管11は、気筒2aの個数に応じた多岐管であってもよく、吸気通路11aの個数は、気筒2aの個数に等しくなる。各燃焼室9に対する吸気バルブ12の個数は、水冷式の内燃機関1の場合には2個を想定し、空冷式の内燃機関1の場合には1個を想定しているが、これらはその他の個数であってもよい。 The cylinder head 8 is assembled with an intake pipe 11 that communicates with the combustion chamber 9. In the cylinder head 8, an intake passage 11 a that communicates the combustion chamber 9 and the intake pipe 11 is formed. An intake valve 12 is provided at a corresponding connection portion between the combustion chamber 9 and the intake passage 11a. The intake pipe 11 may be a manifold according to the number of cylinders 2a, and the number of intake passages 11a is equal to the number of cylinders 2a. The number of intake valves 12 for each combustion chamber 9 is assumed to be two in the case of the water-cooled internal combustion engine 1, and is assumed to be one in the case of the air-cooled internal combustion engine 1. May be the number.
 吸気管11には、その内部に燃料を噴射するインジェクタ13が設けられている。吸気管11には、インジェクタ13の上流側にスロットルバルブ14が設けられている。スロットルバルブ14は、図示を省略するスロットル装置の構成部品であり、スロットル装置の本体部が吸気管11に組み付けられている。なお、インジェクタ13は、対応する燃焼室9に燃料を直接噴射するものであってもよい。また、インジェクタ13及びスロットルバルブ14の個数は、各々複数であってもよい。 The intake pipe 11 is provided with an injector 13 for injecting fuel therein. The intake pipe 11 is provided with a throttle valve 14 on the upstream side of the injector 13. The throttle valve 14 is a component of a throttle device (not shown), and the main body of the throttle device is assembled to the intake pipe 11. The injector 13 may inject fuel directly into the corresponding combustion chamber 9. The number of injectors 13 and throttle valves 14 may be plural.
 また、シリンダヘッド8には、燃焼室9と対応して連通する排気管15が組み付けられている。シリンダヘッド8内には、燃焼室9と排気通路15aとを対応して連通する排気通路15aが形成されている。燃焼室9と排気管15との対応する接続部位には、排気バルブ16が設けられている。なお、排気管15は、気筒2aの個数に応じた多岐管であってもよく、排気通路15aの個数は、気筒2a及び排気管15の個数に等しくなる。なお、各燃焼室9に対する排気バルブ16の個数は、水冷式の内燃機関1の場合には2個を想定し、空冷式の内燃機関1の場合には1個を想定しているが、これらはその他の個数であってもよい。 Further, an exhaust pipe 15 communicating with the combustion chamber 9 corresponding to the cylinder head 8 is assembled to the cylinder head 8. An exhaust passage 15a is formed in the cylinder head 8 to communicate the combustion chamber 9 and the exhaust passage 15a. An exhaust valve 16 is provided at a corresponding connection portion between the combustion chamber 9 and the exhaust pipe 15. The exhaust pipe 15 may be a manifold according to the number of cylinders 2a, and the number of exhaust passages 15a is equal to the number of cylinders 2a and exhaust pipes 15. The number of exhaust valves 16 for each combustion chamber 9 is assumed to be two in the case of the water-cooled internal combustion engine 1 and one in the case of the air-cooled internal combustion engine 1. May be any other number.
 ここで、内燃機関1が水冷式の場合について検討すると、内燃機関1の冷却系の冷却機能が破綻しない前提で、以下の数式(数1)で示すように、内燃機関1で発生した総熱量QTは、内燃機関1が出力するトルクに変換された熱量Qtqと、内燃機関1の冷却熱量Qwと、内燃機関1の排気によって排出される熱量Qexと、の総和に等しく、この際に、内燃機関1が出力するトルクに変換された熱量Qtqと、内燃機関1の冷却熱量Qwと、は、比例関係にあるものである。また、冷却熱量Qwは、燃焼室9からクーラントに至る熱の通過部分の熱伝達率をh、燃焼室9の冷却表面積をA、及び時間をtで表記すれば、内燃機関1の燃焼室9を画成するシリンダブロック2又はシリンダヘッド8の壁部の燃焼室9側の壁表面の温度と、内燃機関1のクーラント通路3内を流通するクーラントの温度と、の差分温度TCCDに対して、以下の数式(数2)で示すような関係がある。この数式(数2)中の熱伝達率hは、Eichelbergの式である以下の数式(数3)で示され、ピストン4の速度(ピストン速度)Cmの3乗根、気筒2aの内部圧力(筒内圧)pの二乗根、及び内燃機関1の燃焼ガスの温度(燃焼ガス温度)Tgの二乗根に比例して増加する。よって、内燃機関1の任意の運転状態で、差分温度TCCDとトルクの間に正相関が成り立つことになる。なお、かかる議論は、原理的には、内燃機関1が空冷式の場合についても成立するものである。 Here, considering the case where the internal combustion engine 1 is a water-cooled type, the total amount of heat generated in the internal combustion engine 1 is assumed as shown in the following formula (Equation 1) on the assumption that the cooling function of the cooling system of the internal combustion engine 1 does not fail. QT is equal to the sum of the amount of heat Qtq converted to the torque output from the internal combustion engine 1, the amount of heat Qw cooled by the internal combustion engine 1, and the amount of heat Qex discharged by the exhaust of the internal combustion engine 1. The amount of heat Qtq converted into the torque output from the engine 1 and the amount of heat Qw of cooling of the internal combustion engine 1 are in a proportional relationship. Further, the cooling heat quantity Qw can be expressed by h representing the heat transfer coefficient of the heat passage portion from the combustion chamber 9 to the coolant, h representing the cooling surface area of the combustion chamber 9, and t representing the time. With respect to the difference temperature TCCD between the temperature of the wall surface on the combustion chamber 9 side of the wall portion of the cylinder block 2 or the cylinder head 8 that defines the above and the temperature of the coolant flowing through the coolant passage 3 of the internal combustion engine 1, There is a relationship as shown by the following formula (Equation 2). The heat transfer coefficient h in the equation (Equation 2) is expressed by the following equation (Equation 3) which is Eichenberg's equation, the third root of the piston 4 speed (piston speed) Cm, the internal pressure of the cylinder 2a ( The in-cylinder pressure increases in proportion to the square root of p and the square root of the combustion gas temperature (combustion gas temperature) Tg of the internal combustion engine 1. Therefore, a positive correlation is established between the differential temperature TCCD and the torque in an arbitrary operation state of the internal combustion engine 1. Note that, in principle, this argument holds even when the internal combustion engine 1 is an air-cooled type.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 また、図1Bに示す温度測定位置に関する図2に示す実験結果から、点火時期を進角させていくと、水冷式の内燃機関1の出力するトルクは上昇していき、点火時期がMBTに達した後、内燃機関1のノックの始まりと共に燃焼室9の内表面の各位置において温度上昇が現れていることが分かる。ここで、燃焼室9の内表面の位置は、図2中で、スキッシュ領域1からスキッシュ領域5で示され、スキッシュ領域1は、燃焼室9中央から離間した吸気側スキッシュ領域、スキッシュ領域2は、燃焼室9中央へ接近した吸気側スキッシュ領域、スキッシュ領域3は、排気側スキッシュ領域、スキッシュ領域4は、燃焼室9中央及び点火プラグから離間したスキッシュ領域、及びスキッシュ領域5は、燃焼室9中央から離間し点火プラグ10に接近したスキッシュ領域を各々示している。図2中で、スキッシュ領域1からスキッシュ領域5の中で、温度上昇が最も顕著に現れる領域は、燃焼室9中央へ接近した吸気側スキッシュ領域であるスキッシュ領域2であるが、全般に、吸気側のスキッシュ領域の温度上昇は、排気側のスキッシュ領域の温度上昇よりも鋭敏に現れていることが分かる。これは、一般的に、内燃機関1の燃焼室9において、ノックが吸入側領域から始まることに起因するものと考えられる。また、MBTに至る前の内燃機関1のトルクの増加に関しても排気側の反応より吸気側領域の反応が鋭敏に現れているため、燃焼室9の温度分布を内燃機関1のノックを含む燃焼状態の指標とすることを考慮すると、燃焼室9の吸気側に燃焼室温度センサを設置することが好ましいことが分かる。更に、内燃機関1の量産条件を考慮して、一般的なサーミスタ型温度センサをスキッシュ領域1の近傍位置に設置したところ、この温度センサで図2に示す温度検出値を得ることができた。 Further, from the experimental results shown in FIG. 2 regarding the temperature measurement position shown in FIG. 1B, when the ignition timing is advanced, the torque output from the water-cooled internal combustion engine 1 increases, and the ignition timing reaches MBT. After that, it can be seen that an increase in temperature appears at each position on the inner surface of the combustion chamber 9 with the start of knocking of the internal combustion engine 1. Here, the position of the inner surface of the combustion chamber 9 is indicated by the squish region 1 to the squish region 5 in FIG. 2. The squish region 1 is the intake side squish region and the squish region 2 that are separated from the center of the combustion chamber 9. The intake side squish area approaching the center of the combustion chamber 9, the squish area 3 is the exhaust side squish area, the squish area 4 is the center of the combustion chamber 9 and the squish area away from the spark plug, and the squish area 5 is the combustion chamber 9. Each squish area is shown spaced apart from the center and approaching the spark plug 10. In FIG. 2, the region where the temperature rise is most prominent among the squish region 1 to the squish region 5 is the squish region 2, which is the intake side squish region approaching the center of the combustion chamber 9. It can be seen that the temperature increase in the squish area on the side appears more sharply than the temperature increase in the squish area on the exhaust side. This is generally considered to be caused by the knocking starting from the suction side region in the combustion chamber 9 of the internal combustion engine 1. Further, regarding the increase in the torque of the internal combustion engine 1 before reaching the MBT, the reaction in the intake side region appears more sharply than the reaction on the exhaust side, so that the temperature distribution in the combustion chamber 9 is a combustion state including the knock of the internal combustion engine 1. It is understood that it is preferable to install a combustion chamber temperature sensor on the intake side of the combustion chamber 9 in consideration of this index. Furthermore, in consideration of the mass production conditions of the internal combustion engine 1, when a general thermistor type temperature sensor was installed in the vicinity of the squish region 1, the temperature detection value shown in FIG. 2 could be obtained with this temperature sensor.
