WO2018029601A1 - Procédé de réduction de la teneur en composés oxygénés d'une charge d'hydrocarbures - Google Patents

Procédé de réduction de la teneur en composés oxygénés d'une charge d'hydrocarbures Download PDF

Info

Publication number
WO2018029601A1
WO2018029601A1 PCT/IB2017/054835 IB2017054835W WO2018029601A1 WO 2018029601 A1 WO2018029601 A1 WO 2018029601A1 IB 2017054835 W IB2017054835 W IB 2017054835W WO 2018029601 A1 WO2018029601 A1 WO 2018029601A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon feed
exchange resin
range
oxygenate content
intermediate fluid
Prior art date
Application number
PCT/IB2017/054835
Other languages
English (en)
Inventor
Swapan Kumar Ghosh
Mukunda Madhab Baishya
Suyog Subhash Salgarkar
Biswajit SHOWN
Chirag Dalpatbhai PANSERIYA
Hitesh Ratibhai KANSAGRA
Asit Kumar Das
Original Assignee
Reliance Industries Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reliance Industries Limited filed Critical Reliance Industries Limited
Priority to EP17838892.2A priority Critical patent/EP3497184A4/fr
Priority to US16/321,532 priority patent/US20190161691A1/en
Publication of WO2018029601A1 publication Critical patent/WO2018029601A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/04Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one extraction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • B01J39/05Processes using organic exchangers in the strongly acidic form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/10Purification; Separation; Use of additives by extraction, i.e. purification or separation of liquid hydrocarbons with the aid of liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/02Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents with two or more solvents, which are introduced or withdrawn separately
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G27/00Refining of hydrocarbon oils in the absence of hydrogen, by oxidation
    • C10G27/04Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen
    • C10G27/10Refining of hydrocarbon oils in the absence of hydrogen, by oxidation with oxygen or compounds generating oxygen in the presence of metal-containing organic complexes, e.g. chelates, or cationic ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/08Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/06Dewatering or demulsification of hydrocarbon oils with mechanical means, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/104Light gasoline having a boiling range of about 20 - 100 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1044Heavy gasoline or naphtha having a boiling range of about 100 - 180 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Definitions

