JP6605376B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP6605376B2
JP6605376B2 JP2016060099A JP2016060099A JP6605376B2 JP 6605376 B2 JP6605376 B2 JP 6605376B2 JP 2016060099 A JP2016060099 A JP 2016060099A JP 2016060099 A JP2016060099 A JP 2016060099A JP 6605376 B2 JP6605376 B2 JP 6605376B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
temperature
calculation unit
estimated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016060099A
Other languages
Japanese (ja)
Other versions
JP2017172482A (en
Inventor
哲志 市橋
智巳 米丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2016060099A priority Critical patent/JP6605376B2/en
Publication of JP2017172482A publication Critical patent/JP2017172482A/en
Application granted granted Critical
Publication of JP6605376B2 publication Critical patent/JP6605376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関制御装置に関し、特に二輪自動車等の車両の内燃機関に適用される内燃機関制御装置に関する。   The present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to an internal combustion engine of a vehicle such as a two-wheeled vehicle.

近年、二輪自動車等の車両の内燃機関に対しては、コントローラを用いて、内燃機関に対する燃料の供給、空気の供給並びに燃料及び空気から成る混合気への点火を協働させながら内燃機関の運転状態を電子制御する電子制御式の内燃機関制御装置が採用されている。   In recent years, for an internal combustion engine of a vehicle such as a two-wheeled motor vehicle, the operation of the internal combustion engine is performed using a controller in cooperation with the fuel supply to the internal combustion engine, the supply of air, and the ignition of the mixture comprising fuel and air. An electronically controlled internal combustion engine controller that electronically controls the state is employed.

具体的には、かかる内燃機関制御装置は、エアフローセンサ、スロットル開度センサ及び吸気マニホルド負圧センサ等のセンサからの各々の検出信号を用いて得られる内燃機関に対する吸入空気量やクランク角センサからの検出信号を用いて得られる内燃機関の回転数等に基づき、内燃機関での適切な空燃比を実現するための燃料噴射量を算出して、この燃料噴射量で内燃機関に対して燃料噴射を実行すると共に、所定の点火時期で吸入空気及び噴射燃料の混合気に対して点火を実行する構成を有する。   Specifically, such an internal combustion engine control device includes an intake air amount and a crank angle sensor for an internal combustion engine obtained by using respective detection signals from sensors such as an air flow sensor, a throttle opening sensor, and an intake manifold negative pressure sensor. The fuel injection amount for realizing an appropriate air-fuel ratio in the internal combustion engine is calculated on the basis of the rotational speed of the internal combustion engine obtained using the detection signal, and the fuel injection amount is injected into the internal combustion engine with this fuel injection amount. And performing ignition on the mixture of intake air and injected fuel at a predetermined ignition timing.

また、この際、内燃機関制御装置においては、内燃機関におけるMBT(Minimum advance for the Best Torque)及びノッキング等に関する特性を考慮して、燃料噴射量及び点火時期における限界値が各々設定されている場合もある。また、このような内燃機関制御装置の中には、筒内圧センサ、ノックセンサ及びイオン電流センサ等のセンサからの各々の検出信号を用いて、燃焼室内の燃焼状態に応じた混合気への燃料噴射量及び点火時期の調整を各々実行する構成を有するものもある。   Further, at this time, in the internal combustion engine control device, the limit values for the fuel injection amount and the ignition timing are set in consideration of characteristics relating to MBT (Minimum Advance for the Best Torque) and knocking in the internal combustion engine. There is also. Further, in such an internal combustion engine control device, the fuel to the air-fuel mixture corresponding to the combustion state in the combustion chamber is detected by using detection signals from sensors such as an in-cylinder pressure sensor, a knock sensor, and an ion current sensor. Some have a configuration in which the injection amount and the ignition timing are each adjusted.

かかる状況下で、特許文献1は、エンジンの制御方法に関し、クランク角センサ、酸素濃度センサ、温度センサ、スロットル開度センサ、吸気管圧力センサ、熱線式吸入空気量センサ、吸入空気温度センサ、排気管温度センサ及び触媒温度センサを用いて、筒内温度の上昇によって点火以前に着火が起こるプレイグニッションを防止し、また点火以前に着火が起こってしまったときでも適切に処理を行ないエンジンの破損を防止する構成を有する。   Under such circumstances, Patent Document 1 relates to an engine control method, and relates to a crank angle sensor, an oxygen concentration sensor, a temperature sensor, a throttle opening sensor, an intake pipe pressure sensor, a hot-wire intake air amount sensor, an intake air temperature sensor, an exhaust gas. Using a tube temperature sensor and a catalyst temperature sensor, preignition that occurs before ignition due to an increase in the in-cylinder temperature is prevented, and even if ignition occurs before ignition, proper processing is performed to prevent engine damage. It has a structure to prevent.

特開平9−273436号公報JP-A-9-273436

しかしながら、本発明者の検討によれば、特許文献1の構成では、酸素濃度センサ、吸気管圧力センサ、熱線式吸入空気量センサ、排気管温度センサ及び触媒温度センサ等の付加的なセンサを各種設ける必要があり、その構成が煩雑であると共に車両全体のコストが上昇する傾向にあると考えられる。   However, according to the study of the present inventor, in the configuration of Patent Document 1, various sensors such as an oxygen concentration sensor, an intake pipe pressure sensor, a hot-wire intake air amount sensor, an exhaust pipe temperature sensor, and a catalyst temperature sensor are used. It is necessary to provide it, and it is considered that the configuration thereof is complicated and the cost of the entire vehicle tends to increase.

また、本発明者の検討によれば、5〜10kHzの周波数を有すると評価されるノッキング等の異常燃焼時の燃焼振動をより正確に捕らえるためには、少なくとも100μs以下の周期のデータサンプリングが必要であることから、センサの高応答性や読み込み回路の高速化等が求められるものであり、その構成がより煩雑であると共に車両全体のコストがより上昇する傾向にあると考えられる。   Further, according to the study of the present inventor, in order to more accurately capture combustion vibrations during abnormal combustion such as knocking that is evaluated to have a frequency of 5 to 10 kHz, data sampling with a period of at least 100 μs or less is required. Therefore, high responsiveness of the sensor, high speed of the reading circuit, and the like are required, and the configuration is more complicated and the cost of the entire vehicle tends to increase.

また、本発明者の検討によれば、特許文献1の構成では、内燃機関の代表温度によって内燃機関の運転状態を制御するために、内燃機関の個体毎の温度の差の影響を受けることにより、内燃機関の個体毎に制御精度に差が生じる傾向にあると考えられる。また、かかる構成では、内燃機関が暖機途中である場合には、内燃機関の代表温度が収束していないので、内燃機関の燃焼状態を正確に把握することができず、ノックセンサや筒内圧センサ等の他の燃焼状態把握手段を併用する必要があり、その構成が煩雑であると共に車両全体のコストが上昇する傾向にあると考えられる。特に、かかるノックセンサは高価であるため、それを用いずに内燃機関の高回転時の高効率な燃焼制御を可能とする構成を実現することが求められるものである。   Further, according to the study of the present inventor, in the configuration of Patent Document 1, since the operation state of the internal combustion engine is controlled by the representative temperature of the internal combustion engine, it is influenced by the temperature difference between the individual internal combustion engines. It is considered that the control accuracy tends to vary for each individual internal combustion engine. Further, in such a configuration, when the internal combustion engine is warming up, the representative temperature of the internal combustion engine has not converged, so the combustion state of the internal combustion engine cannot be accurately grasped, and a knock sensor or in-cylinder pressure It is necessary to use other combustion state grasping means such as a sensor together, and it is considered that the configuration is complicated and the cost of the entire vehicle tends to increase. In particular, since such a knock sensor is expensive, it is required to realize a configuration that enables high-efficiency combustion control during high rotation of the internal combustion engine without using the knock sensor.