 また、燃焼室9における温度分布の特性を確認するために、冷却系の構成がシンプルな空冷式の内燃機関1を用いて、燃焼室9における温度分布を示す図3に示す実験結果を得た中の図3中の(a)及び図3中の(b)の実験結果においては、内燃機関1の発熱量の少ない無負荷運転状態でも、燃調(一酸化炭素濃度)の違いによる燃焼室9内の温度分布の違いが得られることが分かり、かかる温度分布は、それが吸気側(吸気バルブ12側)と排気側(排気バルブ16側)とで約40℃の温度差を呈していた。更に、その他の図3中の(c)から図3中の(g)の実験結果においては、内燃機関1の回転数が変化しても温度分布の高低の傾向は変わらず、その回転数が上がるにつれて温度が上昇する結果を呈していた。このため、吸排気バルブが1つずつの空冷式内燃機関でも燃焼状態を判断するためのパラメータを抽出して用いることができることが分かる。なお、図3中の符号Aから符号Kは、各々の領域内の温度範囲を示すもので、具体的には、符号Aは、165℃以上170℃未満の温度範囲、符号Bは、160℃以上165℃未満の温度範囲、符号Cは、155℃以上160℃未満の温度範囲、符号Dは、150℃以上155℃未満の温度範囲、符号Eは、145℃以上150℃未満の温度範囲、符号Fは、140℃以上145℃未満の温度範囲、符号Gは、135℃以上140℃未満の温度範囲、符号Hは、130℃以上135℃未満の温度範囲、符号Iは、125℃以上130℃未満の温度範囲、符号Jは、120℃以上125℃未満の温度範囲、及び符号Kは、115℃以上120℃未満の温度範囲を各々示している。 Further, in order to confirm the characteristics of the temperature distribution in the combustion chamber 9, an experimental result shown in FIG. 3 showing the temperature distribution in the combustion chamber 9 was obtained using the air-cooled internal combustion engine 1 having a simple cooling system configuration. In the experimental results of (a) in FIG. 3 and (b) in FIG. 3, the combustion chamber 9 due to the difference in fuel tone (carbon monoxide concentration) even in the no-load operation state in which the internal combustion engine 1 generates a small amount of heat. The temperature distribution showed a temperature difference of about 40 ° C. between the intake side (intake valve 12 side) and the exhaust side (exhaust valve 16 side). Further, in the other experimental results from (c) in FIG. 3 to (g) in FIG. 3, even if the rotational speed of the internal combustion engine 1 changes, the tendency of the temperature distribution does not change, and the rotational speed is The result showed that the temperature increased as the temperature increased. For this reason, it is understood that parameters for determining the combustion state can be extracted and used even in an air-cooled internal combustion engine with one intake / exhaust valve. In addition, the code | symbol A to the code | symbol K in FIG. 3 shows the temperature range in each area | region, Specifically, the code | symbol A is 165 degreeC or more and less than 170 degreeC, and the code | symbol B is 160 degreeC. The temperature range of 165 ° C. or lower, the symbol C is a temperature range of 155 ° C. or higher and lower than 160 ° C., the symbol D is a temperature range of 150 ° C. or higher and lower than 155 ° C., and the symbol E is a temperature range of 145 ° C. or higher and lower than 150 ° C. Symbol F is a temperature range of 140 ° C. or more and less than 145 ° C., Symbol G is a temperature range of 135 ° C. or more and less than 140 ° C., Symbol H is a temperature range of 130 ° C. or more and less than 135 ° C., and Symbol I is 125 ° C. or more and 130 ° C. A temperature range of less than ° C., symbol J represents a temperature range of 120 ° C. or more and less than 125 ° C., and symbol K represents a temperature range of 115 ° C. or more and less than 120 ° C., respectively.
 〔内燃機関制御装置の構成〕
 次に、図1A及び図1Bに加え、図4から図11をも参照して、本実施形態における内燃機関制御装置の構成について説明する。
[Configuration of internal combustion engine controller]
Next, the configuration of the internal combustion engine control apparatus according to this embodiment will be described with reference to FIGS. 4 to 11 in addition to FIGS. 1A and 1B.
 図4は、本実施形態における水冷式の内燃機関に適用される内燃機関制御装置の構成を示すブロック図である。図5は、本実施形態における実験結果で、水冷式の内燃機関の回転数を5000rpm及びスロットルバルブの開度を40度として進角方向の点火時期を変化したときの差分温度を、内燃機関の出力トルク及びノックレベルと共に示すグラフである。図6は、本実施形態における実験結果で、水冷式の内燃機関の回転数を5000rpm及びスロットルバルブの開度を40度としたときに、差分温度とピーク筒内圧とを対比させて示すグラフである。図7は、本実施形態における水冷式の内燃機関の模式的な断面図であり、それに適用される内燃機関制御装置での基準目標差分温度の補正の内容を概念的に示す模式図である。図8は、本実施形態における水冷式の内燃機関に適用される内燃機関制御装置での基準目標差分温度の補正に用いられる差分温度補正値のテーブルデータを示す模式図である。図9は、本実施形態における水冷式の内燃機関に適用される内燃機関制御装置でのフィルタ処理前の目標差分温度及びフィルタ処理後の目標差分温度を比較して示す模式図である。図10は、本実施形態における水冷式の内燃機関の圧縮比が量産想定時にばらついた場合の実験結果で、内燃機関の回転数を所定回転数及びスロットルバルブの開度を所定開度として内燃機関の出力トルク及びノックレベルを示すグラフであり、詳しくは、図10中の(a)は、比較例の内燃機関運転状態制御処理による内燃機関の出力トルク及びノックレベルを示すグラフであり、図10中の(b)は、本実施形態の内燃機関運転状態制御処理による内燃機関の出力トルク及びノックレベルを示すグラフである。また、図11は、本実施形態における種々の燃料種を用いた場合の実験結果で、水冷式の内燃機関の回転数を所定回転数及びスロットルバルブの開度を所定開度として内燃機関の進角方向の点火時期を変化したときの目標差分温度、内燃機関の出力トルク及びノックレベルを示すグラフである。なお、図5では、便宜上、差分温度及びノックレベルを同一の縦軸に表記し、図11では、便宜上、目標差分温度及びトルクを同一の縦軸に表記している。 FIG. 4 is a block diagram showing a configuration of an internal combustion engine control device applied to the water-cooled internal combustion engine in the present embodiment. FIG. 5 shows the experimental results in this embodiment. The differential temperature when the ignition timing in the advance direction is changed with the rotational speed of the water-cooled internal combustion engine set at 5000 rpm and the throttle valve opening set at 40 degrees is shown in FIG. It is a graph shown with an output torque and a knock level. FIG. 6 is a graph showing experimental results in the present embodiment, in which the differential temperature is compared with the peak in-cylinder pressure when the rotational speed of the water-cooled internal combustion engine is 5000 rpm and the opening of the throttle valve is 40 degrees. is there. FIG. 7 is a schematic cross-sectional view of the water-cooled internal combustion engine in the present embodiment, and is a schematic diagram conceptually showing the content of correction of the reference target differential temperature in the internal combustion engine control device applied thereto. FIG. 8 is a schematic diagram showing table data of differential temperature correction values used for correcting the reference target differential temperature in the internal combustion engine control apparatus applied to the water-cooled internal combustion engine in the present embodiment. FIG. 9 is a schematic diagram showing a comparison between the target differential temperature before the filter process and the target differential temperature after the filter process in the internal combustion engine control apparatus applied to the water-cooled internal combustion engine in the present embodiment. FIG. 10 is an experimental result when the compression ratio of the water-cooled internal combustion engine in the present embodiment varies when mass production is assumed, and the internal combustion engine has a predetermined rotational speed and a throttle valve opening degree. 10 is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the comparative example. Specifically, FIG. (B) in the middle is a graph showing the output torque and knock level of the internal combustion engine by the internal combustion engine operating state control process of the present embodiment. FIG. 11 shows experimental results when various fuel types are used in the present embodiment. The progress of the internal combustion engine is determined by setting the rotation speed of the water-cooled internal combustion engine to a predetermined rotation speed and the opening of the throttle valve to a predetermined opening. It is a graph which shows the target differential temperature, the output torque of an internal combustion engine, and a knock level when changing the ignition timing in the angular direction. In FIG. 5, for convenience, the differential temperature and the knock level are shown on the same vertical axis, and in FIG. 11, the target differential temperature and torque are shown on the same vertical axis for convenience.
 図4に示すように、本実施形態における内燃機関制御装置100は、冷却水温センサ21、クランク角センサ22、吸気温センサ23、スロットル開度センサ24、及び壁部温度センサ25に電気的に接続されたECU(Electronic Control Unit)102を備えている。 As shown in FIG. 4, the internal combustion engine control apparatus 100 in this embodiment is electrically connected to a coolant temperature sensor 21, a crank angle sensor 22, an intake air temperature sensor 23, a throttle opening sensor 24, and a wall temperature sensor 25. ECU (Electronic Control Unit) 102 is provided.
 冷却水温センサ21は、クーラント通路3に侵入した態様でシリンダブロック2に装着され、クーラント通路3内を流通するクーラントの温度(クーラント温度)を検出し、このように検出したクーラント温度を示す電気信号をECU102に入力する。なお、かかるクーラント温度は、内燃機関1の代表温度(内燃機関代表温度)として用いられるものであるが、内燃機関代表温度としては、必要に応じて、内燃機関1の潤滑油の油温等を油温センサ等で検出してその油温等を用いることが可能である。また、内燃機関1が空冷式である場合には、内燃機関代表温度としては、内燃機関1の潤滑油の油温等を油温センサ等で検出してその油温等を用いればよい。 The cooling water temperature sensor 21 is attached to the cylinder block 2 in a state of entering the coolant passage 3, detects the temperature of the coolant flowing in the coolant passage 3 (coolant temperature), and an electric signal indicating the detected coolant temperature. Is input to the ECU 102. The coolant temperature is used as the representative temperature of the internal combustion engine 1 (internal combustion engine representative temperature). As the internal combustion engine representative temperature, the oil temperature of the lubricating oil of the internal combustion engine 1 and the like may be used as necessary. It is possible to use the oil temperature or the like detected by an oil temperature sensor or the like. Further, when the internal combustion engine 1 is air-cooled, the representative temperature of the internal combustion engine may be the oil temperature or the like of the lubricating oil of the internal combustion engine 1 detected by an oil temperature sensor or the like.
 クランク角センサ22は、ロータ7の外周面に形成されている歯部7aに対向した態様でシリンダブロック2の下部に組み付けられた図示を省略するロアケース等に装着され、クランクシャフト6の回転に伴って回転する歯部7aを検出することによって、クランクシャフト6の角速度を検出する。クランク角センサ22は、このように検出した角速度を示す電気信号をECU102に入力する。 The crank angle sensor 22 is attached to a lower case or the like (not shown) assembled to the lower part of the cylinder block 2 so as to face the tooth portion 7 a formed on the outer peripheral surface of the rotor 7, and with the rotation of the crankshaft 6. The angular velocity of the crankshaft 6 is detected by detecting the rotating tooth portion 7a. The crank angle sensor 22 inputs an electrical signal indicating the detected angular velocity to the ECU 102.
 吸気温センサ23は、吸気管11内に侵入した態様で吸気管11に装着され、吸気管11内に流入する空気の温度を検出し、このように検出した空気の温度を示す電気信号をECU102に入力する。 The intake air temperature sensor 23 is attached to the intake pipe 11 so as to enter the intake pipe 11, detects the temperature of the air flowing into the intake pipe 11, and outputs an electric signal indicating the detected temperature of the ECU 102 to the ECU 102. To enter.
 スロットル開度センサ24は、スロットル装置の本体部に装着され、スロットルバルブ14の開度を検出し、このように検出した開度を示す電気信号をECU102に入力する。 The throttle opening sensor 24 is attached to the main body of the throttle device, detects the opening of the throttle valve 14, and inputs an electric signal indicating the detected opening to the ECU 102.