  • ppmw represents parts per million weight, which is a subunit of ppm used to express part of weights like milligrams per kilogram (mg/kg).
  • Oxygenates refer to oxygen containing compounds like ethers, alcohols, acids present in hydrocarbon feed.
  • the unit "barg”, a unit of gauge pressure, is used for expressing pressure in bars above ambient or atmospheric pressure.
  • Olefins are major building blocks for various petrochemicals. Owing to relatively high reactivity of olefins, their demand is always increasing. Different olefin products such as ethylene, propylene, butadiene, butane, butene, isoprene, pyrolysis gasoline, and the like are produced using steam cracker.
  • Olefins are produced in the stream cracker using naphtha as a feedstock.
  • Naphtha is an intermediate hydrocarbon liquid stream obtained during distillation of crude oil or thermal and/or catalytic cracking of hydrocarbon streams.
  • Naphtha contain large amount of oxygen compounds, commonly called as oxygenates. These oxygenates are undesired contaminants for naphtha cracker units, and its downstream equipment.
  • Naphtha fraction with relatively high concentration of oxygenates, as impurities, is of particular concern to naphtha crackers, and various other catalytic conversion processes, as the oxygen containing compounds increase corrosion, and fouling rates in the downstream equipment.
  • the oxygen containing compounds are also responsible for poisoning the catalyst.
  • the acceptable level of oxygenates in the hydrocarbon feed is 50 ppmw.
  • An object of the present disclosure is to provide a process for reducing the oxygenate content of hydrocarbon feed.
  • Another object of the present disclosure is to provide a process that is simple and environment friendly for reducing the oxygenate content of hydrocarbon feed.
  • the present disclosure provides a process for reducing oxygenate content of hydrocarbon feed.
  • the process comprises the following steps:
  • the oxygenate in the hydrocarbon feed comprises at least one of methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME).
  • MTBE methyl tertiary butyl ether
  • TAME tertiary amyl methyl ether
  • the oxygenate in the hydrocarbon feed comprises at least one of methanol, ethanol, 1-propanol, 2-butanol, 1-butanol and tertiary amyl alcohol.
  • the amount of the oxygenate content in the hydrocarbon feed is in the range of 51 to 350 ppmw.
  • the amount of the oxygenate content in the hydrocarbon feed with reduced oxygenate content is in the range of 4 to 50 ppmw.
  • the ion exchange resin is a cation exchange resin.
  • the ion exchange resin is a macroporous polymeric exchange resin.
  • the ion exchange resin is a macroporous polymeric sulphonic acid exchange resin.
  • the process comprises a pre-step of drying the ion exchange resin before using it in step (i).
  • the predetermined pressure is in the range of 4 to 10 barg.
  • the predetermined liquid hourly space velocity is in the range of 0.5 to 15 per hour.
  • the hydrocarbon feed is petrochemical naphtha comprising C5 to C8 hydrocarbons.
  • the reactor is a fixed bed reactor.
  • quantity of the water used in step (iii) is in the range of 2.5 to 10 vol of the hydrocarbon feed, wherein the water used in step (iii) is demineralized water.
  • Petrochemical naphtha contain large numbers of oxygen containing compounds or oxygenates, which are of particular concern to naphtha crackers, which makes the feedstock unsuitable for processing. Oxygenates tend to increase corrosion and fouling rates in downstream equipment, while also reacting with the catalyst present in the naphtha cracker and reducing its activity. Oxygenates in hydrocarbon feed mainly include alcohols and ethers. Alcohols being water- soluble can be easily removed from the hydrocarbon feed by washing, however ethers being essentially non-polar molecules are sparingly soluble in water. As a result, the total oxygenates cannot be removed from petrochemical naphtha stream by simply washing with water.
  • Ethers can be removed from hydrocarbon feed easily if they are converted to alcohols. Ethers can be converted to olefins and alcohols in the presence of an acid. The alcohol molecules thus formed can be easily removed on washing the hydrocarbon feed with water.
  • the present disclosure envisages a process for reducing oxygenate content of hydrocarbon feed.
  • the process is carried out by converting ethers in the hydrocarbon feed into alcohols using an ion exchange resin and then removing the alcohols in the hydrocarbon feed by washing with water.
  • the process of the present disclosure comprises the following steps. Initially, the hydrocarbon feed is passed and heated over an ion exchange resin resident in a reactor maintained at a temperature in the range of 90 to 140 °C and a pre-determined pressure at a predetermined liquid hourly space velocity to obtain a heated intermediate fluid.
  • the reactor is maintained at a temperature in the range of 100 to 120°C, more preferably at 110 °C.
  • the reactor is a fixed bed reactor. In an embodiment, the temperature of the reactor bed is measured by use of an axial thermocouple.
  • the heated intermediate fluid is collected after passing over the ion exchange resin. This heated intermediate fluid is cooled to obtain a cooled intermediate fluid. Typically, the heated intermediate fluid is cooled to a temperature in the range of 30 to 40 °C.
  • the cooled intermediate fluid is mixed with water to obtain a mixture, wherein the quantity of water is in the range of 2.5 to 10 vol of the hydrocarbon feed.
  • the mixing is carried out by shaking, stirring or by any other means.
  • the water used is demineralized water.
  • the mixture is allowed to settle to obtain an aqueous phase and an organic phase. Thereafter the aqueous phase is separated from the organic phase to obtain hydrocarbon feed with reduced oxygenate content.