本発明は、以上の検討を経てなされたものであり、内燃機関の個体差を抑制可能である簡便な構成で、燃焼室内の燃焼状態を検出しその燃焼状態に応じて内燃機関の運転状態を制御可能な内燃機関制御装置を提供することを目的とする。   The present invention has been made through the above-described studies, and with a simple configuration capable of suppressing individual differences among internal combustion engines, the combustion state in the combustion chamber is detected, and the operation state of the internal combustion engine is determined according to the combustion state. It is an object of the present invention to provide a controllable internal combustion engine control device.

以上の目的を達成するべく、本発明は、内燃機関の運転状態を制御する内燃機関制御装置において、前記内燃機関の燃焼室を画成する壁部の温度を算出する壁部温度算出部と、前記壁部の温度に基づき前記内燃機関の燃焼を発生させた燃料噴射量の推定値を算出する推定値算出部と、前記燃焼を発生させるように前記内燃機関に指示された燃料噴射量の指示値と、前記推定値と、に応じて、前記運転状態を制御する運転状態制御部と、を備えることを第1の局面とする。   In order to achieve the above object, the present invention provides an internal combustion engine control apparatus that controls an operating state of an internal combustion engine, a wall temperature calculation unit that calculates a temperature of a wall that defines a combustion chamber of the internal combustion engine, An estimated value calculating unit that calculates an estimated value of the fuel injection amount that caused combustion of the internal combustion engine based on the temperature of the wall, and an instruction of the fuel injection amount that is instructed to the internal combustion engine to generate the combustion According to a first aspect, an operation state control unit that controls the operation state according to the value and the estimated value is provided.

本発明は、第1の局面に加えて、前記壁部の伝熱特性を反映した時間遅れを加味して、前記指示値を補正して補正値を算出する補正値算出部を更に備え、前記運転状態制御部は、前記補正値と、前記推定値と、に応じて前記運転状態を制御することを第2の局面とする。   In addition to the first aspect, the present invention further includes a correction value calculation unit that calculates a correction value by correcting the indicated value in consideration of a time delay reflecting the heat transfer characteristics of the wall, A driving | running state control part makes it 2nd aspect to control the said driving | running state according to the said correction value and the said estimated value.

本発明は、第2の局面に加えて、前記運転状態制御部は、前記補正値に比べて前記推定値が大きいときに、前記内燃機関の点火時期を遅角することで、前記運転状態を制御することを第3の局面とする。 According to the present invention, in addition to the second aspect, the operating state control unit retards the ignition timing of the internal combustion engine when the estimated value is larger than the correction value, thereby changing the operating state. Control is a third aspect.

本発明は、第1から第3のいずれかの局面に加えて、前記内燃機関の温度を算出する内燃機関温度算出部を更に備え、前記推定値算出部は、前記壁部の温度と前記内燃機関の前記温度とに基づき、前記推定値を算出することを第4の局面とする。   In addition to any one of the first to third aspects, the present invention further includes an internal combustion engine temperature calculation unit that calculates the temperature of the internal combustion engine, and the estimated value calculation unit includes the temperature of the wall and the internal combustion engine A fourth aspect is to calculate the estimated value based on the temperature of the engine.

以上の本発明の第1の局面にかかる内燃機関制御装置によれば、内燃機関の燃焼室を画成する壁部の温度を算出する壁部温度算出部と、壁部の温度に基づき内燃機関の燃焼を発生させた燃料噴射量の推定値を算出する推定値算出部と、燃焼を発生させるように内燃機関に指示された燃料噴射量の指示値と、推定値と、に応じて、内燃機関の運転状態を制御する運転状態制御部と、を備えるものであるので、個体差を抑制した簡便な構成で、燃焼室内の燃焼状態を検出しその燃焼状態に応じて内燃機関の運転状態を制御することができる。   According to the internal combustion engine control apparatus according to the first aspect of the present invention described above, the wall temperature calculation unit that calculates the temperature of the wall that defines the combustion chamber of the internal combustion engine, and the internal combustion engine based on the temperature of the wall An estimated value calculation unit that calculates an estimated value of the fuel injection amount that caused the combustion of the engine, an indication value of the fuel injection amount that is instructed to the internal combustion engine to generate the combustion, and the estimated value And an operation state control unit that controls the operation state of the engine, and therefore, with a simple configuration that suppresses individual differences, the combustion state in the combustion chamber is detected, and the operation state of the internal combustion engine is determined according to the combustion state. Can be controlled.

本発明の第2の局面にかかる内燃機関制御装置によれば、壁部の伝熱特性を反映した時間遅れを加味して、指示値を補正して補正値を算出する補正値算出部を更に備え、運転状態制御部が、補正値と、推定値と、に応じて内燃機関の運転状態を制御するものであるので、内燃機関の燃焼室を画成する壁部の伝熱特性を反映した時間遅れを加味して燃料噴射量の指示値を適切に補正することができ、かかる補正値を用いることにより、内燃機関の運転状態をより適切に制御することができる。   According to the internal combustion engine control apparatus of the second aspect of the present invention, the correction value calculation unit that corrects the instruction value and calculates the correction value in consideration of the time delay reflecting the heat transfer characteristics of the wall portion is further provided. The operating state control unit controls the operating state of the internal combustion engine according to the correction value and the estimated value, and therefore reflects the heat transfer characteristics of the wall portion that defines the combustion chamber of the internal combustion engine. The instruction value of the fuel injection amount can be appropriately corrected in consideration of the time delay, and the operation state of the internal combustion engine can be more appropriately controlled by using such a correction value.

本発明の第3の局面にかかる内燃機関制御装置によれば、運転状態制御部が、補正値に比べて推定値が大きいときに、内燃機関の点火時期を遅角することで、運転状態を制御するものであるため、燃焼室内の燃焼の乱れを適切に抑止することができ、内燃機関の運転状態をより適切に制御することができる。 According to the internal combustion engine control apparatus of the third aspect of the present invention, the operating state control unit retards the ignition timing of the internal combustion engine when the estimated value is larger than the correction value, thereby changing the operating state. Since it controls, the disturbance of combustion in a combustion chamber can be suppressed appropriately, and the operating state of an internal combustion engine can be controlled more appropriately.

本発明の第4の局面にかかる内燃機関制御装置によれば、内燃機関の温度を算出する内燃機関温度算出部を更に備え、推定値算出部が、壁部の温度と内燃機関の温度とに基づき、推定値を算出するものであるため、燃焼室内の燃焼状態を適切に検出しその燃焼状態に応じて内燃機関の運転状態を制御することができる。   According to the internal combustion engine control apparatus of the fourth aspect of the present invention, the internal combustion engine temperature calculation unit that calculates the temperature of the internal combustion engine is further provided, and the estimated value calculation unit calculates the temperature of the wall portion and the temperature of the internal combustion engine. Since the estimated value is calculated based on this, it is possible to appropriately detect the combustion state in the combustion chamber and control the operation state of the internal combustion engine according to the combustion state.