 壁部温度センサ25は、燃焼室9を画成する部材、つまりシリンダブロック2又はシリンダヘッド8の壁部において燃焼室9側に受熱部が装着されてその壁部の燃焼室9側の壁表面の温度を検出し、このように検出した壁部の燃焼室9側の温度を示す電気信号をECU102に入力する。詳しくは、壁部温度センサ25は、燃焼室9内の混合気に点火プラグ10により点火されてそれが着火されることにより生成された火炎が伝播しにくい部位である吸気バルブ12側の壁表面温度(シリンダブロック2又はシリンダヘッド8における吸気バルブ12側であって燃焼室9側の内壁表面温度)を検出するように、かかる壁部の燃焼室9側のシリンダブロック2又はシリンダヘッド8に装着される。ここで、かかる吸気バルブ12側の壁表面温度に相当する壁部の温度は、燃焼室9内の混合気が着火されることにより生成された火炎が伝播しにくい部位の温度であるため、燃焼室9内の混合気の燃焼状態に敏感に反応する温度である。なお、図1A中では、壁部温度センサ25は、燃焼室9を画成する部材としてのシリンダヘッド8の壁部において燃焼室9側に受熱部が装着された例を示し、これは、受熱部が図3中での燃焼室9中央から離間した吸気側のスキッシュ領域1の近傍位置に配置された構成に相当する。また、燃焼室9内の混合気の燃焼状態に敏感に反応する温度となるものであれば、壁部温度センサ25以外の温度センサで検出されるシリンダブロック2等の壁表面温度を壁部温度として採用することも可能である。 The wall temperature sensor 25 is a member defining the combustion chamber 9, that is, a wall surface of the cylinder block 2 or the cylinder head 8, and a heat receiving portion is mounted on the combustion chamber 9 side. And an electric signal indicating the detected temperature of the wall portion on the combustion chamber 9 side is input to the ECU 102. Specifically, the wall temperature sensor 25 is a portion of the wall surface on the intake valve 12 side, which is a portion where a flame generated when the air-fuel mixture in the combustion chamber 9 is ignited by the spark plug 10 and ignited is difficult to propagate. Attached to the cylinder block 2 or the cylinder head 8 on the combustion chamber 9 side of the wall so as to detect the temperature (the temperature of the inner wall surface of the cylinder block 2 or the cylinder head 8 on the side of the intake valve 12 and on the side of the combustion chamber 9). Is done. Here, the temperature of the wall portion corresponding to the wall surface temperature on the intake valve 12 side is a temperature at a portion where the flame generated by the ignition of the air-fuel mixture in the combustion chamber 9 is difficult to propagate. This temperature is sensitive to the combustion state of the air-fuel mixture in the chamber 9. In FIG. 1A, the wall temperature sensor 25 shows an example in which a heat receiving portion is mounted on the combustion chamber 9 side in the wall portion of the cylinder head 8 as a member defining the combustion chamber 9. This corresponds to a configuration in which the portion is disposed in the vicinity of the squish region 1 on the intake side that is separated from the center of the combustion chamber 9 in FIG. If the temperature is sensitive to the combustion state of the air-fuel mixture in the combustion chamber 9, the wall surface temperature of the cylinder block 2 or the like detected by a temperature sensor other than the wall temperature sensor 25 is used as the wall temperature. It is also possible to adopt as.
 ECU102は、車両が備えるバッテリからの電力を利用して動作するもので、マイコン104、A/D(Analog to Digil)変換回路201a及び201b、波形成形回路202、並びに駆動回路301を備えている。 The ECU 102 operates using electric power from a battery provided in the vehicle, and includes a microcomputer 104, A / D (Analog to Digil) conversion circuits 201a and 201b, a waveform shaping circuit 202, and a drive circuit 301.
 マイコン104は、メモリ106及びCPU(Central Processing Unit)108を備えている。 The microcomputer 104 includes a memory 106 and a CPU (Central Processing Unit) 108.
 メモリ106は、不揮発性及び揮発性の各種記憶装置によって構成され、内燃機関運転状態制御処理用等の制御プログラムや各種制御データを格納している。なお、不揮発性の記憶装置は、ECU102が内燃機関運転状態制御処理を実行する際に用いる制御データ(燃料噴射量の指示値や点火時期等)を一時的に記憶するワーキングエリアとして機能する。 The memory 106 is configured by various nonvolatile and volatile storage devices, and stores a control program for the operation state control processing of the internal combustion engine and various control data. The non-volatile storage device functions as a working area that temporarily stores control data (such as the fuel injection amount instruction value and ignition timing) used when the ECU 102 executes the internal combustion engine operating state control process.
 CPU108は、冷却水温センサ21、クランク角センサ22、吸気温センサ23、スロットル開度センサ24、及び壁部温度センサ25からの電気信号を用いて、ECU102全体の動作を制御するもので、回転数算出部203、トルク算出部204、壁部温度算出部205、冷却水温算出部206、差分温度算出部207、基準目標差分温度算出部208、補正項算出部209、目標差分温度算出部210、運転状態制御部211、比較部212、及び点火時期算出部213を備えている。なお、回転数算出部203、トルク算出部204、壁部温度算出部205、冷却水温算出部206、差分温度算出部207、基準目標差分温度算出部208、補正項算出部209、目標差分温度算出部210、運転状態制御部211、比較部212、及び点火時期算出部213は、CPU108がメモリ106から必要な制御プログラム及び制御データを読み出して内燃機関運転状態制御処理等を実行する際の機能ブロックとして示している。 The CPU 108 controls the overall operation of the ECU 102 using electrical signals from the coolant temperature sensor 21, the crank angle sensor 22, the intake air temperature sensor 23, the throttle opening sensor 24, and the wall temperature sensor 25. Calculation unit 203, torque calculation unit 204, wall temperature calculation unit 205, cooling water temperature calculation unit 206, differential temperature calculation unit 207, reference target differential temperature calculation unit 208, correction term calculation unit 209, target differential temperature calculation unit 210, operation A state control unit 211, a comparison unit 212, and an ignition timing calculation unit 213 are provided. The rotation speed calculation unit 203, the torque calculation unit 204, the wall temperature calculation unit 205, the cooling water temperature calculation unit 206, the differential temperature calculation unit 207, the reference target differential temperature calculation unit 208, the correction term calculation unit 209, and the target differential temperature calculation Unit 210, operation state control unit 211, comparison unit 212, and ignition timing calculation unit 213 are functional blocks when the CPU 108 reads out necessary control programs and control data from the memory 106 and executes internal combustion engine operation state control processing and the like. As shown.
 A/D変換回路201aは、壁部温度センサ25から入力されたアナログ形態の電気信号をデジタル形態に変換してそれを壁部温度算出部205に入力する。 The A / D conversion circuit 201a converts the analog electrical signal input from the wall temperature sensor 25 into a digital format and inputs it to the wall temperature calculation unit 205.
 A/D変換回路201bは、冷却水温センサ21から入力されたアナログ形態の電気信号をデジタル形態に変換してそれを冷却水温算出部206に入力する。 The A / D conversion circuit 201 b converts the analog electrical signal input from the cooling water temperature sensor 21 into a digital format and inputs it to the cooling water temperature calculation unit 206.
 波形成形回路202は、クランク角センサ22から入力された電気信号に対してスムージング処理等の成形処理を施した後にその電気信号を回転数算出部203及びトルク算出部204に入力する。 The waveform shaping circuit 202 performs a shaping process such as a smoothing process on the electric signal input from the crank angle sensor 22, and then inputs the electric signal to the rotation speed calculation unit 203 and the torque calculation unit 204.
 回転数算出部203は、波形成形回路202から入力された電気信号を用いて内燃機関1の回転数を算出し、このように回転数算出部203が算出した内燃機関1の回転数は、基準目標差分温度算出部208で用いられる。 The rotation speed calculation unit 203 calculates the rotation speed of the internal combustion engine 1 using the electrical signal input from the waveform shaping circuit 202. The rotation speed of the internal combustion engine 1 calculated by the rotation speed calculation unit 203 in this way is the reference Used by the target differential temperature calculation unit 208.
 トルク算出部204は、波形成形回路202から入力された電気信号を用いて内燃機関1の出力トルク(トルク)を算出し、このようにトルク算出部204が算出した内燃機関1のトルクは、基準目標差分温度算出部208で用いられる。なお、トルク算出部204は、このように算出した内燃機関1のトルクの値が滑らかに変化するように、それに所定のフィルタリング処理を施してもよい。 The torque calculation unit 204 calculates the output torque (torque) of the internal combustion engine 1 using the electrical signal input from the waveform shaping circuit 202. The torque of the internal combustion engine 1 calculated by the torque calculation unit 204 in this way is the reference Used by the target differential temperature calculation unit 208. The torque calculation unit 204 may perform a predetermined filtering process so that the calculated torque value of the internal combustion engine 1 changes smoothly.
 壁部温度算出部205は、A/D変換回路201aから入力された電気信号を用いて内燃機関1の燃焼室9を画成するシリンダブロック2又はシリンダヘッド8の壁部の燃焼室9側の温度(壁表面温度)を算出し、このように壁部温度算出部205が算出した壁部の燃焼室9側の温度は、差分温度算出部207及び補正項算出部209で用いられる。かかる壁部の燃焼室9側の温度は、内燃機関1の燃焼室9内の混合気の燃焼状態を直接的に反映する内燃機関1の温度であって、かつ、前述したように、燃焼室9内の混合気の燃焼の乱れ等の燃焼状態、つまり燃焼室9の壁表面の受熱の状態に敏感に反応する温度である。ここで、かかる燃焼室9の壁表面の受熱の状態は、内燃機関1のシリンダの内圧レベルやノックの発生状態に影響を受けるものであり、かかるシリンダの内圧レベルやノックの発生状態は、内燃機関1の点火時期に影響を受けるものである。なお、壁部温度算出部205は、このように算出した壁部の燃焼室9側の温度の値が滑らかに変化するように、それに所定のフィルタリング処理を施してもよい。なお、付言すれば、かかる壁部の燃焼室9側の温度は、内燃機関1のシリンダ内で発生する発生熱量を直接的に反映した温度であると評価され得るものであるため、かかる壁部の燃焼室9側の温度と、内燃機関1のシリンダ内、つまり燃焼室9内に供給される燃料噴射量と、は、概略的には相関があるものでもあるため、壁部の燃焼室9側の温度は点火時期の制御のみならず、燃料噴射量の制御にも利用可能である。 The wall temperature calculation unit 205 uses the electric signal input from the A / D conversion circuit 201a to define the combustion chamber 9 of the internal combustion engine 1 on the combustion chamber 9 side of the wall of the cylinder block 2 or the cylinder head 8. The temperature (wall surface temperature) is calculated, and the temperature on the combustion chamber 9 side of the wall calculated by the wall temperature calculating unit 205 in this way is used by the differential temperature calculating unit 207 and the correction term calculating unit 209. The temperature of the wall portion on the combustion chamber 9 side is the temperature of the internal combustion engine 1 that directly reflects the combustion state of the air-fuel mixture in the combustion chamber 9 of the internal combustion engine 1, and as described above, 9 is a temperature that reacts sensitively to a combustion state such as combustion disturbance of the air-fuel mixture in the fuel tank 9, that is, a heat receiving state on the wall surface of the combustion chamber 9. Here, the heat receiving state of the wall surface of the combustion chamber 9 is affected by the internal pressure level of the cylinder of the internal combustion engine 1 and the occurrence of knocking. The internal pressure level of the cylinder and the occurrence of knocking are determined by the internal combustion engine. It is influenced by the ignition timing of the engine 1. Note that the wall temperature calculation unit 205 may perform a predetermined filtering process so that the calculated temperature value of the wall on the combustion chamber 9 side changes smoothly. In addition, since the temperature on the combustion chamber 9 side of the wall portion can be evaluated as a temperature that directly reflects the amount of generated heat generated in the cylinder of the internal combustion engine 1, such a wall portion. The temperature on the combustion chamber 9 side of the internal combustion engine 1 and the fuel injection amount supplied to the combustion chamber 9 in the cylinder of the internal combustion engine 1 are also generally correlated with each other. The temperature on the side can be used not only for controlling the ignition timing but also for controlling the fuel injection amount.