  • the amount of oxygenate content in the hydrocarbon feed is in the range of 51 ppmw to 350 ppmw.
  • the oxygenate in the hydrocarbon feed comprises alcohols, ethers, acids, and the like.
  • the oxygenate in the hydrocarbon feed comprise at least one of methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME).
  • the oxygenate in the hydrocarbon feed comprises at least one of methanol, ethanol, 1-propanol, 2-butanol, 1-butanol and tertiary amyl alcohol.
  • the pre-determined pressure is in the range of 4 to 10 barg, preferably from 5 to 7 barg and more preferably 6 barg.
  • the predetermined liquid hourly space velocity is in the range of 0.5 to 15 per hour.
  • the predetermined liquid hourly space velocity is in the range of 0.5 to 10 per hour.
  • the ion exchange resin is a cation exchange resin.
  • the ion exchange resin is a macroporous polymeric resin.
  • the ion exchange resin used is macroporous polymeric sulphonic acid exchange resin such as Amberlyst.
  • the surface area of ion exchange resin is 50 m 2 e, average pore diameter is 300 A°, total pore volume is 0.35 cc/g, the particle size is in the range of 0.3 to 1.20 mm, and bulk density is 560 kg/m 3 .
  • moisture in the ion exchange resin is at least below 3%.
  • the ion exchange resin is dried before use, so as to expel residual moisture, wherein the dried ion exchange resin is stored in a desiccator.
  • the present disclosure offers an integrated process for reducing the oxygenate content of the hydrocarbon feed.
  • the amount of oxygenate content in the hydrocarbon feed with reduced oxygenate content is in the range of 4 to 50 ppmw.
  • the process of the present disclosure enables reduction of oxygenate content of the hydrocarbon feed by an amount in the range of 70-90 wt%.
  • the process of the present disclosure can help to achieve desired degree of oxygenate removal, thereby effectively improving the acceptability of naphtha stream as a feedstock.
  • the desired specification of oxygenate is less than 50 ppmw.
  • the hydrocarbon feed is comprised of straight run saturated light naphtha stream having boiling point in the range of 32 to 120 °C.
  • the hydrocarbon feed is petrochemical naphtha comprising C5 to C8 hydrocarbon which further comprises C5-C8 normal paraffins, iso-paraffins, napthenes and C6-C7 aromatics.
  • the hydrocarbon feed contains moisture at least below 160 ppmw and metal impurity at least below 100 ppb.
  • the metal impurity in the hydrocarbon feed may be at least one of sodium, potassium, calcium and iron.
  • Hydrocarbon feed having an oxygenate content of 150 ppmw, moisture content of 160ppmw and metal content of less than 100 ppb was passed and heated over an Amberlyst resin present in a fixed bed reactor.
  • the reactor was maintained at 110 °C and 6 barg.
  • the hydrocarbon feed was passed at a liquid hourly space velocity (LHSV) of 7 per hour.
  • LHSV liquid hourly space velocity
  • the feed from the reactor was cooled to 30 °C and then mixed with 5 vol of water.
  • the resulting mixture was allowed to settle to obtain an aqueous phase and an organic phase.
  • the organic phase was separated from the aqueous phase to obtain hydrocarbon feed with reduced oxygenate content having 20 ppmw of oxygenate content.
  • Hydrocarbon feed having an oxygenate content of 150 ppmw, moisture content of 160ppmw and metal content of less than 100 ppb was passed and heated over an Amberlyst resin present in a fixed bed reactor.
  • the reactor is maintained at 110 °C and 6 barg.
  • the effluent from reactor was passed at a liquid hourly space velocity (LHSV) of 7 per hour.
  • LHSV liquid hourly space velocity
  • the hydrocarbon stream from the reactor was cooled to 30 °C and then mixed with 10 vol of water.
  • the resulting mixture was allowed to settle to obtain an aqueous phase and an organic phase.
  • the organic phase was separated from the aqueous phase to obtain hydrocarbon feed with reduced oxygenate content having less than 20 ppmw of oxygenate content.
  • the present disclosure described herein above has several technical advantages including, but not limited to, the realization of a process for reducing the oxygenate content of hydrocarbon feed, wherein the process: enables removal of 70-90% of oxygenate content from the hydrocarbon feed; and is simple and environment friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La présente invention concerne un procédé de réduction de la teneur en composé oxygéné d'une charge d'hydrocarbure. Le procédé consiste à faire passer et à chauffer la charge d'hydrocarbure sur une résine échangeuse d'ions résidant dans un réacteur, maintenue à une température comprise entre 90 et 140 °C et à une pression prédéterminée, à une vitesse spatiale horaire prédéterminée pour obtenir un fluide intermédiaire chauffé. Le fluide intermédiaire chauffé est refroidi pour obtenir un fluide intermédiaire refroidi. Le fluide intermédiaire refroidi est mélangé à de l'eau pour obtenir un mélange. On laisse le mélange se déposer pour obtenir une phase aqueuse et une phase organique. La phase aqueuse est séparée de la phase organique pour obtenir une charge d'hydrocarbures à teneur réduite en composés oxygénés. Le procédé est simple et respectueux de l'environnement, permettant l'élimination de 70 à 90 % de la teneur en composés oxygénés à partir de la charge d'hydrocarbures.
PCT/IB2017/054835 2016-08-09 2017-08-08 Procédé de réduction de la teneur en composés oxygénés d'une charge d'hydrocarbures WO2018029601A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17838892.2A EP3497184A4 (fr) 2016-08-09 2017-08-08 Procédé de réduction de la teneur en composés oxygénés d'une charge d'hydrocarbures
US16/321,532 US20190161691A1 (en) 2016-08-09 2017-08-08 Process for Reducing Oxygenate Content of Hydrocarbon Feed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN201621027235 2016-08-09
IN201621027235 2016-08-09