図1は、本発明の実施形態における内燃機関制御装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an internal combustion engine control apparatus according to an embodiment of the present invention. 図2は、本実施形態における内燃機関制御装置が実行する運転状態制御処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of an operation state control process executed by the internal combustion engine control apparatus according to the present embodiment.

以下、図面を適宜参照して、本発明の実施形態における内燃機関制御装置につき、詳細に説明する。   Hereinafter, an internal combustion engine control apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.

[構成]
まず、図1を参照して、本実施形態における内燃機関制御装置の構成について説明する。
[Constitution]
First, the configuration of the internal combustion engine control device in the present embodiment will be described with reference to FIG.

図1は、本実施形態における内燃機関制御装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing the configuration of the internal combustion engine control device in the present embodiment.

図1に示すように、本実施形態における内燃機関制御装置1は、二輪自動車等の車両に搭載され、車両の内燃機関の運転状態を制御する。本実施形態における内燃機関制御装置1は、スロットル開度センサ20、クランク角センサ30、壁部温度センサ40、及び冷却水温センサ50に電気的に接続されたECU(Electronic Control Unit)60を備えている。なお、説明の便宜上、車両や内燃機関の構成についての具体的な図示は、省略している。また、内燃機関に適用される燃料としては、原理的には、現在入手可能なものが適用でき、例えば、ガソリン、エタノール及びメタノール等の種別を問わず、ガソリンのオクタン価の種別も問わないものである。   As shown in FIG. 1, an internal combustion engine control device 1 according to this embodiment is mounted on a vehicle such as a two-wheeled vehicle, and controls the operating state of the internal combustion engine of the vehicle. The internal combustion engine control apparatus 1 according to the present embodiment includes an ECU (Electronic Control Unit) 60 electrically connected to the throttle opening sensor 20, the crank angle sensor 30, the wall temperature sensor 40, and the cooling water temperature sensor 50. Yes. For convenience of explanation, specific illustrations of the configuration of the vehicle and the internal combustion engine are omitted. Further, as a fuel applied to the internal combustion engine, in principle, those that are currently available can be applied, for example, regardless of the type of gasoline, ethanol, methanol, etc., and the type of gasoline octane number is not limited. is there.

スロットル開度センサ20は、内燃機関のスロットル装置の本体部に装着され、スロットルバルブの開度をスロットル開度として検出し、このように検出したスロットル開度を示す電気信号をECU60に入力する。   The throttle opening sensor 20 is mounted on the main body of the throttle device of the internal combustion engine, detects the opening of the throttle valve as the throttle opening, and inputs an electric signal indicating the detected throttle opening to the ECU 60.

クランク角センサ30は、内燃機関において、リラクタの外周面に形成されている歯部に対向した態様でシリンダブロックの下部に組み付けられたロアケース等に装着され、クランクシャフトの回転に伴って回転する歯部を検出することによって、クランクシャフトの回転速度を内燃機関の回転速度として検出する。クランク角センサ30は、このように検出した内燃機関の回転速度を示す電気信号をECU60に入力する。   In the internal combustion engine, the crank angle sensor 30 is attached to a lower case or the like assembled to the lower part of the cylinder block in a manner facing the tooth portion formed on the outer peripheral surface of the reluctator, and rotates with the rotation of the crankshaft. By detecting the part, the rotational speed of the crankshaft is detected as the rotational speed of the internal combustion engine. The crank angle sensor 30 inputs an electric signal indicating the detected rotational speed of the internal combustion engine to the ECU 60.

壁部温度センサ40は、内燃機関の燃焼室を画成する部材、つまりシリンダブロック又はシリンダヘッドの壁部に装着されてその壁部の温度を検出し、このように検出した壁部の温度を示す電気信号をECU60に入力する。   The wall temperature sensor 40 is mounted on a member defining a combustion chamber of the internal combustion engine, that is, a wall of a cylinder block or a cylinder head, detects the temperature of the wall, and detects the detected temperature of the wall. The electric signal shown is input to the ECU 60.

冷却水温センサ50は、内燃機関の冷却水通路に侵入した態様でシリンダブロックに装着され、冷却水通路内を流通する冷却水の温度を検出し、このように検出した冷却水の温度を示す電気信号をECU60に入力する。   The cooling water temperature sensor 50 is attached to the cylinder block in a state of entering the cooling water passage of the internal combustion engine, detects the temperature of the cooling water flowing through the cooling water passage, and indicates the temperature of the cooling water thus detected. A signal is input to the ECU 60.

ECU60は、車両が備えるバッテリからの電力を利用して動作する。ECU6は、A/D(Analog to Digital)変換回路601a、601b及び601c、波形成形回路602、スロットル開度算出部603、角速度算出部604、壁部温度算出部605、冷却水温算出部606、トルク算出部607、推定値算出部608、RAM609、補正値算出部610、運転状態制御部611、並びに駆動回路612a、612b及び612cを備えている。なお、スロットル開度算出部603、角速度算出部604、壁部温度算出部605、冷却水温算出部606、トルク算出部607、推定値算出部608、補正値算出部610、及び運転状態制御部611は、ECU60の演算処理装置が図示を省略するメモリから必要な制御プログラムを読み出すと共にRAM609から必要な制御データを読み出して運転状態制御処理を実行する際の機能ブロックとして示している。   The ECU 60 operates using electric power from a battery provided in the vehicle. The ECU 6 includes A / D (Analog to Digital) conversion circuits 601a, 601b and 601c, a waveform shaping circuit 602, a throttle opening calculation unit 603, an angular velocity calculation unit 604, a wall temperature calculation unit 605, a cooling water temperature calculation unit 606, a torque. A calculation unit 607, an estimated value calculation unit 608, a RAM 609, a correction value calculation unit 610, an operation state control unit 611, and drive circuits 612a, 612b and 612c are provided. The throttle opening calculation unit 603, the angular velocity calculation unit 604, the wall temperature calculation unit 605, the cooling water temperature calculation unit 606, the torque calculation unit 607, the estimated value calculation unit 608, the correction value calculation unit 610, and the operation state control unit 611. These are shown as functional blocks when the arithmetic processing unit of the ECU 60 reads out a necessary control program from a memory (not shown) and reads out necessary control data from the RAM 609 to execute an operation state control process.

A/D変換回路601aは、スロットル開度センサ20から入力されたアナログ形態の電気信号をデジタル形態に変換してスロットル開度算出部603に入力する。   The A / D conversion circuit 601 a converts the analog electrical signal input from the throttle opening sensor 20 into a digital form and inputs the digital signal to the throttle opening calculation unit 603.

A/D変換回路601bは、壁部温度センサ40から入力されたアナログ形態の電気信号をデジタル形態に変換して壁部温度算出部605に入力する。   The A / D conversion circuit 601b converts the analog electrical signal input from the wall temperature sensor 40 into a digital format and inputs the digital signal to the wall temperature calculation unit 605.

A/D変換回路601cは、冷却水温センサ50から入力されたアナログ形態の電気信号をデジタル形態に変換して冷却水温算出部606に入力する。   The A / D conversion circuit 601c converts the analog electrical signal input from the coolant temperature sensor 50 into a digital format and inputs the digital signal to the coolant temperature calculation unit 606.

波形成形回路602は、クランク角センサ30から入力された電気信号に対してスムージング処理等の成形処理を施した後に電気信号を角速度算出部604に入力する。   The waveform shaping circuit 602 performs shaping processing such as smoothing processing on the electrical signal input from the crank angle sensor 30 and then inputs the electrical signal to the angular velocity calculation unit 604.