 冷却水温算出部206は、A/D変換回路201bから入力された電気信号を用いてクーラント通路3内を流通するクーラント温度を内燃機関代表温度として算出し、このように冷却水温算出部206が算出したクーラント温度は、差分温度算出部207及び補正項算出部209で用いられる。ここで、かかるクーラント温度は、内燃機関の温度を代表的に示す内燃機関1の代表温度、つまり内燃機関代表温度であって、内燃機関1のシリンダを冷却する冷却熱量を反映した温度であると評価され得るものである。また、かかるクーラント温度は、壁部温度算出部205が算出する壁部の燃焼室9側の温度に比較して、燃焼室9内の混合気の燃焼状態に敏感には反応しない温度である。なお、冷却水温算出部206は、このように算出したクーラント温度の値が滑らかに変化するように、それに所定のフィルタリング処理を施してもよい。また、かかる内燃機関代表温度としては、クーラント温度の他に、内燃機関1の潤滑油の温度等を用いてもよい。また、内燃機関1が空冷式である場合にも、内燃機関1の潤滑油の温度等を内燃機関代表温度として用いることが可能である。 The cooling water temperature calculation unit 206 calculates the coolant temperature flowing through the coolant passage 3 as the representative temperature of the internal combustion engine using the electric signal input from the A / D conversion circuit 201b, and the cooling water temperature calculation unit 206 calculates in this way. The coolant temperature thus used is used in the differential temperature calculation unit 207 and the correction term calculation unit 209. Here, the coolant temperature is a representative temperature of the internal combustion engine 1 representatively showing the temperature of the internal combustion engine, that is, a representative temperature of the internal combustion engine, and a temperature reflecting a cooling heat amount for cooling the cylinder of the internal combustion engine 1. It can be evaluated. Further, the coolant temperature is a temperature that does not react sensitively to the combustion state of the air-fuel mixture in the combustion chamber 9 as compared with the temperature of the wall portion on the combustion chamber 9 side calculated by the wall temperature calculation unit 205. Note that the coolant temperature calculation unit 206 may perform a predetermined filtering process on the coolant temperature so calculated so that the coolant temperature value changes smoothly. In addition to the coolant temperature, the temperature of the lubricating oil of the internal combustion engine 1 may be used as the representative internal combustion engine temperature. Even when the internal combustion engine 1 is air-cooled, the temperature of the lubricating oil of the internal combustion engine 1 can be used as the representative internal combustion engine temperature.
 差分温度算出部207は、壁部温度算出部205が算出した壁部の燃焼室9側の温度と冷却水温算出部206が算出したクーラント温度との差分値である差分温度を算出し、このように差分温度算出部207が算出した差分温度は、運転状態制御部211の内燃機関運転状態制御処理で用いられる。ここで、壁部温度算出部205が算出する壁部の燃焼室9側の温度は、内燃機関1の燃焼室9内の混合気の燃焼状態に敏感に反応する温度であり、冷却水温算出部206が算出するクーラント温度は、燃焼室9内の混合気の燃焼状態に敏感には反応しない温度であるため、かかる差分温度は、燃焼室9内の燃焼状態が良好である場合には、大きな値を示す一方で、これに比較して、点火時期が遅角状態にあって内燃機関1の出力が低い場合には、小さな値を示すものである。これ故、かかる差分温度は、燃焼室9内の燃焼状態の良・不良を示す指標となると共に、内燃機関1の冷却系の冷却能力をも反映するものである。特に、内燃機関1の点火時期は、内燃機関1のシリンダの内圧レベルやノックの発生状態に影響を与え、シリンダの内圧レベルやノックの発生状態は、内燃機関1の燃焼室9の壁表面の受熱の状態に影響を与え、かつ、燃焼室9の壁部の燃焼室9側の温度と内燃機関のクーラント温度等である内燃機関代表温度と、の差分値である差分温度は、燃焼室9の壁表面の受熱の状態に敏感に反応するものであるから、かかる差分温度は、運転状態制御部211が内燃機関1の運転状態を制御する際の点火時期の制御に適用し得るものである。なお、必要に応じて、かかる差分温度は、運転状態制御部211が内燃機関1の運転状態を制御する際の燃料噴射量の制御にも適用することが可能である。 The difference temperature calculation unit 207 calculates a difference temperature that is a difference value between the temperature on the combustion chamber 9 side of the wall calculated by the wall temperature calculation unit 205 and the coolant temperature calculated by the cooling water temperature calculation unit 206. The difference temperature calculated by the difference temperature calculation unit 207 is used in the internal combustion engine operation state control process of the operation state control unit 211. Here, the temperature on the combustion chamber 9 side of the wall calculated by the wall temperature calculation unit 205 is a temperature that reacts sensitively to the combustion state of the air-fuel mixture in the combustion chamber 9 of the internal combustion engine 1, and the cooling water temperature calculation unit Since the coolant temperature calculated by 206 is a temperature that does not react sensitively to the combustion state of the air-fuel mixture in the combustion chamber 9, the difference temperature is large when the combustion state in the combustion chamber 9 is good. On the other hand, when the ignition timing is retarded and the output of the internal combustion engine 1 is low, a small value is shown. Therefore, the differential temperature is an index indicating whether the combustion state in the combustion chamber 9 is good or bad, and also reflects the cooling capacity of the cooling system of the internal combustion engine 1. In particular, the ignition timing of the internal combustion engine 1 affects the internal pressure level of the cylinder of the internal combustion engine 1 and the occurrence of knocking. The internal pressure level of the cylinder and the occurrence of knocking occur on the wall surface of the combustion chamber 9 of the internal combustion engine 1. The difference temperature that affects the state of heat reception and that is the difference between the temperature on the combustion chamber 9 side of the wall of the combustion chamber 9 and the internal combustion engine representative temperature such as the coolant temperature of the internal combustion engine is the combustion chamber 9 Therefore, the differential temperature can be applied to the ignition timing control when the operation state control unit 211 controls the operation state of the internal combustion engine 1. . Note that the differential temperature can be applied to the control of the fuel injection amount when the operation state control unit 211 controls the operation state of the internal combustion engine 1 as necessary.
 ここで、図5に示す実験結果から、点火時期を進角させていくと、内燃機関1のトルクは上昇していき、そのトルクがピークに達するまでは差分温度も上昇していくと共に、そのトルクがピークに達した後から、ノックレベルが上昇を始めるまでに差分温度が一定値となる範囲があり、その後ノックレベルが上昇を始めると共に差分温度は急峻な上昇傾向を示すことが分かる。 Here, from the experimental results shown in FIG. 5, as the ignition timing is advanced, the torque of the internal combustion engine 1 increases, and the differential temperature also increases until the torque reaches its peak. It can be seen that there is a range in which the differential temperature becomes a constant value after the torque reaches the peak and before the knock level starts to rise, and then the differential temperature shows a steep rising trend as the knock level starts to rise.
 また、図6に示す実験結果から、差分温度とピーク筒内圧との関係には、非常に良い正相関があることが分かる。点火時期を固定すれば、ピーク筒内圧と平均有効圧との関係には正相関があるので、MBTでの内燃機関1のトルクと差分温度との間には、正相関があることになる。このように内燃機関1のトルクと差分温度との間に正相関があるのであれば、この差分温度を目標差分温度として、実機の差分温度が目標差分温度となるよう制御することで、内燃機関1をベストトルクの状態で運転することが可能となる。また、内燃機関1における種々の回転数や負荷条件でそのトルクと差分温度との関係を計測したところ、回転数が1900rpmから5000rpmの範囲でスロットル開度がアイドル開度から全開開度の範囲において、このような正相関が認められた。 Also, the experimental results shown in FIG. 6 show that there is a very good positive correlation between the difference temperature and the peak in-cylinder pressure. If the ignition timing is fixed, there is a positive correlation between the peak in-cylinder pressure and the average effective pressure, so there is a positive correlation between the torque of the internal combustion engine 1 and the differential temperature at MBT. Thus, if there is a positive correlation between the torque of the internal combustion engine 1 and the differential temperature, the internal combustion engine is controlled by setting the differential temperature as the target differential temperature so that the differential temperature of the actual machine becomes the target differential temperature. 1 can be operated in the best torque state. Further, when the relationship between the torque and the differential temperature was measured at various rotational speeds and load conditions in the internal combustion engine 1, the rotational speed was in the range of 1900 rpm to 5000 rpm, and the throttle opening was in the range from the idle opening to the fully opened opening. Such a positive correlation was observed.
 基準目標差分温度算出部208は、内燃機関1の運転状態に関するパラメータから基準目標差分温度を算出し、このように基準目標差分温度算出部208が算出した基準目標差分温度は、補正項算出部209及び目標差分温度算出部210で用いられる。ここで、かかる基準目標差分温度は、差分温度算出部207が算出する差分温度の目標値である目標差分温度の基準値となるものであり、内燃機関1がノックレベルが無視し得るレベルであってベストトルクを出力する運転状態にあるときの差分温度の理想値として算出されるものである。また、内燃機関1の運転状態に関するパラメータとしては、実際に運転されている内燃機関1において、その内燃機関1がベストトルクを出力する運転状態にあるときの理想値である基準目標差分温度を求めることが必要であるので、内燃機関1の実際の運転状態を呈するものとして抽出したパラメータを設定することが必要となる。かかる観点からは、内燃機関1の運転状態に関するパラメータとしては、内燃機関1の回転数及びその回転数における内燃機関1が出力するトルクを設定することが好ましい。 The reference target difference temperature calculation unit 208 calculates the reference target difference temperature from the parameters related to the operating state of the internal combustion engine 1, and the reference target difference temperature calculated by the reference target difference temperature calculation unit 208 in this way is the correction term calculation unit 209. And the target differential temperature calculation unit 210. Here, the reference target differential temperature is a reference value of the target differential temperature that is the target value of the differential temperature calculated by the differential temperature calculation unit 207, and is a level that the internal combustion engine 1 can ignore the knock level. Thus, it is calculated as an ideal value of the differential temperature when in an operating state in which the best torque is output. Further, as a parameter relating to the operating state of the internal combustion engine 1, a reference target differential temperature that is an ideal value when the internal combustion engine 1 is in an operating state in which the internal combustion engine 1 outputs the best torque is obtained. Therefore, it is necessary to set the extracted parameter as indicating the actual operating state of the internal combustion engine 1. From this point of view, it is preferable to set the rotational speed of the internal combustion engine 1 and the torque output by the internal combustion engine 1 at the rotational speed as parameters relating to the operating state of the internal combustion engine 1.