Publications (1)

Publication Number Publication Date
WO2018029601A1 true WO2018029601A1 (fr) 2018-02-15

Family

ID=61162419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/054835 WO2018029601A1 (fr) 2016-08-09 2017-08-08 Procédé de réduction de la teneur en composés oxygénés d'une charge d'hydrocarbures

Country Status (3)

Country Link
US (1) US20190161691A1 (fr)
EP (1) EP3497184A4 (fr)
WO (1) WO2018029601A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105773A (zh) * 2019-03-15 2019-08-09 中国石油化工股份有限公司 一种环保型烷烃橡胶油及其制备方法
GB2608801A (en) * 2021-07-08 2023-01-18 Equinor Energy As Method for the removal of oxygenates from hydrocarbon fluids

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11661385B2 (en) * 2021-03-01 2023-05-30 Uop Llc Process for increasing the concentration of normal hydrocarbons in a light naphtha stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544776A (en) * 1981-12-22 1985-10-01 Deutsche Texaco Aktiengesellschaft Process for separating methanol from the reaction products obtained in the etherification of C4 through C7 isoolefins with methanol
EP0619286A1 (fr) * 1993-04-05 1994-10-12 Chemical Research & Licensing Company Elimination des composés contenant de l'oxygène dans un procédé de production d'oxyde de MTBE par distillation réactive
US5609654A (en) * 1992-06-02 1997-03-11 Mobil Oil Corporation Process for hydroisomerization and etherification of isoalkenes
US20050054885A1 (en) * 2003-09-08 2005-03-10 Reyes Sebastian C. Separation of methanol, ethanol and/or dimethyl ether from hydrocarbon mixtures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3124293A1 (de) * 1981-06-19 1983-01-05 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von reinen alkyl-tert.-alkylethern und weitgehend vom isoolefin und vom alkanol befreiten kohlenwasserstoff-raffinaten
US5300126A (en) * 1992-10-19 1994-04-05 Mobil Oil Corporation Process for improving olefin etherification catalyst life
US5430197A (en) * 1994-02-22 1995-07-04 Chemica Research & Licensing Company Recovery of alcohol from hydrocarbon streams
FR2733978B1 (fr) * 1995-05-11 1997-06-13 Inst Francais Du Petrole Procede et installation pour la conversion de coupes c4 et c5 olefiniques en ether et en propylene
US10329495B2 (en) * 2016-10-28 2019-06-25 Uop Llc Process for removing oxygenates from naphtha