スロットル開度算出部603は、A/D変換回路601aから入力された電気信号を用いてスロットル開度を算出し、このようにスロットル開度算出部603が算出したスロットル開度は、運転状態制御部611で用いられる。   The throttle opening calculation unit 603 calculates the throttle opening by using the electric signal input from the A / D conversion circuit 601a, and the throttle opening calculated by the throttle opening calculation unit 603 is the operating state control. Used in part 611.

角速度算出部604は、波形成形回路602から入力された電気信号を用いて内燃機関の回転角速度を算出し、このように角速度算出部604が算出した内燃機関の回転角速度は、をトルク算出部607で用いられる。   The angular velocity calculation unit 604 calculates the rotational angular velocity of the internal combustion engine using the electrical signal input from the waveform shaping circuit 602, and thus the rotational angular velocity of the internal combustion engine calculated by the angular velocity calculation unit 604 is the torque calculation unit 607. Used in

壁部温度算出部605は、A/D変換回路601bから入力された電気信号を用いて内燃機関の燃焼室を画成する壁部の温度を算出し、このように壁部温度算出部605が算出した壁部の温度は、推定値算出部608で用いられる。かかる壁部の温度は、内燃機関の燃焼状態を直接的に反映する内燃機関の温度であって、内燃機関のシリンダ内で発生する発生熱量を直接的に反映した温度であると評価され得るものである。よって、かかる壁部の温度と、内燃機関のシリンダ内、つまり燃焼室内に供給される燃料噴射量と、は、概略的には比例関係にある。また、かかる壁部の温度は、燃焼室の燃焼の乱れ、つまり燃焼室の表面の受熱の状態に敏感に反応するものである。ここで、かかる燃焼室の表面の受熱の状態は、シリンダの内圧レベルやノッキングの発生状態に影響を受けるものであり、かかるシリンダの内圧レベルやノッキングの発生状態は、内燃機関の点火時期に影響を受けるものである。   The wall temperature calculator 605 calculates the temperature of the wall that defines the combustion chamber of the internal combustion engine using the electrical signal input from the A / D conversion circuit 601b, and thus the wall temperature calculator 605 The calculated wall temperature is used by the estimated value calculation unit 608. The temperature of the wall portion is a temperature of the internal combustion engine that directly reflects the combustion state of the internal combustion engine, and can be evaluated as a temperature that directly reflects the amount of heat generated in the cylinder of the internal combustion engine. It is. Therefore, the temperature of the wall portion and the fuel injection amount supplied into the cylinder of the internal combustion engine, that is, the combustion chamber, are roughly proportional. Further, the temperature of the wall portion reacts sensitively to the disturbance of combustion in the combustion chamber, that is, the state of heat reception on the surface of the combustion chamber. Here, the state of heat reception on the surface of the combustion chamber is affected by the internal pressure level of the cylinder and the occurrence of knocking, and the internal pressure level of the cylinder and the occurrence of knocking affect the ignition timing of the internal combustion engine. To receive.

冷却水温算出部606は、A/D変換回路601cから入力された電気信号を用いて冷却水の温度を内燃機関の温度(エンジン温度)として算出し、このように冷却水温算出部606が算出したエンジン温度は、推定値算出部608で用いられる。かかる冷却水の温度は、内燃機関の温度を代表的に示す内燃機関の代表温度であって、内燃機関のシリンダを冷却する冷却熱量を反映した温度であると評価され得るものである。なお、かかる内燃機関の代表温度としては、冷却水の温度の他に、内燃機関の潤滑油の温度等を用いてもよい。   The cooling water temperature calculation unit 606 calculates the temperature of the cooling water as the temperature of the internal combustion engine (engine temperature) using the electrical signal input from the A / D conversion circuit 601c, and the cooling water temperature calculation unit 606 calculates in this way. The engine temperature is used in the estimated value calculation unit 608. The temperature of the cooling water is a representative temperature of the internal combustion engine representatively showing the temperature of the internal combustion engine, and can be evaluated as a temperature reflecting the amount of cooling heat for cooling the cylinder of the internal combustion engine. As the representative temperature of the internal combustion engine, the temperature of the lubricating oil of the internal combustion engine may be used in addition to the temperature of the cooling water.

トルク算出部607は、角速度算出部604が算出した内燃機関の回転角速度を用いて内燃機関の出力トルクを算出し、このようにトルク算出部607が算出した内燃機関の出力トルクは、運転状態制御部611で用いられる。   The torque calculation unit 607 calculates the output torque of the internal combustion engine using the rotation angular velocity of the internal combustion engine calculated by the angular velocity calculation unit 604, and the output torque of the internal combustion engine calculated by the torque calculation unit 607 in this way is the operating state control. Used in part 611.

推定値算出部608は、壁部温度算出部605が算出した燃焼室の壁部の温度及び冷却水温算出部606が算出したエンジン温度に基づいて内燃機関の燃焼を発生させた燃料噴射量の推定値を算出し、このように推定値算出部608が算出した内燃機関の燃料噴射量の推定値は、運転状態制御部611で用いられる。   The estimated value calculation unit 608 estimates the fuel injection amount that caused combustion of the internal combustion engine based on the temperature of the wall of the combustion chamber calculated by the wall temperature calculation unit 605 and the engine temperature calculated by the cooling water temperature calculation unit 606. The estimated value of the fuel injection amount of the internal combustion engine calculated by the estimated value calculation unit 608 is used by the operating state control unit 611.

RAM609は、不揮発性の記憶装置によって構成され、運転状態制御部611が内燃機関の運転状態を制御する際に用いる各種データ(燃料噴射量の指示値や点火時期等)を記憶する運転状態制御部611のワーキングエリアとして機能する。   The RAM 609 is configured by a non-volatile storage device, and an operation state control unit that stores various data (instruction value of fuel injection amount, ignition timing, etc.) used when the operation state control unit 611 controls the operation state of the internal combustion engine. 611 functions as a working area.

補正値算出部610は、RAM609に記憶されている燃料噴射量の最新及び過去の指示値を用いて、内燃機関の燃焼室を画成する壁部の伝熱特性を反映した時間遅れを加味して燃料噴射量の最新の指示値を補正して補正値を算出する。補正値算出部610がこのように算出した補正値は、運転状態制御部611で用いられる。   The correction value calculation unit 610 uses the latest and past instruction values of the fuel injection amount stored in the RAM 609 to take into account a time delay that reflects the heat transfer characteristics of the wall portion that defines the combustion chamber of the internal combustion engine. Then, the correction value is calculated by correcting the latest instruction value of the fuel injection amount. The correction value calculated by the correction value calculation unit 610 is used by the operating state control unit 611.

運転状態制御部611は、内燃機関制御装置1全体の動作を制御する。具体的には、運転状態制御部611は、スロットル開度算出部603が算出したスロットル開度、トルク算出部607が算出した内燃機関の出力トルク、推定値算出部608が算出した内燃機関の燃料噴射量の推定値、及び補正値算出部610が算出した補正値等に基づいて、点火時期及び燃料噴射量の指示値等を算出する。そして、運転状態制御部611は、このように算出した点火時期及び燃料噴射量の指示値等を内燃機関に適用することにより、その運転状態を制御する。   The operating state control unit 611 controls the operation of the internal combustion engine control device 1 as a whole. Specifically, the operating state control unit 611 includes the throttle opening calculated by the throttle opening calculation unit 603, the output torque of the internal combustion engine calculated by the torque calculation unit 607, and the fuel of the internal combustion engine calculated by the estimated value calculation unit 608. Based on the estimated value of the injection amount, the correction value calculated by the correction value calculation unit 610, etc., the ignition timing, the indicated value of the fuel injection amount, and the like are calculated. Then, the operation state control unit 611 controls the operation state by applying the ignition timing and the fuel injection amount instruction value calculated in this way to the internal combustion engine.