 具体的には、基準目標差分温度算出部208は、メモリ106中に予め格納されているデータ、つまり内燃機関1の運転状態に関するパラメータの値に対応して基準目標差分温度の値が規定されたテーブルデータやマップデータをメモリ106から読み出して、実際に運転されている内燃機関1の運転状態に関するパラメータの値と、メモリ106から読み出したデータと、を照らし合わせ、かかるデータから、このように実際に運転されている内燃機関1の運転状態に関するパラメータの値に対応する基準目標差分温度の値を算出することになる。例えば、内燃機関1の運転状態に関するパラメータとして、内燃機関1の回転数及びその回転数における内燃機関1が出力するトルクが設定されている場合には、メモリ106中に予め格納されているデータは、互いに直交する2つ軸に内燃機関1の回転数の値及びその回転数における内燃機関1が出力するトルクの値を対応して規定し、かかる2つの軸に直交する第3の軸に、それらの回転数の値及びトルクの値に対応して基準目標差分温度の値が規定されたマップデータの形態となる。このような場合には、基準目標差分温度算出部208は、かかるマップデータをメモリ106から読み出して参照し、回転数算出部203が算出した内燃機関1の回転数と、トルク算出部204が算出した内燃機関1のトルクと、に対応する基準目標差分温度を算出することになる。 Specifically, the reference target differential temperature calculation unit 208 defines the reference target differential temperature value corresponding to the data stored in advance in the memory 106, that is, the parameter value relating to the operating state of the internal combustion engine 1. The table data and the map data are read from the memory 106, and the parameter values relating to the operating state of the internal combustion engine 1 that is actually operated are compared with the data read from the memory 106. The value of the reference target differential temperature corresponding to the value of the parameter relating to the operating state of the internal combustion engine 1 that is being operated is calculated. For example, when the rotational speed of the internal combustion engine 1 and the torque output by the internal combustion engine 1 at the rotational speed are set as parameters relating to the operating state of the internal combustion engine 1, the data stored in advance in the memory 106 is , Defining the value of the rotational speed of the internal combustion engine 1 and the value of the torque output by the internal combustion engine 1 at the rotational speed corresponding to the two axes orthogonal to each other, and the third axis orthogonal to the two axes, It becomes the form of map data in which the value of the reference target differential temperature is defined corresponding to the value of the rotation speed and the value of the torque. In such a case, the reference target differential temperature calculation unit 208 reads the map data from the memory 106 and refers to the map data, and the torque calculation unit 204 calculates the rotation number of the internal combustion engine 1 calculated by the rotation number calculation unit 203. The reference target differential temperature corresponding to the torque of the internal combustion engine 1 is calculated.
 補正項算出部209は、冷却水温算出部206が算出したクーラント温度及び基準目標差分温度算出部208が算出した基準目標差分温度を用いて、基準目標差分温度を補正するための補正項における補正値を算出し、このように補正項算出部209が算出した補正値は、目標差分温度算出部210で用いられる。かかる補正値は、主として、内燃機関1の許容熱量を超える熱量がそれに生じることをないようにその冷却系の冷却能力の時間変動を考慮して、基準目標差分温度を調整するためのものである。ここで、内燃機関1の出力増大時等において、燃焼室9を画成するシリンダブロック2の壁部に典型的には形成されたクーラント通路3側の壁表面の温度が冷却液であるクーラントの核沸騰点に近づくと、クーラント通路3の壁面又はその周囲のクーラントの流れ場の乱れが増大してクーラントの熱伝導率が増大する一方で、かかるクーラント通路3側の壁表面の温度が更に上昇して膜沸騰点に近づくと、クーラントの熱伝導率が減小するという現象が短時間に生じ、内燃機関1の冷却系が受熱可能な熱量が短時間に変動するため、かかるクーラント通路3側の温度から基準目標差分温度を調整する補正値が算出されればよいことになる。 The correction term calculation unit 209 uses the coolant temperature calculated by the cooling water temperature calculation unit 206 and the reference target difference temperature calculated by the reference target difference temperature calculation unit 208 to correct the correction value in the correction term for correcting the reference target difference temperature. The correction value calculated by the correction term calculation unit 209 in this way is used by the target differential temperature calculation unit 210. This correction value is mainly for adjusting the reference target differential temperature in consideration of the time variation of the cooling capacity of the cooling system so that the amount of heat exceeding the allowable heat amount of the internal combustion engine 1 does not occur in the correction value. . Here, when the output of the internal combustion engine 1 is increased, the temperature of the wall surface on the side of the coolant passage 3 typically formed in the wall portion of the cylinder block 2 defining the combustion chamber 9 is the coolant. When approaching the nucleate boiling point, the disturbance of the flow field of the coolant passage 3 or the surrounding coolant increases and the thermal conductivity of the coolant increases, while the temperature of the wall surface on the coolant passage 3 side further increases. When the film boiling point is approached, the phenomenon that the thermal conductivity of the coolant decreases occurs in a short time, and the amount of heat that can be received by the cooling system of the internal combustion engine 1 fluctuates in a short time. It is only necessary to calculate a correction value for adjusting the reference target differential temperature from this temperature.
 具体的には、補正項算出部209は、メモリ106中に予め格納されているデータ、つまりクーラント温度の値に対応して温度相関係数の値が規定されたテーブルデータをメモリ106から読み出して、冷却水温算出部206が算出したクーラント温度の値と、メモリ106から読み出したテーブルデータと、を照らし合わせ、かかるデータから、冷却水温算出部206が算出したクーラント温度の値に対応する温度相関係数の値を算出する。ついで、補正項算出部209は、かかる温度相関係数を基準目標差分温度算出部208が算出した基準目標差分温度に乗算して、壁部の燃焼室9側の温度及び壁部のクーラント通路3側の温度間の降下温度を算出する。ついで、補正項算出部209は、かかる降下温度を壁部温度算出部205が算出した壁部の燃焼室9側の温度から減算して、壁部のクーラント通路3側の温度を算出する。ついで、補正項算出部209は、メモリ106中に予め格納されているデータ、つまり壁部のクーラント通路3側の温度の値に対応して差分温度補正値が規定されたテーブルデータをメモリ106から読み出して、補正項算出部209が算出した壁部のクーラント通路3側の温度と、メモリ106から読み出したテーブルデータと、を照らし合わせ、かかるデータから、補正項算出部209が算出した壁部のクーラント通路3側の温度の値に対応する差分温度補正値を算出することになる。なお、内燃機関1が空冷式の場合には、その冷却系の冷却能力は、内燃機関1が搭載される車両の速度、内燃機関1の代表温度、その吸気温度、その油温、及びそのシリンダブロック等の外皮の表面温度等に依存するものであるため、水冷式の内燃機関1における壁部のクーラント通路3側の温度に相当する温度は、内燃機関1の代表温度にその代表温度を検出した位置の補正を施し、かつこれに車速や吸気温度に対応する相関係数を乗算することにより算出することができるものである。 Specifically, the correction term calculation unit 209 reads from the memory 106 data stored in advance in the memory 106, that is, table data in which the value of the temperature correlation coefficient is defined corresponding to the value of the coolant temperature. The coolant temperature value calculated by the coolant temperature calculation unit 206 is compared with the table data read from the memory 106, and the temperature phase relationship corresponding to the coolant temperature value calculated by the coolant temperature calculation unit 206 from the data is compared. Calculate the value of the number. Next, the correction term calculation unit 209 multiplies the temperature correlation coefficient by the reference target difference temperature calculated by the reference target difference temperature calculation unit 208, and the temperature of the wall portion on the combustion chamber 9 side and the coolant passage 3 of the wall portion. Calculate the temperature drop between the side temperatures. Next, the correction term calculation unit 209 calculates the temperature of the wall portion on the coolant passage 3 side by subtracting the temperature drop from the temperature of the wall portion on the combustion chamber 9 side calculated by the wall portion temperature calculation unit 205. Next, the correction term calculation unit 209 reads from the memory 106 data stored in advance in the memory 106, that is, table data in which a differential temperature correction value is defined corresponding to the temperature value of the wall on the coolant passage 3 side. The temperature on the coolant passage 3 side of the wall portion calculated by the correction term calculation unit 209 is compared with the table data read from the memory 106, and the wall portion calculated by the correction term calculation unit 209 is calculated from the data. A differential temperature correction value corresponding to the temperature value on the coolant passage 3 side is calculated. When the internal combustion engine 1 is air-cooled, the cooling capacity of the cooling system includes the speed of the vehicle on which the internal combustion engine 1 is mounted, the representative temperature of the internal combustion engine 1, the intake air temperature, the oil temperature, and the cylinder. Since the temperature depends on the surface temperature of the outer skin of the block or the like, the temperature corresponding to the temperature on the coolant passage 3 side of the wall portion in the water-cooled internal combustion engine 1 is detected as the representative temperature of the internal combustion engine 1. It can be calculated by correcting the position and multiplying this by a correlation coefficient corresponding to the vehicle speed and the intake air temperature.
 目標差分温度算出部210は、補正項算出部209が算出した差分温度補正値を用いて、基準目標差分温度算出部208が算出した基準目標差分温度を補正して目標差分温度を算出し、このように目標差分温度算出部210が算出した目標差分温度は、運転状態制御部211で用いられる。具体的には、目標差分温度算出部210は、補正項算出部209が算出した差分温度補正値を基準目標差分温度算出部208が算出した基準目標差分温度の値に加算して、目標差分温度を算出することになる。また、この際、目標差分温度算出部210は、内燃機関1の燃焼室9を画成する壁部の伝熱特性を反映した燃焼室9から壁部への伝熱の時間遅れを加味して、基準目標差分温度を更に補正してもよい。かかる場合、具体的には、目標差分温度算出部210は、内燃機関1の出力の増大時及び減小時に応じたフィルタリング係数を算出し、かかるフィルタリング係数を差分温度補正値を用いて補正した基準目標差分温度に乗算して、目標差分温度を算出することになる。 The target difference temperature calculation unit 210 uses the difference temperature correction value calculated by the correction term calculation unit 209 to correct the reference target difference temperature calculated by the reference target difference temperature calculation unit 208 to calculate the target difference temperature. As described above, the target difference temperature calculated by the target difference temperature calculation unit 210 is used by the operation state control unit 211. Specifically, the target difference temperature calculation unit 210 adds the difference temperature correction value calculated by the correction term calculation unit 209 to the value of the reference target difference temperature calculated by the reference target difference temperature calculation unit 208, so that the target difference temperature Will be calculated. At this time, the target differential temperature calculation unit 210 takes into account the time delay of heat transfer from the combustion chamber 9 to the wall portion reflecting the heat transfer characteristics of the wall portion defining the combustion chamber 9 of the internal combustion engine 1. The reference target differential temperature may be further corrected. In such a case, specifically, the target differential temperature calculation unit 210 calculates a filtering coefficient corresponding to when the output of the internal combustion engine 1 increases and decreases, and a standard obtained by correcting the filtering coefficient using the differential temperature correction value. The target differential temperature is calculated by multiplying the target differential temperature.
 ここで、図7に示すように、差分温度TCCDは、壁部温度算出部205が算出した壁部の燃焼室9側の温度TCCと冷却水温算出部206が算出したクーラント温度TWとの差分値であるから、内燃機関1の燃焼による発生熱量がその冷却系に伝達する熱量に対応したものである。つまり、差分温度TCCDは、内燃機関1のノックの有無や筒内圧の高低によって変化するものであるから、内燃機関1の燃焼の健全さを直接示しているパラメータであると評価し得るものであるが、冷却系に伝達する熱量は、それ自体がクーラントの熱伝導率に依存するものであるため、差分温度TCCDは、壁部のクーラント通路3側の温度TCCRの増減(図7中、TCCR’及びTCCR’’で示す)に対応してクーラントの熱伝導率が増減するとTCCD’やTCCD’’のように増減してしまう。このため、目標差分温度算出部210は、補正項算出部209が算出した差分温度補正値DTCCRを用いて、基準目標差分温度算出部208が算出した基準目標差分温度TCCDBPMを補正している(図7中、TCCDBPM’及びTCCDBPM’’で示す)。 Here, as shown in FIG. 7, the difference temperature TCCD is a difference value between the temperature TCC on the combustion chamber 9 side of the wall calculated by the wall temperature calculation unit 205 and the coolant temperature TW calculated by the cooling water temperature calculation unit 206. Therefore, the amount of heat generated by the combustion of the internal combustion engine 1 corresponds to the amount of heat transmitted to the cooling system. That is, the differential temperature TCCD changes depending on whether the internal combustion engine 1 is knocked or the level of the in-cylinder pressure. Therefore, the differential temperature TCCD can be evaluated as a parameter directly indicating the soundness of combustion of the internal combustion engine 1. However, since the amount of heat transferred to the cooling system itself depends on the thermal conductivity of the coolant, the difference temperature TCCD is an increase / decrease in the temperature TCCR on the coolant passage 3 side of the wall (TCCR ′ in FIG. 7). When the thermal conductivity of the coolant increases or decreases in correspondence with (indicated by TCCR ″ and TCCR ″), it increases or decreases like TCCD ′ or TCCD ″. Therefore, the target difference temperature calculation unit 210 corrects the reference target difference temperature TCCBPM calculated by the reference target difference temperature calculation unit 208 using the difference temperature correction value DTCCR calculated by the correction term calculation unit 209 (FIG. 7, indicated as TCCBPM ′ and TCCBPM ″).