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544776A (en) * 1981-12-22 1985-10-01 Deutsche Texaco Aktiengesellschaft Process for separating methanol from the reaction products obtained in the etherification of C4 through C7 isoolefins with methanol
US5609654A (en) * 1992-06-02 1997-03-11 Mobil Oil Corporation Process for hydroisomerization and etherification of isoalkenes
EP0619286A1 (fr) * 1993-04-05 1994-10-12 Chemical Research & Licensing Company Elimination des composés contenant de l'oxygène dans un procédé de production d'oxyde de MTBE par distillation réactive
US20050054885A1 (en) * 2003-09-08 2005-03-10 Reyes Sebastian C. Separation of methanol, ethanol and/or dimethyl ether from hydrocarbon mixtures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3497184A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105773A (zh) * 2019-03-15 2019-08-09 中国石油化工股份有限公司 一种环保型烷烃橡胶油及其制备方法
CN110105773B (zh) * 2019-03-15 2021-04-09 中国石油化工股份有限公司 一种环保型烷烃橡胶油及其制备方法
GB2608801A (en) * 2021-07-08 2023-01-18 Equinor Energy As Method for the removal of oxygenates from hydrocarbon fluids
GB2608801B (en) * 2021-07-08 2024-01-10 Equinor Energy As Method for the removal of oxygenates from hydrocarbon fluids

Also Published As

Publication number Publication date
EP3497184A1 (fr) 2019-06-19
US20190161691A1 (en) 2019-05-30
EP3497184A4 (fr) 2020-02-19

Similar Documents

Publication Publication Date Title
US7989668B2 (en) Lowering nitrogen-containing Lewis bases in molecular sieve oligomerisation
CN107011117B (zh) 混合丁烯水合制备混合醇的方法
WO2018029601A1 (fr) Procédé de réduction de la teneur en composés oxygénés d'une charge d'hydrocarbures
CN107001949A (zh) 链烷烃改质制馏分油和润滑剂基础油
US20130219777A1 (en) Process to produce clean gasoline/bio-ethers using ethanol
US9260357B2 (en) Hydrocarbon conversion process
US4556461A (en) Process for separating highly pure butene-1 or butene-1/isobutene mixture from C4 hydrocarbon fraction
US5908964A (en) Process for preparing alkyl ethers and mixtures thereof
AU724080B2 (en) Process for preparing butene oligomers from field butanes
CN103380103A (zh) 利用二元醇醚的高纯度异丁烯的制备方法
CN103773479B (zh) 一种生产清洁汽油的方法
US6433238B1 (en) Process for the production of hydrocarbons with a high octane number by the selective dimerization of isobutene
AU725982B2 (en) Process for preparing alkyl tert-butyl ethers and di-n-butene from field butanes
CN107537567B (zh) 一种磺酸基阳离子交换树脂的改性方法及制备甲基叔戊基醚的方法
CN111018644A (zh) 提高混合碳四综合利用价值的方法
US8492603B2 (en) Selectivated isoolefin dimerization using metalized resins
US11845707B2 (en) Processes and systems for C3+ monoolefin conversion
SA06270421B1 (ar) عملية لفصل هيدروكربونات c5 موجودة بتيارات تحتوي بشكل سائد على منتجات c4 تستخدم في إنتاج مركبات هيدروكربونية عالية الاوكتان بالديمرة الإنتقائية للايزوبيوتين
NL8101594A (nl) Werkwijze voor de winning van c2-c4-alkanolen van gasoline-kwaliteit uit waterige mengsels, die deze alkanolen bevatten.
WO2014127436A1 (fr) Procédé de production d'oléfines à partir d'éthanol combustible
RU2070217C1 (ru) Способ получения компонента компаундирования бензина
RU2108367C1 (ru) Способ получения бензина
Biswas et al. Deoligomerization of paraffin wax to mineral oil with alumina supported zirconium complex catalyst
Fernández Armisén Deactivation study of catalysts Amberlyst (tm) 35 and Purolite CT® 275 by acetonitrile
CN109232156A (zh) 一种制备异戊烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017838892

Country of ref document: EP

Effective date: 20190311