ここで、特に、内燃機関の点火時期は、内燃機関のシリンダの内圧レベルやノッキングの発生状態に影響を与え、シリンダの内圧レベルやノッキングの発生状態は、内燃機関の燃焼室の表面の受熱の状態に影響を与え、かつ、燃焼室の壁部の温度や、燃焼室の壁部の温度と内燃機関の冷却水の温度であるエンジン温度と、の差分値(壁部温度差分値)は、燃焼室の表面の受熱の状態に敏感に反応するものであって、燃焼室内に供給される燃料噴射量と概略的に比例関係にあるものであるという観点から、ボア、ストローク、シリンダ、シリンダヘッド、及び冷却系等が同一である同一設計仕様の内燃機関において最適な出力トルクが得られるような内燃機関、つまり量産における好ましい中央特性の内燃機関個体(マスタエンジン)の最適な点火時期を予め設定して、かかる最適な点火時期に対して、燃焼室の壁部の温度と、燃焼室内に供給される燃料噴射量と、の関係や、壁部温度差分値と、燃焼室内に供給される燃料噴射量と、の関係を予め求めて規定しておく。そして、原理的には、このように規定された関係から燃料噴射量の推定値を求め、燃料噴射量の指示値と、燃料噴射量の推定値と、の大小関係から、適切な点火時期を得ることができるものである。具体的には、燃料噴射量の指示値よりも燃料噴射量の推定値が大きいときには、燃焼の乱れが大きく点火時期が過進角であるという観点から点火時期を遅角側に設定し、一方で、燃料噴射量の指示値が燃料噴射量の推定値よりも大きいときには、シリンダの内圧が不足しているという観点から点火時期を進角側に設定する。この際、燃焼室内に供給される燃料噴射量としては、内燃機関の燃焼室を画成する壁部の伝熱特性を反映した時間遅れを加味して、燃料噴射量の指示値を積算、平均化した値(移動平均処理した値)をその補正値として用いてもよい。   Here, in particular, the ignition timing of the internal combustion engine affects the internal pressure level of the cylinder of the internal combustion engine and the occurrence of knocking. The internal pressure level of the cylinder and the occurrence of knocking depend on the heat receiving surface of the combustion chamber of the internal combustion engine. The difference value (wall temperature difference value) between the temperature of the combustion chamber wall and the temperature of the combustion chamber wall and the engine temperature, which is the temperature of the cooling water of the internal combustion engine, affects the state. Bore, stroke, cylinder, cylinder head from the viewpoint that it reacts sensitively to the state of heat reception on the surface of the combustion chamber and is roughly proportional to the amount of fuel injected into the combustion chamber , And an internal combustion engine that can obtain an optimum output torque in an internal combustion engine of the same design specification that has the same cooling system, etc., that is, an optimal individual engine (master engine) having a favorable central characteristic in mass production. The fire timing is set in advance, and the relationship between the temperature of the wall portion of the combustion chamber and the fuel injection amount supplied into the combustion chamber, the wall temperature difference value, and the combustion chamber are set for the optimum ignition timing. The relationship between the fuel injection amount supplied to the fuel is obtained and defined in advance. In principle, an estimated value of the fuel injection amount is obtained from the relationship defined as described above, and an appropriate ignition timing is determined from the magnitude relationship between the indicated value of the fuel injection amount and the estimated value of the fuel injection amount. It can be obtained. Specifically, when the estimated value of the fuel injection amount is larger than the command value of the fuel injection amount, the ignition timing is set to the retard side from the viewpoint that the combustion timing is large and the ignition timing is an over-advanced angle. Thus, when the indicated value of the fuel injection amount is larger than the estimated value of the fuel injection amount, the ignition timing is set to the advance side from the viewpoint that the internal pressure of the cylinder is insufficient. At this time, the fuel injection amount supplied into the combustion chamber is obtained by integrating and averaging the indicated values of the fuel injection amount, taking into account the time delay reflecting the heat transfer characteristics of the wall portion defining the combustion chamber of the internal combustion engine. The converted value (the value obtained by moving average processing) may be used as the correction value.

駆動回路612aは、運転状態制御部611から入力された制御信号に従ってスロットルモータ70を駆動することによってスロットル開度を制御する。   The drive circuit 612a controls the throttle opening by driving the throttle motor 70 in accordance with the control signal input from the operation state control unit 611.

駆動回路612bは、運転状態制御部611から入力された制御信号に従って点火栓80を駆動することによって内燃機関の点火時期を制御する。   The drive circuit 612b controls the ignition timing of the internal combustion engine by driving the spark plug 80 in accordance with the control signal input from the operation state control unit 611.

駆動回路612cは、運転状態制御部611から入力された制御信号に従って燃料噴射弁90を駆動することによって内燃機関の燃料噴射量を制御する。   The drive circuit 612c controls the fuel injection amount of the internal combustion engine by driving the fuel injection valve 90 according to the control signal input from the operation state control unit 611.

以上のような構成を有する内燃機関制御装置1は、以下に示す運転状態制御処理を実行することによって、内燃機関の個体差を抑制可能である簡便な構成で、燃焼室内の燃焼状態を検出しその燃焼状態に応じて内燃機関の運転状態を制御する。以下、図2を参照して、この運転状態制御処理を実行する際の内燃機関制御装置1の動作について説明する。   The internal combustion engine control apparatus 1 having the above-described configuration detects the combustion state in the combustion chamber with a simple configuration that can suppress individual differences among the internal combustion engines by executing the following operating state control process. The operating state of the internal combustion engine is controlled according to the combustion state. Hereinafter, with reference to FIG. 2, the operation of the internal combustion engine control apparatus 1 when executing this operation state control process will be described.

〔運転状態制御処理〕
図2は、本実施形態における内燃機関制御装置1が実行する運転状態制御処理の流れを示すフローチャートである。
[Operation status control processing]
FIG. 2 is a flowchart showing a flow of an operation state control process executed by the internal combustion engine control apparatus 1 in the present embodiment.

図2に示すフローチャートは、車両のイグニッションスイッチがオフ状態からオン状態に切り替えられてECU60が稼働したタイミングで開始となり、運転状態制御処理はステップS1の処理に進む。かかる運転状態制御処理は、ECU60が稼働状態である間、メモリから必要な制御プログラムを読み出すと共にRAM609から必要な制御データを読み出して所定の制御周期毎に繰り返し実行される。   The flowchart shown in FIG. 2 starts when the ECU 60 is operated after the ignition switch of the vehicle is switched from the off state to the on state, and the driving state control process proceeds to the process of step S1. The operation state control process is repeatedly executed at predetermined control cycles by reading out necessary control programs from the memory and reading out necessary control data from the RAM 609 while the ECU 60 is in an operating state.