 また、図8に示すテーブルデータは、補正項算出部209が目標差分温度算出部210による基準目標差分温度の補正用の差分温度補正値を算出する際に用いるテーブルデータの一例であり、図8中の右側の差分温度補正値の変化の態様が、クーラントの核沸騰点及び膜沸騰点に対応している。 The table data shown in FIG. 8 is an example of table data used when the correction term calculation unit 209 calculates a differential temperature correction value for correcting the reference target differential temperature by the target differential temperature calculation unit 210. FIG. The mode of change of the differential temperature correction value on the right side in the middle corresponds to the nucleate boiling point and the film boiling point of the coolant.
 また、図9に示すように、目標差分温度算出部210が、内燃機関1の燃焼室9を画成する壁部の伝熱特性を反映した燃焼室9から壁部への伝熱の時間遅れを加味して、基準目標差分温度を更に補正する際には、フィルタ処理前の目標差分温度よりも滑らかに啓示的に変化するフィルタ処理後の目標差分温度が得られている。 In addition, as shown in FIG. 9, the target differential temperature calculation unit 210 has a time delay of heat transfer from the combustion chamber 9 to the wall portion reflecting the heat transfer characteristics of the wall portion defining the combustion chamber 9 of the internal combustion engine 1. When the reference target differential temperature is further corrected in consideration of the above, the post-filter target differential temperature that is smoothly and remarkably changed from the pre-filter target differential temperature is obtained.
 運転状態制御部211は、内燃機関制御装置100全体の動作を制御する。具体的には、運転状態制御部211は、吸気温センサ23からECU102に入力された電気信号を用いてCPU108が算出したスロットルバルブ14の開度、吸気温センサ23からECU102に入力された電気信号を用いてCPU108が算出した吸気管11内に流入する空気の温度、差分温度算出部207が算出した差分温度、及び目標差分温度算出部210が算出した目標差分温度等に基づいて、点火時期及び燃料噴射量の指示値等を算出する。そして、運転状態制御部211は、このように算出した点火時期及び燃料噴射量の指示値等を内燃機関1に適用することにより、その運転状態を制御する内燃機関運転状態制御処理を実行する。また、運転状態制御部211は、内燃機関運転状態制御処理における点火時期の制御に着目すると、点火時期の指示値を算出するための機能ブロックとして比較部212及び点火時期算出部213を備えている。 The operating state control unit 211 controls the operation of the internal combustion engine control device 100 as a whole. Specifically, the operating state control unit 211 uses the electrical signal input from the intake air temperature sensor 23 to the ECU 102 to calculate the opening of the throttle valve 14 calculated by the CPU 108, and the electrical signal input from the intake air temperature sensor 23 to the ECU 102. On the basis of the temperature of the air flowing into the intake pipe 11 calculated by the CPU 108, the differential temperature calculated by the differential temperature calculation unit 207, the target differential temperature calculated by the target differential temperature calculation unit 210, and the like. An indication value of the fuel injection amount is calculated. Then, the operation state control unit 211 executes the internal combustion engine operation state control process for controlling the operation state by applying the ignition timing and the fuel injection amount instruction value calculated in this way to the internal combustion engine 1. The operating state control unit 211 includes a comparison unit 212 and an ignition timing calculation unit 213 as functional blocks for calculating an instruction value of the ignition timing, focusing on the control of the ignition timing in the internal combustion engine operation state control process. .
 比較部212は、差分温度算出部207が算出した差分温度の値と、目標差分温度算出部210が算出した目標差分温度の値と、を比較し、これらの大小関係を判別し、このように比較部212が判別した大小関係は、点火時期算出部213で用いられる。 The comparison unit 212 compares the difference temperature value calculated by the difference temperature calculation unit 207 with the target difference temperature value calculated by the target difference temperature calculation unit 210, and determines the magnitude relationship between them. The magnitude relationship determined by the comparison unit 212 is used by the ignition timing calculation unit 213.
 点火時期算出部213は、比較部212が判別した大小関係に基づき、差分温度算出部207が算出した差分温度の値が目標差分温度算出部210が算出した目標差分温度の値よりも大きい場合には、現在適用されている点火時期の指示値を所定量遅角した点火時期の指示値を算出し、差分温度算出部207が算出した差分温度の値が目標差分温度算出部210が算出した目標差分温度の値よりも小さい場合には、現在適用されている点火時期の指示値を所定量進角した点火時期の指示値を算出する。 The ignition timing calculation unit 213 determines that the difference temperature value calculated by the difference temperature calculation unit 207 is larger than the target difference temperature value calculated by the target difference temperature calculation unit 210 based on the magnitude relationship determined by the comparison unit 212. Calculates the ignition timing instruction value obtained by retarding the currently applied ignition timing instruction value by a predetermined amount, and the difference temperature value calculated by the difference temperature calculation unit 207 is calculated by the target difference temperature calculation unit 210. If it is smaller than the value of the differential temperature, the ignition timing command value is calculated by advancing the command value of the currently applied ignition timing by a predetermined amount.
 駆動回路301は、点火時期算出部213が算出した点火時期の指示値を点火プラグ10の点火動作に適用するために、運転状態制御部211から入力された制御信号に従って、点火コイル等を介して点火プラグ10を駆動することによって、内燃機関1の点火時期を制御する。 In order to apply the indicated value of the ignition timing calculated by the ignition timing calculation unit 213 to the ignition operation of the spark plug 10, the drive circuit 301 uses an ignition coil or the like in accordance with a control signal input from the operation state control unit 211. The ignition timing of the internal combustion engine 1 is controlled by driving the spark plug 10.
 ここで、図10に示す実験結果において、各々の内燃機関の圧縮比が-0.2から+0.5の範囲内でばらついたと仮定した場合、図10中の(a)に示すような目標差分温度を用いない一般的な固定点火時期を伴う内燃機関運転状態制御処理による内燃機関のトルクのばらつき幅W1は、約3.6%FS比程度あるが、これと比較して、図10中の(b)に示すような本実施形態の比較用目標差分温度を用いた点火時期の制御を伴う内燃機関運転状態制御処理による内燃機関1のトルクのばらつき幅W2は、図10中の(a)の固定点火時期におけるノックレベルと同等のノックレベルを呈する比較用目標差分温度を設定した際に、約1.6%FS比程度に改善したことが分かる。 Here, in the experimental results shown in FIG. 10, when it is assumed that the compression ratio of each internal combustion engine varies within the range of −0.2 to +0.5, the target difference as shown in FIG. The variation width W1 of the torque of the internal combustion engine by the internal combustion engine operating state control process with a general fixed ignition timing that does not use the temperature is about 3.6% FS ratio. The variation width W2 of the torque of the internal combustion engine 1 by the internal combustion engine operating state control process with the ignition timing control using the comparative target differential temperature of this embodiment as shown in (b) is shown in (a) of FIG. It can be seen that when the target differential temperature for comparison exhibiting the knock level equivalent to the knock level at the fixed ignition timing is set, it is improved to about 1.6% FS ratio.
 また、図11に示す実験結果から、高オクタン(いわゆるハイオクタンクラス)のガソリン、低オクタン(いわゆるレギュラークラス)のガソリン、及びエタノールを内燃機関1の燃料に用いた場合に、各々において、目標差分温度の挙動に互いの差異はなく、ノックの発生が起こると共に目標差分温度の上昇が始まり、ある一定以上のノックの状態を各々の燃料種で同様に判断することができることが分かった。なお、図11中で、高オクタンのガソリンの進角限界をL1、低オクタンのガソリンの進角限界をL2及びエタノールの進角限界をL3で、各々示している。 Further, from the experimental results shown in FIG. 11, when high-octane (so-called high-octane class) gasoline, low-octane (so-called regular class) gasoline, and ethanol are used as fuel for the internal combustion engine 1, the target difference is obtained. It has been found that there is no difference in temperature behavior, and as knocking occurs, the target differential temperature starts to rise, and the state of knocking above a certain level can be similarly judged for each fuel type. In FIG. 11, the advance angle limit of high octane gasoline is indicated by L1, the advance angle limit of low octane gasoline is indicated by L2, and the advance angle limit of ethanol is indicated by L3.
 以上のような構成を有する内燃機関制御装置100は、内燃機関運転状態制御処理を実行する際に、以下に示す目標差分温度算出処理を実行することによって、内燃機関1の個体差に実質的な影響を受けない態様で、最適な効率の内燃機関1の運転状態を実現する目標差分温度を算出する。以下、図12を更に参照して、この目標差分温度算出処理を実行する際の内燃機関制御装置100の動作について説明する。 The internal combustion engine control apparatus 100 having the above-described configuration substantially performs the individual difference of the internal combustion engine 1 by executing the target difference temperature calculation process shown below when executing the internal combustion engine operating state control process. A target differential temperature that realizes the operating state of the internal combustion engine 1 with the optimum efficiency is calculated in an unaffected manner. Hereinafter, the operation of the internal combustion engine control apparatus 100 when executing the target differential temperature calculation process will be described with further reference to FIG.
 〔目標差分温度算出処理〕
 図12は、本実施形態における内燃機関制御装置100が実行する目標差分温度算出処理の流れを例示するフローチャートである。
[Target differential temperature calculation processing]
FIG. 12 is a flowchart illustrating the flow of target difference temperature calculation processing executed by the internal combustion engine control device 100 according to this embodiment.
 図12に示す目標差分温度算出処理のフローチャートは、車両のイグニッションスイッチがオフ状態からオン状態に切り替えられて内燃機関制御装置100が稼働して、内燃機関運転状態制御処理が実行されるタイミングに合わせて開始となり、目標差分温度算出処理はステップS1の処理に進む。かかる目標差分温度算出処理は、内燃機関運転状態制御処理は、内燃機関制御装置100が稼働状態で内燃機関運転状態制御処理が実行中ある間、メモリ106から必要な制御プログラムや制御データを読み出して所定の制御周期毎に繰り返し実行されるものである。 The flowchart of the target difference temperature calculation process shown in FIG. 12 is in accordance with the timing at which the internal combustion engine control apparatus 100 is operated when the ignition switch of the vehicle is switched from the OFF state to the ON state and the internal combustion engine operation state control process is executed. The target differential temperature calculation process proceeds to step S1. The target differential temperature calculation process is the internal combustion engine operation state control process in which a necessary control program and control data are read from the memory 106 while the internal combustion engine control apparatus 100 is in an operating state and the internal combustion engine operation state control process is being executed. It is repeatedly executed every predetermined control cycle.