ステップS1の処理では、運転状態制御部611が、トルク算出部607が算出した内燃機関の出力トルク等に基づき内燃機関が運転中であるか否かを判別する。判別の結果、内燃機関が運転中である場合、運転状態制御部611は、運転状態制御処理をステップS2の処理に進める。一方、内燃機関が運転中でない場合には、運転状態制御部611は、今回の一連の運転状態制御処理を終了する。   In the process of step S1, the operating state control unit 611 determines whether or not the internal combustion engine is in operation based on the output torque of the internal combustion engine calculated by the torque calculation unit 607. As a result of the determination, if the internal combustion engine is operating, the operating state control unit 611 advances the operating state control process to the process of step S2. On the other hand, when the internal combustion engine is not in operation, the operation state control unit 611 ends the current series of operation state control processes.

ステップS2の処理では、壁部温度算出部605が、内燃機関の燃焼室を画成する壁部の温度TCCを算出し、このように壁部温度算出部605が算出した壁部の温度TCCは推定値算出部608で用いられる。これにより、ステップS2の処理は完了し、運転状態制御処理はステップS3の処理に進む。   In step S2, the wall temperature calculation unit 605 calculates the temperature TCC of the wall that defines the combustion chamber of the internal combustion engine, and the wall temperature TCC calculated by the wall temperature calculation unit 605 in this way is Used by the estimated value calculation unit 608. Thereby, the process of step S2 is completed and the driving state control process proceeds to the process of step S3.

ステップS3の処理では、推定値算出部608が、内燃機関の冷却熱量に対する燃焼室での発熱量を考慮して、燃焼室の壁部の温度TCCと冷却水温算出部606が算出したエンジン温度との差分値TCCDを算出する。これにより、ステップS3の処理は完了し、運転状態制御処理はステップS4の処理に進む。   In the process of step S3, the estimated value calculation unit 608 considers the heat generation amount in the combustion chamber with respect to the cooling heat amount of the internal combustion engine, and the engine temperature calculated by the combustion chamber wall temperature TCC and the cooling water temperature calculation unit 606 The difference value TCCD is calculated. Thereby, the process of step S3 is completed and the driving state control process proceeds to the process of step S4.

ステップS4の処理では、推定値算出部608が、量産における好ましい中央特性の内燃機関個体(マスタエンジン)における燃焼室の壁部の温度及び内燃機関の冷却水の温度であるエンジン温度の差分値と燃料噴射量との関係を示す特性に基づいて、ステップS3の処理において算出された差分値TCCDに応じた燃料噴射量を、内燃機関の燃焼を発生させた燃料噴射量の推定値(推定燃焼寄与噴射量)TCCDTIとして算出する。そして、推定値算出部608がこのように算出した推定燃焼寄与噴射量TCCDTIは、運転状態制御部611で用いられる。これにより、ステップS4の処理は完了し、運転状態制御処理はステップS5の処理に進む。   In the process of step S4, the estimated value calculation unit 608 calculates the difference between the temperature of the combustion chamber wall and the temperature of the cooling water of the internal combustion engine in the internal combustion engine individual (master engine) having a preferable central characteristic in mass production, Based on the characteristic indicating the relationship with the fuel injection amount, the fuel injection amount corresponding to the difference value TCCD calculated in the process of step S3 is used as the estimated value of fuel injection amount that caused combustion of the internal combustion engine (estimated combustion contribution). (Amount of injection) Calculated as TCCDTI. The estimated combustion contribution injection amount TCCDTI calculated by the estimated value calculation unit 608 in this way is used by the operating state control unit 611. Thereby, the process of step S4 is completed, and the operation state control process proceeds to the process of step S5.

ステップS5の処理では、補正値算出部610が、内燃機関の燃焼室を画成する壁部の伝熱特性を反映した時間遅れを加味して、燃料噴射量の指示値を積算、平均化した値(移動平均処理した値)を燃料噴射量の指示値の補正値TIAVEとして算出する。そして、補正値算出部610がこのように算出した補正値TIAVEは、運転状態制御部611で用いられる。これにより、ステップS5の処理は完了し、運転状態制御処理はステップS6の処理に進む。   In the process of step S5, the correction value calculation unit 610 integrates and averages the indicated value of the fuel injection amount in consideration of the time delay reflecting the heat transfer characteristics of the wall portion that defines the combustion chamber of the internal combustion engine. The value (the value obtained by moving average processing) is calculated as the correction value TIAVE of the instruction value of the fuel injection amount. The correction value TIAVE calculated in this way by the correction value calculation unit 610 is used by the operating state control unit 611. Thereby, the process of step S5 is completed and the operation state control process proceeds to the process of step S6.

ステップS6の処理では、運転状態制御部611が、推定燃焼寄与噴射量TCCDTIと補正値TIAVEとの差分値DTCCTIを算出する。これにより、ステップS6の処理は完了し、運転状態制御処理はステップS7の処理に進む。   In the process of step S6, the operating state control unit 611 calculates a difference value DTCCTI between the estimated combustion contribution injection amount TCCDTI and the correction value TIAVE. Thereby, the process of step S6 is completed and the driving state control process proceeds to the process of step S7.

ステップS7の処理では、内燃機関1の運転状態をノッキングの発生を抑制した運転状態にすべく、運転状態制御部611が、ステップS6の処理において算出された差分値DTCCTIが内燃機関のノッキングレベルに対応する閾値(ノッキングしきい値)未満であるか否かを判別する。判別の結果、差分値DTCCTIがノッキングしきい値未満である場合、運転状態制御部611は、運転状態制御処理をステップS8の処理に進める。一方、差分値DTCCTIがノッキングしきい値以上である場合には、運転状態制御部611は、運転状態制御処理をステップS11の処理に進める。   In the process of step S7, the operation state control unit 611 sets the difference value DTCCTI calculated in the process of step S6 to the knocking level of the internal combustion engine in order to change the operation state of the internal combustion engine 1 to an operation state in which the occurrence of knocking is suppressed. It is determined whether or not it is less than a corresponding threshold value (knocking threshold value). As a result of the determination, if the difference value DTCCTI is less than the knocking threshold value, the driving state control unit 611 advances the driving state control process to the process of step S8. On the other hand, when the difference value DTCCTI is equal to or greater than the knocking threshold value, the driving state control unit 611 advances the driving state control process to the process of step S11.

ステップS8の処理では、運転状態制御部611が、補正値TIAVEが推定燃焼寄与噴射量TCCDTIより大きいか否かを判別する。判別の結果、補正値TIAVEが推定燃焼寄与噴射量TCCDTIより大きい場合、運転状態制御部611は、シリンダの内圧が不足していると判断し、運転状態制御処理をステップS9の処理に進める。一方、補正値TIAVEが推定燃焼寄与噴射量TCCDTI以下である場合には、運転状態制御部611は、燃焼の乱れのレベルが高い、すなわち過進角の状態であると判断し、運転状態制御処理をステップS10の処理に進める。   In the process of step S8, the operating state control unit 611 determines whether or not the correction value TIAVE is larger than the estimated combustion contribution injection amount TCCDTI. If the correction value TIAVE is larger than the estimated combustion contribution injection amount TCCDTI as a result of determination, the operating state control unit 611 determines that the internal pressure of the cylinder is insufficient, and advances the operating state control process to the process of step S9. On the other hand, when the correction value TIAVE is equal to or less than the estimated combustion contribution injection amount TCCDTI, the operating state control unit 611 determines that the level of combustion turbulence is high, that is, the state of excessive advance, and the operating state control process The process proceeds to step S10.

ステップS9の処理では、運転状態制御部611が、シリンダの内圧が不足しているという観点から燃焼室内の混合気への点火時期を進角側に設定して算出すると共に、アクセル開度等を用いて燃料噴射量の指示値及び目標スロットル開度を算出し、それらに応じて駆動回路612b、612c及び612aを介して点火栓80、燃料噴射弁90及びスロットルモータ70を駆動することによって、内燃機関の運転状態を制御する。この際、運転状態制御部611は、このように各々算出した点火時期、燃料噴射量の指示値及び目標スロットル開度をRAM609に記録した後にRAM609からこれらを読み出して内燃機関の運転状態を制御する。これにより、ステップS9の処理は完了し、今回の一連の運転状態制御処理は終了する。   In the process of step S9, the operation state control unit 611 calculates the ignition timing for the air-fuel mixture in the combustion chamber from the viewpoint that the internal pressure of the cylinder is insufficient and calculates the accelerator opening and the like. The fuel injection amount instruction value and the target throttle opening are calculated and the ignition plug 80, the fuel injection valve 90, and the throttle motor 70 are driven via the drive circuits 612b, 612c, and 612a in accordance with them. Control the operating state of the engine. At this time, the operation state control unit 611 records the ignition timing, the fuel injection amount instruction value, and the target throttle opening calculated in this manner in the RAM 609 and then reads them from the RAM 609 to control the operation state of the internal combustion engine. . Thereby, the process of step S9 is completed and this series of operation state control processes ends.

ステップS10の処理では、運転状態制御部611が、燃焼の乱れが大きく点火時期が過進角であるという観点から点火時期を遅角側に設定して算出すると共に、アクセル開度等を用いて燃料噴射量の指示値及び目標スロットル開度を算出し、それらに応じて駆動回路612b、612c及び612aを介して点火栓80、燃料噴射弁90及びスロットルモータ70を駆動することによって、内燃機関の運転状態を制御する。この際、運転状態制御部611は、このように各々算出した点火時期、燃料噴射量の指示値及び目標スロットル開度をRAM609に記録した後にRAM609からこれらを読み出して内燃機関の運転状態を制御する。これにより、ステップS10の処理は完了し、今回の一連の運転状態制御処理は終了する。   In the process of step S10, the operating state control unit 611 calculates the ignition timing by setting the ignition timing to the retard side from the viewpoint that the combustion disturbance is large and the ignition timing is an over-advanced angle, and the accelerator opening is used. By calculating the command value of the fuel injection amount and the target throttle opening, and driving the spark plug 80, the fuel injection valve 90, and the throttle motor 70 via the drive circuits 612b, 612c, and 612a according to them, the internal combustion engine Control the operating state. At this time, the operation state control unit 611 records the ignition timing, the fuel injection amount instruction value, and the target throttle opening calculated in this manner in the RAM 609 and then reads them from the RAM 609 to control the operation state of the internal combustion engine. . Thereby, the process of step S10 is completed and a series of this driving | running state control process is complete | finished.

ステップS11の処理では、運転状態制御部611が、ノッキングの発生を抑制する観点から点火時期を遅角側に設定して算出すると共に、アクセル開度等を用いて燃料噴射量の指示値及び目標スロットル開度を算出し、それらに応じて駆動回路612b、612c及び612aを介して点火栓80、燃料噴射弁90及びスロットルモータ70を駆動することによって、内燃機関の運転状態を制御する。この際、運転状態制御部611は、このように各々算出した点火時期、燃料噴射量の指示値及び目標スロットル開度をRAM609に記録した後にRAM609からこれらを読み出して内燃機関の運転状態を制御する。これにより、ステップS10の処理は完了し、今回の一連の運転状態制御処理は終了する。   In the process of step S11, the driving state control unit 611 calculates the ignition timing by setting the ignition timing to the retard side from the viewpoint of suppressing the occurrence of knocking, and also uses the accelerator opening and the like to indicate the fuel injection amount instruction value and the target value. The throttle opening is calculated, and the operation state of the internal combustion engine is controlled by driving the spark plug 80, the fuel injection valve 90, and the throttle motor 70 via the drive circuits 612b, 612c, and 612a according to them. At this time, the operation state control unit 611 records the ignition timing, the fuel injection amount instruction value, and the target throttle opening calculated in this manner in the RAM 609 and then reads them from the RAM 609 to control the operation state of the internal combustion engine. . Thereby, the process of step S10 is completed and a series of this driving | running state control process is complete | finished.

以上の説明から明らかなように、本実施形態における内燃機関制御装置1は、内燃機関の燃焼室を画成する壁部の温度を算出する壁部温度算出部605と、壁部の温度に基づき内燃機関の燃焼を発生させた燃料噴射量の推定値を算出する推定値算出部608と、燃焼を発生させるように内燃機関に指示された燃料噴射量の指示値と、推定値と、に応じて、内燃機関の運転状態を制御する運転状態制御部611と、を備える。これにより、内燃機関の個体差を抑制可能である簡便な構成で、燃焼室内の燃焼状態を検出しその燃焼状態に応じて内燃機関の運転状態を制御することができる。   As is apparent from the above description, the internal combustion engine control apparatus 1 according to the present embodiment is based on the wall temperature calculation unit 605 that calculates the temperature of the wall that defines the combustion chamber of the internal combustion engine, and the temperature of the wall. According to an estimated value calculation unit 608 that calculates an estimated value of the fuel injection amount that caused combustion of the internal combustion engine, an indication value of the fuel injection amount that is instructed to the internal combustion engine to generate combustion, and an estimated value And an operating state control unit 611 that controls the operating state of the internal combustion engine. As a result, the combustion state in the combustion chamber can be detected and the operation state of the internal combustion engine can be controlled according to the combustion state with a simple configuration capable of suppressing individual differences among the internal combustion engines.

また、本実施形態における内燃機関制御装置1では、壁部の伝熱特性を反映した時間遅れを加味して、指示値を補正して補正値を算出する補正値算出部610を更に備え、運転状態制御部611が、補正値と、推定値と、に応じて内燃機関の運転状態を制御するものであるので、内燃機関の燃焼室を画成する壁部の伝熱特性を反映した時間遅れを加味して燃料噴射量の指示値を適切に補正することができ、かかる補正値を用いることにより、内燃機関の運転状態をより適切に制御することができる。   The internal combustion engine control apparatus 1 according to the present embodiment further includes a correction value calculation unit 610 that calculates a correction value by correcting the instruction value in consideration of a time delay reflecting the heat transfer characteristics of the wall. Since the state control unit 611 controls the operation state of the internal combustion engine according to the correction value and the estimated value, a time delay reflecting the heat transfer characteristics of the wall portion that defines the combustion chamber of the internal combustion engine Thus, the fuel injection amount instruction value can be appropriately corrected, and the operation state of the internal combustion engine can be more appropriately controlled by using the correction value.

また、本実施形態における内燃機関制御装置1では、運転状態制御部611が、補正値に比べて推定値が大きいときに、点火時期を遅角することで、内燃機関の運転状態を制御するものであるため、燃焼室内の燃焼の乱れを適切に抑止することができ、内燃機関の運転状態をより適切に制御することができる。   In the internal combustion engine control apparatus 1 according to the present embodiment, the operating state control unit 611 controls the operating state of the internal combustion engine by retarding the ignition timing when the estimated value is larger than the correction value. Therefore, the disturbance of combustion in the combustion chamber can be appropriately suppressed, and the operating state of the internal combustion engine can be controlled more appropriately.