 ステップS1の処理では、トルク算出部204が、波形成形回路202から入力された電気信号を用いて内燃機関1が出力するトルクDCBCPFLTを算出する。ここで、トルク算出部204は、それが算出する内燃機関1のトルクの値が滑らかに変化するように、一旦算出したトルクDCBCPに所定のフィルタリング係数CDCBPREFを乗算するフィルタリング処理を施し、内燃機関1のトルクDCBCPFLTを算出している。かかるフィルタリング係数CDCBPREFの値は、トルク算出部204がメモリ106か読み出したものを用いている。これにより、ステップS1の処理は完了し、目標差分温度算出処理はステップS2の処理に進む。 In the process of step S1, the torque calculation unit 204 calculates the torque DCBCPFLT output from the internal combustion engine 1 using the electrical signal input from the waveform shaping circuit 202. Here, the torque calculation unit 204 performs a filtering process of multiplying the torque DCBCP once calculated by a predetermined filtering coefficient CDCBPREF so that the torque value of the internal combustion engine 1 calculated by the torque calculation unit 204 changes smoothly. Torque DCBCPFLT is calculated. As the value of the filtering coefficient CDCBPREF, the value read from the memory 106 by the torque calculation unit 204 is used. Thereby, the process of step S1 is completed and the target difference temperature calculation process proceeds to the process of step S2.
 ステップS2の処理では、目標差分温度算出部210が、内燃機関1の燃焼室9を画成する壁部の伝熱特性を反映した燃焼室9から壁部への伝熱の時間遅れを加味したフィルタリング係数CDBPREFを算出する。ここで、目標差分温度算出部210は、内燃機関1の出力の増大時及び減小時に応じた伝熱の時間遅れを反映するフィルタリング係数CDBPREFのテーブルデータをメモリ106から読み出してこれを参照し、内燃機関1の出力の増大時及び減小時に対応したフィルタリング係数CDBPREFの値を算出している。これにより、ステップS2の処理は完了し、目標差分温度算出処理はステップS3の処理に進む。 In the process of step S2, the target differential temperature calculation unit 210 takes into account the time delay of heat transfer from the combustion chamber 9 to the wall portion that reflects the heat transfer characteristics of the wall portion that defines the combustion chamber 9 of the internal combustion engine 1. A filtering coefficient CDBPREF is calculated. Here, the target differential temperature calculation unit 210 reads out the table data of the filtering coefficient CDBPREF reflecting the time delay of heat transfer according to the increase and decrease of the output of the internal combustion engine 1 from the memory 106, and refers to this. The value of the filtering coefficient CDBPREF corresponding to when the output of the internal combustion engine 1 increases or decreases is calculated. Thereby, the process of step S2 is completed and the target difference temperature calculation process proceeds to the process of step S3.
 ステップS3の処理では、基準目標差分温度算出部208が、内燃機関1の運転状態に関するパラメータの値に対応して基準目標差分温度TCCDBPMの値が規定されたマップデータをメモリ106から読み出して、実際に運転されている内燃機関1の運転状態に関するパラメータの値と、メモリ106から読み出したデータと、を照らし合わせ、かかるデータから、内燃機関1の運転状態に関するパラメータの値に対応する基準目標差分温度TCCDBPMの値を算出する。ここで、基準目標差分温度算出部208は、内燃機関1の運転状態に関するパラメータとして、内燃機関1の回転数及び内燃機関1が出力するトルクを用いており、それが参照するデータは、マップデータの形態である。この際、基準目標差分温度算出部208は、内燃機関1の回転数の値としては、今回の処理における図示を省略したステップの処理で回転数算出部203が算出した内燃機関1の回転数NEの値を用い、内燃機関1が出力するトルクの値としては、今回の処理におけるステップS1でトルク算出部204が算出した内燃機関1のトルクDCBCPFLTの値を用いている。これにより、ステップS3の処理は完了し、目標差分温度算出処理はステップS4の処理に進む。 In the process of step S3, the reference target difference temperature calculation unit 208 reads out map data in which the value of the reference target difference temperature TCCBPM is defined from the memory 106 in correspondence with the value of the parameter relating to the operating state of the internal combustion engine 1, The value of the parameter relating to the operating state of the internal combustion engine 1 that is being operated at the same time is compared with the data read from the memory 106, and from this data, the reference target differential temperature corresponding to the value of the parameter relating to the operating state of the internal combustion engine 1 Calculate the value of TCCBPM. Here, the reference target differential temperature calculation unit 208 uses the rotation speed of the internal combustion engine 1 and the torque output from the internal combustion engine 1 as parameters relating to the operating state of the internal combustion engine 1, and the data referred to by the map data is map data. It is a form. At this time, the reference target differential temperature calculation unit 208 sets the rotation speed NE of the internal combustion engine 1 calculated by the rotation speed calculation unit 203 in the process of the step not shown in the present process as the value of the rotation speed of the internal combustion engine 1. As the value of the torque output from the internal combustion engine 1, the value of the torque DCBCPFLT of the internal combustion engine 1 calculated by the torque calculation unit 204 in step S1 in the current process is used. Thereby, the process of step S3 is completed and the target difference temperature calculation process proceeds to the process of step S4.
 ステップS4の処理では、補正項算出部209が、クーラント温度の値に対応して温度相関係数MTCCRの値が規定されたテーブルデータをメモリ106から読み出して、今回の処理における図示を省略したステップの処理で冷却水温算出部206が算出したクーラント温度の値と、メモリ106から読み出したテーブルデータと、を照らし合わせ、かかるデータから、冷却水温算出部206が算出したクーラント温度の値に対応する温度相関係数MTCCRの値を算出する。ここで、補正項算出部209は、クーラント温度の値として、冷却水温算出部206が所定のフィルタリング処理を施して算出したクーラント温度TWTCDFLTの値を用いている。これにより、ステップS4の処理は完了し、目標差分温度算出処理はステップS5の処理に進む。 In the process of step S4, the correction term calculation unit 209 reads out the table data in which the value of the temperature correlation coefficient MTCCR is defined corresponding to the value of the coolant temperature from the memory 106, and is a step in which illustration is omitted in the current process The coolant temperature value calculated by the cooling water temperature calculation unit 206 in the process of the above and the table data read from the memory 106 are collated, and the temperature corresponding to the coolant temperature value calculated by the cooling water temperature calculation unit 206 from the data is compared. The value of the correlation coefficient MTCCR is calculated. Here, the correction term calculation unit 209 uses the coolant temperature TWTCDFLT value calculated by the cooling water temperature calculation unit 206 by performing a predetermined filtering process as the coolant temperature value. Thereby, the process of step S4 is completed and the target difference temperature calculation process proceeds to the process of step S5.
 ステップS5の処理では、補正項算出部209が、今回の処理におけるステップS4の処理で補正項算出部209が算出した温度相関係数MTCCRの値を、今回の処理におけるステップS3の処理で基準目標差分温度算出部208が算出した基準目標差分温度TCCDBPMの値に乗算して、壁部の燃焼室9側の温度及び壁部のクーラント通路3側の温度間の降下温度MTCBPFを算出する。これにより、ステップS5の処理は完了し、目標差分温度算出処理はステップS6の処理に進む。 In the process of step S5, the correction term calculation unit 209 uses the value of the temperature correlation coefficient MTCCR calculated by the correction term calculation unit 209 in the process of step S4 in the current process as the reference target in the process of step S3 in the current process. By multiplying the value of the reference target differential temperature TCCBPM calculated by the differential temperature calculation unit 208, a temperature drop MTCBPF between the temperature of the wall portion on the combustion chamber 9 side and the temperature of the wall portion on the coolant passage 3 side is calculated. Thereby, the process of step S5 is completed and the target difference temperature calculation process proceeds to the process of step S6.
 ステップS6の処理では、補正項算出部209が、今回の処理におけるステップS5の処理で補正項算出部209が算出した降下温度MTCBPFの値を、今回の処理における図示を省略したステップの処理で壁部温度算出部205が算出した壁部の燃焼室9側の温度の値から減算して、壁部のクーラント通路3側の温度TCCRを算出する。ここで、補正項算出部209は、壁部の燃焼室9側の温度の値として、壁部温度算出部205が所定のフィルタリング処理を施して算出した壁部の燃焼室9側の温度TCCFLTの値を用いている。これにより、ステップS6の処理は完了し、目標差分温度算出処理はステップS7の処理に進む。 In the process of step S6, the correction term calculation unit 209 determines the value of the drop temperature MTCBPF calculated by the correction term calculation unit 209 in the process of step S5 in the current process as a wall in the process of step not shown in the current process. The temperature TCCR of the wall portion on the side of the coolant passage 3 is calculated by subtracting from the temperature value of the wall portion on the side of the combustion chamber 9 calculated by the portion temperature calculation unit 205. Here, the correction term calculation unit 209 calculates the temperature TCCFLT on the combustion chamber 9 side of the wall calculated by the wall temperature calculation unit 205 by performing a predetermined filtering process as the temperature value on the combustion chamber 9 side of the wall. The value is used. Thereby, the process of step S6 is completed and the target difference temperature calculation process proceeds to the process of step S7.
 ステップS7の処理では、補正項算出部209が、壁部のクーラント通路3側の温度の値に対応して差分温度補正値が規定されたテーブルデータをメモリ106から読み出して、今回の処理におけるステップS6の処理で補正項算出部209が算出した壁部のクーラント通路3側の温度TCCRと、メモリ106から読み出したテーブルデータと、を照らし合わせ、かかるデータから、補正項算出部209が算出した壁部のクーラント通路3側の温度TCCRの値に対応する差分温度補正値DTCCRを算出することになる。これにより、ステップS7の処理は完了し、目標差分温度算出処理はステップS8の処理に進む。 In the process of step S7, the correction term calculation unit 209 reads out the table data in which the differential temperature correction value is defined corresponding to the temperature value on the coolant passage 3 side of the wall from the memory 106, and the step in this process The temperature TCCR on the coolant passage 3 side of the wall calculated by the correction term calculation unit 209 in the process of S6 is compared with the table data read from the memory 106, and the wall calculated by the correction term calculation unit 209 from the data is compared. The temperature difference correction value DTCCR corresponding to the value of the temperature TCCR on the coolant passage 3 side of the part is calculated. Thereby, the process of step S7 is completed and the target difference temperature calculation process proceeds to the process of step S8.
 ステップS8の処理では、目標差分温度算出部210が、今回の処理におけるステップS7の処理で補正項算出部209が算出した差分温度補正値DTCCRを、今回の処理におけるステップS3の処理で基準目標差分温度算出部208が算出した基準目標差分温度TCCDBPMの値に加算して、目標差分温度TCCDBP0を算出する。これにより、ステップS8の処理は完了し、目標差分温度算出処理はステップS9の処理に進む。 In the process of step S8, the target difference temperature calculation unit 210 uses the difference temperature correction value DTCCR calculated by the correction term calculation unit 209 in the process of step S7 in the current process as the reference target difference in the process of step S3 in the current process. The target difference temperature TCCDBP0 is calculated by adding to the value of the reference target difference temperature TCCBPM calculated by the temperature calculation unit 208. Thereby, the process of step S8 is completed and the target difference temperature calculation process proceeds to the process of step S9.
 ステップS9の処理では、目標差分温度算出部210が、今回の処理におけるステップS2の処理で目標差分温度算出部210が算出した内燃機関1の出力の増大時及び減小時に応じたフィルタリング係数CDBPREFの値を、今回の処理におけるステップS8の処理で目標差分温度算出部210が算出した目標差分温度TCCDBP0の値に乗算して、目標差分温度TCCDBP0を算出する。これにより、ステップS9の処理は完了し、今回の一連の目標差分温度算出処理は終了する。 In the process of step S9, the target differential temperature calculation unit 210 calculates the filtering coefficient CDBPREF according to the increase and decrease of the output of the internal combustion engine 1 calculated by the target differential temperature calculation unit 210 in the process of step S2 in the current process. The target differential temperature TCCDBP0 is calculated by multiplying the value by the target differential temperature TCCDBP0 calculated by the target differential temperature calculation unit 210 in step S8 of the current process. Thereby, the process of step S9 is completed, and the current series of target difference temperature calculation processes ends.
 以上の説明から明らかなように、本実施形態における内燃機関制御装置100では、制御部102が、内燃機関1の燃焼室9を画成すると共にクーラントに接する壁部の燃焼室9側の温度である第1の温度と内燃機関1の代表温度との差分値である差分温度を算出し、運転状態に関するパラメータから基準目標差分温度を算出し、壁部のクーラント側の温度である第2の温度を算出し、基準目標差分温度を第2の温度に応じて補正することにより目標差分温度を算出し、目標差分温度と差分温度との偏差に応じて、運転状態を制御するものであるため、簡便な構成で、内燃機関1の冷却能力の変動をも考慮して制御目標値の精度を向上し、より最適な効率で内燃機関の運転状態を制御することができる。 As is apparent from the above description, in the internal combustion engine control apparatus 100 according to the present embodiment, the control unit 102 defines the combustion chamber 9 of the internal combustion engine 1 and at the temperature on the combustion chamber 9 side of the wall portion that contacts the coolant. A differential temperature that is a differential value between a certain first temperature and a representative temperature of the internal combustion engine 1 is calculated, a reference target differential temperature is calculated from a parameter relating to the operating state, and a second temperature that is a temperature on the coolant side of the wall portion. Since the target difference temperature is calculated by correcting the reference target difference temperature according to the second temperature and the operation state is controlled according to the deviation between the target difference temperature and the difference temperature, With a simple configuration, it is possible to improve the accuracy of the control target value in consideration of fluctuations in the cooling capacity of the internal combustion engine 1, and to control the operating state of the internal combustion engine with more optimal efficiency.
 また、本実施形態における内燃機関制御装置100では、制御部102が用いる運転状態に関するパラメータとして、内燃機関1の回転数及び内燃機関が出力するトルクが含まれるものであるため、より精度のよい基準目標差分温度を算出して、これに基づき目標差分温度を算出することができ、より最適な効率で内燃機関1の運転状態を制御することができる。 Further, in the internal combustion engine control apparatus 100 according to the present embodiment, the parameters relating to the operating state used by the control unit 102 include the rotational speed of the internal combustion engine 1 and the torque output by the internal combustion engine, and therefore a more accurate reference. The target differential temperature is calculated, and based on this, the target differential temperature can be calculated, and the operating state of the internal combustion engine 1 can be controlled with more optimal efficiency.
 また、本実施形態における内燃機関制御装置100では、制御部102が、壁部の伝熱特性を反映した伝熱時間遅れを加味して、更に基準目標差分温度を補正することにより目標差分温度を算出するものであるため、より精度のよい目標差分温度を算出することができ、より最適な効率で内燃機関1の運転状態を制御することができる。 Further, in the internal combustion engine control apparatus 100 in the present embodiment, the control unit 102 further corrects the reference target differential temperature by taking into account the heat transfer time delay reflecting the heat transfer characteristics of the wall portion, thereby obtaining the target differential temperature. Therefore, the target differential temperature can be calculated with higher accuracy, and the operating state of the internal combustion engine 1 can be controlled with more optimal efficiency.
 なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。 In the present invention, the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects. Of course, it can be changed as appropriate without departing from the scope.
 以上のように、本発明は、簡便な構成で、内燃機関の冷却能力の変動をも考慮して制御目標値の精度を向上し、より最適な効率で内燃機関の運転状態を制御可能な内燃機関制御装置を提供するものであり、その汎用普遍的な性格から車両等の内燃機関制御装置に広く適用され得るものと期待される。 As described above, the present invention improves the accuracy of the control target value by taking into account the fluctuation of the cooling capacity of the internal combustion engine with a simple configuration, and can control the operating state of the internal combustion engine with more optimum efficiency. The present invention provides an engine control device, and is expected to be widely applicable to internal combustion engine control devices such as vehicles because of its general-purpose universal character.

Claims (3)

  1.  内燃機関の燃焼室を画成すると共にクーラントに接する壁部の前記燃焼室側の温度である第1の温度と前記内燃機関の代表温度との差分値である差分温度を算出し、前記差分温度に基づいて内燃機関の運転状態を制御する制御部を備えた内燃機関制御装置において、
     前記制御部は、
     前記運転状態に関するパラメータから基準目標差分温度を算出し、
     前記壁部のクーラント側の温度である第2の温度を算出し、
     前記基準目標差分温度を前記第2の温度に応じて補正することにより目標差分温度を算出し、
     前記目標差分温度と前記差分温度との偏差に応じて、前記運転状態を制御することを特徴とする内燃機関制御装置。
    Calculating a differential temperature that is a differential value between a first temperature that is a temperature on the combustion chamber side of a wall portion that is in contact with coolant and that defines a combustion chamber of the internal combustion engine, and a representative temperature of the internal combustion engine; In the internal combustion engine control device provided with a control unit for controlling the operating state of the internal combustion engine based on
    The controller is
    Calculate a reference target differential temperature from the parameters related to the operating state,
    Calculating a second temperature which is a temperature on the coolant side of the wall,
    Calculating the target differential temperature by correcting the reference target differential temperature according to the second temperature;
    An internal combustion engine control device that controls the operating state according to a deviation between the target differential temperature and the differential temperature.
  2.  前記パラメータとして、前記内燃機関の回転数及び前記内燃機関が出力するトルクが含まれることを特徴とする請求項1に記載の内燃機関制御装置。 2. The internal combustion engine control device according to claim 1, wherein the parameter includes a rotational speed of the internal combustion engine and a torque output from the internal combustion engine.
  3.  前記制御部は、前記壁部の伝熱特性を反映した伝熱時間遅れを加味して、更に前記基準目標差分温度を補正することにより前記目標差分温度を算出することを特徴とする請求項1又は2に記載の内燃機関制御装置。 The control unit calculates the target differential temperature by further correcting the reference target differential temperature in consideration of a heat transfer time delay reflecting the heat transfer characteristics of the wall. Or the internal combustion engine control apparatus of 2.
PCT/JP2017/027926 2016-08-08 2017-08-01 Internal combustion engine control device WO2018030222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017003958.4T DE112017003958B4 (en) 2016-08-08 2017-08-01 COMBUSTION ENGINE CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016155530A JP6684680B2 (en) 2016-08-08 2016-08-08 Internal combustion engine controller
JP2016-155530 2016-08-08

Publications (1)

Publication Number Publication Date
WO2018030222A1 true WO2018030222A1 (en) 2018-02-15

Family

ID=61163368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027926 WO2018030222A1 (en) 2016-08-08 2017-08-01 Internal combustion engine control device

Country Status (3)

Country Link
JP (1) JP6684680B2 (en)
DE (1) DE112017003958B4 (en)
WO (1) WO2018030222A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232990A (en) * 2004-02-17 2005-09-02 Toyota Motor Corp Fuel injection control device of diesel engine
JP2009047021A (en) * 2007-08-15 2009-03-05 Toyota Motor Corp Operation control device of internal combustion engine
FR2942270A1 (en) * 2009-02-13 2010-08-20 Peugeot Citroen Automobiles Sa Method for real time determination of temperature of piston to control engine of vehicle, involves calculating model i.e. first-order heat balance equation, to determine temperature of piston, where model considers thermal inertia of piston
JP2016050508A (en) * 2014-08-29 2016-04-11 アイシン精機株式会社 Temperature estimation device
WO2016104186A1 (en) * 2014-12-24 2016-06-30 株式会社ケーヒン Internal combustion engine control device
US20160215718A1 (en) * 2015-01-23 2016-07-28 Pinnacle Engines, Inc. Predictive wall temperature modeling for control of fuel delivery and ignition in internal combustion engines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816441B2 (en) 1989-02-23 1998-10-27 三菱自動車工業株式会社 Ignition timing control device for spark ignition type internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232990A (en) * 2004-02-17 2005-09-02 Toyota Motor Corp Fuel injection control device of diesel engine
JP2009047021A (en) * 2007-08-15 2009-03-05 Toyota Motor Corp Operation control device of internal combustion engine
FR2942270A1 (en) * 2009-02-13 2010-08-20 Peugeot Citroen Automobiles Sa Method for real time determination of temperature of piston to control engine of vehicle, involves calculating model i.e. first-order heat balance equation, to determine temperature of piston, where model considers thermal inertia of piston
JP2016050508A (en) * 2014-08-29 2016-04-11 アイシン精機株式会社 Temperature estimation device
WO2016104186A1 (en) * 2014-12-24 2016-06-30 株式会社ケーヒン Internal combustion engine control device
US20160215718A1 (en) * 2015-01-23 2016-07-28 Pinnacle Engines, Inc. Predictive wall temperature modeling for control of fuel delivery and ignition in internal combustion engines

Also Published As

Publication number Publication date
DE112017003958T5 (en) 2019-04-25
JP2018025115A (en) 2018-02-15
DE112017003958B4 (en) 2022-10-06
JP6684680B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP5424944B2 (en) Control device for internal combustion engine
JP5020367B2 (en) Preignition estimation control device for internal combustion engine
JP2009024677A (en) Control device for internal combustion engine
JP6071370B2 (en) Control device for internal combustion engine
JP2007332814A (en) Method and device for ignition control of gasoline alternate fuel engine
US20170226981A1 (en) Control device and control method for internal combustion engine
CN104797799A (en) Method and device for detecting autoignitions on the basis of measured and estimated internal cylinder pressure values of an internal combustion engine
MX2014011269A (en) Control device of internal combustion engine with supercharger.
CN104781523A (en) Method and device for detecting autoignitions on basis of measured and estimated internal cylinder pressure values of internal combustion engine
JP2009299662A (en) Combustion control system for internal combustion engine
JP2007056784A (en) Ignition time controller for internal combustion engine
JP4475207B2 (en) Control device for internal combustion engine
JPS6248944A (en) Controller for internal combustion engine
JP6553537B2 (en) Internal combustion engine control system
JP5234513B2 (en) Torque control device for internal combustion engine
US7334567B2 (en) Method for operating an internal combustion engine
WO2018030222A1 (en) Internal combustion engine control device
JP2011157852A (en) Control device of internal combustion engine
JP2012219757A (en) Internal combustion engine control device
JP6605376B2 (en) Internal combustion engine control device
JP4224697B2 (en) Optimal ignition timing setting method and optimal ignition timing setting device for internal combustion engine
JP6454538B2 (en) Internal combustion engine control device
JP4803117B2 (en) Start control device for internal combustion engine
JP6463124B2 (en) Internal combustion engine control device
JP2016056684A (en) Engine control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839295

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17839295

Country of ref document: EP

Kind code of ref document: A1