また、本実施形態における内燃機関制御装置1では、内燃機関の温度を算出する内燃機関温度算出部606を更に備え、推定値算出部608が、壁部の温度と内燃機関の温度とに基づき、推定値を算出するものであるため、燃焼室内の燃焼状態を適切に検出しその燃焼状態に応じて内燃機関の運転状態を制御することができる。   The internal combustion engine control apparatus 1 according to the present embodiment further includes an internal combustion engine temperature calculation unit 606 that calculates the temperature of the internal combustion engine, and the estimated value calculation unit 608 is based on the wall temperature and the internal combustion engine temperature. Since the estimated value is calculated, the combustion state in the combustion chamber can be appropriately detected, and the operation state of the internal combustion engine can be controlled in accordance with the combustion state.

なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。   In the present invention, the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects. Of course, it can be changed as appropriate without departing from the scope.

以上のように、本発明は、内燃機関の個体差を抑制可能である簡便な構成で、燃焼室内の燃焼状態を検出しその燃焼状態に応じて内燃機関の運転状態を制御可能な内燃機関制御装置を提供することができるものであり、その汎用普遍的な性格から自動二輪車等の車両の内燃機関に広く適用され得るものと期待される。   As described above, the present invention is an internal combustion engine control capable of detecting the combustion state in the combustion chamber and controlling the operation state of the internal combustion engine according to the combustion state with a simple configuration capable of suppressing individual differences among the internal combustion engines. It is expected that the present invention can be widely applied to an internal combustion engine of a vehicle such as a motorcycle because of its universality.

1…内燃機関制御装置
20…スロットル開度センサ
30…クランク角センサ
40…壁部温度センサ
50…冷却水温センサ
60…ECU
70…スロットルモータ
80…点火栓
90…燃料噴射弁
601a、601b及び601c…A/D変換回路
602…波形成形回路
603…スロットル開度算出部
604…角速度算出部
605…壁部温度算出部
606…冷却水温算出部
607…トルク算出部
608…推定値算出部
609…RAM
610…補正値算出部
611…運転状態制御部
612a、612b及び612c…駆動回路
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine control apparatus 20 ... Throttle opening sensor 30 ... Crank angle sensor 40 ... Wall temperature sensor 50 ... Cooling water temperature sensor 60 ... ECU
DESCRIPTION OF SYMBOLS 70 ... Throttle motor 80 ... Spark plug 90 ... Fuel injection valve 601a, 601b and 601c ... A / D conversion circuit 602 ... Waveform shaping circuit 603 ... Throttle opening calculation part 604 ... Angular velocity calculation part 605 ... Wall part temperature calculation part 606 ... Cooling water temperature calculation unit 607 ... Torque calculation unit 608 ... Estimated value calculation unit 609 ... RAM
610 ... Correction value calculation unit 611 ... Operating state control unit 612a, 612b and 612c ... Drive circuit

Claims (4)

内燃機関の運転状態を制御する内燃機関制御装置において、
前記内燃機関の燃焼室を画成する壁部の温度を算出する壁部温度算出部と、
前記壁部の温度に基づき前記内燃機関の燃焼を発生させた燃料噴射量の推定値を算出する推定値算出部と、
前記燃焼を発生させるように前記内燃機関に指示された燃料噴射量の指示値と、前記推定値と、に応じて、前記運転状態を制御する運転状態制御部と、
を備えることを特徴とする内燃機関制御装置。
In an internal combustion engine control device for controlling the operating state of the internal combustion engine,
A wall temperature calculator for calculating a temperature of a wall defining the combustion chamber of the internal combustion engine;
An estimated value calculating unit that calculates an estimated value of the fuel injection amount that caused combustion of the internal combustion engine based on the temperature of the wall;
An operating state control unit that controls the operating state according to an instruction value of a fuel injection amount instructed to the internal combustion engine to generate the combustion, and the estimated value;
An internal combustion engine control device comprising:
前記壁部の伝熱特性を反映した時間遅れを加味して、前記指示値を補正して補正値を算出する補正値算出部を更に備え、
前記運転状態制御部は、前記補正値と、前記推定値と、に応じて前記運転状態を制御することを特徴とする請求項1に記載の内燃機関装置。
In consideration of a time delay that reflects the heat transfer characteristics of the wall, further comprising a correction value calculation unit that corrects the indicated value and calculates a correction value,
The internal combustion engine device according to claim 1, wherein the operating state control unit controls the operating state according to the correction value and the estimated value.
前記運転状態制御部は、前記補正値に比べて前記推定値が大きいときに、前記内燃機関の点火時期を遅角することで、前記運転状態を制御することを特徴とする請求項2に記載の内燃機関制御装置。 The operation state control unit controls the operation state by retarding an ignition timing of the internal combustion engine when the estimated value is larger than the correction value. The internal combustion engine control device. 前記内燃機関の温度を算出する内燃機関温度算出部を更に備え、
前記推定値算出部は、前記壁部の温度と前記内燃機関の前記温度とに基づき、前記推定値を算出することを特徴とする請求項1から3のいずれかに記載の内燃機関制御装置。
An internal combustion engine temperature calculation unit for calculating the temperature of the internal combustion engine;
The internal combustion engine control device according to any one of claims 1 to 3, wherein the estimated value calculation unit calculates the estimated value based on the temperature of the wall and the temperature of the internal combustion engine.
JP2016060099A 2016-03-24 2016-03-24 Internal combustion engine control device Expired - Fee Related JP6605376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060099A JP6605376B2 (en) 2016-03-24 2016-03-24 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060099A JP6605376B2 (en) 2016-03-24 2016-03-24 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2017172482A JP2017172482A (en) 2017-09-28
JP6605376B2 true JP6605376B2 (en) 2019-11-13

Family

ID=59970714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060099A Expired - Fee Related JP6605376B2 (en) 2016-03-24 2016-03-24 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP6605376B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782049B2 (en) * 2016-03-31 2020-11-11 株式会社ケーヒン Internal combustion engine controller

Also Published As

Publication number Publication date
JP2017172482A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP2008202460A (en) Control device for internal combustion engine
JP2008069713A (en) Combustion control device of internal combustion engine
JP2007211725A (en) Engine torque estimating device
JP2007255237A (en) Control device of internal combustion engine
JP2006029084A (en) Control device of internal combustion engine
JP6553537B2 (en) Internal combustion engine control system
JP2012193655A (en) Engine ignition timing setting apparatus
JP6605376B2 (en) Internal combustion engine control device
JP2017223138A (en) Exhaust temperature estimation device for internal combustion engine
JP4431975B2 (en) Control device for internal combustion engine
WO2016190092A1 (en) Engine control device
JP2012219757A (en) Internal combustion engine control device
JPS61169666A (en) Ignition timing control device in internal-combustion engine
JP6454538B2 (en) Internal combustion engine control device
JP2017180372A (en) Internal combustion engine controller
JP6454539B2 (en) Internal combustion engine control device
JP5240208B2 (en) Control device for internal combustion engine
JP6077371B2 (en) Control device for internal combustion engine
JP6684680B2 (en) Internal combustion engine controller
JP2007278133A (en) Engine shaft torque estimation device
JP6463124B2 (en) Internal combustion engine control device
JP6782049B2 (en) Internal combustion engine controller
JP2009167871A (en) Control device of internal combustion engine
JP5370672B2 (en) Intake air amount control device for internal combustion engine
JPH0826839B2 (en) Ignition timing control method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R150 Certificate of patent or registration of utility model

Ref document number: 6605376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees